ggml.h 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_MAX_NAME 32
  196. #define GGML_DEFAULT_N_THREADS 4
  197. #define GGML_ASSERT(x) \
  198. do { \
  199. if (!(x)) { \
  200. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  201. abort(); \
  202. } \
  203. } while (0)
  204. #ifdef __cplusplus
  205. extern "C" {
  206. #endif
  207. #ifdef __ARM_NEON
  208. // we use the built-in 16-bit float type
  209. typedef __fp16 ggml_fp16_t;
  210. #else
  211. typedef uint16_t ggml_fp16_t;
  212. #endif
  213. // convert FP16 <-> FP32
  214. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  215. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  216. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  217. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  218. struct ggml_object;
  219. struct ggml_context;
  220. enum ggml_type {
  221. GGML_TYPE_F32 = 0,
  222. GGML_TYPE_F16 = 1,
  223. GGML_TYPE_Q4_0 = 2,
  224. GGML_TYPE_Q4_1 = 3,
  225. // GGML_TYPE_Q4_2 = 4, support has been removed
  226. // GGML_TYPE_Q4_3 (5) support has been removed
  227. GGML_TYPE_Q5_0 = 6,
  228. GGML_TYPE_Q5_1 = 7,
  229. GGML_TYPE_Q8_0 = 8,
  230. GGML_TYPE_Q8_1 = 9,
  231. // k-quantizations
  232. GGML_TYPE_Q2_K = 10,
  233. GGML_TYPE_Q3_K = 11,
  234. GGML_TYPE_Q4_K = 12,
  235. GGML_TYPE_Q5_K = 13,
  236. GGML_TYPE_Q6_K = 14,
  237. GGML_TYPE_Q8_K = 15,
  238. GGML_TYPE_I8,
  239. GGML_TYPE_I16,
  240. GGML_TYPE_I32,
  241. GGML_TYPE_COUNT,
  242. };
  243. enum ggml_backend {
  244. GGML_BACKEND_CPU = 0,
  245. GGML_BACKEND_GPU = 10,
  246. GGML_BACKEND_GPU_SPLIT = 20,
  247. };
  248. // model file types
  249. enum ggml_ftype {
  250. GGML_FTYPE_UNKNOWN = -1,
  251. GGML_FTYPE_ALL_F32 = 0,
  252. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  253. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  254. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  255. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  256. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  257. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  258. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  259. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  260. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  261. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  262. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  263. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  264. };
  265. // available tensor operations:
  266. enum ggml_op {
  267. GGML_OP_NONE = 0,
  268. GGML_OP_DUP,
  269. GGML_OP_ADD,
  270. GGML_OP_ADD1,
  271. GGML_OP_ACC,
  272. GGML_OP_SUB,
  273. GGML_OP_MUL,
  274. GGML_OP_DIV,
  275. GGML_OP_SQR,
  276. GGML_OP_SQRT,
  277. GGML_OP_LOG,
  278. GGML_OP_SUM,
  279. GGML_OP_SUM_ROWS,
  280. GGML_OP_MEAN,
  281. GGML_OP_REPEAT,
  282. GGML_OP_REPEAT_BACK,
  283. GGML_OP_ABS,
  284. GGML_OP_SGN,
  285. GGML_OP_NEG,
  286. GGML_OP_STEP,
  287. GGML_OP_RELU,
  288. GGML_OP_GELU,
  289. GGML_OP_SILU,
  290. GGML_OP_SILU_BACK,
  291. GGML_OP_NORM, // normalize
  292. GGML_OP_RMS_NORM,
  293. GGML_OP_RMS_NORM_BACK,
  294. GGML_OP_MUL_MAT,
  295. GGML_OP_OUT_PROD,
  296. GGML_OP_SCALE,
  297. GGML_OP_SET,
  298. GGML_OP_CPY,
  299. GGML_OP_CONT,
  300. GGML_OP_RESHAPE,
  301. GGML_OP_VIEW,
  302. GGML_OP_PERMUTE,
  303. GGML_OP_TRANSPOSE,
  304. GGML_OP_GET_ROWS,
  305. GGML_OP_GET_ROWS_BACK,
  306. GGML_OP_DIAG,
  307. GGML_OP_DIAG_MASK_INF,
  308. GGML_OP_DIAG_MASK_ZERO,
  309. GGML_OP_SOFT_MAX,
  310. GGML_OP_SOFT_MAX_BACK,
  311. GGML_OP_ROPE,
  312. GGML_OP_ROPE_BACK,
  313. GGML_OP_ALIBI,
  314. GGML_OP_CLAMP,
  315. GGML_OP_CONV_1D_1S,
  316. GGML_OP_CONV_1D_2S,
  317. GGML_OP_FLASH_ATTN,
  318. GGML_OP_FLASH_FF,
