quantize.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cstdio>
  4. #include <cstring>
  5. #include <vector>
  6. #include <string>
  7. #include <unordered_map>
  8. #include <fstream>
  9. #include <cmath>
  10. struct quant_option {
  11. std::string name;
  12. llama_ftype ftype;
  13. std::string desc;
  14. };
  15. static const std::vector<struct quant_option> QUANT_OPTIONS = {
  16. { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
  17. { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
  18. { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
  19. { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
  20. { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
  21. { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
  22. { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
  23. { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
  24. { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
  25. { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
  26. { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
  27. { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
  28. { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
  29. { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
  30. { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
  31. { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
  32. { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
  33. { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
  34. { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
  35. { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
  36. { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
  37. { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
  38. { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
  39. { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
  40. { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
  41. { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
  42. { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
  43. { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
  44. { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
  45. { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
  46. { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
  47. { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
  48. { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
  49. // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
  50. { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
  51. };
  52. static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
  53. static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
  54. static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
  55. static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
  56. static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
  57. std::string ftype_str;
  58. for (auto ch : ftype_str_in) {
  59. ftype_str.push_back(std::toupper(ch));
  60. }
  61. for (auto & it : QUANT_OPTIONS) {
  62. if (it.name == ftype_str) {
  63. ftype = it.ftype;
  64. ftype_str_out = it.name;
  65. return true;
  66. }
  67. }
  68. try {
  69. int ftype_int = std::stoi(ftype_str);
  70. for (auto & it : QUANT_OPTIONS) {
  71. if (it.ftype == ftype_int) {
  72. ftype = it.ftype;
  73. ftype_str_out = it.name;
  74. return true;
  75. }
  76. }
  77. }
  78. catch (...) {
  79. // stoi failed
  80. }
  81. return false;
  82. }
  83. // usage:
  84. // ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
  85. //
  86. [[noreturn]]
  87. static void usage(const char * executable) {
  88. printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
  89. printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
  90. printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
  91. printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
  92. printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
  93. printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
  94. printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
  95. printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
  96. printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
  97. printf(" --keep-split: will generate quatized model in the same shards as input");
  98. printf(" --override-kv KEY=TYPE:VALUE\n");
  99. printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
  100. printf("Note: --include-weights and --exclude-weights cannot be used together\n");
  101. printf("\nAllowed quantization types:\n");
  102. for (auto & it : QUANT_OPTIONS) {
  103. if (it.name != "COPY") {
  104. printf(" %2d or ", it.ftype);
  105. } else {
  106. printf(" ");
  107. }
  108. printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
  109. }
  110. exit(1);
  111. }
  112. static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
  113. std::ifstream in(imatrix_file.c_str(), std::ios::binary);
  114. if (!in) {
  115. printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
  116. exit(1);
  117. }
  118. int n_entries;
  119. in.read((char *)&n_entries, sizeof(n_entries));
  120. if (in.fail() || n_entries < 1) {
  121. printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
  122. exit(1);
  123. }
