ggml.c 575 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_MSC_VER)
  32. // disable "possible loss of data" to avoid hundreds of casts
  33. // we should just be careful :)
  34. #pragma warning(disable: 4244 4267)
  35. #endif
  36. #if defined(_WIN32)
  37. #include <windows.h>
  38. typedef volatile LONG atomic_int;
  39. typedef atomic_int atomic_bool;
  40. static void atomic_store(atomic_int* ptr, LONG val) {
  41. InterlockedExchange(ptr, val);
  42. }
  43. static LONG atomic_load(atomic_int* ptr) {
  44. return InterlockedCompareExchange(ptr, 0, 0);
  45. }
  46. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  47. return InterlockedExchangeAdd(ptr, inc);
  48. }
  49. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  50. return atomic_fetch_add(ptr, -(dec));
  51. }
  52. typedef HANDLE pthread_t;
  53. typedef DWORD thread_ret_t;
  54. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  55. (void) unused;
  56. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  57. if (handle == NULL)
  58. {
  59. return EAGAIN;
  60. }
  61. *out = handle;
  62. return 0;
  63. }
  64. static int pthread_join(pthread_t thread, void* unused) {
  65. (void) unused;
  66. return (int) WaitForSingleObject(thread, INFINITE);
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void* thread_ret_t;
  76. #endif
  77. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  78. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  79. #ifndef __FMA__
  80. #define __FMA__
  81. #endif
  82. #ifndef __F16C__
  83. #define __F16C__
  84. #endif
  85. #ifndef __SSE3__
  86. #define __SSE3__
  87. #endif
  88. #endif
  89. #ifdef __HAIKU__
  90. #define static_assert(cond, msg) _Static_assert(cond, msg)
  91. #endif
  92. /*#define GGML_PERF*/
  93. #define GGML_DEBUG 0
  94. #define GGML_GELU_FP16
  95. #define GGML_SILU_FP16
  96. #define GGML_SOFT_MAX_UNROLL 4
  97. #define GGML_VEC_DOT_UNROLL 2
  98. #ifdef GGML_USE_ACCELERATE
  99. // uncomment to use vDSP for soft max computation
  100. // note: not sure if it is actually faster
  101. //#define GGML_SOFT_MAX_ACCELERATE
  102. #endif
  103. #if UINTPTR_MAX == 0xFFFFFFFF
  104. #define GGML_MEM_ALIGN 4
  105. #else
  106. #define GGML_MEM_ALIGN 16
  107. #endif
  108. #if defined(_MSC_VER) || defined(__MINGW32__)
  109. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  110. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  111. #else
  112. inline static void* ggml_aligned_malloc(size_t size) {
  113. void* aligned_memory = NULL;
  114. #ifdef GGML_USE_METAL
  115. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  116. #else
  117. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  118. #endif
  119. if (result != 0) {
  120. // Handle allocation failure
  121. return NULL;
  122. }
  123. return aligned_memory;
  124. }
  125. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  126. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  127. #endif
  128. #define UNUSED(x) (void)(x)
  129. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  130. #if defined(GGML_USE_ACCELERATE)
  131. #include <Accelerate/Accelerate.h>
  132. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  133. #include "ggml-opencl.h"
  134. #endif
  135. #elif defined(GGML_USE_OPENBLAS)
  136. #include <cblas.h>
  137. #elif defined(GGML_USE_CUBLAS)
  138. #include "ggml-cuda.h"
  139. #elif defined(GGML_USE_CLBLAST)
  140. #include "ggml-opencl.h"
  141. #endif
  142. #undef MIN
  143. #undef MAX
  144. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  145. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  146. // floating point type used to accumulate sums
  147. typedef double ggml_float;
  148. // 16-bit float
  149. // on Arm, we use __fp16
  150. // on x86, we use uint16_t
  151. #ifdef __ARM_NEON
  152. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  153. //
  154. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  155. //
  156. #include <arm_neon.h>
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  159. #define GGML_FP16_TO_FP32(x) ((float) (x))
  160. #define GGML_FP32_TO_FP16(x) (x)
  161. #else
  162. #ifdef __wasm_simd128__
  163. #include <wasm_simd128.h>
  164. #else
  165. #ifdef __POWER9_VECTOR__
  166. #include <altivec.h>
  167. #undef bool
  168. #define bool _Bool
  169. #else
  170. #if defined(_MSC_VER) || defined(__MINGW32__)
  171. #include <intrin.h>
  172. #else
  173. #if !defined(__riscv)
  174. #include <immintrin.h>
  175. #endif
  176. #endif
  177. #endif
  178. #endif
  179. #ifdef __F16C__
  180. #ifdef _MSC_VER
  181. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  182. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  183. #else
  184. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  185. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  186. #endif
  187. #elif defined(__POWER9_VECTOR__)
  188. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  189. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  190. /* the inline asm below is about 12% faster than the lookup method */
  191. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  192. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  193. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  194. register float f;
  195. register double d;
  196. __asm__(
  197. "mtfprd %0,%2\n"
  198. "xscvhpdp %0,%0\n"
  199. "frsp %1,%0\n" :
  200. /* temp */ "=d"(d),
  201. /* out */ "=f"(f):
  202. /* in */ "r"(h));
  203. return f;
  204. }
  205. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  206. register double d;
  207. register ggml_fp16_t r;
  208. __asm__( /* xscvdphp can work on double or single precision */
  209. "xscvdphp %0,%2\n"
  210. "mffprd %1,%0\n" :
  211. /* temp */ "=d"(d),
  212. /* out */ "=r"(r):
  213. /* in */ "f"(f));
  214. return r;
  215. }
  216. #else
  217. // FP16 <-> FP32
  218. // ref: https://github.com/Maratyszcza/FP16
  219. static inline float fp32_from_bits(uint32_t w) {
  220. union {
  221. uint32_t as_bits;
  222. float as_value;
  223. } fp32;
  224. fp32.as_bits = w;
  225. return fp32.as_value;
  226. }
  227. static inline uint32_t fp32_to_bits(float f) {
  228. union {
  229. float as_value;
  230. uint32_t as_bits;
  231. } fp32;
  232. fp32.as_value = f;
  233. return fp32.as_bits;
  234. }
  235. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  236. const uint32_t w = (uint32_t) h << 16;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. const uint32_t two_w = w + w;
  239. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  240. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  241. const float exp_scale = 0x1.0p-112f;
  242. #else
  243. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  244. #endif
  245. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  246. const uint32_t magic_mask = UINT32_C(126) << 23;
  247. const float magic_bias = 0.5f;
  248. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  249. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  250. const uint32_t result = sign |
  251. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  252. return fp32_from_bits(result);
  253. }
  254. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  255. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  256. const float scale_to_inf = 0x1.0p+112f;
  257. const float scale_to_zero = 0x1.0p-110f;
  258. #else
  259. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  260. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  261. #endif
  262. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  263. const uint32_t w = fp32_to_bits(f);
  264. const uint32_t shl1_w = w + w;
  265. const uint32_t sign = w & UINT32_C(0x80000000);
  266. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  267. if (bias < UINT32_C(0x71000000)) {
  268. bias = UINT32_C(0x71000000);
  269. }
  270. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  271. const uint32_t bits = fp32_to_bits(base);
  272. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  273. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  274. const uint32_t nonsign = exp_bits + mantissa_bits;
  275. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  276. }
  277. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  278. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  279. #endif // __F16C__
  280. #endif // __ARM_NEON
  281. //
  282. // global data
  283. //
  284. // precomputed gelu table for f16 (128 KB)
  285. static ggml_fp16_t table_gelu_f16[1 << 16];
  286. // precomputed silu table for f16 (128 KB)
  287. static ggml_fp16_t table_silu_f16[1 << 16];
  288. // precomputed exp table for f16 (128 KB)
  289. static ggml_fp16_t table_exp_f16[1 << 16];
  290. // precomputed f32 table for f16 (256 KB)
  291. static float table_f32_f16[1 << 16];
  292. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  293. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  294. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  295. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  296. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  297. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  298. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  299. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  300. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  301. // precomputed tables for expanding 8bits to 8 bytes:
  302. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  303. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  304. #endif
  305. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  306. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  307. // This is also true for POWER9.
  308. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  309. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  310. uint16_t s;
  311. memcpy(&s, &f, sizeof(uint16_t));
  312. return table_f32_f16[s];
  313. }
  314. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  315. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  316. #endif
  317. // note: do not use these inside ggml.c
  318. // these are meant to be used via the ggml.h API
  319. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  320. return (float) GGML_FP16_TO_FP32(x);
  321. }
  322. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  323. return GGML_FP32_TO_FP16(x);
  324. }
  325. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  326. for (size_t i = 0; i < n; i++) {
  327. y[i] = GGML_FP16_TO_FP32(x[i]);
  328. }
  329. }
  330. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  331. size_t i = 0;
  332. #if defined(__F16C__)
  333. for (; i + 7 < n; i += 8) {
  334. __m256 x_vec = _mm256_loadu_ps(x + i);
  335. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  336. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  337. }
  338. for(; i + 3 < n; i += 4) {
  339. __m128 x_vec = _mm_loadu_ps(x + i);
  340. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  341. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_FP32_TO_FP16(x[i]);
  346. }
  347. }
  348. //
  349. // timing
  350. //
  351. #if defined(_MSC_VER) || defined(__MINGW32__)
  352. static int64_t timer_freq, timer_start;
  353. void ggml_time_init(void) {
  354. LARGE_INTEGER t;
  355. QueryPerformanceFrequency(&t);
  356. timer_freq = t.QuadPart;
  357. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  358. // and the uptime is high enough.
  359. // We subtract the program start time to reduce the likelihood of that happening.
  360. QueryPerformanceCounter(&t);
  361. timer_start = t.QuadPart;
  362. }
  363. int64_t ggml_time_ms(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceCounter(&t);
  366. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  367. }
  368. int64_t ggml_time_us(void) {
  369. LARGE_INTEGER t;
  370. QueryPerformanceCounter(&t);
  371. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  372. }
  373. #else
  374. void ggml_time_init(void) {}
  375. int64_t ggml_time_ms(void) {
  376. struct timespec ts;
  377. clock_gettime(CLOCK_MONOTONIC, &ts);
  378. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  379. }
  380. int64_t ggml_time_us(void) {
  381. struct timespec ts;
  382. clock_gettime(CLOCK_MONOTONIC, &ts);
  383. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  384. }
  385. #endif
  386. int64_t ggml_cycles(void) {
  387. return clock();
  388. }
  389. int64_t ggml_cycles_per_ms(void) {
  390. return CLOCKS_PER_SEC/1000;
  391. }
  392. #ifdef GGML_PERF
  393. #define ggml_perf_time_ms() ggml_time_ms()
  394. #define ggml_perf_time_us() ggml_time_us()
  395. #define ggml_perf_cycles() ggml_cycles()
  396. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  397. #else
  398. #define ggml_perf_time_ms() 0
  399. #define ggml_perf_time_us() 0
  400. #define ggml_perf_cycles() 0
  401. #define ggml_perf_cycles_per_ms() 0
  402. #endif
  403. //
  404. // cache line
  405. //
  406. #if defined(__cpp_lib_hardware_interference_size)
  407. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  408. #else
  409. #if defined(__POWER9_VECTOR__)
  410. #define CACHE_LINE_SIZE 128
  411. #else
  412. #define CACHE_LINE_SIZE 64
  413. #endif
  414. #endif
  415. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  416. //
  417. // quantization
  418. //
  419. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  420. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  421. // multiply int8_t, add results pairwise twice
  422. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  423. // Get absolute values of x vectors
  424. const __m128i ax = _mm_sign_epi8(x, x);
  425. // Sign the values of the y vectors
  426. const __m128i sy = _mm_sign_epi8(y, x);
  427. // Perform multiplication and create 16-bit values
  428. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  429. const __m128i ones = _mm_set1_epi16(1);
  430. return _mm_madd_epi16(ones, dot);
  431. }
  432. #if __AVX__ || __AVX2__ || __AVX512F__
  433. // horizontally add 8 floats
  434. static inline float hsum_float_8(const __m256 x) {
  435. __m128 res = _mm256_extractf128_ps(x, 1);
  436. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  437. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  438. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  439. return _mm_cvtss_f32(res);
  440. }
  441. // horizontally add 8 int32_t
  442. static inline int hsum_i32_8(const __m256i a) {
  443. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  444. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  445. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  446. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  447. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  448. }
  449. // horizontally add 4 int32_t
  450. static inline int hsum_i32_4(const __m128i a) {
  451. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  452. const __m128i sum64 = _mm_add_epi32(hi64, a);
  453. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  454. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  455. }
  456. #if defined(__AVX2__) || defined(__AVX512F__)
  457. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  458. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  459. uint32_t x32;
  460. memcpy(&x32, x, sizeof(uint32_t));
  461. const __m256i shuf_mask = _mm256_set_epi64x(
  462. 0x0303030303030303, 0x0202020202020202,
  463. 0x0101010101010101, 0x0000000000000000);
  464. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  465. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  466. bytes = _mm256_or_si256(bytes, bit_mask);
  467. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  468. }
  469. // Unpack 32 4-bit fields into 32 bytes
  470. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  471. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  472. {
  473. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  474. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  475. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  476. return _mm256_and_si256(lowMask, bytes);
  477. }
  478. // add int16_t pairwise and return as float vector
  479. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  480. const __m256i ones = _mm256_set1_epi16(1);
  481. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  482. return _mm256_cvtepi32_ps(summed_pairs);
  483. }
  484. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  485. #if __AVXVNNI__
  486. const __m256i zero = _mm256_setzero_si256();
  487. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  488. return _mm256_cvtepi32_ps(summed_pairs);
  489. #else
  490. // Perform multiplication and create 16-bit values
  491. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  492. return sum_i16_pairs_float(dot);
  493. #endif
  494. }
  495. // multiply int8_t, add results pairwise twice and return as float vector
  496. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  497. #if __AVXVNNIINT8__
  498. const __m256i zero = _mm256_setzero_si256();
  499. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  500. return _mm256_cvtepi32_ps(summed_pairs);
  501. #else
  502. // Get absolute values of x vectors
  503. const __m256i ax = _mm256_sign_epi8(x, x);
  504. // Sign the values of the y vectors
  505. const __m256i sy = _mm256_sign_epi8(y, x);
  506. return mul_sum_us8_pairs_float(ax, sy);
  507. #endif
  508. }
  509. static inline __m128i packNibbles( __m256i bytes )
  510. {
  511. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  512. #if __AVX512F__
  513. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  514. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  515. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  516. #else
  517. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  518. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  519. __m256i low = _mm256_and_si256( lowByte, bytes );
  520. high = _mm256_srli_epi16( high, 4 );
  521. bytes = _mm256_or_si256( low, high );
  522. // Compress uint16_t lanes into bytes
  523. __m128i r0 = _mm256_castsi256_si128( bytes );
  524. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  525. return _mm_packus_epi16( r0, r1 );
  526. #endif
  527. }
  528. #elif defined(__AVX__)
  529. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  530. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  531. uint32_t x32;
  532. memcpy(&x32, x, sizeof(uint32_t));
  533. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  534. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  535. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  536. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  537. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  538. bytesl = _mm_or_si128(bytesl, bit_mask);
  539. bytesh = _mm_or_si128(bytesh, bit_mask);
  540. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  541. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  542. return MM256_SET_M128I(bytesh, bytesl);
  543. }
  544. // Unpack 32 4-bit fields into 32 bytes
  545. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  546. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  547. {
  548. // Load 16 bytes from memory
  549. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  550. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  551. const __m128i lowMask = _mm_set1_epi8(0xF);
  552. tmpl = _mm_and_si128(lowMask, tmpl);
  553. tmph = _mm_and_si128(lowMask, tmph);
  554. return MM256_SET_M128I(tmph, tmpl);
  555. }
  556. // add int16_t pairwise and return as float vector
  557. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  558. const __m128i ones = _mm_set1_epi16(1);
  559. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  560. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  561. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  562. return _mm256_cvtepi32_ps(summed_pairs);
  563. }
  564. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  565. const __m128i axl = _mm256_castsi256_si128(ax);
  566. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  567. const __m128i syl = _mm256_castsi256_si128(sy);
  568. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  569. // Perform multiplication and create 16-bit values
  570. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  571. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  572. return sum_i16_pairs_float(doth, dotl);
  573. }
  574. // multiply int8_t, add results pairwise twice and return as float vector
  575. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  576. const __m128i xl = _mm256_castsi256_si128(x);
  577. const __m128i xh = _mm256_extractf128_si256(x, 1);
  578. const __m128i yl = _mm256_castsi256_si128(y);
  579. const __m128i yh = _mm256_extractf128_si256(y, 1);
  580. // Get absolute values of x vectors
  581. const __m128i axl = _mm_sign_epi8(xl, xl);
  582. const __m128i axh = _mm_sign_epi8(xh, xh);
  583. // Sign the values of the y vectors
  584. const __m128i syl = _mm_sign_epi8(yl, xl);
  585. const __m128i syh = _mm_sign_epi8(yh, xh);
  586. // Perform multiplication and create 16-bit values
  587. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  588. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  589. return sum_i16_pairs_float(doth, dotl);
  590. }
  591. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  595. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  596. __m128i low = _mm_and_si128( lowByte, bytes1 );
  597. high = _mm_srli_epi16( high, 4 );
  598. bytes1 = _mm_or_si128( low, high );
  599. high = _mm_andnot_si128( lowByte, bytes2 );
  600. low = _mm_and_si128( lowByte, bytes2 );
  601. high = _mm_srli_epi16( high, 4 );
  602. bytes2 = _mm_or_si128( low, high );
  603. return _mm_packus_epi16( bytes1, bytes2);
  604. }
  605. #endif
  606. #elif defined(__SSSE3__)
  607. // horizontally add 4x4 floats
  608. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  609. __m128 res_0 =_mm_hadd_ps(a, b);
  610. __m128 res_1 =_mm_hadd_ps(c, d);
  611. __m128 res =_mm_hadd_ps(res_0, res_1);
  612. res =_mm_hadd_ps(res, res);
  613. res =_mm_hadd_ps(res, res);
  614. return _mm_cvtss_f32(res);
  615. }
  616. #endif // __AVX__ || __AVX2__ || __AVX512F__
  617. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  618. #if defined(__ARM_NEON)
  619. #if !defined(__aarch64__)
  620. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  621. return
  622. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  623. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  624. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  625. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  626. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  627. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  628. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  629. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  630. }
  631. inline static int16_t vaddvq_s8(int8x16_t v) {
  632. return
  633. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  634. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  635. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  636. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  637. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  638. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  639. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  640. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  641. }
  642. inline static int32_t vaddvq_s16(int16x8_t v) {
  643. return
  644. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  645. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  646. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  647. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  648. }
  649. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  650. return
  651. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  652. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  653. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  654. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  655. }
  656. inline static int32_t vaddvq_s32(int32x4_t v) {
  657. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  658. }
  659. inline static float vaddvq_f32(float32x4_t v) {
  660. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  661. }
  662. inline static float vminvq_f32(float32x4_t v) {
  663. return
  664. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  665. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  666. }
  667. inline static float vmaxvq_f32(float32x4_t v) {
  668. return
  669. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  670. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  671. }
  672. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  673. int32x4_t res;
  674. res[0] = roundf(vgetq_lane_f32(v, 0));
  675. res[1] = roundf(vgetq_lane_f32(v, 1));
  676. res[2] = roundf(vgetq_lane_f32(v, 2));
  677. res[3] = roundf(vgetq_lane_f32(v, 3));
  678. return res;
  679. }
  680. #endif
  681. #endif
  682. #define QK4_0 32
  683. typedef struct {
  684. ggml_fp16_t d; // delta
  685. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  686. } block_q4_0;
  687. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  688. #define QK4_1 32
  689. typedef struct {
  690. ggml_fp16_t d; // delta
  691. ggml_fp16_t m; // min
  692. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  693. } block_q4_1;
  694. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  695. #define QK5_0 32
  696. typedef struct {
  697. ggml_fp16_t d; // delta
  698. uint8_t qh[4]; // 5-th bit of quants
  699. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  700. } block_q5_0;
  701. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  702. #define QK5_1 32
  703. typedef struct {
  704. ggml_fp16_t d; // delta
  705. ggml_fp16_t m; // min
  706. uint8_t qh[4]; // 5-th bit of quants
  707. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  708. } block_q5_1;
  709. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  710. #define QK8_0 32
  711. typedef struct {
  712. ggml_fp16_t d; // delta
  713. int8_t qs[QK8_0]; // quants
  714. } block_q8_0;
  715. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  716. #define QK8_1 32
  717. typedef struct {
  718. float d; // delta
  719. float s; // d * sum(qs[i])
  720. int8_t qs[QK8_1]; // quants
  721. } block_q8_1;
  722. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  723. // reference implementation for deterministic creation of model files
  724. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  725. static const int qk = QK4_0;
  726. assert(k % qk == 0);
  727. const int nb = k / qk;
  728. for (int i = 0; i < nb; i++) {
  729. float amax = 0.0f; // absolute max
  730. float max = 0.0f;
  731. for (int j = 0; j < qk; j++) {
  732. const float v = x[i*qk + j];
  733. if (amax < fabsf(v)) {
  734. amax = fabsf(v);
  735. max = v;
  736. }
  737. }
  738. const float d = max / -8;
  739. const float id = d ? 1.0f/d : 0.0f;
  740. y[i].d = GGML_FP32_TO_FP16(d);
  741. for (int j = 0; j < qk/2; ++j) {
  742. const float x0 = x[i*qk + 0 + j]*id;
  743. const float x1 = x[i*qk + qk/2 + j]*id;
  744. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  745. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  746. y[i].qs[j] = xi0;
  747. y[i].qs[j] |= xi1 << 4;
  748. }
  749. }
  750. }
  751. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  752. quantize_row_q4_0_reference(x, y, k);
  753. }
  754. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  755. const int qk = QK4_1;
  756. assert(k % qk == 0);
  757. const int nb = k / qk;
  758. for (int i = 0; i < nb; i++) {
  759. float min = FLT_MAX;
  760. float max = -FLT_MAX;
  761. for (int j = 0; j < qk; j++) {
  762. const float v = x[i*qk + j];
  763. if (v < min) min = v;
  764. if (v > max) max = v;
  765. }
  766. const float d = (max - min) / ((1 << 4) - 1);
  767. const float id = d ? 1.0f/d : 0.0f;
  768. y[i].d = GGML_FP32_TO_FP16(d);
  769. y[i].m = GGML_FP32_TO_FP16(min);
  770. for (int j = 0; j < qk/2; ++j) {
  771. const float x0 = (x[i*qk + 0 + j] - min)*id;
  772. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  773. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  774. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  775. y[i].qs[j] = xi0;
  776. y[i].qs[j] |= xi1 << 4;
  777. }
  778. }
  779. }
  780. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  781. quantize_row_q4_1_reference(x, y, k);
  782. }
  783. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  784. static const int qk = QK5_0;
  785. assert(k % qk == 0);
  786. const int nb = k / qk;
  787. for (int i = 0; i < nb; i++) {
  788. float amax = 0.0f; // absolute max
  789. float max = 0.0f;
  790. for (int j = 0; j < qk; j++) {
  791. const float v = x[i*qk + j];
  792. if (amax < fabsf(v)) {
  793. amax = fabsf(v);
  794. max = v;
  795. }
  796. }
  797. const float d = max / -16;
  798. const float id = d ? 1.0f/d : 0.0f;
  799. y[i].d = GGML_FP32_TO_FP16(d);
  800. uint32_t qh = 0;
  801. for (int j = 0; j < qk/2; ++j) {
  802. const float x0 = x[i*qk + 0 + j]*id;
  803. const float x1 = x[i*qk + qk/2 + j]*id;
  804. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  805. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  806. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  807. // get the 5-th bit and store it in qh at the right position
  808. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  809. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  810. }
  811. memcpy(&y[i].qh, &qh, sizeof(qh));
  812. }
  813. }
  814. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  815. quantize_row_q5_0_reference(x, y, k);
  816. }
  817. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  818. const int qk = QK5_1;
  819. assert(k % qk == 0);
  820. const int nb = k / qk;
  821. for (int i = 0; i < nb; i++) {
  822. float min = FLT_MAX;
  823. float max = -FLT_MAX;
  824. for (int j = 0; j < qk; j++) {
  825. const float v = x[i*qk + j];
  826. if (v < min) min = v;
  827. if (v > max) max = v;
  828. }
  829. const float d = (max - min) / ((1 << 5) - 1);
  830. const float id = d ? 1.0f/d : 0.0f;
  831. y[i].d = GGML_FP32_TO_FP16(d);
  832. y[i].m = GGML_FP32_TO_FP16(min);
  833. uint32_t qh = 0;
  834. for (int j = 0; j < qk/2; ++j) {
  835. const float x0 = (x[i*qk + 0 + j] - min)*id;
  836. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  837. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  838. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  839. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  840. // get the 5-th bit and store it in qh at the right position
  841. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  842. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  843. }
  844. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  845. }
  846. }
  847. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  848. quantize_row_q5_1_reference(x, y, k);
  849. }
  850. // reference implementation for deterministic creation of model files
  851. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  852. assert(k % QK8_0 == 0);
  853. const int nb = k / QK8_0;
  854. for (int i = 0; i < nb; i++) {
  855. float amax = 0.0f; // absolute max
  856. for (int j = 0; j < QK8_0; j++) {
  857. const float v = x[i*QK8_0 + j];
  858. amax = MAX(amax, fabsf(v));
  859. }
  860. const float d = amax / ((1 << 7) - 1);
  861. const float id = d ? 1.0f/d : 0.0f;
  862. y[i].d = GGML_FP32_TO_FP16(d);
  863. for (int j = 0; j < QK8_0; ++j) {
  864. const float x0 = x[i*QK8_0 + j]*id;
  865. y[i].qs[j] = roundf(x0);
  866. }
  867. }
  868. }
  869. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  870. assert(QK8_0 == 32);
  871. assert(k % QK8_0 == 0);
  872. const int nb = k / QK8_0;
  873. block_q8_0 * restrict y = vy;
  874. #if defined(__ARM_NEON)
  875. for (int i = 0; i < nb; i++) {
  876. float32x4_t srcv [8];
  877. float32x4_t asrcv[8];
  878. float32x4_t amaxv[8];
  879. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  880. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  881. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  882. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  883. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  884. const float amax = vmaxvq_f32(amaxv[0]);
  885. const float d = amax / ((1 << 7) - 1);
  886. const float id = d ? 1.0f/d : 0.0f;
  887. y[i].d = GGML_FP32_TO_FP16(d);
  888. for (int j = 0; j < 8; j++) {
  889. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  890. const int32x4_t vi = vcvtnq_s32_f32(v);
  891. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  892. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  893. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  894. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  895. }
  896. }
  897. #elif defined(__wasm_simd128__)
  898. for (int i = 0; i < nb; i++) {
  899. v128_t srcv [8];
  900. v128_t asrcv[8];
  901. v128_t amaxv[8];
  902. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  903. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  904. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  905. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  906. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  907. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  908. wasm_f32x4_extract_lane(amaxv[0], 1)),
  909. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  910. wasm_f32x4_extract_lane(amaxv[0], 3)));
  911. const float d = amax / ((1 << 7) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. for (int j = 0; j < 8; j++) {
  915. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  916. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  917. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  918. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  919. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  920. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  921. }
  922. }
  923. #elif defined(__AVX2__) || defined(__AVX__)
  924. for (int i = 0; i < nb; i++) {
  925. // Load elements into 4 AVX vectors
  926. __m256 v0 = _mm256_loadu_ps( x );
  927. __m256 v1 = _mm256_loadu_ps( x + 8 );
  928. __m256 v2 = _mm256_loadu_ps( x + 16 );
  929. __m256 v3 = _mm256_loadu_ps( x + 24 );
  930. x += 32;
  931. // Compute max(abs(e)) for the block
  932. const __m256 signBit = _mm256_set1_ps( -0.0f );
  933. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  934. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  935. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  936. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  937. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  938. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  939. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  940. const float maxScalar = _mm_cvtss_f32( max4 );
  941. // Quantize these floats
  942. const float d = maxScalar / 127.f;
  943. y[i].d = GGML_FP32_TO_FP16(d);
  944. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  945. const __m256 mul = _mm256_set1_ps( id );
  946. // Apply the multiplier
  947. v0 = _mm256_mul_ps( v0, mul );
  948. v1 = _mm256_mul_ps( v1, mul );
  949. v2 = _mm256_mul_ps( v2, mul );
  950. v3 = _mm256_mul_ps( v3, mul );
  951. // Round to nearest integer
  952. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  953. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  954. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  955. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  956. // Convert floats to integers
  957. __m256i i0 = _mm256_cvtps_epi32( v0 );
  958. __m256i i1 = _mm256_cvtps_epi32( v1 );
  959. __m256i i2 = _mm256_cvtps_epi32( v2 );
  960. __m256i i3 = _mm256_cvtps_epi32( v3 );
  961. #if defined(__AVX2__)
  962. // Convert int32 to int16
  963. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  964. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  965. // Convert int16 to int8
  966. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  967. // We got our precious signed bytes, but the order is now wrong
  968. // These AVX2 pack instructions process 16-byte pieces independently
  969. // The following instruction is fixing the order
  970. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  971. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  972. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  973. #else
  974. // Since we don't have in AVX some necessary functions,
  975. // we split the registers in half and call AVX2 analogs from SSE
  976. __m128i ni0 = _mm256_castsi256_si128( i0 );
  977. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  978. __m128i ni2 = _mm256_castsi256_si128( i1 );
  979. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  980. __m128i ni4 = _mm256_castsi256_si128( i2 );
  981. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  982. __m128i ni6 = _mm256_castsi256_si128( i3 );
  983. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  984. // Convert int32 to int16
  985. ni0 = _mm_packs_epi32( ni0, ni1 );
  986. ni2 = _mm_packs_epi32( ni2, ni3 );
  987. ni4 = _mm_packs_epi32( ni4, ni5 );
  988. ni6 = _mm_packs_epi32( ni6, ni7 );
  989. // Convert int16 to int8
  990. ni0 = _mm_packs_epi16( ni0, ni2 );
  991. ni4 = _mm_packs_epi16( ni4, ni6 );
  992. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  993. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  994. #endif
  995. }
  996. #else
  997. // scalar
  998. quantize_row_q8_0_reference(x, y, k);
  999. #endif
  1000. }
  1001. // reference implementation for deterministic creation of model files
  1002. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1003. assert(QK8_1 == 32);
  1004. assert(k % QK8_1 == 0);
  1005. const int nb = k / QK8_1;
  1006. for (int i = 0; i < nb; i++) {
  1007. float amax = 0.0f; // absolute max
  1008. for (int j = 0; j < QK8_1; j++) {
  1009. const float v = x[i*QK8_1 + j];
  1010. amax = MAX(amax, fabsf(v));
  1011. }
  1012. const float d = amax / ((1 << 7) - 1);
  1013. const float id = d ? 1.0f/d : 0.0f;
  1014. y[i].d = d;
  1015. int sum = 0;
  1016. for (int j = 0; j < QK8_1/2; ++j) {
  1017. const float v0 = x[i*QK8_1 + j]*id;
  1018. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1019. y[i].qs[ j] = roundf(v0);
  1020. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1021. sum += y[i].qs[ j];
  1022. sum += y[i].qs[QK8_1/2 + j];
  1023. }
  1024. y[i].s = sum*d;
  1025. }
  1026. }
  1027. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1028. assert(k % QK8_1 == 0);
  1029. const int nb = k / QK8_1;
  1030. block_q8_1 * restrict y = vy;
  1031. #if defined(__ARM_NEON)
  1032. for (int i = 0; i < nb; i++) {
  1033. float32x4_t srcv [8];
  1034. float32x4_t asrcv[8];
  1035. float32x4_t amaxv[8];
  1036. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1037. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1038. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1039. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1040. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1041. const float amax = vmaxvq_f32(amaxv[0]);
  1042. const float d = amax / ((1 << 7) - 1);
  1043. const float id = d ? 1.0f/d : 0.0f;
  1044. y[i].d = d;
  1045. int32x4_t accv = vdupq_n_s32(0);
  1046. for (int j = 0; j < 8; j++) {
  1047. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1048. const int32x4_t vi = vcvtnq_s32_f32(v);
  1049. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1050. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1051. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1052. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1053. accv = vaddq_s32(accv, vi);
  1054. }
  1055. y[i].s = d * vaddvq_s32(accv);
  1056. }
  1057. #elif defined(__wasm_simd128__)
  1058. for (int i = 0; i < nb; i++) {
  1059. v128_t srcv [8];
  1060. v128_t asrcv[8];
  1061. v128_t amaxv[8];
  1062. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1063. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1064. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1065. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1066. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1067. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1068. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1069. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1070. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1071. const float d = amax / ((1 << 7) - 1);
  1072. const float id = d ? 1.0f/d : 0.0f;
  1073. y[i].d = d;
  1074. v128_t accv = wasm_i32x4_splat(0);
  1075. for (int j = 0; j < 8; j++) {
  1076. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1077. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1078. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1079. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1080. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1081. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1082. accv = wasm_i32x4_add(accv, vi);
  1083. }
  1084. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1085. wasm_i32x4_extract_lane(accv, 1) +
  1086. wasm_i32x4_extract_lane(accv, 2) +
  1087. wasm_i32x4_extract_lane(accv, 3));
  1088. }
  1089. #elif defined(__AVX2__) || defined(__AVX__)
  1090. for (int i = 0; i < nb; i++) {
  1091. // Load elements into 4 AVX vectors
  1092. __m256 v0 = _mm256_loadu_ps( x );
  1093. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1094. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1095. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1096. x += 32;
  1097. // Compute max(abs(e)) for the block
  1098. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1099. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1100. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1101. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1102. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1103. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1104. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1105. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1106. const float maxScalar = _mm_cvtss_f32( max4 );
  1107. // Quantize these floats
  1108. const float d = maxScalar / 127.f;
  1109. y[i].d = d;
  1110. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1111. const __m256 mul = _mm256_set1_ps( id );
  1112. // Apply the multiplier
  1113. v0 = _mm256_mul_ps( v0, mul );
  1114. v1 = _mm256_mul_ps( v1, mul );
  1115. v2 = _mm256_mul_ps( v2, mul );
  1116. v3 = _mm256_mul_ps( v3, mul );
  1117. // Round to nearest integer
  1118. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1119. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1120. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1121. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1122. // Convert floats to integers
  1123. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1124. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1125. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1126. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1127. #if defined(__AVX2__)
  1128. // Compute the sum of the quants and set y[i].s
  1129. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1130. // Convert int32 to int16
  1131. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1132. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1133. // Convert int16 to int8
  1134. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1135. // We got our precious signed bytes, but the order is now wrong
  1136. // These AVX2 pack instructions process 16-byte pieces independently
  1137. // The following instruction is fixing the order
  1138. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1139. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1140. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1141. #else
  1142. // Since we don't have in AVX some necessary functions,
  1143. // we split the registers in half and call AVX2 analogs from SSE
  1144. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1145. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1146. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1147. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1148. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1149. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1150. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1151. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1152. // Compute the sum of the quants and set y[i].s
  1153. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1154. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1155. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1156. // Convert int32 to int16
  1157. ni0 = _mm_packs_epi32( ni0, ni1 );
  1158. ni2 = _mm_packs_epi32( ni2, ni3 );
  1159. ni4 = _mm_packs_epi32( ni4, ni5 );
  1160. ni6 = _mm_packs_epi32( ni6, ni7 );
  1161. // Convert int16 to int8
  1162. ni0 = _mm_packs_epi16( ni0, ni2 );
  1163. ni4 = _mm_packs_epi16( ni4, ni6 );
  1164. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1165. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1166. #endif
  1167. }
  1168. #else
  1169. // scalar
  1170. quantize_row_q8_1_reference(x, y, k);
  1171. #endif
  1172. }
  1173. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1174. static const int qk = QK4_0;
  1175. assert(k % qk == 0);
  1176. const int nb = k / qk;
  1177. for (int i = 0; i < nb; i++) {
  1178. const float d = GGML_FP16_TO_FP32(x[i].d);
  1179. for (int j = 0; j < qk/2; ++j) {
  1180. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1181. const int x1 = (x[i].qs[j] >> 4) - 8;
  1182. y[i*qk + j + 0 ] = x0*d;
  1183. y[i*qk + j + qk/2] = x1*d;
  1184. }
  1185. }
  1186. }
  1187. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1188. static const int qk = QK4_1;
  1189. assert(k % qk == 0);
  1190. const int nb = k / qk;
  1191. for (int i = 0; i < nb; i++) {
  1192. const float d = GGML_FP16_TO_FP32(x[i].d);
  1193. const float m = GGML_FP16_TO_FP32(x[i].m);
  1194. for (int j = 0; j < qk/2; ++j) {
  1195. const int x0 = (x[i].qs[j] & 0x0F);
  1196. const int x1 = (x[i].qs[j] >> 4);
  1197. y[i*qk + j + 0 ] = x0*d + m;
  1198. y[i*qk + j + qk/2] = x1*d + m;
  1199. }
  1200. }
  1201. }
  1202. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1203. static const int qk = QK5_0;
  1204. assert(k % qk == 0);
  1205. const int nb = k / qk;
  1206. for (int i = 0; i < nb; i++) {
  1207. const float d = GGML_FP16_TO_FP32(x[i].d);
  1208. uint32_t qh;
  1209. memcpy(&qh, x[i].qh, sizeof(qh));
  1210. for (int j = 0; j < qk/2; ++j) {
  1211. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1212. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1213. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1214. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1215. y[i*qk + j + 0 ] = x0*d;
  1216. y[i*qk + j + qk/2] = x1*d;
  1217. }
  1218. }
  1219. }
  1220. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1221. static const int qk = QK5_1;
  1222. assert(k % qk == 0);
  1223. const int nb = k / qk;
  1224. for (int i = 0; i < nb; i++) {
  1225. const float d = GGML_FP16_TO_FP32(x[i].d);
  1226. const float m = GGML_FP16_TO_FP32(x[i].m);
  1227. uint32_t qh;
  1228. memcpy(&qh, x[i].qh, sizeof(qh));
  1229. for (int j = 0; j < qk/2; ++j) {
  1230. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1231. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1232. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1233. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1234. y[i*qk + j + 0 ] = x0*d + m;
  1235. y[i*qk + j + qk/2] = x1*d + m;
  1236. }
  1237. }
  1238. }
  1239. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1240. static const int qk = QK8_0;
  1241. assert(k % qk == 0);
  1242. const int nb = k / qk;
  1243. const block_q8_0 * restrict x = vx;
  1244. for (int i = 0; i < nb; i++) {
  1245. const float d = GGML_FP16_TO_FP32(x[i].d);
  1246. for (int j = 0; j < qk; ++j) {
  1247. y[i*qk + j] = x[i].qs[j]*d;
  1248. }
  1249. }
  1250. }
  1251. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1252. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1253. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1254. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1255. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1256. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1257. [GGML_TYPE_Q4_0] = {
  1258. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1259. .quantize_row_q = quantize_row_q4_0,
  1260. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1261. .quantize_row_q_dot = quantize_row_q8_0,
  1262. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1263. .vec_dot_type = GGML_TYPE_Q8_0,
  1264. },
  1265. [GGML_TYPE_Q4_1] = {
  1266. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1267. .quantize_row_q = quantize_row_q4_1,
  1268. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1269. .quantize_row_q_dot = quantize_row_q8_1,
  1270. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1271. .vec_dot_type = GGML_TYPE_Q8_1,
  1272. },
  1273. [GGML_TYPE_Q5_0] = {
  1274. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1275. .quantize_row_q = quantize_row_q5_0,
  1276. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1277. .quantize_row_q_dot = quantize_row_q8_0,
  1278. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1279. .vec_dot_type = GGML_TYPE_Q8_0,
  1280. },
  1281. [GGML_TYPE_Q5_1] = {
  1282. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1283. .quantize_row_q = quantize_row_q5_1,
  1284. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1285. .quantize_row_q_dot = quantize_row_q8_1,
  1286. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1287. .vec_dot_type = GGML_TYPE_Q8_1,
  1288. },
  1289. [GGML_TYPE_Q8_0] = {
  1290. .dequantize_row_q = dequantize_row_q8_0,
  1291. .quantize_row_q = quantize_row_q8_0,
  1292. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1293. .quantize_row_q_dot = quantize_row_q8_0,
  1294. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1295. .vec_dot_type = GGML_TYPE_Q8_0,
  1296. },
  1297. [GGML_TYPE_Q8_1] = {
  1298. .dequantize_row_q = NULL, // TODO
  1299. .quantize_row_q = quantize_row_q8_1,
  1300. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1301. .quantize_row_q_dot = quantize_row_q8_1,
  1302. .vec_dot_q = NULL, // TODO
  1303. .vec_dot_type = GGML_TYPE_Q8_1,
  1304. },
  1305. #ifdef GGML_USE_K_QUANTS
  1306. [GGML_TYPE_Q2_K] = {
  1307. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1308. .quantize_row_q = quantize_row_q2_K,
  1309. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1310. .quantize_row_q_dot = quantize_row_q8_K,
  1311. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1312. .vec_dot_type = GGML_TYPE_Q8_K,
  1313. },
  1314. [GGML_TYPE_Q3_K] = {
  1315. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1316. .quantize_row_q = quantize_row_q3_K,
  1317. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1318. .quantize_row_q_dot = quantize_row_q8_K,
  1319. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1320. .vec_dot_type = GGML_TYPE_Q8_K,
  1321. },
  1322. [GGML_TYPE_Q4_K] = {
  1323. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1324. .quantize_row_q = quantize_row_q4_K,
  1325. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1326. .quantize_row_q_dot = quantize_row_q8_K,
  1327. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1328. .vec_dot_type = GGML_TYPE_Q8_K,
  1329. },
  1330. [GGML_TYPE_Q5_K] = {
  1331. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1332. .quantize_row_q = quantize_row_q5_K,
  1333. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1334. .quantize_row_q_dot = quantize_row_q8_K,
  1335. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1336. .vec_dot_type = GGML_TYPE_Q8_K,
  1337. },
  1338. [GGML_TYPE_Q6_K] = {
  1339. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1340. .quantize_row_q = quantize_row_q6_K,
  1341. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1342. .quantize_row_q_dot = quantize_row_q8_K,
  1343. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1344. .vec_dot_type = GGML_TYPE_Q8_K,
  1345. },
  1346. #endif
  1347. };
  1348. // For internal test use
  1349. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1350. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1351. return quantize_fns[i];
  1352. }
  1353. //
  1354. // simd mappings
  1355. //
  1356. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1357. // we then implement the fundamental computation operations below using only these macros
  1358. // adding support for new architectures requires to define the corresponding SIMD macros
  1359. //
  1360. // GGML_F32_STEP / GGML_F16_STEP
  1361. // number of elements to process in a single step
  1362. //
  1363. // GGML_F32_EPR / GGML_F16_EPR
  1364. // number of elements to fit in a single register
  1365. //
  1366. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1367. #define GGML_SIMD
  1368. // F32 NEON
  1369. #define GGML_F32_STEP 16
  1370. #define GGML_F32_EPR 4
  1371. #define GGML_F32x4 float32x4_t
  1372. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1373. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1374. #define GGML_F32x4_LOAD vld1q_f32
  1375. #define GGML_F32x4_STORE vst1q_f32
  1376. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1377. #define GGML_F32x4_ADD vaddq_f32
  1378. #define GGML_F32x4_MUL vmulq_f32
  1379. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1380. #define GGML_F32x4_REDUCE(res, x) \
  1381. { \
  1382. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1383. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1384. } \
  1385. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1386. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1387. } \
  1388. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1389. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1390. } \
  1391. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1392. }
  1393. #define GGML_F32_VEC GGML_F32x4
  1394. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1395. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1396. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1397. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1398. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1399. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1400. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1401. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1402. // F16 NEON
  1403. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1404. #define GGML_F16_STEP 32
  1405. #define GGML_F16_EPR 8
  1406. #define GGML_F16x8 float16x8_t
  1407. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1408. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1409. #define GGML_F16x8_LOAD vld1q_f16
  1410. #define GGML_F16x8_STORE vst1q_f16
  1411. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1412. #define GGML_F16x8_ADD vaddq_f16
  1413. #define GGML_F16x8_MUL vmulq_f16
  1414. #define GGML_F16x8_REDUCE(res, x) \
  1415. { \
  1416. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1417. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1420. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1421. } \
  1422. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1423. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1424. } \
  1425. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1426. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1427. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1428. }
  1429. #define GGML_F16_VEC GGML_F16x8
  1430. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1431. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1432. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1433. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1434. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1435. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1436. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1437. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1438. #else
  1439. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1440. // and take advantage of the vcvt_ functions to convert to/from FP16
  1441. #define GGML_F16_STEP 16
  1442. #define GGML_F16_EPR 4
  1443. #define GGML_F32Cx4 float32x4_t
  1444. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1445. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1446. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1447. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1448. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1449. #define GGML_F32Cx4_ADD vaddq_f32
  1450. #define GGML_F32Cx4_MUL vmulq_f32
  1451. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1452. #define GGML_F16_VEC GGML_F32Cx4
  1453. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1454. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1455. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1456. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1457. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1458. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1459. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1460. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1461. #endif
  1462. #elif defined(__AVX__)
  1463. #define GGML_SIMD
  1464. // F32 AVX
  1465. #define GGML_F32_STEP 32
  1466. #define GGML_F32_EPR 8
  1467. #define GGML_F32x8 __m256
  1468. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1469. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1470. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1471. #define GGML_F32x8_STORE _mm256_storeu_ps
  1472. #if defined(__FMA__)
  1473. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1474. #else
  1475. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1476. #endif
  1477. #define GGML_F32x8_ADD _mm256_add_ps
  1478. #define GGML_F32x8_MUL _mm256_mul_ps
  1479. #define GGML_F32x8_REDUCE(res, x) \
  1480. { \
  1481. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1482. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1483. } \
  1484. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1485. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1486. } \
  1487. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1488. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1489. } \
  1490. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1491. _mm256_extractf128_ps(x[0], 1)); \
  1492. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1493. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1494. }
  1495. // TODO: is this optimal ?
  1496. #define GGML_F32_VEC GGML_F32x8
  1497. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1498. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1499. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1500. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1501. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1502. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1503. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1504. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1505. // F16 AVX
  1506. #define GGML_F16_STEP 32
  1507. #define GGML_F16_EPR 8
  1508. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1509. #define GGML_F32Cx8 __m256
  1510. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1511. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1512. #if defined(__F16C__)
  1513. // the _mm256_cvt intrinsics require F16C
  1514. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1515. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1516. #else
  1517. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1518. float tmp[8];
  1519. for (int i = 0; i < 8; i++) {
  1520. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1521. }
  1522. return _mm256_loadu_ps(tmp);
  1523. }
  1524. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1525. float arr[8];
  1526. _mm256_storeu_ps(arr, y);
  1527. for (int i = 0; i < 8; i++)
  1528. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1529. }
  1530. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1531. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1532. #endif
  1533. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1534. #define GGML_F32Cx8_ADD _mm256_add_ps
  1535. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1536. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1537. #define GGML_F16_VEC GGML_F32Cx8
  1538. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1539. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1540. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1541. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1542. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1543. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1544. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1545. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1546. #elif defined(__POWER9_VECTOR__)
  1547. #define GGML_SIMD
  1548. // F32 POWER9
  1549. #define GGML_F32_STEP 32
  1550. #define GGML_F32_EPR 4
  1551. #define GGML_F32x4 vector float
  1552. #define GGML_F32x4_ZERO 0.0f
  1553. #define GGML_F32x4_SET1 vec_splats
  1554. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1555. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1556. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1557. #define GGML_F32x4_ADD vec_add
  1558. #define GGML_F32x4_MUL vec_mul
  1559. #define GGML_F32x4_REDUCE(res, x) \
  1560. { \
  1561. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1562. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1563. } \
  1564. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1565. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1566. } \
  1567. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1568. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1569. } \
  1570. res = vec_extract(x[0], 0) + \
  1571. vec_extract(x[0], 1) + \
  1572. vec_extract(x[0], 2) + \
  1573. vec_extract(x[0], 3); \
  1574. }
  1575. #define GGML_F32_VEC GGML_F32x4
  1576. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1577. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1578. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1579. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1580. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1581. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1582. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1583. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1584. // F16 POWER9
  1585. #define GGML_F16_STEP GGML_F32_STEP
  1586. #define GGML_F16_EPR GGML_F32_EPR
  1587. #define GGML_F16_VEC GGML_F32x4
  1588. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1589. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1590. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1591. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1592. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1593. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1594. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1595. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1596. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1597. #define GGML_F16_VEC_STORE(p, r, i) \
  1598. if (i & 0x1) \
  1599. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1600. r[i - GGML_ENDIAN_BYTE(0)]), \
  1601. 0, p - GGML_F16_EPR)
  1602. #elif defined(__wasm_simd128__)
  1603. #define GGML_SIMD
  1604. // F32 WASM
  1605. #define GGML_F32_STEP 16
  1606. #define GGML_F32_EPR 4
  1607. #define GGML_F32x4 v128_t
  1608. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1609. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1610. #define GGML_F32x4_LOAD wasm_v128_load
  1611. #define GGML_F32x4_STORE wasm_v128_store
  1612. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1613. #define GGML_F32x4_ADD wasm_f32x4_add
  1614. #define GGML_F32x4_MUL wasm_f32x4_mul
  1615. #define GGML_F32x4_REDUCE(res, x) \
  1616. { \
  1617. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1618. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1619. } \
  1620. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1621. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1622. } \
  1623. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1624. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1625. } \
  1626. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1627. wasm_f32x4_extract_lane(x[0], 1) + \
  1628. wasm_f32x4_extract_lane(x[0], 2) + \
  1629. wasm_f32x4_extract_lane(x[0], 3); \
  1630. }
  1631. #define GGML_F32_VEC GGML_F32x4
  1632. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1633. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1634. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1635. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1636. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1637. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1638. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1639. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1640. // F16 WASM
  1641. #define GGML_F16_STEP 16
  1642. #define GGML_F16_EPR 4
  1643. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1644. float tmp[4];
  1645. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1646. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1647. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1648. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1649. return wasm_v128_load(tmp);
  1650. }
  1651. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1652. float tmp[4];
  1653. wasm_v128_store(tmp, x);
  1654. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1655. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1656. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1657. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1658. }
  1659. #define GGML_F16x4 v128_t
  1660. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1661. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1662. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1663. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1664. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1665. #define GGML_F16x4_ADD wasm_f32x4_add
  1666. #define GGML_F16x4_MUL wasm_f32x4_mul
  1667. #define GGML_F16x4_REDUCE(res, x) \
  1668. { \
  1669. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1670. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1671. } \
  1672. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1673. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1674. } \
  1675. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1676. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1677. } \
  1678. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1679. wasm_f32x4_extract_lane(x[0], 1) + \
  1680. wasm_f32x4_extract_lane(x[0], 2) + \
  1681. wasm_f32x4_extract_lane(x[0], 3); \
  1682. }
  1683. #define GGML_F16_VEC GGML_F16x4
  1684. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1685. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1686. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1687. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1688. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1689. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1690. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1691. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1692. #elif defined(__SSE3__)
  1693. #define GGML_SIMD
  1694. // F32 SSE
  1695. #define GGML_F32_STEP 32
  1696. #define GGML_F32_EPR 4
  1697. #define GGML_F32x4 __m128
  1698. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1699. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1700. #define GGML_F32x4_LOAD _mm_loadu_ps
  1701. #define GGML_F32x4_STORE _mm_storeu_ps
  1702. #if defined(__FMA__)
  1703. // TODO: Does this work?
  1704. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1705. #else
  1706. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1707. #endif
  1708. #define GGML_F32x4_ADD _mm_add_ps
  1709. #define GGML_F32x4_MUL _mm_mul_ps
  1710. #define GGML_F32x4_REDUCE(res, x) \
  1711. { \
  1712. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1713. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1714. } \
  1715. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1716. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1717. } \
  1718. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1719. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1720. } \
  1721. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1722. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1723. }
  1724. // TODO: is this optimal ?