  319. GGML_OP_FLASH_ATTN_BACK,
  320. GGML_OP_MAP_UNARY,
  321. GGML_OP_MAP_BINARY,
  322. GGML_OP_CROSS_ENTROPY_LOSS,
  323. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  324. GGML_OP_COUNT,
  325. };
  326. // ggml object
  327. struct ggml_object {
  328. size_t offs;
  329. size_t size;
  330. struct ggml_object * next;
  331. char padding[8];
  332. };
  333. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  334. // n-dimensional tensor
  335. struct ggml_tensor {
  336. enum ggml_type type;
  337. enum ggml_backend backend;
  338. int n_dims;
  339. int64_t ne[GGML_MAX_DIMS]; // number of elements
  340. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  341. // nb[0] = sizeof(type)
  342. // nb[1] = nb[0] * ne[0] + padding
  343. // nb[i] = nb[i-1] * ne[i-1]
  344. // compute data
  345. enum ggml_op op;
  346. bool is_param;
  347. struct ggml_tensor * grad;
  348. struct ggml_tensor * src0;
  349. struct ggml_tensor * src1;
  350. struct ggml_tensor * opt[GGML_MAX_OPT];
  351. // thread scheduling
  352. int n_tasks;
  353. // performance
  354. int perf_runs;
  355. int64_t perf_cycles;
  356. int64_t perf_time_us;
  357. void * data;
  358. char name[GGML_MAX_NAME];
  359. void * extra; // extra things e.g. for ggml-cuda.cu
  360. char padding[4];
  361. };
  362. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  363. // computation graph
  364. struct ggml_cgraph {
  365. int n_nodes;
  366. int n_leafs;
  367. int n_threads;
  368. size_t work_size;
  369. struct ggml_tensor * work;
  370. struct ggml_tensor * nodes[GGML_MAX_NODES];
  371. struct ggml_tensor * grads[GGML_MAX_NODES];
  372. struct ggml_tensor * leafs[GGML_MAX_NODES];
  373. // performance
  374. int perf_runs;
  375. int64_t perf_cycles;
  376. int64_t perf_time_us;
  377. };
  378. // scratch buffer
  379. struct ggml_scratch {
  380. size_t offs;
  381. size_t size;
  382. void * data;
  383. };
  384. struct ggml_init_params {
  385. // memory pool
  386. size_t mem_size; // bytes
  387. void * mem_buffer; // if NULL, memory will be allocated internally
  388. bool no_alloc; // don't allocate memory for the tensor data
  389. };
  390. // compute types
  391. enum ggml_task_type {
  392. GGML_TASK_INIT = 0,
  393. GGML_TASK_COMPUTE,
  394. GGML_TASK_FINALIZE,
  395. };
  396. struct ggml_compute_params {
  397. enum ggml_task_type type;
  398. // ith = thread index, nth = number of threads
  399. int ith, nth;
  400. // work buffer for all threads
  401. size_t wsize;
  402. void * wdata;
  403. };
  404. // misc
  405. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  406. GGML_API int64_t ggml_time_ms(void);
  407. GGML_API int64_t ggml_time_us(void);
  408. GGML_API int64_t ggml_cycles(void);
  409. GGML_API int64_t ggml_cycles_per_ms(void);
  410. GGML_API void ggml_print_object (const struct ggml_object * obj);
  411. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  412. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  413. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  414. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  415. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  416. GGML_API int ggml_blck_size (enum ggml_type type);
  417. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  418. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  419. GGML_API const char * ggml_type_name(enum ggml_type type);
  420. GGML_API const char * ggml_op_name (enum ggml_op op);
  421. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  422. GGML_API bool ggml_is_quantized(enum ggml_type type);
  423. // TODO: temporary until model loading of ggml examples is refactored
