convert-hf-to-gguf.py 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. def _set_vocab_gpt2(self):
  181. dir_model = self.dir_model
  182. hparams = self.hparams
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  187. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. self.gguf_writer.add_tokenizer_model("gpt2")
  205. self.gguf_writer.add_token_list(tokens)
  206. self.gguf_writer.add_token_types(toktypes)
  207. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  208. special_vocab.add_to_gguf(self.gguf_writer)
  209. def _set_vocab_qwen(self):
  210. dir_model = self.dir_model
  211. hparams = self.hparams
  212. tokens: list[str] = []
  213. toktypes: list[int] = []
  214. from transformers import AutoTokenizer
  215. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  216. vocab_size = hparams["vocab_size"]
  217. assert max(tokenizer.get_vocab().values()) < vocab_size
  218. merges = []
  219. vocab = {}
  220. mergeable_ranks = tokenizer.mergeable_ranks
  221. for token, rank in mergeable_ranks.items():
  222. vocab[QwenModel.token_bytes_to_string(token)] = rank
  223. if len(token) == 1:
  224. continue
  225. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  226. assert len(merged) == 2
  227. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  228. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  229. added_vocab = tokenizer.special_tokens
  230. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  231. for i in range(vocab_size):
  232. if i not in reverse_vocab:
  233. tokens.append(f"[PAD{i}]")
  234. toktypes.append(gguf.TokenType.USER_DEFINED)
  235. elif reverse_vocab[i] in added_vocab:
  236. tokens.append(reverse_vocab[i])
  237. toktypes.append(gguf.TokenType.CONTROL)
  238. else:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.NORMAL)
  241. self.gguf_writer.add_tokenizer_model("gpt2")
  242. self.gguf_writer.add_token_list(tokens)
  243. self.gguf_writer.add_token_types(toktypes)
  244. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  245. special_vocab.merges = merges
  246. # only add special tokens when they were not already loaded from config.json
  247. if len(special_vocab.special_token_ids) == 0:
  248. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  249. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  250. # this one is usually not in config.json anyway
  251. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab.add_to_gguf(self.gguf_writer)
  253. def _set_vocab_sentencepiece(self):
  254. from sentencepiece import SentencePieceProcessor
  255. tokenizer_path = self.dir_model / 'tokenizer.model'
  256. tokens: list[bytes] = []
  257. scores: list[float] = []
  258. toktypes: list[int] = []
  259. if not tokenizer_path.is_file():
  260. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  261. sys.exit(1)
  262. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  263. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  264. for token_id in range(tokenizer.vocab_size()):
  265. piece = tokenizer.id_to_piece(token_id)
  266. text = piece.encode("utf-8")
  267. score = tokenizer.get_score(token_id)
  268. toktype = SentencePieceTokenTypes.NORMAL
  269. if tokenizer.is_unknown(token_id):
  270. toktype = SentencePieceTokenTypes.UNKNOWN
  271. elif tokenizer.is_control(token_id):
  272. toktype = SentencePieceTokenTypes.CONTROL
  273. elif tokenizer.is_unused(token_id):
  274. toktype = SentencePieceTokenTypes.UNUSED
  275. elif tokenizer.is_byte(token_id):
  276. toktype = SentencePieceTokenTypes.BYTE
  277. tokens.append(text)
  278. scores.append(score)
  279. toktypes.append(toktype)
  280. added_tokens_file = self.dir_model / 'added_tokens.json'
  281. if added_tokens_file.is_file():
  282. with open(added_tokens_file, "r", encoding="utf-8") as f:
  283. added_tokens_json = json.load(f)
  284. for key in added_tokens_json:
  285. key = key.encode("utf-8")
  286. if key not in tokens:
  287. tokens.append(key)
  288. scores.append(-1000.0)
  289. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  290. assert len(tokens) == vocab_size
  291. self.gguf_writer.add_tokenizer_model("llama")
  292. self.gguf_writer.add_token_list(tokens)
  293. self.gguf_writer.add_token_scores(scores)
  294. self.gguf_writer.add_token_types(toktypes)
  295. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  296. special_vocab.add_to_gguf(self.gguf_writer)
  297. def _set_vocab_llama_hf(self):
  298. vocab = LlamaHfVocab(self.dir_model)
  299. tokens = []
  300. scores = []
  301. toktypes = []
  302. for text, score, toktype in vocab.all_tokens():
  303. tokens.append(text)
  304. scores.append(score)
  305. toktypes.append(toktype)
  306. assert len(tokens) == vocab.vocab_size
  307. self.gguf_writer.add_tokenizer_model("llama")
  308. self.gguf_writer.add_token_list(tokens)
  309. self.gguf_writer.add_token_scores(scores)
  310. self.gguf_writer.add_token_types(toktypes)
  311. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  312. special_vocab.add_to_gguf(self.gguf_writer)
  313. @Model.register("GPTNeoXForCausalLM")
  314. class GPTNeoXModel(Model):
  315. model_arch = gguf.MODEL_ARCH.GPTNEOX
  316. def set_gguf_parameters(self):
  317. block_count = self.hparams["num_hidden_layers"]
  318. self.gguf_writer.add_name(self.dir_model.name)
  319. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  320. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  321. self.gguf_writer.add_block_count(block_count)
  322. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  323. self.gguf_writer.add_rope_dimension_count(
  324. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  325. )
  326. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  327. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  328. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  329. @Model.register("BloomForCausalLM")
  330. class BloomModel(Model):
  331. model_arch = gguf.MODEL_ARCH.BLOOM
  332. def set_gguf_parameters(self):
  333. self.gguf_writer.add_name("Bloom")
  334. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  335. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  336. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  337. self.gguf_writer.add_embedding_length(n_embed)
  338. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  339. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  340. self.gguf_writer.add_head_count(n_head)
  341. self.gguf_writer.add_head_count_kv(n_head)
  342. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  343. self.gguf_writer.add_file_type(self.ftype)
  344. def write_tensors(self):
  345. block_count = self.hparams["n_layer"]
  346. tensors = dict(self.get_tensors())
  347. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  348. has_lm_head = True
  349. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  350. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  351. for name, data_torch in tensors.items():
  352. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  353. has_lm_head = False
  354. name = re.sub(r'transformer\.', '', name)
  355. old_dtype = data_torch.dtype
  356. # convert any unsupported data types to float32
  357. if data_torch.dtype not in (torch.float16, torch.float32):
  358. data_torch = data_torch.to(torch.float32)
  359. data = data_torch.squeeze().numpy()
  360. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  361. # Map bloom-style qkv_linear to gpt-style qkv_linear
  362. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  363. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  364. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  365. data = np.concatenate(
  366. (
  367. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  368. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  369. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  370. ),
  371. axis=0,
  372. )
  373. print("re-format attention.linear_qkv.weight")
  374. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  375. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  376. data = np.concatenate(
  377. (
  378. qkv_bias[:, 0, :].reshape((n_embed,)),
  379. qkv_bias[:, 1, :].reshape((n_embed,)),
  380. qkv_bias[:, 2, :].reshape((n_embed,)),
  381. ),
  382. axis=0,
  383. )
  384. print("re-format attention.linear_qkv.bias")
  385. # map tensor names
  386. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  387. if new_name is None:
  388. print(f"Can not map tensor {name!r}")
  389. sys.exit()
  390. n_dims = len(data.shape)
  391. data_dtype = data.dtype
  392. # if f32 desired, convert any float16 to float32
  393. if self.ftype == 0 and data_dtype == np.float16:
  394. data = data.astype(np.float32)
  395. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  396. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  397. data = data.astype(np.float32)
  398. # if f16 desired, convert any float32 2-dim weight tensors to float16
  399. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  400. data = data.astype(np.float16)
  401. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  402. self.gguf_writer.add_tensor(new_name, data)
  403. if not has_lm_head and name == "word_embeddings.weight":
  404. self.gguf_writer.add_tensor("output.weight", data)
  405. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  406. @Model.register("MPTForCausalLM")
  407. class MPTModel(Model):
  408. model_arch = gguf.MODEL_ARCH.MPT
  409. def set_gguf_parameters(self):
  410. block_count = self.hparams["n_layers"]
  411. self.gguf_writer.add_name(self.dir_model.name)
  412. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  413. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  414. self.gguf_writer.add_block_count(block_count)
