ggml.c 384 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include <cublas_v2.h>
  128. #include <cuda_runtime.h>
  129. #include "ggml-cuda.h"
  130. #define CUDA_CHECK(err) \
  131. do { \
  132. cudaError_t err_ = (err); \
  133. if (err_ != cudaSuccess) { \
  134. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  135. cudaGetErrorString(err_)); \
  136. exit(1); \
  137. } \
  138. } while (0)
  139. #define CUBLAS_CHECK(err) \
  140. do { \
  141. cublasStatus_t err_ = (err); \
  142. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  143. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  144. exit(1); \
  145. } \
  146. } while (0)
  147. static cublasHandle_t cublasH = NULL;
  148. static cudaStream_t cudaStream = NULL;
  149. static void init_cublas(void) {
  150. if (cublasH == NULL) {
  151. // create cublas handle, bind a stream
  152. CUBLAS_CHECK(cublasCreate(&cublasH));
  153. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  154. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  155. // configure logging to stdout
  156. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  157. }
  158. }
  159. #endif
  160. #undef MIN
  161. #undef MAX
  162. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  163. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  164. // floating point type used to accumulate sums
  165. typedef double ggml_float;
  166. // 16-bit float
  167. // on Arm, we use __fp16
  168. // on x86, we use uint16_t
  169. #ifdef __ARM_NEON
  170. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  171. //
  172. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  173. //
  174. #include <arm_neon.h>
  175. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  177. #define GGML_FP16_TO_FP32(x) ((float) (x))
  178. #define GGML_FP32_TO_FP16(x) (x)
  179. #else
  180. #ifdef __wasm_simd128__
  181. #include <wasm_simd128.h>
  182. #else
  183. #ifdef __POWER9_VECTOR__
  184. #include <altivec.h>
  185. #undef bool
  186. #define bool _Bool
  187. #else
  188. #include <immintrin.h>
  189. #endif
  190. #endif
  191. #ifdef __F16C__
  192. #ifdef _MSC_VER
  193. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  194. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  195. #else
  196. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  197. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  198. #endif
  199. #elif defined(__POWER9_VECTOR__)
  200. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  201. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  202. /* the inline asm below is about 12% faster than the lookup method */
  203. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  204. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  205. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  206. register float f;
  207. register double d;
  208. __asm__(
  209. "mtfprd %0,%2\n"
  210. "xscvhpdp %0,%0\n"
  211. "frsp %1,%0\n" :
  212. /* temp */ "=d"(d),
  213. /* out */ "=f"(f):
  214. /* in */ "r"(h));
  215. return f;
  216. }
  217. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  218. register double d;
  219. register ggml_fp16_t r;
  220. __asm__( /* xscvdphp can work on double or single precision */
  221. "xscvdphp %0,%2\n"
  222. "mffprd %1,%0\n" :
  223. /* temp */ "=d"(d),
  224. /* out */ "=r"(r):
  225. /* in */ "f"(f));
  226. return r;
  227. }
  228. #else
  229. // FP16 <-> FP32
  230. // ref: https://github.com/Maratyszcza/FP16
  231. static inline float fp32_from_bits(uint32_t w) {
  232. union {
  233. uint32_t as_bits;
  234. float as_value;
  235. } fp32;
  236. fp32.as_bits = w;
  237. return fp32.as_value;
  238. }
  239. static inline uint32_t fp32_to_bits(float f) {
  240. union {
  241. float as_value;
  242. uint32_t as_bits;
  243. } fp32;
  244. fp32.as_value = f;
  245. return fp32.as_bits;
  246. }
  247. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  248. const uint32_t w = (uint32_t) h << 16;
  249. const uint32_t sign = w & UINT32_C(0x80000000);
  250. const uint32_t two_w = w + w;
  251. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  252. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  253. const float exp_scale = 0x1.0p-112f;
  254. #else
  255. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  256. #endif
  257. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  258. const uint32_t magic_mask = UINT32_C(126) << 23;
  259. const float magic_bias = 0.5f;
  260. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  261. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  262. const uint32_t result = sign |
  263. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  264. return fp32_from_bits(result);
  265. }
  266. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  267. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  268. const float scale_to_inf = 0x1.0p+112f;
  269. const float scale_to_zero = 0x1.0p-110f;
  270. #else
  271. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  272. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  273. #endif
  274. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  275. const uint32_t w = fp32_to_bits(f);
  276. const uint32_t shl1_w = w + w;
  277. const uint32_t sign = w & UINT32_C(0x80000000);
  278. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  279. if (bias < UINT32_C(0x71000000)) {
  280. bias = UINT32_C(0x71000000);
  281. }
  282. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  283. const uint32_t bits = fp32_to_bits(base);
  284. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  285. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  286. const uint32_t nonsign = exp_bits + mantissa_bits;
  287. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  288. }
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  291. #endif // __F16C__
  292. #endif // __ARM_NEON
  293. //
  294. // global data
  295. //
  296. // precomputed gelu table for f16 (128 KB)
  297. static ggml_fp16_t table_gelu_f16[1 << 16];
  298. // precomputed silu table for f16 (128 KB)
  299. static ggml_fp16_t table_silu_f16[1 << 16];
  300. // precomputed exp table for f16 (128 KB)
  301. static ggml_fp16_t table_exp_f16[1 << 16];
  302. // precomputed f32 table for f16 (256 KB)
  303. static float table_f32_f16[1 << 16];
  304. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  305. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  306. // This is also true for POWER9.