  424. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  425. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  426. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  427. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  428. // use this to compute the memory overhead of a tensor
  429. GGML_API size_t ggml_tensor_overhead(void);
  430. // main
  431. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  432. GGML_API void ggml_free(struct ggml_context * ctx);
  433. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  434. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  435. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  436. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  437. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  438. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  439. GGML_API struct ggml_tensor * ggml_new_tensor(
  440. struct ggml_context * ctx,
  441. enum ggml_type type,
  442. int n_dims,
  443. const int64_t *ne);
  444. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  445. struct ggml_context * ctx,
  446. enum ggml_type type,
  447. int64_t ne0);
  448. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  449. struct ggml_context * ctx,
  450. enum ggml_type type,
  451. int64_t ne0,
  452. int64_t ne1);
  453. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  454. struct ggml_context * ctx,
  455. enum ggml_type type,
  456. int64_t ne0,
  457. int64_t ne1,
  458. int64_t ne2);
  459. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  460. struct ggml_context * ctx,
  461. enum ggml_type type,
  462. int64_t ne0,
  463. int64_t ne1,
  464. int64_t ne2,
  465. int64_t ne3);
  466. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  467. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  468. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  469. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  470. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  471. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  472. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  473. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  474. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  475. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  476. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  477. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  478. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  479. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  480. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  481. GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
  482. //
  483. // operations on tensors with backpropagation
  484. //
  485. GGML_API struct ggml_tensor * ggml_dup(
  486. struct ggml_context * ctx,
  487. struct ggml_tensor * a);
  488. GGML_API struct ggml_tensor * ggml_add(
  489. struct ggml_context * ctx,
  490. struct ggml_tensor * a,
  491. struct ggml_tensor * b);
  492. GGML_API struct ggml_tensor * ggml_add_inplace(
  493. struct ggml_context * ctx,
  494. struct ggml_tensor * a,
  495. struct ggml_tensor * b);
  496. GGML_API struct ggml_tensor * ggml_add1(
  497. struct ggml_context * ctx,
  498. struct ggml_tensor * a,
  499. struct ggml_tensor * b);
  500. GGML_API struct ggml_tensor * ggml_add1_inplace(
  501. struct ggml_context * ctx,
  502. struct ggml_tensor * a,
  503. struct ggml_tensor * b);
  504. GGML_API struct ggml_tensor * ggml_acc(
  505. struct ggml_context * ctx,
  506. struct ggml_tensor * a,
  507. struct ggml_tensor * b,
  508. size_t nb1,
  509. size_t nb2,
  510. size_t nb3,
  511. size_t offset);
  512. GGML_API struct ggml_tensor * ggml_acc_inplace(
  513. struct ggml_context * ctx,
  514. struct ggml_tensor * a,
  515. struct ggml_tensor * b,
  516. size_t nb1,
  517. size_t nb2,
