tensor_mapping.py 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. ),
  31. # Token type embeddings
  32. MODEL_TENSOR.TOKEN_TYPES: (
  33. "embeddings.token_type_embeddings", # bert nomic-bert
  34. ),
  35. # Normalization of token embeddings
  36. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  37. "word_embeddings_layernorm", # bloom
  38. "embeddings.LayerNorm", # bert
  39. "emb_ln", # nomic-bert
  40. "transformer.norm", # openelm
  41. "rwkv.blocks.0.pre_ln", # rwkv
  42. "rwkv.blocks.0.pre_ln", # rwkv6
  43. "model.pre_ln", # rwkv7
  44. "model.layers.0.pre_norm", # rwkv7
  45. "backbone.norm", # wavtokenizer
  46. ),
  47. # Position embeddings
  48. MODEL_TENSOR.POS_EMBD: (
  49. "transformer.wpe", # gpt2
  50. "embeddings.position_embeddings", # bert
  51. "wpe", # gpt2
  52. ),
  53. # Output
  54. MODEL_TENSOR.OUTPUT: (
  55. "embed_out", # gptneox
  56. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  57. "output", # llama-pth bloom internlm2
  58. "word_embeddings_for_head", # persimmon
  59. "lm_head.linear", # phi2
  60. "output_layer", # chatglm
  61. "head", # rwkv
  62. "head.out", # wavtokenizer
  63. "lm_head", # llama4
  64. ),
  65. # Output norm
  66. MODEL_TENSOR.OUTPUT_NORM: (
  67. "gpt_neox.final_layer_norm", # gptneox
  68. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  69. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  70. "norm", # llama-pth
  71. "transformer.norm_f", # mpt dbrx
  72. "ln_f", # refact bloom qwen gpt2
  73. "language_model.encoder.final_layernorm", # persimmon
  74. "model.final_layernorm", # persimmon
  75. "lm_head.ln", # phi2
  76. "model.norm_f", # mamba-qbert
  77. "backbone.norm_f", # mamba
  78. "transformer.rms_norm", # Grok
  79. "encoder.final_layernorm", # chatglm
  80. "transformer.norm", # openelm
  81. "model.norm", # nemotron
  82. "rwkv.ln_out", # rwkv6
  83. "model.ln_out", # rwkv7
  84. "backbone.final_layer_norm", # wavtokenizer
  85. "model.norm", # llama4
  86. ),
  87. # Rope frequencies
  88. MODEL_TENSOR.ROPE_FREQS: (
  89. "rope.freqs", # llama-pth
  90. "rotary_pos_emb.inv_freq", # chatglm
  91. ),
  92. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  93. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  94. MODEL_TENSOR.CONV1D: (
  95. "backbone.embed", # roberta
  96. ),
  97. }
  98. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  99. # Attention norm
  100. MODEL_TENSOR.ATTN_NORM: (
  101. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  102. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  103. "transformer.blocks.{bid}.norm_1", # mpt
  104. "transformer.h.{bid}.input_layernorm", # falcon7b
  105. "h.{bid}.input_layernorm", # bloom
  106. "transformer.h.{bid}.ln_mlp", # falcon40b
  107. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  108. "layers.{bid}.attention_norm", # llama-pth
  109. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  110. "model.layers.{bid}.ln1", # yi
  111. "h.{bid}.ln_1", # gpt2
  112. "transformer.h.{bid}.ln", # phi2
  113. "model.layers.layers.{bid}.norm", # plamo
  114. "model.layers.{bid}.attention_norm", # internlm2
  115. "model.layers.{bid}.norm", # mamba-qbert
  116. "backbone.layers.{bid}.norm", # mamba
  117. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  118. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  119. "encoder.layers.{bid}.input_layernorm", # chatglm
  120. "transformer.layers.{bid}.attn_norm", # openelm
  121. "rwkv.blocks.{bid}.ln1", # rwkv6
  122. "model.layers.{bid}.ln1", # rwkv7
  123. "model.layers.{bid}.input_layernorm", # llama4
  124. ),
  125. # Attention norm 2
  126. MODEL_TENSOR.ATTN_NORM_2: (
  127. "transformer.h.{bid}.ln_attn", # falcon40b
  128. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  129. "rwkv.blocks.{bid}.ln2", # rwkv6
  130. "model.layers.{bid}.ln2", # rwkv7
  131. ),
  132. # Attention query-key-value
  133. MODEL_TENSOR.ATTN_QKV: (
  134. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  135. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  136. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  137. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  138. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  139. "h.{bid}.self_attention.query_key_value", # bloom
  140. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  141. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  142. "h.{bid}.attn.c_attn", # gpt2
  143. "transformer.h.{bid}.mixer.Wqkv", # phi2
  144. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  145. "encoder.layers.{bid}.mixer.Wqkv", # jina
  146. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  147. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  148. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  149. ),
  150. # Attention query
  151. MODEL_TENSOR.ATTN_Q: (
  152. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  153. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  154. "layers.{bid}.attention.wq", # llama-pth
  155. "encoder.layer.{bid}.attention.self.query", # bert
  156. "transformer.layer.{bid}.attention.q_lin", # distillbert
  157. "transformer.h.{bid}.attn.q_proj", # gpt-j
  158. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  159. "model.layers.{bid}.attention.wq", # internlm2