  415. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  416. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  417. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  418. self.gguf_writer.add_head_count_kv(kv_n_heads)
  419. self.gguf_writer.add_layer_norm_eps(1e-5)
  420. if self.hparams["attn_config"]["clip_qkv"] is not None:
  421. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  422. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  423. def write_tensors(self):
  424. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  425. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  426. for name, data_torch in self.get_tensors():
  427. # we don't need these
  428. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  429. continue
  430. old_dtype = data_torch.dtype
  431. # convert any unsupported data types to float32
  432. if data_torch.dtype not in (torch.float16, torch.float32):
  433. data_torch = data_torch.to(torch.float32)
  434. data = data_torch.squeeze().numpy()
  435. # map tensor names
  436. if "scales" in name:
  437. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  438. if new_name is not None:
  439. new_name = new_name.replace("scales", "act.scales")
  440. else:
  441. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  442. if new_name is None:
  443. print(f"Can not map tensor {name!r}")
  444. sys.exit()
  445. n_dims = len(data.shape)
  446. data_dtype = data.dtype
  447. # if f32 desired, convert any float16 to float32
  448. if self.ftype == 0 and data_dtype == np.float16:
  449. data = data.astype(np.float32)
  450. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  451. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  452. data = data.astype(np.float32)
  453. # if f16 desired, convert any float32 2-dim weight tensors to float16
  454. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  455. data = data.astype(np.float16)
  456. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  457. self.gguf_writer.add_tensor(new_name, data)
  458. @Model.register("OrionForCausalLM")
  459. class OrionModel(Model):
  460. model_arch = gguf.MODEL_ARCH.ORION
  461. def set_vocab(self):
  462. self._set_vocab_sentencepiece()
  463. def set_gguf_parameters(self):
  464. block_count = self.hparams["num_hidden_layers"]
  465. head_count = self.hparams["num_attention_heads"]
  466. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  467. hf_repo = self.hparams.get("_name_or_path", "")
  468. ctx_length = 0
  469. if "max_sequence_length" in self.hparams:
  470. ctx_length = self.hparams["max_sequence_length"]
  471. elif "max_position_embeddings" in self.hparams:
  472. ctx_length = self.hparams["max_position_embeddings"]
  473. elif "model_max_length" in self.hparams:
  474. ctx_length = self.hparams["model_max_length"]
  475. else:
  476. print("gguf: can not find ctx length parameter.")
  477. sys.exit()
  478. self.gguf_writer.add_file_type(self.ftype)
  479. self.gguf_writer.add_name(self.dir_model.name)
  480. self.gguf_writer.add_source_hf_repo(hf_repo)
  481. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  482. self.gguf_writer.add_context_length(ctx_length)
  483. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  484. self.gguf_writer.add_block_count(block_count)
  485. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  486. self.gguf_writer.add_head_count(head_count)
  487. self.gguf_writer.add_head_count_kv(head_count_kv)
  488. # note: config provides rms norm but it is actually layer norm
  489. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  490. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  491. def write_tensors(self):
  492. # Collect tensors from generator object
  493. model_kv = dict(self.get_tensors())
  494. block_count = self.hparams["num_hidden_layers"]
  495. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  496. for name, data_torch in model_kv.items():
  497. # we don't need these
  498. if name.endswith(".rotary_emb.inv_freq"):
  499. continue
  500. old_dtype = data_torch.dtype
  501. # convert any unsupported data types to float32
  502. if data_torch.dtype not in (torch.float16, torch.float32):
  503. data_torch = data_torch.to(torch.float32)
  504. data = data_torch.squeeze().numpy()
  505. # map tensor names
  506. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  507. if new_name is None:
  508. print(f"Can not map tensor {name!r}")
  509. sys.exit()
  510. n_dims = len(data.shape)
  511. data_dtype = data.dtype
  512. # if f32 desired, convert any float16 to float32
  513. if self.ftype == 0 and data_dtype == np.float16:
  514. data = data.astype(np.float32)
  515. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  516. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  517. data = data.astype(np.float32)
  518. # if f16 desired, convert any float32 2-dim weight tensors to float16
  519. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  520. data = data.astype(np.float16)
  521. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  522. self.gguf_writer.add_tensor(new_name, data)
  523. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  524. class BaichuanModel(Model):
  525. model_arch = gguf.MODEL_ARCH.BAICHUAN
  526. def set_vocab(self):
  527. self._set_vocab_sentencepiece()
  528. def set_gguf_parameters(self):
  529. block_count = self.hparams["num_hidden_layers"]
  530. head_count = self.hparams["num_attention_heads"]
  531. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  532. hf_repo = self.hparams.get("_name_or_path", "")
  533. ctx_length = 0
  534. if "max_sequence_length" in self.hparams:
  535. ctx_length = self.hparams["max_sequence_length"]
  536. elif "max_position_embeddings" in self.hparams:
  537. ctx_length = self.hparams["max_position_embeddings"]
  538. elif "model_max_length" in self.hparams:
  539. ctx_length = self.hparams["model_max_length"]
  540. else:
  541. print("gguf: can not find ctx length parameter.")
  542. sys.exit()
  543. self.gguf_writer.add_name(self.dir_model.name)
  544. self.gguf_writer.add_source_hf_repo(hf_repo)
  545. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  546. self.gguf_writer.add_context_length(ctx_length)
  547. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  548. self.gguf_writer.add_block_count(block_count)
  549. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  550. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  551. self.gguf_writer.add_head_count(head_count)
  552. self.gguf_writer.add_head_count_kv(head_count_kv)
  553. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  554. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  555. if self.hparams["rope_scaling"].get("type") == "linear":
  556. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  557. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  558. def write_tensors(self):
  559. # Collect tensors from generator object
  560. model_kv = dict(self.get_tensors())
  561. block_count = self.hparams["num_hidden_layers"]
  562. head_count = self.hparams["num_attention_heads"]
  563. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  564. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  565. for i in range(block_count):
  566. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  567. print(f"Unpacking and permuting layer {i}")
  568. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  569. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  570. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  571. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  572. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  573. self._reverse_hf_part(w, 2)
  574. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  575. for name, data_torch in model_kv.items():
  576. # we don't need these
  577. if name.endswith(".rotary_emb.inv_freq"):
  578. continue
  579. old_dtype = data_torch.dtype
  580. # convert any unsupported data types to float32
  581. if data_torch.dtype not in (torch.float16, torch.float32):
  582. data_torch = data_torch.to(torch.float32)
  583. data = data_torch.squeeze().numpy()
  584. # map tensor names
  585. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  586. if new_name is None:
  587. print(f"Can not map tensor {name!r}")
  588. sys.exit()
  589. n_dims = len(data.shape)
  590. data_dtype = data.dtype
  591. # if f32 desired, convert any float16 to float32
  592. if self.ftype == 0 and data_dtype == np.float16:
  593. data = data.astype(np.float32)
  594. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  595. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  596. data = data.astype(np.float32)
  597. # if f16 desired, convert any float32 2-dim weight tensors to float16
  598. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  599. data = data.astype(np.float16)
  600. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  601. self.gguf_writer.add_tensor(new_name, data)
  602. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  603. if n_kv_head is not None and n_head != n_kv_head:
  604. n_head //= n_kv_head
  605. return (
  606. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  607. .swapaxes(1, 2)
  608. .reshape(weights.shape)
  609. )
  610. def _reverse_hf_permute_part(
  611. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  612. ) -> Tensor:
  613. r = weights.shape[0] // 3
  614. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  615. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  616. r = weights.shape[0] // 3
  617. return weights[r * n_part:r * n_part + r, ...]