  518. size_t nb3,
  519. size_t offset);
  520. GGML_API struct ggml_tensor * ggml_sub(
  521. struct ggml_context * ctx,
  522. struct ggml_tensor * a,
  523. struct ggml_tensor * b);
  524. GGML_API struct ggml_tensor * ggml_mul(
  525. struct ggml_context * ctx,
  526. struct ggml_tensor * a,
  527. struct ggml_tensor * b);
  528. GGML_API struct ggml_tensor * ggml_div(
  529. struct ggml_context * ctx,
  530. struct ggml_tensor * a,
  531. struct ggml_tensor * b);
  532. GGML_API struct ggml_tensor * ggml_sqr(
  533. struct ggml_context * ctx,
  534. struct ggml_tensor * a);
  535. GGML_API struct ggml_tensor * ggml_sqrt(
  536. struct ggml_context * ctx,
  537. struct ggml_tensor * a);
  538. GGML_API struct ggml_tensor * ggml_log(
  539. struct ggml_context * ctx,
  540. struct ggml_tensor * a);
  541. GGML_API struct ggml_tensor * ggml_log_inplace(
  542. struct ggml_context * ctx,
  543. struct ggml_tensor * a);
  544. // return scalar
  545. GGML_API struct ggml_tensor * ggml_sum(
  546. struct ggml_context * ctx,
  547. struct ggml_tensor * a);
  548. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  549. GGML_API struct ggml_tensor * ggml_sum_rows(
  550. struct ggml_context * ctx,
  551. struct ggml_tensor * a);
  552. // mean along rows
  553. GGML_API struct ggml_tensor * ggml_mean(
  554. struct ggml_context * ctx,
  555. struct ggml_tensor * a);
  556. // if a is the same shape as b, and a is not parameter, return a
  557. // otherwise, return a new tensor: repeat(a) to fit in b
  558. GGML_API struct ggml_tensor * ggml_repeat(
  559. struct ggml_context * ctx,
  560. struct ggml_tensor * a,
  561. struct ggml_tensor * b);
  562. GGML_API struct ggml_tensor * ggml_repeat_back(
  563. struct ggml_context * ctx,
  564. struct ggml_tensor * a,
  565. struct ggml_tensor * b);
  566. GGML_API struct ggml_tensor * ggml_abs(
  567. struct ggml_context * ctx,
  568. struct ggml_tensor * a);
  569. GGML_API struct ggml_tensor * ggml_sgn(
  570. struct ggml_context * ctx,
  571. struct ggml_tensor * a);
  572. GGML_API struct ggml_tensor * ggml_neg(
  573. struct ggml_context * ctx,
  574. struct ggml_tensor * a);
  575. GGML_API struct ggml_tensor * ggml_step(
  576. struct ggml_context * ctx,
  577. struct ggml_tensor * a);
  578. GGML_API struct ggml_tensor * ggml_relu(
  579. struct ggml_context * ctx,
  580. struct ggml_tensor * a);
  581. // TODO: double-check this computation is correct
  582. GGML_API struct ggml_tensor * ggml_gelu(
  583. struct ggml_context * ctx,
  584. struct ggml_tensor * a);
  585. GGML_API struct ggml_tensor * ggml_silu(
  586. struct ggml_context * ctx,
  587. struct ggml_tensor * a);
  588. // a - x
  589. // b - dy
  590. GGML_API struct ggml_tensor * ggml_silu_back(
  591. struct ggml_context * ctx,
  592. struct ggml_tensor * a,
  593. struct ggml_tensor * b);
  594. // normalize along rows
  595. // TODO: eps is hardcoded to 1e-5 for now
  596. GGML_API struct ggml_tensor * ggml_norm(
  597. struct ggml_context * ctx,
  598. struct ggml_tensor * a);
  599. GGML_API struct ggml_tensor * ggml_rms_norm(
  600. struct ggml_context * ctx,
  601. struct ggml_tensor * a);
  602. // a - x
  603. // b - dy
  604. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  605. struct ggml_context * ctx,
  606. struct ggml_tensor * a,
  607. struct ggml_tensor * b);
  608. // A: n columns, m rows
  609. // B: n columns, p rows (i.e. we transpose it internally)
  610. // result is m columns, p rows
  611. GGML_API struct ggml_tensor * ggml_mul_mat(
  612. struct ggml_context * ctx,
  613. struct ggml_tensor * a,
  614. struct ggml_tensor * b);
  615. // A: m columns, n rows,
  616. // B: p columns, n rows,
  617. // result is m columns, p rows