  160. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  161. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  162. "model.layers.{bid}.self_attn.q_proj", # llama4
  163. ),
  164. # Attention key
  165. MODEL_TENSOR.ATTN_K: (
  166. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  167. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  168. "layers.{bid}.attention.wk", # llama-pth
  169. "encoder.layer.{bid}.attention.self.key", # bert
  170. "transformer.layer.{bid}.attention.k_lin", # distillbert
  171. "transformer.h.{bid}.attn.k_proj", # gpt-j
  172. "transformer.h.{bid}.attn.k", # refact
  173. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  174. "model.layers.{bid}.attention.wk", # internlm2
  175. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  176. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  177. "model.layers.{bid}.self_attn.k_proj", # llama4
  178. ),
  179. # Attention value
  180. MODEL_TENSOR.ATTN_V: (
  181. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  182. "layers.{bid}.attention.wv", # llama-pth
  183. "encoder.layer.{bid}.attention.self.value", # bert
  184. "transformer.layer.{bid}.attention.v_lin", # distillbert
  185. "transformer.h.{bid}.attn.v_proj", # gpt-j
  186. "transformer.h.{bid}.attn.v", # refact
  187. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  188. "model.layers.{bid}.attention.wv", # internlm2
  189. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  190. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  191. "model.layers.{bid}.self_attn.v_proj", # llama4
  192. ),
  193. # Attention output
  194. MODEL_TENSOR.ATTN_OUT: (
  195. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  196. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  197. "transformer.blocks.{bid}.attn.out_proj", # mpt
  198. "transformer.h.{bid}.self_attention.dense", # falcon
  199. "h.{bid}.self_attention.dense", # bloom
  200. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  201. "model.layers.{bid}.self_attn.linear_attn", # deci
  202. "layers.{bid}.attention.wo", # llama-pth
  203. "encoder.layer.{bid}.attention.output.dense", # bert
  204. "transformer.layer.{bid}.attention.out_lin", # distillbert
  205. "transformer.h.{bid}.attn.out_proj", # gpt-j
  206. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  207. "model.layers.{bid}.self_attn.dense", # persimmon
  208. "h.{bid}.attn.c_proj", # gpt2
  209. "transformer.h.{bid}.mixer.out_proj", # phi2
  210. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  211. "model.layers.{bid}.attention.wo", # internlm2
  212. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  213. "encoder.layers.{bid}.mixer.out_proj", # jina
  214. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  215. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  216. "encoder.layers.{bid}.self_attention.dense", # chatglm
  217. "transformer.layers.{bid}.attn.out_proj", # openelm
  218. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  219. "model.layers.{bid}.self_attn.o_proj", # llama4
  220. ),
  221. # Attention output norm
  222. MODEL_TENSOR.ATTN_OUT_NORM: (
  223. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  224. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  225. "encoder.layers.{bid}.norm1", # nomic-bert
  226. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  227. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  228. ),
  229. MODEL_TENSOR.ATTN_POST_NORM: (
  230. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  231. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  232. ),
  233. # Rotary embeddings
  234. MODEL_TENSOR.ATTN_ROT_EMBD: (
  235. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  236. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  237. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  238. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  239. ),
  240. # Feed-forward norm
  241. MODEL_TENSOR.FFN_NORM: (
  242. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  243. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  244. "h.{bid}.post_attention_layernorm", # bloom
  245. "transformer.blocks.{bid}.norm_2", # mpt
  246. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  247. "layers.{bid}.ffn_norm", # llama-pth
  248. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  249. "model.layers.{bid}.ln2", # yi
  250. "h.{bid}.ln_2", # gpt2
  251. "model.layers.{bid}.ffn_norm", # internlm2
  252. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  253. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  254. "transformer.layers.{bid}.ffn_norm", # openelm
  255. "model.layers.{bid}.post_attention_layernorm", # llama4
  256. ),
  257. # Post feed-forward norm
  258. MODEL_TENSOR.FFN_PRE_NORM: (
  259. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  260. ),
  261. # Post feed-forward norm
  262. MODEL_TENSOR.FFN_POST_NORM: (
  263. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  264. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  265. ),
  266. MODEL_TENSOR.FFN_GATE_INP: (
  267. "layers.{bid}.feed_forward.gate", # mixtral
  268. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  269. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  270. "transformer.decoder_layer.{bid}.router", # Grok
  271. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  272. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  273. "model.layers.{bid}.feed_forward.router", # llama4