  618. @Model.register("XverseForCausalLM")
  619. class XverseModel(Model):
  620. model_arch = gguf.MODEL_ARCH.XVERSE
  621. def set_vocab(self):
  622. assert (self.dir_model / "tokenizer.json").is_file()
  623. dir_model = self.dir_model
  624. hparams = self.hparams
  625. tokens: list[bytearray] = []
  626. toktypes: list[int] = []
  627. from transformers import AutoTokenizer
  628. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  629. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  630. assert max(tokenizer.vocab.values()) < vocab_size
  631. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  632. added_vocab = tokenizer.get_added_vocab()
  633. for token_id in range(vocab_size):
  634. token_text = reverse_vocab[token_id].encode('utf-8')
  635. # replace "\x00" to string with length > 0
  636. if token_text == b"\x00":
  637. toktype = gguf.TokenType.BYTE # special
  638. token_text = f"<{token_text}>".encode('utf-8')
  639. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  640. toktype = gguf.TokenType.BYTE # special
  641. elif reverse_vocab[token_id] in added_vocab:
  642. if tokenizer.added_tokens_decoder[token_id].special:
  643. toktype = gguf.TokenType.CONTROL
  644. else:
  645. toktype = gguf.TokenType.USER_DEFINED
  646. else:
  647. toktype = gguf.TokenType.NORMAL
  648. tokens.append(token_text)
  649. toktypes.append(toktype)
  650. self.gguf_writer.add_tokenizer_model("llama")
  651. self.gguf_writer.add_token_list(tokens)
  652. self.gguf_writer.add_token_types(toktypes)
  653. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  654. special_vocab.add_to_gguf(self.gguf_writer)
  655. def set_gguf_parameters(self):
  656. block_count = self.hparams["num_hidden_layers"]
  657. head_count = self.hparams["num_attention_heads"]
  658. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  659. hf_repo = self.hparams.get("_name_or_path", "")
  660. ctx_length = 0
  661. if "max_sequence_length" in self.hparams:
  662. ctx_length = self.hparams["max_sequence_length"]
  663. elif "max_position_embeddings" in self.hparams:
  664. ctx_length = self.hparams["max_position_embeddings"]
  665. elif "model_max_length" in self.hparams:
  666. ctx_length = self.hparams["model_max_length"]
  667. else:
  668. print("gguf: can not find ctx length parameter.")
  669. sys.exit()
  670. self.gguf_writer.add_name(self.dir_model.name)
  671. self.gguf_writer.add_source_hf_repo(hf_repo)
  672. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  673. self.gguf_writer.add_context_length(ctx_length)
  674. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  675. self.gguf_writer.add_block_count(block_count)
  676. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  677. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  678. self.gguf_writer.add_head_count(head_count)
  679. self.gguf_writer.add_head_count_kv(head_count_kv)
  680. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  681. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  682. if self.hparams["rope_scaling"].get("type") == "linear":
  683. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  684. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  685. def write_tensors(self):
  686. # Collect tensors from generator object
  687. model_kv = dict(self.get_tensors())
  688. block_count = self.hparams["num_hidden_layers"]
  689. head_count = self.hparams["num_attention_heads"]
  690. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  691. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  692. for name, data_torch in model_kv.items():
  693. # we don't need these
  694. if name.endswith(".rotary_emb.inv_freq"):
  695. continue
  696. old_dtype = data_torch.dtype
  697. # convert any unsupported data types to float32
  698. if data_torch.dtype not in (torch.float16, torch.float32):
  699. data_torch = data_torch.to(torch.float32)
  700. # HF models permute some of the tensors, so we need to undo that
  701. if name.endswith(("q_proj.weight")):
  702. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  703. if name.endswith(("k_proj.weight")):
  704. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  705. data = data_torch.squeeze().numpy()
  706. # map tensor names
  707. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  708. if new_name is None:
  709. print(f"Can not map tensor {name!r}")
  710. sys.exit()
  711. n_dims = len(data.shape)
  712. data_dtype = data.dtype
  713. # if f32 desired, convert any float16 to float32
  714. if self.ftype == 0 and data_dtype == np.float16:
  715. data = data.astype(np.float32)
  716. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  717. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  718. data = data.astype(np.float32)
  719. # if f16 desired, convert any float32 2-dim weight tensors to float16
  720. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  721. data = data.astype(np.float16)
  722. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  723. self.gguf_writer.add_tensor(new_name, data)
  724. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  725. if n_kv_head is not None and n_head != n_kv_head:
  726. n_head //= n_kv_head
  727. return (
  728. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  729. .swapaxes(1, 2)
  730. .reshape(weights.shape)
  731. )
  732. @Model.register("FalconForCausalLM", "RWForCausalLM")
  733. class FalconModel(Model):
  734. model_arch = gguf.MODEL_ARCH.FALCON
  735. def set_gguf_parameters(self):
  736. block_count = self.hparams.get("num_hidden_layers")
  737. if block_count is None:
  738. block_count = self.hparams["n_layer"] # old name
  739. n_head = self.hparams.get("num_attention_heads")
  740. if n_head is None:
  741. n_head = self.hparams["n_head"] # old name
  742. n_head_kv = self.hparams.get("num_kv_heads")
  743. if n_head_kv is None:
  744. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  745. self.gguf_writer.add_name("Falcon")
  746. self.gguf_writer.add_context_length(2048) # not in config.json
  747. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  748. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  749. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  750. self.gguf_writer.add_block_count(block_count)
  751. self.gguf_writer.add_head_count(n_head)
  752. self.gguf_writer.add_head_count_kv(n_head_kv)
  753. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  754. self.gguf_writer.add_file_type(self.ftype)
  755. def write_tensors(self):
  756. block_count = self.hparams.get("num_hidden_layers")
  757. if block_count is None:
  758. block_count = self.hparams["n_layer"] # old name
  759. n_head = self.hparams.get("num_attention_heads")
  760. if n_head is None:
  761. n_head = self.hparams["n_head"] # old name
  762. n_head_kv = self.hparams.get("num_kv_heads")
  763. if n_head_kv is None:
  764. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  765. head_dim = self.hparams["hidden_size"] // n_head
  766. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  767. for name, data_torch in self.get_tensors():
  768. old_dtype = data_torch.dtype
  769. # convert any unsupported data types to float32
  770. if data_torch.dtype not in (torch.float16, torch.float32):
  771. data_torch = data_torch.to(torch.float32)
  772. # QKV tensor transform
  773. # The original query_key_value tensor contains n_head_kv "kv groups",
  774. # each consisting of n_head/n_head_kv query weights followed by one key
  775. # and one value weight (shared by all query heads in the kv group).
  776. # This layout makes it a big pain to work with in GGML.
  777. # So we rearrange them here,, so that we have n_head query weights
  778. # followed by n_head_kv key weights followed by n_head_kv value weights,
  779. # in contiguous fashion.
  780. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  781. if "query_key_value" in name:
  782. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  783. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  784. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  785. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  786. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  787. data = data_torch.squeeze().numpy()
  788. # map tensor names
  789. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  790. if new_name is None:
  791. print(f"Can not map tensor {name!r}")
  792. sys.exit()
  793. n_dims = len(data.shape)
  794. data_dtype = data.dtype
  795. # if f32 desired, convert any float16 to float32
  796. if self.ftype == 0 and data_dtype == np.float16:
  797. data = data.astype(np.float32)
  798. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  799. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  800. data = data.astype(np.float32)
  801. # if f16 desired, convert any float32 2-dim weight tensors to float16
  802. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  803. data = data.astype(np.float16)
  804. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  805. self.gguf_writer.add_tensor(new_name, data)
  806. @Model.register("GPTBigCodeForCausalLM")
  807. class StarCoderModel(Model):
  808. model_arch = gguf.MODEL_ARCH.STARCODER
  809. def set_gguf_parameters(self):
  810. block_count = self.hparams["n_layer"]
  811. self.gguf_writer.add_name("StarCoder")
  812. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  813. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  814. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  815. self.gguf_writer.add_block_count(block_count)
  816. self.gguf_writer.add_head_count(self.hparams["n_head"])
  817. self.gguf_writer.add_head_count_kv(1)
  818. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  819. self.gguf_writer.add_file_type(self.ftype)
  820. @Model.register("GPTRefactForCausalLM")
  821. class RefactModel(Model):
  822. model_arch = gguf.MODEL_ARCH.REFACT
  823. def set_gguf_parameters(self):
  824. hidden_dim = self.hparams["n_embd"]
  825. inner_dim = 4 * hidden_dim
  826. hidden_dim = int(2 * inner_dim / 3)
  827. multiple_of = 256
  828. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  829. block_count = self.hparams["n_layer"]
  830. self.gguf_writer.add_name("Refact")
  831. # refact uses Alibi. So this is from config.json which might be used by training.