  124. for (int i = 0; i < n_entries; ++i) {
  125. int len; in.read((char *)&len, sizeof(len));
  126. std::vector<char> name_as_vec(len+1);
  127. in.read((char *)name_as_vec.data(), len);
  128. if (in.fail()) {
  129. printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
  130. exit(1);
  131. }
  132. name_as_vec[len] = 0;
  133. std::string name{name_as_vec.data()};
  134. auto & e = imatrix_data[name];
  135. int ncall;
  136. in.read((char *)&ncall, sizeof(ncall));
  137. int nval;
  138. in.read((char *)&nval, sizeof(nval));
  139. if (in.fail() || nval < 1) {
  140. printf("%s: failed reading number of values for entry %d\n", __func__, i);
  141. imatrix_data = {};
  142. exit(1);
  143. }
  144. e.resize(nval);
  145. in.read((char *)e.data(), nval*sizeof(float));
  146. if (in.fail()) {
  147. printf("%s: failed reading data for entry %d\n", __func__, i);
  148. imatrix_data = {};
  149. exit(1);
  150. }
  151. if (ncall > 0) {
  152. for (auto& v : e) v /= ncall;
  153. }
  154. if (getenv("LLAMA_TRACE")) {
  155. printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
  156. }
  157. }
  158. // latest imatrix version contains the dataset filename at the end of the file
  159. int m_last_call = 0;
  160. if (in.peek() != EOF) {
  161. in.read((char *)&m_last_call, sizeof(m_last_call));
  162. int dataset_len;
  163. in.read((char *)&dataset_len, sizeof(dataset_len));
  164. std::vector<char> dataset_as_vec(dataset_len);
  165. in.read(dataset_as_vec.data(), dataset_len);
  166. imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
  167. printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
  168. }
  169. printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
  170. return m_last_call;
  171. }
  172. static int prepare_imatrix(const std::string & imatrix_file,
  173. std::string & imatrix_dataset,
  174. const std::vector<std::string> & included_weights,
  175. const std::vector<std::string> & excluded_weights,
  176. std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
  177. int m_last_call = -1;
  178. if (!imatrix_file.empty()) {
  179. m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
  180. }
  181. if (imatrix_data.empty()) {
  182. return m_last_call;
  183. }
  184. if (!excluded_weights.empty()) {
  185. for (auto& name : excluded_weights) {
  186. for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
  187. auto pos = it->first.find(name);
  188. if (pos != std::string::npos) it = imatrix_data.erase(it);
  189. else ++it;
  190. }
  191. }
  192. }
  193. if (!included_weights.empty()) {
  194. std::unordered_map<std::string, std::vector<float>> tmp;
  195. for (auto& name : included_weights) {
  196. for (auto& e : imatrix_data) {
  197. auto pos = e.first.find(name);
  198. if (pos != std::string::npos) {
  199. tmp.emplace(std::move(e));
  200. }
  201. }
  202. }
  203. imatrix_data = std::move(tmp);
  204. }
  205. if (!imatrix_data.empty()) {
  206. printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
  207. }
  208. return m_last_call;
  209. }
  210. static ggml_type parse_ggml_type(const char * arg) {
  211. ggml_type result = GGML_TYPE_COUNT;
  212. for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
  213. auto type = ggml_type(j);
  214. const auto * name = ggml_type_name(type);
  215. if (name && strcmp(arg, name) == 0) {
  216. result = type; break;
  217. }
  218. }
  219. return result;
  220. }
  221. int main(int argc, char ** argv) {
  222. if (argc < 3) {
  223. usage(argv[0]);
  224. }
  225. llama_model_quantize_params params = llama_model_quantize_default_params();
  226. int arg_idx = 1;
  227. std::string imatrix_file;
  228. std::vector<std::string> included_weights, excluded_weights;
  229. std::vector<llama_model_kv_override> kv_overrides;
  230. for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
  231. if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
  232. params.quantize_output_tensor = false;
  233. } else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
  234. if (arg_idx < argc-1) {
  235. params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
  236. } else {
  237. usage(argv[0]);
  238. }
  239. } else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
  240. if (arg_idx < argc-1) {
  241. params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
  242. } else {
  243. usage(argv[0]);
  244. }
  245. } else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
  246. if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
  247. usage(argv[0]);
  248. }
  249. } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
  250. params.allow_requantize = true;
  251. } else if (strcmp(argv[arg_idx], "--pure") == 0) {
  252. params.pure = true;
  253. } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
  254. if (arg_idx < argc-1) {
  255. imatrix_file = argv[++arg_idx];
  256. } else {
  257. usage(argv[0]);
  258. }
  259. } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
  260. if (arg_idx < argc-1) {
  261. included_weights.emplace_back(argv[++arg_idx]);
  262. } else {
  263. usage(argv[0]);
  264. }
  265. } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
  266. if (arg_idx < argc-1) {
  267. excluded_weights.emplace_back(argv[++arg_idx]);