  274. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  275. ),
  276. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  277. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  278. ),
  279. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  280. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
  281. ),
  282. # Feed-forward up
  283. MODEL_TENSOR.FFN_UP: (
  284. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  285. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  286. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  287. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  288. "h.{bid}.mlp.dense_h_to_4h", # bloom
  289. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  290. "layers.{bid}.feed_forward.w3", # llama-pth
  291. "encoder.layer.{bid}.intermediate.dense", # bert
  292. "transformer.layer.{bid}.ffn.lin1", # distillbert
  293. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  294. "transformer.h.{bid}.mlp.linear_3", # refact
  295. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  296. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  297. "transformer.h.{bid}.mlp.w1", # qwen
  298. "h.{bid}.mlp.c_fc", # gpt2
  299. "transformer.h.{bid}.mlp.fc1", # phi2
  300. "model.layers.{bid}.mlp.fc1", # phi2
  301. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  302. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  303. "model.layers.{bid}.feed_forward.w3", # internlm2
  304. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  305. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  306. "model.layers.{bid}.mlp.c_fc", # starcoder2
  307. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  308. "model.layers.{bid}.residual_mlp.w3", # arctic
  309. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  310. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  311. "model.layers.{bid}.feed_forward.up_proj", # llama4
  312. ),
  313. MODEL_TENSOR.FFN_UP_EXP: (
  314. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  315. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  316. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  317. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  318. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  319. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  320. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  321. ),
  322. MODEL_TENSOR.FFN_UP_SHEXP: (
  323. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  324. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  325. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  326. ),
  327. # AWQ-activation gate
  328. MODEL_TENSOR.FFN_ACT: (
  329. "transformer.blocks.{bid}.ffn.act", # mpt
  330. ),
  331. # Feed-forward gate
  332. MODEL_TENSOR.FFN_GATE: (
  333. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  334. "layers.{bid}.feed_forward.w1", # llama-pth
  335. "transformer.h.{bid}.mlp.w2", # qwen
  336. "transformer.h.{bid}.mlp.c_fc2", # jais
  337. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  338. "model.layers.{bid}.feed_forward.w1", # internlm2
  339. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  340. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  341. "transformer.h.{bid}.mlp.linear_1", # refact
  342. "model.layers.{bid}.residual_mlp.w1", # arctic
  343. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  344. "model.layers.{bid}.feed_forward.gate_proj", # llama4
  345. ),
  346. MODEL_TENSOR.FFN_GATE_EXP: (
  347. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  348. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  349. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  350. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  351. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  352. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  353. ),
  354. MODEL_TENSOR.FFN_GATE_SHEXP: (
  355. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  356. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  357. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  358. ),
  359. # Feed-forward down
  360. MODEL_TENSOR.FFN_DOWN: (
  361. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  362. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  363. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  364. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  365. "h.{bid}.mlp.dense_4h_to_h", # bloom
  366. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  367. "layers.{bid}.feed_forward.w2", # llama-pth
  368. "encoder.layer.{bid}.output.dense", # bert
  369. "transformer.layer.{bid}.ffn.lin2", # distillbert
  370. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  371. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  372. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  373. "h.{bid}.mlp.c_proj", # gpt2
  374. "transformer.h.{bid}.mlp.fc2", # phi2
  375. "model.layers.{bid}.mlp.fc2", # phi2
  376. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  377. "model.layers.{bid}.feed_forward.w2", # internlm2
  378. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  379. "model.layers.{bid}.mlp.c_proj", # starcoder2
  380. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  381. "transformer.layers.{bid}.ffn.proj_2", # openelm
  382. "model.layers.{bid}.residual_mlp.w2", # arctic