  307. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  308. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  309. uint16_t s;
  310. memcpy(&s, &f, sizeof(uint16_t));
  311. return table_f32_f16[s];
  312. }
  313. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  314. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  315. #endif
  316. // note: do not use these inside ggml.c
  317. // these are meant to be used via the ggml.h API
  318. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  319. return (float) GGML_FP16_TO_FP32(x);
  320. }
  321. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  322. return GGML_FP32_TO_FP16(x);
  323. }
  324. //
  325. // timing
  326. //
  327. #if defined(_MSC_VER) || defined(__MINGW32__)
  328. static int64_t timer_freq;
  329. void ggml_time_init(void) {
  330. LARGE_INTEGER frequency;
  331. QueryPerformanceFrequency(&frequency);
  332. timer_freq = frequency.QuadPart;
  333. }
  334. int64_t ggml_time_ms(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return (t.QuadPart * 1000) / timer_freq;
  338. }
  339. int64_t ggml_time_us(void) {
  340. LARGE_INTEGER t;
  341. QueryPerformanceCounter(&t);
  342. return (t.QuadPart * 1000000) / timer_freq;
  343. }
  344. #else
  345. void ggml_time_init(void) {}
  346. int64_t ggml_time_ms(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  350. }
  351. int64_t ggml_time_us(void) {
  352. struct timespec ts;
  353. clock_gettime(CLOCK_MONOTONIC, &ts);
  354. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  355. }
  356. #endif
  357. int64_t ggml_cycles(void) {
  358. return clock();
  359. }
  360. int64_t ggml_cycles_per_ms(void) {
  361. return CLOCKS_PER_SEC/1000;
  362. }
  363. #ifdef GGML_PERF
  364. #define ggml_perf_time_ms() ggml_time_ms()
  365. #define ggml_perf_time_us() ggml_time_us()
  366. #define ggml_perf_cycles() ggml_cycles()
  367. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  368. #else
  369. #define ggml_perf_time_ms() 0
  370. #define ggml_perf_time_us() 0
  371. #define ggml_perf_cycles() 0
  372. #define ggml_perf_cycles_per_ms() 0
  373. #endif
  374. //
  375. // cache line
  376. //
  377. #if defined(__cpp_lib_hardware_interference_size)
  378. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  379. #else
  380. #if defined(__POWER9_VECTOR__)
  381. #define CACHE_LINE_SIZE 128
  382. #else
  383. #define CACHE_LINE_SIZE 64
  384. #endif
  385. #endif
  386. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  387. //
  388. // quantization
  389. //
  390. #if __AVX__ || __AVX2__ || __AVX512F__
  391. // Unpack 16 4-bit fields into 16 bytes
  392. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  394. {
  395. // Load 8 bytes from memory
  396. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m128i lowMask = _mm_set1_epi8( 0xF );
  401. __m128i high = _mm_andnot_si128( lowMask, bytes );
  402. __m128i low = _mm_and_si128( lowMask, bytes );
  403. high = _mm_slli_epi16( high, 4 );
  404. bytes = _mm_or_si128( low, high );
  405. return bytes;
  406. }
  407. #if __AVX2__ || __AVX512F__
  408. // Unpack 32 4-bit fields into 32 bytes
  409. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  410. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  411. {
  412. // Load 16 bytes from memory
  413. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  414. // Expand bytes into uint16_t values
  415. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  416. // Unpack values into individual bytes
  417. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  418. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  419. __m256i low = _mm256_and_si256( lowMask, bytes );
  420. high = _mm256_slli_epi16( high, 4 );
  421. bytes = _mm256_or_si256( low, high );
  422. return bytes;
  423. }
  424. static inline __m128i packNibbles( __m256i bytes )
  425. {
  426. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  427. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  428. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  429. __m256i low = _mm256_and_si256( lowByte, bytes );
  430. high = _mm256_srli_epi16( high, 4 );
  431. bytes = _mm256_or_si256( low, high );
  432. // Compress uint16_t lanes into bytes
  433. __m128i r0 = _mm256_castsi256_si128( bytes );
  434. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  435. return _mm_packus_epi16( r0, r1 );
  436. }
  437. #else
  438. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  442. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  443. __m128i low = _mm_and_si128( lowByte, bytes1 );
  444. high = _mm_srli_epi16( high, 4 );
  445. bytes1 = _mm_or_si128( low, high );
  446. high = _mm_andnot_si128( lowByte, bytes2 );
  447. low = _mm_and_si128( lowByte, bytes2 );
  448. high = _mm_srli_epi16( high, 4 );
  449. bytes2 = _mm_or_si128( low, high );
  450. return _mm_packus_epi16( bytes1, bytes2);
  451. }
  452. #endif
  453. #endif // __AVX__ || __AVX2__ || __AVX512F__
  454. #if __ARM_NEON
  455. #if !defined(__aarch64__)
  456. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  457. return
  458. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  459. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  460. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  461. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  462. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  463. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  464. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  465. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  466. }
  467. inline static int16_t vaddvq_s8(int8x16_t v) {
  468. return
  469. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  470. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  471. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  472. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  473. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  474. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  475. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  476. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  477. }
  478. inline static int32_t vaddvq_s16(int16x8_t v) {
  479. return
  480. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  481. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  482. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  483. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  484. }
  485. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  486. return
  487. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  488. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  489. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  490. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  491. }
  492. inline static int32_t vaddvq_s32(int32x4_t v) {
  493. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  494. }
  495. inline static float vaddvq_f32(float32x4_t v) {
  496. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  497. }
  498. float vminvq_f32(float32x4_t v) {
  499. return
  500. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  501. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  502. }
  503. float vmaxvq_f32(float32x4_t v) {
  504. return
  505. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  506. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  507. }
  508. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  509. return vget_low_s8(vcombine_s8(a, b));
  510. }
  511. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  512. return vget_high_s8(vcombine_s8(a, b));
  513. }
  514. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  515. return vget_low_u8(vcombine_u8(a, b));
  516. }
  517. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  518. return vget_high_u8(vcombine_u8(a, b));
  519. }
  520. #endif
  521. #endif
  522. #define QK4_0 32
  523. typedef struct {
  524. float d; // delta
  525. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  526. } block_q4_0;
  527. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  528. #define QK4_1 32