  1725. #define GGML_F32_VEC GGML_F32x4
  1726. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1727. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1728. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1729. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1730. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1731. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1732. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1733. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1734. // F16 SSE
  1735. #define GGML_F16_STEP 32
  1736. #define GGML_F16_EPR 4
  1737. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1738. float tmp[4];
  1739. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1740. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1741. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1742. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1743. return _mm_loadu_ps(tmp);
  1744. }
  1745. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1746. float arr[4];
  1747. _mm_storeu_ps(arr, y);
  1748. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1749. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1750. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1751. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1752. }
  1753. #define GGML_F32Cx4 __m128
  1754. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1755. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1756. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1757. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1758. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1759. #define GGML_F32Cx4_ADD _mm_add_ps
  1760. #define GGML_F32Cx4_MUL _mm_mul_ps
  1761. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1762. #define GGML_F16_VEC GGML_F32Cx4
  1763. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1764. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1765. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1766. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1767. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1768. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1769. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1770. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1771. #endif
  1772. // GGML_F32_ARR / GGML_F16_ARR
  1773. // number of registers to use per step
  1774. #ifdef GGML_SIMD
  1775. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1776. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1777. #endif
  1778. //
  1779. // fundamental operations
  1780. //
  1781. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1782. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1783. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1784. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1785. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1786. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1787. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1788. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1789. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1790. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1791. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1792. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1793. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1794. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1795. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1796. #ifdef GGML_SIMD
  1797. float sumf = 0.0f;
  1798. const int np = (n & ~(GGML_F32_STEP - 1));
  1799. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1800. GGML_F32_VEC ax[GGML_F32_ARR];
  1801. GGML_F32_VEC ay[GGML_F32_ARR];
  1802. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1803. for (int j = 0; j < GGML_F32_ARR; j++) {
  1804. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1805. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1806. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1807. }
  1808. }
  1809. // reduce sum0..sum3 to sum0
  1810. GGML_F32_VEC_REDUCE(sumf, sum);
  1811. // leftovers
  1812. for (int i = np; i < n; ++i) {
  1813. sumf += x[i]*y[i];
  1814. }
  1815. #else
  1816. // scalar
  1817. ggml_float sumf = 0.0;
  1818. for (int i = 0; i < n; ++i) {
  1819. sumf += (ggml_float)(x[i]*y[i]);
  1820. }
  1821. #endif
  1822. *s = sumf;
  1823. }
  1824. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1825. ggml_float sumf = 0.0;
  1826. #if defined(GGML_SIMD)
  1827. const int np = (n & ~(GGML_F16_STEP - 1));
  1828. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1829. GGML_F16_VEC ax[GGML_F16_ARR];
  1830. GGML_F16_VEC ay[GGML_F16_ARR];
  1831. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1832. for (int j = 0; j < GGML_F16_ARR; j++) {
  1833. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1834. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1835. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1836. }
  1837. }
  1838. // reduce sum0..sum3 to sum0
  1839. GGML_F16_VEC_REDUCE(sumf, sum);
  1840. // leftovers
  1841. for (int i = np; i < n; ++i) {
  1842. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1843. }
  1844. #else
  1845. for (int i = 0; i < n; ++i) {
  1846. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1847. }
  1848. #endif
  1849. *s = sumf;
  1850. }
  1851. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1852. const int qk = QK8_0;
  1853. const int nb = n / qk;
  1854. assert(n % qk == 0);
  1855. assert(nb % 2 == 0);
  1856. const block_q4_0 * restrict x = vx;
  1857. const block_q8_0 * restrict y = vy;
  1858. #if defined(__ARM_NEON)
  1859. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1860. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1861. for (int i = 0; i < nb; i += 2) {
  1862. const block_q4_0 * restrict x0 = &x[i + 0];
  1863. const block_q4_0 * restrict x1 = &x[i + 1];
  1864. const block_q8_0 * restrict y0 = &y[i + 0];
  1865. const block_q8_0 * restrict y1 = &y[i + 1];
  1866. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1867. const int8x16_t s8b = vdupq_n_s8(0x8);
  1868. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1869. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1870. // 4-bit -> 8-bit
  1871. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1872. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1873. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1874. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1875. // sub 8
  1876. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1877. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1878. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1879. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1880. // load y
  1881. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1882. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1883. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1884. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1885. #if defined(__ARM_FEATURE_DOTPROD)
  1886. // dot product into int32x4_t
  1887. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1888. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1889. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1890. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1891. #else
  1892. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1893. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1894. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1895. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1896. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1897. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1898. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1899. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1900. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1901. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1902. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1903. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1904. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1905. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1906. #endif
  1907. }
  1908. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1909. #elif defined(__AVX2__)
  1910. // Initialize accumulator with zeros
  1911. __m256 acc = _mm256_setzero_ps();
  1912. // Main loop
  1913. for (int i = 0; i < nb; ++i) {
  1914. /* Compute combined scale for the block */
  1915. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1916. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1917. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1918. const __m256i off = _mm256_set1_epi8( 8 );
  1919. bx = _mm256_sub_epi8( bx, off );
  1920. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1921. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1922. /* Multiply q with scale and accumulate */
  1923. acc = _mm256_fmadd_ps( d, q, acc );
  1924. }
  1925. *s = hsum_float_8(acc);
  1926. #elif defined(__AVX__)
  1927. // Initialize accumulator with zeros
  1928. __m256 acc = _mm256_setzero_ps();
  1929. // Main loop
  1930. for (int i = 0; i < nb; ++i) {
  1931. // Compute combined scale for the block
  1932. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1933. const __m128i lowMask = _mm_set1_epi8(0xF);
  1934. const __m128i off = _mm_set1_epi8(8);
  1935. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1936. __m128i bx = _mm_and_si128(lowMask, tmp);
  1937. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1938. bx = _mm_sub_epi8(bx, off);
  1939. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1940. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1941. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1942. bx = _mm_sub_epi8(bx, off);
  1943. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1944. // Convert int32_t to float
  1945. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1946. // Apply the scale, and accumulate
  1947. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1948. }
  1949. *s = hsum_float_8(acc);
  1950. #elif defined(__SSSE3__)
  1951. // set constants
  1952. const __m128i lowMask = _mm_set1_epi8(0xF);
  1953. const __m128i off = _mm_set1_epi8(8);
  1954. // Initialize accumulator with zeros
  1955. __m128 acc_0 = _mm_setzero_ps();
  1956. __m128 acc_1 = _mm_setzero_ps();
  1957. __m128 acc_2 = _mm_setzero_ps();
  1958. __m128 acc_3 = _mm_setzero_ps();
  1959. // First round without accumulation
  1960. {
  1961. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1962. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1963. // Compute combined scale for the block 0 and 1
  1964. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1965. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1966. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1967. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1968. bx_0 = _mm_sub_epi8(bx_0, off);
  1969. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1970. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1971. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1972. bx_1 = _mm_sub_epi8(bx_1, off);
  1973. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1974. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1975. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1976. // Compute combined scale for the block 2 and 3
  1977. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1978. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1979. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1980. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1981. bx_2 = _mm_sub_epi8(bx_2, off);
  1982. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1983. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1984. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1985. bx_3 = _mm_sub_epi8(bx_3, off);
  1986. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1987. // Convert int32_t to float
  1988. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1989. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1990. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1991. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1992. // Apply the scale
  1993. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1994. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1995. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1996. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1997. }
  1998. // Main loop
  1999. for (int i = 2; i < nb; i+=2) {
  2000. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2001. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2002. // Compute combined scale for the block 0 and 1
  2003. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2004. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2005. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2006. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2007. bx_0 = _mm_sub_epi8(bx_0, off);
  2008. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2009. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2010. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2011. bx_1 = _mm_sub_epi8(bx_1, off);
  2012. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2013. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2014. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2015. // Compute combined scale for the block 2 and 3
  2016. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2017. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2018. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2019. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2020. bx_2 = _mm_sub_epi8(bx_2, off);
  2021. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2022. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2023. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2024. bx_3 = _mm_sub_epi8(bx_3, off);
  2025. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2026. // Convert int32_t to float
  2027. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2028. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2029. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2030. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2031. // Apply the scale
  2032. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2033. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2034. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2035. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2036. // Acummulate
  2037. acc_0 = _mm_add_ps(p0_d, acc_0);
  2038. acc_1 = _mm_add_ps(p1_d, acc_1);
  2039. acc_2 = _mm_add_ps(p2_d, acc_2);
  2040. acc_3 = _mm_add_ps(p3_d, acc_3);
  2041. }
  2042. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2043. #else
  2044. // scalar
  2045. float sumf = 0.0;
  2046. for (int i = 0; i < nb; i++) {
  2047. int sumi = 0;
  2048. for (int j = 0; j < qk/2; ++j) {
  2049. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2050. const int v1 = (x[i].qs[j] >> 4) - 8;
  2051. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2052. }
  2053. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2054. }
  2055. *s = sumf;
  2056. #endif
  2057. }
  2058. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2059. const int qk = QK8_1;
  2060. const int nb = n / qk;
  2061. assert(n % qk == 0);
  2062. assert(nb % 2 == 0);
  2063. const block_q4_1 * restrict x = vx;
  2064. const block_q8_1 * restrict y = vy;
  2065. // TODO: add WASM SIMD
  2066. #if defined(__ARM_NEON)
  2067. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2068. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2069. float summs = 0;
  2070. for (int i = 0; i < nb; i += 2) {
  2071. const block_q4_1 * restrict x0 = &x[i + 0];
  2072. const block_q4_1 * restrict x1 = &x[i + 1];
  2073. const block_q8_1 * restrict y0 = &y[i + 0];
  2074. const block_q8_1 * restrict y1 = &y[i + 1];
  2075. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2076. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2077. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2078. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2079. // 4-bit -> 8-bit
  2080. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2081. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2082. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2083. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2084. // load y
  2085. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2086. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2087. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2088. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2089. #if defined(__ARM_FEATURE_DOTPROD)
  2090. // dot product into int32x4_t
  2091. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2092. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2093. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2094. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2095. #else
  2096. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2097. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2098. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2099. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2100. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2101. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2102. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2103. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2104. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2105. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2106. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2107. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2108. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2109. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2110. #endif
  2111. }
  2112. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2113. #elif defined(__AVX2__) || defined(__AVX__)
  2114. // Initialize accumulator with zeros
  2115. __m256 acc = _mm256_setzero_ps();
  2116. float summs = 0;
  2117. // Main loop
  2118. for (int i = 0; i < nb; ++i) {
  2119. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2120. const float d1 = y[i].d;
  2121. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2122. const __m256 d0v = _mm256_set1_ps( d0 );
  2123. const __m256 d1v = _mm256_set1_ps( d1 );
  2124. // Compute combined scales
  2125. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2126. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2127. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2128. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2129. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2130. // Accumulate d0*d1*x*y
  2131. #if defined(__AVX2__)
  2132. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2133. #else
  2134. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2135. #endif
  2136. }
  2137. *s = hsum_float_8(acc) + summs;
  2138. #else
  2139. // scalar
  2140. float sumf = 0.0;
  2141. for (int i = 0; i < nb; i++) {
  2142. int sumi = 0;
  2143. for (int j = 0; j < qk/2; ++j) {
  2144. const int v0 = (x[i].qs[j] & 0x0F);
  2145. const int v1 = (x[i].qs[j] >> 4);
  2146. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2147. }
  2148. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2149. }
  2150. *s = sumf;
  2151. #endif
  2152. }
  2153. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2154. const int qk = QK8_0;
  2155. const int nb = n / qk;
  2156. assert(n % qk == 0);
  2157. assert(nb % 2 == 0);
  2158. assert(qk == QK5_0);
  2159. const block_q5_0 * restrict x = vx;
  2160. const block_q8_0 * restrict y = vy;
  2161. #if defined(__ARM_NEON)
  2162. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2163. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2164. uint32_t qh0;
  2165. uint32_t qh1;
  2166. uint64_t tmp0[4];
  2167. uint64_t tmp1[4];
  2168. for (int i = 0; i < nb; i += 2) {
  2169. const block_q5_0 * restrict x0 = &x[i];
  2170. const block_q5_0 * restrict x1 = &x[i + 1];
  2171. const block_q8_0 * restrict y0 = &y[i];
  2172. const block_q8_0 * restrict y1 = &y[i + 1];
  2173. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2174. // extract the 5th bit via lookup table ((!b) << 4)
  2175. memcpy(&qh0, x0->qh, sizeof(qh0));
  2176. memcpy(&qh1, x1->qh, sizeof(qh1));
  2177. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2178. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2179. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2180. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2181. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2182. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2183. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2184. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2185. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2186. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2187. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2188. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2189. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2190. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2191. // 4-bit -> 8-bit
  2192. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2193. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2194. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2195. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2196. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2197. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2198. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2199. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2200. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2201. // load y
  2202. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2203. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2204. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2205. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2206. #if defined(__ARM_FEATURE_DOTPROD)
  2207. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2208. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2209. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2210. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2211. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2212. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2213. #else
  2214. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2215. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2216. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2217. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2218. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2219. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2220. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2221. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2222. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2223. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2224. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2225. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2226. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2227. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2228. #endif
  2229. }
  2230. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2231. #elif defined(__wasm_simd128__)
  2232. v128_t sumv = wasm_f32x4_splat(0.0f);
  2233. uint32_t qh;
  2234. uint64_t tmp[4];
  2235. // TODO: check if unrolling this is better
  2236. for (int i = 0; i < nb; ++i) {
  2237. const block_q5_0 * restrict x0 = &x[i];
  2238. const block_q8_0 * restrict y0 = &y[i];
  2239. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2240. // extract the 5th bit
  2241. memcpy(&qh, x0->qh, sizeof(qh));
  2242. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2243. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2244. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2245. tmp[3] = table_b2b_1[(qh >> 24) ];
  2246. const v128_t qhl = wasm_v128_load(tmp + 0);
  2247. const v128_t qhh = wasm_v128_load(tmp + 2);
  2248. const v128_t v0 = wasm_v128_load(x0->qs);
  2249. // 4-bit -> 8-bit
  2250. const v128_t v0l = wasm_v128_and (v0, m4b);
  2251. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2252. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2253. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2254. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2255. // load y
  2256. const v128_t v1l = wasm_v128_load(y0->qs);
  2257. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2258. // int8x16 -> int16x8
  2259. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2260. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2261. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2262. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2263. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2264. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2265. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2266. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2267. // dot product
  2268. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2269. wasm_i32x4_add(
  2270. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2271. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2272. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2273. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2274. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2275. }
  2276. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2277. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2278. #elif defined(__AVX2__)
  2279. // Initialize accumulator with zeros
  2280. __m256 acc = _mm256_setzero_ps();
  2281. // Main loop
  2282. for (int i = 0; i < nb; i++) {
  2283. /* Compute combined scale for the block */
  2284. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2285. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2286. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2287. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2288. bx = _mm256_or_si256(bx, bxhi);
  2289. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2290. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2291. /* Multiply q with scale and accumulate */
  2292. acc = _mm256_fmadd_ps(d, q, acc);
  2293. }
  2294. *s = hsum_float_8(acc);
  2295. #elif defined(__AVX__)
  2296. // Initialize accumulator with zeros
  2297. __m256 acc = _mm256_setzero_ps();
  2298. __m128i mask = _mm_set1_epi8((char)0xF0);
  2299. // Main loop
  2300. for (int i = 0; i < nb; i++) {
  2301. /* Compute combined scale for the block */
  2302. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2303. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2304. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2305. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2306. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2307. bxhil = _mm_andnot_si128(bxhil, mask);
  2308. bxhih = _mm_andnot_si128(bxhih, mask);
  2309. __m128i bxl = _mm256_castsi256_si128(bx);
  2310. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2311. bxl = _mm_or_si128(bxl, bxhil);
  2312. bxh = _mm_or_si128(bxh, bxhih);
  2313. bx = MM256_SET_M128I(bxh, bxl);
  2314. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2315. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2316. /* Multiply q with scale and accumulate */
  2317. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2318. }
  2319. *s = hsum_float_8(acc);
  2320. #else
  2321. // scalar
  2322. float sumf = 0.0;
  2323. for (int i = 0; i < nb; i++) {
  2324. uint32_t qh;
  2325. memcpy(&qh, x[i].qh, sizeof(qh));
  2326. int sumi = 0;
  2327. for (int j = 0; j < qk/2; ++j) {
  2328. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2329. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2330. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2331. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2332. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2333. }
  2334. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2335. }
  2336. *s = sumf;
  2337. #endif
  2338. }
  2339. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2340. const int qk = QK8_1;
  2341. const int nb = n / qk;
  2342. assert(n % qk == 0);
  2343. assert(nb % 2 == 0);
  2344. assert(qk == QK5_1);
  2345. const block_q5_1 * restrict x = vx;
  2346. const block_q8_1 * restrict y = vy;
  2347. #if defined(__ARM_NEON)
  2348. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2349. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2350. float summs0 = 0.0f;
  2351. float summs1 = 0.0f;
  2352. uint32_t qh0;
  2353. uint32_t qh1;
  2354. uint64_t tmp0[4];
  2355. uint64_t tmp1[4];
  2356. for (int i = 0; i < nb; i += 2) {
  2357. const block_q5_1 * restrict x0 = &x[i];
  2358. const block_q5_1 * restrict x1 = &x[i + 1];
  2359. const block_q8_1 * restrict y0 = &y[i];
  2360. const block_q8_1 * restrict y1 = &y[i + 1];
  2361. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2362. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2363. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2364. // extract the 5th bit via lookup table ((b) << 4)
  2365. memcpy(&qh0, x0->qh, sizeof(qh0));
  2366. memcpy(&qh1, x1->qh, sizeof(qh1));
  2367. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2368. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2369. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2370. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2371. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2372. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2373. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2374. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2375. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2376. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2377. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2378. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2379. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2380. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2381. // 4-bit -> 8-bit
  2382. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2383. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2384. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2385. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2386. // add high bit
  2387. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2388. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2389. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2390. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2391. // load y
  2392. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2393. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2394. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2395. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2396. #if defined(__ARM_FEATURE_DOTPROD)
  2397. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2398. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2399. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2400. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2401. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2402. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2403. #else
  2404. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2405. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2406. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2407. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2408. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2409. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2410. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2411. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2412. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2413. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2414. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2415. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2416. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2417. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2418. #endif
  2419. }
  2420. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2421. #elif defined(__wasm_simd128__)
  2422. v128_t sumv = wasm_f32x4_splat(0.0f);
  2423. float summs = 0.0f;
  2424. uint32_t qh;
  2425. uint64_t tmp[4];
  2426. // TODO: check if unrolling this is better
  2427. for (int i = 0; i < nb; ++i) {
  2428. const block_q5_1 * restrict x0 = &x[i];
  2429. const block_q8_1 * restrict y0 = &y[i];
  2430. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2431. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2432. // extract the 5th bit
  2433. memcpy(&qh, x0->qh, sizeof(qh));
  2434. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2435. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2436. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2437. tmp[3] = table_b2b_0[(qh >> 24) ];
  2438. const v128_t qhl = wasm_v128_load(tmp + 0);
  2439. const v128_t qhh = wasm_v128_load(tmp + 2);
  2440. const v128_t v0 = wasm_v128_load(x0->qs);
  2441. // 4-bit -> 8-bit
  2442. const v128_t v0l = wasm_v128_and (v0, m4b);
  2443. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2444. // add high bit
  2445. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2446. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2447. // load y
  2448. const v128_t v1l = wasm_v128_load(y0->qs);
  2449. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2450. // int8x16 -> int16x8
  2451. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2452. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2453. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2454. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2455. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2456. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2457. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2458. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2459. // dot product
  2460. sumv = wasm_f32x4_add(sumv,
  2461. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2462. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2463. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2464. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2465. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2466. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2467. }
  2468. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2469. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2470. #elif defined(__AVX2__)
  2471. // Initialize accumulator with zeros
  2472. __m256 acc = _mm256_setzero_ps();
  2473. float summs = 0.0f;
  2474. // Main loop
  2475. for (int i = 0; i < nb; i++) {
  2476. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2477. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2478. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2479. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2480. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2481. bx = _mm256_or_si256(bx, bxhi);
  2482. const __m256 dy = _mm256_set1_ps(y[i].d);
  2483. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2484. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2485. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2486. }
  2487. *s = hsum_float_8(acc) + summs;
  2488. #elif defined(__AVX__)
  2489. // Initialize accumulator with zeros
  2490. __m256 acc = _mm256_setzero_ps();
  2491. __m128i mask = _mm_set1_epi8(0x10);
  2492. float summs = 0.0f;
  2493. // Main loop
  2494. for (int i = 0; i < nb; i++) {
  2495. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2496. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2497. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2498. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2499. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2500. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2501. bxhil = _mm_and_si128(bxhil, mask);
  2502. bxhih = _mm_and_si128(bxhih, mask);
  2503. __m128i bxl = _mm256_castsi256_si128(bx);
  2504. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2505. bxl = _mm_or_si128(bxl, bxhil);
  2506. bxh = _mm_or_si128(bxh, bxhih);
  2507. bx = MM256_SET_M128I(bxh, bxl);
  2508. const __m256 dy = _mm256_set1_ps(y[i].d);
  2509. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2510. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2511. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2512. }
  2513. *s = hsum_float_8(acc) + summs;
  2514. #else
  2515. // scalar
  2516. float sumf = 0.0;
  2517. for (int i = 0; i < nb; i++) {
  2518. uint32_t qh;
  2519. memcpy(&qh, x[i].qh, sizeof(qh));
  2520. int sumi = 0;
  2521. for (int j = 0; j < qk/2; ++j) {
  2522. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2523. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2524. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2525. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2526. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2527. }
  2528. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2529. }
  2530. *s = sumf;
  2531. #endif
  2532. }
  2533. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2534. const int qk = QK8_0;
  2535. const int nb = n / qk;
  2536. assert(n % qk == 0);
  2537. assert(nb % 2 == 0);
  2538. const block_q8_0 * restrict x = vx;
  2539. const block_q8_0 * restrict y = vy;
  2540. #if defined(__ARM_NEON)
  2541. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2542. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2543. for (int i = 0; i < nb; i += 2) {
  2544. const block_q8_0 * restrict x0 = &x[i + 0];
  2545. const block_q8_0 * restrict x1 = &x[i + 1];
  2546. const block_q8_0 * restrict y0 = &y[i + 0];
  2547. const block_q8_0 * restrict y1 = &y[i + 1];
  2548. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2549. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2550. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2551. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2552. // load y
  2553. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2554. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2555. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2556. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2557. #if defined(__ARM_FEATURE_DOTPROD)
  2558. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2559. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2560. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2561. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2562. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2563. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2564. #else
  2565. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2566. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2567. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2568. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2569. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2570. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2571. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2572. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2573. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2574. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2575. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2576. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2577. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2578. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2579. #endif
  2580. }
  2581. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2582. #elif defined(__AVX2__) || defined(__AVX__)
  2583. // Initialize accumulator with zeros
  2584. __m256 acc = _mm256_setzero_ps();
  2585. // Main loop
  2586. for (int i = 0; i < nb; ++i) {
  2587. // Compute combined scale for the block
  2588. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2589. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2590. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2591. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2592. // Multiply q with scale and accumulate
  2593. #if defined(__AVX2__)
  2594. acc = _mm256_fmadd_ps( d, q, acc );
  2595. #else
  2596. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2597. #endif
  2598. }
  2599. *s = hsum_float_8(acc);
  2600. #else
  2601. // scalar
  2602. float sumf = 0.0;
  2603. for (int i = 0; i < nb; i++) {
  2604. int sumi = 0;
  2605. for (int j = 0; j < qk; j++) {
  2606. sumi += x[i].qs[j]*y[i].qs[j];
  2607. }
  2608. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2609. }
  2610. *s = sumf;
  2611. #endif
  2612. }
  2613. // compute GGML_VEC_DOT_UNROLL dot products at once
  2614. // xs - x row stride in bytes
  2615. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2616. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2617. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2618. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2619. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2620. }
  2621. #if defined(GGML_SIMD)
  2622. const int np = (n & ~(GGML_F16_STEP - 1));
  2623. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2624. GGML_F16_VEC ax[GGML_F16_ARR];
  2625. GGML_F16_VEC ay[GGML_F16_ARR];
  2626. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2627. for (int j = 0; j < GGML_F16_ARR; j++) {
  2628. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2629. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2630. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2631. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2632. }
  2633. }
  2634. }
  2635. // reduce sum0..sum3 to sum0
  2636. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2637. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2638. }
  2639. // leftovers
  2640. for (int i = np; i < n; ++i) {
  2641. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2642. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2643. }
  2644. }
  2645. #else
  2646. for (int i = 0; i < n; ++i) {
  2647. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2648. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2649. }
  2650. }
  2651. #endif
  2652. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2653. s[i] = sumf[i];
  2654. }
  2655. }
  2656. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2657. #if defined(GGML_SIMD)
  2658. const int np = (n & ~(GGML_F32_STEP - 1));
  2659. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2660. GGML_F32_VEC ax[GGML_F32_ARR];
  2661. GGML_F32_VEC ay[GGML_F32_ARR];
  2662. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2663. for (int j = 0; j < GGML_F32_ARR; j++) {
  2664. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2665. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2666. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2667. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2668. }
  2669. }
  2670. // leftovers
  2671. for (int i = np; i < n; ++i) {
  2672. y[i] += x[i]*v;
  2673. }
  2674. #else
  2675. // scalar
  2676. for (int i = 0; i < n; ++i) {
  2677. y[i] += x[i]*v;
  2678. }
  2679. #endif
  2680. }
  2681. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2682. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2683. #if defined(GGML_SIMD)
  2684. const int np = (n & ~(GGML_F32_STEP - 1));
  2685. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2686. GGML_F32_VEC ay[GGML_F32_ARR];
  2687. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2688. for (int j = 0; j < GGML_F32_ARR; j++) {
  2689. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2690. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2691. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2692. }
  2693. }
  2694. // leftovers
  2695. for (int i = np; i < n; ++i) {
  2696. y[i] *= v;
  2697. }
  2698. #else
  2699. // scalar
  2700. for (int i = 0; i < n; ++i) {
  2701. y[i] *= v;
  2702. }
  2703. #endif
  2704. }
  2705. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2706. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2707. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2708. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2709. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2710. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2711. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2712. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2713. static const float GELU_COEF_A = 0.044715f;
  2714. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2715. inline static float ggml_gelu_f32(float x) {
  2716. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2717. }
  2718. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2719. const uint16_t * i16 = (const uint16_t *) x;
  2720. for (int i = 0; i < n; ++i) {
  2721. y[i] = table_gelu_f16[i16[i]];
  2722. }
  2723. }
  2724. #ifdef GGML_GELU_FP16
  2725. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2726. uint16_t t;
  2727. for (int i = 0; i < n; ++i) {
  2728. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2729. memcpy(&t, &fp16, sizeof(uint16_t));
  2730. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2731. }
  2732. }
  2733. #else
  2734. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2735. for (int i = 0; i < n; ++i) {
  2736. y[i] = ggml_gelu_f32(x[i]);
  2737. }
  2738. }
  2739. #endif
  2740. // Sigmoid Linear Unit (SiLU) function
  2741. inline static float ggml_silu_f32(float x) {
  2742. return x/(1.0f + expf(-x));
  2743. }
  2744. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2745. // const uint16_t * i16 = (const uint16_t *) x;
  2746. // for (int i = 0; i < n; ++i) {
  2747. // y[i] = table_silu_f16[i16[i]];
  2748. // }
  2749. //}
  2750. #ifdef GGML_SILU_FP16
  2751. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2752. uint16_t t;
  2753. for (int i = 0; i < n; ++i) {
  2754. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2755. memcpy(&t, &fp16, sizeof(uint16_t));
  2756. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2757. }
  2758. }
  2759. #else
  2760. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2761. for (int i = 0; i < n; ++i) {
  2762. y[i] = ggml_silu_f32(x[i]);
  2763. }
  2764. }
  2765. #endif
  2766. inline static float ggml_silu_backward_f32(float x, float dy) {
  2767. const float s = 1.0f/(1.0f + expf(-x));
  2768. return dy*s*(1.0f + x*(1.0f - s));
  2769. }
  2770. #ifdef GGML_SILU_FP16
  2771. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2772. for (int i = 0; i < n; ++i) {
  2773. // we did not use x[i] to compute forward silu but its f16 equivalent
  2774. // take derivative at f16 of x[i]:
  2775. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2776. float usedx = GGML_FP16_TO_FP32(fp16);
  2777. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2778. }
  2779. }
  2780. #else
  2781. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2782. for (int i = 0; i < n; ++i) {
  2783. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2784. }
  2785. }
  2786. #endif
  2787. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2788. #ifndef GGML_USE_ACCELERATE
  2789. ggml_float sum = 0.0;
  2790. for (int i = 0; i < n; ++i) {
  2791. sum += (ggml_float)x[i];
  2792. }
  2793. *s = sum;
  2794. #else
  2795. vDSP_sve(x, 1, s, n);
  2796. #endif
  2797. }
  2798. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2799. ggml_float sum = 0.0;
  2800. for (int i = 0; i < n; ++i) {
  2801. sum += (ggml_float)x[i];
  2802. }
  2803. *s = sum;
  2804. }
  2805. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2806. #ifndef GGML_USE_ACCELERATE
  2807. float max = -INFINITY;
  2808. for (int i = 0; i < n; ++i) {
  2809. max = MAX(max, x[i]);
  2810. }
  2811. *s = max;
  2812. #else
  2813. vDSP_maxv(x, 1, s, n);
  2814. #endif
  2815. }
  2816. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2817. ggml_vec_norm_f32(n, s, x);
  2818. *s = 1.f/(*s);
  2819. }
  2820. //
  2821. // logging
  2822. //
  2823. #if (GGML_DEBUG >= 1)
  2824. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG(...)
  2827. #endif
  2828. #if (GGML_DEBUG >= 5)
  2829. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2830. #else
  2831. #define GGML_PRINT_DEBUG_5(...)
  2832. #endif
  2833. #if (GGML_DEBUG >= 10)
  2834. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2835. #else
  2836. #define GGML_PRINT_DEBUG_10(...)
  2837. #endif
  2838. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2839. //
  2840. // data types
  2841. //
  2842. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2843. [GGML_TYPE_F32] = 1,
  2844. [GGML_TYPE_F16] = 1,
  2845. [GGML_TYPE_Q4_0] = QK4_0,
  2846. [GGML_TYPE_Q4_1] = QK4_1,
  2847. [GGML_TYPE_Q5_0] = QK5_0,
  2848. [GGML_TYPE_Q5_1] = QK5_1,
  2849. [GGML_TYPE_Q8_0] = QK8_0,
  2850. [GGML_TYPE_Q8_1] = QK8_1,
  2851. #ifdef GGML_USE_K_QUANTS
  2852. [GGML_TYPE_Q2_K] = QK_K,
  2853. [GGML_TYPE_Q3_K] = QK_K,
  2854. [GGML_TYPE_Q4_K] = QK_K,
  2855. [GGML_TYPE_Q5_K] = QK_K,
  2856. [GGML_TYPE_Q6_K] = QK_K,
  2857. [GGML_TYPE_Q8_K] = QK_K,
  2858. #endif
  2859. [GGML_TYPE_I8] = 1,
  2860. [GGML_TYPE_I16] = 1,
  2861. [GGML_TYPE_I32] = 1,
  2862. };
  2863. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2864. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2865. [GGML_TYPE_F32] = sizeof(float),
  2866. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2867. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2868. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2869. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2870. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2871. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2872. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2873. #ifdef GGML_USE_K_QUANTS
  2874. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2875. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2876. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2877. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2878. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2879. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2880. #endif
  2881. [GGML_TYPE_I8] = sizeof(int8_t),
  2882. [GGML_TYPE_I16] = sizeof(int16_t),
  2883. [GGML_TYPE_I32] = sizeof(int32_t),
  2884. };
  2885. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2886. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2887. [GGML_TYPE_F32] = "f32",
  2888. [GGML_TYPE_F16] = "f16",
  2889. [GGML_TYPE_Q4_0] = "q4_0",
  2890. [GGML_TYPE_Q4_1] = "q4_1",
  2891. [GGML_TYPE_Q5_0] = "q5_0",
  2892. [GGML_TYPE_Q5_1] = "q5_1",
  2893. [GGML_TYPE_Q8_0] = "q8_0",
  2894. [GGML_TYPE_Q8_1] = "q8_1",
  2895. [GGML_TYPE_Q2_K] = "q2_K",
  2896. [GGML_TYPE_Q3_K] = "q3_K",
  2897. [GGML_TYPE_Q4_K] = "q4_K",
  2898. [GGML_TYPE_Q5_K] = "q5_K",
  2899. [GGML_TYPE_Q6_K] = "q6_K",
  2900. [GGML_TYPE_Q8_K] = "q8_K",
  2901. [GGML_TYPE_I8] = "i8",
  2902. [GGML_TYPE_I16] = "i16",
  2903. [GGML_TYPE_I32] = "i32",
  2904. };
  2905. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2906. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2907. [GGML_TYPE_F32] = false,
  2908. [GGML_TYPE_F16] = false,
  2909. [GGML_TYPE_Q4_0] = true,
  2910. [GGML_TYPE_Q4_1] = true,
  2911. [GGML_TYPE_Q5_0] = true,
  2912. [GGML_TYPE_Q5_1] = true,
  2913. [GGML_TYPE_Q8_0] = true,
  2914. [GGML_TYPE_Q8_1] = true,
  2915. [GGML_TYPE_Q2_K] = true,
  2916. [GGML_TYPE_Q3_K] = true,
  2917. [GGML_TYPE_Q4_K] = true,
  2918. [GGML_TYPE_Q5_K] = true,
  2919. [GGML_TYPE_Q6_K] = true,
  2920. [GGML_TYPE_Q8_K] = true,
  2921. [GGML_TYPE_I8] = false,
  2922. [GGML_TYPE_I16] = false,
  2923. [GGML_TYPE_I32] = false,
  2924. };
  2925. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2926. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2927. "NONE",
  2928. "DUP",
  2929. "ADD",
  2930. "ADD1",
  2931. "ACC",
  2932. "SUB",
  2933. "MUL",
  2934. "DIV",
  2935. "SQR",
  2936. "SQRT",
  2937. "LOG",
  2938. "SUM",
  2939. "SUM_ROWS",
  2940. "MEAN",
  2941. "REPEAT",
  2942. "REPEAT_BACK",
  2943. "ABS",
  2944. "SGN",
  2945. "NEG",
  2946. "STEP",
  2947. "RELU",
  2948. "GELU",
  2949. "SILU",
  2950. "SILU_BACK",
  2951. "NORM",
  2952. "RMS_NORM",
  2953. "RMS_NORM_BACK",
  2954. "MUL_MAT",
  2955. "OUT_PROD",
  2956. "SCALE",
  2957. "SET",
  2958. "CPY",
  2959. "CONT",
  2960. "RESHAPE",
  2961. "VIEW",
  2962. "PERMUTE",
  2963. "TRANSPOSE",
  2964. "GET_ROWS",
  2965. "GET_ROWS_BACK",
  2966. "DIAG",
  2967. "DIAG_MASK_INF",
  2968. "DIAG_MASK_ZERO",
  2969. "SOFT_MAX",
  2970. "SOFT_MAX_BACK",
  2971. "ROPE",
  2972. "ROPE_BACK",
  2973. "ALIBI",
  2974. "CLAMP",
  2975. "CONV_1D_1S",
  2976. "CONV_1D_2S",
  2977. "FLASH_ATTN",
  2978. "FLASH_FF",
  2979. "FLASH_ATTN_BACK",
  2980. "MAP_UNARY",
  2981. "MAP_BINARY",
  2982. "CROSS_ENTROPY_LOSS",
  2983. "CROSS_ENTROPY_LOSS_BACK",
  2984. };
  2985. static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
  2986. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2987. "none",
  2988. "x",
  2989. "x+y",
  2990. "x+y",
  2991. "view(x,nb,offset)+=y->x",
  2992. "x-y",
  2993. "x*y",
  2994. "x/y",
  2995. "x^2",
  2996. "√x",
  2997. "log(x)",
  2998. "Σx",
  2999. "Σx_k",
  3000. "Σx/n",
  3001. "repeat(x)",
  3002. "repeat_back(x)",
  3003. "abs(x)",
  3004. "sgn(x)",
  3005. "-x",
  3006. "step(x)",
  3007. "relu(x)",
  3008. "gelu(x)",
  3009. "silu(x)",
  3010. "silu_back(x)",
  3011. "norm(x)",
  3012. "rms_norm(x)",
  3013. "rms_norm_back(x)",
  3014. "X*Y",
  3015. "X*Y",
  3016. "x*v",
  3017. "y-\\>view(x)",
  3018. "x-\\>y",
  3019. "cont(x)",
  3020. "reshape(x)",
  3021. "view(x)",
  3022. "permute(x)",
  3023. "transpose(x)",
  3024. "get_rows(x)",
  3025. "get_rows_back(x)",
  3026. "diag(x)",
  3027. "diag_mask_inf(x)",
  3028. "diag_mask_zero(x)",
  3029. "soft_max(x)",
  3030. "soft_max_back(x)",
  3031. "rope(x)",
  3032. "rope_back(x)",
  3033. "alibi(x)",
  3034. "clamp(x)",
  3035. "conv_1d_1s(x)",
  3036. "conv_1d_2s(x)",
  3037. "flash_attn(x)",
  3038. "flash_ff(x)",
  3039. "flash_attn_back(x)",
  3040. "f(x)",
  3041. "f(x,y)",
  3042. "cross_entropy_loss(x,y)",
  3043. "cross_entropy_loss_back(x,y)",
  3044. };
  3045. static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
  3046. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3047. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3048. //
  3049. // ggml context
  3050. //
  3051. struct ggml_context {
  3052. size_t mem_size;
  3053. void * mem_buffer;
  3054. bool mem_buffer_owned;
  3055. bool no_alloc;
  3056. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3057. int n_objects;
  3058. struct ggml_object * objects_begin;
  3059. struct ggml_object * objects_end;
  3060. struct ggml_scratch scratch;
  3061. struct ggml_scratch scratch_save;
  3062. };
  3063. struct ggml_context_container {
  3064. bool used;
  3065. struct ggml_context context;
  3066. };
  3067. //
  3068. // ggml state
  3069. //
  3070. struct ggml_state {
  3071. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3072. };
  3073. // global state
  3074. static struct ggml_state g_state;
  3075. static atomic_int g_state_barrier = 0;
  3076. // barrier via spin lock
  3077. inline static void ggml_critical_section_start(void) {
  3078. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3079. while (processing > 0) {
  3080. // wait for other threads to finish
  3081. atomic_fetch_sub(&g_state_barrier, 1);
  3082. sched_yield(); // TODO: reconsider this
  3083. processing = atomic_fetch_add(&g_state_barrier, 1);
  3084. }
  3085. }
  3086. // TODO: make this somehow automatically executed
  3087. // some sort of "sentry" mechanism
  3088. inline static void ggml_critical_section_end(void) {
  3089. atomic_fetch_sub(&g_state_barrier, 1);
  3090. }
  3091. ////////////////////////////////////////////////////////////////////////////////
  3092. void ggml_print_object(const struct ggml_object * obj) {
  3093. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3094. obj->offs, obj->size, (const void *) obj->next);
  3095. }
  3096. void ggml_print_objects(const struct ggml_context * ctx) {
  3097. struct ggml_object * obj = ctx->objects_begin;
  3098. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3099. while (obj != NULL) {
  3100. ggml_print_object(obj);
  3101. obj = obj->next;
  3102. }
  3103. GGML_PRINT("%s: --- end ---\n", __func__);
  3104. }
  3105. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3106. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3107. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3108. }
  3109. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3110. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3111. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3112. }
  3113. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3114. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3115. // this should handle cases where the tensor is not contiguous in memory
  3116. // probaby just:
  3117. //
  3118. // return tensor->ne[3]*tensor->nb[3]
  3119. //
  3120. // is enough, but just in case, adding the second part
  3121. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3122. }
  3123. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3124. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3125. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3126. }
  3127. int ggml_blck_size(enum ggml_type type) {
  3128. return GGML_BLCK_SIZE[type];
  3129. }
  3130. size_t ggml_type_size(enum ggml_type type) {
  3131. return GGML_TYPE_SIZE[type];
  3132. }
  3133. float ggml_type_sizef(enum ggml_type type) {
  3134. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3135. }
  3136. const char * ggml_type_name(enum ggml_type type) {
  3137. return GGML_TYPE_NAME[type];
  3138. }
  3139. const char * ggml_op_name(enum ggml_op op) {
  3140. return GGML_OP_NAME[op];
  3141. }
  3142. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3143. return GGML_TYPE_SIZE[tensor->type];
  3144. }
  3145. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3146. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3147. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3148. }
  3149. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3150. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3151. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3152. }
  3153. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3154. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3155. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3156. }
  3157. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3158. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3159. return
  3160. (t0->ne[0] == t1->ne[0]) &&
  3161. (t0->ne[2] == t1->ne[2]) &&
  3162. (t0->ne[3] == t1->ne[3]);
  3163. }
  3164. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3165. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3166. return
  3167. (t0->ne[1] == t1->ne[1]) &&
  3168. (t0->ne[2] == t1->ne[2]) &&
  3169. (t0->ne[3] == t1->ne[3]);
  3170. }
  3171. bool ggml_is_quantized(enum ggml_type type) {
  3172. return GGML_IS_QUANTIZED[type];
  3173. }
  3174. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3175. enum ggml_type wtype = GGML_TYPE_COUNT;
  3176. switch (ftype) {
  3177. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3178. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3179. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3180. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3181. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3182. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3183. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3184. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3185. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3186. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3187. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3188. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3189. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3190. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3191. }
  3192. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3193. return wtype;
  3194. }
  3195. size_t ggml_tensor_overhead(void) {
  3196. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3197. }
  3198. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3199. return tensor->nb[0] > tensor->nb[1];
  3200. }
  3201. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3202. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3203. return
  3204. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3205. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3206. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3207. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3208. }
  3209. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3211. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3212. }
  3213. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3214. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3215. return
  3216. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3217. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3218. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3219. }
  3220. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3221. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3222. return
  3223. (t0->ne[0] == t1->ne[0] ) &&
  3224. (t0->ne[1] == t1->ne[1] ) &&
  3225. (t0->ne[2] == t1->ne[2] ) &&
  3226. (t0->ne[3] == t1->ne[3] );
  3227. }
  3228. // check if t1 can be represented as a repeatition of t0
  3229. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3231. return
  3232. (t1->ne[0]%t0->ne[0] == 0) &&
  3233. (t1->ne[1]%t0->ne[1] == 0) &&
  3234. (t1->ne[2]%t0->ne[2] == 0) &&
  3235. (t1->ne[3]%t0->ne[3] == 0);
  3236. }
  3237. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3238. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3239. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3240. }
  3241. static inline int ggml_up32(int n) {
  3242. return (n + 31) & ~31;
  3243. }
  3244. //static inline int ggml_up64(int n) {
  3245. // return (n + 63) & ~63;
  3246. //}
  3247. static inline int ggml_up(int n, int m) {
  3248. // assert m is a power of 2
  3249. GGML_ASSERT((m & (m - 1)) == 0);
  3250. return (n + m - 1) & ~(m - 1);
  3251. }
  3252. // assert that pointer is aligned to GGML_MEM_ALIGN
  3253. #define ggml_assert_aligned(ptr) \
  3254. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3255. ////////////////////////////////////////////////////////////////////////////////
  3256. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3257. // make this function thread safe
  3258. ggml_critical_section_start();
  3259. static bool is_first_call = true;
  3260. if (is_first_call) {
  3261. // initialize time system (required on Windows)
  3262. ggml_time_init();
  3263. // initialize GELU, SILU and EXP F32 tables
  3264. {
  3265. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3266. ggml_fp16_t ii;
  3267. for (int i = 0; i < (1 << 16); ++i) {
  3268. uint16_t ui = i;
  3269. memcpy(&ii, &ui, sizeof(ii));
  3270. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3271. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3272. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3273. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3274. }
  3275. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3276. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3277. }
  3278. // initialize g_state
  3279. {
  3280. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3281. g_state = (struct ggml_state) {
  3282. /*.contexts =*/ { { 0 } },
  3283. };
  3284. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3285. g_state.contexts[i].used = false;
  3286. }
  3287. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3288. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3289. }
  3290. #if defined(GGML_USE_CUBLAS)
  3291. ggml_init_cublas();
  3292. #elif defined(GGML_USE_CLBLAST)
  3293. ggml_cl_init();
  3294. #endif
  3295. is_first_call = false;
  3296. }
  3297. // find non-used context in g_state
  3298. struct ggml_context * ctx = NULL;
  3299. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3300. if (!g_state.contexts[i].used) {
  3301. g_state.contexts[i].used = true;
  3302. ctx = &g_state.contexts[i].context;
  3303. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3304. break;
  3305. }
  3306. }
  3307. if (ctx == NULL) {
  3308. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3309. ggml_critical_section_end();
  3310. return NULL;
  3311. }
  3312. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3313. *ctx = (struct ggml_context) {
  3314. /*.mem_size =*/ mem_size,
  3315. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3316. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3317. /*.no_alloc =*/ params.no_alloc,
  3318. /*.no_alloc_save =*/ params.no_alloc,
  3319. /*.n_objects =*/ 0,
  3320. /*.objects_begin =*/ NULL,
  3321. /*.objects_end =*/ NULL,
  3322. /*.scratch =*/ { 0, 0, NULL, },
  3323. /*.scratch_save =*/ { 0, 0, NULL, },
  3324. };
  3325. GGML_ASSERT(ctx->mem_buffer != NULL);
  3326. ggml_assert_aligned(ctx->mem_buffer);
  3327. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3328. ggml_critical_section_end();
  3329. return ctx;
  3330. }
  3331. void ggml_free(struct ggml_context * ctx) {
  3332. // make this function thread safe
  3333. ggml_critical_section_start();
  3334. bool found = false;
  3335. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3336. if (&g_state.contexts[i].context == ctx) {
  3337. g_state.contexts[i].used = false;
  3338. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3339. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3340. if (ctx->mem_buffer_owned) {
  3341. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3342. }
  3343. found = true;
  3344. break;
  3345. }
  3346. }
  3347. if (!found) {
  3348. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3349. }
  3350. ggml_critical_section_end();
  3351. }
  3352. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3353. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3354. }
  3355. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3356. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3357. ctx->scratch = scratch;
  3358. return result;
  3359. }
  3360. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3361. ctx->no_alloc = no_alloc;
  3362. }
  3363. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3364. return ctx->mem_buffer;
  3365. }
  3366. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3367. return ctx->mem_size;
  3368. }
  3369. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3370. size_t max_size = 0;
  3371. struct ggml_object * obj = ctx->objects_begin;
  3372. while (obj != NULL) {
  3373. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3374. const size_t size = ggml_nbytes(tensor);
  3375. if (max_size < size) {
  3376. max_size = size;
  3377. }
  3378. obj = obj->next;
  3379. }
  3380. return max_size;
  3381. }
  3382. // IMPORTANT:
  3383. // when creating "opt" tensors, always save and load the scratch buffer
  3384. // this is an error prone process, but it is necessary to support inplace
  3385. // operators when using scratch buffers
  3386. // TODO: implement a better way
  3387. void ggml_scratch_save(struct ggml_context * ctx) {
  3388. // this is needed to allow opt tensors to store their data
  3389. // TODO: again, need to find a better way
  3390. ctx->no_alloc_save = ctx->no_alloc;
  3391. ctx->no_alloc = false;
  3392. ctx->scratch_save = ctx->scratch;
  3393. ctx->scratch.data = NULL;
  3394. }
  3395. void ggml_scratch_load(struct ggml_context * ctx) {
  3396. ctx->no_alloc = ctx->no_alloc_save;
  3397. ctx->scratch = ctx->scratch_save;
  3398. }
  3399. ////////////////////////////////////////////////////////////////////////////////
  3400. struct ggml_tensor * ggml_new_tensor_impl(
  3401. struct ggml_context * ctx,
  3402. enum ggml_type type,
  3403. int n_dims,
  3404. const int64_t* ne,
  3405. void* data) {
  3406. // always insert objects at the end of the context's memory pool
  3407. struct ggml_object * obj_cur = ctx->objects_end;
  3408. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3409. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3410. const size_t cur_end = cur_offs + cur_size;
  3411. size_t size_needed = 0;
  3412. if (data == NULL && !ctx->no_alloc) {
  3413. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3414. for (int i = 1; i < n_dims; i++) {
  3415. size_needed *= ne[i];
  3416. }
  3417. // align to GGML_MEM_ALIGN
  3418. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3419. }
  3420. char * const mem_buffer = ctx->mem_buffer;
  3421. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3422. if (ctx->scratch.data == NULL || data != NULL) {
  3423. size_needed += GGML_TENSOR_SIZE;
  3424. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3425. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3426. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3427. assert(false);
  3428. return NULL;
  3429. }
  3430. *obj_new = (struct ggml_object) {
  3431. .offs = cur_end + GGML_OBJECT_SIZE,
  3432. .size = size_needed,
  3433. .next = NULL,
  3434. };
  3435. } else {
  3436. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3437. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3438. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3439. assert(false);
  3440. return NULL;
  3441. }
  3442. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3443. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3444. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3445. assert(false);
  3446. return NULL;
  3447. }
  3448. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3449. *obj_new = (struct ggml_object) {
  3450. .offs = cur_end + GGML_OBJECT_SIZE,
  3451. .size = GGML_TENSOR_SIZE,
  3452. .next = NULL,
  3453. };
  3454. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3455. ctx->scratch.offs += size_needed;
  3456. }
  3457. if (obj_cur != NULL) {
  3458. obj_cur->next = obj_new;
  3459. } else {
  3460. // this is the first object in this context
  3461. ctx->objects_begin = obj_new;
  3462. }
  3463. ctx->objects_end = obj_new;
  3464. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3465. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3466. ggml_assert_aligned(result);
  3467. *result = (struct ggml_tensor) {
  3468. /*.type =*/ type,
  3469. /*.backend =*/ GGML_BACKEND_CPU,
  3470. /*.n_dims =*/ n_dims,
  3471. /*.ne =*/ { 1, 1, 1, 1 },
  3472. /*.nb =*/ { 0, 0, 0, 0 },
  3473. /*.op =*/ GGML_OP_NONE,
  3474. /*.is_param =*/ false,
  3475. /*.grad =*/ NULL,
  3476. /*.src0 =*/ NULL,
  3477. /*.src1 =*/ NULL,
  3478. /*.opt =*/ { NULL },
  3479. /*.n_tasks =*/ 0,
  3480. /*.perf_runs =*/ 0,
  3481. /*.perf_cycles =*/ 0,
  3482. /*.perf_time_us =*/ 0,
  3483. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3484. /*.name =*/ { 0 },
  3485. /*.extra =*/ NULL,
  3486. /*.pad =*/ { 0 },
  3487. };
  3488. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3489. //ggml_assert_aligned(result->data);
  3490. for (int i = 0; i < n_dims; i++) {
  3491. result->ne[i] = ne[i];
  3492. }
  3493. result->nb[0] = GGML_TYPE_SIZE[type];
  3494. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3495. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3496. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3497. }
  3498. ctx->n_objects++;
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_new_tensor(
  3502. struct ggml_context * ctx,
  3503. enum ggml_type type,
  3504. int n_dims,
  3505. const int64_t * ne) {
  3506. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3507. }
  3508. struct ggml_tensor * ggml_new_tensor_1d(
  3509. struct ggml_context * ctx,
  3510. enum ggml_type type,
  3511. int64_t ne0) {
  3512. return ggml_new_tensor(ctx, type, 1, &ne0);
  3513. }
  3514. struct ggml_tensor * ggml_new_tensor_2d(
  3515. struct ggml_context * ctx,
  3516. enum ggml_type type,
  3517. int64_t ne0,
  3518. int64_t ne1) {
  3519. const int64_t ne[2] = { ne0, ne1 };
  3520. return ggml_new_tensor(ctx, type, 2, ne);
  3521. }
  3522. struct ggml_tensor * ggml_new_tensor_3d(
  3523. struct ggml_context * ctx,
  3524. enum ggml_type type,
  3525. int64_t ne0,
  3526. int64_t ne1,
  3527. int64_t ne2) {
  3528. const int64_t ne[3] = { ne0, ne1, ne2 };
  3529. return ggml_new_tensor(ctx, type, 3, ne);
  3530. }
  3531. struct ggml_tensor * ggml_new_tensor_4d(
  3532. struct ggml_context * ctx,
  3533. enum ggml_type type,
  3534. int64_t ne0,
  3535. int64_t ne1,
  3536. int64_t ne2,
  3537. int64_t ne3) {
  3538. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3539. return ggml_new_tensor(ctx, type, 4, ne);
  3540. }
  3541. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3542. ggml_scratch_save(ctx);
  3543. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3544. ggml_scratch_load(ctx);
  3545. ggml_set_i32(result, value);
  3546. return result;
  3547. }
  3548. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3549. ggml_scratch_save(ctx);
  3550. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3551. ggml_scratch_load(ctx);
  3552. ggml_set_f32(result, value);
  3553. return result;
  3554. }
  3555. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3556. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3557. }
  3558. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3559. memset(tensor->data, 0, ggml_nbytes(tensor));
  3560. return tensor;
  3561. }
  3562. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3563. const int n = ggml_nrows(tensor);
  3564. const int nc = tensor->ne[0];
  3565. const size_t n1 = tensor->nb[1];
  3566. char * const data = tensor->data;
  3567. switch (tensor->type) {
  3568. case GGML_TYPE_I8:
  3569. {
  3570. assert(tensor->nb[0] == sizeof(int8_t));
  3571. for (int i = 0; i < n; i++) {
  3572. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3573. }
  3574. } break;
  3575. case GGML_TYPE_I16:
  3576. {
  3577. assert(tensor->nb[0] == sizeof(int16_t));
  3578. for (int i = 0; i < n; i++) {
  3579. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3580. }
  3581. } break;
  3582. case GGML_TYPE_I32:
  3583. {
  3584. assert(tensor->nb[0] == sizeof(int32_t));
  3585. for (int i = 0; i < n; i++) {
  3586. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3587. }
  3588. } break;
  3589. case GGML_TYPE_F16:
  3590. {
  3591. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3592. for (int i = 0; i < n; i++) {
  3593. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3594. }
  3595. } break;
  3596. case GGML_TYPE_F32:
  3597. {
  3598. assert(tensor->nb[0] == sizeof(float));
  3599. for (int i = 0; i < n; i++) {
  3600. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3601. }
  3602. } break;
  3603. default:
  3604. {
  3605. GGML_ASSERT(false);
  3606. } break;
  3607. }
  3608. return tensor;
  3609. }
  3610. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3611. const int n = ggml_nrows(tensor);
  3612. const int nc = tensor->ne[0];
  3613. const size_t n1 = tensor->nb[1];
  3614. char * const data = tensor->data;
  3615. switch (tensor->type) {
  3616. case GGML_TYPE_I8:
  3617. {
  3618. assert(tensor->nb[0] == sizeof(int8_t));
  3619. for (int i = 0; i < n; i++) {
  3620. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3621. }
  3622. } break;
  3623. case GGML_TYPE_I16:
  3624. {
  3625. assert(tensor->nb[0] == sizeof(int16_t));
  3626. for (int i = 0; i < n; i++) {
  3627. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3628. }
  3629. } break;
  3630. case GGML_TYPE_I32:
  3631. {
  3632. assert(tensor->nb[0] == sizeof(int32_t));
  3633. for (int i = 0; i < n; i++) {
  3634. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3635. }
  3636. } break;
  3637. case GGML_TYPE_F16:
  3638. {
  3639. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3640. for (int i = 0; i < n; i++) {
  3641. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3642. }
  3643. } break;
  3644. case GGML_TYPE_F32:
  3645. {
  3646. assert(tensor->nb[0] == sizeof(float));
  3647. for (int i = 0; i < n; i++) {
  3648. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3649. }
  3650. } break;
  3651. default:
  3652. {
  3653. GGML_ASSERT(false);
  3654. } break;
  3655. }
  3656. return tensor;
  3657. }
  3658. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3659. switch (tensor->type) {
  3660. case GGML_TYPE_I8:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3663. return ((int8_t *)(tensor->data))[i];
  3664. } break;
  3665. case GGML_TYPE_I16:
  3666. {
  3667. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3668. return ((int16_t *)(tensor->data))[i];
  3669. } break;
  3670. case GGML_TYPE_I32:
  3671. {
  3672. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3673. return ((int32_t *)(tensor->data))[i];
  3674. } break;
  3675. case GGML_TYPE_F16:
  3676. {
  3677. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3678. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3679. } break;
  3680. case GGML_TYPE_F32:
  3681. {
  3682. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3683. return ((float *)(tensor->data))[i];
  3684. } break;
  3685. default:
  3686. {
  3687. GGML_ASSERT(false);
  3688. } break;
  3689. }
  3690. return 0.0f;
  3691. }
  3692. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3693. switch (tensor->type) {
  3694. case GGML_TYPE_I8:
  3695. {
  3696. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3697. ((int8_t *)(tensor->data))[i] = value;
  3698. } break;
  3699. case GGML_TYPE_I16:
  3700. {
  3701. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3702. ((int16_t *)(tensor->data))[i] = value;
  3703. } break;
  3704. case GGML_TYPE_I32:
  3705. {
  3706. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3707. ((int32_t *)(tensor->data))[i] = value;
  3708. } break;
  3709. case GGML_TYPE_F16:
  3710. {
  3711. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3712. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3713. } break;
  3714. case GGML_TYPE_F32:
  3715. {
  3716. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3717. ((float *)(tensor->data))[i] = value;
  3718. } break;
  3719. default:
  3720. {
  3721. GGML_ASSERT(false);
  3722. } break;
  3723. }
  3724. }
  3725. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3726. switch (tensor->type) {
  3727. case GGML_TYPE_I8:
  3728. {
  3729. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3730. return ((int8_t *)(tensor->data))[i];
  3731. } break;
  3732. case GGML_TYPE_I16:
  3733. {
  3734. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3735. return ((int16_t *)(tensor->data))[i];
  3736. } break;
  3737. case GGML_TYPE_I32:
  3738. {
  3739. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3740. return ((int32_t *)(tensor->data))[i];
  3741. } break;
  3742. case GGML_TYPE_F16:
  3743. {
  3744. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3745. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3746. } break;
  3747. case GGML_TYPE_F32:
  3748. {
  3749. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3750. return ((float *)(tensor->data))[i];
  3751. } break;
  3752. default:
  3753. {
  3754. GGML_ASSERT(false);
  3755. } break;
  3756. }
  3757. return 0.0f;
  3758. }
  3759. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3760. switch (tensor->type) {
  3761. case GGML_TYPE_I8:
  3762. {
  3763. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3764. ((int8_t *)(tensor->data))[i] = value;
  3765. } break;
  3766. case GGML_TYPE_I16:
  3767. {
  3768. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3769. ((int16_t *)(tensor->data))[i] = value;
  3770. } break;
  3771. case GGML_TYPE_I32:
  3772. {
  3773. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3774. ((int32_t *)(tensor->data))[i] = value;
  3775. } break;
  3776. case GGML_TYPE_F16:
  3777. {
  3778. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3779. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3780. } break;
  3781. case GGML_TYPE_F32:
  3782. {
  3783. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3784. ((float *)(tensor->data))[i] = value;
  3785. } break;
  3786. default:
  3787. {
  3788. GGML_ASSERT(false);
  3789. } break;
  3790. }
  3791. }
  3792. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3793. return tensor->data;
  3794. }
  3795. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3796. assert(tensor->type == GGML_TYPE_F32);
  3797. return (float *)(tensor->data);
  3798. }
  3799. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3800. return tensor->name;
  3801. }
  3802. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3803. strncpy(tensor->name, name, sizeof(tensor->name));
  3804. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3805. }
  3806. struct ggml_tensor * ggml_view_tensor(
  3807. struct ggml_context * ctx,
  3808. const struct ggml_tensor * src) {
  3809. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3810. result->nb[0] = src->nb[0];
  3811. result->nb[1] = src->nb[1];
  3812. result->nb[2] = src->nb[2];
  3813. result->nb[3] = src->nb[3];
  3814. return result;
  3815. }
  3816. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3817. struct ggml_object * obj = ctx->objects_begin;
  3818. char * const mem_buffer = ctx->mem_buffer;
  3819. while (obj != NULL) {
  3820. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3821. if (strcmp(cur->name, name) == 0) {
  3822. return cur;
  3823. }
  3824. obj = obj->next;
  3825. }
  3826. return NULL;
  3827. }
  3828. ////////////////////////////////////////////////////////////////////////////////
  3829. // ggml_dup
  3830. struct ggml_tensor * ggml_dup_impl(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. bool inplace) {
  3834. bool is_node = false;
  3835. if (!inplace && (a->grad)) {
  3836. is_node = true;
  3837. }
  3838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. result->op = GGML_OP_DUP;
  3840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3841. result->src0 = a;
  3842. result->src1 = NULL;
  3843. return result;
  3844. }
  3845. struct ggml_tensor * ggml_dup(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a) {
  3848. return ggml_dup_impl(ctx, a, false);
  3849. }
  3850. struct ggml_tensor * ggml_dup_inplace(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a) {
  3853. return ggml_dup_impl(ctx, a, true);
  3854. }
  3855. // ggml_add
  3856. struct ggml_tensor * ggml_add_impl(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b,
  3860. bool inplace) {
  3861. GGML_ASSERT(ggml_are_same_shape(a, b));
  3862. bool is_node = false;
  3863. if (a->grad || b->grad) {
  3864. is_node = true;
  3865. }
  3866. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3867. result->op = GGML_OP_ADD;
  3868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3869. result->src0 = a;
  3870. result->src1 = b;
  3871. return result;
  3872. }
  3873. struct ggml_tensor * ggml_add(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. struct ggml_tensor * b) {
  3877. return ggml_add_impl(ctx, a, b, false);
  3878. }
  3879. struct ggml_tensor * ggml_add_inplace(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a,
  3882. struct ggml_tensor * b) {
  3883. return ggml_add_impl(ctx, a, b, true);
  3884. }
  3885. // ggml_add1
  3886. struct ggml_tensor * ggml_add1_impl(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. struct ggml_tensor * b,
  3890. bool inplace) {
  3891. GGML_ASSERT(ggml_is_scalar(b));
  3892. GGML_ASSERT(ggml_is_padded_1d(a));
  3893. bool is_node = false;
  3894. if (a->grad || b->grad) {
  3895. is_node = true;
  3896. }
  3897. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3898. result->op = GGML_OP_ADD1;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src0 = a;
  3901. result->src1 = b;
  3902. return result;
  3903. }
  3904. struct ggml_tensor * ggml_add1(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. struct ggml_tensor * b) {
  3908. return ggml_add1_impl(ctx, a, b, false);
  3909. }
  3910. struct ggml_tensor * ggml_add1_inplace(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b) {
  3914. return ggml_add1_impl(ctx, a, b, true);
  3915. }
  3916. // ggml_acc
  3917. struct ggml_tensor * ggml_acc_impl(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b,
  3921. size_t nb1,
  3922. size_t nb2,
  3923. size_t nb3,
  3924. size_t offset,
  3925. bool inplace) {
  3926. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3927. GGML_ASSERT(ggml_is_contiguous(a));
  3928. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3929. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3930. bool is_node = false;
  3931. if (!inplace && (a->grad || b->grad)) {
  3932. is_node = true;
  3933. }
  3934. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3935. ggml_scratch_save(ctx);
  3936. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3937. ((int32_t *) c->data)[0] = nb1;
  3938. ((int32_t *) c->data)[1] = nb2;
  3939. ((int32_t *) c->data)[2] = nb3;
  3940. ((int32_t *) c->data)[3] = offset;
  3941. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3942. ggml_scratch_load(ctx);
  3943. result->op = GGML_OP_ACC;
  3944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3945. result->src0 = a;
  3946. result->src1 = b;
  3947. result->opt[0] = c;
  3948. return result;
  3949. }
  3950. struct ggml_tensor * ggml_acc(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b,
  3954. size_t nb1,
  3955. size_t nb2,
  3956. size_t nb3,
  3957. size_t offset) {
  3958. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3959. }
  3960. struct ggml_tensor * ggml_acc_inplace(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. struct ggml_tensor * b,
  3964. size_t nb1,
  3965. size_t nb2,
  3966. size_t nb3,
  3967. size_t offset) {
  3968. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3969. }
  3970. // ggml_sub
  3971. struct ggml_tensor * ggml_sub_impl(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. struct ggml_tensor * b,
  3975. bool inplace) {
  3976. GGML_ASSERT(ggml_are_same_shape(a, b));
  3977. bool is_node = false;
  3978. if (!inplace && (a->grad || b->grad)) {
  3979. is_node = true;
  3980. }
  3981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3982. result->op = GGML_OP_SUB;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src0 = a;
  3985. result->src1 = b;
  3986. return result;
  3987. }
  3988. struct ggml_tensor * ggml_sub(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b) {
  3992. return ggml_sub_impl(ctx, a, b, false);
  3993. }
  3994. struct ggml_tensor * ggml_sub_inplace(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. struct ggml_tensor * b) {
  3998. return ggml_sub_impl(ctx, a, b, true);
  3999. }
  4000. // ggml_mul
  4001. struct ggml_tensor * ggml_mul_impl(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. struct ggml_tensor * b,
  4005. bool inplace) {
  4006. // TODO: support less-strict constraint
  4007. // GGML_ASSERT(ggml_can_repeat(b, a));
  4008. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4009. bool is_node = false;
  4010. if (!inplace && (a->grad || b->grad)) {
  4011. // TODO: support backward pass for broadcasting
  4012. GGML_ASSERT(ggml_are_same_shape(a, b));
  4013. is_node = true;
  4014. }
  4015. if (inplace) {
  4016. GGML_ASSERT(is_node == false);
  4017. }
  4018. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4019. result->op = GGML_OP_MUL;
  4020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4021. result->src0 = a;
  4022. result->src1 = b;
  4023. return result;
  4024. }
  4025. struct ggml_tensor * ggml_mul(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. struct ggml_tensor * b) {
  4029. return ggml_mul_impl(ctx, a, b, false);
  4030. }
  4031. struct ggml_tensor * ggml_mul_inplace(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * b) {
  4035. return ggml_mul_impl(ctx, a, b, true);
  4036. }
  4037. // ggml_div
  4038. struct ggml_tensor * ggml_div_impl(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. struct ggml_tensor * b,
  4042. bool inplace) {
  4043. GGML_ASSERT(ggml_are_same_shape(a, b));
  4044. bool is_node = false;
  4045. if (!inplace && (a->grad || b->grad)) {
  4046. is_node = true;
  4047. }
  4048. if (inplace) {
  4049. GGML_ASSERT(is_node == false);
  4050. }
  4051. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4052. result->op = GGML_OP_DIV;
  4053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4054. result->src0 = a;
  4055. result->src1 = b;
  4056. return result;
  4057. }
  4058. struct ggml_tensor * ggml_div(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a,
  4061. struct ggml_tensor * b) {
  4062. return ggml_div_impl(ctx, a, b, false);
  4063. }
  4064. struct ggml_tensor * ggml_div_inplace(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a,
  4067. struct ggml_tensor * b) {
  4068. return ggml_div_impl(ctx, a, b, true);
  4069. }
  4070. // ggml_sqr
  4071. struct ggml_tensor * ggml_sqr_impl(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. bool inplace) {
  4075. bool is_node = false;
  4076. if (!inplace && (a->grad)) {
  4077. is_node = true;
  4078. }
  4079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4080. result->op = GGML_OP_SQR;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src0 = a;
  4083. result->src1 = NULL;
  4084. return result;
  4085. }
  4086. struct ggml_tensor * ggml_sqr(
  4087. struct ggml_context * ctx,
  4088. struct ggml_tensor * a) {
  4089. return ggml_sqr_impl(ctx, a, false);
  4090. }
  4091. struct ggml_tensor * ggml_sqr_inplace(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a) {
  4094. return ggml_sqr_impl(ctx, a, true);
  4095. }
  4096. // ggml_sqrt
  4097. struct ggml_tensor * ggml_sqrt_impl(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. bool inplace) {
  4101. bool is_node = false;
  4102. if (!inplace && (a->grad)) {
  4103. is_node = true;
  4104. }
  4105. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4106. result->op = GGML_OP_SQRT;
  4107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4108. result->src0 = a;
  4109. result->src1 = NULL;
  4110. return result;
  4111. }
  4112. struct ggml_tensor * ggml_sqrt(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a) {
  4115. return ggml_sqrt_impl(ctx, a, false);
  4116. }
  4117. struct ggml_tensor * ggml_sqrt_inplace(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a) {
  4120. return ggml_sqrt_impl(ctx, a, true);
  4121. }
  4122. // ggml_log
  4123. struct ggml_tensor * ggml_log_impl(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a,
  4126. bool inplace) {
  4127. bool is_node = false;
  4128. if (!inplace && (a->grad)) {
  4129. is_node = true;
  4130. }
  4131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4132. result->op = GGML_OP_LOG;
  4133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4134. result->src0 = a;
  4135. result->src1 = NULL;
  4136. return result;
  4137. }
  4138. struct ggml_tensor * ggml_log(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a) {
  4141. return ggml_log_impl(ctx, a, false);
  4142. }
  4143. struct ggml_tensor * ggml_log_inplace(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a) {
  4146. return ggml_log_impl(ctx, a, true);
  4147. }
  4148. // ggml_sum
  4149. struct ggml_tensor * ggml_sum(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. bool is_node = false;
  4153. if (a->grad) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4157. result->op = GGML_OP_SUM;
  4158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4159. result->src0 = a;
  4160. result->src1 = NULL;
  4161. return result;
  4162. }
  4163. // ggml_sum_rows
  4164. struct ggml_tensor * ggml_sum_rows(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. bool is_node = false;
  4168. if (a->grad) {
  4169. is_node = true;
  4170. }
  4171. int64_t ne[4] = {1,1,1,1};
  4172. for (int i=1; i<a->n_dims; ++i) {
  4173. ne[i] = a->ne[i];
  4174. }
  4175. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4176. result->op = GGML_OP_SUM_ROWS;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src0 = a;
  4179. result->src1 = NULL;
  4180. return result;
  4181. }
  4182. // ggml_mean
  4183. struct ggml_tensor * ggml_mean(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a) {
  4186. bool is_node = false;
  4187. if (a->grad) {
  4188. GGML_ASSERT(false); // TODO: implement
  4189. is_node = true;
  4190. }
  4191. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4192. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4193. result->op = GGML_OP_MEAN;
  4194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4195. result->src0 = a;
  4196. result->src1 = NULL;
  4197. return result;
  4198. }
  4199. // ggml_repeat
  4200. struct ggml_tensor * ggml_repeat(
  4201. struct ggml_context * ctx,
  4202. struct ggml_tensor * a,
  4203. struct ggml_tensor * b) {
  4204. GGML_ASSERT(ggml_can_repeat(a, b));
  4205. bool is_node = false;
  4206. if (a->grad) {
  4207. is_node = true;
  4208. }
  4209. if (ggml_are_same_shape(a, b) && !is_node) {
  4210. return a;
  4211. }
  4212. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4213. result->op = GGML_OP_REPEAT;
  4214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4215. result->src0 = a;
  4216. result->src1 = b;
  4217. return result;
  4218. }
  4219. // ggml_repeat_back
  4220. struct ggml_tensor * ggml_repeat_back(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. struct ggml_tensor * b) {
  4224. GGML_ASSERT(ggml_can_repeat(b, a));
  4225. bool is_node = false;
  4226. if (a->grad) {
  4227. is_node = true;
  4228. }
  4229. if (ggml_are_same_shape(a, b) && !is_node) {
  4230. return a;
  4231. }
  4232. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4233. result->op = GGML_OP_REPEAT_BACK;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = b;
  4237. return result;
  4238. }
  4239. // ggml_abs
  4240. struct ggml_tensor * ggml_abs_impl(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. bool inplace) {
  4244. bool is_node = false;
  4245. if (!inplace && (a->grad)) {
  4246. is_node = true;
  4247. }
  4248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4249. result->op = GGML_OP_ABS;
  4250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4251. result->src0 = a;
  4252. result->src1 = NULL;
  4253. return result;
  4254. }
  4255. struct ggml_tensor * ggml_abs(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a) {
  4258. return ggml_abs_impl(ctx, a, false);
  4259. }
  4260. struct ggml_tensor * ggml_abs_inplace(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_abs_impl(ctx, a, true);
  4264. }
  4265. // ggml_sgn
  4266. struct ggml_tensor * ggml_sgn_impl(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. bool inplace) {
  4270. bool is_node = false;
  4271. if (!inplace && (a->grad)) {
  4272. is_node = true;
  4273. }
  4274. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4275. result->op = GGML_OP_SGN;
  4276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4277. result->src0 = a;
  4278. result->src1 = NULL;
  4279. return result;
  4280. }
  4281. struct ggml_tensor * ggml_sgn(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a) {
  4284. return ggml_sgn_impl(ctx, a, false);
  4285. }
  4286. struct ggml_tensor * ggml_sgn_inplace(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a) {
  4289. return ggml_sgn_impl(ctx, a, true);
  4290. }
  4291. // ggml_neg
  4292. struct ggml_tensor * ggml_neg_impl(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. bool inplace) {
  4296. bool is_node = false;
  4297. if (!inplace && (a->grad)) {
  4298. is_node = true;
  4299. }
  4300. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4301. result->op = GGML_OP_NEG;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src0 = a;
  4304. result->src1 = NULL;
  4305. return result;
  4306. }
  4307. struct ggml_tensor * ggml_neg(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a) {
  4310. return ggml_neg_impl(ctx, a, false);
  4311. }
  4312. struct ggml_tensor * ggml_neg_inplace(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a) {
  4315. return ggml_neg_impl(ctx, a, true);
  4316. }
  4317. // ggml_step
  4318. struct ggml_tensor * ggml_step_impl(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. bool inplace) {
  4322. bool is_node = false;
  4323. if (!inplace && (a->grad)) {
  4324. is_node = true;
  4325. }
  4326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4327. result->op = GGML_OP_STEP;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src0 = a;
  4330. result->src1 = NULL;
  4331. return result;
  4332. }
  4333. struct ggml_tensor * ggml_step(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a) {
  4336. return ggml_step_impl(ctx, a, false);
  4337. }
  4338. struct ggml_tensor * ggml_step_inplace(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a) {
  4341. return ggml_step_impl(ctx, a, true);
  4342. }
  4343. // ggml_relu
  4344. struct ggml_tensor * ggml_relu_impl(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. bool inplace) {
  4348. bool is_node = false;
  4349. if (!inplace && (a->grad)) {
  4350. is_node = true;
  4351. }
  4352. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4353. result->op = GGML_OP_RELU;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src0 = a;
  4356. result->src1 = NULL;
  4357. return result;
  4358. }
  4359. struct ggml_tensor * ggml_relu(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a) {
  4362. return ggml_relu_impl(ctx, a, false);
  4363. }
  4364. struct ggml_tensor * ggml_relu_inplace(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a) {
  4367. return ggml_relu_impl(ctx, a, true);
  4368. }
  4369. // ggml_gelu
  4370. struct ggml_tensor * ggml_gelu_impl(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. bool inplace) {
  4374. bool is_node = false;
  4375. if (!inplace && (a->grad)) {
  4376. is_node = true;
  4377. }
  4378. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4379. result->op = GGML_OP_GELU;
  4380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4381. result->src0 = a;
  4382. result->src1 = NULL;
  4383. return result;
  4384. }
  4385. struct ggml_tensor * ggml_gelu(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a) {
  4388. return ggml_gelu_impl(ctx, a, false);
  4389. }
  4390. struct ggml_tensor * ggml_gelu_inplace(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a) {
  4393. return ggml_gelu_impl(ctx, a, true);
  4394. }
  4395. // ggml_silu
  4396. struct ggml_tensor * ggml_silu_impl(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. bool inplace) {
  4400. bool is_node = false;
  4401. if (!inplace && (a->grad)) {
  4402. is_node = true;
  4403. }
  4404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4405. result->op = GGML_OP_SILU;
  4406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4407. result->src0 = a;
  4408. result->src1 = NULL;
  4409. return result;
  4410. }
  4411. struct ggml_tensor * ggml_silu(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_silu_impl(ctx, a, false);
  4415. }
  4416. struct ggml_tensor * ggml_silu_inplace(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. return ggml_silu_impl(ctx, a, true);
  4420. }
  4421. // ggml_silu_back
  4422. struct ggml_tensor * ggml_silu_back(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b) {
  4426. bool is_node = false;
  4427. if (a->grad || b->grad) {
  4428. // TODO: implement backward
  4429. is_node = true;
  4430. }
  4431. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4432. result->op = GGML_OP_SILU_BACK;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src0 = a;
  4435. result->src1 = b;
  4436. return result;
  4437. }
  4438. // ggml_norm
  4439. struct ggml_tensor * ggml_norm_impl(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. bool inplace) {
  4443. bool is_node = false;
  4444. if (!inplace && (a->grad)) {
  4445. GGML_ASSERT(false); // TODO: implement backward
  4446. is_node = true;
  4447. }
  4448. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4449. result->op = GGML_OP_NORM;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src0 = a;
  4452. result->src1 = NULL; // TODO: maybe store epsilon here?