  832. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  833. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  834. self.gguf_writer.add_feed_forward_length(ff_dim)
  835. self.gguf_writer.add_block_count(block_count)
  836. self.gguf_writer.add_head_count(self.hparams["n_head"])
  837. self.gguf_writer.add_head_count_kv(1)
  838. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  839. self.gguf_writer.add_file_type(self.ftype)
  840. def write_tensors(self):
  841. hidden_dim = self.hparams["n_embd"]
  842. inner_dim = 4 * hidden_dim
  843. hidden_dim = int(2 * inner_dim / 3)
  844. multiple_of = 256
  845. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  846. n_head = self.hparams["n_head"]
  847. n_head_kv = 1
  848. head_dim = self.hparams["n_embd"] // n_head
  849. block_count = self.hparams["n_layer"]
  850. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  851. tensors = dict(self.get_tensors())
  852. for i in range(block_count):
  853. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  854. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  855. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  856. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  857. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  858. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  859. del tensors[f"transformer.h.{i}.attn.q.weight"]
  860. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  861. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  862. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  863. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  864. for name, data_torch in tensors.items():
  865. old_dtype = data_torch.dtype
  866. # convert any unsupported data types to float32
  867. if data_torch.dtype not in (torch.float16, torch.float32):
  868. data_torch = data_torch.to(torch.float32)
  869. data = data_torch.squeeze().numpy()
  870. # map tensor names
  871. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  872. if new_name is None:
  873. print(f"Can not map tensor {name!r}")
  874. sys.exit()
  875. n_dims = len(data.shape)
  876. data_dtype = data.dtype
  877. # if f32 desired, convert any float16 to float32
  878. if self.ftype == 0 and data_dtype == np.float16:
  879. data = data.astype(np.float32)
  880. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  881. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  882. data = data.astype(np.float32)
  883. # if f16 desired, convert any float32 2-dim weight tensors to float16
  884. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  885. data = data.astype(np.float16)
  886. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  887. self.gguf_writer.add_tensor(new_name, data)
  888. @Model.register("PersimmonForCausalLM")
  889. class PersimmonModel(Model):
  890. model_arch = gguf.MODEL_ARCH.PERSIMMON
  891. def set_gguf_parameters(self):
  892. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  893. head_count = self.hparams["num_attention_heads"]
  894. head_count_kv = head_count
  895. hidden_size = self.hparams["hidden_size"]
  896. self.gguf_writer.add_name('persimmon-8b-chat')
  897. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  898. self.gguf_writer.add_embedding_length(hidden_size)
  899. self.gguf_writer.add_block_count(block_count)
  900. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  901. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  902. # than the head size?
  903. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  904. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  905. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  906. self.gguf_writer.add_head_count(head_count)
  907. self.gguf_writer.add_head_count_kv(head_count_kv)
  908. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  909. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  910. def set_vocab(self):
  911. self._set_vocab_sentencepiece()
  912. # self.gguf_writer.add_bos_token_id(71013)
  913. # self.gguf_writer.add_eos_token_id(71013)
  914. def write_tensors(self):
  915. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  916. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  917. for name, data_torch in self.get_tensors():
  918. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  919. continue
  920. old_dtype = data_torch.dtype
  921. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  922. data = data_torch.to(torch.float32).squeeze().numpy()
  923. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  924. if new_name is None:
  925. print(f"Can not map tensor {name!r}")
  926. sys.exit()
  927. n_dims = len(data.shape)
  928. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  929. self.gguf_writer.add_tensor(new_name, data)
  930. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  931. class StableLMModel(Model):
  932. model_arch = gguf.MODEL_ARCH.STABLELM
  933. def set_vocab(self):
  934. if (self.dir_model / "tokenizer.json").is_file():
  935. self._set_vocab_gpt2()
  936. else:
  937. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  938. self._set_vocab_qwen()
  939. def set_gguf_parameters(self):
  940. hparams = self.hparams
  941. block_count = hparams["num_hidden_layers"]
  942. self.gguf_writer.add_name(self.dir_model.name)
  943. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  944. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  945. self.gguf_writer.add_block_count(block_count)
  946. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  947. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  948. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  949. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  950. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  951. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  952. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  953. class LlamaModel(Model):
  954. model_arch = gguf.MODEL_ARCH.LLAMA
  955. def set_vocab(self):
  956. try:
  957. self. _set_vocab_sentencepiece()
  958. except FileNotFoundError:
  959. self._set_vocab_llama_hf()
  960. def set_gguf_parameters(self):
  961. super().set_gguf_parameters()
  962. hparams = self.hparams
  963. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  964. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  965. # Same as super class, but permuting q_proj, k_proj
  966. def write_tensors(self):
  967. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  968. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  969. n_head = self.hparams.get("num_attention_heads")
  970. n_kv_head = self.hparams.get("num_key_value_heads")
  971. n_experts = self.hparams.get("num_local_experts")
  972. experts = dict()
  973. for name, data_torch in self.get_tensors():
  974. # we don't need these
  975. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  976. continue
  977. old_dtype = data_torch.dtype
  978. # convert any unsupported data types to float32
  979. if data_torch.dtype not in (torch.float16, torch.float32):
  980. data_torch = data_torch.to(torch.float32)
  981. data = data_torch.numpy()
  982. if name.endswith("q_proj.weight"):
  983. data = permute(data, n_head, n_head)
  984. if name.endswith("k_proj.weight"):
  985. data = permute(data, n_head, n_kv_head)
  986. data = data.squeeze()
  987. # process the experts separately
  988. if name.find("block_sparse_moe.experts") != -1:
  989. experts[name] = data
  990. if len(experts) >= n_experts:
  991. # merge the experts into a single 3d tensor
  992. for bid in range(block_count):
  993. for wid in range(1, 4):
  994. full = True
  995. for xid in range(n_experts):
  996. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  997. if ename not in experts:
  998. full = False
  999. break
  1000. if not full:
  1001. continue
  1002. datas = []
  1003. for xid in range(n_experts):
  1004. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1005. datas.append(experts[ename])
  1006. del experts[ename]
  1007. data = np.stack(datas, axis=0)
  1008. data_dtype = data.dtype
  1009. if self.ftype == 0 and data_dtype == np.float16:
  1010. data = data.astype(np.float32)
  1011. if self.ftype == 1 and data_dtype == np.float32:
  1012. data = data.astype(np.float16)
  1013. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1014. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1015. if new_name is None:
  1016. print(f"Can not map tensor {name!r}")
  1017. sys.exit()
  1018. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1019. self.gguf_writer.add_tensor(new_name, data)
  1020. continue
  1021. # map tensor names
  1022. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1023. if new_name is None:
  1024. print(f"Can not map tensor {name!r}")
  1025. sys.exit()
  1026. n_dims = len(data.shape)
  1027. data_dtype = data.dtype
  1028. # if f32 desired, convert any float16 to float32
  1029. if self.ftype == 0 and data_dtype == np.float16:
  1030. data = data.astype(np.float32)
  1031. # 1d tensors need to be converted to float32
  1032. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1033. data = data.astype(np.float32)
  1034. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1035. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1036. data = data.astype(np.float16)
  1037. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1038. self.gguf_writer.add_tensor(new_name, data)
  1039. if len(experts) > 0:
  1040. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1041. @Model.register("GrokForCausalLM")
  1042. class GrokModel(Model):
  1043. model_arch = gguf.MODEL_ARCH.GROK
  1044. def set_vocab(self):
  1045. self._set_vocab_sentencepiece()
  1046. def __init__(self, *args, **kwargs):
  1047. super().__init__(*args, **kwargs)
  1048. def set_gguf_parameters(self):
  1049. super().set_gguf_parameters()
  1050. self.gguf_writer.add_name("Grok")
  1051. def write_tensors(self):
  1052. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1053. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1054. n_experts = self.hparams.get("num_local_experts")