  383. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  384. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  385. "model.layers.h.{bid}.mlp.c_proj", # exaone
  386. "model.layers.{bid}.feed_forward.down_proj", # llama4
  387. ),
  388. MODEL_TENSOR.FFN_DOWN_EXP: (
  389. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  390. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  391. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  392. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  393. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  394. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  395. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  396. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  397. ),
  398. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  399. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  400. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  401. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  402. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  403. ),
  404. MODEL_TENSOR.ATTN_Q_NORM: (
  405. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  406. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  407. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  408. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  409. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  410. "transformer.layers.{bid}.attn.q_norm", # openelm
  411. ),
  412. MODEL_TENSOR.ATTN_K_NORM: (
  413. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  414. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  415. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  416. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  417. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  418. "transformer.layers.{bid}.attn.k_norm", # openelm
  419. ),
  420. MODEL_TENSOR.ROPE_FREQS: (
  421. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  422. ),
  423. MODEL_TENSOR.LAYER_OUT_NORM: (
  424. "encoder.layer.{bid}.output.LayerNorm", # bert
  425. "transformer.layer.{bid}.output_layer_norm", # distillbert
  426. "encoder.layers.{bid}.norm2", # nomic-bert
  427. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  428. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  429. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  430. ),
  431. MODEL_TENSOR.SSM_IN: (
  432. "model.layers.{bid}.in_proj",
  433. "backbone.layers.{bid}.mixer.in_proj",
  434. ),
  435. MODEL_TENSOR.SSM_CONV1D: (
  436. "model.layers.{bid}.conv1d",
  437. "backbone.layers.{bid}.mixer.conv1d",
  438. ),
  439. MODEL_TENSOR.SSM_X: (
  440. "model.layers.{bid}.x_proj",
  441. "backbone.layers.{bid}.mixer.x_proj",
  442. ),
  443. MODEL_TENSOR.SSM_DT: (
  444. "model.layers.{bid}.dt_proj",
  445. "backbone.layers.{bid}.mixer.dt_proj",
  446. ),
  447. MODEL_TENSOR.SSM_A: (
  448. "model.layers.{bid}.A_log",
  449. "backbone.layers.{bid}.mixer.A_log",
  450. ),
  451. MODEL_TENSOR.SSM_D: (
  452. "model.layers.{bid}.D",
  453. "backbone.layers.{bid}.mixer.D",
  454. ),
  455. MODEL_TENSOR.SSM_OUT: (
  456. "model.layers.{bid}.out_proj",
  457. "backbone.layers.{bid}.mixer.out_proj",
  458. ),
  459. MODEL_TENSOR.TIME_MIX_W0: (
  460. "model.layers.{bid}.attention.w0", # rwkv7
  461. ),
  462. MODEL_TENSOR.TIME_MIX_W1: (
  463. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  464. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  465. "model.layers.{bid}.attention.w1", # rwkv7
  466. ),
  467. MODEL_TENSOR.TIME_MIX_W2: (
  468. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  469. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  470. "model.layers.{bid}.attention.w2", # rwkv7
  471. ),
  472. MODEL_TENSOR.TIME_MIX_A0: (
  473. "model.layers.{bid}.attention.a0", # rwkv7
  474. ),
  475. MODEL_TENSOR.TIME_MIX_A1: (
  476. "model.layers.{bid}.attention.a1", # rwkv7
  477. ),
  478. MODEL_TENSOR.TIME_MIX_A2: (
  479. "model.layers.{bid}.attention.a2", # rwkv7
  480. ),
  481. MODEL_TENSOR.TIME_MIX_V0: (
  482. "model.layers.{bid}.attention.v0", # rwkv7
  483. ),
  484. MODEL_TENSOR.TIME_MIX_V1: (
  485. "model.layers.{bid}.attention.v1", # rwkv7
  486. ),
  487. MODEL_TENSOR.TIME_MIX_V2: (
  488. "model.layers.{bid}.attention.v2", # rwkv7
  489. ),
  490. MODEL_TENSOR.TIME_MIX_G1: (
  491. "model.layers.{bid}.attention.g1", # rwkv7
  492. ),
  493. MODEL_TENSOR.TIME_MIX_G2: (
  494. "model.layers.{bid}.attention.g2", # rwkv7
  495. ),
  496. MODEL_TENSOR.TIME_MIX_K_K: (
  497. "model.layers.{bid}.attention.k_k", # rwkv7
  498. ),
  499. MODEL_TENSOR.TIME_MIX_K_A: (
  500. "model.layers.{bid}.attention.k_a", # rwkv7
  501. ),
  502. MODEL_TENSOR.TIME_MIX_R_K: (
  503. "model.layers.{bid}.attention.r_k", # rwkv7
  504. ),
  505. MODEL_TENSOR.TIME_MIX_LERP_X: (
  506. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  507. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  508. ),
  509. MODEL_TENSOR.TIME_MIX_LERP_K: (
  510. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  511. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  512. ),
  513. MODEL_TENSOR.TIME_MIX_LERP_V: (
  514. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  515. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  516. ),
  517. MODEL_TENSOR.TIME_MIX_LERP_R: (