  4453. return result;
  4454. }
  4455. struct ggml_tensor * ggml_norm(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a) {
  4458. return ggml_norm_impl(ctx, a, false);
  4459. }
  4460. struct ggml_tensor * ggml_norm_inplace(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a) {
  4463. return ggml_norm_impl(ctx, a, true);
  4464. }
  4465. struct ggml_tensor * ggml_rms_norm_impl(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. bool inplace) {
  4469. bool is_node = false;
  4470. if (!inplace && (a->grad)) {
  4471. is_node = true;
  4472. }
  4473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4474. result->op = GGML_OP_RMS_NORM;
  4475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4476. result->src0 = a;
  4477. result->src1 = NULL; // TODO: maybe store epsilon here?
  4478. return result;
  4479. }
  4480. struct ggml_tensor * ggml_rms_norm(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. return ggml_rms_norm_impl(ctx, a, false);
  4484. }
  4485. struct ggml_tensor * ggml_rms_norm_inplace(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a) {
  4488. return ggml_rms_norm_impl(ctx, a, true);
  4489. }
  4490. struct ggml_tensor * ggml_rms_norm_back(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b) {
  4494. bool is_node = false;
  4495. if (a->grad) {
  4496. // TODO: implement backward
  4497. is_node = true;
  4498. }
  4499. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4500. result->op = GGML_OP_RMS_NORM_BACK;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src0 = a;
  4503. result->src1 = b;
  4504. return result;
  4505. }
  4506. // ggml_mul_mat
  4507. struct ggml_tensor * ggml_mul_mat(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. struct ggml_tensor * b) {
  4511. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4512. GGML_ASSERT(!ggml_is_transposed(a));
  4513. bool is_node = false;
  4514. if (a->grad || b->grad) {
  4515. is_node = true;
  4516. }
  4517. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4518. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4519. result->op = GGML_OP_MUL_MAT;
  4520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4521. result->src0 = a;
  4522. result->src1 = b;
  4523. return result;
  4524. }
  4525. // ggml_out_prod
  4526. struct ggml_tensor * ggml_out_prod(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a,
  4529. struct ggml_tensor * b) {
  4530. GGML_ASSERT(ggml_can_out_prod(a, b));
  4531. GGML_ASSERT(!ggml_is_transposed(a));
  4532. bool is_node = false;
  4533. if (a->grad || b->grad) {
  4534. is_node = true;
  4535. }
  4536. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4537. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4538. result->op = GGML_OP_OUT_PROD;
  4539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4540. result->src0 = a;
  4541. result->src1 = b;
  4542. return result;
  4543. }
  4544. // ggml_scale
  4545. struct ggml_tensor * ggml_scale_impl(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b,
  4549. bool inplace) {
  4550. GGML_ASSERT(ggml_is_scalar(b));
  4551. GGML_ASSERT(ggml_is_padded_1d(a));
  4552. bool is_node = false;
  4553. if (a->grad || b->grad) {
  4554. is_node = true;
  4555. }
  4556. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4557. result->op = GGML_OP_SCALE;
  4558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4559. result->src0 = a;
  4560. result->src1 = b;
  4561. return result;
  4562. }
  4563. struct ggml_tensor * ggml_scale(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b) {
  4567. return ggml_scale_impl(ctx, a, b, false);
  4568. }
  4569. struct ggml_tensor * ggml_scale_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b) {
  4573. return ggml_scale_impl(ctx, a, b, true);
  4574. }
  4575. // ggml_set
  4576. struct ggml_tensor * ggml_set_impl(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. struct ggml_tensor * b,
  4580. size_t nb1,
  4581. size_t nb2,
  4582. size_t nb3,
  4583. size_t offset,
  4584. bool inplace) {
  4585. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4586. bool is_node = false;
  4587. if (a->grad || b->grad) {
  4588. is_node = true;
  4589. }
  4590. // make a view of the destination
  4591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4592. ggml_scratch_save(ctx);
  4593. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4594. (( int32_t * ) c->data)[0] = nb1;
  4595. (( int32_t * ) c->data)[1] = nb2;
  4596. (( int32_t * ) c->data)[2] = nb3;
  4597. (( int32_t * ) c->data)[3] = offset;
  4598. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4599. ggml_scratch_load(ctx);
  4600. result->op = GGML_OP_SET;
  4601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4602. result->src0 = a;
  4603. result->src1 = b;
  4604. result->opt[0] = c;
  4605. return result;
  4606. }
  4607. struct ggml_tensor * ggml_set(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a,
  4610. struct ggml_tensor * b,
  4611. size_t nb1,
  4612. size_t nb2,
  4613. size_t nb3,
  4614. size_t offset) {
  4615. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4616. }
  4617. struct ggml_tensor * ggml_set_inplace(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. struct ggml_tensor * b,
  4621. size_t nb1,
  4622. size_t nb2,
  4623. size_t nb3,
  4624. size_t offset) {
  4625. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4626. }
  4627. struct ggml_tensor * ggml_set_1d(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b,
  4631. size_t offset) {
  4632. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4633. }
  4634. struct ggml_tensor * ggml_set_1d_inplace(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a,
  4637. struct ggml_tensor * b,
  4638. size_t offset) {
  4639. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4640. }
  4641. struct ggml_tensor * ggml_set_2d(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b,
  4645. size_t nb1,
  4646. size_t offset) {
  4647. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4648. }
  4649. struct ggml_tensor * ggml_set_2d_inplace(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. struct ggml_tensor * b,
  4653. size_t nb1,
  4654. size_t offset) {
  4655. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4656. }
  4657. // ggml_cpy
  4658. struct ggml_tensor * ggml_cpy_impl(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. struct ggml_tensor * b,
  4662. bool inplace) {
  4663. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4664. bool is_node = false;
  4665. if (!inplace && (a->grad || b->grad)) {
  4666. is_node = true;
  4667. }
  4668. // make a view of the destination
  4669. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4670. result->op = GGML_OP_CPY;
  4671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4672. result->src0 = a;
  4673. result->src1 = b;
  4674. return result;
  4675. }
  4676. struct ggml_tensor * ggml_cpy(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. struct ggml_tensor * b) {
  4680. return ggml_cpy_impl(ctx, a, b, false);
  4681. }
  4682. struct ggml_tensor * ggml_cpy_inplace(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. struct ggml_tensor * b) {
  4686. return ggml_cpy_impl(ctx, a, b, true);
  4687. }
  4688. // ggml_cont
  4689. struct ggml_tensor * ggml_cont_impl(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a,
  4692. bool inplace) {
  4693. bool is_node = false;
  4694. if (!inplace && a->grad) {
  4695. is_node = true;
  4696. }
  4697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4698. result->op = GGML_OP_CONT;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src0 = a;
  4701. result->src1 = NULL;
  4702. return result;
  4703. }
  4704. struct ggml_tensor * ggml_cont(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a) {
  4707. return ggml_cont_impl(ctx, a, false);
  4708. }
  4709. struct ggml_tensor * ggml_cont_inplace(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a) {
  4712. return ggml_cont_impl(ctx, a, true);
  4713. }
  4714. // ggml_reshape
  4715. struct ggml_tensor * ggml_reshape(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. struct ggml_tensor * b) {
  4719. GGML_ASSERT(ggml_is_contiguous(a));
  4720. GGML_ASSERT(ggml_is_contiguous(b));
  4721. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4722. bool is_node = false;
  4723. if (a->grad) {
  4724. is_node = true;
  4725. }
  4726. if (b->grad) {
  4727. // gradient propagation is not supported
  4728. //GGML_ASSERT(false);
  4729. }
  4730. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4731. result->op = GGML_OP_RESHAPE;
  4732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4733. result->src0 = a;
  4734. result->src1 = NULL;
  4735. return result;
  4736. }
  4737. struct ggml_tensor * ggml_reshape_1d(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. int64_t ne0) {
  4741. GGML_ASSERT(ggml_is_contiguous(a));
  4742. GGML_ASSERT(ggml_nelements(a) == ne0);
  4743. bool is_node = false;
  4744. if (a->grad) {
  4745. is_node = true;
  4746. }
  4747. const int64_t ne[1] = { ne0 };
  4748. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4749. result->op = GGML_OP_RESHAPE;
  4750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4751. result->src0 = a;
  4752. result->src1 = NULL;
  4753. return result;
  4754. }
  4755. struct ggml_tensor * ggml_reshape_2d(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a,
  4758. int64_t ne0,
  4759. int64_t ne1) {
  4760. GGML_ASSERT(ggml_is_contiguous(a));
  4761. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4762. bool is_node = false;
  4763. if (a->grad) {
  4764. is_node = true;
  4765. }
  4766. const int64_t ne[2] = { ne0, ne1 };
  4767. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4768. result->op = GGML_OP_RESHAPE;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src0 = a;
  4771. result->src1 = NULL;
  4772. return result;
  4773. }
  4774. struct ggml_tensor * ggml_reshape_3d(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. int64_t ne0,
  4778. int64_t ne1,
  4779. int64_t ne2) {
  4780. GGML_ASSERT(ggml_is_contiguous(a));
  4781. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4782. bool is_node = false;
  4783. if (a->grad) {
  4784. is_node = true;
  4785. }
  4786. const int64_t ne[3] = { ne0, ne1, ne2 };
  4787. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4788. result->op = GGML_OP_RESHAPE;
  4789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4790. result->src0 = a;
  4791. result->src1 = NULL;
  4792. return result;
  4793. }
  4794. struct ggml_tensor * ggml_reshape_4d(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. int64_t ne0,
  4798. int64_t ne1,
  4799. int64_t ne2,
  4800. int64_t ne3) {
  4801. GGML_ASSERT(ggml_is_contiguous(a));
  4802. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4803. bool is_node = false;
  4804. if (a->grad) {
  4805. is_node = true;
  4806. }
  4807. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4808. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4809. result->op = GGML_OP_RESHAPE;
  4810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4811. result->src0 = a;
  4812. result->src1 = NULL;
  4813. return result;
  4814. }
  4815. // ggml_view_1d
  4816. struct ggml_tensor * ggml_view_1d(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. int64_t ne0,
  4820. size_t offset) {
  4821. bool is_node = false;
  4822. if (a->grad) {
  4823. is_node = true;
  4824. }
  4825. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4826. ggml_scratch_save(ctx);
  4827. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4828. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4829. ggml_scratch_load(ctx);
  4830. result->op = GGML_OP_VIEW;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src0 = a;
  4833. result->src1 = NULL;
  4834. result->opt[0] = offs;
  4835. return result;
  4836. }
  4837. // ggml_view_2d
  4838. struct ggml_tensor * ggml_view_2d(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. int64_t ne0,
  4842. int64_t ne1,
  4843. size_t nb1,
  4844. size_t offset) {
  4845. bool is_node = false;
  4846. if (a->grad) {
  4847. is_node = true;
  4848. }
  4849. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4850. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4851. ggml_scratch_save(ctx);
  4852. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4853. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4854. ggml_scratch_load(ctx);
  4855. result->nb[1] = nb1;
  4856. result->nb[2] = result->nb[1]*ne1;
  4857. result->nb[3] = result->nb[2];
  4858. result->op = GGML_OP_VIEW;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src0 = a;
  4861. result->src1 = NULL;
  4862. result->opt[0] = offs;
  4863. return result;
  4864. }
  4865. // ggml_view_3d
  4866. struct ggml_tensor * ggml_view_3d(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. int64_t ne0,
  4870. int64_t ne1,
  4871. int64_t ne2,
  4872. size_t nb1,
  4873. size_t nb2,
  4874. size_t offset) {
  4875. bool is_node = false;
  4876. if (a->grad) {
  4877. is_node = true;
  4878. }
  4879. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4880. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4881. ggml_scratch_save(ctx);
  4882. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4883. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4884. ggml_scratch_load(ctx);
  4885. result->nb[1] = nb1;
  4886. result->nb[2] = nb2;
  4887. result->nb[3] = result->nb[2]*ne2;
  4888. result->op = GGML_OP_VIEW;
  4889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4890. result->src0 = a;
  4891. result->src1 = NULL;
  4892. result->opt[0] = offs;
  4893. return result;
  4894. }
  4895. // ggml_view_4d
  4896. struct ggml_tensor * ggml_view_4d(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. int64_t ne0,
  4900. int64_t ne1,
  4901. int64_t ne2,
  4902. int64_t ne3,
  4903. size_t nb1,
  4904. size_t nb2,
  4905. size_t nb3,
  4906. size_t offset) {
  4907. bool is_node = false;
  4908. if (a->grad) {
  4909. is_node = true;
  4910. }
  4911. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4912. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4913. ggml_scratch_save(ctx);
  4914. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4915. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4916. ggml_scratch_load(ctx);
  4917. result->nb[1] = nb1;
  4918. result->nb[2] = nb2;
  4919. result->nb[3] = nb3;
  4920. result->op = GGML_OP_VIEW;
  4921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4922. result->src0 = a;
  4923. result->src1 = NULL;
  4924. result->opt[0] = offs;
  4925. return result;
  4926. }
  4927. // ggml_permute
  4928. struct ggml_tensor * ggml_permute(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. int axis0,
  4932. int axis1,
  4933. int axis2,
  4934. int axis3) {
  4935. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4936. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4937. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4938. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4939. GGML_ASSERT(axis0 != axis1);
  4940. GGML_ASSERT(axis0 != axis2);
  4941. GGML_ASSERT(axis0 != axis3);
  4942. GGML_ASSERT(axis1 != axis2);
  4943. GGML_ASSERT(axis1 != axis3);
  4944. GGML_ASSERT(axis2 != axis3);
  4945. bool is_node = false;
  4946. if (a->grad) {
  4947. is_node = true;
  4948. }
  4949. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4950. int ne[GGML_MAX_DIMS];
  4951. int nb[GGML_MAX_DIMS];
  4952. ne[axis0] = a->ne[0];
  4953. ne[axis1] = a->ne[1];
  4954. ne[axis2] = a->ne[2];
  4955. ne[axis3] = a->ne[3];
  4956. nb[axis0] = a->nb[0];
  4957. nb[axis1] = a->nb[1];
  4958. nb[axis2] = a->nb[2];
  4959. nb[axis3] = a->nb[3];
  4960. result->ne[0] = ne[0];
  4961. result->ne[1] = ne[1];
  4962. result->ne[2] = ne[2];
  4963. result->ne[3] = ne[3];
  4964. result->nb[0] = nb[0];
  4965. result->nb[1] = nb[1];
  4966. result->nb[2] = nb[2];
  4967. result->nb[3] = nb[3];
  4968. result->op = GGML_OP_PERMUTE;
  4969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4970. result->src0 = a;
  4971. result->src1 = NULL;
  4972. if (is_node) {
  4973. ggml_scratch_save(ctx);
  4974. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  4975. ((int32_t *) b->data)[0] = axis0;
  4976. ((int32_t *) b->data)[1] = axis1;
  4977. ((int32_t *) b->data)[2] = axis2;
  4978. ((int32_t *) b->data)[3] = axis3;
  4979. ggml_scratch_load(ctx);
  4980. result->opt[0] = b;
  4981. }
  4982. return result;
  4983. }
  4984. // ggml_transpose
  4985. struct ggml_tensor * ggml_transpose(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a) {
  4988. bool is_node = false;
  4989. if (a->grad) {
  4990. is_node = true;
  4991. }
  4992. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4993. result->ne[0] = a->ne[1];
  4994. result->ne[1] = a->ne[0];
  4995. result->nb[0] = a->nb[1];
  4996. result->nb[1] = a->nb[0];
  4997. result->op = GGML_OP_TRANSPOSE;
  4998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4999. result->src0 = a;
  5000. result->src1 = NULL;
  5001. return result;
  5002. }
  5003. // ggml_get_rows
  5004. struct ggml_tensor * ggml_get_rows(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. struct ggml_tensor * b) {
  5008. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5009. bool is_node = false;
  5010. if (a->grad || b->grad) {
  5011. is_node = true;
  5012. }
  5013. // TODO: implement non F32 return
  5014. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5015. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5016. result->op = GGML_OP_GET_ROWS;
  5017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5018. result->src0 = a;
  5019. result->src1 = b;
  5020. return result;
  5021. }
  5022. // ggml_get_rows_back
  5023. struct ggml_tensor * ggml_get_rows_back(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b,
  5027. struct ggml_tensor * c) {
  5028. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5029. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5030. bool is_node = false;
  5031. if (a->grad || b->grad) {
  5032. is_node = true;
  5033. }
  5034. // TODO: implement non F32 return
  5035. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5036. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5037. result->op = GGML_OP_GET_ROWS_BACK;
  5038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5039. result->src0 = a;
  5040. result->src1 = b;
  5041. result->opt[0] = c;
  5042. return result;
  5043. }
  5044. // ggml_diag
  5045. struct ggml_tensor * ggml_diag(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a) {
  5048. GGML_ASSERT(a->ne[1] == 1);
  5049. bool is_node = false;
  5050. if (a->grad) {
  5051. is_node = true;
  5052. }
  5053. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5054. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5055. result->op = GGML_OP_DIAG;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src0 = a;
  5058. result->src1 = NULL;
  5059. return result;
  5060. }
  5061. // ggml_diag_mask_inf
  5062. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int n_past,
  5066. bool inplace) {
  5067. bool is_node = false;
  5068. if (a->grad) {
  5069. is_node = true;
  5070. }
  5071. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5072. ggml_scratch_save(ctx);
  5073. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5074. ((int32_t *) b->data)[0] = n_past;
  5075. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5076. ggml_scratch_load(ctx);
  5077. result->op = GGML_OP_DIAG_MASK_INF;
  5078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5079. result->src0 = a;
  5080. result->src1 = b;
  5081. return result;
  5082. }
  5083. struct ggml_tensor * ggml_diag_mask_inf(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. int n_past) {
  5087. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5088. }
  5089. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. int n_past) {
  5093. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5094. }
  5095. // ggml_diag_mask_zero
  5096. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. int n_past,
  5100. bool inplace) {
  5101. bool is_node = false;
  5102. if (a->grad) {
  5103. is_node = true;
  5104. }
  5105. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5106. ggml_scratch_save(ctx);
  5107. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5108. ggml_set_name(b, "n_past, inplace");
  5109. ((int32_t *) b->data)[0] = n_past;
  5110. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5111. ggml_scratch_load(ctx);
  5112. result->op = GGML_OP_DIAG_MASK_ZERO;
  5113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5114. result->src0 = a;
  5115. result->src1 = b;
  5116. return result;
  5117. }
  5118. struct ggml_tensor * ggml_diag_mask_zero(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. int n_past) {
  5122. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5123. }
  5124. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. int n_past) {
  5128. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5129. }
  5130. // ggml_soft_max
  5131. struct ggml_tensor * ggml_soft_max_impl(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. bool inplace) {
  5135. bool is_node = false;
  5136. if (a->grad) {
  5137. is_node = true;
  5138. }
  5139. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5140. result->op = GGML_OP_SOFT_MAX;
  5141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5142. result->src0 = a;
  5143. result->src1 = NULL;
  5144. return result;
  5145. }
  5146. struct ggml_tensor * ggml_soft_max(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a) {
  5149. return ggml_soft_max_impl(ctx, a, false);
  5150. }
  5151. struct ggml_tensor * ggml_soft_max_inplace(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a) {
  5154. return ggml_soft_max_impl(ctx, a, true);
  5155. }
  5156. // ggml_soft_max_back
  5157. struct ggml_tensor * ggml_soft_max_back_impl(
  5158. struct ggml_context * ctx,
  5159. struct ggml_tensor * a,
  5160. struct ggml_tensor * b,
  5161. bool inplace) {
  5162. bool is_node = false;
  5163. if (a->grad || b->grad) {
  5164. is_node = true; // TODO : implement backward pass
  5165. }
  5166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5167. result->op = GGML_OP_SOFT_MAX_BACK;
  5168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5169. result->src0 = a;
  5170. result->src1 = b;
  5171. return result;
  5172. }
  5173. struct ggml_tensor * ggml_soft_max_back(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. struct ggml_tensor * b) {
  5177. return ggml_soft_max_back_impl(ctx, a, b, false);
  5178. }
  5179. struct ggml_tensor * ggml_soft_max_back_inplace(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. struct ggml_tensor * b) {
  5183. return ggml_soft_max_back_impl(ctx, a, b, true);
  5184. }
  5185. // ggml_rope
  5186. struct ggml_tensor * ggml_rope_impl(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a,
  5189. int n_past,
  5190. int n_dims,
  5191. int mode,
  5192. bool inplace) {
  5193. GGML_ASSERT(n_past >= 0);
  5194. bool is_node = false;
  5195. if (a->grad) {
  5196. is_node = true;
  5197. }
  5198. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5199. ggml_scratch_save(ctx);
  5200. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5201. ((int32_t *) b->data)[0] = n_past;
  5202. ((int32_t *) b->data)[1] = n_dims;
  5203. ((int32_t *) b->data)[2] = mode;
  5204. ggml_scratch_load(ctx);
  5205. result->op = GGML_OP_ROPE;
  5206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5207. result->src0 = a;
  5208. result->src1 = b;
  5209. return result;
  5210. }
  5211. struct ggml_tensor * ggml_rope(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a,
  5214. int n_past,
  5215. int n_dims,
  5216. int mode) {
  5217. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5218. }
  5219. struct ggml_tensor * ggml_rope_inplace(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. int n_past,
  5223. int n_dims,
  5224. int mode) {
  5225. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5226. }
  5227. // ggml_rope_back
  5228. struct ggml_tensor * ggml_rope_back(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. int n_past,
  5232. int n_dims,
  5233. int mode) {
  5234. GGML_ASSERT(n_past >= 0);
  5235. bool is_node = false;
  5236. if (a->grad) {
  5237. is_node = false; // TODO: implement backward
  5238. }
  5239. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5240. ggml_scratch_save(ctx);
  5241. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5242. ggml_set_name(b, "n_past, n_dims, mode");
  5243. ((int32_t *) b->data)[0] = n_past;
  5244. ((int32_t *) b->data)[1] = n_dims;
  5245. ((int32_t *) b->data)[2] = mode;
  5246. ggml_scratch_load(ctx);
  5247. result->op = GGML_OP_ROPE_BACK;
  5248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5249. result->src0 = a;
  5250. result->src1 = b;
  5251. return result;
  5252. }
  5253. // ggml_alibi
  5254. struct ggml_tensor * ggml_alibi(
  5255. struct ggml_context * ctx,
  5256. struct ggml_tensor * a,
  5257. int n_past,
  5258. int n_head,
  5259. float bias_max) {
  5260. GGML_ASSERT(n_past >= 0);
  5261. bool is_node = false;
  5262. if (a->grad) {
  5263. GGML_ASSERT(false); // TODO: implement backward
  5264. is_node = true;
  5265. }
  5266. // TODO: when implement backward, fix this:
  5267. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5268. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5269. ggml_scratch_save(ctx);
  5270. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5271. ((int32_t *) b->data)[0] = n_past;
  5272. ((int32_t *) b->data)[1] = n_head;
  5273. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5274. (((float *) b->data)[2]) = bias_max;
  5275. ggml_scratch_load(ctx);
  5276. result->op = GGML_OP_ALIBI;
  5277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5278. result->src0 = a;
  5279. result->src1 = b;
  5280. return result;
  5281. }
  5282. // ggml_clamp
  5283. struct ggml_tensor * ggml_clamp(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. float min,
  5287. float max) {
  5288. bool is_node = false;
  5289. if (a->grad) {
  5290. GGML_ASSERT(false); // TODO: implement backward
  5291. is_node = true;
  5292. }
  5293. // TODO: when implement backward, fix this:
  5294. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5295. ggml_scratch_save(ctx);
  5296. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5297. ((float *) b->data)[0] = min;
  5298. ((float *) b->data)[1] = max;
  5299. ggml_scratch_load(ctx);
  5300. result->op = GGML_OP_CLAMP;
  5301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5302. result->src0 = a;
  5303. result->src1 = b;
  5304. return result;
  5305. }
  5306. // ggml_conv_1d_1s
  5307. struct ggml_tensor * ggml_conv_1d_1s(
  5308. struct ggml_context * ctx,
  5309. struct ggml_tensor * a,
  5310. struct ggml_tensor * b) {
  5311. GGML_ASSERT(ggml_is_matrix(b));
  5312. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5313. GGML_ASSERT(a->ne[3] == 1);
  5314. bool is_node = false;
  5315. if (a->grad || b->grad) {
  5316. GGML_ASSERT(false); // TODO: implement backward
  5317. is_node = true;
  5318. }
  5319. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5320. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5321. result->op = GGML_OP_CONV_1D_1S;
  5322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5323. result->src0 = a;
  5324. result->src1 = b;
  5325. return result;
  5326. }
  5327. // ggml_conv_1d_2s
  5328. struct ggml_tensor * ggml_conv_1d_2s(
  5329. struct ggml_context * ctx,
  5330. struct ggml_tensor * a,
  5331. struct ggml_tensor * b) {
  5332. GGML_ASSERT(ggml_is_matrix(b));
  5333. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5334. GGML_ASSERT(a->ne[3] == 1);
  5335. bool is_node = false;
  5336. if (a->grad || b->grad) {
  5337. GGML_ASSERT(false); // TODO: implement backward
  5338. is_node = true;
  5339. }
  5340. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5341. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5342. result->op = GGML_OP_CONV_1D_2S;
  5343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5344. result->src0 = a;
  5345. result->src1 = b;
  5346. return result;
  5347. }
  5348. // ggml_flash_attn
  5349. struct ggml_tensor * ggml_flash_attn(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * q,
  5352. struct ggml_tensor * k,
  5353. struct ggml_tensor * v,
  5354. bool masked) {
  5355. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5356. // TODO: check if vT can be multiplied by (k*qT)
  5357. bool is_node = false;
  5358. if (q->grad || k->grad || v->grad) {
  5359. is_node = true;
  5360. }
  5361. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5362. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5363. result->op = GGML_OP_FLASH_ATTN;
  5364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5365. result->src0 = q;
  5366. result->src1 = k;
  5367. result->opt[0] = v;
  5368. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5369. return result;
  5370. }
  5371. // ggml_flash_ff
  5372. struct ggml_tensor * ggml_flash_ff(
  5373. struct ggml_context * ctx,
  5374. struct ggml_tensor * a,
  5375. struct ggml_tensor * b0,
  5376. struct ggml_tensor * b1,
  5377. struct ggml_tensor * c0,
  5378. struct ggml_tensor * c1) {
  5379. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5380. // TODO: more checks
  5381. bool is_node = false;
  5382. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5383. is_node = true;
  5384. }
  5385. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5386. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5387. result->op = GGML_OP_FLASH_FF;
  5388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5389. result->src0 = a;
  5390. result->src1 = b0;
  5391. result->opt[0] = b1;
  5392. result->opt[1] = c0;
  5393. result->opt[2] = c1;
  5394. return result;
  5395. }
  5396. // ggml_flash_attn_back
  5397. struct ggml_tensor * ggml_flash_attn_back(
  5398. struct ggml_context * ctx,
  5399. struct ggml_tensor * q,
  5400. struct ggml_tensor * k,
  5401. struct ggml_tensor * v,
  5402. struct ggml_tensor * d,
  5403. bool masked) {
  5404. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5405. // TODO: check if vT can be multiplied by (k*qT)
  5406. // d shape [D,N,ne2,ne3]
  5407. // q shape [D,N,ne2,ne3]
  5408. // k shape [D,M,ne2,ne3]
  5409. // v shape [M,D,ne2,ne3]
  5410. const int64_t D = q->ne[0];
  5411. const int64_t N = q->ne[1];
  5412. const int64_t M = k->ne[1];
  5413. const int64_t ne2 = q->ne[2];
  5414. const int64_t ne3 = q->ne[3];
  5415. GGML_ASSERT(k->ne[0] == D);
  5416. GGML_ASSERT(v->ne[0] == M);
  5417. GGML_ASSERT(v->ne[1] == D);
  5418. GGML_ASSERT(d->ne[0] == D);
  5419. GGML_ASSERT(d->ne[1] == N);
  5420. GGML_ASSERT(k->ne[2] == ne2);
  5421. GGML_ASSERT(k->ne[3] == ne3);
  5422. GGML_ASSERT(v->ne[2] == ne2);
  5423. GGML_ASSERT(v->ne[3] == ne3);
  5424. GGML_ASSERT(d->ne[2] == ne2);
  5425. GGML_ASSERT(d->ne[3] == ne3);
  5426. bool is_node = false;
  5427. if (q->grad || k->grad || v->grad) {
  5428. // when using this operation (in backwards pass) these grads are set.
  5429. // we don't want to create (big) grad of our result, so is_node is false.
  5430. is_node = false;
  5431. }
  5432. // store gradients of q, k and v as continuous tensors concatenated in result.
  5433. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5434. // gradq->data = result->data
  5435. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5436. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5437. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5438. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5439. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5440. result->op = GGML_OP_FLASH_ATTN_BACK;
  5441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5442. result->src0 = q;
  5443. result->src1 = k;
  5444. result->opt[0] = v;
  5445. result->opt[1] = d;
  5446. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5447. return result;
  5448. }
  5449. // ggml_map_unary
  5450. struct ggml_tensor * ggml_map_unary_impl_f32(
  5451. struct ggml_context * ctx,
  5452. struct ggml_tensor * a,
  5453. const ggml_unary_op_f32_t fun,
  5454. bool inplace) {
  5455. bool is_node = false;
  5456. if (!inplace && a->grad) {
  5457. is_node = true;
  5458. }
  5459. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5460. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5461. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5462. result->op = GGML_OP_MAP_UNARY;
  5463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5464. result->src0 = a;
  5465. result->opt[0] = addr_tensor;
  5466. return result;
  5467. }
  5468. struct ggml_tensor * ggml_map_unary_f32(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. const ggml_unary_op_f32_t fun) {
  5472. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5473. }
  5474. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5475. struct ggml_context * ctx,
  5476. struct ggml_tensor * a,
  5477. const ggml_unary_op_f32_t fun) {
  5478. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5479. }
  5480. // ggml_map_binary
  5481. struct ggml_tensor * ggml_map_binary_impl_f32(
  5482. struct ggml_context * ctx,
  5483. struct ggml_tensor * a,
  5484. struct ggml_tensor * b,
  5485. const ggml_binary_op_f32_t fun,
  5486. bool inplace) {
  5487. GGML_ASSERT(ggml_are_same_shape(a, b));
  5488. bool is_node = false;
  5489. if (!inplace && (a->grad || b->grad)) {
  5490. is_node = true;
  5491. }
  5492. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5493. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5494. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5495. result->op = GGML_OP_MAP_BINARY;
  5496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5497. result->src0 = a;
  5498. result->src1 = b;
  5499. result->opt[0] = addr_tensor;
  5500. return result;
  5501. }
  5502. struct ggml_tensor * ggml_map_binary_f32(
  5503. struct ggml_context * ctx,
  5504. struct ggml_tensor * a,
  5505. struct ggml_tensor * b,
  5506. const ggml_binary_op_f32_t fun) {
  5507. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5508. }
  5509. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * a,
  5512. struct ggml_tensor * b,
  5513. const ggml_binary_op_f32_t fun) {
  5514. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5515. }
  5516. // ggml_cross_entropy_loss
  5517. struct ggml_tensor * ggml_cross_entropy_loss(
  5518. struct ggml_context * ctx,
  5519. struct ggml_tensor * a,
  5520. struct ggml_tensor * b) {
  5521. GGML_ASSERT(ggml_are_same_shape(a, b));
  5522. bool is_node = false;
  5523. if (a->grad || b->grad) {
  5524. is_node = true;
  5525. }
  5526. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5527. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5529. result->src0 = a;
  5530. result->src1 = b;
  5531. return result;
  5532. }
  5533. // ggml_cross_entropy_loss_back
  5534. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5535. struct ggml_context * ctx,
  5536. struct ggml_tensor * a,
  5537. struct ggml_tensor * b,
  5538. struct ggml_tensor * c) {
  5539. GGML_ASSERT(ggml_are_same_shape(a, b));
  5540. GGML_ASSERT(ggml_is_scalar(c));
  5541. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5542. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5543. result->grad = NULL;
  5544. result->src0 = a;
  5545. result->src1 = b;
  5546. result->opt[0] = c;
  5547. return result;
  5548. }
  5549. ////////////////////////////////////////////////////////////////////////////////
  5550. void ggml_set_param(
  5551. struct ggml_context * ctx,
  5552. struct ggml_tensor * tensor) {
  5553. tensor->is_param = true;
  5554. GGML_ASSERT(tensor->grad == NULL);
  5555. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5556. }
  5557. // ggml_compute_forward_dup
  5558. static void ggml_compute_forward_dup_same_cont(
  5559. const struct ggml_compute_params * params,
  5560. const struct ggml_tensor * src0,
  5561. struct ggml_tensor * dst) {
  5562. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5563. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5564. GGML_ASSERT(src0->type == dst->type);
  5565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5566. return;
  5567. }
  5568. const size_t nb00 = src0->nb[0];
  5569. const size_t nb0 = dst->nb[0];
  5570. const int ith = params->ith; // thread index
  5571. const int nth = params->nth; // number of threads
  5572. // parallelize by elements
  5573. const int ne = ggml_nelements(dst);
  5574. const int dr = (ne + nth - 1) / nth;
  5575. const int ie0 = dr * ith;
  5576. const int ie1 = MIN(ie0 + dr, ne);
  5577. if (ie0 < ie1) {
  5578. memcpy(
  5579. ((char *) dst->data + ie0*nb0),
  5580. ((char *) src0->data + ie0*nb00),
  5581. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5582. }
  5583. }
  5584. static void ggml_compute_forward_dup_f16(
  5585. const struct ggml_compute_params * params,
  5586. const struct ggml_tensor * src0,
  5587. struct ggml_tensor * dst) {
  5588. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5590. return;
  5591. }
  5592. const int64_t ne00 = src0->ne[0];
  5593. const int64_t ne01 = src0->ne[1];
  5594. const int64_t ne02 = src0->ne[2];
  5595. const int64_t ne03 = src0->ne[3];
  5596. const int64_t ne0 = dst->ne[0];
  5597. const int64_t ne1 = dst->ne[1];
  5598. const int64_t ne2 = dst->ne[2];
  5599. const int64_t ne3 = dst->ne[3];
  5600. const size_t nb00 = src0->nb[0];
  5601. const size_t nb01 = src0->nb[1];
  5602. const size_t nb02 = src0->nb[2];
  5603. const size_t nb03 = src0->nb[3];
  5604. const size_t nb0 = dst->nb[0];
  5605. const size_t nb1 = dst->nb[1];
  5606. const size_t nb2 = dst->nb[2];
  5607. const size_t nb3 = dst->nb[3];
  5608. const int ith = params->ith; // thread index
  5609. const int nth = params->nth; // number of threads
  5610. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5611. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5612. return;
  5613. }
  5614. // parallelize by rows
  5615. const int nr = ne01;
  5616. // number of rows per thread
  5617. const int dr = (nr + nth - 1) / nth;
  5618. // row range for this thread
  5619. const int ir0 = dr * ith;
  5620. const int ir1 = MIN(ir0 + dr, nr);
  5621. if (src0->type == dst->type &&
  5622. ne00 == ne0 &&
  5623. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5624. // copy by rows
  5625. const size_t rs = ne00*nb00;
  5626. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5627. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5628. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5629. memcpy(
  5630. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5631. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5632. rs);
  5633. }
  5634. }
  5635. }
  5636. return;
  5637. }
  5638. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5639. if (ggml_is_contiguous(dst)) {
  5640. if (nb00 == sizeof(ggml_fp16_t)) {
  5641. if (dst->type == GGML_TYPE_F16) {
  5642. size_t id = 0;
  5643. const size_t rs = ne00 * nb00;
  5644. char * dst_ptr = (char *) dst->data;
  5645. for (int i03 = 0; i03 < ne03; i03++) {
  5646. for (int i02 = 0; i02 < ne02; i02++) {
  5647. id += rs * ir0;
  5648. for (int i01 = ir0; i01 < ir1; i01++) {
  5649. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5650. memcpy(dst_ptr + id, src0_ptr, rs);
  5651. id += rs;
  5652. }
  5653. id += rs * (ne01 - ir1);
  5654. }
  5655. }
  5656. } else if (dst->type == GGML_TYPE_F32) {
  5657. size_t id = 0;
  5658. float * dst_ptr = (float *) dst->data;
  5659. for (int i03 = 0; i03 < ne03; i03++) {
  5660. for (int i02 = 0; i02 < ne02; i02++) {
  5661. id += ne00 * ir0;
  5662. for (int i01 = ir0; i01 < ir1; i01++) {
  5663. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5664. for (int i00 = 0; i00 < ne00; i00++) {
  5665. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5666. id++;
  5667. }
  5668. }
  5669. id += ne00 * (ne01 - ir1);
  5670. }
  5671. }
  5672. } else if (ggml_is_quantized(dst->type)) {
  5673. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5674. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5675. size_t id = 0;
  5676. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5677. char * dst_ptr = (char *) dst->data;
  5678. for (int i03 = 0; i03 < ne03; i03++) {
  5679. for (int i02 = 0; i02 < ne02; i02++) {
  5680. id += rs * ir0;
  5681. for (int i01 = ir0; i01 < ir1; i01++) {
  5682. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5683. for (int i00 = 0; i00 < ne00; i00++) {
  5684. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5685. }
  5686. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5687. id += rs;
  5688. }
  5689. id += rs * (ne01 - ir1);
  5690. }
  5691. }
  5692. } else {
  5693. GGML_ASSERT(false); // TODO: implement
  5694. }
  5695. } else {
  5696. //printf("%s: this is not optimal - fix me\n", __func__);
  5697. if (dst->type == GGML_TYPE_F32) {
  5698. size_t id = 0;
  5699. float * dst_ptr = (float *) dst->data;
  5700. for (int i03 = 0; i03 < ne03; i03++) {
  5701. for (int i02 = 0; i02 < ne02; i02++) {
  5702. id += ne00 * ir0;
  5703. for (int i01 = ir0; i01 < ir1; i01++) {
  5704. for (int i00 = 0; i00 < ne00; i00++) {
  5705. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5706. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5707. id++;
  5708. }
  5709. }
  5710. id += ne00 * (ne01 - ir1);
  5711. }
  5712. }
  5713. } else if (dst->type == GGML_TYPE_F16) {
  5714. size_t id = 0;
  5715. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5716. for (int i03 = 0; i03 < ne03; i03++) {
  5717. for (int i02 = 0; i02 < ne02; i02++) {
  5718. id += ne00 * ir0;
  5719. for (int i01 = ir0; i01 < ir1; i01++) {
  5720. for (int i00 = 0; i00 < ne00; i00++) {
  5721. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5722. dst_ptr[id] = *src0_ptr;
  5723. id++;
  5724. }
  5725. }
  5726. id += ne00 * (ne01 - ir1);
  5727. }
  5728. }
  5729. } else {
  5730. GGML_ASSERT(false); // TODO: implement
  5731. }
  5732. }
  5733. return;
  5734. }
  5735. // dst counters
  5736. int64_t i10 = 0;
  5737. int64_t i11 = 0;
  5738. int64_t i12 = 0;
  5739. int64_t i13 = 0;
  5740. if (dst->type == GGML_TYPE_F16) {
  5741. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5742. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5743. i10 += ne00 * ir0;
  5744. while (i10 >= ne0) {
  5745. i10 -= ne0;
  5746. if (++i11 == ne1) {
  5747. i11 = 0;
  5748. if (++i12 == ne2) {
  5749. i12 = 0;
  5750. if (++i13 == ne3) {
  5751. i13 = 0;
  5752. }
  5753. }
  5754. }
  5755. }
  5756. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5757. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5758. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5759. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5760. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5761. if (++i10 == ne00) {
  5762. i10 = 0;
  5763. if (++i11 == ne01) {
  5764. i11 = 0;
  5765. if (++i12 == ne02) {
  5766. i12 = 0;
  5767. if (++i13 == ne03) {
  5768. i13 = 0;
  5769. }
  5770. }
  5771. }
  5772. }
  5773. }
  5774. }
  5775. i10 += ne00 * (ne01 - ir1);
  5776. while (i10 >= ne0) {
  5777. i10 -= ne0;
  5778. if (++i11 == ne1) {
  5779. i11 = 0;
  5780. if (++i12 == ne2) {
  5781. i12 = 0;
  5782. if (++i13 == ne3) {
  5783. i13 = 0;
  5784. }
  5785. }
  5786. }
  5787. }
  5788. }
  5789. }
  5790. } else if (dst->type == GGML_TYPE_F32) {
  5791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5793. i10 += ne00 * ir0;
  5794. while (i10 >= ne0) {
  5795. i10 -= ne0;
  5796. if (++i11 == ne1) {
  5797. i11 = 0;
  5798. if (++i12 == ne2) {
  5799. i12 = 0;
  5800. if (++i13 == ne3) {
  5801. i13 = 0;
  5802. }
  5803. }
  5804. }
  5805. }
  5806. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5807. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5808. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5809. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5810. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5811. if (++i10 == ne0) {
  5812. i10 = 0;
  5813. if (++i11 == ne1) {
  5814. i11 = 0;
  5815. if (++i12 == ne2) {
  5816. i12 = 0;
  5817. if (++i13 == ne3) {
  5818. i13 = 0;
  5819. }
  5820. }
  5821. }
  5822. }
  5823. }
  5824. }
  5825. i10 += ne00 * (ne01 - ir1);
  5826. while (i10 >= ne0) {
  5827. i10 -= ne0;
  5828. if (++i11 == ne1) {
  5829. i11 = 0;
  5830. if (++i12 == ne2) {
  5831. i12 = 0;
  5832. if (++i13 == ne3) {
  5833. i13 = 0;
  5834. }
  5835. }
  5836. }
  5837. }
  5838. }
  5839. }
  5840. } else {
  5841. GGML_ASSERT(false); // TODO: implement
  5842. }
  5843. }
  5844. static void ggml_compute_forward_dup_f32(
  5845. const struct ggml_compute_params * params,
  5846. const struct ggml_tensor * src0,
  5847. struct ggml_tensor * dst) {
  5848. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5849. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5850. return;
  5851. }
  5852. const int64_t ne00 = src0->ne[0];
  5853. const int64_t ne01 = src0->ne[1];
  5854. const int64_t ne02 = src0->ne[2];
  5855. const int64_t ne03 = src0->ne[3];
  5856. const int64_t ne0 = dst->ne[0];
  5857. const int64_t ne1 = dst->ne[1];
  5858. const int64_t ne2 = dst->ne[2];
  5859. const int64_t ne3 = dst->ne[3];
  5860. const size_t nb00 = src0->nb[0];
  5861. const size_t nb01 = src0->nb[1];
  5862. const size_t nb02 = src0->nb[2];
  5863. const size_t nb03 = src0->nb[3];
  5864. const size_t nb0 = dst->nb[0];
  5865. const size_t nb1 = dst->nb[1];
  5866. const size_t nb2 = dst->nb[2];
  5867. const size_t nb3 = dst->nb[3];
  5868. const int ith = params->ith; // thread index
  5869. const int nth = params->nth; // number of threads
  5870. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5871. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5872. return;
  5873. }
  5874. // parallelize by rows
  5875. const int nr = ne01;
  5876. // number of rows per thread
  5877. const int dr = (nr + nth - 1) / nth;
  5878. // row range for this thread
  5879. const int ir0 = dr * ith;
  5880. const int ir1 = MIN(ir0 + dr, nr);
  5881. if (src0->type == dst->type &&
  5882. ne00 == ne0 &&
  5883. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5884. // copy by rows
  5885. const size_t rs = ne00*nb00;
  5886. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5887. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5888. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5889. memcpy(
  5890. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5891. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5892. rs);
  5893. }
  5894. }
  5895. }
  5896. return;
  5897. }
  5898. if (ggml_is_contiguous(dst)) {
  5899. // TODO: simplify
  5900. if (nb00 == sizeof(float)) {
  5901. if (dst->type == GGML_TYPE_F32) {
  5902. size_t id = 0;
  5903. const size_t rs = ne00 * nb00;
  5904. char * dst_ptr = (char *) dst->data;
  5905. for (int i03 = 0; i03 < ne03; i03++) {
  5906. for (int i02 = 0; i02 < ne02; i02++) {
  5907. id += rs * ir0;
  5908. for (int i01 = ir0; i01 < ir1; i01++) {
  5909. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5910. memcpy(dst_ptr + id, src0_ptr, rs);
  5911. id += rs;
  5912. }
  5913. id += rs * (ne01 - ir1);
  5914. }
  5915. }
  5916. } else if (dst->type == GGML_TYPE_F16) {
  5917. size_t id = 0;
  5918. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5919. for (int i03 = 0; i03 < ne03; i03++) {
  5920. for (int i02 = 0; i02 < ne02; i02++) {
  5921. id += ne00 * ir0;
  5922. for (int i01 = ir0; i01 < ir1; i01++) {
  5923. for (int i00 = 0; i00 < ne00; i00++) {
  5924. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5925. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5926. id++;
  5927. }
  5928. }
  5929. id += ne00 * (ne01 - ir1);
  5930. }
  5931. }
  5932. } else if (ggml_is_quantized(dst->type)) {
  5933. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5934. size_t id = 0;
  5935. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5936. char * dst_ptr = (char *) dst->data;
  5937. for (int i03 = 0; i03 < ne03; i03++) {
  5938. for (int i02 = 0; i02 < ne02; i02++) {
  5939. id += rs * ir0;
  5940. for (int i01 = ir0; i01 < ir1; i01++) {
  5941. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5942. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5943. id += rs;
  5944. }
  5945. id += rs * (ne01 - ir1);
  5946. }
  5947. }
  5948. } else {
  5949. GGML_ASSERT(false); // TODO: implement
  5950. }
  5951. } else {
  5952. //printf("%s: this is not optimal - fix me\n", __func__);
  5953. if (dst->type == GGML_TYPE_F32) {
  5954. size_t id = 0;
  5955. float * dst_ptr = (float *) dst->data;
  5956. for (int i03 = 0; i03 < ne03; i03++) {
  5957. for (int i02 = 0; i02 < ne02; i02++) {
  5958. id += ne00 * ir0;
  5959. for (int i01 = ir0; i01 < ir1; i01++) {
  5960. for (int i00 = 0; i00 < ne00; i00++) {
  5961. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5962. dst_ptr[id] = *src0_ptr;
  5963. id++;
  5964. }
  5965. }
  5966. id += ne00 * (ne01 - ir1);
  5967. }
  5968. }
  5969. } else if (dst->type == GGML_TYPE_F16) {
  5970. size_t id = 0;
  5971. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5972. for (int i03 = 0; i03 < ne03; i03++) {
  5973. for (int i02 = 0; i02 < ne02; i02++) {
  5974. id += ne00 * ir0;
  5975. for (int i01 = ir0; i01 < ir1; i01++) {
  5976. for (int i00 = 0; i00 < ne00; i00++) {
  5977. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5978. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5979. id++;
  5980. }
  5981. }
  5982. id += ne00 * (ne01 - ir1);
  5983. }
  5984. }
  5985. } else {
  5986. GGML_ASSERT(false); // TODO: implement
  5987. }
  5988. }
  5989. return;
  5990. }
  5991. // dst counters
  5992. int64_t i10 = 0;
  5993. int64_t i11 = 0;
  5994. int64_t i12 = 0;
  5995. int64_t i13 = 0;
  5996. if (dst->type == GGML_TYPE_F32) {
  5997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5999. i10 += ne00 * ir0;
  6000. while (i10 >= ne0) {
  6001. i10 -= ne0;
  6002. if (++i11 == ne1) {
  6003. i11 = 0;
  6004. if (++i12 == ne2) {
  6005. i12 = 0;
  6006. if (++i13 == ne3) {
  6007. i13 = 0;
  6008. }
  6009. }
  6010. }
  6011. }
  6012. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6013. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6014. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6015. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6016. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6017. if (++i10 == ne0) {
  6018. i10 = 0;
  6019. if (++i11 == ne1) {
  6020. i11 = 0;
  6021. if (++i12 == ne2) {
  6022. i12 = 0;
  6023. if (++i13 == ne3) {
  6024. i13 = 0;
  6025. }
  6026. }
  6027. }
  6028. }
  6029. }
  6030. }
  6031. i10 += ne00 * (ne01 - ir1);
  6032. while (i10 >= ne0) {
  6033. i10 -= ne0;
  6034. if (++i11 == ne1) {
  6035. i11 = 0;
  6036. if (++i12 == ne2) {
  6037. i12 = 0;
  6038. if (++i13 == ne3) {
  6039. i13 = 0;
  6040. }
  6041. }
  6042. }
  6043. }
  6044. }
  6045. }
  6046. } else if (dst->type == GGML_TYPE_F16) {
  6047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6049. i10 += ne00 * ir0;
  6050. while (i10 >= ne0) {
  6051. i10 -= ne0;
  6052. if (++i11 == ne1) {
  6053. i11 = 0;
  6054. if (++i12 == ne2) {
  6055. i12 = 0;
  6056. if (++i13 == ne3) {
  6057. i13 = 0;
  6058. }
  6059. }
  6060. }
  6061. }
  6062. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6063. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6064. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6065. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6066. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6067. if (++i10 == ne0) {
  6068. i10 = 0;
  6069. if (++i11 == ne1) {
  6070. i11 = 0;
  6071. if (++i12 == ne2) {
  6072. i12 = 0;
  6073. if (++i13 == ne3) {
  6074. i13 = 0;
  6075. }
  6076. }
  6077. }
  6078. }
  6079. }
  6080. }
  6081. i10 += ne00 * (ne01 - ir1);
  6082. while (i10 >= ne0) {
  6083. i10 -= ne0;
  6084. if (++i11 == ne1) {
  6085. i11 = 0;
  6086. if (++i12 == ne2) {
  6087. i12 = 0;
  6088. if (++i13 == ne3) {
  6089. i13 = 0;
  6090. }
  6091. }
  6092. }
  6093. }
  6094. }
  6095. }
  6096. } else {
  6097. GGML_ASSERT(false); // TODO: implement
  6098. }
  6099. }
  6100. static void ggml_compute_forward_dup(
  6101. const struct ggml_compute_params * params,
  6102. const struct ggml_tensor * src0,
  6103. struct ggml_tensor * dst) {
  6104. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6105. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6106. return;
  6107. }
  6108. switch (src0->type) {
  6109. case GGML_TYPE_F16:
  6110. {
  6111. ggml_compute_forward_dup_f16(params, src0, dst);
  6112. } break;
  6113. case GGML_TYPE_F32:
  6114. {
  6115. ggml_compute_forward_dup_f32(params, src0, dst);
  6116. } break;
  6117. default:
  6118. {
  6119. GGML_ASSERT(false);
  6120. } break;
  6121. }
  6122. }
  6123. // ggml_compute_forward_add
  6124. static void ggml_compute_forward_add_f32(
  6125. const struct ggml_compute_params * params,
  6126. const struct ggml_tensor * src0,
  6127. const struct ggml_tensor * src1,
  6128. struct ggml_tensor * dst) {
  6129. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6131. return;
  6132. }
  6133. const int ith = params->ith;
  6134. const int nth = params->nth;
  6135. const int nr = ggml_nrows(src0);
  6136. const int64_t ne0 = src0->ne[0];
  6137. const int64_t ne1 = src0->ne[1];
  6138. const int64_t ne2 = src0->ne[2];
  6139. const size_t nb00 = src0->nb[0];
  6140. const size_t nb01 = src0->nb[1];
  6141. const size_t nb02 = src0->nb[2];
  6142. const size_t nb03 = src0->nb[3];
  6143. const size_t nb10 = src1->nb[0];
  6144. const size_t nb11 = src1->nb[1];
  6145. const size_t nb12 = src1->nb[2];
  6146. const size_t nb13 = src1->nb[3];
  6147. const size_t nb0 = dst->nb[0];
  6148. const size_t nb1 = dst->nb[1];
  6149. const size_t nb2 = dst->nb[2];
  6150. const size_t nb3 = dst->nb[3];
  6151. GGML_ASSERT( nb0 == sizeof(float));
  6152. GGML_ASSERT(nb00 == sizeof(float));
  6153. // rows per thread
  6154. const int dr = (nr + nth - 1)/nth;
  6155. // row range for this thread
  6156. const int ir0 = dr*ith;
  6157. const int ir1 = MIN(ir0 + dr, nr);
  6158. if (nb10 == sizeof(float)) {
  6159. for (int ir = ir0; ir < ir1; ++ir) {
  6160. // src0, src1 and dst are same shape => same indices
  6161. const int i3 = ir/(ne2*ne1);
  6162. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6163. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6164. #ifdef GGML_USE_ACCELERATE
  6165. vDSP_vadd(
  6166. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6167. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6168. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6169. ne0);
  6170. #else
  6171. ggml_vec_add_f32(ne0,
  6172. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6173. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6174. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6175. #endif
  6176. // }
  6177. // }
  6178. }
  6179. } else {
  6180. // src1 is not contiguous
  6181. for (int ir = ir0; ir < ir1; ++ir) {
  6182. // src0, src1 and dst are same shape => same indices
  6183. const int i3 = ir/(ne2*ne1);
  6184. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6185. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6186. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6187. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6188. for (int i0 = 0; i0 < ne0; i0++) {
  6189. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6190. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6191. }
  6192. }
  6193. }
  6194. }
  6195. static void ggml_compute_forward_add_f16_f32(
  6196. const struct ggml_compute_params * params,
  6197. const struct ggml_tensor * src0,
  6198. const struct ggml_tensor * src1,
  6199. struct ggml_tensor * dst) {
  6200. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6202. return;
  6203. }
  6204. const int ith = params->ith;
  6205. const int nth = params->nth;
  6206. const int nr = ggml_nrows(src0);
  6207. const int64_t ne0 = src0->ne[0];
  6208. const int64_t ne1 = src0->ne[1];
  6209. const int64_t ne2 = src0->ne[2];
  6210. const size_t nb00 = src0->nb[0];
  6211. const size_t nb01 = src0->nb[1];
  6212. const size_t nb02 = src0->nb[2];
  6213. const size_t nb03 = src0->nb[3];
  6214. const size_t nb10 = src1->nb[0];
  6215. const size_t nb11 = src1->nb[1];
  6216. const size_t nb12 = src1->nb[2];
  6217. const size_t nb13 = src1->nb[3];
  6218. const size_t nb0 = dst->nb[0];
  6219. const size_t nb1 = dst->nb[1];
  6220. const size_t nb2 = dst->nb[2];
  6221. const size_t nb3 = dst->nb[3];
  6222. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6223. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6224. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6225. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6226. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6227. // rows per thread
  6228. const int dr = (nr + nth - 1)/nth;
  6229. // row range for this thread
  6230. const int ir0 = dr*ith;
  6231. const int ir1 = MIN(ir0 + dr, nr);
  6232. if (nb10 == sizeof(float)) {
  6233. for (int ir = ir0; ir < ir1; ++ir) {
  6234. // src0, src1 and dst are same shape => same indices
  6235. const int i3 = ir/(ne2*ne1);
  6236. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6237. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6238. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6239. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6240. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6241. for (int i = 0; i < ne0; i++) {
  6242. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6243. }
  6244. }
  6245. }
  6246. else {
  6247. // src1 is not contiguous
  6248. GGML_ASSERT(false);
  6249. }
  6250. }
  6251. static void ggml_compute_forward_add_f16_f16(
  6252. const struct ggml_compute_params * params,
  6253. const struct ggml_tensor * src0,
  6254. const struct ggml_tensor * src1,
  6255. struct ggml_tensor * dst) {
  6256. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6258. return;
  6259. }
  6260. const int ith = params->ith;
  6261. const int nth = params->nth;
  6262. const int nr = ggml_nrows(src0);
  6263. const int64_t ne0 = src0->ne[0];
  6264. const int64_t ne1 = src0->ne[1];
  6265. const int64_t ne2 = src0->ne[2];
  6266. const size_t nb00 = src0->nb[0];
  6267. const size_t nb01 = src0->nb[1];
  6268. const size_t nb02 = src0->nb[2];
  6269. const size_t nb03 = src0->nb[3];
  6270. const size_t nb10 = src1->nb[0];
  6271. const size_t nb11 = src1->nb[1];
  6272. const size_t nb12 = src1->nb[2];
  6273. const size_t nb13 = src1->nb[3];
  6274. const size_t nb0 = dst->nb[0];
  6275. const size_t nb1 = dst->nb[1];
  6276. const size_t nb2 = dst->nb[2];
  6277. const size_t nb3 = dst->nb[3];
  6278. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6279. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6280. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6281. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6282. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6283. // rows per thread