  1055. experts = dict()
  1056. for name, data_torch in self.get_tensors():
  1057. # we don't need these
  1058. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1059. continue
  1060. old_dtype = data_torch.dtype
  1061. # convert any unsupported data types to float32
  1062. if data_torch.dtype not in (torch.float16, torch.float32):
  1063. data_torch = data_torch.to(torch.float32)
  1064. data = data_torch.squeeze().numpy()
  1065. # process the experts separately
  1066. if name.find(".moe.") != -1:
  1067. experts[name] = data
  1068. if len(experts) >= n_experts:
  1069. # merge the experts into a single 3d tensor
  1070. for bid in range(block_count):
  1071. for wid in ["linear", "linear_1", "linear_v"]:
  1072. full = True
  1073. for xid in range(n_experts):
  1074. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1075. if ename not in experts:
  1076. full = False
  1077. break
  1078. if not full:
  1079. continue
  1080. datas = []
  1081. for xid in range(n_experts):
  1082. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1083. datas.append(experts[ename])
  1084. del experts[ename]
  1085. data = np.stack(datas, axis=0)
  1086. data_dtype = data.dtype
  1087. if self.ftype == 0 and data_dtype == np.float16:
  1088. data = data.astype(np.float32)
  1089. if self.ftype == 1 and data_dtype == np.float32:
  1090. data = data.astype(np.float16)
  1091. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1092. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1093. if new_name is None:
  1094. print(f"Can not map tensor {name!r}")
  1095. sys.exit()
  1096. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1097. self.gguf_writer.add_tensor(new_name, data)
  1098. continue
  1099. # map tensor names
  1100. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1101. if new_name is None:
  1102. print(f"Can not map tensor {name!r}")
  1103. sys.exit()
  1104. n_dims = len(data.shape)
  1105. data_dtype = data.dtype
  1106. # if f32 desired, convert any float16 to float32
  1107. if self.ftype == 0 and data_dtype == np.float16:
  1108. data = data.astype(np.float32)
  1109. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1110. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1111. data = data.astype(np.float32)
  1112. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1113. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1114. data = data.astype(np.float16)
  1115. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1116. self.gguf_writer.add_tensor(new_name, data)
  1117. @Model.register("MiniCPMForCausalLM")
  1118. class MiniCPMModel(Model):
  1119. model_arch = gguf.MODEL_ARCH.MINICPM
  1120. def set_gguf_parameters(self):
  1121. block_count = self.hparams["num_hidden_layers"]
  1122. self.gguf_writer.add_name("MiniCPM")
  1123. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1124. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1125. self.gguf_writer.add_block_count(block_count)
  1126. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1127. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1128. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1129. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1130. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1131. self.gguf_writer.add_file_type(self.ftype)
  1132. def set_vocab(self):
  1133. self._set_vocab_llama_hf()
  1134. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1135. if n_kv_head is not None and n_head != n_kv_head:
  1136. n_head //= n_kv_head
  1137. return (
  1138. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1139. .swapaxes(1, 2)
  1140. .reshape(weights.shape)
  1141. )
  1142. def write_tensors(self):
  1143. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1144. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1145. n_head = self.hparams.get("num_attention_heads")
  1146. n_kv_head = self.hparams.get("num_key_value_heads")
  1147. for name, data_torch in self.get_tensors():
  1148. # we don't need these
  1149. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1150. continue
  1151. old_dtype = data_torch.dtype
  1152. # convert any unsupported data types to float32
  1153. if data_torch.dtype not in (torch.float16, torch.float32):
  1154. data_torch = data_torch.to(torch.float32)
  1155. # HF models permute some of the tensors, so we need to undo that
  1156. if name.endswith(("q_proj.weight")):
  1157. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1158. if name.endswith(("k_proj.weight")):
  1159. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1160. data = data_torch.squeeze().numpy()
  1161. # map tensor names
  1162. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1163. if new_name is None:
  1164. print(f"Can not map tensor {name!r}")
  1165. sys.exit()
  1166. n_dims = len(data.shape)
  1167. data_dtype = data.dtype
  1168. # if f32 desired, convert any float16 to float32
  1169. if self.ftype == 0 and data_dtype == np.float16:
  1170. data = data.astype(np.float32)
  1171. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1172. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1173. data = data.astype(np.float32)
  1174. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1175. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1176. data = data.astype(np.float16)
  1177. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1178. self.gguf_writer.add_tensor(new_name, data)
  1179. @Model.register("QWenLMHeadModel")
  1180. class QwenModel(Model):
  1181. model_arch = gguf.MODEL_ARCH.QWEN
  1182. @staticmethod
  1183. def token_bytes_to_string(b):
  1184. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1185. byte_encoder = bytes_to_unicode()
  1186. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1187. @staticmethod
  1188. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1189. parts = [bytes([b]) for b in token]
  1190. while True:
  1191. min_idx = None
  1192. min_rank = None
  1193. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1194. rank = mergeable_ranks.get(pair[0] + pair[1])
  1195. if rank is not None and (min_rank is None or rank < min_rank):
  1196. min_idx = i
  1197. min_rank = rank
  1198. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1199. break
  1200. assert min_idx is not None
  1201. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1202. return parts
  1203. def set_vocab(self):
  1204. self._set_vocab_qwen()
  1205. def set_gguf_parameters(self):
  1206. self.gguf_writer.add_name("Qwen")
  1207. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1208. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1209. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1210. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1211. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1212. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1213. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1214. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1215. def write_tensors(self):
  1216. block_count = self.hparams["num_hidden_layers"]
  1217. model_kv = dict(self.get_tensors())
  1218. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1219. for name, data_torch in model_kv.items():
  1220. # we don't need these
  1221. if name.endswith(".rotary_emb.inv_freq"):
  1222. continue
  1223. old_dtype = data_torch.dtype
  1224. # convert any unsupported data types to float32
  1225. if data_torch.dtype not in (torch.float16, torch.float32):
  1226. data_torch = data_torch.to(torch.float32)
  1227. data = data_torch.squeeze().numpy()
  1228. # map tensor names
  1229. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1230. if new_name is None:
  1231. print(f"Can not map tensor {name!r}")
  1232. sys.exit()
  1233. n_dims = len(data.shape)
  1234. data_dtype = data.dtype
  1235. # if f32 desired, convert any float16 to float32
  1236. if self.ftype == 0 and data_dtype == np.float16:
  1237. data = data.astype(np.float32)
  1238. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1239. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1240. data = data.astype(np.float32)
  1241. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1242. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1243. data = data.astype(np.float16)
  1244. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1245. self.gguf_writer.add_tensor(new_name, data)
  1246. @Model.register("Qwen2ForCausalLM")
  1247. class Qwen2Model(Model):
  1248. model_arch = gguf.MODEL_ARCH.QWEN2
  1249. @Model.register("GPT2LMHeadModel")
  1250. class GPT2Model(Model):
  1251. model_arch = gguf.MODEL_ARCH.GPT2
  1252. def set_gguf_parameters(self):
  1253. self.gguf_writer.add_name(self.dir_model.name)
  1254. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1255. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1256. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1257. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1258. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1259. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1260. self.gguf_writer.add_file_type(self.ftype)
  1261. def write_tensors(self):
  1262. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1263. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1264. for name, data_torch in self.get_tensors():
  1265. # we don't need these
  1266. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1267. continue
  1268. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1269. data_torch = data_torch.transpose(1, 0)
  1270. old_dtype = data_torch.dtype
  1271. # convert any unsupported data types to float32
  1272. if data_torch.dtype not in (torch.float16, torch.float32):
  1273. data_torch = data_torch.to(torch.float32)
  1274. data = data_torch.squeeze().numpy()
  1275. # map tensor names
  1276. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1277. if new_name is None:
  1278. print(f"Can not map tensor {name!r}")
  1279. sys.exit()
  1280. n_dims = len(data.shape)
  1281. data_dtype = data.dtype
  1282. # if f32 desired, convert any float16 to float32