  529. typedef struct {
  530. float d; // delta
  531. float m; // min
  532. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  533. } block_q4_1;
  534. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  535. #define QK4_2 16
  536. typedef struct {
  537. ggml_fp16_t d; // delta
  538. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  539. } block_q4_2;
  540. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  541. #define QK4_3 16
  542. typedef struct {
  543. ggml_fp16_t d; // delta
  544. ggml_fp16_t m; // min
  545. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  546. } block_q4_3;
  547. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  548. #define QK8_0 32
  549. typedef struct {
  550. float d; // delta
  551. int8_t qs[QK8_0]; // quants
  552. } block_q8_0;
  553. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  554. // reference implementation for deterministic creation of model files
  555. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  556. assert(k % QK4_0 == 0);
  557. const int nb = k / QK4_0;
  558. uint8_t pp[QK4_0/2];
  559. for (int i = 0; i < nb; i++) {
  560. float amax = 0.0f; // absolute max
  561. for (int l = 0; l < QK4_0; l++) {
  562. const float v = x[i*QK4_0 + l];
  563. amax = MAX(amax, fabsf(v));
  564. }
  565. const float d = amax / ((1 << 3) - 1);
  566. const float id = d ? 1.0f/d : 0.0f;
  567. y[i].d = d;
  568. for (int l = 0; l < QK4_0; l += 2) {
  569. const float v0 = x[i*QK4_0 + l + 0]*id;
  570. const float v1 = x[i*QK4_0 + l + 1]*id;
  571. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  572. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  573. assert(vi0 < 16);
  574. assert(vi1 < 16);
  575. pp[l/2] = vi0 | (vi1 << 4);
  576. }
  577. memcpy(y[i].qs, pp, sizeof(pp));
  578. }
  579. }
  580. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  581. assert(k % QK4_0 == 0);
  582. const int nb = k / QK4_0;
  583. block_q4_0 * restrict y = vy;
  584. #if defined(__POWER9_VECTOR__)
  585. const vector float v85 = vec_splats(8.5f);
  586. for (int i = 0; i < nb; i++) {
  587. float amax = 0.0f; // absolute max
  588. vector float srcv [8];
  589. vector float asrcv[8];
  590. vector float amaxv[8];
  591. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  592. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  593. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  594. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  595. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  596. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  597. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  598. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  599. amax = MAX(
  600. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  601. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  602. const float d = amax / ((1 << 3) - 1);
  603. const float id = d ? 1.0/d : 0.0;
  604. y[i].d = d;
  605. const vector float vid = vec_splats(id);
  606. uint8_t * restrict pb = y[i].qs;
  607. for (int l = 0; l < 8; l++) {
  608. const vector float vf = vec_madd(srcv[l], vid, v85);
  609. const vector signed int vi = vec_signed(vf);
  610. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  611. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  612. }
  613. }
  614. #elif __ARM_NEON
  615. for (int i = 0; i < nb; i++) {
  616. float32x4_t srcv [8];
  617. float32x4_t asrcv[8];
  618. float32x4_t amaxv[8];
  619. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  620. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  621. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  622. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  623. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  624. const float amax = vmaxvq_f32(amaxv[0]);
  625. const float d = amax / ((1 << 3) - 1);
  626. const float id = d ? 1.0f/d : 0.0f;
  627. y[i].d = d;
  628. for (int l = 0; l < 8; l++) {
  629. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  630. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  631. const int32x4_t vi = vcvtq_s32_f32(vf);
  632. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  633. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  634. }
  635. }
  636. #elif defined(__AVX2__)
  637. for (int i = 0; i < nb; i++) {
  638. // Load elements into 4 AVX vectors
  639. __m256 v0 = _mm256_loadu_ps( x );
  640. __m256 v1 = _mm256_loadu_ps( x + 8 );
  641. __m256 v2 = _mm256_loadu_ps( x + 16 );
  642. __m256 v3 = _mm256_loadu_ps( x + 24 );
  643. x += 32;
  644. // Compute max(abs(e)) for the block
  645. const __m256 signBit = _mm256_set1_ps( -0.0f );
  646. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  647. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  648. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  649. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  650. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  651. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  652. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  653. const float maxScalar = _mm_cvtss_f32( max4 );
  654. // Quantize these floats
  655. const float d = maxScalar / 7.0f;
  656. y[i].d = d;
  657. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  658. const __m256 mul = _mm256_set1_ps( id );
  659. // Apply the multiplier
  660. v0 = _mm256_mul_ps( v0, mul );
  661. v1 = _mm256_mul_ps( v1, mul );
  662. v2 = _mm256_mul_ps( v2, mul );
  663. v3 = _mm256_mul_ps( v3, mul );
  664. // Round to nearest integer
  665. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  666. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  667. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  668. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  669. // Convert floats to integers
  670. __m256i i0 = _mm256_cvtps_epi32( v0 );
  671. __m256i i1 = _mm256_cvtps_epi32( v1 );
  672. __m256i i2 = _mm256_cvtps_epi32( v2 );
  673. __m256i i3 = _mm256_cvtps_epi32( v3 );
  674. // Convert int32 to int16
  675. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  676. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  677. // Convert int16 to int8
  678. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  679. // We got our precious signed bytes, but the order is now wrong
  680. // These AVX2 pack instructions process 16-byte pieces independently
  681. // The following instruction is fixing the order
  682. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  683. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  684. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  685. const __m256i off = _mm256_set1_epi8( 8 );
  686. i0 = _mm256_add_epi8( i0, off );
  687. // Compress the vector into 4 bit/value, and store
  688. __m128i res = packNibbles( i0 );
  689. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  690. }
  691. #elif defined(__AVX__)
  692. for (int i = 0; i < nb; i++) {
  693. // Load elements into 4 AVX vectors
  694. __m256 v0 = _mm256_loadu_ps( x );
  695. __m256 v1 = _mm256_loadu_ps( x + 8 );
  696. __m256 v2 = _mm256_loadu_ps( x + 16 );
  697. __m256 v3 = _mm256_loadu_ps( x + 24 );
  698. x += 32;
  699. // Compute max(abs(e)) for the block
  700. const __m256 signBit = _mm256_set1_ps( -0.0f );
  701. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  702. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  703. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  704. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  705. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  706. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  707. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  708. const float maxScalar = _mm_cvtss_f32( max4 );
  709. // Quantize these floats
  710. const float d = maxScalar / 7.0f;
  711. y[i].d = d;
  712. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  713. const __m256 mul = _mm256_set1_ps( id );
  714. // Apply the multiplier
  715. v0 = _mm256_mul_ps( v0, mul );
  716. v1 = _mm256_mul_ps( v1, mul );