  6284. const int dr = (nr + nth - 1)/nth;
  6285. // row range for this thread
  6286. const int ir0 = dr*ith;
  6287. const int ir1 = MIN(ir0 + dr, nr);
  6288. if (nb10 == sizeof(ggml_fp16_t)) {
  6289. for (int ir = ir0; ir < ir1; ++ir) {
  6290. // src0, src1 and dst are same shape => same indices
  6291. const int i3 = ir/(ne2*ne1);
  6292. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6293. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6294. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6295. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6296. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6297. for (int i = 0; i < ne0; i++) {
  6298. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6299. }
  6300. }
  6301. }
  6302. else {
  6303. // src1 is not contiguous
  6304. GGML_ASSERT(false);
  6305. }
  6306. }
  6307. static void ggml_compute_forward_add_q_f32(
  6308. const struct ggml_compute_params * params,
  6309. const struct ggml_tensor * src0,
  6310. const struct ggml_tensor * src1,
  6311. struct ggml_tensor * dst) {
  6312. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6314. return;
  6315. }
  6316. const int nr = ggml_nrows(src0);
  6317. const int64_t ne00 = src0->ne[0];
  6318. const int64_t ne01 = src0->ne[1];
  6319. const int64_t ne02 = src0->ne[2];
  6320. //const int64_t ne03 = src0->ne[3];
  6321. const size_t nb00 = src0->nb[0];
  6322. const size_t nb01 = src0->nb[1];
  6323. const size_t nb02 = src0->nb[2];
  6324. const size_t nb03 = src0->nb[3];
  6325. const size_t nb10 = src1->nb[0];
  6326. const size_t nb11 = src1->nb[1];
  6327. const size_t nb12 = src1->nb[2];
  6328. const size_t nb13 = src1->nb[3];
  6329. const size_t nb0 = dst->nb[0];
  6330. const size_t nb1 = dst->nb[1];
  6331. const size_t nb2 = dst->nb[2];
  6332. const size_t nb3 = dst->nb[3];
  6333. const int ith = params->ith;
  6334. const int nth = params->nth;
  6335. const enum ggml_type type = src0->type;
  6336. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6337. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6338. // we don't support permuted src0 or src1
  6339. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6340. GGML_ASSERT(nb10 == sizeof(float));
  6341. // dst cannot be transposed or permuted
  6342. GGML_ASSERT(nb0 <= nb1);
  6343. GGML_ASSERT(nb1 <= nb2);
  6344. GGML_ASSERT(nb2 <= nb3);
  6345. GGML_ASSERT(ggml_is_quantized(src0->type));
  6346. GGML_ASSERT(dst->type == src0->type);
  6347. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6348. // rows per thread
  6349. const int dr = (nr + nth - 1)/nth;
  6350. // row range for this thread
  6351. const int ir0 = dr*ith;
  6352. const int ir1 = MIN(ir0 + dr, nr);
  6353. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6354. for (int ir = ir0; ir < ir1; ++ir) {
  6355. // src0 indices
  6356. const int i03 = ir/(ne02*ne01);
  6357. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6358. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6359. // src1 and dst are same shape as src0 => same indices
  6360. const int i13 = i03;
  6361. const int i12 = i02;
  6362. const int i11 = i01;
  6363. const int i3 = i03;
  6364. const int i2 = i02;
  6365. const int i1 = i01;
  6366. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6367. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6368. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6369. assert(ne00 % 32 == 0);
  6370. // unquantize row from src0 to temp buffer
  6371. dequantize_row_q(src0_row, wdata, ne00);
  6372. // add src1
  6373. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6374. // quantize row to dst
  6375. quantize_row_q(wdata, dst_row, ne00);
  6376. }
  6377. }
  6378. static void ggml_compute_forward_add(
  6379. const struct ggml_compute_params * params,
  6380. const struct ggml_tensor * src0,
  6381. const struct ggml_tensor * src1,
  6382. struct ggml_tensor * dst) {
  6383. switch (src0->type) {
  6384. case GGML_TYPE_F32:
  6385. {
  6386. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6387. } break;
  6388. case GGML_TYPE_F16:
  6389. {
  6390. if (src1->type == GGML_TYPE_F16) {
  6391. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6392. }
  6393. else if (src1->type == GGML_TYPE_F32) {
  6394. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6395. }
  6396. else {
  6397. GGML_ASSERT(false);
  6398. }
  6399. } break;
  6400. case GGML_TYPE_Q4_0:
  6401. case GGML_TYPE_Q4_1:
  6402. case GGML_TYPE_Q5_0:
  6403. case GGML_TYPE_Q5_1:
  6404. case GGML_TYPE_Q8_0:
  6405. case GGML_TYPE_Q2_K:
  6406. case GGML_TYPE_Q3_K:
  6407. case GGML_TYPE_Q4_K:
  6408. case GGML_TYPE_Q5_K:
  6409. case GGML_TYPE_Q6_K:
  6410. {
  6411. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6412. } break;
  6413. default:
  6414. {
  6415. GGML_ASSERT(false);
  6416. } break;
  6417. }
  6418. }
  6419. // ggml_compute_forward_add1
  6420. static void ggml_compute_forward_add1_f32(
  6421. const struct ggml_compute_params * params,
  6422. const struct ggml_tensor * src0,
  6423. const struct ggml_tensor * src1,
  6424. struct ggml_tensor * dst) {
  6425. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6426. GGML_ASSERT(ggml_is_scalar(src1));
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. const int ith = params->ith;
  6431. const int nth = params->nth;
  6432. const int nr = ggml_nrows(src0);
  6433. const int64_t ne0 = src0->ne[0];
  6434. const int64_t ne1 = src0->ne[1];
  6435. const int64_t ne2 = src0->ne[2];
  6436. const size_t nb00 = src0->nb[0];
  6437. const size_t nb01 = src0->nb[1];
  6438. const size_t nb02 = src0->nb[2];
  6439. const size_t nb03 = src0->nb[3];
  6440. const size_t nb0 = dst->nb[0];
  6441. const size_t nb1 = dst->nb[1];
  6442. const size_t nb2 = dst->nb[2];
  6443. const size_t nb3 = dst->nb[3];
  6444. GGML_ASSERT( nb0 == sizeof(float));
  6445. GGML_ASSERT(nb00 == sizeof(float));
  6446. // rows per thread
  6447. const int dr = (nr + nth - 1)/nth;
  6448. // row range for this thread
  6449. const int ir0 = dr*ith;
  6450. const int ir1 = MIN(ir0 + dr, nr);
  6451. for (int ir = ir0; ir < ir1; ++ir) {
  6452. // src0 and dst are same shape => same indices
  6453. const int i3 = ir/(ne2*ne1);
  6454. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6455. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6456. #ifdef GGML_USE_ACCELERATE
  6457. UNUSED(ggml_vec_add1_f32);
  6458. vDSP_vadd(
  6459. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6460. (float *) ((char *) src1->data), 0,
  6461. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6462. ne0);
  6463. #else
  6464. ggml_vec_add1_f32(ne0,
  6465. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6466. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6467. *(float *) src1->data);
  6468. #endif
  6469. }
  6470. }
  6471. static void ggml_compute_forward_add1_f16_f32(
  6472. const struct ggml_compute_params * params,
  6473. const struct ggml_tensor * src0,
  6474. const struct ggml_tensor * src1,
  6475. struct ggml_tensor * dst) {
  6476. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6477. GGML_ASSERT(ggml_is_scalar(src1));
  6478. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6479. return;
  6480. }
  6481. // scalar to add
  6482. const float v = *(float *) src1->data;
  6483. const int ith = params->ith;
  6484. const int nth = params->nth;
  6485. const int nr = ggml_nrows(src0);
  6486. const int64_t ne0 = src0->ne[0];
  6487. const int64_t ne1 = src0->ne[1];
  6488. const int64_t ne2 = src0->ne[2];
  6489. const size_t nb00 = src0->nb[0];
  6490. const size_t nb01 = src0->nb[1];
  6491. const size_t nb02 = src0->nb[2];
  6492. const size_t nb03 = src0->nb[3];
  6493. const size_t nb0 = dst->nb[0];
  6494. const size_t nb1 = dst->nb[1];
  6495. const size_t nb2 = dst->nb[2];
  6496. const size_t nb3 = dst->nb[3];
  6497. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6498. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6499. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6500. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6501. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6502. // rows per thread
  6503. const int dr = (nr + nth - 1)/nth;
  6504. // row range for this thread
  6505. const int ir0 = dr*ith;
  6506. const int ir1 = MIN(ir0 + dr, nr);
  6507. for (int ir = ir0; ir < ir1; ++ir) {
  6508. // src0 and dst are same shape => same indices
  6509. const int i3 = ir/(ne2*ne1);
  6510. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6511. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6512. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6513. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6514. for (int i = 0; i < ne0; i++) {
  6515. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6516. }
  6517. }
  6518. }
  6519. static void ggml_compute_forward_add1_f16_f16(
  6520. const struct ggml_compute_params * params,
  6521. const struct ggml_tensor * src0,
  6522. const struct ggml_tensor * src1,
  6523. struct ggml_tensor * dst) {
  6524. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6525. GGML_ASSERT(ggml_is_scalar(src1));
  6526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6527. return;
  6528. }
  6529. // scalar to add
  6530. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6531. const int ith = params->ith;
  6532. const int nth = params->nth;
  6533. const int nr = ggml_nrows(src0);
  6534. const int64_t ne0 = src0->ne[0];
  6535. const int64_t ne1 = src0->ne[1];
  6536. const int64_t ne2 = src0->ne[2];
  6537. const size_t nb00 = src0->nb[0];
  6538. const size_t nb01 = src0->nb[1];
  6539. const size_t nb02 = src0->nb[2];
  6540. const size_t nb03 = src0->nb[3];
  6541. const size_t nb0 = dst->nb[0];
  6542. const size_t nb1 = dst->nb[1];
  6543. const size_t nb2 = dst->nb[2];
  6544. const size_t nb3 = dst->nb[3];
  6545. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6546. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6547. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6548. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6549. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6550. // rows per thread
  6551. const int dr = (nr + nth - 1)/nth;
  6552. // row range for this thread
  6553. const int ir0 = dr*ith;
  6554. const int ir1 = MIN(ir0 + dr, nr);
  6555. for (int ir = ir0; ir < ir1; ++ir) {
  6556. // src0 and dst are same shape => same indices
  6557. const int i3 = ir/(ne2*ne1);
  6558. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6559. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6560. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6561. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6562. for (int i = 0; i < ne0; i++) {
  6563. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6564. }
  6565. }
  6566. }
  6567. static void ggml_compute_forward_add1_q_f32(
  6568. const struct ggml_compute_params * params,
  6569. const struct ggml_tensor * src0,
  6570. const struct ggml_tensor * src1,
  6571. struct ggml_tensor * dst) {
  6572. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6573. GGML_ASSERT(ggml_is_scalar(src1));
  6574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6575. return;
  6576. }
  6577. // scalar to add
  6578. const float v = *(float *) src1->data;
  6579. const int ith = params->ith;
  6580. const int nth = params->nth;
  6581. const int nr = ggml_nrows(src0);
  6582. const int64_t ne0 = src0->ne[0];
  6583. const int64_t ne1 = src0->ne[1];
  6584. const int64_t ne2 = src0->ne[2];
  6585. const size_t nb00 = src0->nb[0];
  6586. const size_t nb01 = src0->nb[1];
  6587. const size_t nb02 = src0->nb[2];
  6588. const size_t nb03 = src0->nb[3];
  6589. const size_t nb0 = dst->nb[0];
  6590. const size_t nb1 = dst->nb[1];
  6591. const size_t nb2 = dst->nb[2];
  6592. const size_t nb3 = dst->nb[3];
  6593. const enum ggml_type type = src0->type;
  6594. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6595. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6596. // we don't support permuted src0
  6597. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6598. // dst cannot be transposed or permuted
  6599. GGML_ASSERT(nb0 <= nb1);
  6600. GGML_ASSERT(nb1 <= nb2);
  6601. GGML_ASSERT(nb2 <= nb3);
  6602. GGML_ASSERT(ggml_is_quantized(src0->type));
  6603. GGML_ASSERT(dst->type == src0->type);
  6604. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6605. // rows per thread
  6606. const int dr = (nr + nth - 1)/nth;
  6607. // row range for this thread
  6608. const int ir0 = dr*ith;
  6609. const int ir1 = MIN(ir0 + dr, nr);
  6610. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6611. for (int ir = ir0; ir < ir1; ++ir) {
  6612. // src0 and dst are same shape => same indices
  6613. const int i3 = ir/(ne2*ne1);
  6614. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6615. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6616. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6617. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6618. assert(ne0 % 32 == 0);
  6619. // unquantize row from src0 to temp buffer
  6620. dequantize_row_q(src0_row, wdata, ne0);
  6621. // add src1
  6622. ggml_vec_acc1_f32(ne0, wdata, v);
  6623. // quantize row to dst
  6624. quantize_row_q(wdata, dst_row, ne0);
  6625. }
  6626. }
  6627. static void ggml_compute_forward_add1(
  6628. const struct ggml_compute_params * params,
  6629. const struct ggml_tensor * src0,
  6630. const struct ggml_tensor * src1,
  6631. struct ggml_tensor * dst) {
  6632. switch (src0->type) {
  6633. case GGML_TYPE_F32:
  6634. {
  6635. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6636. } break;
  6637. case GGML_TYPE_F16:
  6638. {
  6639. if (src1->type == GGML_TYPE_F16) {
  6640. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6641. }
  6642. else if (src1->type == GGML_TYPE_F32) {
  6643. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6644. }
  6645. else {
  6646. GGML_ASSERT(false);
  6647. }
  6648. } break;
  6649. case GGML_TYPE_Q4_0:
  6650. case GGML_TYPE_Q4_1:
  6651. case GGML_TYPE_Q5_0:
  6652. case GGML_TYPE_Q5_1:
  6653. case GGML_TYPE_Q8_0:
  6654. case GGML_TYPE_Q8_1:
  6655. case GGML_TYPE_Q2_K:
  6656. case GGML_TYPE_Q3_K:
  6657. case GGML_TYPE_Q4_K:
  6658. case GGML_TYPE_Q5_K:
  6659. case GGML_TYPE_Q6_K:
  6660. {
  6661. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6662. } break;
  6663. default:
  6664. {
  6665. GGML_ASSERT(false);
  6666. } break;
  6667. }
  6668. }
  6669. // ggml_compute_forward_acc
  6670. static void ggml_compute_forward_acc_f32(
  6671. const struct ggml_compute_params * params,
  6672. const struct ggml_tensor * src0,
  6673. const struct ggml_tensor * src1,
  6674. const struct ggml_tensor * opt0,
  6675. struct ggml_tensor * dst) {
  6676. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6677. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6678. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6679. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6680. // view src0 and dst with these strides and data offset inbytes during acc
  6681. // nb0 is implicitely element_size because src0 and dst are contiguous
  6682. size_t nb1 = ((int32_t *) opt0->data)[0];
  6683. size_t nb2 = ((int32_t *) opt0->data)[1];
  6684. size_t nb3 = ((int32_t *) opt0->data)[2];
  6685. size_t offset = ((int32_t *) opt0->data)[3];
  6686. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6687. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6688. // memcpy needs to be synchronized across threads to avoid race conditions.
  6689. // => do it in INIT phase
  6690. memcpy(
  6691. ((char *) dst->data),
  6692. ((char *) src0->data),
  6693. ggml_nbytes(dst));
  6694. }
  6695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6696. return;
  6697. }
  6698. const int ith = params->ith;
  6699. const int nth = params->nth;
  6700. const int nr = ggml_nrows(src1);
  6701. const int nc = src1->ne[0];
  6702. const int64_t ne10 = src1->ne[0];
  6703. const int64_t ne11 = src1->ne[1];
  6704. const int64_t ne12 = src1->ne[2];
  6705. const int64_t ne13 = src1->ne[3];
  6706. const size_t nb10 = src1->nb[0];
  6707. const size_t nb11 = src1->nb[1];
  6708. const size_t nb12 = src1->nb[2];
  6709. const size_t nb13 = src1->nb[3];
  6710. // src0 and dst as viewed during acc
  6711. const size_t nb0 = ggml_element_size(src0);
  6712. const size_t nb00 = nb0;
  6713. const size_t nb01 = nb1;
  6714. const size_t nb02 = nb2;
  6715. const size_t nb03 = nb3;
  6716. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6717. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6718. GGML_ASSERT(nb10 == sizeof(float));
  6719. // rows per thread
  6720. const int dr = (nr + nth - 1)/nth;
  6721. // row range for this thread
  6722. const int ir0 = dr*ith;
  6723. const int ir1 = MIN(ir0 + dr, nr);
  6724. for (int ir = ir0; ir < ir1; ++ir) {
  6725. // src0 and dst are viewed with shape of src1 and offset
  6726. // => same indices
  6727. const int i3 = ir/(ne12*ne11);
  6728. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6729. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6730. #ifdef GGML_USE_ACCELERATE
  6731. vDSP_vadd(
  6732. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6733. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6734. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6735. #else
  6736. ggml_vec_add_f32(nc,
  6737. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6738. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6739. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6740. #endif
  6741. }
  6742. }
  6743. static void ggml_compute_forward_acc(
  6744. const struct ggml_compute_params * params,
  6745. const struct ggml_tensor * src0,
  6746. const struct ggml_tensor * src1,
  6747. const struct ggml_tensor * opt0,
  6748. struct ggml_tensor * dst) {
  6749. switch (src0->type) {
  6750. case GGML_TYPE_F32:
  6751. {
  6752. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6753. } break;
  6754. case GGML_TYPE_F16:
  6755. case GGML_TYPE_Q4_0:
  6756. case GGML_TYPE_Q4_1:
  6757. case GGML_TYPE_Q5_0:
  6758. case GGML_TYPE_Q5_1:
  6759. case GGML_TYPE_Q8_0:
  6760. case GGML_TYPE_Q8_1:
  6761. case GGML_TYPE_Q2_K:
  6762. case GGML_TYPE_Q3_K:
  6763. case GGML_TYPE_Q4_K:
  6764. case GGML_TYPE_Q5_K:
  6765. case GGML_TYPE_Q6_K:
  6766. default:
  6767. {
  6768. GGML_ASSERT(false);
  6769. } break;
  6770. }
  6771. }
  6772. // ggml_compute_forward_sub
  6773. static void ggml_compute_forward_sub_f32(
  6774. const struct ggml_compute_params * params,
  6775. const struct ggml_tensor * src0,
  6776. const struct ggml_tensor * src1,
  6777. struct ggml_tensor * dst) {
  6778. assert(params->ith == 0);
  6779. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6781. return;
  6782. }
  6783. const int nr = ggml_nrows(src0);
  6784. const int64_t ne0 = src0->ne[0];
  6785. const int64_t ne1 = src0->ne[1];
  6786. const int64_t ne2 = src0->ne[2];
  6787. const size_t nb00 = src0->nb[0];
  6788. const size_t nb01 = src0->nb[1];
  6789. const size_t nb02 = src0->nb[2];
  6790. const size_t nb03 = src0->nb[3];
  6791. const size_t nb10 = src1->nb[0];
  6792. const size_t nb11 = src1->nb[1];
  6793. const size_t nb12 = src1->nb[2];
  6794. const size_t nb13 = src1->nb[3];
  6795. const size_t nb0 = dst->nb[0];
  6796. const size_t nb1 = dst->nb[1];
  6797. const size_t nb2 = dst->nb[2];
  6798. const size_t nb3 = dst->nb[3];
  6799. GGML_ASSERT( nb0 == sizeof(float));
  6800. GGML_ASSERT(nb00 == sizeof(float));
  6801. if (nb10 == sizeof(float)) {
  6802. for (int ir = 0; ir < nr; ++ir) {
  6803. // src0, src1 and dst are same shape => same indices
  6804. const int i3 = ir/(ne2*ne1);
  6805. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6806. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6807. #ifdef GGML_USE_ACCELERATE
  6808. vDSP_vsub(
  6809. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6810. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6811. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6812. ne0);
  6813. #else
  6814. ggml_vec_sub_f32(ne0,
  6815. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6816. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6817. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6818. #endif
  6819. // }
  6820. // }
  6821. }
  6822. } else {
  6823. // src1 is not contiguous
  6824. for (int ir = 0; ir < nr; ++ir) {
  6825. // src0, src1 and dst are same shape => same indices
  6826. const int i3 = ir/(ne2*ne1);
  6827. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6828. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6829. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6830. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6831. for (int i0 = 0; i0 < ne0; i0++) {
  6832. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6833. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6834. }
  6835. }
  6836. }
  6837. }
  6838. static void ggml_compute_forward_sub(
  6839. const struct ggml_compute_params * params,
  6840. const struct ggml_tensor * src0,
  6841. const struct ggml_tensor * src1,
  6842. struct ggml_tensor * dst) {
  6843. switch (src0->type) {
  6844. case GGML_TYPE_F32:
  6845. {
  6846. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6847. } break;
  6848. default:
  6849. {
  6850. GGML_ASSERT(false);
  6851. } break;
  6852. }
  6853. }
  6854. // ggml_compute_forward_mul
  6855. static void ggml_compute_forward_mul_f32(
  6856. const struct ggml_compute_params * params,
  6857. const struct ggml_tensor * src0,
  6858. const struct ggml_tensor * src1,
  6859. struct ggml_tensor * dst) {
  6860. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6862. return;
  6863. }
  6864. const int ith = params->ith;
  6865. const int nth = params->nth;
  6866. #ifdef GGML_USE_CLBLAST
  6867. if (src1->backend == GGML_BACKEND_GPU) {
  6868. if (ith == 0) {
  6869. ggml_cl_mul(src0, src1, dst);
  6870. }
  6871. return;
  6872. }
  6873. #endif
  6874. const int64_t nr = ggml_nrows(src0);
  6875. const int64_t ne00 = src0->ne[0];
  6876. const int64_t ne01 = src0->ne[1];
  6877. const int64_t ne02 = src0->ne[2];
  6878. const int64_t ne10 = src1->ne[0];
  6879. const int64_t ne11 = src1->ne[1];
  6880. const int64_t ne12 = src1->ne[2];
  6881. const int64_t ne13 = src1->ne[3];
  6882. const size_t nb00 = src0->nb[0];
  6883. const size_t nb01 = src0->nb[1];
  6884. const size_t nb02 = src0->nb[2];
  6885. const size_t nb03 = src0->nb[3];
  6886. const size_t nb10 = src1->nb[0];
  6887. const size_t nb11 = src1->nb[1];
  6888. const size_t nb12 = src1->nb[2];
  6889. const size_t nb13 = src1->nb[3];
  6890. const size_t nb0 = dst->nb[0];
  6891. const size_t nb1 = dst->nb[1];
  6892. const size_t nb2 = dst->nb[2];
  6893. const size_t nb3 = dst->nb[3];
  6894. GGML_ASSERT( nb0 == sizeof(float));
  6895. GGML_ASSERT(nb00 == sizeof(float));
  6896. GGML_ASSERT(ne00 == ne10);
  6897. if (nb10 == sizeof(float)) {
  6898. for (int64_t ir = ith; ir < nr; ir += nth) {
  6899. // src0 and dst are same shape => same indices
  6900. const int64_t i03 = ir/(ne02*ne01);
  6901. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6902. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6903. const int64_t i13 = i03 % ne13;
  6904. const int64_t i12 = i02 % ne12;
  6905. const int64_t i11 = i01 % ne11;
  6906. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6907. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6908. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6909. #ifdef GGML_USE_ACCELERATE
  6910. UNUSED(ggml_vec_mul_f32);
  6911. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6912. #else
  6913. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6914. #endif
  6915. // }
  6916. // }
  6917. }
  6918. } else {
  6919. // src1 is not contiguous
  6920. for (int64_t ir = ith; ir < nr; ir += nth) {
  6921. // src0 and dst are same shape => same indices
  6922. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6923. const int64_t i03 = ir/(ne02*ne01);
  6924. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6925. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6926. const int64_t i13 = i03 % ne13;
  6927. const int64_t i12 = i02 % ne12;
  6928. const int64_t i11 = i01 % ne11;
  6929. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6930. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6931. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6932. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6933. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6934. }
  6935. }
  6936. }
  6937. }
  6938. static void ggml_compute_forward_mul(
  6939. const struct ggml_compute_params * params,
  6940. const struct ggml_tensor * src0,
  6941. const struct ggml_tensor * src1,
  6942. struct ggml_tensor * dst) {
  6943. switch (src0->type) {
  6944. case GGML_TYPE_F32:
  6945. {
  6946. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6947. } break;
  6948. default:
  6949. {
  6950. GGML_ASSERT(false);
  6951. } break;
  6952. }
  6953. }
  6954. // ggml_compute_forward_div
  6955. static void ggml_compute_forward_div_f32(
  6956. const struct ggml_compute_params * params,
  6957. const struct ggml_tensor * src0,
  6958. const struct ggml_tensor * src1,
  6959. struct ggml_tensor * dst) {
  6960. assert(params->ith == 0);
  6961. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6962. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6963. return;
  6964. }
  6965. const int nr = ggml_nrows(src0);
  6966. const int64_t ne0 = src0->ne[0];
  6967. const int64_t ne1 = src0->ne[1];
  6968. const int64_t ne2 = src0->ne[2];
  6969. const size_t nb00 = src0->nb[0];
  6970. const size_t nb01 = src0->nb[1];
  6971. const size_t nb02 = src0->nb[2];
  6972. const size_t nb03 = src0->nb[3];
  6973. const size_t nb10 = src1->nb[0];
  6974. const size_t nb11 = src1->nb[1];
  6975. const size_t nb12 = src1->nb[2];
  6976. const size_t nb13 = src1->nb[3];
  6977. const size_t nb0 = dst->nb[0];
  6978. const size_t nb1 = dst->nb[1];
  6979. const size_t nb2 = dst->nb[2];
  6980. const size_t nb3 = dst->nb[3];
  6981. GGML_ASSERT( nb0 == sizeof(float));
  6982. GGML_ASSERT(nb00 == sizeof(float));
  6983. if (nb10 == sizeof(float)) {
  6984. for (int ir = 0; ir < nr; ++ir) {
  6985. // src0, src1 and dst are same shape => same indices
  6986. const int i3 = ir/(ne2*ne1);
  6987. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6988. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6989. #ifdef GGML_USE_ACCELERATE
  6990. vDSP_vdiv(
  6991. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6992. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6993. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6994. ne0);
  6995. #else
  6996. ggml_vec_div_f32(ne0,
  6997. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6998. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6999. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7000. #endif
  7001. // }
  7002. // }
  7003. }
  7004. } else {
  7005. // src1 is not contiguous
  7006. for (int ir = 0; ir < nr; ++ir) {
  7007. // src0, src1 and dst are same shape => same indices
  7008. const int i3 = ir/(ne2*ne1);
  7009. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7010. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7011. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7012. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7013. for (int i0 = 0; i0 < ne0; i0++) {
  7014. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7015. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7016. }
  7017. }
  7018. }
  7019. }
  7020. static void ggml_compute_forward_div(
  7021. const struct ggml_compute_params * params,
  7022. const struct ggml_tensor * src0,
  7023. const struct ggml_tensor * src1,
  7024. struct ggml_tensor * dst) {
  7025. switch (src0->type) {
  7026. case GGML_TYPE_F32:
  7027. {
  7028. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7029. } break;
  7030. default:
  7031. {
  7032. GGML_ASSERT(false);
  7033. } break;
  7034. }
  7035. }
  7036. // ggml_compute_forward_sqr
  7037. static void ggml_compute_forward_sqr_f32(
  7038. const struct ggml_compute_params * params,
  7039. const struct ggml_tensor * src0,
  7040. struct ggml_tensor * dst) {
  7041. assert(params->ith == 0);
  7042. assert(ggml_are_same_shape(src0, dst));
  7043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7044. return;
  7045. }
  7046. const int n = ggml_nrows(src0);
  7047. const int nc = src0->ne[0];
  7048. assert( dst->nb[0] == sizeof(float));
  7049. assert(src0->nb[0] == sizeof(float));
  7050. for (int i = 0; i < n; i++) {
  7051. ggml_vec_sqr_f32(nc,
  7052. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7053. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7054. }
  7055. }
  7056. static void ggml_compute_forward_sqr(
  7057. const struct ggml_compute_params * params,
  7058. const struct ggml_tensor * src0,
  7059. struct ggml_tensor * dst) {
  7060. switch (src0->type) {
  7061. case GGML_TYPE_F32:
  7062. {
  7063. ggml_compute_forward_sqr_f32(params, src0, dst);
  7064. } break;
  7065. default:
  7066. {
  7067. GGML_ASSERT(false);
  7068. } break;
  7069. }
  7070. }
  7071. // ggml_compute_forward_sqrt
  7072. static void ggml_compute_forward_sqrt_f32(
  7073. const struct ggml_compute_params * params,
  7074. const struct ggml_tensor * src0,
  7075. struct ggml_tensor * dst) {
  7076. assert(params->ith == 0);
  7077. assert(ggml_are_same_shape(src0, dst));
  7078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7079. return;
  7080. }
  7081. const int n = ggml_nrows(src0);
  7082. const int nc = src0->ne[0];
  7083. assert( dst->nb[0] == sizeof(float));
  7084. assert(src0->nb[0] == sizeof(float));
  7085. for (int i = 0; i < n; i++) {
  7086. ggml_vec_sqrt_f32(nc,
  7087. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7088. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7089. }
  7090. }
  7091. static void ggml_compute_forward_sqrt(
  7092. const struct ggml_compute_params * params,
  7093. const struct ggml_tensor * src0,
  7094. struct ggml_tensor * dst) {
  7095. switch (src0->type) {
  7096. case GGML_TYPE_F32:
  7097. {
  7098. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7099. } break;
  7100. default:
  7101. {
  7102. GGML_ASSERT(false);
  7103. } break;
  7104. }
  7105. }
  7106. // ggml_compute_forward_log
  7107. static void ggml_compute_forward_log_f32(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. struct ggml_tensor * dst) {
  7111. GGML_ASSERT(params->ith == 0);
  7112. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7114. return;
  7115. }
  7116. const int n = ggml_nrows(src0);
  7117. const int nc = src0->ne[0];
  7118. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7119. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7120. for (int i = 0; i < n; i++) {
  7121. ggml_vec_log_f32(nc,
  7122. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7123. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7124. }
  7125. }
  7126. static void ggml_compute_forward_log(
  7127. const struct ggml_compute_params * params,
  7128. const struct ggml_tensor * src0,
  7129. struct ggml_tensor * dst) {
  7130. switch (src0->type) {
  7131. case GGML_TYPE_F32:
  7132. {
  7133. ggml_compute_forward_log_f32(params, src0, dst);
  7134. } break;
  7135. default:
  7136. {
  7137. GGML_ASSERT(false);
  7138. } break;
  7139. }
  7140. }
  7141. // ggml_compute_forward_sum
  7142. static void ggml_compute_forward_sum_f32(
  7143. const struct ggml_compute_params * params,
  7144. const struct ggml_tensor * src0,
  7145. struct ggml_tensor * dst) {
  7146. assert(params->ith == 0);
  7147. assert(ggml_is_scalar(dst));
  7148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7149. return;
  7150. }
  7151. assert(ggml_is_scalar(dst));
  7152. assert(src0->nb[0] == sizeof(float));
  7153. const int64_t ne00 = src0->ne[0];
  7154. const int64_t ne01 = src0->ne[1];
  7155. const int64_t ne02 = src0->ne[2];
  7156. const int64_t ne03 = src0->ne[3];
  7157. const size_t nb01 = src0->nb[1];
  7158. const size_t nb02 = src0->nb[2];
  7159. const size_t nb03 = src0->nb[3];
  7160. ggml_float sum = 0;
  7161. ggml_float row_sum = 0;
  7162. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7163. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7164. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7165. ggml_vec_sum_ggf(ne00,
  7166. &row_sum,
  7167. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7168. sum += row_sum;
  7169. }
  7170. }
  7171. }
  7172. ((float *) dst->data)[0] = sum;
  7173. }
  7174. static void ggml_compute_forward_sum(
  7175. const struct ggml_compute_params * params,
  7176. const struct ggml_tensor * src0,
  7177. struct ggml_tensor * dst) {
  7178. switch (src0->type) {
  7179. case GGML_TYPE_F32:
  7180. {
  7181. ggml_compute_forward_sum_f32(params, src0, dst);
  7182. } break;
  7183. default:
  7184. {
  7185. GGML_ASSERT(false);
  7186. } break;
  7187. }
  7188. }
  7189. // ggml_compute_forward_sum_rows
  7190. static void ggml_compute_forward_sum_rows_f32(
  7191. const struct ggml_compute_params * params,
  7192. const struct ggml_tensor * src0,
  7193. struct ggml_tensor * dst) {
  7194. GGML_ASSERT(params->ith == 0);
  7195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7196. return;
  7197. }
  7198. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7199. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7200. const int64_t ne00 = src0->ne[0];
  7201. const int64_t ne01 = src0->ne[1];
  7202. const int64_t ne02 = src0->ne[2];
  7203. const int64_t ne03 = src0->ne[3];
  7204. const int64_t ne0 = dst->ne[0];
  7205. const int64_t ne1 = dst->ne[1];
  7206. const int64_t ne2 = dst->ne[2];
  7207. const int64_t ne3 = dst->ne[3];
  7208. GGML_ASSERT(ne0 == 1);
  7209. GGML_ASSERT(ne1 == ne01);
  7210. GGML_ASSERT(ne2 == ne02);
  7211. GGML_ASSERT(ne3 == ne03);
  7212. const size_t nb01 = src0->nb[1];
  7213. const size_t nb02 = src0->nb[2];
  7214. const size_t nb03 = src0->nb[3];
  7215. const size_t nb1 = dst->nb[1];
  7216. const size_t nb2 = dst->nb[2];
  7217. const size_t nb3 = dst->nb[3];
  7218. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7219. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7220. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7221. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7222. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7223. float row_sum = 0;
  7224. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7225. dst_row[0] = row_sum;
  7226. }
  7227. }
  7228. }
  7229. }
  7230. static void ggml_compute_forward_sum_rows(
  7231. const struct ggml_compute_params * params,
  7232. const struct ggml_tensor * src0,
  7233. struct ggml_tensor * dst) {
  7234. switch (src0->type) {
  7235. case GGML_TYPE_F32:
  7236. {
  7237. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7238. } break;
  7239. default:
  7240. {
  7241. GGML_ASSERT(false);
  7242. } break;
  7243. }
  7244. }
  7245. // ggml_compute_forward_mean
  7246. static void ggml_compute_forward_mean_f32(
  7247. const struct ggml_compute_params * params,
  7248. const struct ggml_tensor * src0,
  7249. struct ggml_tensor * dst) {
  7250. assert(params->ith == 0);
  7251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7252. return;
  7253. }
  7254. assert(src0->nb[0] == sizeof(float));
  7255. const int64_t ne00 = src0->ne[0];
  7256. const int64_t ne01 = src0->ne[1];
  7257. const int64_t ne02 = src0->ne[2];
  7258. const int64_t ne03 = src0->ne[3];
  7259. const size_t nb01 = src0->nb[1];
  7260. const size_t nb02 = src0->nb[2];
  7261. const size_t nb03 = src0->nb[3];
  7262. const int64_t ne0 = dst->ne[0];
  7263. const int64_t ne1 = dst->ne[1];
  7264. const int64_t ne2 = dst->ne[2];
  7265. const int64_t ne3 = dst->ne[3];
  7266. assert(ne0 == 1);
  7267. assert(ne1 == ne01);
  7268. assert(ne2 == ne02);
  7269. assert(ne3 == ne03);
  7270. UNUSED(ne0);
  7271. UNUSED(ne1);
  7272. UNUSED(ne2);
  7273. UNUSED(ne3);
  7274. const size_t nb1 = dst->nb[1];
  7275. const size_t nb2 = dst->nb[2];
  7276. const size_t nb3 = dst->nb[3];
  7277. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7278. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7279. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7280. ggml_vec_sum_f32(ne00,
  7281. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7282. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7283. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7284. }
  7285. }
  7286. }
  7287. }
  7288. static void ggml_compute_forward_mean(
  7289. const struct ggml_compute_params * params,
  7290. const struct ggml_tensor * src0,
  7291. struct ggml_tensor * dst) {
  7292. switch (src0->type) {
  7293. case GGML_TYPE_F32:
  7294. {
  7295. ggml_compute_forward_mean_f32(params, src0, dst);
  7296. } break;
  7297. default:
  7298. {
  7299. GGML_ASSERT(false);
  7300. } break;
  7301. }
  7302. }
  7303. // ggml_compute_forward_repeat
  7304. static void ggml_compute_forward_repeat_f32(
  7305. const struct ggml_compute_params * params,
  7306. const struct ggml_tensor * src0,
  7307. struct ggml_tensor * dst) {
  7308. GGML_ASSERT(params->ith == 0);
  7309. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7311. return;
  7312. }
  7313. const int64_t ne0 = dst->ne[0];
  7314. const int64_t ne1 = dst->ne[1];
  7315. const int64_t ne2 = dst->ne[2];
  7316. const int64_t ne3 = dst->ne[3];
  7317. const int64_t ne00 = src0->ne[0];
  7318. const int64_t ne01 = src0->ne[1];
  7319. const int64_t ne02 = src0->ne[2];
  7320. const int64_t ne03 = src0->ne[3];
  7321. const size_t nb0 = dst->nb[0];
  7322. const size_t nb1 = dst->nb[1];
  7323. const size_t nb2 = dst->nb[2];
  7324. const size_t nb3 = dst->nb[3];
  7325. const size_t nb00 = src0->nb[0];
  7326. const size_t nb01 = src0->nb[1];
  7327. const size_t nb02 = src0->nb[2];
  7328. const size_t nb03 = src0->nb[3];
  7329. // guaranteed to be an integer due to the check in ggml_can_repeat
  7330. const int nr0 = (int)(ne0/ne00);
  7331. const int nr1 = (int)(ne1/ne01);
  7332. const int nr2 = (int)(ne2/ne02);
  7333. const int nr3 = (int)(ne3/ne03);
  7334. // TODO: support for transposed / permuted tensors
  7335. GGML_ASSERT(nb0 == sizeof(float));
  7336. GGML_ASSERT(nb00 == sizeof(float));
  7337. // TODO: maybe this is not optimal?
  7338. for (int i3 = 0; i3 < nr3; i3++) {
  7339. for (int k3 = 0; k3 < ne03; k3++) {
  7340. for (int i2 = 0; i2 < nr2; i2++) {
  7341. for (int k2 = 0; k2 < ne02; k2++) {
  7342. for (int i1 = 0; i1 < nr1; i1++) {
  7343. for (int k1 = 0; k1 < ne01; k1++) {
  7344. for (int i0 = 0; i0 < nr0; i0++) {
  7345. ggml_vec_cpy_f32(ne00,
  7346. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7347. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7348. }
  7349. }
  7350. }
  7351. }
  7352. }
  7353. }
  7354. }
  7355. }
  7356. static void ggml_compute_forward_repeat(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. struct ggml_tensor * dst) {
  7360. switch (src0->type) {
  7361. case GGML_TYPE_F32:
  7362. {
  7363. ggml_compute_forward_repeat_f32(params, src0, dst);
  7364. } break;
  7365. default:
  7366. {
  7367. GGML_ASSERT(false);
  7368. } break;
  7369. }
  7370. }
  7371. // ggml_compute_forward_repeat_back
  7372. static void ggml_compute_forward_repeat_back_f32(
  7373. const struct ggml_compute_params * params,
  7374. const struct ggml_tensor * src0,
  7375. struct ggml_tensor * dst) {
  7376. GGML_ASSERT(params->ith == 0);
  7377. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7379. return;
  7380. }
  7381. const int64_t ne0 = dst->ne[0];
  7382. const int64_t ne1 = dst->ne[1];
  7383. const int64_t ne2 = dst->ne[2];
  7384. const int64_t ne3 = dst->ne[3];
  7385. const int64_t ne00 = src0->ne[0];
  7386. const int64_t ne01 = src0->ne[1];
  7387. const int64_t ne02 = src0->ne[2];
  7388. const int64_t ne03 = src0->ne[3];
  7389. const size_t nb0 = dst->nb[0];
  7390. const size_t nb1 = dst->nb[1];
  7391. const size_t nb2 = dst->nb[2];
  7392. const size_t nb3 = dst->nb[3];
  7393. const size_t nb00 = src0->nb[0];
  7394. const size_t nb01 = src0->nb[1];
  7395. const size_t nb02 = src0->nb[2];
  7396. const size_t nb03 = src0->nb[3];
  7397. // guaranteed to be an integer due to the check in ggml_can_repeat
  7398. const int nr0 = (int)(ne00/ne0);
  7399. const int nr1 = (int)(ne01/ne1);
  7400. const int nr2 = (int)(ne02/ne2);
  7401. const int nr3 = (int)(ne03/ne3);
  7402. // TODO: support for transposed / permuted tensors
  7403. GGML_ASSERT(nb0 == sizeof(float));
  7404. GGML_ASSERT(nb00 == sizeof(float));
  7405. if (ggml_is_contiguous(dst)) {
  7406. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7407. } else {
  7408. for (int k3 = 0; k3 < ne3; k3++) {
  7409. for (int k2 = 0; k2 < ne2; k2++) {
  7410. for (int k1 = 0; k1 < ne1; k1++) {
  7411. ggml_vec_set_f32(ne0,
  7412. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7413. 0);
  7414. }
  7415. }
  7416. }
  7417. }
  7418. // TODO: maybe this is not optimal?
  7419. for (int i3 = 0; i3 < nr3; i3++) {
  7420. for (int k3 = 0; k3 < ne3; k3++) {
  7421. for (int i2 = 0; i2 < nr2; i2++) {
  7422. for (int k2 = 0; k2 < ne2; k2++) {
  7423. for (int i1 = 0; i1 < nr1; i1++) {
  7424. for (int k1 = 0; k1 < ne1; k1++) {
  7425. for (int i0 = 0; i0 < nr0; i0++) {
  7426. ggml_vec_acc_f32(ne0,
  7427. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7428. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7429. }
  7430. }
  7431. }
  7432. }
  7433. }
  7434. }
  7435. }
  7436. }
  7437. static void ggml_compute_forward_repeat_back(
  7438. const struct ggml_compute_params * params,
  7439. const struct ggml_tensor * src0,
  7440. struct ggml_tensor * dst) {
  7441. switch (src0->type) {
  7442. case GGML_TYPE_F32:
  7443. {
  7444. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7445. } break;
  7446. default:
  7447. {
  7448. GGML_ASSERT(false);
  7449. } break;
  7450. }
  7451. }
  7452. // ggml_compute_forward_abs
  7453. static void ggml_compute_forward_abs_f32(
  7454. const struct ggml_compute_params * params,
  7455. const struct ggml_tensor * src0,
  7456. struct ggml_tensor * dst) {
  7457. assert(params->ith == 0);
  7458. assert(ggml_are_same_shape(src0, dst));
  7459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7460. return;
  7461. }
  7462. const int n = ggml_nrows(src0);
  7463. const int nc = src0->ne[0];
  7464. assert(dst->nb[0] == sizeof(float));
  7465. assert(src0->nb[0] == sizeof(float));
  7466. for (int i = 0; i < n; i++) {
  7467. ggml_vec_abs_f32(nc,
  7468. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7469. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7470. }
  7471. }
  7472. static void ggml_compute_forward_abs(
  7473. const struct ggml_compute_params * params,
  7474. const struct ggml_tensor * src0,
  7475. struct ggml_tensor * dst) {
  7476. switch (src0->type) {
  7477. case GGML_TYPE_F32:
  7478. {
  7479. ggml_compute_forward_abs_f32(params, src0, dst);
  7480. } break;
  7481. default:
  7482. {
  7483. GGML_ASSERT(false);
  7484. } break;
  7485. }
  7486. }
  7487. // ggml_compute_forward_sgn
  7488. static void ggml_compute_forward_sgn_f32(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. struct ggml_tensor * dst) {
  7492. assert(params->ith == 0);
  7493. assert(ggml_are_same_shape(src0, dst));
  7494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7495. return;
  7496. }
  7497. const int n = ggml_nrows(src0);
  7498. const int nc = src0->ne[0];
  7499. assert(dst->nb[0] == sizeof(float));
  7500. assert(src0->nb[0] == sizeof(float));
  7501. for (int i = 0; i < n; i++) {
  7502. ggml_vec_sgn_f32(nc,
  7503. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7504. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7505. }
  7506. }
  7507. static void ggml_compute_forward_sgn(
  7508. const struct ggml_compute_params * params,
  7509. const struct ggml_tensor * src0,
  7510. struct ggml_tensor * dst) {
  7511. switch (src0->type) {
  7512. case GGML_TYPE_F32:
  7513. {
  7514. ggml_compute_forward_sgn_f32(params, src0, dst);
  7515. } break;
  7516. default:
  7517. {
  7518. GGML_ASSERT(false);
  7519. } break;
  7520. }
  7521. }
  7522. // ggml_compute_forward_neg
  7523. static void ggml_compute_forward_neg_f32(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. assert(params->ith == 0);
  7528. assert(ggml_are_same_shape(src0, dst));
  7529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7530. return;
  7531. }
  7532. const int n = ggml_nrows(src0);
  7533. const int nc = src0->ne[0];
  7534. assert(dst->nb[0] == sizeof(float));
  7535. assert(src0->nb[0] == sizeof(float));
  7536. for (int i = 0; i < n; i++) {
  7537. ggml_vec_neg_f32(nc,
  7538. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7539. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7540. }
  7541. }
  7542. static void ggml_compute_forward_neg(
  7543. const struct ggml_compute_params * params,
  7544. const struct ggml_tensor * src0,
  7545. struct ggml_tensor * dst) {
  7546. switch (src0->type) {
  7547. case GGML_TYPE_F32:
  7548. {
  7549. ggml_compute_forward_neg_f32(params, src0, dst);
  7550. } break;
  7551. default:
  7552. {
  7553. GGML_ASSERT(false);
  7554. } break;
  7555. }
  7556. }
  7557. // ggml_compute_forward_step
  7558. static void ggml_compute_forward_step_f32(
  7559. const struct ggml_compute_params * params,
  7560. const struct ggml_tensor * src0,
  7561. struct ggml_tensor * dst) {
  7562. assert(params->ith == 0);
  7563. assert(ggml_are_same_shape(src0, dst));
  7564. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7565. return;
  7566. }
  7567. const int n = ggml_nrows(src0);
  7568. const int nc = src0->ne[0];
  7569. assert(dst->nb[0] == sizeof(float));
  7570. assert(src0->nb[0] == sizeof(float));
  7571. for (int i = 0; i < n; i++) {
  7572. ggml_vec_step_f32(nc,
  7573. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7574. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7575. }
  7576. }
  7577. static void ggml_compute_forward_step(
  7578. const struct ggml_compute_params * params,
  7579. const struct ggml_tensor * src0,
  7580. struct ggml_tensor * dst) {
  7581. switch (src0->type) {
  7582. case GGML_TYPE_F32:
  7583. {
  7584. ggml_compute_forward_step_f32(params, src0, dst);
  7585. } break;
  7586. default:
  7587. {
  7588. GGML_ASSERT(false);
  7589. } break;
  7590. }
  7591. }
  7592. // ggml_compute_forward_relu
  7593. static void ggml_compute_forward_relu_f32(
  7594. const struct ggml_compute_params * params,
  7595. const struct ggml_tensor * src0,
  7596. struct ggml_tensor * dst) {
  7597. assert(params->ith == 0);
  7598. assert(ggml_are_same_shape(src0, dst));
  7599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7600. return;
  7601. }
  7602. const int n = ggml_nrows(src0);
  7603. const int nc = src0->ne[0];
  7604. assert(dst->nb[0] == sizeof(float));
  7605. assert(src0->nb[0] == sizeof(float));
  7606. for (int i = 0; i < n; i++) {
  7607. ggml_vec_relu_f32(nc,
  7608. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7609. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7610. }
  7611. }
  7612. static void ggml_compute_forward_relu(
  7613. const struct ggml_compute_params * params,
  7614. const struct ggml_tensor * src0,
  7615. struct ggml_tensor * dst) {
  7616. switch (src0->type) {
  7617. case GGML_TYPE_F32:
  7618. {
  7619. ggml_compute_forward_relu_f32(params, src0, dst);
  7620. } break;
  7621. default:
  7622. {
  7623. GGML_ASSERT(false);
  7624. } break;
  7625. }
  7626. }
  7627. // ggml_compute_forward_gelu
  7628. static void ggml_compute_forward_gelu_f32(
  7629. const struct ggml_compute_params * params,
  7630. const struct ggml_tensor * src0,
  7631. struct ggml_tensor * dst) {
  7632. GGML_ASSERT(ggml_is_contiguous(src0));
  7633. GGML_ASSERT(ggml_is_contiguous(dst));
  7634. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7635. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7636. return;
  7637. }
  7638. const int ith = params->ith;
  7639. const int nth = params->nth;
  7640. const int nc = src0->ne[0];
  7641. const int nr = ggml_nrows(src0);
  7642. // rows per thread
  7643. const int dr = (nr + nth - 1)/nth;
  7644. // row range for this thread
  7645. const int ir0 = dr*ith;
  7646. const int ir1 = MIN(ir0 + dr, nr);
  7647. for (int i1 = ir0; i1 < ir1; i1++) {
  7648. ggml_vec_gelu_f32(nc,
  7649. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7650. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7651. #ifndef NDEBUG
  7652. for (int k = 0; k < nc; k++) {
  7653. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7654. UNUSED(x);
  7655. assert(!isnan(x));
  7656. assert(!isinf(x));
  7657. }
  7658. #endif
  7659. }
  7660. }
  7661. static void ggml_compute_forward_gelu(
  7662. const struct ggml_compute_params * params,
  7663. const struct ggml_tensor * src0,
  7664. struct ggml_tensor * dst) {
  7665. switch (src0->type) {
  7666. case GGML_TYPE_F32:
  7667. {
  7668. ggml_compute_forward_gelu_f32(params, src0, dst);
  7669. } break;
  7670. default:
  7671. {
  7672. GGML_ASSERT(false);
  7673. } break;
  7674. }
  7675. //printf("XXXXXXXX gelu\n");
  7676. }
  7677. // ggml_compute_forward_silu
  7678. static void ggml_compute_forward_silu_f32(
  7679. const struct ggml_compute_params * params,
  7680. const struct ggml_tensor * src0,
  7681. struct ggml_tensor * dst) {
  7682. GGML_ASSERT(ggml_is_contiguous(src0));
  7683. GGML_ASSERT(ggml_is_contiguous(dst));
  7684. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7686. return;
  7687. }
  7688. const int ith = params->ith;
  7689. const int nth = params->nth;
  7690. const int nc = src0->ne[0];
  7691. const int nr = ggml_nrows(src0);
  7692. // rows per thread
  7693. const int dr = (nr + nth - 1)/nth;
  7694. // row range for this thread
  7695. const int ir0 = dr*ith;
  7696. const int ir1 = MIN(ir0 + dr, nr);
  7697. for (int i1 = ir0; i1 < ir1; i1++) {
  7698. ggml_vec_silu_f32(nc,
  7699. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7700. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7701. #ifndef NDEBUG
  7702. for (int k = 0; k < nc; k++) {
  7703. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7704. UNUSED(x);
  7705. assert(!isnan(x));
  7706. assert(!isinf(x));
  7707. }
  7708. #endif
  7709. }
  7710. }
  7711. static void ggml_compute_forward_silu(
  7712. const struct ggml_compute_params * params,
  7713. const struct ggml_tensor * src0,
  7714. struct ggml_tensor * dst) {
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. {
  7718. ggml_compute_forward_silu_f32(params, src0, dst);
  7719. } break;
  7720. default:
  7721. {
  7722. GGML_ASSERT(false);
  7723. } break;
  7724. }
  7725. }
  7726. // ggml_compute_forward_silu_back
  7727. static void ggml_compute_forward_silu_back_f32(
  7728. const struct ggml_compute_params * params,
  7729. const struct ggml_tensor * src0,
  7730. const struct ggml_tensor * grad,
  7731. struct ggml_tensor * dst) {
  7732. GGML_ASSERT(ggml_is_contiguous(grad));
  7733. GGML_ASSERT(ggml_is_contiguous(src0));
  7734. GGML_ASSERT(ggml_is_contiguous(dst));
  7735. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7736. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7738. return;
  7739. }
  7740. const int ith = params->ith;
  7741. const int nth = params->nth;
  7742. const int nc = src0->ne[0];
  7743. const int nr = ggml_nrows(src0);
  7744. // rows per thread
  7745. const int dr = (nr + nth - 1)/nth;
  7746. // row range for this thread
  7747. const int ir0 = dr*ith;
  7748. const int ir1 = MIN(ir0 + dr, nr);
  7749. for (int i1 = ir0; i1 < ir1; i1++) {
  7750. ggml_vec_silu_backward_f32(nc,
  7751. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7752. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7753. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7754. #ifndef NDEBUG
  7755. for (int k = 0; k < nc; k++) {
  7756. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7757. UNUSED(x);
  7758. assert(!isnan(x));
  7759. assert(!isinf(x));
  7760. }
  7761. #endif
  7762. }
  7763. }
  7764. static void ggml_compute_forward_silu_back(
  7765. const struct ggml_compute_params * params,
  7766. const struct ggml_tensor * src0,
  7767. const struct ggml_tensor * grad,
  7768. struct ggml_tensor * dst) {
  7769. switch (src0->type) {
  7770. case GGML_TYPE_F32:
  7771. {
  7772. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7773. } break;
  7774. default:
  7775. {
  7776. GGML_ASSERT(false);
  7777. } break;
  7778. }
  7779. }
  7780. // ggml_compute_forward_norm
  7781. static void ggml_compute_forward_norm_f32(
  7782. const struct ggml_compute_params * params,
  7783. const struct ggml_tensor * src0,
  7784. struct ggml_tensor * dst) {
  7785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7787. return;
  7788. }
  7789. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7790. const int ith = params->ith;
  7791. const int nth = params->nth;
  7792. const int64_t ne00 = src0->ne[0];
  7793. const int64_t ne01 = src0->ne[1];
  7794. const int64_t ne02 = src0->ne[2];
  7795. const int64_t ne03 = src0->ne[3];
  7796. const size_t nb01 = src0->nb[1];
  7797. const size_t nb02 = src0->nb[2];
  7798. const size_t nb03 = src0->nb[3];
  7799. const size_t nb1 = dst->nb[1];
  7800. const size_t nb2 = dst->nb[2];
  7801. const size_t nb3 = dst->nb[3];
  7802. const float eps = 1e-5f; // TODO: make this a parameter
  7803. // TODO: optimize
  7804. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7805. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7806. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7807. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7808. ggml_float sum = 0.0;
  7809. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7810. sum += (ggml_float)x[i00];
  7811. }
  7812. float mean = sum/ne00;
  7813. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7814. ggml_float sum2 = 0.0;
  7815. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7816. float v = x[i00] - mean;
  7817. y[i00] = v;
  7818. sum2 += (ggml_float)(v*v);
  7819. }
  7820. float variance = sum2/ne00;
  7821. const float scale = 1.0f/sqrtf(variance + eps);
  7822. ggml_vec_scale_f32(ne00, y, scale);
  7823. }
  7824. }
  7825. }
  7826. }
  7827. static void ggml_compute_forward_norm(
  7828. const struct ggml_compute_params * params,
  7829. const struct ggml_tensor * src0,
  7830. struct ggml_tensor * dst) {
  7831. switch (src0->type) {
  7832. case GGML_TYPE_F32:
  7833. {
  7834. ggml_compute_forward_norm_f32(params, src0, dst);
  7835. } break;
  7836. default:
  7837. {
  7838. GGML_ASSERT(false);
  7839. } break;
  7840. }
  7841. }
  7842. static void ggml_compute_forward_rms_norm_f32(
  7843. const struct ggml_compute_params * params,
  7844. const struct ggml_tensor * src0,
  7845. struct ggml_tensor * dst) {
  7846. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7848. return;
  7849. }
  7850. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7851. const int ith = params->ith;
  7852. const int nth = params->nth;
  7853. const int64_t ne00 = src0->ne[0];
  7854. const int64_t ne01 = src0->ne[1];
  7855. const int64_t ne02 = src0->ne[2];
  7856. const int64_t ne03 = src0->ne[3];
  7857. const size_t nb01 = src0->nb[1];
  7858. const size_t nb02 = src0->nb[2];
  7859. const size_t nb03 = src0->nb[3];
  7860. const size_t nb1 = dst->nb[1];
  7861. const size_t nb2 = dst->nb[2];
  7862. const size_t nb3 = dst->nb[3];
  7863. const float eps = 1e-6f; // TODO: make this a parameter
  7864. // TODO: optimize
  7865. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7866. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7867. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7868. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7869. ggml_float sum = 0.0;
  7870. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7871. sum += (ggml_float)(x[i00] * x[i00]);
  7872. }
  7873. const float mean = sum/ne00;
  7874. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7875. memcpy(y, x, ne00 * sizeof(float));
  7876. // for (int i00 = 0; i00 < ne00; i00++) {
  7877. // y[i00] = x[i00];
  7878. // }
  7879. const float scale = 1.0f/sqrtf(mean + eps);
  7880. ggml_vec_scale_f32(ne00, y, scale);
  7881. }
  7882. }
  7883. }
  7884. }
  7885. static void ggml_compute_forward_rms_norm(
  7886. const struct ggml_compute_params * params,
  7887. const struct ggml_tensor * src0,
  7888. struct ggml_tensor * dst) {
  7889. switch (src0->type) {
  7890. case GGML_TYPE_F32:
  7891. {
  7892. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7893. } break;
  7894. default:
  7895. {
  7896. GGML_ASSERT(false);
  7897. } break;
  7898. }
  7899. }
  7900. static void ggml_compute_forward_rms_norm_back_f32(
  7901. const struct ggml_compute_params * params,
  7902. const struct ggml_tensor * src0,
  7903. const struct ggml_tensor * src1,
  7904. struct ggml_tensor * dst) {
  7905. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7906. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7907. return;
  7908. }
  7909. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7910. const int ith = params->ith;
  7911. const int nth = params->nth;
  7912. const int64_t ne00 = src0->ne[0];
  7913. const int64_t ne01 = src0->ne[1];
  7914. const int64_t ne02 = src0->ne[2];
  7915. const int64_t ne03 = src0->ne[3];
  7916. const size_t nb01 = src0->nb[1];
  7917. const size_t nb02 = src0->nb[2];
  7918. const size_t nb03 = src0->nb[3];
  7919. const size_t nb11 = src1->nb[1];
  7920. const size_t nb12 = src1->nb[2];
  7921. const size_t nb13 = src1->nb[3];
  7922. const size_t nb1 = dst->nb[1];
  7923. const size_t nb2 = dst->nb[2];
  7924. const size_t nb3 = dst->nb[3];
  7925. const float eps = 1e-6f; // TODO: make this a parameter
  7926. // TODO: optimize
  7927. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7928. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7929. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7930. // src1 is same shape as src0 => same indices
  7931. const int64_t i11 = i01;
  7932. const int64_t i12 = i02;
  7933. const int64_t i13 = i03;
  7934. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7935. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7936. ggml_float sum_xx = 0.0;
  7937. ggml_float sum_xdz = 0.0;
  7938. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7939. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7940. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7941. }
  7942. //const float mean = (float)(sum_xx)/ne00;
  7943. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7944. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7945. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7946. // we could cache rms from forward pass to improve performance.