  518. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  519. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  520. ),
  521. MODEL_TENSOR.TIME_MIX_LERP_G: (
  522. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  523. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  524. ),
  525. MODEL_TENSOR.TIME_MIX_LERP_W: (
  526. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  527. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  528. ),
  529. MODEL_TENSOR.TIME_MIX_FIRST: (
  530. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  531. ),
  532. MODEL_TENSOR.TIME_MIX_DECAY: (
  533. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  534. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  535. ),
  536. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  537. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  538. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  539. ),
  540. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  541. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  542. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  543. ),
  544. MODEL_TENSOR.TIME_MIX_KEY: (
  545. "rwkv.blocks.{bid}.attention.key", # rwkv6
  546. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  547. "model.layers.{bid}.attention.key", # rwkv7
  548. "model.layers.{bid}.attention.k_proj", # rwkv7
  549. ),
  550. MODEL_TENSOR.TIME_MIX_VALUE: (
  551. "rwkv.blocks.{bid}.attention.value", # rwkv6
  552. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  553. "model.layers.{bid}.attention.value", # rwkv7
  554. "model.layers.{bid}.attention.v_proj", # rwkv7
  555. ),
  556. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  557. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  558. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  559. "model.layers.{bid}.attention.receptance", # rwkv7
  560. "model.layers.{bid}.attention.r_proj", # rwkv7
  561. ),
  562. MODEL_TENSOR.TIME_MIX_GATE: (
  563. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  564. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  565. ),
  566. MODEL_TENSOR.TIME_MIX_LN: (
  567. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  568. "model.layers.{bid}.attention.ln_x" # rwkv7
  569. ),
  570. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  571. "rwkv.blocks.{bid}.attention.output", # rwkv6
  572. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  573. "model.layers.{bid}.attention.output", # rwkv7
  574. "model.layers.{bid}.attention.o_proj", # rwkv7
  575. ),
  576. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  577. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  578. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  579. ),
  580. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  581. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  582. ),
  583. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  584. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  585. "model.layers.{bid}.feed_forward.key", # rwkv7
  586. ),
  587. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  588. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  589. ),
  590. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  591. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  592. "model.layers.{bid}.feed_forward.value", # rwkv7
  593. ),
  594. MODEL_TENSOR.ATTN_Q_A: (
  595. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  596. ),
  597. MODEL_TENSOR.ATTN_Q_B: (
  598. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  599. ),
  600. MODEL_TENSOR.ATTN_KV_A_MQA: (
  601. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  602. ),
  603. MODEL_TENSOR.ATTN_KV_B: (
  604. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  605. ),
  606. MODEL_TENSOR.ATTN_K_B: (
  607. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  608. ),
  609. MODEL_TENSOR.ATTN_V_B: (
  610. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  611. ),
  612. MODEL_TENSOR.ATTN_Q_A_NORM: (
  613. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  614. ),
  615. MODEL_TENSOR.ATTN_KV_A_NORM: (
  616. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  617. ),
  618. MODEL_TENSOR.ATTN_SUB_NORM: (
  619. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  620. ),
  621. MODEL_TENSOR.FFN_SUB_NORM: (
  622. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  623. ),
  624. MODEL_TENSOR.DEC_ATTN_NORM: (
  625. "decoder.block.{bid}.layer.0.layer_norm", # t5
  626. ),
  627. MODEL_TENSOR.DEC_ATTN_Q: (
  628. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  629. ),
  630. MODEL_TENSOR.DEC_ATTN_K: (
  631. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  632. ),
  633. MODEL_TENSOR.DEC_ATTN_V: (
  634. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  635. ),
  636. MODEL_TENSOR.DEC_ATTN_OUT: (
  637. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  638. ),
  639. MODEL_TENSOR.DEC_ATTN_REL_B: (
  640. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  641. ),
  642. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  643. "decoder.block.{bid}.layer.1.layer_norm", # t5
  644. ),
  645. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  646. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  647. ),
  648. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  649. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  650. ),