  618. GGML_API struct ggml_tensor * ggml_out_prod(
  619. struct ggml_context * ctx,
  620. struct ggml_tensor * a,
  621. struct ggml_tensor * b);
  622. //
  623. // operations on tensors without backpropagation
  624. //
  625. GGML_API struct ggml_tensor * ggml_scale(
  626. struct ggml_context * ctx,
  627. struct ggml_tensor * a,
  628. struct ggml_tensor * b);
  629. // in-place, returns view(a)
  630. GGML_API struct ggml_tensor * ggml_scale_inplace(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a,
  633. struct ggml_tensor * b);
  634. // b -> view(a,offset,nb1,nb2,3), return modified a
  635. GGML_API struct ggml_tensor * ggml_set(
  636. struct ggml_context * ctx,
  637. struct ggml_tensor * a,
  638. struct ggml_tensor * b,
  639. size_t nb1,
  640. size_t nb2,
  641. size_t nb3,
  642. size_t offset);
  643. // b -> view(a,offset,nb1,nb2,3), return view(a)
  644. GGML_API struct ggml_tensor * ggml_set_inplace(
  645. struct ggml_context * ctx,
  646. struct ggml_tensor * a,
  647. struct ggml_tensor * b,
  648. size_t nb1,
  649. size_t nb2,
  650. size_t nb3,
  651. size_t offset);
  652. GGML_API struct ggml_tensor * ggml_set_1d(
  653. struct ggml_context * ctx,
  654. struct ggml_tensor * a,
  655. struct ggml_tensor * b,
  656. size_t offset);
  657. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  658. struct ggml_context * ctx,
  659. struct ggml_tensor * a,
  660. struct ggml_tensor * b,
  661. size_t offset);
  662. // b -> view(a,offset,nb1,nb2,3), return modified a
  663. GGML_API struct ggml_tensor * ggml_set_2d(
  664. struct ggml_context * ctx,
  665. struct ggml_tensor * a,
  666. struct ggml_tensor * b,
  667. size_t nb1,
  668. size_t offset);
  669. // b -> view(a,offset,nb1,nb2,3), return view(a)
  670. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  671. struct ggml_context * ctx,
  672. struct ggml_tensor * a,
  673. struct ggml_tensor * b,
  674. size_t nb1,
  675. size_t offset);
  676. // a -> b, return view(b)
  677. GGML_API struct ggml_tensor * ggml_cpy(
  678. struct ggml_context * ctx,
  679. struct ggml_tensor * a,
  680. struct ggml_tensor * b);
  681. // make contiguous
  682. GGML_API struct ggml_tensor * ggml_cont(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a);
  685. // return view(a), b specifies the new shape
  686. // TODO: when we start computing gradient, make a copy instead of view
  687. GGML_API struct ggml_tensor * ggml_reshape(
  688. struct ggml_context * ctx,
  689. struct ggml_tensor * a,
  690. struct ggml_tensor * b);
  691. // return view(a)
  692. // TODO: when we start computing gradient, make a copy instead of view
  693. GGML_API struct ggml_tensor * ggml_reshape_1d(
  694. struct ggml_context * ctx,
  695. struct ggml_tensor * a,
  696. int64_t ne0);
  697. GGML_API struct ggml_tensor * ggml_reshape_2d(
  698. struct ggml_context * ctx,
  699. struct ggml_tensor * a,
  700. int64_t ne0,
  701. int64_t ne1);
  702. // return view(a)
  703. // TODO: when we start computing gradient, make a copy instead of view
  704. GGML_API struct ggml_tensor * ggml_reshape_3d(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a,
  707. int64_t ne0,
  708. int64_t ne1,
  709. int64_t ne2);
  710. GGML_API struct ggml_tensor * ggml_reshape_4d(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a,
  713. int64_t ne0,
  714. int64_t ne1,
  715. int64_t ne2,
  716. int64_t ne3);
  717. // offset in bytes
  718. GGML_API struct ggml_tensor * ggml_view_1d(
  719. struct ggml_context * ctx,
  720. struct ggml_tensor * a,
  721. int64_t ne0,
  722. size_t offset);
  723. GGML_API struct ggml_tensor * ggml_view_2d(
  724. struct ggml_context * ctx,
  725. struct ggml_tensor * a,
  726. int64_t ne0,