  7947. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7948. //const float rms = sqrtf(mean_eps);
  7949. const float rrms = 1.0f / sqrtf(mean_eps);
  7950. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7951. {
  7952. // z = rms_norm(x)
  7953. //
  7954. // rms_norm(src0) =
  7955. // scale(
  7956. // src0,
  7957. // div(
  7958. // 1,
  7959. // sqrt(
  7960. // add(
  7961. // scale(
  7962. // sum(
  7963. // sqr(
  7964. // src0)),
  7965. // (1.0/N)),
  7966. // eps))));
  7967. // postorder:
  7968. // ## op args grad
  7969. // 00 param src0 grad[#00]
  7970. // 01 const 1
  7971. // 02 sqr (#00) grad[#02]
  7972. // 03 sum (#02) grad[#03]
  7973. // 04 const 1/N
  7974. // 05 scale (#03, #04) grad[#05]
  7975. // 06 const eps
  7976. // 07 add (#05, #06) grad[#07]
  7977. // 08 sqrt (#07) grad[#08]
  7978. // 09 div (#01,#08) grad[#09]
  7979. // 10 scale (#00,#09) grad[#10]
  7980. //
  7981. // backward pass, given grad[#10]
  7982. // #10: scale
  7983. // grad[#00] += scale(grad[#10],#09)
  7984. // grad[#09] += sum(mul(grad[#10],#00))
  7985. // #09: div
  7986. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7987. // #08: sqrt
  7988. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7989. // #07: add
  7990. // grad[#05] += grad[#07]
  7991. // #05: scale
  7992. // grad[#03] += scale(grad[#05],#04)
  7993. // #03: sum
  7994. // grad[#02] += repeat(grad[#03], #02)
  7995. // #02:
  7996. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7997. //
  7998. // substitute and simplify:
  7999. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8000. // grad[#02] = repeat(grad[#03], #02)
  8001. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8002. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8003. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8004. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8005. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8006. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8007. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8008. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8009. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8010. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8011. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8012. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8013. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8014. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8015. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8016. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8017. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8018. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8019. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8020. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8021. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8022. // a = b*c + d*e
  8023. // a = b*c*f/f + d*e*f/f
  8024. // a = (b*c*f + d*e*f)*(1/f)
  8025. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8026. // a = (b + d*e/c)*c
  8027. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8028. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8029. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8030. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8031. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8032. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8033. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8034. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8035. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8036. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8037. }
  8038. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8039. // post-order:
  8040. // dx := x
  8041. // dx := scale(dx,-mean_xdz/mean_eps)
  8042. // dx := add(dx, dz)
  8043. // dx := scale(dx, rrms)
  8044. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8045. ggml_vec_cpy_f32 (ne00, dx, x);
  8046. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8047. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8048. ggml_vec_acc_f32 (ne00, dx, dz);
  8049. ggml_vec_scale_f32(ne00, dx, rrms);
  8050. }
  8051. }
  8052. }
  8053. }
  8054. static void ggml_compute_forward_rms_norm_back(
  8055. const struct ggml_compute_params * params,
  8056. const struct ggml_tensor * src0,
  8057. const struct ggml_tensor * src1,
  8058. struct ggml_tensor * dst) {
  8059. switch (src0->type) {
  8060. case GGML_TYPE_F32:
  8061. {
  8062. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8063. } break;
  8064. default:
  8065. {
  8066. GGML_ASSERT(false);
  8067. } break;
  8068. }
  8069. }
  8070. // ggml_compute_forward_mul_mat
  8071. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8072. // helper function to determine if it is better to use BLAS or not
  8073. // for large matrices, BLAS is faster
  8074. static bool ggml_compute_forward_mul_mat_use_blas(
  8075. const struct ggml_tensor * src0,
  8076. const struct ggml_tensor * src1,
  8077. struct ggml_tensor * dst) {
  8078. //const int64_t ne00 = src0->ne[0];
  8079. //const int64_t ne01 = src0->ne[1];
  8080. const int64_t ne10 = src1->ne[0];
  8081. const int64_t ne0 = dst->ne[0];
  8082. const int64_t ne1 = dst->ne[1];
  8083. // TODO: find the optimal values for these
  8084. if (ggml_is_contiguous(src0) &&
  8085. ggml_is_contiguous(src1) &&
  8086. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8087. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8088. return true;
  8089. }
  8090. return false;
  8091. }
  8092. #endif
  8093. static void ggml_compute_forward_mul_mat_f32(
  8094. const struct ggml_compute_params * params,
  8095. const struct ggml_tensor * src0,
  8096. const struct ggml_tensor * src1,
  8097. struct ggml_tensor * dst) {
  8098. int64_t t0 = ggml_perf_time_us();
  8099. UNUSED(t0);
  8100. const int64_t ne00 = src0->ne[0];
  8101. const int64_t ne01 = src0->ne[1];
  8102. const int64_t ne02 = src0->ne[2];
  8103. const int64_t ne03 = src0->ne[3];
  8104. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8105. const int64_t ne10 = src1->ne[0];
  8106. #endif
  8107. const int64_t ne11 = src1->ne[1];
  8108. #ifndef NDEBUG
  8109. const int64_t ne12 = src1->ne[2];
  8110. const int64_t ne13 = src1->ne[3];
  8111. const int64_t ne0 = dst->ne[0];
  8112. const int64_t ne1 = dst->ne[1];
  8113. const int64_t ne2 = dst->ne[2];
  8114. const int64_t ne3 = dst->ne[3];
  8115. const int nb00 = src0->nb[0];
  8116. #endif
  8117. const int nb01 = src0->nb[1];
  8118. const int nb02 = src0->nb[2];
  8119. const int nb03 = src0->nb[3];
  8120. #ifndef NDEBUG
  8121. const int nb10 = src1->nb[0];
  8122. #endif
  8123. const int nb11 = src1->nb[1];
  8124. const int nb12 = src1->nb[2];
  8125. const int nb13 = src1->nb[3];
  8126. const int nb0 = dst->nb[0];
  8127. const int nb1 = dst->nb[1];
  8128. const int nb2 = dst->nb[2];
  8129. const int nb3 = dst->nb[3];
  8130. const int ith = params->ith;
  8131. const int nth = params->nth;
  8132. assert(ne02 == ne12);
  8133. assert(ne03 == ne13);
  8134. assert(ne2 == ne12);
  8135. assert(ne3 == ne13);
  8136. // we don't support permuted src0 or src1
  8137. assert(nb00 == sizeof(float));
  8138. assert(nb10 == sizeof(float));
  8139. // dst cannot be transposed or permuted
  8140. assert(nb0 == sizeof(float));
  8141. assert(nb0 <= nb1);
  8142. assert(nb1 <= nb2);
  8143. assert(nb2 <= nb3);
  8144. assert(ne0 == ne01);
  8145. assert(ne1 == ne11);
  8146. assert(ne2 == ne02);
  8147. assert(ne3 == ne03);
  8148. // nb01 >= nb00 - src0 is not transposed
  8149. // compute by src0 rows
  8150. #if defined(GGML_USE_CLBLAST)
  8151. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8152. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8153. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8154. }
  8155. return;
  8156. }
  8157. #endif
  8158. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8159. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8160. if (params->ith != 0) {
  8161. return;
  8162. }
  8163. if (params->type == GGML_TASK_INIT) {
  8164. return;
  8165. }
  8166. if (params->type == GGML_TASK_FINALIZE) {
  8167. return;
  8168. }
  8169. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8170. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8171. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8172. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8173. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8174. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8175. ne11, ne01, ne10,
  8176. 1.0f, y, ne10,
  8177. x, ne00,
  8178. 0.0f, d, ne01);
  8179. }
  8180. }
  8181. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8182. return;
  8183. }
  8184. #endif
  8185. if (params->type == GGML_TASK_INIT) {
  8186. return;
  8187. }
  8188. if (params->type == GGML_TASK_FINALIZE) {
  8189. return;
  8190. }
  8191. // parallelize by src0 rows using ggml_vec_dot_f32
  8192. // total rows in src0
  8193. const int nr = ne01*ne02*ne03;
  8194. // rows per thread
  8195. const int dr = (nr + nth - 1)/nth;
  8196. // row range for this thread
  8197. const int ir0 = dr*ith;
  8198. const int ir1 = MIN(ir0 + dr, nr);
  8199. for (int ir = ir0; ir < ir1; ++ir) {
  8200. // src0 indices
  8201. const int i03 = ir/(ne02*ne01);
  8202. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8203. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8204. for (int64_t ic = 0; ic < ne11; ++ic) {
  8205. // src1 indices
  8206. const int i13 = i03;
  8207. const int i12 = i02;
  8208. const int i11 = ic;
  8209. // dst indices
  8210. const int i0 = i01;
  8211. const int i1 = i11;
  8212. const int i2 = i02;
  8213. const int i3 = i03;
  8214. ggml_vec_dot_f32(ne00,
  8215. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8216. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8217. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8218. }
  8219. }
  8220. //int64_t t1 = ggml_perf_time_us();
  8221. //static int64_t acc = 0;
  8222. //acc += t1 - t0;
  8223. //if (t1 - t0 > 10) {
  8224. // printf("\n");
  8225. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8226. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8227. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8228. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8229. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8230. //}
  8231. }
  8232. static void ggml_compute_forward_mul_mat_f16_f32(
  8233. const struct ggml_compute_params * params,
  8234. const struct ggml_tensor * src0,
  8235. const struct ggml_tensor * src1,
  8236. struct ggml_tensor * dst) {
  8237. int64_t t0 = ggml_perf_time_us();
  8238. UNUSED(t0);
  8239. const int64_t ne00 = src0->ne[0];
  8240. const int64_t ne01 = src0->ne[1];
  8241. const int64_t ne02 = src0->ne[2];
  8242. const int64_t ne03 = src0->ne[3];
  8243. const int64_t ne10 = src1->ne[0];
  8244. const int64_t ne11 = src1->ne[1];
  8245. const int64_t ne12 = src1->ne[2];
  8246. const int64_t ne13 = src1->ne[3];
  8247. const int64_t ne0 = dst->ne[0];
  8248. const int64_t ne1 = dst->ne[1];
  8249. const int64_t ne2 = dst->ne[2];
  8250. const int64_t ne3 = dst->ne[3];
  8251. //const int64_t ne = ne0*ne1*ne2*ne3;
  8252. const int nb00 = src0->nb[0];
  8253. const int nb01 = src0->nb[1];
  8254. const int nb02 = src0->nb[2];
  8255. const int nb03 = src0->nb[3];
  8256. const int nb10 = src1->nb[0];
  8257. const int nb11 = src1->nb[1];
  8258. const int nb12 = src1->nb[2];
  8259. const int nb13 = src1->nb[3];
  8260. const int nb0 = dst->nb[0];
  8261. const int nb1 = dst->nb[1];
  8262. const int nb2 = dst->nb[2];
  8263. const int nb3 = dst->nb[3];
  8264. const int ith = params->ith;
  8265. const int nth = params->nth;
  8266. GGML_ASSERT(ne02 == ne12);
  8267. GGML_ASSERT(ne03 == ne13);
  8268. GGML_ASSERT(ne2 == ne12);
  8269. GGML_ASSERT(ne3 == ne13);
  8270. // TODO: we don't support permuted src0
  8271. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8272. // dst cannot be transposed or permuted
  8273. GGML_ASSERT(nb0 == sizeof(float));
  8274. GGML_ASSERT(nb0 <= nb1);
  8275. GGML_ASSERT(nb1 <= nb2);
  8276. GGML_ASSERT(nb2 <= nb3);
  8277. GGML_ASSERT(ne0 == ne01);
  8278. GGML_ASSERT(ne1 == ne11);
  8279. GGML_ASSERT(ne2 == ne02);
  8280. GGML_ASSERT(ne3 == ne03);
  8281. // nb01 >= nb00 - src0 is not transposed
  8282. // compute by src0 rows
  8283. #if defined(GGML_USE_CLBLAST)
  8284. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8285. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8286. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8287. }
  8288. return;
  8289. }
  8290. #endif
  8291. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8292. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8293. GGML_ASSERT(nb10 == sizeof(float));
  8294. if (params->ith != 0) {
  8295. return;
  8296. }
  8297. if (params->type == GGML_TASK_INIT) {
  8298. return;
  8299. }
  8300. if (params->type == GGML_TASK_FINALIZE) {
  8301. return;
  8302. }
  8303. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8304. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8305. float * const wdata = params->wdata;
  8306. {
  8307. size_t id = 0;
  8308. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8309. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8310. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8311. }
  8312. }
  8313. assert(id*sizeof(float) <= params->wsize);
  8314. }
  8315. const float * x = wdata;
  8316. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8317. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8318. // zT = y * xT
  8319. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8320. ne11, ne01, ne10,
  8321. 1.0f, y, ne10,
  8322. x, ne00,
  8323. 0.0f, d, ne01);
  8324. }
  8325. }
  8326. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8327. return;
  8328. }
  8329. #endif
  8330. if (params->type == GGML_TASK_INIT) {
  8331. ggml_fp16_t * const wdata = params->wdata;
  8332. size_t id = 0;
  8333. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8334. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8335. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8336. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8337. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8338. }
  8339. }
  8340. }
  8341. }
  8342. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8343. return;
  8344. }
  8345. if (params->type == GGML_TASK_FINALIZE) {
  8346. return;
  8347. }
  8348. // fp16 -> half the size, so divide by 2
  8349. // TODO: do not support transposed src1
  8350. assert(nb10/2 == sizeof(ggml_fp16_t));
  8351. // parallelize by src0 rows using ggml_vec_dot_f16
  8352. // total rows in src0
  8353. const int nr = ne01*ne02*ne03;
  8354. // rows per thread
  8355. const int dr = (nr + nth - 1)/nth;
  8356. // row range for this thread
  8357. const int ir0 = dr*ith;
  8358. const int ir1 = MIN(ir0 + dr, nr);
  8359. ggml_fp16_t * wdata = params->wdata;
  8360. for (int ir = ir0; ir < ir1; ++ir) {
  8361. // src0 indices
  8362. const int i03 = ir/(ne02*ne01);
  8363. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8364. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8365. const int i13 = i03;
  8366. const int i12 = i02;
  8367. const int i0 = i01;
  8368. const int i2 = i02;
  8369. const int i3 = i03;
  8370. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8371. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8372. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8373. for (int64_t ic = 0; ic < ne11; ++ic) {
  8374. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8375. }
  8376. }
  8377. //int64_t t1 = ggml_time_us();
  8378. //static int64_t acc = 0;
  8379. //acc += t1 - t0;
  8380. //if (t1 - t0 > 10) {
  8381. // printf("\n");
  8382. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8383. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8384. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8385. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8386. //}
  8387. }
  8388. static void ggml_compute_forward_mul_mat_q_f32(
  8389. const struct ggml_compute_params * params,
  8390. const struct ggml_tensor * src0,
  8391. const struct ggml_tensor * src1,
  8392. struct ggml_tensor * dst) {
  8393. int64_t t0 = ggml_perf_time_us();
  8394. UNUSED(t0);
  8395. const int64_t ne00 = src0->ne[0];
  8396. const int64_t ne01 = src0->ne[1];
  8397. const int64_t ne02 = src0->ne[2];
  8398. const int64_t ne03 = src0->ne[3];
  8399. const int64_t ne10 = src1->ne[0];
  8400. const int64_t ne11 = src1->ne[1];
  8401. const int64_t ne12 = src1->ne[2];
  8402. const int64_t ne13 = src1->ne[3];
  8403. const int64_t ne0 = dst->ne[0];
  8404. const int64_t ne1 = dst->ne[1];
  8405. const int64_t ne2 = dst->ne[2];
  8406. const int64_t ne3 = dst->ne[3];
  8407. const int nb00 = src0->nb[0];
  8408. const int nb01 = src0->nb[1];
  8409. const int nb02 = src0->nb[2];
  8410. const int nb03 = src0->nb[3];
  8411. const int nb10 = src1->nb[0];
  8412. const int nb11 = src1->nb[1];
  8413. const int nb12 = src1->nb[2];
  8414. const int nb13 = src1->nb[3];
  8415. const int nb0 = dst->nb[0];
  8416. const int nb1 = dst->nb[1];
  8417. const int nb2 = dst->nb[2];
  8418. const int nb3 = dst->nb[3];
  8419. const int ith = params->ith;
  8420. const int nth = params->nth;
  8421. GGML_ASSERT(ne02 == ne12);
  8422. GGML_ASSERT(ne03 == ne13);
  8423. GGML_ASSERT(ne2 == ne12);
  8424. GGML_ASSERT(ne3 == ne13);
  8425. const enum ggml_type type = src0->type;
  8426. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8427. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8428. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8429. // we don't support permuted src0 or src1
  8430. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8431. GGML_ASSERT(nb10 == sizeof(float));
  8432. // dst cannot be transposed or permuted
  8433. GGML_ASSERT(nb0 == sizeof(float));
  8434. GGML_ASSERT(nb0 <= nb1);
  8435. GGML_ASSERT(nb1 <= nb2);
  8436. GGML_ASSERT(nb2 <= nb3);
  8437. GGML_ASSERT(ne0 == ne01);
  8438. GGML_ASSERT(ne1 == ne11);
  8439. GGML_ASSERT(ne2 == ne02);
  8440. GGML_ASSERT(ne3 == ne03);
  8441. // nb01 >= nb00 - src0 is not transposed
  8442. // compute by src0 rows
  8443. #if defined(GGML_USE_CLBLAST)
  8444. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8445. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8446. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8447. }
  8448. return;
  8449. }
  8450. #endif
  8451. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8452. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8453. if (params->ith != 0) {
  8454. return;
  8455. }
  8456. if (params->type == GGML_TASK_INIT) {
  8457. return;
  8458. }
  8459. if (params->type == GGML_TASK_FINALIZE) {
  8460. return;
  8461. }
  8462. float * const wdata = params->wdata;
  8463. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8464. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8465. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8466. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8467. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8468. {
  8469. size_t id = 0;
  8470. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8471. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8472. id += ne00;
  8473. }
  8474. assert(id*sizeof(float) <= params->wsize);
  8475. }
  8476. const float * x = wdata;
  8477. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8478. ne11, ne01, ne10,
  8479. 1.0f, y, ne10,
  8480. x, ne00,
  8481. 0.0f, d, ne01);
  8482. }
  8483. }
  8484. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8485. return;
  8486. }
  8487. #endif
  8488. if (params->type == GGML_TASK_INIT) {
  8489. char * wdata = params->wdata;
  8490. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8491. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8492. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8493. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8494. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8495. wdata += row_size;
  8496. }
  8497. }
  8498. }
  8499. return;
  8500. }
  8501. if (params->type == GGML_TASK_FINALIZE) {
  8502. return;
  8503. }
  8504. // parallelize by src0 rows using ggml_vec_dot_q
  8505. // total rows in src0
  8506. const int nr = ne01*ne02*ne03;
  8507. // rows per thread
  8508. const int dr = (nr + nth - 1)/nth;
  8509. // row range for this thread
  8510. const int ir0 = dr*ith;
  8511. const int ir1 = MIN(ir0 + dr, nr);
  8512. void * wdata = params->wdata;
  8513. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8514. for (int ir = ir0; ir < ir1; ++ir) {
  8515. // src0 indices
  8516. const int i03 = ir/(ne02*ne01);
  8517. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8518. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8519. const int i13 = i03;
  8520. const int i12 = i02;
  8521. const int i0 = i01;
  8522. const int i2 = i02;
  8523. const int i3 = i03;
  8524. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8525. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8526. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8527. assert(ne00 % 32 == 0);
  8528. for (int64_t ic = 0; ic < ne11; ++ic) {
  8529. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8530. }
  8531. }
  8532. //int64_t t1 = ggml_time_us();
  8533. //static int64_t acc = 0;
  8534. //acc += t1 - t0;
  8535. //if (t1 - t0 > 10) {
  8536. // printf("\n");
  8537. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8538. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8539. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8540. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8541. //}
  8542. }
  8543. static void ggml_compute_forward_mul_mat(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. const struct ggml_tensor * src1,
  8547. struct ggml_tensor * dst) {
  8548. switch (src0->type) {
  8549. case GGML_TYPE_Q4_0:
  8550. case GGML_TYPE_Q4_1:
  8551. case GGML_TYPE_Q5_0:
  8552. case GGML_TYPE_Q5_1:
  8553. case GGML_TYPE_Q8_0:
  8554. case GGML_TYPE_Q8_1:
  8555. case GGML_TYPE_Q2_K:
  8556. case GGML_TYPE_Q3_K:
  8557. case GGML_TYPE_Q4_K:
  8558. case GGML_TYPE_Q5_K:
  8559. case GGML_TYPE_Q6_K:
  8560. {
  8561. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8562. } break;
  8563. case GGML_TYPE_F16:
  8564. {
  8565. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8566. } break;
  8567. case GGML_TYPE_F32:
  8568. {
  8569. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8570. } break;
  8571. default:
  8572. {
  8573. GGML_ASSERT(false);
  8574. } break;
  8575. }
  8576. }
  8577. // ggml_compute_forward_out_prod
  8578. static void ggml_compute_forward_out_prod_f32(
  8579. const struct ggml_compute_params * params,
  8580. const struct ggml_tensor * src0,
  8581. const struct ggml_tensor * src1,
  8582. struct ggml_tensor * dst) {
  8583. int64_t t0 = ggml_perf_time_us();
  8584. UNUSED(t0);
  8585. const int64_t ne00 = src0->ne[0];
  8586. const int64_t ne01 = src0->ne[1];
  8587. const int64_t ne02 = src0->ne[2];
  8588. const int64_t ne03 = src0->ne[3];
  8589. const int64_t ne10 = src1->ne[0];
  8590. //const int64_t ne11 = src1->ne[1];
  8591. const int64_t ne12 = src1->ne[2];
  8592. const int64_t ne13 = src1->ne[3];
  8593. const int64_t ne0 = dst->ne[0];
  8594. const int64_t ne1 = dst->ne[1];
  8595. const int64_t ne2 = dst->ne[2];
  8596. const int64_t ne3 = dst->ne[3];
  8597. const int nb00 = src0->nb[0];
  8598. const int nb01 = src0->nb[1];
  8599. const int nb02 = src0->nb[2];
  8600. const int nb03 = src0->nb[3];
  8601. const int nb10 = src1->nb[0];
  8602. const int nb11 = src1->nb[1];
  8603. const int nb12 = src1->nb[2];
  8604. const int nb13 = src1->nb[3];
  8605. const int nb0 = dst->nb[0];
  8606. const int nb1 = dst->nb[1];
  8607. const int nb2 = dst->nb[2];
  8608. const int nb3 = dst->nb[3];
  8609. const int ith = params->ith;
  8610. const int nth = params->nth;
  8611. GGML_ASSERT(ne02 == ne12);
  8612. GGML_ASSERT(ne03 == ne13);
  8613. GGML_ASSERT(ne2 == ne12);
  8614. GGML_ASSERT(ne3 == ne13);
  8615. // we don't support permuted src0 or src1
  8616. GGML_ASSERT(nb00 == sizeof(float));
  8617. // dst cannot be transposed or permuted
  8618. GGML_ASSERT(nb0 == sizeof(float));
  8619. // GGML_ASSERT(nb0 <= nb1);
  8620. // GGML_ASSERT(nb1 <= nb2);
  8621. // GGML_ASSERT(nb2 <= nb3);
  8622. GGML_ASSERT(ne0 == ne00);
  8623. GGML_ASSERT(ne1 == ne10);
  8624. GGML_ASSERT(ne2 == ne02);
  8625. GGML_ASSERT(ne3 == ne03);
  8626. // nb01 >= nb00 - src0 is not transposed
  8627. // compute by src0 rows
  8628. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8629. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8630. if (params->type == GGML_TASK_INIT) {
  8631. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8632. return;
  8633. }
  8634. if (params->type == GGML_TASK_FINALIZE) {
  8635. return;
  8636. }
  8637. // parallelize by last three dimensions
  8638. // total rows in dst
  8639. const int64_t nr = ne1*ne2*ne3;
  8640. // rows per thread
  8641. const int64_t dr = (nr + nth - 1)/nth;
  8642. // row range for this thread
  8643. const int64_t ir0 = dr*ith;
  8644. const int64_t ir1 = MIN(ir0 + dr, nr);
  8645. // dst[:,:,:,:] = 0
  8646. // for i2,i3:
  8647. // for i1:
  8648. // for i01:
  8649. // for i0:
  8650. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8651. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8652. // dst indices
  8653. const int64_t i3 = ir/(ne2*ne1);
  8654. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8655. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8656. const int64_t i02 = i2;
  8657. const int64_t i03 = i3;
  8658. //const int64_t i10 = i1;
  8659. const int64_t i12 = i2;
  8660. const int64_t i13 = i3;
  8661. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8662. const int64_t i11 = i01;
  8663. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8664. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8665. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8666. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8667. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8668. // d[i0] += s0[i0] * s1[i1];
  8669. // }
  8670. }
  8671. }
  8672. //int64_t t1 = ggml_perf_time_us();
  8673. //static int64_t acc = 0;
  8674. //acc += t1 - t0;
  8675. //if (t1 - t0 > 10) {
  8676. // printf("\n");
  8677. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8678. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8679. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8680. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8681. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8682. //}
  8683. }
  8684. static void ggml_compute_forward_out_prod(
  8685. const struct ggml_compute_params * params,
  8686. const struct ggml_tensor * src0,
  8687. const struct ggml_tensor * src1,
  8688. struct ggml_tensor * dst) {
  8689. switch (src0->type) {
  8690. case GGML_TYPE_Q4_0:
  8691. case GGML_TYPE_Q4_1:
  8692. case GGML_TYPE_Q5_0:
  8693. case GGML_TYPE_Q5_1:
  8694. case GGML_TYPE_Q8_0:
  8695. case GGML_TYPE_Q8_1:
  8696. {
  8697. GGML_ASSERT(false); // todo
  8698. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8699. } break;
  8700. case GGML_TYPE_F16:
  8701. {
  8702. GGML_ASSERT(false); // todo
  8703. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8704. } break;
  8705. case GGML_TYPE_F32:
  8706. {
  8707. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8708. } break;
  8709. default:
  8710. {
  8711. GGML_ASSERT(false);
  8712. } break;
  8713. }
  8714. }
  8715. // ggml_compute_forward_scale
  8716. static void ggml_compute_forward_scale_f32(
  8717. const struct ggml_compute_params * params,
  8718. const struct ggml_tensor * src0,
  8719. const struct ggml_tensor * src1,
  8720. struct ggml_tensor * dst) {
  8721. GGML_ASSERT(ggml_is_contiguous(src0));
  8722. GGML_ASSERT(ggml_is_contiguous(dst));
  8723. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8724. GGML_ASSERT(ggml_is_scalar(src1));
  8725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8726. return;
  8727. }
  8728. // scale factor
  8729. const float v = *(float *) src1->data;
  8730. const int ith = params->ith;
  8731. const int nth = params->nth;
  8732. const int nc = src0->ne[0];
  8733. const int nr = ggml_nrows(src0);
  8734. // rows per thread
  8735. const int dr = (nr + nth - 1)/nth;
  8736. // row range for this thread
  8737. const int ir0 = dr*ith;
  8738. const int ir1 = MIN(ir0 + dr, nr);
  8739. const size_t nb01 = src0->nb[1];
  8740. const size_t nb1 = dst->nb[1];
  8741. for (int i1 = ir0; i1 < ir1; i1++) {
  8742. if (dst->data != src0->data) {
  8743. // src0 is same shape as dst => same indices
  8744. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8745. }
  8746. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8747. }
  8748. }
  8749. static void ggml_compute_forward_scale(
  8750. const struct ggml_compute_params * params,
  8751. const struct ggml_tensor * src0,
  8752. const struct ggml_tensor * src1,
  8753. struct ggml_tensor * dst) {
  8754. switch (src0->type) {
  8755. case GGML_TYPE_F32:
  8756. {
  8757. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8758. } break;
  8759. default:
  8760. {
  8761. GGML_ASSERT(false);
  8762. } break;
  8763. }
  8764. }
  8765. // ggml_compute_forward_set
  8766. static void ggml_compute_forward_set_f32(
  8767. const struct ggml_compute_params * params,
  8768. const struct ggml_tensor * src0,
  8769. const struct ggml_tensor * src1,
  8770. const struct ggml_tensor * opt0,
  8771. struct ggml_tensor * dst) {
  8772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8773. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8774. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8775. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8776. // view src0 and dst with these strides and data offset inbytes during set
  8777. // nb0 is implicitely element_size because src0 and dst are contiguous
  8778. size_t nb1 = ((int32_t *) opt0->data)[0];
  8779. size_t nb2 = ((int32_t *) opt0->data)[1];
  8780. size_t nb3 = ((int32_t *) opt0->data)[2];
  8781. size_t offset = ((int32_t *) opt0->data)[3];
  8782. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8783. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8784. // memcpy needs to be synchronized across threads to avoid race conditions.
  8785. // => do it in INIT phase
  8786. memcpy(
  8787. ((char *) dst->data),
  8788. ((char *) src0->data),
  8789. ggml_nbytes(dst));
  8790. }
  8791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8792. return;
  8793. }
  8794. const int ith = params->ith;
  8795. const int nth = params->nth;
  8796. const int nr = ggml_nrows(src1);
  8797. const int nc = src1->ne[0];
  8798. const int64_t ne10 = src1->ne[0];
  8799. const int64_t ne11 = src1->ne[1];
  8800. const int64_t ne12 = src1->ne[2];
  8801. const int64_t ne13 = src1->ne[3];
  8802. const size_t nb10 = src1->nb[0];
  8803. const size_t nb11 = src1->nb[1];
  8804. const size_t nb12 = src1->nb[2];
  8805. const size_t nb13 = src1->nb[3];
  8806. // src0 and dst as viewed during set
  8807. const size_t nb0 = ggml_element_size(src0);
  8808. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8809. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8810. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8811. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8812. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8813. GGML_ASSERT(nb10 == sizeof(float));
  8814. // rows per thread
  8815. const int dr = (nr + nth - 1)/nth;
  8816. // row range for this thread
  8817. const int ir0 = dr*ith;
  8818. const int ir1 = MIN(ir0 + dr, nr);
  8819. for (int ir = ir0; ir < ir1; ++ir) {
  8820. // src0 and dst are viewed with shape of src1 and offset
  8821. // => same indices
  8822. const int i3 = ir/(ne12*ne11);
  8823. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8824. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8825. ggml_vec_cpy_f32(nc,
  8826. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8827. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8828. }
  8829. }
  8830. static void ggml_compute_forward_set(
  8831. const struct ggml_compute_params * params,
  8832. const struct ggml_tensor * src0,
  8833. const struct ggml_tensor * src1,
  8834. const struct ggml_tensor * opt0,
  8835. struct ggml_tensor * dst) {
  8836. switch (src0->type) {
  8837. case GGML_TYPE_F32:
  8838. {
  8839. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8840. } break;
  8841. case GGML_TYPE_F16:
  8842. case GGML_TYPE_Q4_0:
  8843. case GGML_TYPE_Q4_1:
  8844. case GGML_TYPE_Q5_0:
  8845. case GGML_TYPE_Q5_1:
  8846. case GGML_TYPE_Q8_0:
  8847. case GGML_TYPE_Q8_1:
  8848. case GGML_TYPE_Q2_K:
  8849. case GGML_TYPE_Q3_K:
  8850. case GGML_TYPE_Q4_K:
  8851. case GGML_TYPE_Q5_K:
  8852. case GGML_TYPE_Q6_K:
  8853. default:
  8854. {
  8855. GGML_ASSERT(false);
  8856. } break;
  8857. }
  8858. }
  8859. // ggml_compute_forward_cpy
  8860. static void ggml_compute_forward_cpy(
  8861. const struct ggml_compute_params * params,
  8862. const struct ggml_tensor * src0,
  8863. struct ggml_tensor * dst) {
  8864. ggml_compute_forward_dup(params, src0, dst);
  8865. }
  8866. // ggml_compute_forward_cont
  8867. static void ggml_compute_forward_cont(
  8868. const struct ggml_compute_params * params,
  8869. const struct ggml_tensor * src0,
  8870. struct ggml_tensor * dst) {
  8871. ggml_compute_forward_dup(params, src0, dst);
  8872. }
  8873. // ggml_compute_forward_reshape
  8874. static void ggml_compute_forward_reshape(
  8875. const struct ggml_compute_params * params,
  8876. const struct ggml_tensor * src0,
  8877. struct ggml_tensor * dst) {
  8878. // NOP
  8879. UNUSED(params);
  8880. UNUSED(src0);
  8881. UNUSED(dst);
  8882. }
  8883. // ggml_compute_forward_view
  8884. static void ggml_compute_forward_view(
  8885. const struct ggml_compute_params * params,
  8886. const struct ggml_tensor * src0) {
  8887. // NOP
  8888. UNUSED(params);
  8889. UNUSED(src0);
  8890. }
  8891. // ggml_compute_forward_permute
  8892. static void ggml_compute_forward_permute(
  8893. const struct ggml_compute_params * params,
  8894. const struct ggml_tensor * src0) {
  8895. // NOP
  8896. UNUSED(params);
  8897. UNUSED(src0);
  8898. }
  8899. // ggml_compute_forward_transpose
  8900. static void ggml_compute_forward_transpose(
  8901. const struct ggml_compute_params * params,
  8902. const struct ggml_tensor * src0) {
  8903. // NOP
  8904. UNUSED(params);
  8905. UNUSED(src0);
  8906. }
  8907. // ggml_compute_forward_get_rows
  8908. static void ggml_compute_forward_get_rows_q(
  8909. const struct ggml_compute_params * params,
  8910. const struct ggml_tensor * src0,
  8911. const struct ggml_tensor * src1,
  8912. struct ggml_tensor * dst) {
  8913. assert(params->ith == 0);
  8914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8915. return;
  8916. }
  8917. const int nc = src0->ne[0];
  8918. const int nr = ggml_nelements(src1);
  8919. const enum ggml_type type = src0->type;
  8920. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8921. assert( dst->ne[0] == nc);
  8922. assert( dst->ne[1] == nr);
  8923. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8924. for (int i = 0; i < nr; ++i) {
  8925. const int r = ((int32_t *) src1->data)[i];
  8926. dequantize_row_q(
  8927. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8928. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8929. }
  8930. }
  8931. static void ggml_compute_forward_get_rows_f16(
  8932. const struct ggml_compute_params * params,
  8933. const struct ggml_tensor * src0,
  8934. const struct ggml_tensor * src1,
  8935. struct ggml_tensor * dst) {
  8936. assert(params->ith == 0);
  8937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8938. return;
  8939. }
  8940. const int nc = src0->ne[0];
  8941. const int nr = ggml_nelements(src1);
  8942. assert( dst->ne[0] == nc);
  8943. assert( dst->ne[1] == nr);
  8944. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8945. for (int i = 0; i < nr; ++i) {
  8946. const int r = ((int32_t *) src1->data)[i];
  8947. for (int j = 0; j < nc; ++j) {
  8948. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8949. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8950. }
  8951. }
  8952. }
  8953. static void ggml_compute_forward_get_rows_f32(
  8954. const struct ggml_compute_params * params,
  8955. const struct ggml_tensor * src0,
  8956. const struct ggml_tensor * src1,
  8957. struct ggml_tensor * dst) {
  8958. assert(params->ith == 0);
  8959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8960. return;
  8961. }
  8962. const int nc = src0->ne[0];
  8963. const int nr = ggml_nelements(src1);
  8964. assert( dst->ne[0] == nc);
  8965. assert( dst->ne[1] == nr);
  8966. assert(src0->nb[0] == sizeof(float));
  8967. for (int i = 0; i < nr; ++i) {
  8968. const int r = ((int32_t *) src1->data)[i];
  8969. ggml_vec_cpy_f32(nc,
  8970. (float *) ((char *) dst->data + i*dst->nb[1]),
  8971. (float *) ((char *) src0->data + r*src0->nb[1]));
  8972. }
  8973. }
  8974. static void ggml_compute_forward_get_rows(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. struct ggml_tensor * dst) {
  8979. switch (src0->type) {
  8980. case GGML_TYPE_Q4_0:
  8981. case GGML_TYPE_Q4_1:
  8982. case GGML_TYPE_Q5_0:
  8983. case GGML_TYPE_Q5_1:
  8984. case GGML_TYPE_Q8_0:
  8985. case GGML_TYPE_Q8_1:
  8986. case GGML_TYPE_Q2_K:
  8987. case GGML_TYPE_Q3_K:
  8988. case GGML_TYPE_Q4_K:
  8989. case GGML_TYPE_Q5_K:
  8990. case GGML_TYPE_Q6_K:
  8991. {
  8992. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8993. } break;
  8994. case GGML_TYPE_F16:
  8995. {
  8996. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8997. } break;
  8998. case GGML_TYPE_F32:
  8999. {
  9000. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9001. } break;
  9002. default:
  9003. {
  9004. GGML_ASSERT(false);
  9005. } break;
  9006. }
  9007. //static bool first = true;
  9008. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9009. //if (first) {
  9010. // first = false;
  9011. //} else {
  9012. // for (int k = 0; k < dst->ne[1]; ++k) {
  9013. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9014. // for (int i = 0; i < 16; ++i) {
  9015. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9016. // }
  9017. // printf("\n");
  9018. // }
  9019. // printf("\n");
  9020. // }
  9021. // printf("\n");
  9022. // exit(0);
  9023. //}
  9024. }
  9025. // ggml_compute_forward_get_rows_back
  9026. static void ggml_compute_forward_get_rows_back_f32_f16(
  9027. const struct ggml_compute_params * params,
  9028. const struct ggml_tensor * src0,
  9029. const struct ggml_tensor * src1,
  9030. const struct ggml_tensor * opt0,
  9031. struct ggml_tensor * dst) {
  9032. GGML_ASSERT(params->ith == 0);
  9033. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9034. GGML_ASSERT(ggml_is_contiguous(opt0));
  9035. GGML_ASSERT(ggml_is_contiguous(dst));
  9036. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9038. return;
  9039. }
  9040. const int nc = src0->ne[0];
  9041. const int nr = ggml_nelements(src1);
  9042. GGML_ASSERT( dst->ne[0] == nc);
  9043. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9044. for (int i = 0; i < nr; ++i) {
  9045. const int r = ((int32_t *) src1->data)[i];
  9046. for (int j = 0; j < nc; ++j) {
  9047. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9048. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9049. }
  9050. }
  9051. }
  9052. static void ggml_compute_forward_get_rows_back_f32(
  9053. const struct ggml_compute_params * params,
  9054. const struct ggml_tensor * src0,
  9055. const struct ggml_tensor * src1,
  9056. const struct ggml_tensor * opt0,
  9057. struct ggml_tensor * dst) {
  9058. GGML_ASSERT(params->ith == 0);
  9059. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9060. GGML_ASSERT(ggml_is_contiguous(opt0));
  9061. GGML_ASSERT(ggml_is_contiguous(dst));
  9062. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9063. if (params->type == GGML_TASK_INIT) {
  9064. memset(dst->data, 0, ggml_nbytes(dst));
  9065. }
  9066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9067. return;
  9068. }
  9069. const int nc = src0->ne[0];
  9070. const int nr = ggml_nelements(src1);
  9071. GGML_ASSERT( dst->ne[0] == nc);
  9072. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9073. for (int i = 0; i < nr; ++i) {
  9074. const int r = ((int32_t *) src1->data)[i];
  9075. ggml_vec_add_f32(nc,
  9076. (float *) ((char *) dst->data + r*dst->nb[1]),
  9077. (float *) ((char *) dst->data + r*dst->nb[1]),
  9078. (float *) ((char *) src0->data + i*src0->nb[1]));
  9079. }
  9080. }
  9081. static void ggml_compute_forward_get_rows_back(
  9082. const struct ggml_compute_params * params,
  9083. const struct ggml_tensor * src0,
  9084. const struct ggml_tensor * src1,
  9085. const struct ggml_tensor * opt0,
  9086. struct ggml_tensor * dst) {
  9087. switch (src0->type) {
  9088. case GGML_TYPE_F16:
  9089. {
  9090. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9091. } break;
  9092. case GGML_TYPE_F32:
  9093. {
  9094. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9095. } break;
  9096. default:
  9097. {
  9098. GGML_ASSERT(false);
  9099. } break;
  9100. }
  9101. //static bool first = true;
  9102. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9103. //if (first) {
  9104. // first = false;
  9105. //} else {
  9106. // for (int k = 0; k < dst->ne[1]; ++k) {
  9107. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9108. // for (int i = 0; i < 16; ++i) {
  9109. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9110. // }
  9111. // printf("\n");
  9112. // }
  9113. // printf("\n");
  9114. // }
  9115. // printf("\n");
  9116. // exit(0);
  9117. //}
  9118. }
  9119. // ggml_compute_forward_diag
  9120. static void ggml_compute_forward_diag_f32(
  9121. const struct ggml_compute_params * params,
  9122. const struct ggml_tensor * src0,
  9123. struct ggml_tensor * dst) {
  9124. GGML_ASSERT(params->ith == 0);
  9125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9126. return;
  9127. }
  9128. // TODO: handle transposed/permuted matrices
  9129. const int ne00 = src0->ne[0];
  9130. const int ne01 = src0->ne[1];
  9131. const int ne02 = src0->ne[2];
  9132. const int ne03 = src0->ne[3];
  9133. const int ne0 = dst->ne[0];
  9134. const int ne1 = dst->ne[1];
  9135. const int ne2 = dst->ne[2];
  9136. const int ne3 = dst->ne[3];
  9137. GGML_ASSERT(ne00 == ne0);
  9138. GGML_ASSERT(ne00 == ne1);
  9139. GGML_ASSERT(ne01 == 1);
  9140. GGML_ASSERT(ne02 == ne2);
  9141. GGML_ASSERT(ne03 == ne3);
  9142. const int nb00 = src0->nb[0];
  9143. //const int nb01 = src0->nb[1];
  9144. const int nb02 = src0->nb[2];
  9145. const int nb03 = src0->nb[3];
  9146. const int nb0 = dst->nb[0];
  9147. const int nb1 = dst->nb[1];
  9148. const int nb2 = dst->nb[2];
  9149. const int nb3 = dst->nb[3];
  9150. GGML_ASSERT(nb00 == sizeof(float));
  9151. GGML_ASSERT(nb0 == sizeof(float));
  9152. for (int i3 = 0; i3 < ne3; i3++) {
  9153. for (int i2 = 0; i2 < ne2; i2++) {
  9154. for (int i1 = 0; i1 < ne1; i1++) {
  9155. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9156. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9157. for (int i0 = 0; i0 < i1; i0++) {
  9158. d[i0] = 0;
  9159. }
  9160. d[i1] = s[i1];
  9161. for (int i0 = i1+1; i0 < ne0; i0++) {
  9162. d[i0] = 0;
  9163. }
  9164. }
  9165. }
  9166. }
  9167. }
  9168. static void ggml_compute_forward_diag(
  9169. const struct ggml_compute_params * params,
  9170. const struct ggml_tensor * src0,
  9171. struct ggml_tensor * dst) {
  9172. switch (src0->type) {
  9173. case GGML_TYPE_F32:
  9174. {
  9175. ggml_compute_forward_diag_f32(params, src0, dst);
  9176. } break;
  9177. default:
  9178. {
  9179. GGML_ASSERT(false);
  9180. } break;
  9181. }
  9182. }
  9183. // ggml_compute_forward_diag_mask_inf
  9184. static void ggml_compute_forward_diag_mask_f32(
  9185. const struct ggml_compute_params * params,
  9186. const struct ggml_tensor * src0,
  9187. const struct ggml_tensor * src1,
  9188. struct ggml_tensor * dst,
  9189. const float value) {
  9190. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9191. GGML_ASSERT(ggml_nelements(src1) == 2);
  9192. const int ith = params->ith;
  9193. const int nth = params->nth;
  9194. const int n_past = ((int32_t *) src1->data)[0];
  9195. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9196. GGML_ASSERT(n_past >= 0);
  9197. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9198. // memcpy needs to be synchronized across threads to avoid race conditions.
  9199. // => do it in INIT phase
  9200. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9201. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9202. memcpy(
  9203. ((char *) dst->data),
  9204. ((char *) src0->data),
  9205. ggml_nbytes(dst));
  9206. }
  9207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9208. return;
  9209. }
  9210. // TODO: handle transposed/permuted matrices
  9211. const int n = ggml_nrows(src0);
  9212. const int nc = src0->ne[0];
  9213. const int nr = src0->ne[1];
  9214. const int nz = n/nr;
  9215. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9216. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9217. for (int k = 0; k < nz; k++) {
  9218. for (int j = ith; j < nr; j += nth) {
  9219. for (int i = n_past; i < nc; i++) {
  9220. if (i > n_past + j) {
  9221. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9222. }
  9223. }
  9224. }
  9225. }
  9226. }
  9227. static void ggml_compute_forward_diag_mask_inf(
  9228. const struct ggml_compute_params * params,
  9229. const struct ggml_tensor * src0,
  9230. const struct ggml_tensor * src1,
  9231. struct ggml_tensor * dst) {
  9232. switch (src0->type) {
  9233. case GGML_TYPE_F32:
  9234. {
  9235. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9236. } break;
  9237. default:
  9238. {
  9239. GGML_ASSERT(false);
  9240. } break;
  9241. }
  9242. }
  9243. static void ggml_compute_forward_diag_mask_zero(
  9244. const struct ggml_compute_params * params,
  9245. const struct ggml_tensor * src0,
  9246. const struct ggml_tensor * src1,
  9247. struct ggml_tensor * dst) {
  9248. switch (src0->type) {
  9249. case GGML_TYPE_F32:
  9250. {
  9251. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9252. } break;
  9253. default:
  9254. {
  9255. GGML_ASSERT(false);
  9256. } break;
  9257. }
  9258. }
  9259. // ggml_compute_forward_soft_max
  9260. static void ggml_compute_forward_soft_max_f32(
  9261. const struct ggml_compute_params * params,
  9262. const struct ggml_tensor * src0,
  9263. struct ggml_tensor * dst) {
  9264. GGML_ASSERT(ggml_is_contiguous(src0));
  9265. GGML_ASSERT(ggml_is_contiguous(dst));
  9266. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9268. return;
  9269. }
  9270. // TODO: handle transposed/permuted matrices
  9271. const int ith = params->ith;
  9272. const int nth = params->nth;
  9273. const int nc = src0->ne[0];
  9274. const int nr = ggml_nrows(src0);
  9275. // rows per thread
  9276. const int dr = (nr + nth - 1)/nth;
  9277. // row range for this thread
  9278. const int ir0 = dr*ith;
  9279. const int ir1 = MIN(ir0 + dr, nr);
  9280. for (int i1 = ir0; i1 < ir1; i1++) {
  9281. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9282. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9283. #ifndef NDEBUG
  9284. for (int i = 0; i < nc; ++i) {
  9285. //printf("p[%d] = %f\n", i, p[i]);
  9286. assert(!isnan(sp[i]));
  9287. }
  9288. #endif
  9289. float max = -INFINITY;
  9290. ggml_vec_max_f32(nc, &max, sp);
  9291. ggml_float sum = 0.0;
  9292. uint16_t scvt;
  9293. for (int i = 0; i < nc; i++) {
  9294. if (sp[i] == -INFINITY) {
  9295. dp[i] = 0.0f;
  9296. } else {
  9297. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9298. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9299. memcpy(&scvt, &s, sizeof(scvt));
  9300. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9301. sum += (ggml_float)val;
  9302. dp[i] = val;
  9303. }
  9304. }
  9305. assert(sum > 0.0);
  9306. sum = 1.0/sum;
  9307. ggml_vec_scale_f32(nc, dp, sum);
  9308. #ifndef NDEBUG
  9309. for (int i = 0; i < nc; ++i) {
  9310. assert(!isnan(dp[i]));
  9311. assert(!isinf(dp[i]));
  9312. }
  9313. #endif
  9314. }
  9315. }
  9316. static void ggml_compute_forward_soft_max(
  9317. const struct ggml_compute_params * params,
  9318. const struct ggml_tensor * src0,
  9319. struct ggml_tensor * dst) {
  9320. switch (src0->type) {
  9321. case GGML_TYPE_F32:
  9322. {
  9323. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9324. } break;
  9325. default:
  9326. {
  9327. GGML_ASSERT(false);
  9328. } break;
  9329. }
  9330. }
  9331. // ggml_compute_forward_soft_max_back
  9332. static void ggml_compute_forward_soft_max_back_f32(
  9333. const struct ggml_compute_params * params,
  9334. const struct ggml_tensor * src0,
  9335. const struct ggml_tensor * src1,
  9336. struct ggml_tensor * dst) {
  9337. GGML_ASSERT(ggml_is_contiguous(src0));
  9338. GGML_ASSERT(ggml_is_contiguous(src1));
  9339. GGML_ASSERT(ggml_is_contiguous(dst));
  9340. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9341. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9343. return;
  9344. }
  9345. // TODO: handle transposed/permuted matrices
  9346. const int ith = params->ith;
  9347. const int nth = params->nth;
  9348. const int nc = src0->ne[0];
  9349. const int nr = ggml_nrows(src0);
  9350. // rows per thread
  9351. const int dr = (nr + nth - 1)/nth;
  9352. // row range for this thread
  9353. const int ir0 = dr*ith;
  9354. const int ir1 = MIN(ir0 + dr, nr);
  9355. for (int i1 = ir0; i1 < ir1; i1++) {
  9356. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9357. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9358. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9359. #ifndef NDEBUG
  9360. for (int i = 0; i < nc; ++i) {
  9361. //printf("p[%d] = %f\n", i, p[i]);
  9362. assert(!isnan(dy[i]));
  9363. assert(!isnan(y[i]));
  9364. }
  9365. #endif
  9366. // Jii = yi - yi*yi
  9367. // Jij = -yi*yj
  9368. // J = diag(y)-y.T*y
  9369. // dx = J * dy
  9370. // dxk = sum_i(Jki * dyi)
  9371. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9372. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9373. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9374. // dxk = -yk * dot(y, dy) + yk*dyk
  9375. // dxk = yk * (- dot(y, dy) + dyk)
  9376. // dxk = yk * (dyk - dot(y, dy))
  9377. //
  9378. // post-order:
  9379. // dot_y_dy := dot(y, dy)
  9380. // dx := dy
  9381. // dx := dx - dot_y_dy
  9382. // dx := dx * y
  9383. // linear runtime, no additional memory
  9384. float dot_y_dy = 0;
  9385. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9386. ggml_vec_cpy_f32 (nc, dx, dy);
  9387. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9388. ggml_vec_mul_f32 (nc, dx, dx, y);
  9389. #ifndef NDEBUG
  9390. for (int i = 0; i < nc; ++i) {
  9391. assert(!isnan(dx[i]));
  9392. assert(!isinf(dx[i]));
  9393. }
  9394. #endif
  9395. }
  9396. }
  9397. static void ggml_compute_forward_soft_max_back(
  9398. const struct ggml_compute_params * params,
  9399. const struct ggml_tensor * src0,
  9400. const struct ggml_tensor * src1,
  9401. struct ggml_tensor * dst) {
  9402. switch (src0->type) {
  9403. case GGML_TYPE_F32:
  9404. {
  9405. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9406. } break;
  9407. default:
  9408. {
  9409. GGML_ASSERT(false);
  9410. } break;
  9411. }
  9412. }
  9413. // ggml_compute_forward_alibi
  9414. static void ggml_compute_forward_alibi_f32(
  9415. const struct ggml_compute_params * params,
  9416. const struct ggml_tensor * src0,
  9417. const struct ggml_tensor * src1,
  9418. struct ggml_tensor * dst) {
  9419. assert(params->ith == 0);
  9420. assert(src1->type == GGML_TYPE_I32);
  9421. assert(ggml_nelements(src1) == 3);
  9422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9423. return;
  9424. }
  9425. const int n_past = ((int32_t *) src1->data)[0];
  9426. const int n_head = ((int32_t *) src1->data)[1];
  9427. const float max_bias = ((float *) src1->data)[2];
  9428. assert(n_past >= 0);
  9429. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9430. const int ne1 = src0->ne[1]; // seq_len_without_past
  9431. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9432. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9433. const int n = ggml_nrows(src0);
  9434. const int ne2_ne3 = n/ne1; // ne2*ne3
  9435. const int nb0 = src0->nb[0];
  9436. const int nb1 = src0->nb[1];
  9437. const int nb2 = src0->nb[2];
  9438. //const int nb3 = src0->nb[3];
  9439. assert(nb0 == sizeof(float));
  9440. assert(ne1 + n_past == ne0); (void) n_past;
  9441. // add alibi to src0 (KQ_scaled)
  9442. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9443. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9444. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9445. for (int i = 0; i < ne0; i++) {
  9446. for (int j = 0; j < ne1; j++) {
  9447. for (int k = 0; k < ne2_ne3; k++) {
  9448. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9449. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9450. // TODO: k*nb2 or k*nb3
  9451. float m_k;
  9452. if (k < n_heads_log2_floor) {
  9453. m_k = powf(m0, k + 1);
  9454. } else {
  9455. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9456. }
  9457. pdst[0] = (i-ne0+1) * m_k + src[0];
  9458. }
  9459. }
  9460. }
  9461. }
  9462. static void ggml_compute_forward_alibi_f16(
  9463. const struct ggml_compute_params * params,
  9464. const struct ggml_tensor * src0,
  9465. const struct ggml_tensor * src1,
  9466. struct ggml_tensor * dst) {
  9467. assert(params->ith == 0);
  9468. assert(src1->type == GGML_TYPE_I32);
  9469. assert(ggml_nelements(src1) == 3);
  9470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9471. return;
  9472. }
  9473. const int n_past = ((int32_t *) src1->data)[0];
  9474. const int n_head = ((int32_t *) src1->data)[1];
  9475. const float max_bias = ((float *) src1->data)[2];
  9476. assert(n_past >= 0);
  9477. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9478. const int ne1 = src0->ne[1]; // seq_len_without_past
  9479. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9480. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9481. const int n = ggml_nrows(src0);
  9482. const int ne2_ne3 = n/ne1; // ne2*ne3
  9483. const int nb0 = src0->nb[0];
  9484. const int nb1 = src0->nb[1];
  9485. const int nb2 = src0->nb[2];
  9486. //const int nb3 = src0->nb[3];
  9487. assert(nb0 == sizeof(ggml_fp16_t));
  9488. assert(ne1 + n_past == ne0); (void) n_past;
  9489. // add alibi to src0 (KQ_scaled)
  9490. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9491. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9492. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9493. for (int i = 0; i < ne0; i++) {
  9494. for (int j = 0; j < ne1; j++) {
  9495. for (int k = 0; k < ne2_ne3; k++) {
  9496. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9497. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9498. // TODO: k*nb2 or k*nb3
  9499. float m_k;
  9500. if (k < n_heads_log2_floor) {
  9501. m_k = powf(m0, k + 1);
  9502. } else {
  9503. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9504. }
  9505. // we return F32
  9506. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9507. }
  9508. }
  9509. }
  9510. }
  9511. static void ggml_compute_forward_alibi(
  9512. const struct ggml_compute_params * params,
  9513. const struct ggml_tensor * src0,
  9514. const struct ggml_tensor * src1,
  9515. struct ggml_tensor * dst) {
  9516. switch (src0->type) {
  9517. case GGML_TYPE_F16:
  9518. {
  9519. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9520. } break;
  9521. case GGML_TYPE_F32:
  9522. {
  9523. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9524. } break;
  9525. case GGML_TYPE_Q4_0:
  9526. case GGML_TYPE_Q4_1:
  9527. case GGML_TYPE_Q5_0:
  9528. case GGML_TYPE_Q5_1:
  9529. case GGML_TYPE_Q8_0:
  9530. case GGML_TYPE_Q8_1:
  9531. case GGML_TYPE_Q2_K:
  9532. case GGML_TYPE_Q3_K:
  9533. case GGML_TYPE_Q4_K:
  9534. case GGML_TYPE_Q5_K:
  9535. case GGML_TYPE_Q6_K:
  9536. case GGML_TYPE_Q8_K:
  9537. case GGML_TYPE_I8:
  9538. case GGML_TYPE_I16:
  9539. case GGML_TYPE_I32:
  9540. case GGML_TYPE_COUNT:
  9541. {
  9542. GGML_ASSERT(false);
  9543. } break;
  9544. }
  9545. }
  9546. // ggml_compute_forward_clamp
  9547. static void ggml_compute_forward_clamp_f32(
  9548. const struct ggml_compute_params * params,
  9549. const struct ggml_tensor * src0,
  9550. const struct ggml_tensor * src1,
  9551. struct ggml_tensor * dst) {
  9552. assert(params->ith == 0);
  9553. assert(src1->type == GGML_TYPE_I32);
  9554. assert(ggml_nelements(src1) == 2);
  9555. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9556. return;
  9557. }
  9558. const int min = ((float *) src1->data)[0];
  9559. const int max = ((float *) src1->data)[1];
  9560. const int ith = params->ith;
  9561. const int nth = params->nth;
  9562. const int n = ggml_nrows(src0);
  9563. const int nc = src0->ne[0];
  9564. const size_t nb00 = src0->nb[0];
  9565. const size_t nb01 = src0->nb[1];
  9566. const size_t nb0 = dst->nb[0];
  9567. const size_t nb1 = dst->nb[1];
  9568. GGML_ASSERT( nb0 == sizeof(float));
  9569. GGML_ASSERT(nb00 == sizeof(float));
  9570. for (int j = ith; j < n; j += nth) {
  9571. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9572. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9573. for (int i = 0; i < nc; i++) {
  9574. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9575. }
  9576. }
  9577. }
  9578. static void ggml_compute_forward_clamp(
  9579. const struct ggml_compute_params * params,
  9580. const struct ggml_tensor * src0,
  9581. const struct ggml_tensor * src1,
  9582. struct ggml_tensor * dst) {
  9583. switch (src0->type) {
  9584. case GGML_TYPE_F32:
  9585. {
  9586. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9587. } break;
  9588. case GGML_TYPE_F16:
  9589. case GGML_TYPE_Q4_0:
  9590. case GGML_TYPE_Q4_1:
  9591. case GGML_TYPE_Q5_0:
  9592. case GGML_TYPE_Q5_1:
  9593. case GGML_TYPE_Q8_0:
  9594. case GGML_TYPE_Q8_1:
  9595. case GGML_TYPE_Q2_K:
  9596. case GGML_TYPE_Q3_K:
  9597. case GGML_TYPE_Q4_K:
  9598. case GGML_TYPE_Q5_K:
  9599. case GGML_TYPE_Q6_K:
  9600. case GGML_TYPE_Q8_K:
  9601. case GGML_TYPE_I8:
  9602. case GGML_TYPE_I16:
  9603. case GGML_TYPE_I32:
  9604. case GGML_TYPE_COUNT:
  9605. {
  9606. GGML_ASSERT(false);
  9607. } break;
  9608. }
  9609. }
  9610. // ggml_compute_forward_rope
  9611. static void ggml_compute_forward_rope_f32(
  9612. const struct ggml_compute_params * params,
  9613. const struct ggml_tensor * src0,
  9614. const struct ggml_tensor * src1,
  9615. struct ggml_tensor * dst) {
  9616. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9617. GGML_ASSERT(ggml_nelements(src1) == 3);
  9618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9619. return;
  9620. }
  9621. const int n_past = ((int32_t *) src1->data)[0];
  9622. const int n_dims = ((int32_t *) src1->data)[1];
  9623. const int mode = ((int32_t *) src1->data)[2];
  9624. assert(n_past >= 0);
  9625. const size_t nb00 = src0->nb[0];
  9626. const size_t nb01 = src0->nb[1];
  9627. const size_t nb02 = src0->nb[2];
  9628. const size_t nb03 = src0->nb[3];
  9629. const int64_t ne0 = dst->ne[0];
  9630. const int64_t ne1 = dst->ne[1];
  9631. const int64_t ne2 = dst->ne[2];
  9632. const int64_t ne3 = dst->ne[3];
  9633. const size_t nb0 = dst->nb[0];
  9634. const size_t nb1 = dst->nb[1];
  9635. const size_t nb2 = dst->nb[2];
  9636. const size_t nb3 = dst->nb[3];
  9637. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9638. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9639. GGML_ASSERT(nb00 == sizeof(float));
  9640. const int ith = params->ith;
  9641. const int nth = params->nth;
  9642. const int nr = ggml_nrows(dst);
  9643. GGML_ASSERT(n_dims <= ne0);
  9644. GGML_ASSERT(n_dims % 2 == 0);
  9645. // rows per thread
  9646. const int dr = (nr + nth - 1)/nth;
  9647. // row range for this thread
  9648. const int ir0 = dr*ith;
  9649. const int ir1 = MIN(ir0 + dr, nr);
  9650. // row index used to determine which thread to use
  9651. int ir = 0;
  9652. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9653. const bool is_neox = mode & 2;
  9654. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9655. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9656. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9657. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9658. if (ir++ < ir0) continue;
  9659. if (ir > ir1) break;
  9660. float theta = (float)p;
  9661. if (!is_neox) {
  9662. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9663. const float cos_theta = cosf(theta);
  9664. const float sin_theta = sinf(theta);
  9665. theta *= theta_scale;
  9666. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9667. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9668. const float x0 = src[0];
  9669. const float x1 = src[1];
  9670. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9671. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9672. }
  9673. } else {
  9674. // TODO: this is probably wrong, but I can't figure it out ..