  1283. if self.ftype == 0 and data_dtype == np.float16:
  1284. data = data.astype(np.float32)
  1285. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1286. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1287. data = data.astype(np.float32)
  1288. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1289. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1290. data = data.astype(np.float16)
  1291. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1292. self.gguf_writer.add_tensor(new_name, data)
  1293. # note: GPT2 output is tied to (same as) wte in original model
  1294. if new_name == "token_embd.weight":
  1295. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1296. self.gguf_writer.add_tensor("output.weight", data)
  1297. @Model.register("PhiForCausalLM")
  1298. class Phi2Model(Model):
  1299. model_arch = gguf.MODEL_ARCH.PHI2
  1300. def set_gguf_parameters(self):
  1301. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1302. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1303. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1304. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1305. self.gguf_writer.add_name("Phi2")
  1306. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1307. self.gguf_writer.add_embedding_length(n_embd)
  1308. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1309. self.gguf_writer.add_block_count(block_count)
  1310. self.gguf_writer.add_head_count(n_head)
  1311. self.gguf_writer.add_head_count_kv(n_head)
  1312. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1313. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1314. self.gguf_writer.add_file_type(self.ftype)
  1315. self.gguf_writer.add_add_bos_token(False)
  1316. @Model.register("PlamoForCausalLM")
  1317. class PlamoModel(Model):
  1318. model_arch = gguf.MODEL_ARCH.PLAMO
  1319. def set_vocab(self):
  1320. self._set_vocab_sentencepiece()
  1321. def set_gguf_parameters(self):
  1322. hparams = self.hparams
  1323. block_count = hparams["num_hidden_layers"]
  1324. self.gguf_writer.add_name("PLaMo")
  1325. self.gguf_writer.add_context_length(4096) # not in config.json
  1326. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1327. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1328. self.gguf_writer.add_block_count(block_count)
  1329. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1330. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1331. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1332. def shuffle_attn_q_weight(self, data_torch):
  1333. assert data_torch.size() == (5120, 5120)
  1334. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1335. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1336. data_torch = torch.reshape(data_torch, (5120, 5120))
  1337. return data_torch
  1338. def shuffle_attn_output_weight(self, data_torch):
  1339. assert data_torch.size() == (5120, 5120)
  1340. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1341. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1342. data_torch = torch.reshape(data_torch, (5120, 5120))
  1343. return data_torch
  1344. def write_tensors(self):
  1345. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1346. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1347. for name, data_torch in self.get_tensors():
  1348. if "self_attn.rotary_emb.inv_freq" in name:
  1349. continue
  1350. # map tensor names
  1351. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1352. if new_name is None:
  1353. print(f"Can not map tensor {name!r}")
  1354. sys.exit()
  1355. # shuffle for broadcasting of gqa in ggml_mul_mat
  1356. if new_name.endswith("attn_q.weight"):
  1357. data_torch = self.shuffle_attn_q_weight(data_torch)
  1358. elif new_name.endswith("attn_output.weight"):
  1359. data_torch = self.shuffle_attn_output_weight(data_torch)
  1360. old_dtype = data_torch.dtype
  1361. # convert any unsupported data types to float32
  1362. if data_torch.dtype not in (torch.float16, torch.float32):
  1363. data_torch = data_torch.to(torch.float32)
  1364. data = data_torch.squeeze().numpy()
  1365. n_dims = len(data.shape)
  1366. data_dtype = data.dtype
  1367. # if f32 desired, convert any float16 to float32
  1368. if self.ftype == 0 and data_dtype == np.float16:
  1369. data = data.astype(np.float32)
  1370. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1371. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1372. data = data.astype(np.float32)
  1373. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1374. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1375. data = data.astype(np.float16)
  1376. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1377. self.gguf_writer.add_tensor(new_name, data)
  1378. @Model.register("CodeShellForCausalLM")
  1379. class CodeShellModel(Model):
  1380. model_arch = gguf.MODEL_ARCH.CODESHELL
  1381. def set_gguf_parameters(self):
  1382. block_count = self.hparams["n_layer"]
  1383. self.gguf_writer.add_name("CodeShell")
  1384. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1385. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1386. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1387. self.gguf_writer.add_block_count(block_count)
  1388. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1389. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1390. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1391. self.gguf_writer.add_file_type(self.ftype)
  1392. self.gguf_writer.add_rope_freq_base(10000.0)
  1393. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1394. self.gguf_writer.add_rope_scaling_factor(1.0)
  1395. def write_tensors(self):
  1396. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1397. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1398. tensors = dict(self.get_tensors())
  1399. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1400. for name, data_torch in tensors.items():
  1401. # we don't need these
  1402. if name.endswith((".attn.rotary_emb.inv_freq")):
  1403. continue
  1404. old_dtype = data_torch.dtype
  1405. # convert any unsupported data types to float32
  1406. if data_torch.dtype not in (torch.float16, torch.float32):
  1407. data_torch = data_torch.to(torch.float32)
  1408. data = data_torch.squeeze().numpy()
  1409. # map tensor names
  1410. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1411. if new_name is None:
  1412. print(f"Can not map tensor {name!r}")
  1413. sys.exit()
  1414. n_dims = len(data.shape)
  1415. data_dtype = data.dtype
  1416. # if f32 desired, convert any float16 to float32
  1417. if self.ftype == 0 and data_dtype == np.float16:
  1418. data = data.astype(np.float32)
  1419. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1420. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1421. data = data.astype(np.float32)
  1422. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1423. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1424. data = data.astype(np.float16)
  1425. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1426. self.gguf_writer.add_tensor(new_name, data)
  1427. if not has_lm_head and name == "transformer.wte.weight":
  1428. self.gguf_writer.add_tensor("output.weight", data)
  1429. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1430. @Model.register("InternLM2ForCausalLM")
  1431. class InternLM2Model(Model):
  1432. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1433. def set_vocab(self):
  1434. # (TODO): Is there a better way?
  1435. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1436. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1437. # recognized as an empty string in C++.
  1438. from sentencepiece import SentencePieceProcessor
  1439. from sentencepiece import sentencepiece_model_pb2 as model
  1440. tokenizer_path = self.dir_model / 'tokenizer.model'
  1441. tokens: list[bytes] = []
  1442. scores: list[float] = []
  1443. toktypes: list[int] = []
  1444. if not tokenizer_path.is_file():
  1445. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1446. sys.exit(1)
  1447. sentencepiece_model = model.ModelProto()
  1448. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1449. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1450. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1451. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1452. for token_id in range(vocab_size):
  1453. piece = tokenizer.id_to_piece(token_id)
  1454. text = piece.encode("utf-8")
  1455. score = tokenizer.get_score(token_id)
  1456. if text == b"\x00":
  1457. # (TODO): fixme
  1458. # Hack here and replace the \x00 characters.
  1459. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1460. text = "🐉"
  1461. toktype = SentencePieceTokenTypes.NORMAL
  1462. if tokenizer.is_unknown(token_id):
  1463. toktype = SentencePieceTokenTypes.UNKNOWN
  1464. elif tokenizer.is_control(token_id):
  1465. toktype = SentencePieceTokenTypes.CONTROL
  1466. elif tokenizer.is_unused(token_id):
  1467. toktype = SentencePieceTokenTypes.UNUSED
  1468. elif tokenizer.is_byte(token_id):
  1469. toktype = SentencePieceTokenTypes.BYTE
  1470. tokens.append(text)
  1471. scores.append(score)
  1472. toktypes.append(toktype)
  1473. added_tokens_file = self.dir_model / 'added_tokens.json'
  1474. if added_tokens_file.is_file():
  1475. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1476. added_tokens_json = json.load(f)
  1477. for key in added_tokens_json:
  1478. tokens.append(key.encode("utf-8"))
  1479. scores.append(-1000.0)
  1480. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1481. self.gguf_writer.add_tokenizer_model("llama")
  1482. self.gguf_writer.add_token_list(tokens)
  1483. self.gguf_writer.add_token_scores(scores)
  1484. self.gguf_writer.add_token_types(toktypes)
  1485. self.gguf_writer.add_add_space_prefix(add_prefix)
  1486. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1487. old_eos = special_vocab.special_token_ids["eos"]
  1488. if "chat" in os.path.basename(self.dir_model.absolute()):
  1489. # For the chat model, we replace the eos with '<|im_end|>'.