  268. } else {
  269. usage(argv[0]);
  270. }
  271. } else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
  272. params.keep_split = true;
  273. } else {
  274. usage(argv[0]);
  275. }
  276. }
  277. if (argc - arg_idx < 2) {
  278. printf("%s: bad arguments\n", argv[0]);
  279. usage(argv[0]);
  280. }
  281. if (!included_weights.empty() && !excluded_weights.empty()) {
  282. usage(argv[0]);
  283. }
  284. std::string imatrix_dataset;
  285. std::unordered_map<std::string, std::vector<float>> imatrix_data;
  286. int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
  287. if (!imatrix_data.empty()) {
  288. params.imatrix = &imatrix_data;
  289. {
  290. llama_model_kv_override kvo;
  291. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
  292. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  293. strncpy(kvo.val_str, imatrix_file.c_str(), 127);
  294. kvo.val_str[127] = '\0';
  295. kv_overrides.emplace_back(std::move(kvo));
  296. }
  297. if (!imatrix_dataset.empty()) {
  298. llama_model_kv_override kvo;
  299. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
  300. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  301. strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
  302. kvo.val_str[127] = '\0';
  303. kv_overrides.emplace_back(std::move(kvo));
  304. }
  305. {
  306. llama_model_kv_override kvo;
  307. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
  308. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  309. kvo.val_i64 = imatrix_data.size();
  310. kv_overrides.emplace_back(std::move(kvo));
  311. }
  312. if (m_last_call > 0) {
  313. llama_model_kv_override kvo;
  314. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
  315. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  316. kvo.val_i64 = m_last_call;
  317. kv_overrides.emplace_back(std::move(kvo));
  318. }
  319. }
  320. if (!kv_overrides.empty()) {
  321. kv_overrides.emplace_back();
  322. kv_overrides.back().key[0] = 0;
  323. params.kv_overrides = &kv_overrides;
  324. }
  325. llama_backend_init();
  326. // parse command line arguments
  327. const std::string fname_inp = argv[arg_idx];
  328. arg_idx++;
  329. std::string fname_out;
  330. std::string ftype_str;
  331. std::string suffix = ".gguf";
  332. if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
  333. std::string fpath;
  334. const size_t pos = fname_inp.find_last_of("/\\");
  335. if (pos != std::string::npos) {
  336. fpath = fname_inp.substr(0, pos + 1);
  337. }
  338. // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
  339. fname_out = fpath + "ggml-model-" + ftype_str;
  340. if (!params.keep_split) {
  341. fname_out += suffix;
  342. }
  343. arg_idx++;
  344. if (ftype_str == "COPY") {
  345. params.only_copy = true;
  346. }
  347. } else {
  348. fname_out = argv[arg_idx];
  349. if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
  350. fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
  351. }
  352. arg_idx++;
  353. if (argc <= arg_idx) {
  354. fprintf(stderr, "%s: missing ftype\n", __func__);
  355. return 1;
  356. }
  357. if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
  358. fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
  359. return 1;
  360. }
  361. if (ftype_str == "COPY") {
  362. params.only_copy = true;
  363. }
  364. arg_idx++;
  365. }
  366. // parse nthreads
  367. if (argc > arg_idx) {
  368. try {
  369. params.nthread = std::stoi(argv[arg_idx]);
  370. }
  371. catch (const std::exception & e) {
  372. fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
  373. return 1;
  374. }
  375. }
  376. if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
  377. params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
  378. params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
  379. params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  380. params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
  381. fprintf(stderr, "\n==========================================================================================================\n");
  382. fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
  383. fprintf(stderr, "==========================================================================================================\n\n\n");
  384. return 1;
  385. }
  386. print_build_info();
  387. fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
  388. if (params.nthread > 0) {
  389. fprintf(stderr, " using %d threads", params.nthread);
  390. }
  391. fprintf(stderr, "\n");
  392. const int64_t t_main_start_us = llama_time_us();
  393. int64_t t_quantize_us = 0;
  394. // load the model
  395. {
  396. const int64_t t_start_us = llama_time_us();
  397. if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
  398. fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
  399. return 1;
  400. }
  401. t_quantize_us = llama_time_us() - t_start_us;
  402. }
  403. // report timing
  404. {
  405. const int64_t t_main_end_us = llama_time_us();
  406. printf("\n");
  407. printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
  408. printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
  409. }
  410. llama_backend_free();
  411. return 0;
  412. }