  727. int64_t ne1,
  728. size_t nb1, // row stride in bytes
  729. size_t offset);
  730. GGML_API struct ggml_tensor * ggml_view_3d(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. int64_t ne0,
  734. int64_t ne1,
  735. int64_t ne2,
  736. size_t nb1, // row stride in bytes
  737. size_t nb2, // slice stride in bytes
  738. size_t offset);
  739. GGML_API struct ggml_tensor * ggml_view_4d(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. int64_t ne0,
  743. int64_t ne1,
  744. int64_t ne2,
  745. int64_t ne3,
  746. size_t nb1, // row stride in bytes
  747. size_t nb2, // slice stride in bytes
  748. size_t nb3,
  749. size_t offset);
  750. GGML_API struct ggml_tensor * ggml_permute(
  751. struct ggml_context * ctx,
  752. struct ggml_tensor * a,
  753. int axis0,
  754. int axis1,
  755. int axis2,
  756. int axis3);
  757. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  758. GGML_API struct ggml_tensor * ggml_transpose(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a);
  761. GGML_API struct ggml_tensor * ggml_get_rows(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b);
  765. GGML_API struct ggml_tensor * ggml_get_rows_back(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a,
  768. struct ggml_tensor * b,
  769. struct ggml_tensor * c);
  770. GGML_API struct ggml_tensor * ggml_diag(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a);
  773. // set elements above the diagonal to -INF
  774. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a,
  777. int n_past);
  778. // in-place, returns view(a)
  779. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a,
  782. int n_past);
  783. // set elements above the diagonal to 0
  784. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a,
  787. int n_past);
  788. // in-place, returns view(a)
  789. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a,
  792. int n_past);
  793. GGML_API struct ggml_tensor * ggml_soft_max(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a);
  796. // in-place, returns view(a)
  797. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a);
  800. GGML_API struct ggml_tensor * ggml_soft_max_back(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a,
  803. struct ggml_tensor * b);
  804. // in-place, returns view(a)
  805. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a,
  808. struct ggml_tensor * b);
  809. // rotary position embedding
  810. // if mode & 1 == 1, skip n_past elements
  811. // if mode & 2 == 1, GPT-NeoX style
  812. // TODO: avoid creating a new tensor every time
  813. GGML_API struct ggml_tensor * ggml_rope(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a,
  816. int n_past,
  817. int n_dims,
  818. int mode);
  819. // in-place, returns view(a)
  820. GGML_API struct ggml_tensor * ggml_rope_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. int n_past,
  824. int n_dims,
  825. int mode);
  826. // rotary position embedding backward, i.e compute dx from dy
  827. // a - dy
  828. GGML_API struct ggml_tensor * ggml_rope_back(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a,
  831. int n_past,
  832. int n_dims,
  833. int mode);
  834. // alibi position embedding
  835. // in-place, returns view(a)
  836. struct ggml_tensor * ggml_alibi(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a,
  839. int n_past,
  840. int n_head,
  841. float bias_max);
  842. // clamp
  843. // in-place, returns view(a)
  844. struct ggml_tensor * ggml_clamp(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a,
  847. float min,
  848. float max);
  849. // padding = 1
  850. // TODO: we don't support extra parameters for now
  851. // that's why we are hard-coding the stride, padding, and dilation
  852. // not great ..