  717. v2 = _mm256_mul_ps( v2, mul );
  718. v3 = _mm256_mul_ps( v3, mul );
  719. // Round to nearest integer
  720. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  721. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  722. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  723. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  724. // Convert floats to integers
  725. __m256i i0 = _mm256_cvtps_epi32( v0 );
  726. __m256i i1 = _mm256_cvtps_epi32( v1 );
  727. __m256i i2 = _mm256_cvtps_epi32( v2 );
  728. __m256i i3 = _mm256_cvtps_epi32( v3 );
  729. // Since we don't have in AVX some necessary functions,
  730. // we split the registers in half and call AVX2 analogs from SSE
  731. __m128i ni0 = _mm256_castsi256_si128( i0 );
  732. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  733. __m128i ni2 = _mm256_castsi256_si128( i1 );
  734. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  735. __m128i ni4 = _mm256_castsi256_si128( i2 );
  736. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  737. __m128i ni6 = _mm256_castsi256_si128( i3 );
  738. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  739. // Convert int32 to int16
  740. ni0 = _mm_packs_epi32( ni0, ni1 );
  741. ni2 = _mm_packs_epi32( ni2, ni3 );
  742. ni4 = _mm_packs_epi32( ni4, ni5 );
  743. ni6 = _mm_packs_epi32( ni6, ni7 );
  744. // Convert int16 to int8
  745. ni0 = _mm_packs_epi16( ni0, ni2 );
  746. ni4 = _mm_packs_epi16( ni4, ni6 );
  747. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  748. const __m128i off = _mm_set1_epi8( 8);
  749. ni0 = _mm_add_epi8( ni0, off );
  750. ni4 = _mm_add_epi8( ni4, off );
  751. // Compress the vector into 4 bit/value, and store
  752. __m128i res = packNibbles( ni0, ni4 );
  753. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  754. }
  755. #elif defined(__wasm_simd128__)
  756. for (int i = 0; i < nb; i++) {
  757. float amax = 0.0f; // absolute max
  758. v128_t srcv [8];
  759. v128_t asrcv[8];
  760. v128_t amaxv[8];
  761. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  762. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  763. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  764. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  765. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  766. amax = MAX(
  767. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  768. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  769. const float d = amax / ((1 << 3) - 1);
  770. const float id = d ? 1.0/d : 0.0;
  771. y[i].d = d;
  772. for (int l = 0; l < 8; l++) {
  773. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  774. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  775. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  776. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  777. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  778. }
  779. }
  780. #else
  781. // scalar
  782. quantize_row_q4_0_reference(x, y, k);
  783. #endif
  784. }
  785. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  786. assert(k % QK4_1 == 0);
  787. const int nb = k / QK4_1;
  788. block_q4_1 * restrict y = vy;
  789. uint8_t pp[QK4_1/2];
  790. for (int i = 0; i < nb; i++) {
  791. float min = FLT_MAX;
  792. float max = -FLT_MAX;
  793. for (int l = 0; l < QK4_1; l++) {
  794. const float v = x[i*QK4_1 + l];
  795. if (v < min) min = v;
  796. if (v > max) max = v;
  797. }
  798. const float d = (max - min) / ((1 << 4) - 1);
  799. const float id = d ? 1.0f/d : 0.0f;
  800. y[i].d = d;
  801. y[i].m = min;
  802. for (int l = 0; l < QK4_1; l += 2) {
  803. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  804. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  805. const uint8_t vi0 = roundf(v0);
  806. const uint8_t vi1 = roundf(v1);
  807. assert(vi0 < 16);
  808. assert(vi1 < 16);
  809. pp[l/2] = vi0 | (vi1 << 4);
  810. }
  811. memcpy(y[i].qs, pp, sizeof(pp));
  812. }
  813. }
  814. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  815. assert(k % QK4_1 == 0);
  816. const int nb = k / QK4_1;
  817. block_q4_1 * restrict y = vy;
  818. #if defined(__AVX2__)
  819. for (int i = 0; i < nb; i++) {
  820. // Load elements into 4 AVX vectors
  821. __m256 v0 = _mm256_loadu_ps( x );
  822. __m256 v1 = _mm256_loadu_ps( x + 8 );
  823. __m256 v2 = _mm256_loadu_ps( x + 16 );
  824. __m256 v3 = _mm256_loadu_ps( x + 24 );
  825. x += 32;
  826. // Compute max for the block
  827. __m256 vmax;
  828. vmax = _mm256_max_ps( v0, v1 );
  829. vmax = _mm256_max_ps( vmax, v2 );
  830. vmax = _mm256_max_ps( vmax, v3 );
  831. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  832. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  833. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  834. const float maxScalar = _mm_cvtss_f32( max4 );
  835. // Compute min for the block
  836. __m256 vmin;
  837. vmin = _mm256_min_ps( v0, v1 );
  838. vmin = _mm256_min_ps( vmin, v2 );
  839. vmin = _mm256_min_ps( vmin, v3 );
  840. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  841. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  842. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  843. const float minScalar = _mm_cvtss_f32( min4 );
  844. // Quantize these floats
  845. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].m = minScalar;
  848. y[i].d = d;
  849. // x = (x-min)*id
  850. const __m256 mul = _mm256_set1_ps( id );
  851. const __m256 off = _mm256_set1_ps( minScalar );
  852. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  853. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  854. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  855. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  856. // Round to nearest integer
  857. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  858. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  859. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  860. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  861. // Convert floats to integers
  862. __m256i i0 = _mm256_cvtps_epi32( v0 );
  863. __m256i i1 = _mm256_cvtps_epi32( v1 );
  864. __m256i i2 = _mm256_cvtps_epi32( v2 );
  865. __m256i i3 = _mm256_cvtps_epi32( v3 );
  866. // Convert int32 to int16
  867. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  868. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  869. // Convert int16 to int8
  870. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  871. // We got our precious signed bytes, but the order is now wrong
  872. // These AVX2 pack instructions process 16-byte pieces independently
  873. // The following instruction is fixing the order
  874. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  875. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  876. // Compress the vector into 4 bit/value, and store
  877. __m128i res = packNibbles( i0 );
  878. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  879. }
  880. #elif __ARM_NEON
  881. for (int i = 0; i < nb; i++) {
  882. float32x4_t srcv[8];
  883. float32x4_t minv[8];
  884. float32x4_t maxv[8];
  885. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  886. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  887. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  888. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  889. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  890. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  891. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  892. const float min = vminvq_f32(minv[0]);
  893. const float max = vmaxvq_f32(maxv[0]);
  894. const float d = (max - min) / ((1 << 4) - 1);
  895. const float id = d ? 1.0f/d : 0.0f;
  896. y[i].d = d;
  897. y[i].m = min;
  898. const float32x4_t minv0 = vdupq_n_f32(min);
  899. for (int l = 0; l < 8; l++) {
  900. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  901. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  902. const int32x4_t vi = vcvtq_s32_f32(vf);
  903. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  904. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  905. }