  1490. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1491. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1492. in chat mode so that the conversation can end normally.")
  1493. special_vocab.add_to_gguf(self.gguf_writer)
  1494. def _try_get_sft_eos(self, tokenizer):
  1495. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1496. im_end_list = tokenizer.encode('<|im_end|>')
  1497. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1498. if len(unused_145_list) == 1:
  1499. eos_token = unused_145_list[0]
  1500. if len(im_end_list) == 1:
  1501. eos_token = im_end_list[0]
  1502. return eos_token
  1503. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1504. if n_head_kv is not None and n_head != n_head_kv:
  1505. n_head = n_head_kv
  1506. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1507. .swapaxes(1, 2)
  1508. .reshape(weights.shape))
  1509. def set_gguf_parameters(self):
  1510. self.gguf_writer.add_name("InternLM2")
  1511. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1512. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1513. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1514. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1515. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1516. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1517. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1518. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1519. def post_write_tensors(self, tensor_map, name, data_torch):
  1520. old_dtype = data_torch.dtype
  1521. # convert any unsupported data types to float32
  1522. if data_torch.dtype not in (torch.float16, torch.float32):
  1523. data_torch = data_torch.to(torch.float32)
  1524. data = data_torch.squeeze().numpy()
  1525. # map tensor names
  1526. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1527. if new_name is None:
  1528. print(f"Can not map tensor {name!r}")
  1529. sys.exit()
  1530. n_dims = len(data.shape)
  1531. data_dtype = data.dtype
  1532. # if f32 desired, convert any float16 to float32
  1533. if self.ftype == 0 and data_dtype == np.float16:
  1534. data = data.astype(np.float32)
  1535. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1536. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1537. data = data.astype(np.float32)
  1538. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1539. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1540. data = data.astype(np.float16)
  1541. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1542. self.gguf_writer.add_tensor(new_name, data)
  1543. def write_tensors(self):
  1544. from einops import rearrange
  1545. num_heads = self.hparams.get("num_attention_heads")
  1546. num_kv_heads = self.hparams.get("num_key_value_heads")
  1547. hidden_size = self.hparams.get("hidden_size")
  1548. q_per_kv = num_heads // num_kv_heads
  1549. head_dim = hidden_size // num_heads
  1550. num_groups = num_heads // q_per_kv
  1551. block_count = self.hparams["num_hidden_layers"]
  1552. model_kv = dict(self.get_tensors())
  1553. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1554. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1555. for name, data_torch in model_kv.items():
  1556. # we don't need these
  1557. if name.endswith(".rotary_emb.inv_freq"):
  1558. continue
  1559. if re.match(qkv_pattern, name):
  1560. bid = re.findall(qkv_pattern, name)[0]
  1561. qkv = data_torch
  1562. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1563. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1564. # The model weights of q and k equire additional reshape.
  1565. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1566. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1567. v = rearrange(v, " o g n i -> o (g n i)").T
  1568. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1569. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1570. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1571. else:
  1572. self.post_write_tensors(tensor_map, name, data_torch)
  1573. @Model.register("BertModel", "CamembertModel")
  1574. class BertModel(Model):
  1575. model_arch = gguf.MODEL_ARCH.BERT
  1576. def __init__(self, *args, **kwargs):
  1577. super().__init__(*args, **kwargs)
  1578. self.vocab_size = None
  1579. def set_gguf_parameters(self):
  1580. super().set_gguf_parameters()
  1581. self.gguf_writer.add_causal_attention(False)
  1582. # get pooling path
  1583. pooling_path = None
  1584. module_path = self.dir_model / "modules.json"
  1585. if module_path.is_file():
  1586. with open(module_path, encoding="utf-8") as f:
  1587. modules = json.load(f)
  1588. for mod in modules:
  1589. if mod["type"] == "sentence_transformers.models.Pooling":
  1590. pooling_path = mod["path"]
  1591. break
  1592. # get pooling type
  1593. if pooling_path is not None:
  1594. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1595. pooling = json.load(f)
  1596. if pooling["pooling_mode_mean_tokens"]:
  1597. pooling_type = gguf.PoolingType.MEAN
  1598. elif pooling["pooling_mode_cls_token"]:
  1599. pooling_type = gguf.PoolingType.CLS
  1600. else:
  1601. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1602. self.gguf_writer.add_pooling_type(pooling_type)
  1603. def set_vocab(self):
  1604. # use huggingface vocab to get all tokens
  1605. vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
  1606. tokens, scores, toktypes = zip(*vocab.all_tokens())
  1607. assert len(tokens) == vocab.vocab_size
  1608. self.vocab_size = vocab.vocab_size
  1609. # we need this to validate the size of the token_type embeddings
  1610. # though currently we are passing all zeros to the token_type embeddings
  1611. n_token_types = len(set(toktypes))
  1612. self.gguf_writer.add_token_type_count(n_token_types)
  1613. # convert to phantom space vocab
  1614. def phantom(tok, typ):
  1615. if tok.startswith(b"[") and tok.endswith(b"]"):
  1616. return tok
  1617. if tok.startswith(b"##"):
  1618. return tok[2:]
  1619. return b"\xe2\x96\x81" + tok
  1620. tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
  1621. # set up bos and eos tokens (cls and sep)
  1622. self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
  1623. self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
  1624. # add vocab to gguf
  1625. self.gguf_writer.add_tokenizer_model("bert")
  1626. self.gguf_writer.add_token_list(tokens)
  1627. self.gguf_writer.add_token_scores(scores)
  1628. self.gguf_writer.add_token_types(toktypes)
  1629. # handle special tokens
  1630. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1631. special_vocab.add_to_gguf(self.gguf_writer)
  1632. def write_tensors(self):
  1633. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1634. tensors = dict(self.get_tensors())
  1635. for name, data_torch in tensors.items():
  1636. # we are only using BERT for embeddings so we don't need the pooling layer
  1637. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1638. continue # we don't need these
  1639. # map tensor names
  1640. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1641. if new_name is None:
  1642. print(f"Can not map tensor {name!r}")
  1643. sys.exit()
  1644. data = data_torch.squeeze().numpy()
  1645. n_dims = len(data.shape)
  1646. new_dtype: type[np.floating[Any]]
  1647. if (
  1648. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1649. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1650. ):
  1651. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1652. new_dtype = np.float16
  1653. else:
  1654. # if f32 desired, convert any float16 to float32
  1655. new_dtype = np.float32
  1656. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1657. if data.dtype != new_dtype:
  1658. data = data.astype(new_dtype)
  1659. self.gguf_writer.add_tensor(new_name, data)
  1660. @Model.register("NomicBertModel")
  1661. class NomicBertModel(BertModel):
  1662. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1663. def __init__(self, *args, **kwargs):
  1664. super().__init__(*args, **kwargs)
  1665. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1666. self.hparams["n_ctx"] = 2048
  1667. # SwigLU activation
  1668. assert self.hparams["activation_function"] == "swiglu"
  1669. # this doesn't do anything in the HF version
  1670. assert self.hparams["causal"] is False
  1671. # no bias tensors
  1672. assert self.hparams["qkv_proj_bias"] is False
  1673. assert self.hparams["mlp_fc1_bias"] is False
  1674. assert self.hparams["mlp_fc2_bias"] is False
  1675. # norm at end of layer
  1676. assert self.hparams["prenorm"] is False
  1677. # standard RoPE
  1678. assert self.hparams["rotary_emb_fraction"] == 1.0
  1679. assert self.hparams["rotary_emb_interleaved"] is False
  1680. assert self.hparams["rotary_emb_scale_base"] is None
  1681. def set_gguf_parameters(self):
  1682. super().set_gguf_parameters()
  1683. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1684. def get_tensors(self):
  1685. assert self.vocab_size is not None
  1686. for name, data in super().get_tensors():
  1687. # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
  1688. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
  1689. rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
  1690. assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
  1691. data = data[:self.vocab_size, :]
  1692. yield name, data
  1693. @Model.register("GemmaForCausalLM")
  1694. class GemmaModel(Model):
  1695. model_arch = gguf.MODEL_ARCH.GEMMA
  1696. def set_vocab(self):
  1697. self._set_vocab_sentencepiece()
  1698. def set_gguf_parameters(self):
  1699. hparams = self.hparams
  1700. block_count = hparams["num_hidden_layers"]
  1701. self.gguf_writer.add_name(self.dir_model.name)
  1702. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1703. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1704. self.gguf_writer.add_block_count(block_count)