  651. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  652. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  653. ),
  654. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  655. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  656. ),
  657. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  658. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  659. ),
  660. MODEL_TENSOR.DEC_FFN_NORM: (
  661. "decoder.block.{bid}.layer.2.layer_norm", # t5
  662. ),
  663. MODEL_TENSOR.DEC_FFN_GATE: (
  664. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  665. ),
  666. MODEL_TENSOR.DEC_FFN_UP: (
  667. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  668. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  669. ),
  670. MODEL_TENSOR.DEC_FFN_DOWN: (
  671. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  672. ),
  673. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  674. "decoder.final_layer_norm", # t5
  675. ),
  676. MODEL_TENSOR.ENC_ATTN_NORM: (
  677. "encoder.block.{bid}.layer.0.layer_norm", # t5
  678. ),
  679. MODEL_TENSOR.ENC_ATTN_Q: (
  680. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  681. ),
  682. MODEL_TENSOR.ENC_ATTN_K: (
  683. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  684. ),
  685. MODEL_TENSOR.ENC_ATTN_V: (
  686. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  687. ),
  688. MODEL_TENSOR.ENC_ATTN_OUT: (
  689. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  690. ),
  691. MODEL_TENSOR.ENC_ATTN_REL_B: (
  692. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  693. ),
  694. MODEL_TENSOR.ENC_FFN_NORM: (
  695. "encoder.block.{bid}.layer.1.layer_norm", # t5
  696. ),
  697. MODEL_TENSOR.ENC_FFN_GATE: (
  698. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  699. ),
  700. MODEL_TENSOR.ENC_FFN_UP: (
  701. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  702. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  703. ),
  704. MODEL_TENSOR.ENC_FFN_DOWN: (
  705. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  706. ),
  707. ############################################################################
  708. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  709. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  710. "encoder.final_layer_norm", # t5
  711. ),
  712. MODEL_TENSOR.CLS: (
  713. "classifier", # jina
  714. "classifier.dense", # roberta
  715. "pre_classifier", # distillbert
  716. ),
  717. MODEL_TENSOR.CLS_OUT: (
  718. "classifier.out_proj", # roberta
  719. ),
  720. #############################################################################
  721. MODEL_TENSOR.CONVNEXT_DW: (
  722. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  723. ),
  724. MODEL_TENSOR.CONVNEXT_NORM: (
  725. "backbone.convnext.{bid}.norm", # wavtokenizer
  726. ),
  727. MODEL_TENSOR.CONVNEXT_PW1: (
  728. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  729. ),
  730. MODEL_TENSOR.CONVNEXT_PW2: (
  731. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  732. ),
  733. MODEL_TENSOR.CONVNEXT_GAMMA: (
  734. "backbone.convnext.{bid}.gamma", # wavtokenizer
  735. ),
  736. MODEL_TENSOR.POSNET_CONV1: (
  737. "backbone.posnet.{bid}.conv1", # wavtokenizer
  738. ),
  739. MODEL_TENSOR.POSNET_CONV2: (
  740. "backbone.posnet.{bid}.conv2", # wavtokenizer
  741. ),
  742. MODEL_TENSOR.POSNET_NORM: (
  743. "backbone.posnet.{bid}.norm", # wavtokenizer
  744. ),
  745. MODEL_TENSOR.POSNET_NORM1: (
  746. "backbone.posnet.{bid}.norm1", # wavtokenizer
  747. ),
  748. MODEL_TENSOR.POSNET_NORM2: (
  749. "backbone.posnet.{bid}.norm2", # wavtokenizer
  750. ),
  751. MODEL_TENSOR.POSNET_ATTN_NORM: (
  752. "backbone.posnet.{bid}.norm", # wavtokenizer
  753. ),
  754. MODEL_TENSOR.POSNET_ATTN_Q: (
  755. "backbone.posnet.{bid}.q", # wavtokenizer
  756. ),
  757. MODEL_TENSOR.POSNET_ATTN_K: (
  758. "backbone.posnet.{bid}.k", # wavtokenizer
  759. ),
  760. MODEL_TENSOR.POSNET_ATTN_V: (
  761. "backbone.posnet.{bid}.v", # wavtokenizer
  762. ),
  763. MODEL_TENSOR.POSNET_ATTN_OUT: (
  764. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  765. ),
  766. #############################################################################
  767. ## Vision encoder
  768. MODEL_TENSOR.V_MMPROJ: (
  769. "multi_modal_projector.linear_{bid}",
  770. "visual.merger.mlp.{bid}", # qwen2vl
  771. ),
  772. MODEL_TENSOR.V_MMPROJ_FC: (
  773. "model.connector.modality_projection.proj", # SmolVLM
  774. ),
  775. MODEL_TENSOR.V_MMPROJ_MLP: (
  776. "model.mm_projector.mlp.mlp.{bid}",
  777. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  778. "mlp1.{bid}", # InternVL
  779. ),
  780. MODEL_TENSOR.V_MMPROJ_PEG: (
  781. "model.mm_projector.peg.peg.{bid}",
  782. ),
  783. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  784. "vision_tower.vision_model.embeddings.class_embedding",
  785. "vision_model.class_embedding", # llama 4
  786. ),
  787. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  788. "vision_tower.vision_model.embeddings.patch_embedding",
  789. "vpm.embeddings.patch_embedding",
  790. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  791. "vision_tower.patch_conv", # pixtral
  792. "vision_model.patch_embedding.linear", # llama 4
  793. "visual.patch_embed.proj", # qwen2vl
  794. ),
  795. MODEL_TENSOR.V_ENC_EMBD_POS: (
  796. "vision_tower.vision_model.embeddings.position_embedding",