  906. }
  907. #else
  908. // scalar
  909. quantize_row_q4_1_reference(x, vy, k);
  910. #endif
  911. }
  912. // reference implementation for deterministic creation of model files
  913. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  914. assert(k % QK4_2 == 0);
  915. const int nb = k / QK4_2;
  916. for (int i = 0; i < nb; i++) {
  917. float amax = 0.0f; // absolute max
  918. for (int l = 0; l < QK4_2; l++) {
  919. const float v = x[i*QK4_2 + l];
  920. amax = MAX(amax, fabsf(v));
  921. }
  922. const float d = amax / ((1 << 3) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].d = GGML_FP32_TO_FP16(d);
  925. for (int l = 0; l < QK4_2; l += 2) {
  926. const float v0 = x[i*QK4_2 + l + 0]*id;
  927. const float v1 = x[i*QK4_2 + l + 1]*id;
  928. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  929. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  930. assert(vi0 < 16);
  931. assert(vi1 < 16);
  932. y[i].qs[l/2] = vi0 | (vi1 << 4);
  933. }
  934. }
  935. }
  936. static inline int nearest_int(float fval) {
  937. assert(fval <= 4194303.f);
  938. float val = fval + 12582912.f;
  939. int i; memcpy(&i, &val, sizeof(int));
  940. return (i & 0x007fffff) - 0x00400000;
  941. }
  942. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  943. const float * restrict candidates, int8_t * restrict L) {
  944. assert (nmin >= INT8_MIN);
  945. assert (nmax <= INT8_MAX);
  946. float amax = 0;
  947. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  948. if (!amax) { // all zero
  949. for (int i=0; i<n; ++i) L[i] = 0;
  950. return 1.f;
  951. }
  952. float best = 0, bestScale = 0;
  953. for (int si=0; si<nCandidates; ++si) {
  954. float iscale = candidates[si]/amax;
  955. float sumlxP = 0; int suml2P = 0;
  956. float sumlxM = 0; int suml2M = 0;
  957. for (int i=0; i<n; ++i) {
  958. int l = nearest_int(iscale*X[i]);
  959. int lp = MAX(nmin, MIN(nmax, +l));
  960. int lm = MAX(nmin, MIN(nmax, -l));
  961. sumlxP += X[i]*lp; suml2P += lp*lp;
  962. sumlxM += X[i]*lm; suml2M += lm*lm;
  963. }
  964. float sumlxP2 = sumlxP*sumlxP;
  965. float sumlxM2 = sumlxM*sumlxM;
  966. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  967. if (sumlxP2 > best*suml2P) {
  968. best = sumlxP2/suml2P; bestScale = iscale;
  969. }
  970. } else {
  971. if (sumlxM2 > best*suml2M) {
  972. best = sumlxM2/suml2M; bestScale = -iscale;
  973. }
  974. }
  975. }
  976. float sumlx = 0; int suml2 = 0;
  977. for (int i=0; i<n; ++i) {
  978. int l = nearest_int(bestScale*X[i]);
  979. l = MAX(nmin, MIN(nmax, l));
  980. sumlx += X[i]*l; suml2 += l*l;
  981. L[i] = l;
  982. }
  983. float scale = sumlx/suml2;
  984. return scale;
  985. }
  986. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  987. #define CANDIDATE_COUNT 8
  988. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  989. assert(k % QK4_2 == 0);
  990. int8_t L[QK4_2];
  991. const int nb = k / QK4_2;
  992. for (int i = 0; i < nb; i++) {
  993. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  994. y[i].d = GGML_FP32_TO_FP16(scale);
  995. for (int l = 0; l < QK4_2; l += 2) {
  996. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  997. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  998. assert(vi0 < 16);
  999. assert(vi1 < 16);
  1000. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1001. }
  1002. x += QK4_2;
  1003. }
  1004. }
  1005. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1006. assert(k % QK4_2 == 0);
  1007. block_q4_2 * restrict y = vy;
  1008. //quantize_row_q4_2_reference(x, y, k);
  1009. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1010. quantize_row_q4_2_rmse(x, y, k);
  1011. }
  1012. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1013. assert(k % QK4_3 == 0);
  1014. const int nb = k / QK4_3;
  1015. for (int i = 0; i < nb; i++) {
  1016. float min = FLT_MAX;
  1017. float max = -FLT_MAX;
  1018. for (int l = 0; l < QK4_3; l++) {
  1019. const float v = x[i*QK4_3 + l];
  1020. if (v < min) min = v;
  1021. if (v > max) max = v;
  1022. }
  1023. const float d = (max - min) / ((1 << 4) - 1);
  1024. const float id = d ? 1.0f/d : 0.0f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. y[i].m = GGML_FP32_TO_FP16(min);
  1027. for (int l = 0; l < QK4_3; l += 2) {
  1028. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1029. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1030. const uint8_t vi0 = (int) (v0 + 0.5f);
  1031. const uint8_t vi1 = (int) (v1 + 0.5f);
  1032. assert(vi0 < 16);
  1033. assert(vi1 < 16);
  1034. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1035. }
  1036. }
  1037. }
  1038. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1039. assert(k % QK4_3 == 0);
  1040. block_q4_3 * restrict y = vy;
  1041. quantize_row_q4_3_reference(x, y, k);
  1042. }
  1043. // reference implementation for deterministic creation of model files
  1044. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1045. assert(k % QK8_0 == 0);
  1046. const int nb = k / QK8_0;
  1047. for (int i = 0; i < nb; i++) {
  1048. float amax = 0.0f; // absolute max
  1049. for (int l = 0; l < QK8_0; l++) {
  1050. const float v = x[i*QK8_0 + l];
  1051. amax = MAX(amax, fabsf(v));
  1052. }
  1053. const float d = amax / ((1 << 7) - 1);
  1054. const float id = d ? 1.0f/d : 0.0f;
  1055. y[i].d = d;
  1056. for (int l = 0; l < QK8_0; ++l) {
  1057. const float v = x[i*QK8_0 + l]*id;
  1058. y[i].qs[l] = roundf(v);
  1059. }
  1060. }
  1061. }
  1062. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1063. assert(k % QK8_0 == 0);
  1064. const int nb = k / QK8_0;
  1065. block_q8_0 * restrict y = vy;
  1066. #if defined(__ARM_NEON)
  1067. for (int i = 0; i < nb; i++) {
  1068. float32x4_t srcv [8];
  1069. float32x4_t asrcv[8];
  1070. float32x4_t amaxv[8];
  1071. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1072. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1073. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1074. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1075. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1076. const float amax = vmaxvq_f32(amaxv[0]);
  1077. const float d = amax / ((1 << 7) - 1);
  1078. const float id = d ? 1.0f/d : 0.0f;
  1079. y[i].d = d;
  1080. for (int l = 0; l < 8; l++) {
  1081. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1082. const int32x4_t vi = vcvtnq_s32_f32(v);
  1083. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1084. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1085. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1086. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1087. }
  1088. }
  1089. #elif defined(__AVX2__) || defined(__AVX__)
  1090. for (int i = 0; i < nb; i++) {
  1091. // Load elements into 4 AVX vectors
  1092. __m256 v0 = _mm256_loadu_ps( x );
  1093. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1094. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1095. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1096. x += 32;
  1097. // Compute max(abs(e)) for the block
  1098. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1099. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1100. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1101. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1102. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1103. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1104. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1105. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1106. const float maxScalar = _mm_cvtss_f32( max4 );
  1107. // Quantize these floats
  1108. const float d = maxScalar / 127.f;
  1109. y[i].d = d;
  1110. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1111. const __m256 mul = _mm256_set1_ps( id );
  1112. // Apply the multiplier
  1113. v0 = _mm256_mul_ps( v0, mul );
  1114. v1 = _mm256_mul_ps( v1, mul );
  1115. v2 = _mm256_mul_ps( v2, mul );
  1116. v3 = _mm256_mul_ps( v3, mul );
  1117. // Round to nearest integer