  1705. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1706. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1707. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1708. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1709. self.gguf_writer.add_key_length(hparams["head_dim"])
  1710. self.gguf_writer.add_value_length(hparams["head_dim"])
  1711. self.gguf_writer.add_file_type(self.ftype)
  1712. def write_tensors(self):
  1713. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1714. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1715. for name, data_torch in self.get_tensors():
  1716. old_dtype = data_torch.dtype
  1717. # convert any unsupported data types to float32
  1718. if data_torch.dtype not in (torch.float16, torch.float32):
  1719. data_torch = data_torch.to(torch.float32)
  1720. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1721. if name.endswith("norm.weight"):
  1722. data_torch = data_torch + 1
  1723. data = data_torch.squeeze().numpy()
  1724. # map tensor names
  1725. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1726. if new_name is None:
  1727. print(f"Can not map tensor {name!r}")
  1728. sys.exit()
  1729. n_dims = len(data.shape)
  1730. data_dtype = data.dtype
  1731. data = data.astype(np.float32)
  1732. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1733. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1734. data = data.astype(np.float16)
  1735. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1736. self.gguf_writer.add_tensor(new_name, data)
  1737. @Model.register("Starcoder2ForCausalLM")
  1738. class StarCoder2Model(Model):
  1739. model_arch = gguf.MODEL_ARCH.STARCODER2
  1740. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1741. class MambaModel(Model):
  1742. model_arch = gguf.MODEL_ARCH.MAMBA
  1743. def set_vocab(self):
  1744. vocab_size = self.hparams["vocab_size"]
  1745. # Round vocab size to next multiple of 8
  1746. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1747. # pad using ceiling division
  1748. # ref: https://stackoverflow.com/a/17511341/22827863
  1749. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1750. self.hparams["vocab_size"] = vocab_size
  1751. if (self.dir_model / "tokenizer.json").is_file():
  1752. self._set_vocab_gpt2()
  1753. else:
  1754. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1755. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1756. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1757. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1758. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1759. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1760. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1761. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1762. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1763. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1764. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1765. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1766. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1767. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1768. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1769. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1770. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1771. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1772. def set_gguf_parameters(self):
  1773. d_model = self.find_hparam(["hidden_size", "d_model"])
  1774. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1775. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1776. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1777. # ceiling division
  1778. # ref: https://stackoverflow.com/a/17511341/22827863
  1779. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1780. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1781. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1782. # Fail early for models which don't have a block expansion factor of 2
  1783. assert d_inner == 2 * d_model
  1784. self.gguf_writer.add_name(self.dir_model.name)
  1785. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1786. self.gguf_writer.add_embedding_length(d_model)
  1787. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1788. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1789. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1790. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1791. self.gguf_writer.add_ssm_inner_size(d_inner)
  1792. self.gguf_writer.add_ssm_state_size(d_state)
  1793. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1794. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1795. self.gguf_writer.add_file_type(self.ftype)
  1796. def write_tensors(self):
  1797. block_count = self.hparams["n_layer"]
  1798. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1799. tok_embd = None
  1800. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1801. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1802. for name, data_torch in self.get_tensors():
  1803. old_dtype = data_torch.dtype
  1804. # convert any unsupported data types to float32
  1805. if data_torch.dtype not in (torch.float16, torch.float32):
  1806. data_torch = data_torch.to(torch.float32)
  1807. # map tensor names
  1808. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1809. if new_name is None:
  1810. print(f"Can not map tensor {name!r}")
  1811. sys.exit()
  1812. if name.endswith(".A_log"):
  1813. print("A_log --> A ==> " + new_name)
  1814. data_torch = -torch.exp(data_torch)
  1815. # assuming token_embd.weight is seen before output.weight
  1816. if tok_embd is not None and new_name == output_name:
  1817. if torch.equal(tok_embd, data_torch):
  1818. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1819. continue
  1820. if new_name == tok_embd_name:
  1821. tok_embd = data_torch
  1822. data = data_torch.squeeze().numpy()
  1823. n_dims = len(data.shape)
  1824. data_dtype = data.dtype
  1825. # if f32 desired, convert any float16 to float32
  1826. if self.ftype == 0 and data_dtype == np.float16:
  1827. data = data.astype(np.float32)
  1828. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1829. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1830. data = data.astype(np.float32)
  1831. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1832. if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1833. data = data.astype(np.float16)
  1834. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1835. self.gguf_writer.add_tensor(new_name, data)
  1836. @Model.register("CohereForCausalLM")
  1837. class CommandR2Model(Model):
  1838. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1839. def __init__(self, *args, **kwargs):
  1840. super().__init__(*args, **kwargs)
  1841. # max_position_embeddings = 8192 in config.json but model was actually
  1842. # trained on 128k context length
  1843. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1844. def set_gguf_parameters(self):
  1845. super().set_gguf_parameters()
  1846. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1848. ###### CONVERSION LOGIC ######
  1849. def parse_args() -> argparse.Namespace:
  1850. parser = argparse.ArgumentParser(
  1851. description="Convert a huggingface model to a GGML compatible file")
  1852. parser.add_argument(
  1853. "--vocab-only", action="store_true",
  1854. help="extract only the vocab",
  1855. )
  1856. parser.add_argument(
  1857. "--awq-path", type=Path, default=None,
  1858. help="Path to scale awq cache file")
  1859. parser.add_argument(
  1860. "--outfile", type=Path,
  1861. help="path to write to; default: based on input",
  1862. )
  1863. parser.add_argument(
  1864. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1865. help="output format - use f32 for float32, f16 for float16",
  1866. )
  1867. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1868. parser.add_argument(
  1869. "model", type=Path,
  1870. help="directory containing model file",
  1871. )
  1872. return parser.parse_args()
  1873. def main() -> None:
  1874. args = parse_args()
  1875. dir_model = args.model
  1876. if args.awq_path:
  1877. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1878. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1879. tmp_model_path = args.model / "weighted_model"
  1880. dir_model = tmp_model_path
  1881. if tmp_model_path.is_dir():
  1882. print(f"{tmp_model_path} exists as a weighted model.")
  1883. else:
  1884. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1885. print("Saving new weighted model ...")
  1886. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1887. print(f"Saved weighted model at {tmp_model_path}.")
  1888. if not dir_model.is_dir():
  1889. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1890. sys.exit(1)
  1891. ftype_map = {
  1892. "f32": gguf.GGMLQuantizationType.F32,
  1893. "f16": gguf.GGMLQuantizationType.F16,
  1894. }
  1895. if args.outfile is not None:
  1896. fname_out = args.outfile
  1897. else:
  1898. # output in the same directory as the model by default
  1899. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1900. print(f"Loading model: {dir_model.name}")
  1901. hparams = Model.load_hparams(dir_model)
  1902. with torch.inference_mode():
  1903. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1904. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1905. print("Set model parameters")
  1906. model_instance.set_gguf_parameters()
  1907. print("Set model tokenizer")
  1908. model_instance.set_vocab()
  1909. if args.vocab_only:
  1910. print(f"Exporting model vocab to '{fname_out}'")
  1911. model_instance.write_vocab()
  1912. else:
  1913. print(f"Exporting model to '{fname_out}'")
  1914. model_instance.write()
  1915. print(f"Model successfully exported to '{fname_out}'")
  1916. if __name__ == '__main__':
  1917. main()