  797. "vpm.embeddings.position_embedding",
  798. "model.vision_model.embeddings.position_embedding", # SmolVLM
  799. "vision_model.positional_embedding_vlm", # llama 4
  800. ),
  801. MODEL_TENSOR.V_ENC_ATTN_Q: (
  802. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  803. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  804. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  805. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  806. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  807. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  808. ),
  809. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  810. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  811. ),
  812. MODEL_TENSOR.V_ENC_ATTN_K: (
  813. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  814. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  815. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  816. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  817. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  818. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  819. ),
  820. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  821. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  822. ),
  823. MODEL_TENSOR.V_ENC_ATTN_V: (
  824. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  825. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  826. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  827. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  828. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  829. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  830. ),
  831. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  832. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  833. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  834. "vpm.encoder.layers.{bid}.layer_norm1",
  835. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  836. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  837. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  838. "visual.blocks.{bid}.norm1", # qwen2vl
  839. ),
  840. MODEL_TENSOR.V_ENC_ATTN_O: (
  841. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  842. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  843. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  844. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  845. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  846. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  847. "visual.blocks.{bid}.attn.proj", # qwen2vl
  848. ),
  849. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  850. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  851. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  852. "vpm.encoder.layers.{bid}.layer_norm2",
  853. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  854. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  855. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  856. "visual.blocks.{bid}.norm2", # qwen2vl
  857. ),
  858. MODEL_TENSOR.V_ENC_FFN_UP: (
  859. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  860. "vpm.encoder.layers.{bid}.mlp.fc1",
  861. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  862. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  863. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  864. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  865. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  866. ),
  867. MODEL_TENSOR.V_ENC_FFN_GATE: (
  868. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  869. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  870. ),
  871. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  872. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  873. "vpm.encoder.layers.{bid}.mlp.fc2",
  874. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  875. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  876. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  877. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  878. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  879. ),
  880. MODEL_TENSOR.V_LAYER_SCALE_1: (
  881. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  882. ),
  883. MODEL_TENSOR.V_LAYER_SCALE_2: (
  884. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  885. ),
  886. MODEL_TENSOR.V_PRE_NORM: (
  887. "vision_tower.vision_model.pre_layrnorm",
  888. "vision_tower.ln_pre", # pixtral
  889. "vision_model.layernorm_pre", # llama4
  890. ),
  891. MODEL_TENSOR.V_POST_NORM: (
  892. "vision_tower.vision_model.post_layernorm",
  893. "model.vision_model.post_layernorm", # SmolVLM
  894. "vision_model.layernorm_post", # llama4
  895. "visual.merger.ln_q", # qwen2vl
  896. ),
  897. MODEL_TENSOR.V_MM_INP_PROJ: (
  898. "multi_modal_projector.mm_input_projection",
  899. ),
  900. MODEL_TENSOR.V_MM_INP_NORM: (
  901. "multi_modal_projector.norm",
  902. ),
  903. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  904. "multi_modal_projector.mm_soft_emb_norm",
  905. ),
  906. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  907. "resampler.pos_embed_k",
  908. ),
  909. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  910. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  911. ),
  912. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  913. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  914. ),