  1118. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1119. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1120. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1121. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1122. // Convert floats to integers
  1123. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1124. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1125. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1126. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1127. #if defined(__AVX2__)
  1128. // Convert int32 to int16
  1129. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1130. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1131. // Convert int16 to int8
  1132. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1133. // We got our precious signed bytes, but the order is now wrong
  1134. // These AVX2 pack instructions process 16-byte pieces independently
  1135. // The following instruction is fixing the order
  1136. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1137. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1138. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1139. #else
  1140. // Since we don't have in AVX some necessary functions,
  1141. // we split the registers in half and call AVX2 analogs from SSE
  1142. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1143. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1144. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1145. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1146. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1147. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1148. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1149. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1150. // Convert int32 to int16
  1151. ni0 = _mm_packs_epi32( ni0, ni1 );
  1152. ni2 = _mm_packs_epi32( ni2, ni3 );
  1153. ni4 = _mm_packs_epi32( ni4, ni5 );
  1154. ni6 = _mm_packs_epi32( ni6, ni7 );
  1155. // Convert int16 to int8
  1156. ni0 = _mm_packs_epi16( ni0, ni2 );
  1157. ni4 = _mm_packs_epi16( ni4, ni6 );
  1158. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1160. #endif
  1161. }
  1162. #else
  1163. // scalar
  1164. quantize_row_q8_0_reference(x, y, k);
  1165. #endif
  1166. }
  1167. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1168. assert(k % QK4_0 == 0);
  1169. const int nb = k / QK4_0;
  1170. const block_q4_0 * restrict x = vx;
  1171. #if defined(__AVX2__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // scale factor
  1174. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1175. const uint8_t * restrict pp = x[i].qs;
  1176. for (int l = 0; l < QK4_0; l += 32) {
  1177. // Load 32x4-bit integers into 32x8-bit integers
  1178. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1179. // Subtract 8 from the integers
  1180. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1181. // Convert to 16-bit int
  1182. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1183. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1184. // Convert to 32-bit int -> float 32
  1185. const __m256 vf[4] = {
  1186. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1187. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1188. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1189. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1190. };
  1191. // Scale and store
  1192. for (int j = 0; j < 4; j++) {
  1193. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1194. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1195. }
  1196. }
  1197. }
  1198. #elif defined(__ARM_NEON)
  1199. for (int i = 0; i < nb; i++) {
  1200. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1201. const uint8_t * restrict pp = x[i].qs;
  1202. for (int l = 0; l < QK4_0; l += 16) {
  1203. // Load 16x4-bit integers into 8x8-bit integers
  1204. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1205. // Expand 4-bit qs to 8-bit bytes
  1206. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1207. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1208. // Convert to signed 8-bit integers
  1209. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1210. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1211. // Subtract 8 from each byte
  1212. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1213. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1214. // Interleave and combine
  1215. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1216. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1217. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1218. // convert to 2x int16x8_t
  1219. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1220. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1221. // convert to 4x float32x4_t
  1222. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1223. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1224. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1225. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1226. // Multiply by d
  1227. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1228. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1229. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1230. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1231. // Store
  1232. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1233. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1234. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1235. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1236. }
  1237. }
  1238. #else
  1239. // scalar
  1240. for (int i = 0; i < nb; i++) {
  1241. const float d = x[i].d;
  1242. const uint8_t * restrict pp = x[i].qs;
  1243. for (int l = 0; l < QK4_0; l += 2) {
  1244. const uint8_t vi = pp[l/2];
  1245. const int8_t vi0 = vi & 0xf;
  1246. const int8_t vi1 = vi >> 4;
  1247. const float v0 = (vi0 - 8)*d;
  1248. const float v1 = (vi1 - 8)*d;
  1249. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1250. y[i*QK4_0 + l + 0] = v0;
  1251. y[i*QK4_0 + l + 1] = v1;
  1252. assert(!isnan(y[i*QK4_0 + l + 0]));
  1253. assert(!isnan(y[i*QK4_0 + l + 1]));
  1254. }
  1255. }
  1256. #endif
  1257. }
  1258. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1259. assert(k % QK4_1 == 0);
  1260. const int nb = k / QK4_1;
  1261. const block_q4_1 * restrict x = vx;
  1262. #if defined(__AVX2__)
  1263. for (int i = 0; i < nb; i++) {
  1264. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1265. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1266. const uint8_t * restrict pp = x[i].qs;
  1267. for (int l = 0; l < QK4_1; l += 32) {
  1268. // Load 32x4-bit integers into 32x8-bit integers
  1269. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1270. // Convert to 16-bit int
  1271. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1272. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1273. // Convert to 32-bit int -> float 32
  1274. const __m256 vf[4] = {
  1275. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1276. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1277. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1278. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1279. };
  1280. // Scale, add m and store
  1281. for (int j = 0; j < 4; j++) {
  1282. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1283. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1284. }
  1285. }
  1286. }
  1287. #elif defined(__ARM_NEON)
  1288. for (int i = 0; i < nb; i++) {
  1289. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1290. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1291. const uint8_t * restrict pp = x[i].qs;
  1292. for (int l = 0; l < QK4_1; l += 16) {
  1293. // Load 16x4-bit integers into 8x8-bit integers
  1294. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1295. // Expand 4-bit qs to 8-bit bytes
  1296. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1297. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1298. // Interleave and combine