  9675. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9676. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9677. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9678. const float cos_theta = cosf(theta);
  9679. const float sin_theta = sinf(theta);
  9680. theta *= theta_scale;
  9681. const int64_t i0 = ib*n_dims + ic/2;
  9682. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9683. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9684. const float x0 = src[0];
  9685. const float x1 = src[n_dims/2];
  9686. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9687. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9688. }
  9689. }
  9690. }
  9691. }
  9692. }
  9693. }
  9694. }
  9695. static void ggml_compute_forward_rope_f16(
  9696. const struct ggml_compute_params * params,
  9697. const struct ggml_tensor * src0,
  9698. const struct ggml_tensor * src1,
  9699. struct ggml_tensor * dst) {
  9700. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9701. GGML_ASSERT(ggml_nelements(src1) == 3);
  9702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9703. return;
  9704. }
  9705. const int n_past = ((int32_t *) src1->data)[0];
  9706. const int n_dims = ((int32_t *) src1->data)[1];
  9707. const int mode = ((int32_t *) src1->data)[2];
  9708. assert(n_past >= 0);
  9709. const size_t nb00 = src0->nb[0];
  9710. const size_t nb01 = src0->nb[1];
  9711. const size_t nb02 = src0->nb[2];
  9712. const size_t nb03 = src0->nb[3];
  9713. const int64_t ne0 = dst->ne[0];
  9714. const int64_t ne1 = dst->ne[1];
  9715. const int64_t ne2 = dst->ne[2];
  9716. const int64_t ne3 = dst->ne[3];
  9717. const size_t nb0 = dst->nb[0];
  9718. const size_t nb1 = dst->nb[1];
  9719. const size_t nb2 = dst->nb[2];
  9720. const size_t nb3 = dst->nb[3];
  9721. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9722. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9723. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9724. const int ith = params->ith;
  9725. const int nth = params->nth;
  9726. const int nr = ggml_nrows(dst);
  9727. GGML_ASSERT(n_dims <= ne0);
  9728. GGML_ASSERT(n_dims % 2 == 0);
  9729. // rows per thread
  9730. const int dr = (nr + nth - 1)/nth;
  9731. // row range for this thread
  9732. const int ir0 = dr*ith;
  9733. const int ir1 = MIN(ir0 + dr, nr);
  9734. // row index used to determine which thread to use
  9735. int ir = 0;
  9736. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9737. const bool is_neox = mode & 2;
  9738. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9739. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9740. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9741. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9742. if (ir++ < ir0) continue;
  9743. if (ir > ir1) break;
  9744. float theta = (float)p;
  9745. if (!is_neox) {
  9746. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9747. const float cos_theta = cosf(theta);
  9748. const float sin_theta = sinf(theta);
  9749. theta *= theta_scale;
  9750. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9751. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9752. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9753. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9754. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9755. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9756. }
  9757. } else {
  9758. // TODO: this is probably wrong, but I can't figure it out ..
  9759. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9760. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9761. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9762. const float cos_theta = cosf(theta);
  9763. const float sin_theta = sinf(theta);
  9764. theta *= theta_scale;
  9765. const int64_t i0 = ib*n_dims + ic/2;
  9766. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9767. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9768. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9769. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9770. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9771. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9772. }
  9773. }
  9774. }
  9775. }
  9776. }
  9777. }
  9778. }
  9779. static void ggml_compute_forward_rope(
  9780. const struct ggml_compute_params * params,
  9781. const struct ggml_tensor * src0,
  9782. const struct ggml_tensor * src1,
  9783. struct ggml_tensor * dst) {
  9784. switch (src0->type) {
  9785. case GGML_TYPE_F16:
  9786. {
  9787. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9788. } break;
  9789. case GGML_TYPE_F32:
  9790. {
  9791. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9792. } break;
  9793. default:
  9794. {
  9795. GGML_ASSERT(false);
  9796. } break;
  9797. }
  9798. }
  9799. // ggml_compute_forward_rope_back
  9800. static void ggml_compute_forward_rope_back_f32(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. const struct ggml_tensor * src1,
  9804. struct ggml_tensor * dst) {
  9805. assert(src1->type == GGML_TYPE_I32);
  9806. assert(ggml_nelements(src1) == 3);
  9807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9808. return;
  9809. }
  9810. // y = rope(x, src1)
  9811. // dx = rope_back(dy, src1)
  9812. // src0 is dy, src1 contains options
  9813. const int n_past = ((int32_t *) src1->data)[0];
  9814. const int n_dims = ((int32_t *) src1->data)[1];
  9815. const int mode = ((int32_t *) src1->data)[2];
  9816. assert(n_past >= 0);
  9817. const size_t nb00 = src0->nb[0];
  9818. const size_t nb01 = src0->nb[1];
  9819. const size_t nb02 = src0->nb[2];
  9820. const size_t nb03 = src0->nb[3];
  9821. const int64_t ne0 = dst->ne[0];
  9822. const int64_t ne1 = dst->ne[1];
  9823. const int64_t ne2 = dst->ne[2];
  9824. const int64_t ne3 = dst->ne[3];
  9825. const size_t nb0 = dst->nb[0];
  9826. const size_t nb1 = dst->nb[1];
  9827. const size_t nb2 = dst->nb[2];
  9828. const size_t nb3 = dst->nb[3];
  9829. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9830. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9831. assert(nb0 == sizeof(float));
  9832. const int ith = params->ith;
  9833. const int nth = params->nth;
  9834. const int nr = ggml_nrows(dst);
  9835. // rows per thread
  9836. const int dr = (nr + nth - 1)/nth;
  9837. // row range for this thread
  9838. const int ir0 = dr*ith;
  9839. const int ir1 = MIN(ir0 + dr, nr);
  9840. // row index used to determine which thread to use
  9841. int ir = 0;
  9842. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9843. const bool is_neox = mode & 2;
  9844. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9845. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9846. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9847. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9848. if (ir++ < ir0) continue;
  9849. if (ir > ir1) break;
  9850. float theta = (float)p;
  9851. if (!is_neox) {
  9852. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9853. const float cos_theta = cosf(theta);
  9854. const float sin_theta = sinf(theta);
  9855. theta *= theta_scale;
  9856. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9857. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9858. const float dy0 = dy[0];
  9859. const float dy1 = dy[1];
  9860. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9861. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9862. }
  9863. } else {
  9864. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9865. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9866. const float cos_theta = cosf(theta);
  9867. const float sin_theta = sinf(theta);
  9868. theta *= theta_scale;
  9869. const int64_t i0 = ib*n_dims + ic/2;
  9870. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9871. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9872. const float dy0 = dy[0];
  9873. const float dy1 = dy[n_dims/2];
  9874. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9875. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9876. }
  9877. }
  9878. }
  9879. }
  9880. }
  9881. }
  9882. }
  9883. static void ggml_compute_forward_rope_back_f16(
  9884. const struct ggml_compute_params * params,
  9885. const struct ggml_tensor * src0,
  9886. const struct ggml_tensor * src1,
  9887. struct ggml_tensor * dst) {
  9888. assert(src1->type == GGML_TYPE_I32);
  9889. assert(ggml_nelements(src1) == 3);
  9890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9891. return;
  9892. }
  9893. // y = rope(x, src1)
  9894. // dx = rope_back(dy, src1)
  9895. // src0 is dy, src1 contains options
  9896. const int n_past = ((int32_t *) src1->data)[0];
  9897. const int n_dims = ((int32_t *) src1->data)[1];
  9898. const int mode = ((int32_t *) src1->data)[2];
  9899. assert(n_past >= 0);
  9900. const size_t nb00 = src0->nb[0];
  9901. const size_t nb01 = src0->nb[1];
  9902. const size_t nb02 = src0->nb[2];
  9903. const size_t nb03 = src0->nb[3];
  9904. const int64_t ne0 = dst->ne[0];
  9905. const int64_t ne1 = dst->ne[1];
  9906. const int64_t ne2 = dst->ne[2];
  9907. const int64_t ne3 = dst->ne[3];
  9908. const size_t nb0 = dst->nb[0];
  9909. const size_t nb1 = dst->nb[1];
  9910. const size_t nb2 = dst->nb[2];
  9911. const size_t nb3 = dst->nb[3];
  9912. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9913. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9914. assert(nb0 == sizeof(ggml_fp16_t));
  9915. const int ith = params->ith;
  9916. const int nth = params->nth;
  9917. const int nr = ggml_nrows(dst);
  9918. // rows per thread
  9919. const int dr = (nr + nth - 1)/nth;
  9920. // row range for this thread
  9921. const int ir0 = dr*ith;
  9922. const int ir1 = MIN(ir0 + dr, nr);
  9923. // row index used to determine which thread to use
  9924. int ir = 0;
  9925. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9926. const bool is_neox = mode & 2;
  9927. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9928. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9929. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9930. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9931. if (ir++ < ir0) continue;
  9932. if (ir > ir1) break;
  9933. float theta = (float)p;
  9934. if (!is_neox) {
  9935. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9936. const float cos_theta = cosf(theta);
  9937. const float sin_theta = sinf(theta);
  9938. theta *= theta_scale;
  9939. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9940. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9941. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9942. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9943. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9944. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9945. }
  9946. } else {
  9947. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9948. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9949. const float cos_theta = cosf(theta);
  9950. const float sin_theta = sinf(theta);
  9951. theta *= theta_scale;
  9952. const int64_t i0 = ib*n_dims + ic/2;
  9953. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9954. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9955. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9956. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9957. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9958. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9959. }
  9960. }
  9961. }
  9962. }
  9963. }
  9964. }
  9965. }
  9966. static void ggml_compute_forward_rope_back(
  9967. const struct ggml_compute_params * params,
  9968. const struct ggml_tensor * src0,
  9969. const struct ggml_tensor * src1,
  9970. struct ggml_tensor * dst) {
  9971. switch (src0->type) {
  9972. case GGML_TYPE_F16:
  9973. {
  9974. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9975. } break;
  9976. case GGML_TYPE_F32:
  9977. {
  9978. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9979. } break;
  9980. default:
  9981. {
  9982. GGML_ASSERT(false);
  9983. } break;
  9984. }
  9985. }
  9986. // ggml_compute_forward_conv_1d_1s
  9987. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9988. const struct ggml_compute_params * params,
  9989. const struct ggml_tensor * src0,
  9990. const struct ggml_tensor * src1,
  9991. struct ggml_tensor * dst) {
  9992. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9993. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9994. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9995. int64_t t0 = ggml_perf_time_us();
  9996. UNUSED(t0);
  9997. const int64_t ne00 = src0->ne[0];
  9998. const int64_t ne01 = src0->ne[1];
  9999. const int64_t ne02 = src0->ne[2];
  10000. //const int64_t ne03 = src0->ne[3];
  10001. const int64_t ne10 = src1->ne[0];
  10002. const int64_t ne11 = src1->ne[1];
  10003. //const int64_t ne12 = src1->ne[2];
  10004. //const int64_t ne13 = src1->ne[3];
  10005. //const int64_t ne0 = dst->ne[0];
  10006. //const int64_t ne1 = dst->ne[1];
  10007. //const int64_t ne2 = dst->ne[2];
  10008. //const int64_t ne3 = dst->ne[3];
  10009. //const int64_t ne = ne0*ne1*ne2*ne3;
  10010. const int nb00 = src0->nb[0];
  10011. const int nb01 = src0->nb[1];
  10012. const int nb02 = src0->nb[2];
  10013. //const int nb03 = src0->nb[3];
  10014. const int nb10 = src1->nb[0];
  10015. const int nb11 = src1->nb[1];
  10016. //const int nb12 = src1->nb[2];
  10017. //const int nb13 = src1->nb[3];
  10018. //const int nb0 = dst->nb[0];
  10019. const int nb1 = dst->nb[1];
  10020. //const int nb2 = dst->nb[2];
  10021. //const int nb3 = dst->nb[3];
  10022. const int ith = params->ith;
  10023. const int nth = params->nth;
  10024. const int nk = ne00;
  10025. const int nh = nk/2;
  10026. const int ew0 = ggml_up32(ne01);
  10027. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10028. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10029. GGML_ASSERT(nb10 == sizeof(float));
  10030. if (params->type == GGML_TASK_INIT) {
  10031. // TODO: fix this memset (wsize is overestimated)
  10032. memset(params->wdata, 0, params->wsize);
  10033. // prepare kernel data (src0)
  10034. {
  10035. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10036. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10037. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10038. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10039. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10040. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10041. dst_data[i00*ew0 + i01] = src[i00];
  10042. }
  10043. }
  10044. }
  10045. }
  10046. // prepare source data (src1)
  10047. {
  10048. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10049. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10050. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10051. ggml_fp16_t * dst_data = wdata;
  10052. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10053. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10054. }
  10055. }
  10056. }
  10057. return;
  10058. }
  10059. if (params->type == GGML_TASK_FINALIZE) {
  10060. return;
  10061. }
  10062. // total rows in dst
  10063. const int nr = ne02;
  10064. // rows per thread
  10065. const int dr = (nr + nth - 1)/nth;
  10066. // row range for this thread
  10067. const int ir0 = dr*ith;
  10068. const int ir1 = MIN(ir0 + dr, nr);
  10069. for (int i1 = ir0; i1 < ir1; i1++) {
  10070. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10071. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10072. dst_data[i0] = 0;
  10073. for (int k = -nh; k <= nh; k++) {
  10074. float v = 0.0f;
  10075. ggml_vec_dot_f16(ew0, &v,
  10076. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10077. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10078. dst_data[i0] += v;
  10079. }
  10080. }
  10081. }
  10082. }
  10083. static void ggml_compute_forward_conv_1d_1s_f32(
  10084. const struct ggml_compute_params * params,
  10085. const struct ggml_tensor * src0,
  10086. const struct ggml_tensor * src1,
  10087. struct ggml_tensor * dst) {
  10088. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10089. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10090. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10091. int64_t t0 = ggml_perf_time_us();
  10092. UNUSED(t0);
  10093. const int64_t ne00 = src0->ne[0];
  10094. const int64_t ne01 = src0->ne[1];
  10095. const int64_t ne02 = src0->ne[2];
  10096. //const int64_t ne03 = src0->ne[3];
  10097. const int64_t ne10 = src1->ne[0];
  10098. const int64_t ne11 = src1->ne[1];
  10099. //const int64_t ne12 = src1->ne[2];
  10100. //const int64_t ne13 = src1->ne[3];
  10101. //const int64_t ne0 = dst->ne[0];
  10102. //const int64_t ne1 = dst->ne[1];
  10103. //const int64_t ne2 = dst->ne[2];
  10104. //const int64_t ne3 = dst->ne[3];
  10105. //const int64_t ne = ne0*ne1*ne2*ne3;
  10106. const int nb00 = src0->nb[0];
  10107. const int nb01 = src0->nb[1];
  10108. const int nb02 = src0->nb[2];
  10109. //const int nb03 = src0->nb[3];
  10110. const int nb10 = src1->nb[0];
  10111. const int nb11 = src1->nb[1];
  10112. //const int nb12 = src1->nb[2];
  10113. //const int nb13 = src1->nb[3];
  10114. //const int nb0 = dst->nb[0];
  10115. const int nb1 = dst->nb[1];
  10116. //const int nb2 = dst->nb[2];
  10117. //const int nb3 = dst->nb[3];
  10118. const int ith = params->ith;
  10119. const int nth = params->nth;
  10120. const int nk = ne00;
  10121. const int nh = nk/2;
  10122. const int ew0 = ggml_up32(ne01);
  10123. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10124. GGML_ASSERT(nb00 == sizeof(float));
  10125. GGML_ASSERT(nb10 == sizeof(float));
  10126. if (params->type == GGML_TASK_INIT) {
  10127. // TODO: fix this memset (wsize is overestimated)
  10128. memset(params->wdata, 0, params->wsize);
  10129. // prepare kernel data (src0)
  10130. {
  10131. float * const wdata = (float *) params->wdata + 0;
  10132. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10133. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10134. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10135. float * dst_data = wdata + i02*ew0*ne00;
  10136. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10137. dst_data[i00*ew0 + i01] = src[i00];
  10138. }
  10139. }
  10140. }
  10141. }
  10142. // prepare source data (src1)
  10143. {
  10144. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10145. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10146. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10147. float * dst_data = wdata;
  10148. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10149. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10150. }
  10151. }
  10152. }
  10153. return;
  10154. }
  10155. if (params->type == GGML_TASK_FINALIZE) {
  10156. return;
  10157. }
  10158. // total rows in dst
  10159. const int nr = ne02;
  10160. // rows per thread
  10161. const int dr = (nr + nth - 1)/nth;
  10162. // row range for this thread
  10163. const int ir0 = dr*ith;
  10164. const int ir1 = MIN(ir0 + dr, nr);
  10165. for (int i1 = ir0; i1 < ir1; i1++) {
  10166. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10167. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10168. dst_data[i0] = 0;
  10169. for (int k = -nh; k <= nh; k++) {
  10170. float v = 0.0f;
  10171. ggml_vec_dot_f32(ew0, &v,
  10172. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10173. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10174. dst_data[i0] += v;
  10175. }
  10176. }
  10177. }
  10178. }
  10179. static void ggml_compute_forward_conv_1d_1s(
  10180. const struct ggml_compute_params * params,
  10181. const struct ggml_tensor * src0,
  10182. const struct ggml_tensor * src1,
  10183. struct ggml_tensor * dst) {
  10184. switch (src0->type) {
  10185. case GGML_TYPE_F16:
  10186. {
  10187. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  10188. } break;
  10189. case GGML_TYPE_F32:
  10190. {
  10191. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  10192. } break;
  10193. default:
  10194. {
  10195. GGML_ASSERT(false);
  10196. } break;
  10197. }
  10198. }
  10199. // ggml_compute_forward_conv_1d_2s
  10200. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  10201. const struct ggml_compute_params * params,
  10202. const struct ggml_tensor * src0,
  10203. const struct ggml_tensor * src1,
  10204. struct ggml_tensor * dst) {
  10205. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10206. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10207. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10208. int64_t t0 = ggml_perf_time_us();
  10209. UNUSED(t0);
  10210. const int64_t ne00 = src0->ne[0];
  10211. const int64_t ne01 = src0->ne[1];
  10212. const int64_t ne02 = src0->ne[2];
  10213. //const int64_t ne03 = src0->ne[3];
  10214. const int64_t ne10 = src1->ne[0];
  10215. const int64_t ne11 = src1->ne[1];
  10216. //const int64_t ne12 = src1->ne[2];
  10217. //const int64_t ne13 = src1->ne[3];
  10218. //const int64_t ne0 = dst->ne[0];
  10219. //const int64_t ne1 = dst->ne[1];
  10220. //const int64_t ne2 = dst->ne[2];
  10221. //const int64_t ne3 = dst->ne[3];
  10222. //const int64_t ne = ne0*ne1*ne2*ne3;
  10223. const int nb00 = src0->nb[0];
  10224. const int nb01 = src0->nb[1];
  10225. const int nb02 = src0->nb[2];
  10226. //const int nb03 = src0->nb[3];
  10227. const int nb10 = src1->nb[0];
  10228. const int nb11 = src1->nb[1];
  10229. //const int nb12 = src1->nb[2];
  10230. //const int nb13 = src1->nb[3];
  10231. //const int nb0 = dst->nb[0];
  10232. const int nb1 = dst->nb[1];
  10233. //const int nb2 = dst->nb[2];
  10234. //const int nb3 = dst->nb[3];
  10235. const int ith = params->ith;
  10236. const int nth = params->nth;
  10237. const int nk = ne00;
  10238. const int nh = nk/2;
  10239. const int ew0 = ggml_up32(ne01);
  10240. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10241. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10242. GGML_ASSERT(nb10 == sizeof(float));
  10243. if (params->type == GGML_TASK_INIT) {
  10244. // TODO: fix this memset (wsize is overestimated)
  10245. memset(params->wdata, 0, params->wsize);
  10246. // prepare kernel data (src0)
  10247. {
  10248. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10249. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10250. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10251. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10252. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10253. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10254. dst_data[i00*ew0 + i01] = src[i00];
  10255. }
  10256. }
  10257. }
  10258. }
  10259. // prepare source data (src1)
  10260. {
  10261. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10262. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10263. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10264. ggml_fp16_t * dst_data = wdata;
  10265. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10266. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10267. }
  10268. }
  10269. }
  10270. return;
  10271. }
  10272. if (params->type == GGML_TASK_FINALIZE) {
  10273. return;
  10274. }
  10275. // total rows in dst
  10276. const int nr = ne02;
  10277. // rows per thread
  10278. const int dr = (nr + nth - 1)/nth;
  10279. // row range for this thread
  10280. const int ir0 = dr*ith;
  10281. const int ir1 = MIN(ir0 + dr, nr);
  10282. for (int i1 = ir0; i1 < ir1; i1++) {
  10283. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10284. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10285. dst_data[i0/2] = 0;
  10286. for (int k = -nh; k <= nh; k++) {
  10287. float v = 0.0f;
  10288. ggml_vec_dot_f16(ew0, &v,
  10289. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10290. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10291. dst_data[i0/2] += v;
  10292. }
  10293. }
  10294. }
  10295. }
  10296. static void ggml_compute_forward_conv_1d_2s_f32(
  10297. const struct ggml_compute_params * params,
  10298. const struct ggml_tensor * src0,
  10299. const struct ggml_tensor * src1,
  10300. struct ggml_tensor * dst) {
  10301. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10302. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10303. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10304. int64_t t0 = ggml_perf_time_us();
  10305. UNUSED(t0);
  10306. const int64_t ne00 = src0->ne[0];
  10307. const int64_t ne01 = src0->ne[1];
  10308. const int64_t ne02 = src0->ne[2];
  10309. //const int64_t ne03 = src0->ne[3];
  10310. const int64_t ne10 = src1->ne[0];
  10311. const int64_t ne11 = src1->ne[1];
  10312. //const int64_t ne12 = src1->ne[2];
  10313. //const int64_t ne13 = src1->ne[3];
  10314. //const int64_t ne0 = dst->ne[0];
  10315. //const int64_t ne1 = dst->ne[1];
  10316. //const int64_t ne2 = dst->ne[2];
  10317. //const int64_t ne3 = dst->ne[3];
  10318. //const int64_t ne = ne0*ne1*ne2*ne3;
  10319. const int nb00 = src0->nb[0];
  10320. const int nb01 = src0->nb[1];
  10321. const int nb02 = src0->nb[2];
  10322. //const int nb03 = src0->nb[3];
  10323. const int nb10 = src1->nb[0];
  10324. const int nb11 = src1->nb[1];
  10325. //const int nb12 = src1->nb[2];
  10326. //const int nb13 = src1->nb[3];
  10327. //const int nb0 = dst->nb[0];
  10328. const int nb1 = dst->nb[1];
  10329. //const int nb2 = dst->nb[2];
  10330. //const int nb3 = dst->nb[3];
  10331. const int ith = params->ith;
  10332. const int nth = params->nth;
  10333. const int nk = ne00;
  10334. const int nh = nk/2;
  10335. const int ew0 = ggml_up32(ne01);
  10336. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10337. GGML_ASSERT(nb00 == sizeof(float));
  10338. GGML_ASSERT(nb10 == sizeof(float));
  10339. if (params->type == GGML_TASK_INIT) {
  10340. // TODO: fix this memset (wsize is overestimated)
  10341. memset(params->wdata, 0, params->wsize);
  10342. // prepare kernel data (src0)
  10343. {
  10344. float * const wdata = (float *) params->wdata + 0;
  10345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10346. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10347. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10348. float * dst_data = wdata + i02*ew0*ne00;
  10349. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10350. dst_data[i00*ew0 + i01] = src[i00];
  10351. }
  10352. }
  10353. }
  10354. }
  10355. // prepare source data (src1)
  10356. {
  10357. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10358. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10359. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10360. float * dst_data = wdata;
  10361. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10362. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10363. }
  10364. }
  10365. }
  10366. return;
  10367. }
  10368. if (params->type == GGML_TASK_FINALIZE) {
  10369. return;
  10370. }
  10371. // total rows in dst
  10372. const int nr = ne02;
  10373. // rows per thread
  10374. const int dr = (nr + nth - 1)/nth;
  10375. // row range for this thread
  10376. const int ir0 = dr*ith;
  10377. const int ir1 = MIN(ir0 + dr, nr);
  10378. for (int i1 = ir0; i1 < ir1; i1++) {
  10379. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10380. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10381. dst_data[i0/2] = 0;
  10382. for (int k = -nh; k <= nh; k++) {
  10383. float v = 0.0f;
  10384. ggml_vec_dot_f32(ew0, &v,
  10385. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10386. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10387. dst_data[i0/2] += v;
  10388. }
  10389. }
  10390. }
  10391. }
  10392. static void ggml_compute_forward_conv_1d_2s(
  10393. const struct ggml_compute_params * params,
  10394. const struct ggml_tensor * src0,
  10395. const struct ggml_tensor * src1,
  10396. struct ggml_tensor * dst) {
  10397. switch (src0->type) {
  10398. case GGML_TYPE_F16:
  10399. {
  10400. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  10401. } break;
  10402. case GGML_TYPE_F32:
  10403. {
  10404. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  10405. } break;
  10406. default:
  10407. {
  10408. GGML_ASSERT(false);
  10409. } break;
  10410. }
  10411. }
  10412. // ggml_compute_forward_flash_attn
  10413. static void ggml_compute_forward_flash_attn_f32(
  10414. const struct ggml_compute_params * params,
  10415. const struct ggml_tensor * q,
  10416. const struct ggml_tensor * k,
  10417. const struct ggml_tensor * v,
  10418. const bool masked,
  10419. struct ggml_tensor * dst) {
  10420. int64_t t0 = ggml_perf_time_us();
  10421. UNUSED(t0);
  10422. const int64_t neq0 = q->ne[0];
  10423. const int64_t neq1 = q->ne[1];
  10424. const int64_t neq2 = q->ne[2];
  10425. const int64_t neq3 = q->ne[3];
  10426. const int64_t nek0 = k->ne[0];
  10427. const int64_t nek1 = k->ne[1];
  10428. //const int64_t nek2 = k->ne[2];
  10429. //const int64_t nek3 = k->ne[3];
  10430. //const int64_t nev0 = v->ne[0];
  10431. const int64_t nev1 = v->ne[1];
  10432. //const int64_t nev2 = v->ne[2];
  10433. //const int64_t nev3 = v->ne[3];
  10434. const int64_t ne0 = dst->ne[0];
  10435. const int64_t ne1 = dst->ne[1];
  10436. //const int64_t ne2 = dst->ne[2];
  10437. //const int64_t ne3 = dst->ne[3];
  10438. const int nbk0 = k->nb[0];
  10439. const int nbk1 = k->nb[1];
  10440. const int nbk2 = k->nb[2];
  10441. const int nbk3 = k->nb[3];
  10442. const int nbq0 = q->nb[0];
  10443. const int nbq1 = q->nb[1];
  10444. const int nbq2 = q->nb[2];
  10445. const int nbq3 = q->nb[3];
  10446. const int nbv0 = v->nb[0];
  10447. const int nbv1 = v->nb[1];
  10448. const int nbv2 = v->nb[2];
  10449. const int nbv3 = v->nb[3];
  10450. const int nb0 = dst->nb[0];
  10451. const int nb1 = dst->nb[1];
  10452. const int nb2 = dst->nb[2];
  10453. const int nb3 = dst->nb[3];
  10454. const int ith = params->ith;
  10455. const int nth = params->nth;
  10456. const int64_t D = neq0;
  10457. const int64_t N = neq1;
  10458. const int64_t P = nek1 - N;
  10459. const int64_t M = P + N;
  10460. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10461. GGML_ASSERT(ne0 == D);
  10462. GGML_ASSERT(ne1 == N);
  10463. GGML_ASSERT(P >= 0);
  10464. GGML_ASSERT(nbq0 == sizeof(float));
  10465. GGML_ASSERT(nbk0 == sizeof(float));
  10466. GGML_ASSERT(nbv0 == sizeof(float));
  10467. GGML_ASSERT(neq0 == D);
  10468. GGML_ASSERT(nek0 == D);
  10469. GGML_ASSERT(nev1 == D);
  10470. GGML_ASSERT(neq1 == N);
  10471. GGML_ASSERT(nek1 == N + P);
  10472. GGML_ASSERT(nev1 == D);
  10473. // dst cannot be transposed or permuted
  10474. GGML_ASSERT(nb0 == sizeof(float));
  10475. GGML_ASSERT(nb0 <= nb1);
  10476. GGML_ASSERT(nb1 <= nb2);
  10477. GGML_ASSERT(nb2 <= nb3);
  10478. if (params->type == GGML_TASK_INIT) {
  10479. return;
  10480. }
  10481. if (params->type == GGML_TASK_FINALIZE) {
  10482. return;
  10483. }
  10484. // parallelize by q rows using ggml_vec_dot_f32
  10485. // total rows in q
  10486. const int nr = neq1*neq2*neq3;
  10487. // rows per thread
  10488. const int dr = (nr + nth - 1)/nth;
  10489. // row range for this thread
  10490. const int ir0 = dr*ith;
  10491. const int ir1 = MIN(ir0 + dr, nr);
  10492. const float scale = 1.0f/sqrtf(D);
  10493. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10494. for (int ir = ir0; ir < ir1; ++ir) {
  10495. // q indices
  10496. const int iq3 = ir/(neq2*neq1);
  10497. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10498. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10499. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10500. for (int i = M; i < Mup; ++i) {
  10501. S[i] = -INFINITY;
  10502. }
  10503. for (int64_t ic = 0; ic < nek1; ++ic) {
  10504. // k indices
  10505. const int ik3 = iq3;
  10506. const int ik2 = iq2;
  10507. const int ik1 = ic;
  10508. // S indices
  10509. const int i1 = ik1;
  10510. ggml_vec_dot_f32(neq0,
  10511. S + i1,
  10512. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10513. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10514. }
  10515. // scale
  10516. ggml_vec_scale_f32(nek1, S, scale);
  10517. if (masked) {
  10518. for (int64_t i = P; i < M; i++) {
  10519. if (i > P + iq1) {
  10520. S[i] = -INFINITY;
  10521. }
  10522. }
  10523. }
  10524. // softmax
  10525. {
  10526. float max = -INFINITY;
  10527. ggml_vec_max_f32(M, &max, S);
  10528. ggml_float sum = 0.0;
  10529. {
  10530. #ifdef GGML_SOFT_MAX_ACCELERATE
  10531. max = -max;
  10532. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10533. vvexpf(S, S, &Mup);
  10534. ggml_vec_sum_f32(Mup, &sum, S);
  10535. #else
  10536. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10537. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10538. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10539. float * SS = S + i;
  10540. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10541. if (SS[j] == -INFINITY) {
  10542. SS[j] = 0.0f;
  10543. } else {
  10544. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10545. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10546. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10547. sump[j] += (ggml_float)val;
  10548. SS[j] = val;
  10549. }
  10550. }
  10551. }
  10552. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10553. sum += sump[i];
  10554. }
  10555. #endif
  10556. }
  10557. assert(sum > 0.0);
  10558. sum = 1.0/sum;
  10559. ggml_vec_scale_f32(M, S, sum);
  10560. #ifndef NDEBUG
  10561. for (int i = 0; i < M; ++i) {
  10562. assert(!isnan(S[i]));
  10563. assert(!isinf(S[i]));
  10564. }
  10565. #endif
  10566. }
  10567. for (int64_t ic = 0; ic < nev1; ++ic) {
  10568. // dst indices
  10569. const int i1 = iq1;
  10570. const int i2 = iq2;
  10571. const int i3 = iq3;
  10572. ggml_vec_dot_f32(nek1,
  10573. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10574. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10575. S);
  10576. }
  10577. }
  10578. }
  10579. static void ggml_compute_forward_flash_attn_f16(
  10580. const struct ggml_compute_params * params,
  10581. const struct ggml_tensor * q,
  10582. const struct ggml_tensor * k,
  10583. const struct ggml_tensor * v,
  10584. const bool masked,
  10585. struct ggml_tensor * dst) {
  10586. int64_t t0 = ggml_perf_time_us();
  10587. UNUSED(t0);
  10588. const int64_t neq0 = q->ne[0];
  10589. const int64_t neq1 = q->ne[1];
  10590. const int64_t neq2 = q->ne[2];
  10591. const int64_t neq3 = q->ne[3];
  10592. const int64_t nek0 = k->ne[0];
  10593. const int64_t nek1 = k->ne[1];
  10594. //const int64_t nek2 = k->ne[2];
  10595. //const int64_t nek3 = k->ne[3];
  10596. //const int64_t nev0 = v->ne[0];
  10597. const int64_t nev1 = v->ne[1];
  10598. //const int64_t nev2 = v->ne[2];
  10599. //const int64_t nev3 = v->ne[3];
  10600. const int64_t ne0 = dst->ne[0];
  10601. const int64_t ne1 = dst->ne[1];
  10602. //const int64_t ne2 = dst->ne[2];
  10603. //const int64_t ne3 = dst->ne[3];
  10604. const int nbk0 = k->nb[0];
  10605. const int nbk1 = k->nb[1];
  10606. const int nbk2 = k->nb[2];
  10607. const int nbk3 = k->nb[3];
  10608. const int nbq0 = q->nb[0];
  10609. const int nbq1 = q->nb[1];
  10610. const int nbq2 = q->nb[2];
  10611. const int nbq3 = q->nb[3];
  10612. const int nbv0 = v->nb[0];
  10613. const int nbv1 = v->nb[1];
  10614. const int nbv2 = v->nb[2];
  10615. const int nbv3 = v->nb[3];
  10616. const int nb0 = dst->nb[0];
  10617. const int nb1 = dst->nb[1];
  10618. const int nb2 = dst->nb[2];
  10619. const int nb3 = dst->nb[3];
  10620. const int ith = params->ith;
  10621. const int nth = params->nth;
  10622. const int64_t D = neq0;
  10623. const int64_t N = neq1;
  10624. const int64_t P = nek1 - N;
  10625. const int64_t M = P + N;
  10626. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10627. GGML_ASSERT(ne0 == D);
  10628. GGML_ASSERT(ne1 == N);
  10629. GGML_ASSERT(P >= 0);
  10630. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10631. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10632. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10633. GGML_ASSERT(neq0 == D);
  10634. GGML_ASSERT(nek0 == D);
  10635. GGML_ASSERT(nev1 == D);
  10636. GGML_ASSERT(neq1 == N);
  10637. GGML_ASSERT(nek1 == N + P);
  10638. GGML_ASSERT(nev1 == D);
  10639. // dst cannot be transposed or permuted
  10640. GGML_ASSERT(nb0 == sizeof(float));
  10641. GGML_ASSERT(nb0 <= nb1);
  10642. GGML_ASSERT(nb1 <= nb2);
  10643. GGML_ASSERT(nb2 <= nb3);
  10644. if (params->type == GGML_TASK_INIT) {
  10645. return;
  10646. }
  10647. if (params->type == GGML_TASK_FINALIZE) {
  10648. return;
  10649. }
  10650. // parallelize by q rows using ggml_vec_dot_f32
  10651. // total rows in q
  10652. const int nr = neq1*neq2*neq3;
  10653. // rows per thread
  10654. const int dr = (nr + nth - 1)/nth;
  10655. // row range for this thread
  10656. const int ir0 = dr*ith;
  10657. const int ir1 = MIN(ir0 + dr, nr);
  10658. const float scale = 1.0f/sqrtf(D);
  10659. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10660. for (int ir = ir0; ir < ir1; ++ir) {
  10661. // q indices
  10662. const int iq3 = ir/(neq2*neq1);
  10663. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10664. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10665. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10666. for (int i = M; i < Mup; ++i) {
  10667. S[i] = -INFINITY;
  10668. }
  10669. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10670. for (int64_t ic = 0; ic < nek1; ++ic) {
  10671. // k indices
  10672. const int ik3 = iq3;
  10673. const int ik2 = iq2;
  10674. const int ik1 = ic;
  10675. // S indices
  10676. const int i1 = ik1;
  10677. ggml_vec_dot_f16(neq0,
  10678. S + i1,
  10679. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10680. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10681. }
  10682. } else {
  10683. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10684. // k indices
  10685. const int ik3 = iq3;
  10686. const int ik2 = iq2;
  10687. const int ik1 = ic;
  10688. // S indices
  10689. const int i1 = ik1;
  10690. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10691. S + i1,
  10692. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10693. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10694. }
  10695. }
  10696. // scale
  10697. ggml_vec_scale_f32(nek1, S, scale);
  10698. if (masked) {
  10699. for (int64_t i = P; i < M; i++) {
  10700. if (i > P + iq1) {
  10701. S[i] = -INFINITY;
  10702. }
  10703. }
  10704. }
  10705. // softmax
  10706. {
  10707. float max = -INFINITY;
  10708. ggml_vec_max_f32(M, &max, S);
  10709. ggml_float sum = 0.0;
  10710. {
  10711. #ifdef GGML_SOFT_MAX_ACCELERATE
  10712. max = -max;
  10713. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10714. vvexpf(S, S, &Mup);
  10715. ggml_vec_sum_f32(Mup, &sum, S);
  10716. #else
  10717. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10718. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10719. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10720. float * SS = S + i;
  10721. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10722. if (SS[j] == -INFINITY) {
  10723. SS[j] = 0.0f;
  10724. } else {
  10725. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10726. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10727. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10728. sump[j] += (ggml_float)val;
  10729. SS[j] = val;
  10730. }
  10731. }
  10732. }
  10733. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10734. sum += sump[i];
  10735. }
  10736. #endif
  10737. }
  10738. assert(sum > 0.0);
  10739. sum = 1.0/sum;
  10740. ggml_vec_scale_f32(M, S, sum);
  10741. #ifndef NDEBUG
  10742. for (int i = 0; i < M; ++i) {
  10743. assert(!isnan(S[i]));
  10744. assert(!isinf(S[i]));
  10745. }
  10746. #endif
  10747. }
  10748. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10749. for (int64_t i = 0; i < M; i++) {
  10750. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10751. }
  10752. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10753. for (int64_t ic = 0; ic < nev1; ++ic) {
  10754. // dst indices
  10755. const int i1 = iq1;
  10756. const int i2 = iq2;
  10757. const int i3 = iq3;
  10758. ggml_vec_dot_f16(nek1,
  10759. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10760. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10761. S16);
  10762. }
  10763. } else {
  10764. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10765. // dst indices
  10766. const int i1 = iq1;
  10767. const int i2 = iq2;
  10768. const int i3 = iq3;
  10769. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10770. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10771. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10772. S16);
  10773. }
  10774. }
  10775. }
  10776. }
  10777. static void ggml_compute_forward_flash_attn(
  10778. const struct ggml_compute_params * params,
  10779. const struct ggml_tensor * q,
  10780. const struct ggml_tensor * k,
  10781. const struct ggml_tensor * v,
  10782. const bool masked,
  10783. struct ggml_tensor * dst) {
  10784. switch (q->type) {
  10785. case GGML_TYPE_F16:
  10786. {
  10787. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10788. } break;
  10789. case GGML_TYPE_F32:
  10790. {
  10791. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10792. } break;
  10793. default:
  10794. {
  10795. GGML_ASSERT(false);
  10796. } break;
  10797. }
  10798. }
  10799. // ggml_compute_forward_flash_ff
  10800. static void ggml_compute_forward_flash_ff_f16(
  10801. const struct ggml_compute_params * params,
  10802. const struct ggml_tensor * a, // F16
  10803. const struct ggml_tensor * b0, // F16 fc_w
  10804. const struct ggml_tensor * b1, // F32 fc_b
  10805. const struct ggml_tensor * c0, // F16 proj_w
  10806. const struct ggml_tensor * c1, // F32 proj_b
  10807. struct ggml_tensor * dst) {
  10808. int64_t t0 = ggml_perf_time_us();
  10809. UNUSED(t0);
  10810. const int64_t nea0 = a->ne[0];
  10811. const int64_t nea1 = a->ne[1];
  10812. const int64_t nea2 = a->ne[2];
  10813. const int64_t nea3 = a->ne[3];
  10814. const int64_t neb00 = b0->ne[0];
  10815. const int64_t neb01 = b0->ne[1];
  10816. //const int64_t neb02 = b0->ne[2];
  10817. //const int64_t neb03 = b0->ne[3];
  10818. const int64_t neb10 = b1->ne[0];
  10819. const int64_t neb11 = b1->ne[1];
  10820. //const int64_t neb12 = b1->ne[2];
  10821. //const int64_t neb13 = b1->ne[3];
  10822. const int64_t nec00 = c0->ne[0];
  10823. const int64_t nec01 = c0->ne[1];
  10824. //const int64_t nec02 = c0->ne[2];
  10825. //const int64_t nec03 = c0->ne[3];
  10826. const int64_t nec10 = c1->ne[0];
  10827. const int64_t nec11 = c1->ne[1];
  10828. //const int64_t nec12 = c1->ne[2];
  10829. //const int64_t nec13 = c1->ne[3];
  10830. const int64_t ne0 = dst->ne[0];
  10831. const int64_t ne1 = dst->ne[1];
  10832. const int64_t ne2 = dst->ne[2];
  10833. //const int64_t ne3 = dst->ne[3];
  10834. const int nba0 = a->nb[0];
  10835. const int nba1 = a->nb[1];
  10836. const int nba2 = a->nb[2];
  10837. const int nba3 = a->nb[3];
  10838. const int nbb00 = b0->nb[0];
  10839. const int nbb01 = b0->nb[1];
  10840. const int nbb02 = b0->nb[2];
  10841. const int nbb03 = b0->nb[3];
  10842. const int nbb10 = b1->nb[0];
  10843. //const int nbb11 = b1->nb[1];
  10844. //const int nbb12 = b1->nb[2];
  10845. //const int nbb13 = b1->nb[3];
  10846. const int nbc00 = c0->nb[0];
  10847. const int nbc01 = c0->nb[1];
  10848. const int nbc02 = c0->nb[2];
  10849. const int nbc03 = c0->nb[3];
  10850. const int nbc10 = c1->nb[0];
  10851. //const int nbc11 = c1->nb[1];
  10852. //const int nbc12 = c1->nb[2];
  10853. //const int nbc13 = c1->nb[3];
  10854. const int nb0 = dst->nb[0];
  10855. const int nb1 = dst->nb[1];
  10856. const int nb2 = dst->nb[2];
  10857. const int nb3 = dst->nb[3];
  10858. const int ith = params->ith;
  10859. const int nth = params->nth;
  10860. const int64_t D = nea0;
  10861. //const int64_t N = nea1;
  10862. const int64_t M = neb01;
  10863. GGML_ASSERT(ne0 == nea0);
  10864. GGML_ASSERT(ne1 == nea1);
  10865. GGML_ASSERT(ne2 == nea2);
  10866. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10867. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10868. GGML_ASSERT(nbb10 == sizeof(float));
  10869. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10870. GGML_ASSERT(nbc10 == sizeof(float));
  10871. GGML_ASSERT(neb00 == D);
  10872. GGML_ASSERT(neb01 == M);
  10873. GGML_ASSERT(neb10 == M);
  10874. GGML_ASSERT(neb11 == 1);
  10875. GGML_ASSERT(nec00 == M);
  10876. GGML_ASSERT(nec01 == D);
  10877. GGML_ASSERT(nec10 == D);
  10878. GGML_ASSERT(nec11 == 1);
  10879. // dst cannot be transposed or permuted
  10880. GGML_ASSERT(nb0 == sizeof(float));
  10881. GGML_ASSERT(nb0 <= nb1);
  10882. GGML_ASSERT(nb1 <= nb2);
  10883. GGML_ASSERT(nb2 <= nb3);
  10884. if (params->type == GGML_TASK_INIT) {
  10885. return;
  10886. }
  10887. if (params->type == GGML_TASK_FINALIZE) {
  10888. return;
  10889. }
  10890. // parallelize by a rows using ggml_vec_dot_f32
  10891. // total rows in a
  10892. const int nr = nea1*nea2*nea3;
  10893. // rows per thread
  10894. const int dr = (nr + nth - 1)/nth;
  10895. // row range for this thread
  10896. const int ir0 = dr*ith;
  10897. const int ir1 = MIN(ir0 + dr, nr);
  10898. for (int ir = ir0; ir < ir1; ++ir) {
  10899. // a indices
  10900. const int ia3 = ir/(nea2*nea1);
  10901. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10902. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10903. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10904. for (int64_t ic = 0; ic < neb01; ++ic) {
  10905. // b0 indices
  10906. const int ib03 = ia3;
  10907. const int ib02 = ia2;
  10908. const int ib01 = ic;
  10909. // S indices
  10910. const int i1 = ib01;
  10911. ggml_vec_dot_f16(nea0,
  10912. S + i1,
  10913. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10914. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10915. }
  10916. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10917. //ggml_vec_gelu_f32(neb01, S, S);
  10918. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10919. for (int64_t i = 0; i < M; i++) {
  10920. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10921. }
  10922. ggml_vec_gelu_f16(neb01, S16, S16);
  10923. {
  10924. // dst indices
  10925. const int i1 = ia1;
  10926. const int i2 = ia2;
  10927. const int i3 = ia3;
  10928. for (int64_t ic = 0; ic < nec01; ++ic) {
  10929. ggml_vec_dot_f16(neb01,
  10930. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10931. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10932. S16);
  10933. }
  10934. ggml_vec_add_f32(nec01,
  10935. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10936. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10937. (float *) c1->data);
  10938. }
  10939. }
  10940. }
  10941. static void ggml_compute_forward_flash_ff(
  10942. const struct ggml_compute_params * params,
  10943. const struct ggml_tensor * a,
  10944. const struct ggml_tensor * b0,
  10945. const struct ggml_tensor * b1,
  10946. const struct ggml_tensor * c0,
  10947. const struct ggml_tensor * c1,
  10948. struct ggml_tensor * dst) {
  10949. switch (b0->type) {
  10950. case GGML_TYPE_F16:
  10951. {
  10952. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10953. } break;
  10954. case GGML_TYPE_F32:
  10955. {
  10956. GGML_ASSERT(false); // TODO
  10957. } break;
  10958. default:
  10959. {
  10960. GGML_ASSERT(false);
  10961. } break;
  10962. }
  10963. }
  10964. // ggml_compute_forward_flash_attn_back
  10965. static void ggml_compute_forward_flash_attn_back_f32(
  10966. const struct ggml_compute_params * params,
  10967. const struct ggml_tensor * q,
  10968. const struct ggml_tensor * k,
  10969. const struct ggml_tensor * v,
  10970. const struct ggml_tensor * d,
  10971. const bool masked,
  10972. struct ggml_tensor * dst) {
  10973. int64_t t0 = ggml_perf_time_us();
  10974. UNUSED(t0);
  10975. const int64_t neq0 = q->ne[0];
  10976. const int64_t neq1 = q->ne[1];
  10977. const int64_t neq2 = q->ne[2];
  10978. const int64_t neq3 = q->ne[3];
  10979. const int64_t nek0 = k->ne[0];
  10980. const int64_t nek1 = k->ne[1];
  10981. //const int64_t nek2 = k->ne[2];
  10982. //const int64_t nek3 = k->ne[3];
  10983. const int64_t nev0 = v->ne[0];
  10984. const int64_t nev1 = v->ne[1];
  10985. //const int64_t nev2 = v->ne[2];
  10986. //const int64_t nev3 = v->ne[3];
  10987. const int64_t ned0 = d->ne[0];
  10988. const int64_t ned1 = d->ne[1];
  10989. //const int64_t ned2 = d->ne[2];
  10990. //const int64_t ned3 = d->ne[3];
  10991. const int64_t ne0 = dst->ne[0];
  10992. const int64_t ne1 = dst->ne[1];
  10993. const int64_t ne2 = dst->ne[2];
  10994. const int64_t ne3 = dst->ne[3];
  10995. const int nbk0 = k->nb[0];
  10996. const int nbk1 = k->nb[1];
  10997. const int nbk2 = k->nb[2];
  10998. const int nbk3 = k->nb[3];
  10999. const int nbq0 = q->nb[0];
  11000. const int nbq1 = q->nb[1];
  11001. const int nbq2 = q->nb[2];
  11002. const int nbq3 = q->nb[3];
  11003. const int nbv0 = v->nb[0];
  11004. const int nbv1 = v->nb[1];
  11005. const int nbv2 = v->nb[2];
  11006. const int nbv3 = v->nb[3];
  11007. const int nbd0 = d->nb[0];
  11008. const int nbd1 = d->nb[1];
  11009. const int nbd2 = d->nb[2];
  11010. const int nbd3 = d->nb[3];
  11011. const int nb0 = dst->nb[0];
  11012. const int nb1 = dst->nb[1];
  11013. const int nb2 = dst->nb[2];
  11014. const int nb3 = dst->nb[3];
  11015. const int ith = params->ith;
  11016. const int nth = params->nth;
  11017. const int64_t D = neq0;
  11018. const int64_t N = neq1;
  11019. const int64_t P = nek1 - N;
  11020. const int64_t M = P + N;
  11021. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11022. const int mxDM = MAX(D, Mup);
  11023. // GGML_ASSERT(ne0 == D);
  11024. // GGML_ASSERT(ne1 == N);
  11025. GGML_ASSERT(P >= 0);
  11026. GGML_ASSERT(nbq0 == sizeof(float));
  11027. GGML_ASSERT(nbk0 == sizeof(float));
  11028. GGML_ASSERT(nbv0 == sizeof(float));
  11029. GGML_ASSERT(neq0 == D);
  11030. GGML_ASSERT(nek0 == D);
  11031. GGML_ASSERT(nev1 == D);
  11032. GGML_ASSERT(ned0 == D);
  11033. GGML_ASSERT(neq1 == N);
  11034. GGML_ASSERT(nek1 == N + P);
  11035. GGML_ASSERT(nev1 == D);
  11036. GGML_ASSERT(ned1 == N);
  11037. // dst cannot be transposed or permuted
  11038. GGML_ASSERT(nb0 == sizeof(float));
  11039. GGML_ASSERT(nb0 <= nb1);
  11040. GGML_ASSERT(nb1 <= nb2);
  11041. GGML_ASSERT(nb2 <= nb3);
  11042. if (params->type == GGML_TASK_INIT) {
  11043. if (ith == 0) {
  11044. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11045. }
  11046. return;
  11047. }
  11048. if (params->type == GGML_TASK_FINALIZE) {
  11049. return;
  11050. }
  11051. // parallelize by q rows using ggml_vec_dot_f32
  11052. // total rows in q
  11053. const int nr = neq2*neq3;
  11054. // rows per thread
  11055. const int dr = (nr + nth - 1)/nth;
  11056. // row range for this thread
  11057. const int ir0 = dr*ith;
  11058. const int ir1 = MIN(ir0 + dr, nr);
  11059. const float scale = 1.0f/sqrtf(D);
  11060. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11061. for (int ir = ir0; ir < ir1; ++ir) {
  11062. // q indices
  11063. const int iq3 = ir/(neq2);
  11064. const int iq2 = ir - iq3*neq2;
  11065. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11066. // not sure about CACHE_LINE_SIZE_F32..