  853. GGML_API struct ggml_tensor * ggml_conv_1d_1s(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a,
  856. struct ggml_tensor * b);
  857. GGML_API struct ggml_tensor * ggml_conv_1d_2s(
  858. struct ggml_context * ctx,
  859. struct ggml_tensor * a,
  860. struct ggml_tensor * b);
  861. GGML_API struct ggml_tensor * ggml_flash_attn(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * q,
  864. struct ggml_tensor * k,
  865. struct ggml_tensor * v,
  866. bool masked);
  867. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * q,
  870. struct ggml_tensor * k,
  871. struct ggml_tensor * v,
  872. struct ggml_tensor * d,
  873. bool masked);
  874. GGML_API struct ggml_tensor * ggml_flash_ff(
  875. struct ggml_context * ctx,
  876. struct ggml_tensor * a,
  877. struct ggml_tensor * b0,
  878. struct ggml_tensor * b1,
  879. struct ggml_tensor * c0,
  880. struct ggml_tensor * c1);
  881. // Mapping operations
  882. typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
  883. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  884. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a,
  887. ggml_unary_op_f32_t fun);
  888. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a,
  891. struct ggml_tensor * b,
  892. ggml_binary_op_f32_t fun);
  893. // loss function
  894. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. struct ggml_tensor * b);
  898. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a,
  901. struct ggml_tensor * b,
  902. struct ggml_tensor * c);
  903. //
  904. // automatic differentiation
  905. //
  906. GGML_API void ggml_set_param(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * tensor);
  909. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  910. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  911. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  912. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  913. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  914. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  915. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  916. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  917. // print info and performance information for the graph
  918. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  919. // dump the graph into a file using the dot format
  920. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  921. //
  922. // optimization
  923. //
  924. // optimization methods
  925. enum ggml_opt_type {
  926. GGML_OPT_ADAM,
  927. GGML_OPT_LBFGS,
  928. };
  929. // linesearch methods
  930. enum ggml_linesearch {
  931. GGML_LINESEARCH_DEFAULT = 1,
  932. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  933. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  934. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  935. };
  936. // optimization return values
  937. enum ggml_opt_result {
  938. GGML_OPT_OK = 0,
  939. GGML_OPT_DID_NOT_CONVERGE,
  940. GGML_OPT_NO_CONTEXT,
  941. GGML_OPT_INVALID_WOLFE,
  942. GGML_OPT_FAIL,
  943. GGML_LINESEARCH_FAIL = -128,
  944. GGML_LINESEARCH_MINIMUM_STEP,
  945. GGML_LINESEARCH_MAXIMUM_STEP,
  946. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  947. GGML_LINESEARCH_INVALID_PARAMETERS,
  948. };
  949. // optimization parameters
  950. //
  951. // see ggml.c (ggml_opt_default_params) for default values
  952. //
  953. struct ggml_opt_params {
  954. enum ggml_opt_type type;
  955. int n_threads;
  956. // delta-based convergence test
  957. //
  958. // if past == 0 - disabled
  959. // if past > 0:
  960. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  961. //
  962. int past;
  963. float delta;
  964. // maximum number of iterations without improvement
  965. //
  966. // if 0 - disabled
  967. // if > 0:
  968. // assume convergence if no cost improvement in this number of iterations
  969. //
  970. int max_no_improvement;
  971. bool print_forward_graph;
  972. bool print_backward_graph;
  973. // ADAM parameters
  974. struct {
  975. int n_iter;
  976. float sched; // schedule multiplier (fixed, decay or warmup)
  977. float decay; // weight decay for AdamW, use 0.0f to disable
  978. float alpha; // learning rate
  979. float beta1;
  980. float beta2;
  981. float eps; // epsilon for numerical stability
  982. float eps_f; // epsilon for convergence test
  983. float eps_g; // epsilon for convergence test
  984. } adam;
  985. // LBFGS parameters
  986. struct {
  987. int m; // number of corrections to approximate the inv. Hessian
  988. int n_iter;
  989. int max_linesearch;
  990. float eps; // convergence tolerance
  991. float ftol; // line search tolerance
  992. float wolfe;