  1299. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1300. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1301. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1302. // convert to 2x uint16x8_t
  1303. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1304. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1305. // convert to 4x float32x4_t
  1306. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1307. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1308. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1309. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1310. // multiply by d and add m
  1311. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1312. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1313. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1314. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1315. // Store
  1316. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1317. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1318. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1319. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1320. }
  1321. }
  1322. #else
  1323. for (int i = 0; i < nb; i++) {
  1324. const float d = x[i].d;
  1325. const float m = x[i].m;
  1326. const uint8_t * restrict pp = x[i].qs;
  1327. for (int l = 0; l < QK4_1; l += 2) {
  1328. const uint8_t vi = pp[l/2];
  1329. const int8_t vi0 = vi & 0xf;
  1330. const int8_t vi1 = vi >> 4;
  1331. const float v0 = vi0*d + m;
  1332. const float v1 = vi1*d + m;
  1333. y[i*QK4_1 + l + 0] = v0;
  1334. y[i*QK4_1 + l + 1] = v1;
  1335. assert(!isnan(y[i*QK4_1 + l + 0]));
  1336. assert(!isnan(y[i*QK4_1 + l + 1]));
  1337. }
  1338. }
  1339. #endif
  1340. }
  1341. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1342. assert(k % QK4_2 == 0);
  1343. const int nb = k / QK4_2;
  1344. const block_q4_2 * restrict x = vx;
  1345. for (int i = 0; i < nb; i++) {
  1346. const float d = GGML_FP16_TO_FP32(x[i].d);
  1347. const uint8_t * restrict pp = x[i].qs;
  1348. for (int l = 0; l < QK4_2; l += 2) {
  1349. const uint8_t vi = pp[l/2];
  1350. const int8_t vi0 = vi & 0xf;
  1351. const int8_t vi1 = vi >> 4;
  1352. const float v0 = (vi0 - 8)*d;
  1353. const float v1 = (vi1 - 8)*d;
  1354. y[i*QK4_2 + l + 0] = v0;
  1355. y[i*QK4_2 + l + 1] = v1;
  1356. assert(!isnan(y[i*QK4_2 + l + 0]));
  1357. assert(!isnan(y[i*QK4_2 + l + 1]));
  1358. }
  1359. }
  1360. }
  1361. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1362. assert(k % QK4_3 == 0);
  1363. const int nb = k / QK4_3;
  1364. const block_q4_3 * restrict x = vx;
  1365. for (int i = 0; i < nb; i++) {
  1366. const float d = GGML_FP16_TO_FP32(x[i].d);
  1367. const float m = GGML_FP16_TO_FP32(x[i].m);
  1368. const uint8_t * restrict pp = x[i].qs;
  1369. for (int l = 0; l < QK4_3; l += 2) {
  1370. const uint8_t vi = pp[l/2];
  1371. const int8_t vi0 = vi & 0xf;
  1372. const int8_t vi1 = vi >> 4;
  1373. const float v0 = vi0*d + m;
  1374. const float v1 = vi1*d + m;
  1375. y[i*QK4_3 + l + 0] = v0;
  1376. y[i*QK4_3 + l + 1] = v1;
  1377. assert(!isnan(y[i*QK4_3 + l + 0]));
  1378. assert(!isnan(y[i*QK4_3 + l + 1]));
  1379. }
  1380. }
  1381. }
  1382. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1383. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1384. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1385. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1386. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1387. [GGML_TYPE_Q4_0] = {
  1388. .dequantize_row_q = dequantize_row_q4_0,
  1389. .quantize_row_q = quantize_row_q4_0,
  1390. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1391. .quantize_row_q_dot = quantize_row_q8_0,
  1392. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1393. },
  1394. [GGML_TYPE_Q4_1] = {
  1395. .dequantize_row_q = dequantize_row_q4_1,
  1396. .quantize_row_q = quantize_row_q4_1,
  1397. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1398. .quantize_row_q_dot = quantize_row_q8_0,
  1399. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1400. },
  1401. [GGML_TYPE_Q4_2] = {
  1402. .dequantize_row_q = dequantize_row_q4_2,
  1403. .quantize_row_q = quantize_row_q4_2,
  1404. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1405. .quantize_row_q_dot = quantize_row_q8_0,
  1406. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1407. },
  1408. [GGML_TYPE_Q4_3] = {
  1409. .dequantize_row_q = dequantize_row_q4_3,
  1410. .quantize_row_q = quantize_row_q4_3,
  1411. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1412. .quantize_row_q_dot = quantize_row_q8_0,
  1413. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1414. },
  1415. [GGML_TYPE_Q8_0] = {
  1416. .dequantize_row_q = NULL, // TODO
  1417. .quantize_row_q = quantize_row_q8_0,
  1418. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1419. .quantize_row_q_dot = quantize_row_q8_0,
  1420. .vec_dot_q = NULL, // TODO
  1421. },
  1422. };
  1423. // For internal test use
  1424. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1425. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1426. return quantize_fns[i];
  1427. }
  1428. //
  1429. // simd mappings
  1430. //
  1431. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1432. // we then implement the fundamental computation operations below using only these macros
  1433. // adding support for new architectures requires to define the corresponding SIMD macros
  1434. //
  1435. // GGML_F32_STEP / GGML_F16_STEP
  1436. // number of elements to process in a single step
  1437. //
  1438. // GGML_F32_EPR / GGML_F16_EPR
  1439. // number of elements to fit in a single register
  1440. //
  1441. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1442. #define GGML_SIMD
  1443. // F32 NEON
  1444. #define GGML_F32_STEP 16
  1445. #define GGML_F32_EPR 4
  1446. #define GGML_F32x4 float32x4_t
  1447. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1448. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1449. #define GGML_F32x4_LOAD vld1q_f32
  1450. #define GGML_F32x4_STORE vst1q_f32
  1451. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1452. #define GGML_F32x4_ADD vaddq_f32
  1453. #define GGML_F32x4_MUL vmulq_f32
  1454. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1455. #define GGML_F32x4_REDUCE(res, x) \
  1456. { \
  1457. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1458. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1459. } \
  1460. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1461. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1462. } \
  1463. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1464. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1465. } \
  1466. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1467. }
  1468. #define GGML_F32_VEC GGML_F32x4
  1469. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1470. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1471. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1472. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1473. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1474. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1475. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1476. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1477. // F16 NEON
  1478. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1479. #define GGML_F16_STEP 32
  1480. #define GGML_F16_EPR 8
  1481. #define GGML_F16x8 float16x8_t
  1482. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1483. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1484. #define GGML_F16x8_LOAD vld1q_f16
  1485. #define GGML_F16x8_STORE vst1q_f16
  1486. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1487. #define GGML_F16x8_ADD vaddq_f16
  1488. #define GGML_F16x8_MUL vmulq_f16
  1489. #define GGML_F16x8_REDUCE(res, x) \
  1490. { \
  1491. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1492. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1493. } \
  1494. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1495. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1496. } \