  11067. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11068. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11069. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11070. for (int i = M; i < Mup; ++i) {
  11071. S[i] = -INFINITY;
  11072. }
  11073. for (int64_t ic = 0; ic < nek1; ++ic) {
  11074. // k indices
  11075. const int ik3 = iq3;
  11076. const int ik2 = iq2;
  11077. const int ik1 = ic;
  11078. // S indices
  11079. const int i1 = ik1;
  11080. ggml_vec_dot_f32(neq0,
  11081. S + i1,
  11082. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11083. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11084. }
  11085. // scale
  11086. ggml_vec_scale_f32(nek1, S, scale);
  11087. if (masked) {
  11088. for (int64_t i = P; i < M; i++) {
  11089. if (i > P + iq1) {
  11090. S[i] = -INFINITY;
  11091. }
  11092. }
  11093. }
  11094. // softmax
  11095. {
  11096. float max = -INFINITY;
  11097. ggml_vec_max_f32(M, &max, S);
  11098. ggml_float sum = 0.0;
  11099. {
  11100. #ifdef GGML_SOFT_MAX_ACCELERATE
  11101. max = -max;
  11102. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11103. vvexpf(SM, SM, &Mup);
  11104. ggml_vec_sum_f32(Mup, &sum, SM);
  11105. #else
  11106. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11107. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11108. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11109. float * SR = S + i;
  11110. float * SW = SM + i;
  11111. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11112. if (SR[j] == -INFINITY) {
  11113. SW[j] = 0.0f;
  11114. } else {
  11115. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11116. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11117. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11118. sump[j] += (ggml_float)val;
  11119. SW[j] = val;
  11120. }
  11121. }
  11122. }
  11123. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11124. sum += sump[i];
  11125. }
  11126. #endif
  11127. }
  11128. assert(sum > 0.0);
  11129. sum = 1.0/sum;
  11130. ggml_vec_scale_f32(M, SM, sum);
  11131. }
  11132. // step-by-step explanation
  11133. {
  11134. // forward-process shape grads from backward process
  11135. // parallel_for iq2,iq3:
  11136. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11137. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11138. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11139. // for iq1:
  11140. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11141. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11142. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11143. // S0 = -Inf [D,1,1,1]
  11144. // ~S1[i] = dot(kcur[:D,i], qcur)
  11145. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11146. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11147. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11148. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11149. // ~S5[i] = dot(vcur[:,i], S4)
  11150. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11151. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11152. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11153. // dst backward-/ grad[dst] = d
  11154. //
  11155. // output gradients with their dependencies:
  11156. //
  11157. // grad[kcur] = grad[S1].T @ qcur
  11158. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11159. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11160. // grad[S4] = grad[S5] @ vcur
  11161. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11162. // grad[qcur] = grad[S1] @ kcur
  11163. // grad[vcur] = grad[S5].T @ S4
  11164. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11165. //
  11166. // in post-order:
  11167. //
  11168. // S1 = qcur @ kcur.T
  11169. // S2 = S1 * scale
  11170. // S3 = diag_mask_inf(S2, P)
  11171. // S4 = softmax(S3)
  11172. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11173. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11174. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11175. // grad[qcur] = grad[S1] @ kcur
  11176. // grad[kcur] = grad[S1].T @ qcur
  11177. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11178. //
  11179. // using less variables (SM=S4):
  11180. //
  11181. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11182. // SM = softmax(S)
  11183. // S = d[:D,iq1,iq2,iq3] @ vcur
  11184. // dot_SM_gradSM = dot(SM, S)
  11185. // S = SM * (S - dot(SM, S))
  11186. // S = diag_mask_zero(S, P) * scale
  11187. //
  11188. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11189. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11190. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11191. }
  11192. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11193. // S = d[:D,iq1,iq2,iq3] @ vcur
  11194. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11195. ggml_vec_set_f32(M, S, 0);
  11196. for (int64_t ic = 0; ic < D; ++ic) {
  11197. // dst indices
  11198. const int i1 = iq1;
  11199. const int i2 = iq2;
  11200. const int i3 = iq3;
  11201. ggml_vec_mad_f32(M,
  11202. S,
  11203. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11204. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11205. }
  11206. // S = SM * (S - dot(SM, S))
  11207. float dot_SM_gradSM = 0;
  11208. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11209. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11210. ggml_vec_mul_f32 (M, S, S, SM);
  11211. // S = diag_mask_zero(S, P) * scale
  11212. if (masked) {
  11213. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11214. // S[i] = 0;
  11215. // }
  11216. for (int64_t i = P; i < M; i++) {
  11217. if (i > P + iq1) {
  11218. S[i] = 0;
  11219. }
  11220. }
  11221. }
  11222. ggml_vec_scale_f32(M, S, scale);
  11223. void * grad_q = (char *) dst->data;
  11224. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11225. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11226. const size_t nbgq1 = nb0*neq0;
  11227. const size_t nbgq2 = nb0*neq0*neq1;
  11228. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11229. const size_t nbgk1 = nb0*nek0;
  11230. const size_t nbgk2 = nb0*nek0*nek1;
  11231. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11232. const size_t nbgv1 = nb0*nev0;
  11233. const size_t nbgv2 = nb0*nev0*nev1;
  11234. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11235. // S shape [M,1]
  11236. // SM shape [M,1]
  11237. // kcur shape [D,M]
  11238. // qcur shape [D,1]
  11239. // vcur shape [M,D]
  11240. //
  11241. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11242. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11243. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11244. //
  11245. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11246. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11247. for (int64_t ic = 0; ic < M; ++ic) {
  11248. // dst indices
  11249. const int i1 = iq1;
  11250. const int i2 = iq2;
  11251. const int i3 = iq3;
  11252. ggml_vec_mad_f32(D,
  11253. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11254. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11255. S[ic]);
  11256. }
  11257. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11258. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11259. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11260. for (int64_t ic = 0; ic < M; ++ic) {
  11261. // dst indices
  11262. const int i1 = iq1;
  11263. const int i2 = iq2;
  11264. const int i3 = iq3;
  11265. // ggml_vec_set_f32(D,
  11266. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11267. // 0);
  11268. ggml_vec_mad_f32(D,
  11269. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11270. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11271. S[ic]);
  11272. }
  11273. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11274. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11275. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11276. for (int64_t ic = 0; ic < D; ++ic) {
  11277. // dst indices
  11278. const int i1 = iq1;
  11279. const int i2 = iq2;
  11280. const int i3 = iq3;
  11281. // ggml_vec_set_f32(M,
  11282. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11283. // 0);
  11284. ggml_vec_mad_f32(M,
  11285. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11286. SM,
  11287. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11288. }
  11289. }
  11290. }
  11291. }
  11292. static void ggml_compute_forward_flash_attn_back(
  11293. const struct ggml_compute_params * params,
  11294. const struct ggml_tensor * q,
  11295. const struct ggml_tensor * k,
  11296. const struct ggml_tensor * v,
  11297. const struct ggml_tensor * d,
  11298. const bool masked,
  11299. struct ggml_tensor * dst) {
  11300. switch (q->type) {
  11301. case GGML_TYPE_F32:
  11302. {
  11303. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11304. } break;
  11305. default:
  11306. {
  11307. GGML_ASSERT(false);
  11308. } break;
  11309. }
  11310. }
  11311. // ggml_compute_forward_map_unary
  11312. static void ggml_compute_forward_map_unary_f32(
  11313. const struct ggml_compute_params * params,
  11314. const struct ggml_tensor * src0,
  11315. struct ggml_tensor * dst,
  11316. const ggml_unary_op_f32_t fun) {
  11317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11319. return;
  11320. }
  11321. const int n = ggml_nrows(src0);
  11322. const int nc = src0->ne[0];
  11323. assert( dst->nb[0] == sizeof(float));
  11324. assert(src0->nb[0] == sizeof(float));
  11325. for (int i = 0; i < n; i++) {
  11326. fun(nc,
  11327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11329. }
  11330. }
  11331. static void ggml_compute_forward_map_unary(
  11332. const struct ggml_compute_params * params,
  11333. const struct ggml_tensor * src0,
  11334. struct ggml_tensor * dst,
  11335. const ggml_unary_op_f32_t fun) {
  11336. switch (src0->type) {
  11337. case GGML_TYPE_F32:
  11338. {
  11339. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11340. } break;
  11341. default:
  11342. {
  11343. GGML_ASSERT(false);
  11344. } break;
  11345. }
  11346. }
  11347. // ggml_compute_forward_map_binary
  11348. static void ggml_compute_forward_map_binary_f32(
  11349. const struct ggml_compute_params * params,
  11350. const struct ggml_tensor * src0,
  11351. const struct ggml_tensor * src1,
  11352. struct ggml_tensor * dst,
  11353. const ggml_binary_op_f32_t fun) {
  11354. assert(params->ith == 0);
  11355. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11357. return;
  11358. }
  11359. const int n = ggml_nrows(src0);
  11360. const int nc = src0->ne[0];
  11361. assert( dst->nb[0] == sizeof(float));
  11362. assert(src0->nb[0] == sizeof(float));
  11363. assert(src1->nb[0] == sizeof(float));
  11364. for (int i = 0; i < n; i++) {
  11365. fun(nc,
  11366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11367. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11368. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11369. }
  11370. }
  11371. static void ggml_compute_forward_map_binary(
  11372. const struct ggml_compute_params * params,
  11373. const struct ggml_tensor * src0,
  11374. const struct ggml_tensor * src1,
  11375. struct ggml_tensor * dst,
  11376. const ggml_binary_op_f32_t fun) {
  11377. switch (src0->type) {
  11378. case GGML_TYPE_F32:
  11379. {
  11380. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11381. } break;
  11382. default:
  11383. {
  11384. GGML_ASSERT(false);
  11385. } break;
  11386. }
  11387. }
  11388. // ggml_compute_forward_cross_entropy_loss
  11389. static void ggml_compute_forward_cross_entropy_loss_f32(
  11390. const struct ggml_compute_params * params,
  11391. const struct ggml_tensor * src0,
  11392. const struct ggml_tensor * src1,
  11393. struct ggml_tensor * dst) {
  11394. GGML_ASSERT(ggml_is_contiguous(src0));
  11395. GGML_ASSERT(ggml_is_contiguous(src1));
  11396. GGML_ASSERT(ggml_is_scalar(dst));
  11397. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11398. const int ith = params->ith;
  11399. const int nth = params->nth;
  11400. float * sums = (float *) params->wdata;
  11401. // TODO: handle transposed/permuted matrices
  11402. const int nc = src0->ne[0];
  11403. const int nr = ggml_nrows(src0);
  11404. if (params->type == GGML_TASK_INIT) {
  11405. if (ith == 0) {
  11406. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11407. }
  11408. return;
  11409. }
  11410. if (params->type == GGML_TASK_FINALIZE) {
  11411. if (ith == 0) {
  11412. float * dp = (float *) dst->data;
  11413. ggml_vec_sum_f32(nth, dp, sums);
  11414. dp[0] *= -1.0f;
  11415. }
  11416. return;
  11417. }
  11418. const double eps = 1e-9;
  11419. // rows per thread
  11420. const int dr = (nr + nth - 1)/nth;
  11421. // row range for this thread
  11422. const int ir0 = dr*ith;
  11423. const int ir1 = MIN(ir0 + dr, nr);
  11424. for (int i1 = ir0; i1 < ir1; i1++) {
  11425. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11426. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11427. float * st = (float *) params->wdata + nth + ith*nc;
  11428. #ifndef NDEBUG
  11429. for (int i = 0; i < nc; ++i) {
  11430. //printf("p[%d] = %f\n", i, p[i]);
  11431. assert(!isnan(s0[i]));
  11432. assert(!isnan(s1[i]));
  11433. }
  11434. #endif
  11435. // soft_max
  11436. ggml_float sum = 0.0;
  11437. {
  11438. float max = -INFINITY;
  11439. ggml_vec_max_f32(nc, &max, s0);
  11440. uint16_t scvt;
  11441. for (int i = 0; i < nc; i++) {
  11442. if (s0[i] == -INFINITY) {
  11443. st[i] = 0.0f;
  11444. } else {
  11445. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11446. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11447. memcpy(&scvt, &s, sizeof(scvt));
  11448. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11449. sum += (ggml_float)val;
  11450. st[i] = val;
  11451. }
  11452. }
  11453. assert(sum > 0.0);
  11454. // sum = 1.0/sum;
  11455. }
  11456. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11457. sum = (1.0 - eps) / sum;
  11458. ggml_vec_scale_f32(nc, st, sum);
  11459. ggml_vec_add1_f32(nc, st, st, eps);
  11460. ggml_vec_log_f32(nc, st, st);
  11461. ggml_vec_mul_f32(nc, st, st, s1);
  11462. ggml_vec_sum_f32(nc, sums + ith, st);
  11463. #ifndef NDEBUG
  11464. for (int i = 0; i < nc; ++i) {
  11465. assert(!isnan(st[i]));
  11466. assert(!isinf(st[i]));
  11467. }
  11468. #endif
  11469. }
  11470. }
  11471. static void ggml_compute_forward_cross_entropy_loss(
  11472. const struct ggml_compute_params * params,
  11473. const struct ggml_tensor * src0,
  11474. const struct ggml_tensor * src1,
  11475. struct ggml_tensor * dst) {
  11476. switch (src0->type) {
  11477. case GGML_TYPE_F32:
  11478. {
  11479. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11480. } break;
  11481. default:
  11482. {
  11483. GGML_ASSERT(false);
  11484. } break;
  11485. }
  11486. }
  11487. // ggml_compute_forward_cross_entropy_loss_back
  11488. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11489. const struct ggml_compute_params * params,
  11490. const struct ggml_tensor * src0,
  11491. const struct ggml_tensor * src1,
  11492. const struct ggml_tensor * opt0,
  11493. struct ggml_tensor * dst) {
  11494. GGML_ASSERT(ggml_is_contiguous(dst));
  11495. GGML_ASSERT(ggml_is_contiguous(src0));
  11496. GGML_ASSERT(ggml_is_contiguous(src1));
  11497. GGML_ASSERT(ggml_is_contiguous(opt0));
  11498. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11499. const int64_t ith = params->ith;
  11500. const int64_t nth = params->nth;
  11501. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11502. return;
  11503. }
  11504. const float eps = 1e-9f;
  11505. // TODO: handle transposed/permuted matrices
  11506. const int64_t nc = src0->ne[0];
  11507. const int64_t nr = ggml_nrows(src0);
  11508. // rows per thread
  11509. const int64_t dr = (nr + nth - 1)/nth;
  11510. // row range for this thread
  11511. const int64_t ir0 = dr*ith;
  11512. const int64_t ir1 = MIN(ir0 + dr, nr);
  11513. float * d = (float *) opt0->data;
  11514. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11515. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11516. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11517. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11518. float * sm = (float *) params->wdata + ith*nc;
  11519. #ifndef NDEBUG
  11520. for (int i = 0; i < nc; ++i) {
  11521. //printf("p[%d] = %f\n", i, p[i]);
  11522. assert(!isnan(s0[i]));
  11523. assert(!isnan(s1[i]));
  11524. }
  11525. #endif
  11526. // step by step explanation:
  11527. {
  11528. //float * sums = (float *) params->wdata;
  11529. // forward pass with annotated gradients from backward pass
  11530. // (built by going in reverse operation order, adding to gradients of current operation args)
  11531. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11532. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11533. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11534. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11535. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11536. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11537. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11538. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11539. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11540. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11541. // postorder:
  11542. // grad[st1] := softmax(s0)
  11543. // grad[st1] := grad[st1]*(1.0 - eps)
  11544. // grad[st1] := grad[st1] + eps
  11545. // grad[st1] := s1 / grad[st1]
  11546. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11547. // src0 gradients by going through softmax_back
  11548. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11549. // from softmax_back:
  11550. // dxk = yk * (dyk - dot(y, dy))
  11551. // dot_y_dy := dot(y, dy)
  11552. // dx := dy
  11553. // dx := dx - dot_y_dy
  11554. // dx := dx * y
  11555. // postorder:
  11556. // dot_st1_dst1 := dot(st1, grad[st1])
  11557. // grad[s0] := grad[st1]
  11558. // grad[s0] := grad[s0] - dot_st1_dst1
  11559. // grad[s0] := grad[s0] * st1
  11560. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11561. // sm := softmax(s0)
  11562. // grad[s0] := sm*(1.0 - eps)
  11563. // grad[s0] := grad[s0] + eps
  11564. // grad[s0] := s1 / grad[s0]
  11565. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11566. // dot_st1_dst1 := dot(sm, grad[s0])
  11567. // grad[s0] := grad[s0] - dot_st1_dst1
  11568. // grad[s0] := grad[s0] * sm
  11569. }
  11570. // soft_max
  11571. ggml_float sum = 0.0;
  11572. {
  11573. float max = -INFINITY;
  11574. ggml_vec_max_f32(nc, &max, s0);
  11575. uint16_t scvt;
  11576. for (int i = 0; i < nc; i++) {
  11577. if (s0[i] == -INFINITY) {
  11578. sm[i] = 0.0f;
  11579. } else {
  11580. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11581. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11582. memcpy(&scvt, &s, sizeof(scvt));
  11583. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11584. sum += (ggml_float)val;
  11585. sm[i] = val;
  11586. }
  11587. }
  11588. assert(sum > 0.0);
  11589. sum = 1.0/sum;
  11590. }
  11591. float dot_st1_dst1 = 0;
  11592. ggml_vec_scale_f32(nc, sm, sum);
  11593. ggml_vec_cpy_f32 (nc, ds0, sm);
  11594. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11595. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11596. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11597. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11598. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11599. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11600. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11601. #ifndef NDEBUG
  11602. for (int i = 0; i < nc; ++i) {
  11603. assert(!isnan(sm[i]));
  11604. assert(!isinf(sm[i]));
  11605. assert(!isnan(ds0[i]));
  11606. assert(!isinf(ds0[i]));
  11607. }
  11608. #endif
  11609. }
  11610. }
  11611. static void ggml_compute_forward_cross_entropy_loss_back(
  11612. const struct ggml_compute_params * params,
  11613. const struct ggml_tensor * src0,
  11614. const struct ggml_tensor * src1,
  11615. const struct ggml_tensor * opt0,
  11616. struct ggml_tensor * dst) {
  11617. switch (src0->type) {
  11618. case GGML_TYPE_F32:
  11619. {
  11620. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11621. } break;
  11622. default:
  11623. {
  11624. GGML_ASSERT(false);
  11625. } break;
  11626. }
  11627. }
  11628. /////////////////////////////////
  11629. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11630. GGML_ASSERT(params);
  11631. #ifdef GGML_USE_CUBLAS
  11632. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11633. if (skip_cpu) {
  11634. return;
  11635. }
  11636. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  11637. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  11638. #endif // GGML_USE_CUBLAS
  11639. switch (tensor->op) {
  11640. case GGML_OP_DUP:
  11641. {
  11642. ggml_compute_forward_dup(params, tensor->src0, tensor);
  11643. } break;
  11644. case GGML_OP_ADD:
  11645. {
  11646. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  11647. } break;
  11648. case GGML_OP_ADD1:
  11649. {
  11650. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  11651. } break;
  11652. case GGML_OP_ACC:
  11653. {
  11654. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11655. } break;
  11656. case GGML_OP_SUB:
  11657. {
  11658. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  11659. } break;
  11660. case GGML_OP_MUL:
  11661. {
  11662. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  11663. } break;
  11664. case GGML_OP_DIV:
  11665. {
  11666. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  11667. } break;
  11668. case GGML_OP_SQR:
  11669. {
  11670. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  11671. } break;
  11672. case GGML_OP_SQRT:
  11673. {
  11674. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  11675. } break;
  11676. case GGML_OP_LOG:
  11677. {
  11678. ggml_compute_forward_log(params, tensor->src0, tensor);
  11679. } break;
  11680. case GGML_OP_SUM:
  11681. {
  11682. ggml_compute_forward_sum(params, tensor->src0, tensor);
  11683. } break;
  11684. case GGML_OP_SUM_ROWS:
  11685. {
  11686. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  11687. } break;
  11688. case GGML_OP_MEAN:
  11689. {
  11690. ggml_compute_forward_mean(params, tensor->src0, tensor);
  11691. } break;
  11692. case GGML_OP_REPEAT:
  11693. {
  11694. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  11695. } break;
  11696. case GGML_OP_REPEAT_BACK:
  11697. {
  11698. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  11699. } break;
  11700. case GGML_OP_ABS:
  11701. {
  11702. ggml_compute_forward_abs(params, tensor->src0, tensor);
  11703. } break;
  11704. case GGML_OP_SGN:
  11705. {
  11706. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  11707. } break;
  11708. case GGML_OP_NEG:
  11709. {
  11710. ggml_compute_forward_neg(params, tensor->src0, tensor);
  11711. } break;
  11712. case GGML_OP_STEP:
  11713. {
  11714. ggml_compute_forward_step(params, tensor->src0, tensor);
  11715. } break;
  11716. case GGML_OP_RELU:
  11717. {
  11718. ggml_compute_forward_relu(params, tensor->src0, tensor);
  11719. } break;
  11720. case GGML_OP_GELU:
  11721. {
  11722. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  11723. } break;
  11724. case GGML_OP_SILU:
  11725. {
  11726. ggml_compute_forward_silu(params, tensor->src0, tensor);
  11727. } break;
  11728. case GGML_OP_SILU_BACK:
  11729. {
  11730. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  11731. } break;
  11732. case GGML_OP_NORM:
  11733. {
  11734. ggml_compute_forward_norm(params, tensor->src0, tensor);
  11735. } break;
  11736. case GGML_OP_RMS_NORM:
  11737. {
  11738. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  11739. } break;
  11740. case GGML_OP_RMS_NORM_BACK:
  11741. {
  11742. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  11743. } break;
  11744. case GGML_OP_MUL_MAT:
  11745. {
  11746. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  11747. } break;
  11748. case GGML_OP_OUT_PROD:
  11749. {
  11750. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  11751. } break;
  11752. case GGML_OP_SCALE:
  11753. {
  11754. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  11755. } break;
  11756. case GGML_OP_SET:
  11757. {
  11758. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11759. } break;
  11760. case GGML_OP_CPY:
  11761. {
  11762. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  11763. } break;
  11764. case GGML_OP_CONT:
  11765. {
  11766. ggml_compute_forward_cont(params, tensor->src0, tensor);
  11767. } break;
  11768. case GGML_OP_RESHAPE:
  11769. {
  11770. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  11771. } break;
  11772. case GGML_OP_VIEW:
  11773. {
  11774. ggml_compute_forward_view(params, tensor->src0);
  11775. } break;
  11776. case GGML_OP_PERMUTE:
  11777. {
  11778. ggml_compute_forward_permute(params, tensor->src0);
  11779. } break;
  11780. case GGML_OP_TRANSPOSE:
  11781. {
  11782. ggml_compute_forward_transpose(params, tensor->src0);
  11783. } break;
  11784. case GGML_OP_GET_ROWS:
  11785. {
  11786. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  11787. } break;
  11788. case GGML_OP_GET_ROWS_BACK:
  11789. {
  11790. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11791. } break;
  11792. case GGML_OP_DIAG:
  11793. {
  11794. ggml_compute_forward_diag(params, tensor->src0, tensor);
  11795. } break;
  11796. case GGML_OP_DIAG_MASK_INF:
  11797. {
  11798. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  11799. } break;
  11800. case GGML_OP_DIAG_MASK_ZERO:
  11801. {
  11802. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  11803. } break;
  11804. case GGML_OP_SOFT_MAX:
  11805. {
  11806. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  11807. } break;
  11808. case GGML_OP_SOFT_MAX_BACK:
  11809. {
  11810. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  11811. } break;
  11812. case GGML_OP_ROPE:
  11813. {
  11814. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  11815. } break;
  11816. case GGML_OP_ROPE_BACK:
  11817. {
  11818. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  11819. } break;
  11820. case GGML_OP_ALIBI:
  11821. {
  11822. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  11823. } break;
  11824. case GGML_OP_CLAMP:
  11825. {
  11826. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  11827. } break;
  11828. case GGML_OP_CONV_1D_1S:
  11829. {
  11830. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  11831. } break;
  11832. case GGML_OP_CONV_1D_2S:
  11833. {
  11834. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  11835. } break;
  11836. case GGML_OP_FLASH_ATTN:
  11837. {
  11838. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  11839. GGML_ASSERT(t == 0 || t == 1);
  11840. bool masked = t != 0;
  11841. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  11842. } break;
  11843. case GGML_OP_FLASH_FF:
  11844. {
  11845. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  11846. } break;
  11847. case GGML_OP_FLASH_ATTN_BACK:
  11848. {
  11849. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  11850. GGML_ASSERT(t == 0 || t == 1);
  11851. bool masked = t != 0;
  11852. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  11853. } break;
  11854. case GGML_OP_MAP_UNARY:
  11855. {
  11856. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  11857. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  11858. }
  11859. break;
  11860. case GGML_OP_MAP_BINARY:
  11861. {
  11862. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  11863. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  11864. }
  11865. break;
  11866. case GGML_OP_CROSS_ENTROPY_LOSS:
  11867. {
  11868. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  11869. }
  11870. break;
  11871. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11872. {
  11873. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11874. }
  11875. break;
  11876. case GGML_OP_NONE:
  11877. {
  11878. // nop
  11879. } break;
  11880. case GGML_OP_COUNT:
  11881. {
  11882. GGML_ASSERT(false);
  11883. } break;
  11884. }
  11885. }
  11886. ////////////////////////////////////////////////////////////////////////////////
  11887. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  11888. struct ggml_tensor * src0 = tensor->src0;
  11889. struct ggml_tensor * src1 = tensor->src1;
  11890. switch (tensor->op) {
  11891. case GGML_OP_DUP:
  11892. {
  11893. if (src0->grad) {
  11894. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11895. }
  11896. } break;
  11897. case GGML_OP_ADD:
  11898. {
  11899. if (src0->grad) {
  11900. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11901. }
  11902. if (src1->grad) {
  11903. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  11904. }
  11905. } break;
  11906. case GGML_OP_ADD1:
  11907. {
  11908. if (src0->grad) {
  11909. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11910. }
  11911. if (src1->grad) {
  11912. src1->grad = ggml_add_impl(ctx,
  11913. src1->grad,
  11914. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11915. inplace);
  11916. }
  11917. } break;
  11918. case GGML_OP_ACC:
  11919. {
  11920. if (src0->grad) {
  11921. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11922. }
  11923. if (src1->grad) {
  11924. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11925. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11926. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11927. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11928. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11929. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11930. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  11931. tensor->grad,
  11932. src1->grad->ne[0],
  11933. src1->grad->ne[1],
  11934. src1->grad->ne[2],
  11935. src1->grad->ne[3],
  11936. nb1, nb2, nb3, offset);
  11937. src1->grad =
  11938. ggml_add_impl(ctx,
  11939. src1->grad,
  11940. ggml_reshape(ctx,
  11941. ggml_cont(ctx, tensor_grad_view),
  11942. src1->grad),
  11943. inplace);
  11944. }
  11945. } break;
  11946. case GGML_OP_SUB:
  11947. {
  11948. if (src0->grad) {
  11949. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11950. }
  11951. if (src1->grad) {
  11952. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  11953. }
  11954. } break;
  11955. case GGML_OP_MUL:
  11956. {
  11957. if (src0->grad) {
  11958. src0->grad =
  11959. ggml_add_impl(ctx,
  11960. src0->grad,
  11961. ggml_mul(ctx, src1, tensor->grad),
  11962. inplace);
  11963. }
  11964. if (src1->grad) {
  11965. src1->grad =
  11966. ggml_add_impl(ctx,
  11967. src1->grad,
  11968. ggml_mul(ctx, src0, tensor->grad),
  11969. inplace);
  11970. }
  11971. } break;
  11972. case GGML_OP_DIV:
  11973. {
  11974. if (src0->grad) {
  11975. src0->grad =
  11976. ggml_add_impl(ctx,
  11977. src0->grad,
  11978. ggml_div(ctx, tensor->grad, src1),
  11979. inplace);
  11980. }
  11981. if (src1->grad) {
  11982. src1->grad =
  11983. ggml_sub_impl(ctx,
  11984. src1->grad,
  11985. ggml_mul(ctx,
  11986. tensor->grad,
  11987. ggml_div(ctx, tensor, src1)),
  11988. inplace);
  11989. }
  11990. } break;
  11991. case GGML_OP_SQR:
  11992. {
  11993. if (src0->grad) {
  11994. src0->grad =
  11995. ggml_add_impl(ctx,
  11996. src0->grad,
  11997. ggml_scale(ctx,
  11998. ggml_mul(ctx, src0, tensor->grad),
  11999. ggml_new_f32(ctx, 2.0f)),
  12000. inplace);
  12001. }
  12002. } break;
  12003. case GGML_OP_SQRT:
  12004. {
  12005. if (src0->grad) {
  12006. src0->grad =
  12007. ggml_add_impl(ctx,
  12008. src0->grad,
  12009. ggml_scale(ctx,
  12010. ggml_div(ctx,
  12011. tensor->grad,
  12012. tensor),
  12013. ggml_new_f32(ctx, 0.5f)),
  12014. inplace);
  12015. }
  12016. } break;
  12017. case GGML_OP_LOG:
  12018. {
  12019. if (src0->grad) {
  12020. src0->grad =
  12021. ggml_add_impl(ctx,
  12022. src0->grad,
  12023. ggml_div(ctx,
  12024. tensor->grad,
  12025. src0),
  12026. inplace);
  12027. }
  12028. } break;
  12029. case GGML_OP_SUM:
  12030. {
  12031. if (src0->grad) {
  12032. src0->grad =
  12033. ggml_add1_impl(ctx,
  12034. src0->grad,
  12035. tensor->grad,
  12036. inplace);
  12037. }
  12038. } break;
  12039. case GGML_OP_SUM_ROWS:
  12040. {
  12041. if (src0->grad) {
  12042. src0->grad =
  12043. ggml_add_impl(ctx,
  12044. src0->grad,
  12045. ggml_repeat(ctx,
  12046. tensor->grad,
  12047. src0->grad),
  12048. inplace);
  12049. }
  12050. } break;
  12051. case GGML_OP_MEAN:
  12052. {
  12053. GGML_ASSERT(false); // TODO: implement
  12054. } break;
  12055. case GGML_OP_REPEAT:
  12056. {
  12057. // necessary for llama
  12058. if (src0->grad) {
  12059. src0->grad = ggml_add_impl(ctx,
  12060. src0->grad,
  12061. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12062. inplace);
  12063. }
  12064. } break;
  12065. case GGML_OP_REPEAT_BACK:
  12066. {
  12067. if (src0->grad) {
  12068. // TODO: test this
  12069. src0->grad = ggml_add_impl(ctx,
  12070. src0->grad,
  12071. ggml_repeat(ctx, tensor->grad, src0->grad),
  12072. inplace);
  12073. }
  12074. } break;
  12075. case GGML_OP_ABS:
  12076. {
  12077. if (src0->grad) {
  12078. src0->grad =
  12079. ggml_add_impl(ctx,
  12080. src0->grad,
  12081. ggml_mul(ctx,
  12082. ggml_sgn(ctx, src0),
  12083. tensor->grad),
  12084. inplace);
  12085. }
  12086. } break;
  12087. case GGML_OP_SGN:
  12088. {
  12089. if (src0->grad) {
  12090. // noop
  12091. }
  12092. } break;
  12093. case GGML_OP_NEG:
  12094. {
  12095. if (src0->grad) {
  12096. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12097. }
  12098. } break;
  12099. case GGML_OP_STEP:
  12100. {
  12101. if (src0->grad) {
  12102. // noop
  12103. }
  12104. } break;
  12105. case GGML_OP_RELU:
  12106. {
  12107. if (src0->grad) {
  12108. src0->grad = ggml_sub_impl(ctx,
  12109. src0->grad,
  12110. ggml_mul(ctx,
  12111. ggml_step(ctx, src0),
  12112. tensor->grad),
  12113. inplace);
  12114. }
  12115. } break;
  12116. case GGML_OP_GELU:
  12117. {
  12118. GGML_ASSERT(false); // TODO: not implemented
  12119. } break;
  12120. case GGML_OP_ALIBI:
  12121. {
  12122. GGML_ASSERT(false); // TODO: not implemented
  12123. } break;
  12124. case GGML_OP_CLAMP:
  12125. {
  12126. GGML_ASSERT(false); // TODO: not implemented
  12127. } break;
  12128. case GGML_OP_SILU:
  12129. {
  12130. // necessary for llama
  12131. if (src0->grad) {
  12132. src0->grad = ggml_add_impl(ctx,
  12133. src0->grad,
  12134. ggml_silu_back(ctx, src0, tensor->grad),
  12135. inplace);
  12136. }
  12137. } break;
  12138. case GGML_OP_SILU_BACK:
  12139. {
  12140. GGML_ASSERT(false); // TODO: not implemented
  12141. } break;
  12142. case GGML_OP_NORM:
  12143. {
  12144. GGML_ASSERT(false); // TODO: not implemented
  12145. } break;
  12146. case GGML_OP_RMS_NORM:
  12147. {
  12148. // necessary for llama
  12149. if (src0->grad) {
  12150. src0->grad = ggml_add_impl(ctx,
  12151. src0->grad,
  12152. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12153. inplace);
  12154. }
  12155. } break;
  12156. case GGML_OP_RMS_NORM_BACK:
  12157. {
  12158. GGML_ASSERT(false); // TODO: not implemented
  12159. } break;
  12160. case GGML_OP_MUL_MAT:
  12161. {
  12162. // https://cs231n.github.io/optimization-2/#staged
  12163. // # forward pass
  12164. // s0 = np.random.randn(5, 10)
  12165. // s1 = np.random.randn(10, 3)
  12166. // t = s0.dot(s1)
  12167. // # now suppose we had the gradient on t from above in the circuit
  12168. // dt = np.random.randn(*t.shape) # same shape as t
  12169. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12170. // ds1 = t.T.dot(dt)
  12171. // tensor.shape [m,p]
  12172. // src0.shape [n,m]
  12173. // src1.shape [n,p]
  12174. // necessary for llama
  12175. if (src0->grad) {
  12176. src0->grad =
  12177. ggml_add_impl(ctx,
  12178. src0->grad,
  12179. ggml_out_prod(ctx, // [n,m]
  12180. src1, // [n,p]
  12181. tensor->grad), // [m,p]
  12182. inplace);
  12183. }
  12184. if (src1->grad) {
  12185. src1->grad =
  12186. ggml_add_impl(ctx,
  12187. src1->grad,
  12188. // ggml_mul_mat(ctx, // [n,p]
  12189. // ggml_cont(ctx, // [m,n]
  12190. // ggml_transpose(ctx, src0)), // [m,n]
  12191. // tensor->grad), // [m,p]
  12192. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12193. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12194. // // and then use ggml_out_prod
  12195. ggml_out_prod(ctx, // [n,p]
  12196. src0, // [n,m]
  12197. ggml_transpose(ctx, // [p,m]
  12198. tensor->grad)), // [m,p]
  12199. inplace);
  12200. }
  12201. } break;
  12202. case GGML_OP_OUT_PROD:
  12203. {
  12204. GGML_ASSERT(false); // TODO: not implemented
  12205. } break;
  12206. case GGML_OP_SCALE:
  12207. {
  12208. // necessary for llama
  12209. if (src0->grad) {
  12210. src0->grad =
  12211. ggml_add_impl(ctx,
  12212. src0->grad,
  12213. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12214. inplace);
  12215. }
  12216. if (src1->grad) {
  12217. src1->grad =
  12218. ggml_add_impl(ctx,
  12219. src1->grad,
  12220. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12221. inplace);
  12222. }
  12223. } break;
  12224. case GGML_OP_SET:
  12225. {
  12226. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12227. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12228. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12229. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12230. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12231. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12232. struct ggml_tensor * tensor_grad_view = NULL;
  12233. if (src0->grad || src1->grad) {
  12234. GGML_ASSERT(src0->type == tensor->type);
  12235. GGML_ASSERT(tensor->grad->type == tensor->type);
  12236. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12237. tensor_grad_view = ggml_view_4d(ctx,
  12238. tensor->grad,
  12239. src1->grad->ne[0],
  12240. src1->grad->ne[1],
  12241. src1->grad->ne[2],
  12242. src1->grad->ne[3],
  12243. nb1, nb2, nb3, offset);
  12244. }
  12245. if (src0->grad) {
  12246. src0->grad = ggml_add_impl(ctx,
  12247. src0->grad,
  12248. ggml_acc_impl(ctx,
  12249. tensor->grad,
  12250. ggml_neg(ctx, tensor_grad_view),
  12251. nb1, nb2, nb3, offset, false),
  12252. inplace);
  12253. }
  12254. if (src1->grad) {
  12255. src1->grad =
  12256. ggml_add_impl(ctx,
  12257. src1->grad,
  12258. ggml_reshape(ctx,
  12259. ggml_cont(ctx, tensor_grad_view),
  12260. src1->grad),
  12261. inplace);
  12262. }
  12263. } break;
  12264. case GGML_OP_CPY:
  12265. {
  12266. // necessary for llama
  12267. // cpy overwrites value of src1 by src0 and returns view(src1)
  12268. // the overwriting is mathematically equivalent to:
  12269. // tensor = src0 * 1 + src1 * 0
  12270. if (src0->grad) {
  12271. // dsrc0 = dtensor * 1
  12272. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12273. }
  12274. if (src1->grad) {
  12275. // dsrc1 = dtensor * 0 -> noop
  12276. }
  12277. } break;
  12278. case GGML_OP_CONT:
  12279. {
  12280. // same as cpy
  12281. if (src0->grad) {
  12282. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12283. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12284. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12285. }
  12286. } break;
  12287. case GGML_OP_RESHAPE:
  12288. {
  12289. // necessary for llama
  12290. if (src0->grad) {
  12291. src0->grad =
  12292. ggml_add_impl(ctx, src0->grad,
  12293. ggml_reshape(ctx, tensor->grad, src0->grad),
  12294. inplace);
  12295. }
  12296. } break;
  12297. case GGML_OP_VIEW:
  12298. {
  12299. // necessary for llama
  12300. if (src0->grad) {
  12301. size_t offset;
  12302. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12303. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12304. size_t nb1 = tensor->nb[1];
  12305. size_t nb2 = tensor->nb[2];
  12306. size_t nb3 = tensor->nb[3];
  12307. if (src0->type != src0->grad->type) {
  12308. // gradient is typically F32, but src0 could be other type
  12309. size_t ng = ggml_element_size(src0->grad);
  12310. size_t n0 = ggml_element_size(src0);
  12311. GGML_ASSERT(offset % n0 == 0);
  12312. GGML_ASSERT(nb1 % n0 == 0);
  12313. GGML_ASSERT(nb2 % n0 == 0);
  12314. GGML_ASSERT(nb3 % n0 == 0);
  12315. offset = (offset / n0) * ng;
  12316. nb1 = (nb1 / n0) * ng;
  12317. nb2 = (nb2 / n0) * ng;
  12318. nb3 = (nb3 / n0) * ng;
  12319. }
  12320. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12321. }
  12322. } break;
  12323. case GGML_OP_PERMUTE:
  12324. {
  12325. // necessary for llama
  12326. if (src0->grad) {
  12327. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12328. int axis0 = axes[0] & 0x3;
  12329. int axis1 = axes[1] & 0x3;
  12330. int axis2 = axes[2] & 0x3;
  12331. int axis3 = axes[3] & 0x3;
  12332. int axes_backward[4] = {0,0,0,0};
  12333. axes_backward[axis0] = 0;
  12334. axes_backward[axis1] = 1;
  12335. axes_backward[axis2] = 2;
  12336. axes_backward[axis3] = 3;
  12337. src0->grad =
  12338. ggml_add_impl(ctx, src0->grad,
  12339. ggml_permute(ctx,
  12340. tensor->grad,
  12341. axes_backward[0],
  12342. axes_backward[1],
  12343. axes_backward[2],
  12344. axes_backward[3]),
  12345. inplace);
  12346. }
  12347. } break;
  12348. case GGML_OP_TRANSPOSE:
  12349. {
  12350. // necessary for llama
  12351. if (src0->grad) {
  12352. src0->grad =
  12353. ggml_add_impl(ctx, src0->grad,
  12354. ggml_transpose(ctx, tensor->grad),
  12355. inplace);
  12356. }
  12357. } break;
  12358. case GGML_OP_GET_ROWS:
  12359. {
  12360. // necessary for llama (only for tokenizer)
  12361. if (src0->grad) {
  12362. src0->grad =
  12363. ggml_add_impl(ctx, src0->grad,
  12364. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12365. inplace);
  12366. }
  12367. if (src1->grad) {
  12368. // noop
  12369. }
  12370. } break;
  12371. case GGML_OP_GET_ROWS_BACK:
  12372. {
  12373. GGML_ASSERT(false); // TODO: not implemented
  12374. } break;
  12375. case GGML_OP_DIAG:
  12376. {
  12377. GGML_ASSERT(false); // TODO: not implemented
  12378. } break;
  12379. case GGML_OP_DIAG_MASK_INF:
  12380. {
  12381. // necessary for llama
  12382. if (src0->grad) {
  12383. assert(src1->type == GGML_TYPE_I32);
  12384. assert(ggml_nelements(src1) == 2);
  12385. const int n_past = ((int32_t *) src1->data)[0];
  12386. src0->grad =
  12387. ggml_add_impl(ctx, src0->grad,
  12388. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12389. inplace);
  12390. }
  12391. if (src1->grad) {
  12392. // noop
  12393. }
  12394. } break;
  12395. case GGML_OP_DIAG_MASK_ZERO:
  12396. {
  12397. // necessary for llama
  12398. if (src0->grad) {
  12399. assert(src1->type == GGML_TYPE_I32);
  12400. assert(ggml_nelements(src1) == 2);
  12401. const int n_past = ((int32_t *) src1->data)[0];
  12402. src0->grad =
  12403. ggml_add_impl(ctx, src0->grad,
  12404. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12405. inplace);
  12406. }
  12407. if (src1->grad) {
  12408. // noop
  12409. }
  12410. } break;
  12411. case GGML_OP_SOFT_MAX:
  12412. {
  12413. // necessary for llama
  12414. if (src0->grad) {
  12415. src0->grad =
  12416. ggml_add_impl(ctx, src0->grad,
  12417. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12418. inplace);
  12419. }
  12420. } break;
  12421. case GGML_OP_SOFT_MAX_BACK:
  12422. {
  12423. GGML_ASSERT(false); // TODO: not implemented
  12424. } break;
  12425. case GGML_OP_ROPE:
  12426. {
  12427. // necessary for llama
  12428. if (src0->grad) {
  12429. assert(src1->type == GGML_TYPE_I32);
  12430. assert(ggml_nelements(src1) == 3);
  12431. const int n_past = ((int32_t *) src1->data)[0];
  12432. const int n_dims = ((int32_t *) src1->data)[1];
  12433. const int mode = ((int32_t *) src1->data)[2];
  12434. src0->grad = ggml_add_impl(ctx,
  12435. src0->grad,
  12436. ggml_rope_back(ctx,
  12437. tensor->grad,
  12438. n_past,
  12439. n_dims,
  12440. mode),
  12441. inplace);
  12442. }
  12443. if (src1->grad) {
  12444. // noop
  12445. }
  12446. } break;
  12447. case GGML_OP_ROPE_BACK:
  12448. {
  12449. if (src0->grad) {
  12450. assert(src1->type == GGML_TYPE_I32);
  12451. assert(ggml_nelements(src1) == 3);
  12452. const int n_past = ((int32_t *) src1->data)[0];
  12453. const int n_dims = ((int32_t *) src1->data)[1];
  12454. const int mode = ((int32_t *) src1->data)[2];
  12455. src0->grad = ggml_add_impl(ctx,
  12456. src0->grad,
  12457. ggml_rope(ctx,
  12458. tensor->grad,
  12459. n_past,
  12460. n_dims,
  12461. mode),
  12462. inplace);
  12463. }
  12464. if (src1->grad) {
  12465. // noop
  12466. }
  12467. } break;
  12468. case GGML_OP_CONV_1D_1S:
  12469. {
  12470. GGML_ASSERT(false); // TODO: not implemented
  12471. } break;
  12472. case GGML_OP_CONV_1D_2S:
  12473. {
  12474. GGML_ASSERT(false); // TODO: not implemented
  12475. } break;
  12476. case GGML_OP_FLASH_ATTN:
  12477. {
  12478. struct ggml_tensor * flash_grad = NULL;
  12479. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12480. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12481. GGML_ASSERT(t == 0 || t == 1);
  12482. bool masked = t != 0;
  12483. flash_grad =
  12484. ggml_flash_attn_back(ctx,
  12485. src0,
  12486. src1,
  12487. tensor->opt[0],
  12488. tensor->grad,
  12489. masked);
  12490. }
  12491. if (src0->grad) {
  12492. struct ggml_tensor * grad_q = NULL;
  12493. const size_t nb0 = flash_grad->nb[0];
  12494. const size_t offset = 0;
  12495. switch(src0->n_dims) {
  12496. case 2:
  12497. {
  12498. grad_q = ggml_view_2d(ctx,
  12499. flash_grad,
  12500. src0->ne[0],
  12501. src0->ne[1],
  12502. nb0*src0->ne[0],
  12503. offset);
  12504. } break;
  12505. case 3:
  12506. {
  12507. grad_q = ggml_view_3d(ctx,
  12508. flash_grad,
  12509. src0->ne[0],
  12510. src0->ne[1],
  12511. src0->ne[2],
  12512. nb0*src0->ne[0],
  12513. nb0*src0->ne[0]*src0->ne[1],
  12514. offset);
  12515. } break;
  12516. case 4:
  12517. {
  12518. grad_q = ggml_view_4d(ctx,
  12519. flash_grad,
  12520. src0->ne[0],
  12521. src0->ne[1],
  12522. src0->ne[2],
  12523. src0->ne[3],
  12524. nb0*src0->ne[0],
  12525. nb0*src0->ne[0]*src0->ne[1],
  12526. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12527. offset);
  12528. } break;
  12529. }
  12530. src0->grad = ggml_add_impl(ctx,
  12531. src0->grad,
  12532. grad_q,
  12533. inplace);
  12534. }
  12535. if (src1->grad) {
  12536. struct ggml_tensor * grad_k = NULL;
  12537. const size_t nb0 = flash_grad->nb[0];
  12538. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12539. switch(src1->n_dims) {
  12540. case 2:
  12541. {
  12542. grad_k = ggml_view_2d(ctx,
  12543. flash_grad,
  12544. src1->ne[0],
  12545. src1->ne[1],
  12546. nb0*src1->ne[0],
  12547. offset);
  12548. } break;
  12549. case 3:
  12550. {
  12551. grad_k = ggml_view_3d(ctx,
  12552. flash_grad,
  12553. src1->ne[0],
  12554. src1->ne[1],
  12555. src1->ne[2],
  12556. nb0*src1->ne[0],
  12557. nb0*src1->ne[0]*src1->ne[1],
  12558. offset);
  12559. } break;
  12560. case 4:
  12561. {
  12562. grad_k = ggml_view_4d(ctx,
  12563. flash_grad,
  12564. src1->ne[0],
  12565. src1->ne[1],
  12566. src1->ne[2],
  12567. src1->ne[3],
  12568. nb0*src1->ne[0],
  12569. nb0*src1->ne[0]*src1->ne[1],
  12570. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12571. offset);
  12572. } break;
  12573. }
  12574. src1->grad = ggml_add_impl(ctx,
  12575. src1->grad,
  12576. grad_k,
  12577. inplace);
  12578. }
  12579. struct ggml_tensor * opt0 = tensor->opt[0];
  12580. if (opt0->grad) {
  12581. struct ggml_tensor * grad_v = NULL;
  12582. const size_t nb0 = flash_grad->nb[0];
  12583. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12584. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12585. switch(opt0->n_dims) {
  12586. case 2:
  12587. {
  12588. grad_v = ggml_view_2d(ctx,
  12589. flash_grad,
  12590. opt0->ne[0],
  12591. opt0->ne[1],
  12592. nb0*opt0->ne[0],
  12593. offset);
  12594. } break;
  12595. case 3:
  12596. {
  12597. grad_v = ggml_view_3d(ctx,
  12598. flash_grad,
  12599. opt0->ne[0],
  12600. opt0->ne[1],
  12601. opt0->ne[2],
  12602. nb0*opt0->ne[0],
  12603. nb0*opt0->ne[0]*opt0->ne[1],
  12604. offset);
  12605. } break;
  12606. case 4:
  12607. {
  12608. grad_v = ggml_view_4d(ctx,
  12609. flash_grad,
  12610. opt0->ne[0],
  12611. opt0->ne[1],
  12612. opt0->ne[2],
  12613. opt0->ne[3],
  12614. nb0*opt0->ne[0],
  12615. nb0*opt0->ne[0]*opt0->ne[1],
  12616. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12617. offset);
  12618. } break;
  12619. }
  12620. opt0->grad = ggml_add_impl(ctx,
  12621. opt0->grad,
  12622. grad_v,
  12623. inplace);
  12624. }
  12625. } break;
  12626. case GGML_OP_FLASH_FF:
  12627. {
  12628. GGML_ASSERT(false); // not supported
  12629. } break;
  12630. case GGML_OP_FLASH_ATTN_BACK:
  12631. {
  12632. GGML_ASSERT(false); // not supported
  12633. } break;
  12634. case GGML_OP_MAP_UNARY:
  12635. case GGML_OP_MAP_BINARY:
  12636. {
  12637. GGML_ASSERT(false); // not supported
  12638. } break;
  12639. case GGML_OP_CROSS_ENTROPY_LOSS:
  12640. {
  12641. if (src0->grad) {
  12642. src0->grad = ggml_add_impl(ctx,
  12643. src0->grad,
  12644. ggml_cross_entropy_loss_back(ctx,
  12645. src0,
  12646. src1,
  12647. tensor->grad),
  12648. inplace);
  12649. }
  12650. } break;
  12651. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12652. {
  12653. GGML_ASSERT(false); // not supported
  12654. } break;
  12655. case GGML_OP_NONE:
  12656. {
  12657. // nop
  12658. } break;
  12659. case GGML_OP_COUNT:
  12660. {
  12661. GGML_ASSERT(false);
  12662. } break;
  12663. }
  12664. }
  12665. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12666. if (node->grad == NULL) {
  12667. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12668. // it can also happen during forward pass, if the user performs computations with constants
  12669. if (node->op != GGML_OP_NONE) {
  12670. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12671. }
  12672. }
  12673. // check if already visited
  12674. for (int i = 0; i < cgraph->n_nodes; i++) {
  12675. if (cgraph->nodes[i] == node) {
  12676. return;
  12677. }
  12678. }
  12679. for (int i = 0; i < cgraph->n_leafs; i++) {
  12680. if (cgraph->leafs[i] == node) {
  12681. return;
  12682. }
  12683. }
  12684. if (node->src0) {
  12685. ggml_visit_parents(cgraph, node->src0);
  12686. }
  12687. if (node->src1) {
  12688. ggml_visit_parents(cgraph, node->src1);
  12689. }
  12690. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  12691. if (node->opt[i]) {
  12692. ggml_visit_parents(cgraph, node->opt[i]);
  12693. }
  12694. }
  12695. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12696. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12697. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12698. if (strlen(node->name) == 0) {
  12699. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  12700. }
  12701. cgraph->leafs[cgraph->n_leafs] = node;
  12702. cgraph->n_leafs++;
  12703. } else {
  12704. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12705. if (strlen(node->name) == 0) {
  12706. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  12707. }
  12708. cgraph->nodes[cgraph->n_nodes] = node;
  12709. cgraph->grads[cgraph->n_nodes] = node->grad;
  12710. cgraph->n_nodes++;
  12711. }
  12712. }
  12713. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12714. if (!expand) {
  12715. cgraph->n_nodes = 0;
  12716. cgraph->n_leafs = 0;
  12717. }
  12718. const int n0 = cgraph->n_nodes;
  12719. UNUSED(n0);
  12720. ggml_visit_parents(cgraph, tensor);
  12721. const int n_new = cgraph->n_nodes - n0;
  12722. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12723. if (n_new > 0) {
  12724. // the last added node should always be starting point
  12725. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12726. }
  12727. }
  12728. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12729. ggml_build_forward_impl(cgraph, tensor, true);
  12730. }
  12731. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12732. struct ggml_cgraph result = {
  12733. /*.n_nodes =*/ 0,
  12734. /*.n_leafs =*/ 0,
  12735. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  12736. /*.work_size =*/ 0,
  12737. /*.work =*/ NULL,
  12738. /*.nodes =*/ { NULL },
  12739. /*.grads =*/ { NULL },
  12740. /*.leafs =*/ { NULL },
  12741. /*.perf_runs =*/ 0,
  12742. /*.perf_cycles =*/ 0,
  12743. /*.perf_time_us =*/ 0,
  12744. };
  12745. ggml_build_forward_impl(&result, tensor, false);
  12746. return result;
  12747. }
  12748. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12749. struct ggml_cgraph result = *gf;
  12750. GGML_ASSERT(gf->n_nodes > 0);
  12751. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12752. if (keep) {
  12753. for (int i = 0; i < gf->n_nodes; i++) {
  12754. struct ggml_tensor * node = gf->nodes[i];
  12755. if (node->grad) {
  12756. node->grad = ggml_dup_tensor(ctx, node);
  12757. gf->grads[i] = node->grad;
  12758. }
  12759. }
  12760. }
  12761. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12762. struct ggml_tensor * node = gf->nodes[i];
  12763. // because we detached the grad nodes from the original graph, we can afford inplace operations
  12764. if (node->grad) {
  12765. ggml_compute_backward(ctx, node, keep);
  12766. }
  12767. }
  12768. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12769. struct ggml_tensor * node = gf->nodes[i];
  12770. if (node->is_param) {
  12771. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12772. ggml_build_forward_impl(&result, node->grad, true);
  12773. }
  12774. }
  12775. return result;
  12776. }
  12777. //
  12778. // thread data
  12779. //
  12780. // synchronization is done via busy loops
  12781. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12782. //
  12783. #ifdef __APPLE__
  12784. //#include <os/lock.h>
  12785. //
  12786. //typedef os_unfair_lock ggml_lock_t;
  12787. //
  12788. //#define ggml_lock_init(x) UNUSED(x)
  12789. //#define ggml_lock_destroy(x) UNUSED(x)
  12790. //#define ggml_lock_lock os_unfair_lock_lock
  12791. //#define ggml_lock_unlock os_unfair_lock_unlock
  12792. //
  12793. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12794. typedef int ggml_lock_t;
  12795. #define ggml_lock_init(x) UNUSED(x)
  12796. #define ggml_lock_destroy(x) UNUSED(x)
  12797. #define ggml_lock_lock(x) UNUSED(x)
  12798. #define ggml_lock_unlock(x) UNUSED(x)
  12799. #define GGML_LOCK_INITIALIZER 0
  12800. typedef pthread_t ggml_thread_t;
  12801. #define ggml_thread_create pthread_create
  12802. #define ggml_thread_join pthread_join
  12803. #else
  12804. //typedef pthread_spinlock_t ggml_lock_t;
  12805. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12806. //#define ggml_lock_destroy pthread_spin_destroy
  12807. //#define ggml_lock_lock pthread_spin_lock
  12808. //#define ggml_lock_unlock pthread_spin_unlock
  12809. typedef int ggml_lock_t;
  12810. #define ggml_lock_init(x) UNUSED(x)
  12811. #define ggml_lock_destroy(x) UNUSED(x)
  12812. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12813. #define ggml_lock_lock(x) _mm_pause()
  12814. #else
  12815. #define ggml_lock_lock(x) UNUSED(x)
  12816. #endif
  12817. #define ggml_lock_unlock(x) UNUSED(x)
  12818. #define GGML_LOCK_INITIALIZER 0
  12819. typedef pthread_t ggml_thread_t;
  12820. #define ggml_thread_create pthread_create
  12821. #define ggml_thread_join pthread_join
  12822. #endif
  12823. struct ggml_compute_state_shared {
  12824. ggml_lock_t spin;
  12825. int n_threads;
  12826. // synchronization primitives
  12827. atomic_int n_ready;
  12828. atomic_bool has_work;
  12829. atomic_bool stop; // stop all threads
  12830. };
  12831. struct ggml_compute_state {
  12832. ggml_thread_t thrd;
  12833. struct ggml_compute_params params;
  12834. struct ggml_tensor * node;
  12835. struct ggml_compute_state_shared * shared;
  12836. };
  12837. static thread_ret_t ggml_graph_compute_thread(void * data) {
  12838. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  12839. const int n_threads = state->shared->n_threads;
  12840. while (true) {
  12841. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  12842. atomic_store(&state->shared->has_work, false);
  12843. } else {
  12844. while (atomic_load(&state->shared->has_work)) {
  12845. if (atomic_load(&state->shared->stop)) {
  12846. return 0;
  12847. }
  12848. ggml_lock_lock (&state->shared->spin);
  12849. ggml_lock_unlock(&state->shared->spin);
  12850. }
  12851. }
  12852. atomic_fetch_sub(&state->shared->n_ready, 1);
  12853. // wait for work
  12854. while (!atomic_load(&state->shared->has_work)) {
  12855. if (atomic_load(&state->shared->stop)) {
  12856. return 0;
  12857. }
  12858. ggml_lock_lock (&state->shared->spin);
  12859. ggml_lock_unlock(&state->shared->spin);
  12860. }
  12861. // check if we should stop
  12862. if (atomic_load(&state->shared->stop)) {
  12863. break;
  12864. }
  12865. if (state->node) {
  12866. if (state->params.ith < state->params.nth) {
  12867. ggml_compute_forward(&state->params, state->node);
  12868. }
  12869. state->node = NULL;
  12870. } else {
  12871. break;
  12872. }
  12873. }
  12874. return 0;
  12875. }
  12876. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12877. const int n_threads = cgraph->n_threads;
  12878. struct ggml_compute_state_shared state_shared = {
  12879. /*.spin =*/ GGML_LOCK_INITIALIZER,
  12880. /*.n_threads =*/ n_threads,
  12881. /*.n_ready =*/ 0,
  12882. /*.has_work =*/ false,
  12883. /*.stop =*/ false,
  12884. };
  12885. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  12886. // create thread pool
  12887. if (n_threads > 1) {
  12888. ggml_lock_init(&state_shared.spin);
  12889. atomic_store(&state_shared.has_work, true);
  12890. for (int j = 0; j < n_threads - 1; j++) {
  12891. workers[j] = (struct ggml_compute_state) {
  12892. .thrd = 0,
  12893. .params = {
  12894. .type = GGML_TASK_COMPUTE,
  12895. .ith = j + 1,
  12896. .nth = n_threads,
  12897. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12898. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12899. },
  12900. .node = NULL,
  12901. .shared = &state_shared,
  12902. };
  12903. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  12904. GGML_ASSERT(rc == 0);
  12905. UNUSED(rc);
  12906. }
  12907. }
  12908. // initialize tasks + work buffer
  12909. {
  12910. size_t work_size = 0;
  12911. // thread scheduling for the different operations
  12912. for (int i = 0; i < cgraph->n_nodes; i++) {
  12913. struct ggml_tensor * node = cgraph->nodes[i];
  12914. switch (node->op) {
  12915. case GGML_OP_CPY:
  12916. case GGML_OP_DUP:
  12917. {
  12918. node->n_tasks = n_threads;
  12919. size_t cur = 0;
  12920. if (ggml_is_quantized(node->type)) {
  12921. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  12922. }
  12923. work_size = MAX(work_size, cur);
  12924. } break;
  12925. case GGML_OP_ADD:
  12926. case GGML_OP_ADD1:
  12927. {
  12928. node->n_tasks = n_threads;
  12929. size_t cur = 0;
  12930. if (ggml_is_quantized(node->src0->type)) {
  12931. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  12932. }
  12933. work_size = MAX(work_size, cur);
  12934. } break;
  12935. case GGML_OP_ACC:
  12936. {
  12937. node->n_tasks = n_threads;
  12938. size_t cur = 0;
  12939. if (ggml_is_quantized(node->src0->type)) {
  12940. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  12941. }
  12942. work_size = MAX(work_size, cur);
  12943. } break;
  12944. case GGML_OP_SUB:
  12945. case GGML_OP_DIV:
  12946. case GGML_OP_SQR:
  12947. case GGML_OP_SQRT:
  12948. case GGML_OP_LOG:
  12949. case GGML_OP_SUM:
  12950. case GGML_OP_SUM_ROWS:
  12951. case GGML_OP_MEAN:
  12952. case GGML_OP_REPEAT:
  12953. case GGML_OP_REPEAT_BACK:
  12954. case GGML_OP_ABS:
  12955. case GGML_OP_SGN:
  12956. case GGML_OP_NEG:
  12957. case GGML_OP_STEP:
  12958. case GGML_OP_RELU:
  12959. {
  12960. node->n_tasks = 1;
  12961. } break;
  12962. case GGML_OP_MUL:
  12963. case GGML_OP_GELU:
  12964. case GGML_OP_SILU:
  12965. case GGML_OP_SILU_BACK:
  12966. case GGML_OP_NORM:
  12967. case GGML_OP_RMS_NORM:
  12968. case GGML_OP_RMS_NORM_BACK:
  12969. {
  12970. node->n_tasks = n_threads;
  12971. } break;
  12972. case GGML_OP_MUL_MAT:
  12973. case GGML_OP_OUT_PROD:
  12974. {
  12975. node->n_tasks = n_threads;
  12976. // TODO: use different scheduling for different matrix sizes
  12977. //const int nr0 = ggml_nrows(node->src0);
  12978. //const int nr1 = ggml_nrows(node->src1);
  12979. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  12980. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  12981. size_t cur = 0;
  12982. #if defined(GGML_USE_CUBLAS)
  12983. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  12984. node->n_tasks = 1; // TODO: this actually is doing nothing
  12985. // the threads are still spinning
  12986. }
  12987. else
  12988. #elif defined(GGML_USE_CLBLAST)
  12989. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  12990. node->n_tasks = 1; // TODO: this actually is doing nothing
  12991. // the threads are still spinning
  12992. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  12993. }
  12994. else
  12995. #endif
  12996. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  12997. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12998. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  12999. node->n_tasks = 1; // TODO: this actually is doing nothing
  13000. // the threads are still spinning
  13001. // here we need memory just for single 2D matrix from src0
  13002. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13003. } else {
  13004. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13005. }
  13006. #else
  13007. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13008. #endif
  13009. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  13010. cur = 0;
  13011. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13012. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13013. node->n_tasks = 1;
  13014. }
  13015. #endif
  13016. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13017. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13018. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13019. node->n_tasks = 1;
  13020. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13021. } else
  13022. #endif
  13023. {
  13024. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13025. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13026. }
  13027. } else {
  13028. GGML_ASSERT(false);
  13029. }
  13030. work_size = MAX(work_size, cur);
  13031. } break;
  13032. case GGML_OP_SCALE:
  13033. {
  13034. node->n_tasks = n_threads;
  13035. } break;
  13036. case GGML_OP_SET:
  13037. case GGML_OP_CONT:
  13038. case GGML_OP_RESHAPE:
  13039. case GGML_OP_VIEW:
  13040. case GGML_OP_PERMUTE:
  13041. case GGML_OP_TRANSPOSE:
  13042. case GGML_OP_GET_ROWS:
  13043. case GGML_OP_GET_ROWS_BACK:
  13044. case GGML_OP_DIAG:
  13045. case GGML_OP_DIAG_MASK_ZERO:
  13046. {
  13047. node->n_tasks = 1;
  13048. } break;
  13049. case GGML_OP_DIAG_MASK_INF:
  13050. case GGML_OP_SOFT_MAX:
  13051. case GGML_OP_SOFT_MAX_BACK:
  13052. case GGML_OP_ROPE:
  13053. case GGML_OP_ROPE_BACK:
  13054. {
  13055. node->n_tasks = n_threads;
  13056. } break;
  13057. case GGML_OP_ALIBI:
  13058. {
  13059. node->n_tasks = 1; //TODO
  13060. } break;
  13061. case GGML_OP_CLAMP:
  13062. {
  13063. node->n_tasks = 1; //TODO
  13064. } break;
  13065. case GGML_OP_CONV_1D_1S:
  13066. case GGML_OP_CONV_1D_2S:
  13067. {
  13068. node->n_tasks = n_threads;
  13069. GGML_ASSERT(node->src0->ne[3] == 1);
  13070. GGML_ASSERT(node->src1->ne[2] == 1);
  13071. GGML_ASSERT(node->src1->ne[3] == 1);
  13072. size_t cur = 0;
  13073. const int nk = node->src0->ne[0];
  13074. if (node->src0->type == GGML_TYPE_F16 &&
  13075. node->src1->type == GGML_TYPE_F32) {
  13076. cur = sizeof(ggml_fp16_t)*(
  13077. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13078. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13079. );
  13080. } else if (node->src0->type == GGML_TYPE_F32 &&
  13081. node->src1->type == GGML_TYPE_F32) {
  13082. cur = sizeof(float)*(
  13083. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13084. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13085. );
  13086. } else {
  13087. GGML_ASSERT(false);
  13088. }
  13089. work_size = MAX(work_size, cur);
  13090. } break;
  13091. case GGML_OP_FLASH_ATTN:
  13092. {
  13093. node->n_tasks = n_threads;
  13094. size_t cur = 0;
  13095. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13096. if (node->src1->type == GGML_TYPE_F32) {
  13097. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13098. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13099. }
  13100. if (node->src1->type == GGML_TYPE_F16) {
  13101. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13102. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13103. }
  13104. work_size = MAX(work_size, cur);
  13105. } break;
  13106. case GGML_OP_FLASH_FF:
  13107. {
  13108. node->n_tasks = n_threads;
  13109. size_t cur = 0;
  13110. if (node->src1->type == GGML_TYPE_F32) {
  13111. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13112. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13113. }
  13114. if (node->src1->type == GGML_TYPE_F16) {
  13115. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13116. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13117. }
  13118. work_size = MAX(work_size, cur);
  13119. } break;
  13120. case GGML_OP_FLASH_ATTN_BACK:
  13121. {
  13122. node->n_tasks = n_threads;
  13123. size_t cur = 0;
  13124. const int64_t D = node->src0->ne[0];
  13125. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13126. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13127. if (node->src1->type == GGML_TYPE_F32) {
  13128. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13129. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13130. }
  13131. if (node->src1->type == GGML_TYPE_F16) {
  13132. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13133. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13134. }
  13135. work_size = MAX(work_size, cur);
  13136. } break;
  13137. case GGML_OP_MAP_UNARY:
  13138. case GGML_OP_MAP_BINARY:
  13139. {
  13140. node->n_tasks = 1;
  13141. } break;
  13142. case GGML_OP_CROSS_ENTROPY_LOSS:
  13143. {
  13144. node->n_tasks = n_threads;
  13145. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13146. work_size = MAX(work_size, cur);
  13147. } break;
  13148. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13149. {
  13150. node->n_tasks = n_threads;
  13151. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13152. work_size = MAX(work_size, cur);
  13153. } break;
  13154. case GGML_OP_NONE:
  13155. {
  13156. node->n_tasks = 1;
  13157. } break;
  13158. case GGML_OP_COUNT:
  13159. {
  13160. GGML_ASSERT(false);
  13161. } break;
  13162. }
  13163. }
  13164. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13165. GGML_ASSERT(false); // TODO: better handling
  13166. }
  13167. if (work_size > 0 && cgraph->work == NULL) {
  13168. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13169. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13170. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13171. }
  13172. }
  13173. const int64_t perf_start_cycles = ggml_perf_cycles();
  13174. const int64_t perf_start_time_us = ggml_perf_time_us();
  13175. for (int i = 0; i < cgraph->n_nodes; i++) {
  13176. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  13177. struct ggml_tensor * node = cgraph->nodes[i];
  13178. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  13179. //if (node->grad == NULL && node->perf_runs > 0) {
  13180. // continue;
  13181. //}
  13182. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  13183. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  13184. // INIT
  13185. struct ggml_compute_params params = {
  13186. /*.type =*/ GGML_TASK_INIT,
  13187. /*.ith =*/ 0,
  13188. /*.nth =*/ node->n_tasks,
  13189. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13190. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13191. };
  13192. ggml_compute_forward(&params, node);
  13193. // COMPUTE
  13194. if (node->n_tasks > 1) {
  13195. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13196. atomic_store(&state_shared.has_work, false);
  13197. }
  13198. while (atomic_load(&state_shared.has_work)) {
  13199. ggml_lock_lock (&state_shared.spin);
  13200. ggml_lock_unlock(&state_shared.spin);
  13201. }
  13202. // launch thread pool
  13203. for (int j = 0; j < n_threads - 1; j++) {
  13204. workers[j].params = (struct ggml_compute_params) {
  13205. .type = GGML_TASK_COMPUTE,
  13206. .ith = j + 1,
  13207. .nth = node->n_tasks,
  13208. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13209. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13210. };
  13211. workers[j].node = node;
  13212. }
  13213. atomic_fetch_sub(&state_shared.n_ready, 1);
  13214. while (atomic_load(&state_shared.n_ready) > 0) {
  13215. ggml_lock_lock (&state_shared.spin);
  13216. ggml_lock_unlock(&state_shared.spin);
  13217. }
  13218. atomic_store(&state_shared.has_work, true);
  13219. }
  13220. params.type = GGML_TASK_COMPUTE;
  13221. ggml_compute_forward(&params, node);
  13222. // wait for thread pool
  13223. if (node->n_tasks > 1) {
  13224. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13225. atomic_store(&state_shared.has_work, false);
  13226. }
  13227. while (atomic_load(&state_shared.has_work)) {
  13228. ggml_lock_lock (&state_shared.spin);
  13229. ggml_lock_unlock(&state_shared.spin);
  13230. }
  13231. atomic_fetch_sub(&state_shared.n_ready, 1);
  13232. while (atomic_load(&state_shared.n_ready) != 0) {
  13233. ggml_lock_lock (&state_shared.spin);
  13234. ggml_lock_unlock(&state_shared.spin);
  13235. }
  13236. }
  13237. // FINALIZE
  13238. if (node->n_tasks > 1) {
  13239. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13240. atomic_store(&state_shared.has_work, false);
  13241. }
  13242. while (atomic_load(&state_shared.has_work)) {
  13243. ggml_lock_lock (&state_shared.spin);
  13244. ggml_lock_unlock(&state_shared.spin);
  13245. }
  13246. // launch thread pool
  13247. for (int j = 0; j < n_threads - 1; j++) {
  13248. workers[j].params = (struct ggml_compute_params) {
  13249. .type = GGML_TASK_FINALIZE,
  13250. .ith = j + 1,
  13251. .nth = node->n_tasks,
  13252. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13253. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13254. };
  13255. workers[j].node = node;
  13256. }
  13257. atomic_fetch_sub(&state_shared.n_ready, 1);
  13258. while (atomic_load(&state_shared.n_ready) > 0) {
  13259. ggml_lock_lock (&state_shared.spin);
  13260. ggml_lock_unlock(&state_shared.spin);
  13261. }
  13262. atomic_store(&state_shared.has_work, true);
  13263. }
  13264. params.type = GGML_TASK_FINALIZE;
  13265. ggml_compute_forward(&params, node);
  13266. // wait for thread pool
  13267. if (node->n_tasks > 1) {
  13268. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13269. atomic_store(&state_shared.has_work, false);
  13270. }
  13271. while (atomic_load(&state_shared.has_work)) {
  13272. ggml_lock_lock (&state_shared.spin);
  13273. ggml_lock_unlock(&state_shared.spin);
  13274. }
  13275. atomic_fetch_sub(&state_shared.n_ready, 1);
  13276. while (atomic_load(&state_shared.n_ready) != 0) {
  13277. ggml_lock_lock (&state_shared.spin);
  13278. ggml_lock_unlock(&state_shared.spin);
  13279. }
  13280. }
  13281. // performance stats (node)
  13282. {
  13283. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  13284. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  13285. node->perf_runs++;
  13286. node->perf_cycles += perf_cycles_cur;
  13287. node->perf_time_us += perf_time_us_cur;
  13288. }
  13289. }
  13290. // join thread pool
  13291. if (n_threads > 1) {
  13292. atomic_store(&state_shared.stop, true);
  13293. atomic_store(&state_shared.has_work, true);
  13294. for (int j = 0; j < n_threads - 1; j++) {
  13295. int rc = ggml_thread_join(workers[j].thrd, NULL);
  13296. GGML_ASSERT(rc == 0);
  13297. UNUSED(rc);
  13298. }
  13299. ggml_lock_destroy(&state_shared.spin);
  13300. }
  13301. // performance stats (graph)
  13302. {
  13303. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13304. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13305. cgraph->perf_runs++;
  13306. cgraph->perf_cycles += perf_cycles_cur;
  13307. cgraph->perf_time_us += perf_time_us_cur;
  13308. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13309. __func__, cgraph->perf_runs,
  13310. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13311. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13312. (double) perf_time_us_cur / 1000.0,
  13313. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13314. }
  13315. }
  13316. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13317. for (int i = 0; i < cgraph->n_nodes; i++) {
  13318. struct ggml_tensor * grad = cgraph->grads[i];
  13319. if (grad) {
  13320. ggml_set_zero(grad);
  13321. }
  13322. }
  13323. }
  13324. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13325. for (int i = 0; i < cgraph->n_leafs; i++) {
  13326. struct ggml_tensor * leaf = cgraph->leafs[i];
  13327. if (strcmp(leaf->name, name) == 0) {
  13328. return leaf;
  13329. }
  13330. }
  13331. for (int i = 0; i < cgraph->n_nodes; i++) {
  13332. struct ggml_tensor * node = cgraph->nodes[i];
  13333. if (strcmp(node->name, name) == 0) {
  13334. return node;
  13335. }
  13336. }
  13337. return NULL;
  13338. }
  13339. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13340. const int64_t * ne = tensor->ne;
  13341. const size_t * nb = tensor->nb;
  13342. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13343. ggml_type_name(tensor->type),
  13344. ggml_op_name (tensor->op),
  13345. tensor->n_dims,
  13346. ne[0], ne[1], ne[2], ne[3],
  13347. nb[0], nb[1], nb[2], nb[3],
  13348. tensor->data,
  13349. tensor->name);
  13350. }
  13351. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13352. const int64_t * ne = tensor->ne;
  13353. const size_t * nb = tensor->nb;
  13354. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13355. arg,
  13356. ggml_type_name(tensor->type),
  13357. ggml_op_name (tensor->op),
  13358. tensor->n_dims,
  13359. ne[0], ne[1], ne[2], ne[3],
  13360. nb[0], nb[1], nb[2], nb[3],
  13361. tensor->n_tasks,
  13362. tensor->data,
  13363. tensor->name);
  13364. }
  13365. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13366. //assert(cgraph->work == NULL);
  13367. //assert(cgraph->work_size == 0);
  13368. uint64_t size_eval = 0;
  13369. // compute size of intermediate results
  13370. // TODO: does not take into account scratch buffers !!!!