  993. float min_step;
  994. float max_step;
  995. enum ggml_linesearch linesearch;
  996. } lbfgs;
  997. };
  998. struct ggml_opt_context {
  999. struct ggml_context * ctx;
  1000. struct ggml_opt_params params;
  1001. int iter;
  1002. int64_t nx; // number of parameter elements
  1003. bool just_initialized;
  1004. struct {
  1005. struct ggml_tensor * x; // view of the parameters
  1006. struct ggml_tensor * g1; // gradient
  1007. struct ggml_tensor * g2; // gradient squared
  1008. struct ggml_tensor * m; // first moment
  1009. struct ggml_tensor * v; // second moment
  1010. struct ggml_tensor * mh; // first moment hat
  1011. struct ggml_tensor * vh; // second moment hat
  1012. struct ggml_tensor * pf; // past function values
  1013. float fx_best;
  1014. float fx_prev;
  1015. int n_no_improvement;
  1016. } adam;
  1017. struct {
  1018. struct ggml_tensor * x; // current parameters
  1019. struct ggml_tensor * xp; // previous parameters
  1020. struct ggml_tensor * g; // current gradient
  1021. struct ggml_tensor * gp; // previous gradient
  1022. struct ggml_tensor * d; // search direction
  1023. struct ggml_tensor * pf; // past function values
  1024. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1025. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1026. struct ggml_tensor * lms; // the L-BFGS memory s
  1027. struct ggml_tensor * lmy; // the L-BFGS memory y
  1028. float fx_best;
  1029. float step;
  1030. int j;
  1031. int k;
  1032. int end;
  1033. int n_no_improvement;
  1034. } lbfgs;
  1035. };
  1036. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1037. // optimize the function defined by the tensor f
  1038. GGML_API enum ggml_opt_result ggml_opt(
  1039. struct ggml_context * ctx,
  1040. struct ggml_opt_params params,
  1041. struct ggml_tensor * f);
  1042. // initialize optimizer context
  1043. GGML_API void ggml_opt_init(
  1044. struct ggml_context * ctx,
  1045. struct ggml_opt_context * opt,
  1046. struct ggml_opt_params params,
  1047. int64_t nx);
  1048. // continue optimizing the function defined by the tensor f
  1049. GGML_API enum ggml_opt_result ggml_opt_resume(
  1050. struct ggml_context * ctx,
  1051. struct ggml_opt_context * opt,
  1052. struct ggml_tensor * f);
  1053. // continue optimizing the function defined by the tensor f
  1054. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1055. struct ggml_context * ctx,
  1056. struct ggml_opt_context * opt,
  1057. struct ggml_tensor * f,
  1058. struct ggml_cgraph * gf,
  1059. struct ggml_cgraph * gb);
  1060. //
  1061. // quantization
  1062. //
  1063. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1064. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1065. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1066. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1067. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1068. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1069. //
  1070. // system info
  1071. //
  1072. GGML_API int ggml_cpu_has_avx (void);
  1073. GGML_API int ggml_cpu_has_avx2 (void);
  1074. GGML_API int ggml_cpu_has_avx512 (void);
  1075. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1076. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1077. GGML_API int ggml_cpu_has_fma (void);
  1078. GGML_API int ggml_cpu_has_neon (void);
  1079. GGML_API int ggml_cpu_has_arm_fma (void);
  1080. GGML_API int ggml_cpu_has_f16c (void);
  1081. GGML_API int ggml_cpu_has_fp16_va (void);
  1082. GGML_API int ggml_cpu_has_wasm_simd (void);
  1083. GGML_API int ggml_cpu_has_blas (void);
  1084. GGML_API int ggml_cpu_has_cublas (void);
  1085. GGML_API int ggml_cpu_has_clblast (void);
  1086. GGML_API int ggml_cpu_has_gpublas (void);
  1087. GGML_API int ggml_cpu_has_sse3 (void);
  1088. GGML_API int ggml_cpu_has_vsx (void);
  1089. //
  1090. // Internal types and functions exposed for tests and benchmarks
  1091. //
  1092. #ifdef __cplusplus
  1093. // restrict not standard in C++
  1094. #define GGML_RESTRICT
  1095. #else
  1096. #define GGML_RESTRICT restrict
  1097. #endif
  1098. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1099. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1100. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1101. typedef struct {
  1102. dequantize_row_q_t dequantize_row_q;
  1103. quantize_row_q_t quantize_row_q;
  1104. quantize_row_q_t quantize_row_q_reference;
  1105. quantize_row_q_t quantize_row_q_dot;
  1106. vec_dot_q_t vec_dot_q;
  1107. enum ggml_type vec_dot_type;
  1108. } quantize_fns_t;
  1109. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  1110. #ifdef __cplusplus
  1111. }
  1112. #endif