  915. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  916. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  917. ),
  918. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  919. "resampler.attn.out_proj",
  920. ),
  921. MODEL_TENSOR.V_RESMPL_KV: (
  922. "resampler.kv_proj",
  923. ),
  924. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  925. "resampler.ln_post",
  926. ),
  927. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  928. "resampler.ln_kv",
  929. ),
  930. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  931. "resampler.ln_q",
  932. ),
  933. MODEL_TENSOR.V_RESMPL_PROJ: (
  934. "resampler.proj",
  935. ),
  936. MODEL_TENSOR.V_RESMPL_QUERY: (
  937. "resampler.query",
  938. ),
  939. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  940. "v.token_embd.img_break", # for pixtral, this is a generated vector
  941. ),
  942. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  943. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  944. ),
  945. # audio (mtmd)
  946. MODEL_TENSOR.A_ENC_EMBD_POS: (
  947. "audio_tower.embed_positions", # ultravox
  948. ),
  949. MODEL_TENSOR.A_ENC_CONV1D: (
  950. "audio_tower.conv{bid}", # ultravox
  951. ),
  952. MODEL_TENSOR.A_PRE_NORM: (),
  953. MODEL_TENSOR.A_POST_NORM: (
  954. "audio_tower.layer_norm", # ultravox
  955. "audio_tower.ln_post", # qwen2omni
  956. ),
  957. MODEL_TENSOR.A_ENC_ATTN_Q: (
  958. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  959. ),
  960. MODEL_TENSOR.A_ENC_ATTN_K: (
  961. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  962. ),
  963. MODEL_TENSOR.A_ENC_ATTN_V: (
  964. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  965. ),
  966. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  967. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  968. ),
  969. MODEL_TENSOR.A_ENC_OUTPUT: (
  970. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  971. ),
  972. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  973. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  974. ),
  975. MODEL_TENSOR.A_ENC_FFN_UP: (
  976. "audio_tower.layers.{bid}.fc1", # ultravox
  977. ),
  978. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  979. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  980. "audio_tower.layers.{bid}.fc2", # ultravox
  981. ),
  982. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  983. # this prefix is added in the conversion code in modify_tensors()
  984. MODEL_TENSOR.A_MMPROJ: (
  985. "audio.multi_modal_projector.linear_{bid}", # ultravox
  986. ),
  987. MODEL_TENSOR.A_MMPROJ_FC: (
  988. "audio.multi_modal_projector.linear", # qwen2audio
  989. "audio_tower.proj", # qwen2omni
  990. ),
  991. MODEL_TENSOR.A_MM_NORM_PRE: (
  992. "audio.multi_modal_projector.ln_pre", # ultravox
  993. ),
  994. MODEL_TENSOR.A_MM_NORM_MID: (
  995. "audio.multi_modal_projector.ln_mid", # ultravox
  996. ),
  997. }
  998. # architecture-specific block mappings
  999. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1000. MODEL_ARCH.ARCTIC: {
  1001. MODEL_TENSOR.FFN_NORM: (
  1002. "model.layers.{bid}.residual_layernorm",
  1003. ),
  1004. MODEL_TENSOR.FFN_NORM_EXP: (
  1005. "model.layers.{bid}.post_attention_layernorm",
  1006. ),
  1007. },
  1008. }
  1009. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1010. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1011. self.mapping = {}
  1012. for tensor, keys in self.mappings_cfg.items():
  1013. if tensor not in MODEL_TENSORS[arch]:
  1014. continue
  1015. tensor_name = TENSOR_NAMES[tensor]
  1016. self.mapping[tensor_name] = (tensor, tensor_name)
  1017. for key in keys:
  1018. self.mapping[key] = (tensor, tensor_name)
  1019. if arch in self.arch_block_mappings_cfg:
  1020. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1021. for bid in range(n_blocks):
  1022. for tensor, keys in self.block_mappings_cfg.items():
  1023. if tensor not in MODEL_TENSORS[arch]:
  1024. continue
  1025. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1026. self.mapping[tensor_name] = (tensor, tensor_name)
  1027. for key in keys:
  1028. key = key.format(bid = bid)
  1029. self.mapping[key] = (tensor, tensor_name)
  1030. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1031. result = self.mapping.get(key)
  1032. if result is not None:
  1033. return result
  1034. for suffix in try_suffixes:
  1035. if key.endswith(suffix):
  1036. result = self.mapping.get(key[:-len(suffix)])
  1037. if result is not None:
  1038. return result[0], result[1] + suffix
  1039. return None
  1040. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1041. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1042. if result is None:
  1043. return None
  1044. return result[1]
  1045. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1046. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1047. if result is None:
  1048. return None
  1049. return result[0]
  1050. def __getitem__(self, key: str) -> str:
  1051. try:
  1052. return self.mapping[key][1]
  1053. except KeyError:
  1054. raise KeyError(key)
  1055. def __contains__(self, key: str) -> bool:
  1056. return key in self.mapping
  1057. def __repr__(self) -> str:
  1058. return repr(self.mapping)
  1059. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1060. return TensorNameMap(arch, n_blocks)