  13371. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13372. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13373. }
  13374. // print
  13375. {
  13376. FILE * fout = stdout;
  13377. fprintf(fout, "\n");
  13378. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13379. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13380. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13381. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13382. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13383. // header
  13384. fprintf(fout, "\n");
  13385. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13386. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13387. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13388. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13389. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13390. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13391. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13392. }
  13393. // header
  13394. fprintf(fout, "\n");
  13395. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13396. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13397. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13398. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13399. if (cgraph->nodes[i]->src0) {
  13400. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13401. }
  13402. if (cgraph->nodes[i]->src1) {
  13403. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13404. }
  13405. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13406. if (cgraph->nodes[i]->opt[j]) {
  13407. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13408. }
  13409. }
  13410. fprintf(fout, "\n");
  13411. }
  13412. fprintf(fout, "\n");
  13413. }
  13414. // write binary data
  13415. {
  13416. FILE * fout = fopen(fname, "wb");
  13417. if (!fout) {
  13418. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13419. return;
  13420. }
  13421. // header
  13422. {
  13423. const uint32_t magic = GGML_FILE_MAGIC;
  13424. const uint32_t version = GGML_FILE_VERSION;
  13425. const uint32_t n_leafs = cgraph->n_leafs;
  13426. const uint32_t nodes = cgraph->n_nodes;
  13427. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13428. fwrite(&version, sizeof(uint32_t), 1, fout);
  13429. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13430. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13431. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13432. }
  13433. // leafs
  13434. {
  13435. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13436. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13437. const uint32_t type = tensor->type;
  13438. const uint32_t op = tensor->op;
  13439. const uint32_t n_dims = tensor->n_dims;
  13440. fwrite(&type, sizeof(uint32_t), 1, fout);
  13441. fwrite(&op, sizeof(uint32_t), 1, fout);
  13442. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13443. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13444. const uint64_t ne = tensor->ne[j];
  13445. const uint64_t nb = tensor->nb[j];
  13446. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13447. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13448. }
  13449. // store the pointer address
  13450. {
  13451. const uint64_t ptr = (uint64_t) tensor->data;
  13452. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13453. }
  13454. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13455. // dump the data
  13456. // TODO: pad this to 32 byte boundary
  13457. {
  13458. const size_t size = ggml_nbytes(tensor);
  13459. fwrite(tensor->data, sizeof(char), size, fout);
  13460. }
  13461. }
  13462. }
  13463. // nodes
  13464. {
  13465. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13466. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13467. const uint32_t type = tensor->type;
  13468. const uint32_t op = tensor->op;
  13469. const uint32_t n_dims = tensor->n_dims;
  13470. fwrite(&type, sizeof(uint32_t), 1, fout);
  13471. fwrite(&op, sizeof(uint32_t), 1, fout);
  13472. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13473. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13474. const uint64_t ne = tensor->ne[j];
  13475. const uint64_t nb = tensor->nb[j];
  13476. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13477. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13478. }
  13479. // store the pointer address
  13480. {
  13481. const uint64_t ptr = (uint64_t) tensor->data;
  13482. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13483. }
  13484. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13485. // output the op arguments
  13486. {
  13487. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13488. args[0] = tensor->src0;
  13489. args[1] = tensor->src1;
  13490. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13491. args[2 + j] = tensor->opt[j];
  13492. }
  13493. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13494. if (args[j]) {
  13495. int32_t idx = -1;
  13496. // check if leaf
  13497. {
  13498. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13499. if (args[j] == cgraph->leafs[k]) {
  13500. idx = k;
  13501. break;
  13502. }
  13503. }
  13504. }
  13505. // check if node
  13506. if (idx == -1) {
  13507. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13508. if (args[j] == cgraph->nodes[k]) {
  13509. idx = GGML_MAX_NODES + k;
  13510. break;
  13511. }
  13512. }
  13513. }
  13514. if (idx == -1) {
  13515. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13516. return;
  13517. }
  13518. fwrite(&idx, sizeof(int32_t), 1, fout);
  13519. } else {
  13520. const int32_t nul = -1;
  13521. fwrite(&nul, sizeof(int32_t), 1, fout);
  13522. }
  13523. }
  13524. }
  13525. }
  13526. }
  13527. fclose(fout);
  13528. }
  13529. }
  13530. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13531. assert(*ctx_data == NULL);
  13532. assert(*ctx_eval == NULL);
  13533. struct ggml_cgraph result = { 0 };
  13534. struct ggml_tensor * data = NULL;
  13535. // read file into data
  13536. {
  13537. FILE * fin = fopen(fname, "rb");
  13538. if (!fin) {
  13539. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13540. return result;
  13541. }
  13542. size_t fsize = 0;
  13543. fseek(fin, 0, SEEK_END);
  13544. fsize = ftell(fin);
  13545. fseek(fin, 0, SEEK_SET);
  13546. // create the data context
  13547. {
  13548. const size_t overhead = 1*ggml_tensor_overhead();
  13549. struct ggml_init_params params = {
  13550. .mem_size = fsize + overhead,
  13551. .mem_buffer = NULL,
  13552. .no_alloc = false,
  13553. };
  13554. *ctx_data = ggml_init(params);
  13555. if (!*ctx_data) {
  13556. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13557. return result;
  13558. }
  13559. }
  13560. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13561. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13562. if (ret != fsize) {
  13563. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13564. return result;
  13565. }
  13566. fclose(fin);
  13567. }
  13568. // populate result
  13569. {
  13570. char * ptr = (char *) data->data;
  13571. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13572. if (magic != GGML_FILE_MAGIC) {
  13573. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13574. return result;
  13575. }
  13576. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13577. if (version != GGML_FILE_VERSION) {
  13578. fprintf(stderr, "%s: invalid version number\n", __func__);
  13579. return result;
  13580. }
  13581. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13582. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13583. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13584. result.n_leafs = n_leafs;
  13585. result.n_nodes = n_nodes;
  13586. // create the data context
  13587. {
  13588. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13589. struct ggml_init_params params = {
  13590. .mem_size = size_eval + overhead,
  13591. .mem_buffer = NULL,
  13592. .no_alloc = true,
  13593. };
  13594. *ctx_eval = ggml_init(params);
  13595. if (!*ctx_eval) {
  13596. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13597. return result;
  13598. }
  13599. }
  13600. // leafs
  13601. {
  13602. uint32_t type;
  13603. uint32_t op;
  13604. uint32_t n_dims;
  13605. for (uint32_t i = 0; i < n_leafs; ++i) {
  13606. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13607. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13608. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13609. int64_t ne[GGML_MAX_DIMS];
  13610. size_t nb[GGML_MAX_DIMS];
  13611. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13612. uint64_t ne_cur;
  13613. uint64_t nb_cur;
  13614. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13615. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13616. ne[j] = ne_cur;
  13617. nb[j] = nb_cur;
  13618. }
  13619. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13620. tensor->op = (enum ggml_op) op;
  13621. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  13622. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13623. tensor->data = (void *) ptr;
  13624. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13625. tensor->nb[j] = nb[j];
  13626. }
  13627. result.leafs[i] = tensor;
  13628. ptr += ggml_nbytes(tensor);
  13629. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13630. }
  13631. }
  13632. ggml_set_no_alloc(*ctx_eval, false);
  13633. // nodes
  13634. {
  13635. uint32_t type;
  13636. uint32_t op;
  13637. uint32_t n_dims;
  13638. for (uint32_t i = 0; i < n_nodes; ++i) {
  13639. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13640. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13641. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13642. enum ggml_op eop = (enum ggml_op) op;
  13643. int64_t ne[GGML_MAX_DIMS];
  13644. size_t nb[GGML_MAX_DIMS];
  13645. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13646. uint64_t ne_cur;
  13647. uint64_t nb_cur;
  13648. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13649. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13650. ne[j] = ne_cur;
  13651. nb[j] = nb_cur;
  13652. }
  13653. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  13654. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13655. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  13656. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13657. // parse args
  13658. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13659. const int32_t arg_idx = ptr_arg_idx[j];
  13660. if (arg_idx == -1) {
  13661. continue;
  13662. }
  13663. if (arg_idx < GGML_MAX_NODES) {
  13664. args[j] = result.leafs[arg_idx];
  13665. } else {
  13666. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13667. }
  13668. }
  13669. // create the tensor
  13670. // "view" operations are handled differently
  13671. // TODO: handle inplace ops - currently a copy is always made
  13672. struct ggml_tensor * tensor = NULL;
  13673. switch (eop) {
  13674. // TODO: implement other view ops
  13675. case GGML_OP_RESHAPE:
  13676. {
  13677. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13678. } break;
  13679. case GGML_OP_VIEW:
  13680. {
  13681. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13682. uint64_t offs;
  13683. memcpy(&offs, args[2]->data, sizeof(offs));
  13684. tensor->data = ((char *) tensor->data) + offs;
  13685. } break;
  13686. case GGML_OP_TRANSPOSE:
  13687. {
  13688. tensor = ggml_transpose(*ctx_eval, args[0]);
  13689. } break;
  13690. case GGML_OP_PERMUTE:
  13691. {
  13692. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13693. } break;
  13694. default:
  13695. {
  13696. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13697. tensor->op = eop;
  13698. } break;
  13699. }
  13700. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13701. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13702. tensor->nb[j] = nb[j];
  13703. }
  13704. tensor->src0 = args[0];
  13705. tensor->src1 = args[1];
  13706. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13707. tensor->opt[j] = args[2 + j];
  13708. }
  13709. result.nodes[i] = tensor;
  13710. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13711. }
  13712. }
  13713. }
  13714. return result;
  13715. }
  13716. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13717. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13718. GGML_PRINT("=== GRAPH ===\n");
  13719. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13720. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13721. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13722. for (int i = 0; i < cgraph->n_nodes; i++) {
  13723. struct ggml_tensor * node = cgraph->nodes[i];
  13724. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13725. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13726. i,
  13727. node->ne[0], node->ne[1], node->ne[2],
  13728. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13729. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13730. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13731. (double) node->perf_time_us / 1000.0,
  13732. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13733. }
  13734. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13735. for (int i = 0; i < cgraph->n_leafs; i++) {
  13736. struct ggml_tensor * node = cgraph->leafs[i];
  13737. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13738. i,
  13739. node->ne[0], node->ne[1],
  13740. GGML_OP_NAME[node->op]);
  13741. }
  13742. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13743. if (perf_total_per_op_us[i] == 0) {
  13744. continue;
  13745. }
  13746. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13747. }
  13748. GGML_PRINT("========================================\n");
  13749. }
  13750. // check if node is part of the graph
  13751. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13752. if (cgraph == NULL) {
  13753. return true;
  13754. }
  13755. for (int i = 0; i < cgraph->n_nodes; i++) {
  13756. if (cgraph->nodes[i] == node) {
  13757. return true;
  13758. }
  13759. }
  13760. return false;
  13761. }
  13762. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13763. for (int i = 0; i < cgraph->n_nodes; i++) {
  13764. struct ggml_tensor * parent = cgraph->nodes[i];
  13765. if (parent->grad == node) {
  13766. return parent;
  13767. }
  13768. }
  13769. return NULL;
  13770. }
  13771. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  13772. char color[16];
  13773. FILE * fp = fopen(filename, "w");
  13774. GGML_ASSERT(fp);
  13775. fprintf(fp, "digraph G {\n");
  13776. fprintf(fp, " newrank = true;\n");
  13777. fprintf(fp, " rankdir = LR;\n");
  13778. for (int i = 0; i < gb->n_nodes; i++) {
  13779. struct ggml_tensor * node = gb->nodes[i];
  13780. if (ggml_graph_get_parent(gb, node) != NULL) {
  13781. continue;
  13782. }
  13783. if (node->is_param) {
  13784. snprintf(color, sizeof(color), "yellow");
  13785. } else if (node->grad) {
  13786. if (ggml_graph_find(gf, node)) {
  13787. snprintf(color, sizeof(color), "green");
  13788. } else {
  13789. snprintf(color, sizeof(color), "lightblue");
  13790. }
  13791. } else {
  13792. snprintf(color, sizeof(color), "white");
  13793. }
  13794. fprintf(fp, " \"%p\" [ "
  13795. "style = filled; fillcolor = %s; shape = record; "
  13796. "label=\"",
  13797. (void *) node, color);
  13798. if (strlen(node->name) > 0) {
  13799. fprintf(fp, "%s |", node->name);
  13800. }
  13801. if (node->n_dims == 2) {
  13802. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  13803. } else {
  13804. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  13805. }
  13806. if (node->grad) {
  13807. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  13808. } else {
  13809. fprintf(fp, "\"; ]\n");
  13810. }
  13811. }
  13812. for (int i = 0; i < gb->n_leafs; i++) {
  13813. struct ggml_tensor * node = gb->leafs[i];
  13814. snprintf(color, sizeof(color), "pink");
  13815. fprintf(fp, " \"%p\" [ "
  13816. "style = filled; fillcolor = %s; shape = record; "
  13817. "label=\"<x>",
  13818. (void *) node, color);
  13819. if (strlen(node->name) > 0) {
  13820. fprintf(fp, "%s | ", node->name);
  13821. }
  13822. if (ggml_nelements(node) == 1) {
  13823. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  13824. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  13825. }
  13826. else {
  13827. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  13828. }
  13829. }
  13830. else {
  13831. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  13832. }
  13833. fprintf(fp, "\"; ]\n");
  13834. }
  13835. for (int i = 0; i < gb->n_nodes; i++) {
  13836. struct ggml_tensor * node = gb->nodes[i];
  13837. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  13838. if (node->src0) {
  13839. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  13840. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  13841. parent0 ? (void *) parent0 : (void *) node->src0,
  13842. parent0 ? "g" : "x",
  13843. parent ? (void *) parent : (void *) node,
  13844. parent ? "g" : "x",
  13845. parent ? "empty" : "vee",
  13846. parent ? "dashed" : "solid");
  13847. }
  13848. if (node->src1) {
  13849. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  13850. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  13851. parent1 ? (void *) parent1 : (void *) node->src1,
  13852. parent1 ? "g" : "x",
  13853. parent ? (void *) parent : (void *) node,
  13854. parent ? "g" : "x",
  13855. parent ? "empty" : "vee",
  13856. parent ? "dashed" : "solid");
  13857. }
  13858. }
  13859. for (int i = 0; i < gb->n_leafs; i++) {
  13860. struct ggml_tensor * node = gb->leafs[i];
  13861. if (node->src0) {
  13862. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  13863. (void *) node->src0, "x",
  13864. (void *) node, "x");
  13865. }
  13866. if (node->src1) {
  13867. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  13868. (void *) node->src1, "x",
  13869. (void *) node, "x");
  13870. }
  13871. }
  13872. fprintf(fp, "}\n");
  13873. fclose(fp);
  13874. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  13875. }
  13876. ////////////////////////////////////////////////////////////////////////////////
  13877. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  13878. int i = 0;
  13879. for (int p = 0; p < np; ++p) {
  13880. const int64_t ne = ggml_nelements(ps[p]) ;
  13881. // TODO: add function to set tensor from array
  13882. for (int64_t j = 0; j < ne; ++j) {
  13883. ggml_set_f32_1d(ps[p], j, x[i++]);
  13884. }
  13885. }
  13886. }
  13887. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  13888. int i = 0;
  13889. for (int p = 0; p < np; ++p) {
  13890. const int64_t ne = ggml_nelements(ps[p]) ;
  13891. // TODO: add function to get all elements at once
  13892. for (int64_t j = 0; j < ne; ++j) {
  13893. x[i++] = ggml_get_f32_1d(ps[p], j);
  13894. }
  13895. }
  13896. }
  13897. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  13898. int i = 0;
  13899. for (int p = 0; p < np; ++p) {
  13900. const int64_t ne = ggml_nelements(ps[p]) ;
  13901. // TODO: add function to get all elements at once
  13902. for (int64_t j = 0; j < ne; ++j) {
  13903. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  13904. }
  13905. }
  13906. }
  13907. //
  13908. // ADAM
  13909. //
  13910. // ref: https://arxiv.org/pdf/1412.6980.pdf
  13911. //
  13912. static enum ggml_opt_result ggml_opt_adam(
  13913. struct ggml_context * ctx,
  13914. struct ggml_opt_context * opt,
  13915. struct ggml_opt_params params,
  13916. struct ggml_tensor * f,
  13917. struct ggml_cgraph * gf,
  13918. struct ggml_cgraph * gb) {
  13919. GGML_ASSERT(ggml_is_scalar(f));
  13920. gf->n_threads = params.n_threads;
  13921. gb->n_threads = params.n_threads;
  13922. // these will store the parameters we want to optimize
  13923. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  13924. int np = 0;
  13925. int nx = 0;
  13926. for (int i = 0; i < gf->n_nodes; ++i) {
  13927. if (gf->nodes[i]->is_param) {
  13928. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  13929. GGML_ASSERT(np < GGML_MAX_PARAMS);
  13930. ps[np++] = gf->nodes[i];
  13931. nx += ggml_nelements(gf->nodes[i]);
  13932. }
  13933. }
  13934. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  13935. int iter = opt->iter;
  13936. ggml_opt_init(opt->ctx, opt, params, nx);
  13937. opt->iter = iter;
  13938. }
  13939. // constants
  13940. const float sched = params.adam.sched;
  13941. const float decay = params.adam.decay * sched;
  13942. const float alpha = params.adam.alpha * sched;
  13943. const float beta1 = params.adam.beta1;
  13944. const float beta2 = params.adam.beta2;
  13945. const float eps = params.adam.eps;
  13946. float * x = opt->adam.x->data; // view of the parameters
  13947. float * g1 = opt->adam.g1->data; // gradient
  13948. float * g2 = opt->adam.g2->data; // gradient squared
  13949. float * m = opt->adam.m->data; // first moment
  13950. float * v = opt->adam.v->data; // second moment
  13951. float * mh = opt->adam.mh->data; // first moment hat
  13952. float * vh = opt->adam.vh->data; // second moment hat
  13953. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  13954. // update view
  13955. ggml_opt_get_params(np, ps, x);
  13956. // compute the function value
  13957. ggml_graph_reset (gf);
  13958. ggml_set_f32 (f->grad, 1.0f);
  13959. ggml_graph_compute(ctx, gb);
  13960. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  13961. opt->adam.fx_best = opt->adam.fx_prev;
  13962. if (pf) {
  13963. pf[opt->iter % params.past] = opt->adam.fx_prev;
  13964. }
  13965. // initialize
  13966. if (opt->just_initialized) {
  13967. opt->adam.n_no_improvement = 0;
  13968. opt->just_initialized = false;
  13969. }
  13970. float * fx_best = &opt->adam.fx_best;
  13971. float * fx_prev = &opt->adam.fx_prev;
  13972. int * n_no_improvement = &opt->adam.n_no_improvement;
  13973. int iter0 = opt->iter;
  13974. // run the optimizer
  13975. for (int t = 0; t < params.adam.n_iter; ++t) {
  13976. opt->iter = iter0 + t + 1;
  13977. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  13978. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  13979. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  13980. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  13981. for (int i = 0; i < np; ++i) {
  13982. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  13983. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  13984. }
  13985. const int64_t t_start_wall = ggml_time_us();
  13986. const int64_t t_start_cpu = ggml_cycles();
  13987. UNUSED(t_start_wall);
  13988. UNUSED(t_start_cpu);
  13989. {
  13990. // update the gradient
  13991. ggml_opt_get_grad(np, ps, g1);
  13992. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  13993. ggml_vec_scale_f32(nx, m, beta1);
  13994. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  13995. // g2 = g1^2
  13996. ggml_vec_sqr_f32 (nx, g2, g1);
  13997. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  13998. ggml_vec_scale_f32(nx, v, beta2);
  13999. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14000. // m^hat = m_t / (1 - beta1^t)
  14001. // v^hat = v_t / (1 - beta2^t)
  14002. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14003. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14004. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14005. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14006. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14007. ggml_vec_cpy_f32 (nx, mh, m);
  14008. ggml_vec_cpy_f32 (nx, vh, v);
  14009. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14010. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14011. ggml_vec_sqrt_f32 (nx, vh, vh);
  14012. ggml_vec_acc1_f32 (nx, vh, eps);
  14013. ggml_vec_div_f32 (nx, mh, mh, vh);
  14014. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14015. ggml_vec_sub_f32 (nx, x, x, mh);
  14016. // update the parameters
  14017. ggml_opt_set_params(np, ps, x);
  14018. }
  14019. ggml_graph_reset (gf);
  14020. ggml_set_f32 (f->grad, 1.0f);
  14021. ggml_graph_compute(ctx, gb);
  14022. const float fx = ggml_get_f32_1d(f, 0);
  14023. // check convergence
  14024. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14025. GGML_PRINT_DEBUG("converged\n");
  14026. return GGML_OPT_OK;
  14027. }
  14028. // delta-based convergence test
  14029. if (pf != NULL) {
  14030. // need at least params.past iterations to start checking for convergence
  14031. if (params.past <= iter0 + t) {
  14032. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14033. if (fabsf(rate) < params.delta) {
  14034. return GGML_OPT_OK;
  14035. }
  14036. }
  14037. pf[(iter0 + t)%params.past] = fx;
  14038. }
  14039. // check for improvement
  14040. if (params.max_no_improvement > 0) {
  14041. if (fx_best[0] > fx) {
  14042. fx_best[0] = fx;
  14043. n_no_improvement[0] = 0;
  14044. } else {
  14045. ++n_no_improvement[0];
  14046. if (n_no_improvement[0] >= params.max_no_improvement) {
  14047. return GGML_OPT_OK;
  14048. }
  14049. }
  14050. }
  14051. fx_prev[0] = fx;
  14052. {
  14053. const int64_t t_end_cpu = ggml_cycles();
  14054. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14055. UNUSED(t_end_cpu);
  14056. const int64_t t_end_wall = ggml_time_us();
  14057. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14058. UNUSED(t_end_wall);
  14059. }
  14060. }
  14061. return GGML_OPT_DID_NOT_CONVERGE;
  14062. }
  14063. //
  14064. // L-BFGS
  14065. //
  14066. // the L-BFGS implementation below is based on the following implementation:
  14067. //
  14068. // https://github.com/chokkan/liblbfgs
  14069. //
  14070. struct ggml_lbfgs_iteration_data {
  14071. float alpha;
  14072. float ys;
  14073. float * s;
  14074. float * y;
  14075. };
  14076. static enum ggml_opt_result linesearch_backtracking(
  14077. struct ggml_context * ctx,
  14078. const struct ggml_opt_params * params,
  14079. int nx,
  14080. float * x,
  14081. float * fx,
  14082. float * g,
  14083. float * d,
  14084. float * step,
  14085. const float * xp,
  14086. struct ggml_tensor * f,
  14087. struct ggml_cgraph * gf,
  14088. struct ggml_cgraph * gb,
  14089. const int np,
  14090. struct ggml_tensor * ps[]) {
  14091. int count = 0;
  14092. float width = 0.0f;
  14093. float dg = 0.0f;
  14094. float finit = 0.0f;
  14095. float dginit = 0.0f;
  14096. float dgtest = 0.0f;
  14097. const float dec = 0.5f;
  14098. const float inc = 2.1f;
  14099. if (*step <= 0.f) {
  14100. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14101. }
  14102. // compute the initial gradient in the search direction
  14103. ggml_vec_dot_f32(nx, &dginit, g, d);
  14104. // make sure that d points to a descent direction
  14105. if (0 < dginit) {
  14106. return GGML_LINESEARCH_FAIL;
  14107. }
  14108. // initialize local variables
  14109. finit = *fx;
  14110. dgtest = params->lbfgs.ftol*dginit;
  14111. while (true) {
  14112. ggml_vec_cpy_f32(nx, x, xp);
  14113. ggml_vec_mad_f32(nx, x, d, *step);
  14114. // evaluate the function and gradient values
  14115. {
  14116. ggml_opt_set_params(np, ps, x);
  14117. ggml_graph_reset (gf);
  14118. ggml_set_f32 (f->grad, 1.0f);
  14119. ggml_graph_compute(ctx, gb);
  14120. ggml_opt_get_grad(np, ps, g);
  14121. *fx = ggml_get_f32_1d(f, 0);
  14122. }
  14123. ++count;
  14124. if (*fx > finit + (*step)*dgtest) {
  14125. width = dec;
  14126. } else {
  14127. // Armijo condition is satisfied
  14128. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14129. return count;
  14130. }
  14131. ggml_vec_dot_f32(nx, &dg, g, d);
  14132. // check the Wolfe condition
  14133. if (dg < params->lbfgs.wolfe * dginit) {
  14134. width = inc;
  14135. } else {
  14136. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14137. // regular Wolfe conditions
  14138. return count;
  14139. }
  14140. if(dg > -params->lbfgs.wolfe*dginit) {
  14141. width = dec;
  14142. } else {
  14143. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14144. return count;
  14145. }
  14146. return count;
  14147. }
  14148. }
  14149. if (*step < params->lbfgs.min_step) {
  14150. return GGML_LINESEARCH_MINIMUM_STEP;
  14151. }
  14152. if (*step > params->lbfgs.max_step) {
  14153. return GGML_LINESEARCH_MAXIMUM_STEP;
  14154. }
  14155. if (params->lbfgs.max_linesearch <= count) {
  14156. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14157. }
  14158. (*step) *= width;
  14159. }
  14160. return GGML_LINESEARCH_FAIL;
  14161. }
  14162. static enum ggml_opt_result ggml_opt_lbfgs(
  14163. struct ggml_context * ctx,
  14164. struct ggml_opt_context * opt,
  14165. struct ggml_opt_params params,
  14166. struct ggml_tensor * f,
  14167. struct ggml_cgraph * gf,
  14168. struct ggml_cgraph * gb) {
  14169. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14170. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14171. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14172. return GGML_OPT_INVALID_WOLFE;
  14173. }
  14174. }
  14175. gf->n_threads = params.n_threads;
  14176. gb->n_threads = params.n_threads;
  14177. const int m = params.lbfgs.m;
  14178. // these will store the parameters we want to optimize
  14179. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14180. int np = 0;
  14181. int nx = 0;
  14182. for (int i = 0; i < gf->n_nodes; ++i) {
  14183. if (gf->nodes[i]->is_param) {
  14184. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14185. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14186. ps[np++] = gf->nodes[i];
  14187. nx += ggml_nelements(gf->nodes[i]);
  14188. }
  14189. }
  14190. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14191. int iter = opt->iter;
  14192. ggml_opt_init(ctx, opt, params, nx);
  14193. opt->iter = iter;
  14194. }
  14195. float * x = opt->lbfgs.x->data; // current parameters
  14196. float * xp = opt->lbfgs.xp->data; // previous parameters
  14197. float * g = opt->lbfgs.g->data; // current gradient
  14198. float * gp = opt->lbfgs.gp->data; // previous gradient
  14199. float * d = opt->lbfgs.d->data; // search direction
  14200. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14201. float fx = 0.0f; // cost function value
  14202. float xnorm = 0.0f; // ||x||
  14203. float gnorm = 0.0f; // ||g||
  14204. // initialize x from the graph nodes
  14205. ggml_opt_get_params(np, ps, x);
  14206. // the L-BFGS memory
  14207. float * lm_alpha = opt->lbfgs.lmal->data;
  14208. float * lm_ys = opt->lbfgs.lmys->data;
  14209. float * lm_s = opt->lbfgs.lms->data;
  14210. float * lm_y = opt->lbfgs.lmy->data;
  14211. // evaluate the function value and its gradient
  14212. {
  14213. ggml_opt_set_params(np, ps, x);
  14214. ggml_graph_reset (gf);
  14215. ggml_set_f32 (f->grad, 1.0f);
  14216. ggml_graph_compute(ctx, gb);
  14217. ggml_opt_get_grad(np, ps, g);
  14218. fx = ggml_get_f32_1d(f, 0);
  14219. }
  14220. // search direction = -gradient
  14221. ggml_vec_neg_f32(nx, d, g);
  14222. // ||x||, ||g||
  14223. ggml_vec_norm_f32(nx, &xnorm, x);
  14224. ggml_vec_norm_f32(nx, &gnorm, g);
  14225. if (xnorm < 1.0f) {
  14226. xnorm = 1.0f;
  14227. }
  14228. // already optimized
  14229. if (gnorm/xnorm <= params.lbfgs.eps) {
  14230. return GGML_OPT_OK;
  14231. }
  14232. if (opt->just_initialized) {
  14233. if (pf) {
  14234. pf[0] = fx;
  14235. }
  14236. opt->lbfgs.fx_best = fx;
  14237. // initial step
  14238. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14239. opt->lbfgs.j = 0;
  14240. opt->lbfgs.k = 1;
  14241. opt->lbfgs.end = 0;
  14242. opt->lbfgs.n_no_improvement = 0;
  14243. opt->just_initialized = false;
  14244. }
  14245. float * fx_best = &opt->lbfgs.fx_best;
  14246. float * step = &opt->lbfgs.step;
  14247. int * j = &opt->lbfgs.j;
  14248. int * k = &opt->lbfgs.k;
  14249. int * end = &opt->lbfgs.end;
  14250. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14251. int ls = 0;
  14252. int bound = 0;
  14253. float ys = 0.0f;
  14254. float yy = 0.0f;
  14255. float beta = 0.0f;
  14256. int it = 0;
  14257. while (true) {
  14258. // store the current position and gradient vectors
  14259. ggml_vec_cpy_f32(nx, xp, x);
  14260. ggml_vec_cpy_f32(nx, gp, g);
  14261. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14262. if (ls < 0) {
  14263. // linesearch failed - go back to the previous point and return
  14264. ggml_vec_cpy_f32(nx, x, xp);
  14265. ggml_vec_cpy_f32(nx, g, gp);
  14266. return ls;
  14267. }
  14268. ggml_vec_norm_f32(nx, &xnorm, x);
  14269. ggml_vec_norm_f32(nx, &gnorm, g);
  14270. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14271. if (xnorm < 1.0f) {
  14272. xnorm = 1.0f;
  14273. }
  14274. if (gnorm/xnorm <= params.lbfgs.eps) {
  14275. // converged
  14276. return GGML_OPT_OK;
  14277. }
  14278. // delta-based convergence test
  14279. if (pf != NULL) {
  14280. // need at least params.past iterations to start checking for convergence
  14281. if (params.past <= k[0]) {
  14282. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14283. if (fabsf(rate) < params.delta) {
  14284. return GGML_OPT_OK;
  14285. }
  14286. }
  14287. pf[k[0]%params.past] = fx;
  14288. }
  14289. // check for improvement
  14290. if (params.max_no_improvement > 0) {
  14291. if (fx < fx_best[0]) {
  14292. fx_best[0] = fx;
  14293. n_no_improvement[0] = 0;
  14294. } else {
  14295. n_no_improvement[0]++;
  14296. if (n_no_improvement[0] >= params.max_no_improvement) {
  14297. return GGML_OPT_OK;
  14298. }
  14299. }
  14300. }
  14301. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14302. // reached the maximum number of iterations
  14303. return GGML_OPT_DID_NOT_CONVERGE;
  14304. }
  14305. // update vectors s and y:
  14306. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14307. // y_{k+1} = g_{k+1} - g_{k}.
  14308. //
  14309. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14310. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14311. // compute scalars ys and yy:
  14312. // ys = y^t \cdot s -> 1 / \rho.
  14313. // yy = y^t \cdot y.
  14314. //
  14315. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14316. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14317. lm_ys[end[0]] = ys;
  14318. // find new search direction
  14319. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14320. bound = (m <= k[0]) ? m : k[0];
  14321. k[0]++;
  14322. it++;
  14323. end[0] = (end[0] + 1)%m;
  14324. // initialize search direction with -g
  14325. ggml_vec_neg_f32(nx, d, g);
  14326. j[0] = end[0];
  14327. for (int i = 0; i < bound; ++i) {
  14328. j[0] = (j[0] + m - 1) % m;
  14329. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14330. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14331. lm_alpha[j[0]] /= lm_ys[j[0]];
  14332. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14333. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14334. }
  14335. ggml_vec_scale_f32(nx, d, ys/yy);
  14336. for (int i = 0; i < bound; ++i) {
  14337. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14338. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14339. beta /= lm_ys[j[0]];
  14340. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14341. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14342. j[0] = (j[0] + 1)%m;
  14343. }
  14344. step[0] = 1.0;
  14345. }
  14346. return GGML_OPT_DID_NOT_CONVERGE;
  14347. }
  14348. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14349. struct ggml_opt_params result;
  14350. switch (type) {
  14351. case GGML_OPT_ADAM:
  14352. {
  14353. result = (struct ggml_opt_params) {
  14354. .type = GGML_OPT_ADAM,
  14355. .n_threads = 1,
  14356. .past = 0,
  14357. .delta = 1e-5f,
  14358. .max_no_improvement = 100,
  14359. .print_forward_graph = true,
  14360. .print_backward_graph = true,
  14361. .adam = {
  14362. .n_iter = 10000,
  14363. .sched = 1.000f,
  14364. .decay = 0.001f,
  14365. .alpha = 0.001f,
  14366. .beta1 = 0.9f,
  14367. .beta2 = 0.999f,
  14368. .eps = 1e-8f,
  14369. .eps_f = 1e-5f,
  14370. .eps_g = 1e-3f,
  14371. },
  14372. };
  14373. } break;
  14374. case GGML_OPT_LBFGS:
  14375. {
  14376. result = (struct ggml_opt_params) {
  14377. .type = GGML_OPT_LBFGS,
  14378. .n_threads = 1,
  14379. .past = 0,
  14380. .delta = 1e-5f,
  14381. .max_no_improvement = 0,
  14382. .print_forward_graph = true,
  14383. .print_backward_graph = true,
  14384. .lbfgs = {
  14385. .m = 6,
  14386. .n_iter = 100,
  14387. .max_linesearch = 20,
  14388. .eps = 1e-5f,
  14389. .ftol = 1e-4f,
  14390. .wolfe = 0.9f,
  14391. .min_step = 1e-20f,
  14392. .max_step = 1e+20f,
  14393. .linesearch = GGML_LINESEARCH_DEFAULT,
  14394. },
  14395. };
  14396. } break;
  14397. }
  14398. return result;
  14399. }
  14400. GGML_API void ggml_opt_init(
  14401. struct ggml_context * ctx,
  14402. struct ggml_opt_context * opt,
  14403. struct ggml_opt_params params,
  14404. int64_t nx) {
  14405. opt->ctx = ctx;
  14406. opt->params = params;
  14407. opt->iter = 0;
  14408. opt->nx = nx;
  14409. opt->just_initialized = true;
  14410. switch (opt->params.type) {
  14411. case GGML_OPT_ADAM:
  14412. {
  14413. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14414. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14415. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14416. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14417. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14418. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14419. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14420. opt->adam.pf = params.past > 0
  14421. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14422. : NULL;
  14423. ggml_set_zero(opt->adam.x);
  14424. ggml_set_zero(opt->adam.g1);
  14425. ggml_set_zero(opt->adam.g2);
  14426. ggml_set_zero(opt->adam.m);
  14427. ggml_set_zero(opt->adam.v);
  14428. ggml_set_zero(opt->adam.mh);
  14429. ggml_set_zero(opt->adam.vh);
  14430. if (opt->adam.pf) {
  14431. ggml_set_zero(opt->adam.pf);
  14432. }
  14433. } break;
  14434. case GGML_OPT_LBFGS:
  14435. {
  14436. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14437. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14438. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14439. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14440. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14441. opt->lbfgs.pf = params.past > 0
  14442. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14443. : NULL;
  14444. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14445. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14446. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14447. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14448. ggml_set_zero(opt->lbfgs.x);
  14449. ggml_set_zero(opt->lbfgs.xp);
  14450. ggml_set_zero(opt->lbfgs.g);
  14451. ggml_set_zero(opt->lbfgs.gp);
  14452. ggml_set_zero(opt->lbfgs.d);
  14453. ggml_set_zero(opt->lbfgs.pf);
  14454. if (opt->lbfgs.pf) {
  14455. ggml_set_zero(opt->lbfgs.pf);
  14456. }
  14457. ggml_set_zero(opt->lbfgs.lmal);
  14458. ggml_set_zero(opt->lbfgs.lmys);
  14459. ggml_set_zero(opt->lbfgs.lms);
  14460. ggml_set_zero(opt->lbfgs.lmy);
  14461. } break;
  14462. }
  14463. }
  14464. enum ggml_opt_result ggml_opt(
  14465. struct ggml_context * ctx,
  14466. struct ggml_opt_params params,
  14467. struct ggml_tensor * f) {
  14468. bool free_ctx = false;
  14469. if (ctx == NULL) {
  14470. struct ggml_init_params params_ctx = {
  14471. .mem_size = 16*1024*1024,
  14472. .mem_buffer = NULL,
  14473. .no_alloc = false,
  14474. };
  14475. ctx = ggml_init(params_ctx);
  14476. if (ctx == NULL) {
  14477. return GGML_OPT_NO_CONTEXT;
  14478. }
  14479. free_ctx = true;
  14480. }
  14481. enum ggml_opt_result result = GGML_OPT_OK;
  14482. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14483. ggml_opt_init(ctx, opt, params, 0);
  14484. result = ggml_opt_resume(ctx, opt, f);
  14485. if (free_ctx) {
  14486. ggml_free(ctx);
  14487. }
  14488. return result;
  14489. }
  14490. enum ggml_opt_result ggml_opt_resume(
  14491. struct ggml_context * ctx,
  14492. struct ggml_opt_context * opt,
  14493. struct ggml_tensor * f) {
  14494. // build forward + backward compute graphs
  14495. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14496. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14497. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14498. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14499. *gf = ggml_build_forward (f);
  14500. *gb = ggml_build_backward(ctx, gf, true);
  14501. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14502. }
  14503. enum ggml_opt_result ggml_opt_resume_g(
  14504. struct ggml_context * ctx,
  14505. struct ggml_opt_context * opt,
  14506. struct ggml_tensor * f,
  14507. struct ggml_cgraph * gf,
  14508. struct ggml_cgraph * gb) {
  14509. // build forward + backward compute graphs
  14510. enum ggml_opt_result result = GGML_OPT_OK;
  14511. switch (opt->params.type) {
  14512. case GGML_OPT_ADAM:
  14513. {
  14514. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14515. } break;
  14516. case GGML_OPT_LBFGS:
  14517. {
  14518. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14519. } break;
  14520. }
  14521. if (opt->params.print_forward_graph) {
  14522. ggml_graph_print (gf);
  14523. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14524. }
  14525. if (opt->params.print_backward_graph) {
  14526. ggml_graph_print (gb);
  14527. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14528. }
  14529. return result;
  14530. }
  14531. ////////////////////////////////////////////////////////////////////////////////
  14532. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14533. assert(k % QK4_0 == 0);
  14534. const int nb = k / QK4_0;
  14535. for (int b = 0; b < n; b += k) {
  14536. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14537. quantize_row_q4_0_reference(src + b, y, k);
  14538. for (int i = 0; i < nb; i++) {
  14539. for (int j = 0; j < QK4_0; j += 2) {
  14540. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14541. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14542. hist[vi0]++;
  14543. hist[vi1]++;
  14544. }
  14545. }
  14546. }
  14547. return (n/QK4_0*sizeof(block_q4_0));
  14548. }
  14549. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14550. assert(k % QK4_1 == 0);
  14551. const int nb = k / QK4_1;
  14552. for (int b = 0; b < n; b += k) {
  14553. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14554. quantize_row_q4_1_reference(src + b, y, k);
  14555. for (int i = 0; i < nb; i++) {
  14556. for (int j = 0; j < QK4_1; j += 2) {
  14557. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14558. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14559. hist[vi0]++;
  14560. hist[vi1]++;
  14561. }
  14562. }
  14563. }
  14564. return (n/QK4_1*sizeof(block_q4_1));
  14565. }
  14566. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14567. assert(k % QK5_0 == 0);
  14568. const int nb = k / QK5_0;
  14569. for (int b = 0; b < n; b += k) {
  14570. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14571. quantize_row_q5_0_reference(src + b, y, k);
  14572. for (int i = 0; i < nb; i++) {
  14573. uint32_t qh;
  14574. memcpy(&qh, &y[i].qh, sizeof(qh));
  14575. for (int j = 0; j < QK5_0; j += 2) {
  14576. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14577. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14578. // cast to 16 bins
  14579. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14580. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14581. hist[vi0]++;
  14582. hist[vi1]++;
  14583. }
  14584. }
  14585. }
  14586. return (n/QK5_0*sizeof(block_q5_0));
  14587. }
  14588. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14589. assert(k % QK5_1 == 0);
  14590. const int nb = k / QK5_1;
  14591. for (int b = 0; b < n; b += k) {
  14592. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14593. quantize_row_q5_1_reference(src + b, y, k);
  14594. for (int i = 0; i < nb; i++) {
  14595. uint32_t qh;
  14596. memcpy(&qh, &y[i].qh, sizeof(qh));
  14597. for (int j = 0; j < QK5_1; j += 2) {
  14598. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14599. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14600. // cast to 16 bins
  14601. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14602. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14603. hist[vi0]++;
  14604. hist[vi1]++;
  14605. }
  14606. }
  14607. }
  14608. return (n/QK5_1*sizeof(block_q5_1));
  14609. }
  14610. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14611. assert(k % QK8_0 == 0);
  14612. const int nb = k / QK8_0;
  14613. for (int b = 0; b < n; b += k) {
  14614. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14615. quantize_row_q8_0_reference(src + b, y, k);
  14616. for (int i = 0; i < nb; i++) {
  14617. for (int j = 0; j < QK8_0; ++j) {
  14618. const int8_t vi = y[i].qs[j];
  14619. hist[vi/16 + 8]++;
  14620. }
  14621. }
  14622. }
  14623. return (n/QK8_0*sizeof(block_q8_0));
  14624. }
  14625. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14626. size_t result = 0;
  14627. switch (type) {
  14628. case GGML_TYPE_Q4_0:
  14629. {
  14630. GGML_ASSERT(start % QK4_0 == 0);
  14631. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14632. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14633. } break;
  14634. case GGML_TYPE_Q4_1:
  14635. {
  14636. GGML_ASSERT(start % QK4_1 == 0);
  14637. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14638. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14639. } break;
  14640. case GGML_TYPE_Q5_0:
  14641. {
  14642. GGML_ASSERT(start % QK5_0 == 0);
  14643. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14644. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14645. } break;
  14646. case GGML_TYPE_Q5_1:
  14647. {
  14648. GGML_ASSERT(start % QK5_1 == 0);
  14649. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14650. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14651. } break;
  14652. case GGML_TYPE_Q8_0:
  14653. {
  14654. GGML_ASSERT(start % QK8_0 == 0);
  14655. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14656. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14657. } break;
  14658. #ifdef GGML_USE_K_QUANTS
  14659. case GGML_TYPE_Q2_K:
  14660. {
  14661. GGML_ASSERT(start % QK_K == 0);
  14662. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14663. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14664. } break;
  14665. case GGML_TYPE_Q3_K:
  14666. {
  14667. GGML_ASSERT(start % QK_K == 0);
  14668. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14669. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14670. } break;
  14671. case GGML_TYPE_Q4_K:
  14672. {
  14673. GGML_ASSERT(start % QK_K == 0);
  14674. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14675. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14676. } break;
  14677. case GGML_TYPE_Q5_K:
  14678. {
  14679. GGML_ASSERT(start % QK_K == 0);
  14680. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14681. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14682. } break;
  14683. case GGML_TYPE_Q6_K:
  14684. {
  14685. GGML_ASSERT(start % QK_K == 0);
  14686. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14687. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14688. } break;
  14689. #endif
  14690. case GGML_TYPE_F16:
  14691. {
  14692. int elemsize = sizeof(ggml_fp16_t);
  14693. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14694. result = n * elemsize;
  14695. } break;
  14696. case GGML_TYPE_F32:
  14697. {
  14698. int elemsize = sizeof(float);
  14699. result = n * elemsize;
  14700. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14701. } break;
  14702. default:
  14703. assert(false);
  14704. }
  14705. return result;
  14706. }
  14707. ////////////////////////////////////////////////////////////////////////////////
  14708. int ggml_cpu_has_avx(void) {
  14709. #if defined(__AVX__)
  14710. return 1;
  14711. #else
  14712. return 0;
  14713. #endif
  14714. }
  14715. int ggml_cpu_has_avx2(void) {
  14716. #if defined(__AVX2__)
  14717. return 1;
  14718. #else
  14719. return 0;
  14720. #endif
  14721. }
  14722. int ggml_cpu_has_avx512(void) {
  14723. #if defined(__AVX512F__)
  14724. return 1;
  14725. #else
  14726. return 0;
  14727. #endif
  14728. }
  14729. int ggml_cpu_has_avx512_vbmi(void) {
  14730. #if defined(__AVX512VBMI__)
  14731. return 1;
  14732. #else
  14733. return 0;
  14734. #endif
  14735. }
  14736. int ggml_cpu_has_avx512_vnni(void) {
  14737. #if defined(__AVX512VNNI__)
  14738. return 1;
  14739. #else
  14740. return 0;
  14741. #endif
  14742. }
  14743. int ggml_cpu_has_fma(void) {
  14744. #if defined(__FMA__)
  14745. return 1;
  14746. #else
  14747. return 0;
  14748. #endif
  14749. }
  14750. int ggml_cpu_has_neon(void) {
  14751. #if defined(__ARM_NEON)
  14752. return 1;
  14753. #else
  14754. return 0;
  14755. #endif
  14756. }
  14757. int ggml_cpu_has_arm_fma(void) {
  14758. #if defined(__ARM_FEATURE_FMA)
  14759. return 1;
  14760. #else
  14761. return 0;
  14762. #endif
  14763. }
  14764. int ggml_cpu_has_f16c(void) {
  14765. #if defined(__F16C__)
  14766. return 1;
  14767. #else
  14768. return 0;
  14769. #endif
  14770. }
  14771. int ggml_cpu_has_fp16_va(void) {
  14772. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  14773. return 1;
  14774. #else
  14775. return 0;
  14776. #endif
  14777. }
  14778. int ggml_cpu_has_wasm_simd(void) {
  14779. #if defined(__wasm_simd128__)
  14780. return 1;
  14781. #else
  14782. return 0;
  14783. #endif
  14784. }
  14785. int ggml_cpu_has_blas(void) {
  14786. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  14787. return 1;
  14788. #else
  14789. return 0;
  14790. #endif
  14791. }
  14792. int ggml_cpu_has_cublas(void) {
  14793. #if defined(GGML_USE_CUBLAS)
  14794. return 1;
  14795. #else
  14796. return 0;
  14797. #endif
  14798. }
  14799. int ggml_cpu_has_clblast(void) {
  14800. #if defined(GGML_USE_CLBLAST)
  14801. return 1;
  14802. #else
  14803. return 0;
  14804. #endif
  14805. }
  14806. int ggml_cpu_has_gpublas(void) {
  14807. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  14808. }
  14809. int ggml_cpu_has_sse3(void) {
  14810. #if defined(__SSE3__)
  14811. return 1;
  14812. #else
  14813. return 0;
  14814. #endif
  14815. }
  14816. int ggml_cpu_has_vsx(void) {
  14817. #if defined(__POWER9_VECTOR__)
  14818. return 1;
  14819. #else
  14820. return 0;
  14821. #endif
  14822. }
  14823. ////////////////////////////////////////////////////////////////////////////////