  1497. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1498. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1499. } \
  1500. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1501. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1502. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1503. }
  1504. #define GGML_F16_VEC GGML_F16x8
  1505. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1506. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1507. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1508. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1509. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1510. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1511. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1512. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1513. #else
  1514. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1515. // and take advantage of the vcvt_ functions to convert to/from FP16
  1516. #define GGML_F16_STEP 16
  1517. #define GGML_F16_EPR 4
  1518. #define GGML_F32Cx4 float32x4_t
  1519. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1520. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1521. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1522. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1523. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1524. #define GGML_F32Cx4_ADD vaddq_f32
  1525. #define GGML_F32Cx4_MUL vmulq_f32
  1526. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1527. #define GGML_F16_VEC GGML_F32Cx4
  1528. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1529. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1530. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1531. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1532. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1533. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1534. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1535. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1536. #endif
  1537. #elif defined(__AVX__)
  1538. #define GGML_SIMD
  1539. // F32 AVX
  1540. #define GGML_F32_STEP 32
  1541. #define GGML_F32_EPR 8
  1542. #define GGML_F32x8 __m256
  1543. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1544. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1545. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1546. #define GGML_F32x8_STORE _mm256_storeu_ps
  1547. #if defined(__FMA__)
  1548. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1549. #else
  1550. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1551. #endif
  1552. #define GGML_F32x8_ADD _mm256_add_ps
  1553. #define GGML_F32x8_MUL _mm256_mul_ps
  1554. #define GGML_F32x8_REDUCE(res, x) \
  1555. { \
  1556. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1557. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1558. } \
  1559. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1560. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1561. } \
  1562. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1563. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1564. } \
  1565. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1566. _mm256_extractf128_ps(x[0], 1)); \
  1567. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1568. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1569. }
  1570. // TODO: is this optimal ?
  1571. #define GGML_F32_VEC GGML_F32x8
  1572. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1573. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1574. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1575. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1576. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1577. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1578. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1579. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1580. // F16 AVX
  1581. #define GGML_F16_STEP 32
  1582. #define GGML_F16_EPR 8
  1583. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1584. #define GGML_F32Cx8 __m256
  1585. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1586. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1587. #if defined(__F16C__)
  1588. // the _mm256_cvt intrinsics require F16C
  1589. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1590. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1591. #else
  1592. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1593. float tmp[8];
  1594. for (int i = 0; i < 8; i++)
  1595. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1596. return _mm256_loadu_ps(tmp);
  1597. }
  1598. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1599. float arr[8];
  1600. _mm256_storeu_ps(arr, y);
  1601. for (int i = 0; i < 8; i++)
  1602. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1603. }
  1604. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1605. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1606. #endif
  1607. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1608. #define GGML_F32Cx8_ADD _mm256_add_ps
  1609. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1610. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1611. #define GGML_F16_VEC GGML_F32Cx8
  1612. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1613. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1614. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1615. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1616. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1617. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1618. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1619. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1620. #elif defined(__POWER9_VECTOR__)
  1621. #define GGML_SIMD
  1622. // F32 POWER9
  1623. #define GGML_F32_STEP 32
  1624. #define GGML_F32_EPR 4
  1625. #define GGML_F32x4 vector float
  1626. #define GGML_F32x4_ZERO 0.0f
  1627. #define GGML_F32x4_SET1 vec_splats
  1628. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1629. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1630. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1631. #define GGML_F32x4_ADD vec_add
  1632. #define GGML_F32x4_MUL vec_mul
  1633. #define GGML_F32x4_REDUCE(res, x) \
  1634. { \
  1635. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1636. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1637. } \
  1638. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1639. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1640. } \
  1641. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1642. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1643. } \
  1644. res = vec_extract(x[0], 0) + \
  1645. vec_extract(x[0], 1) + \
  1646. vec_extract(x[0], 2) + \
  1647. vec_extract(x[0], 3); \
  1648. }
  1649. #define GGML_F32_VEC GGML_F32x4
  1650. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1651. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1652. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1653. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1654. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1655. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1656. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1657. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1658. // F16 POWER9
  1659. #define GGML_F16_STEP GGML_F32_STEP
  1660. #define GGML_F16_EPR GGML_F32_EPR
  1661. #define GGML_F16_VEC GGML_F32x4
  1662. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1663. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1664. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1665. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1666. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1667. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1668. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1669. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1670. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1671. #define GGML_F16_VEC_STORE(p, r, i) \
  1672. if (i & 0x1) \
  1673. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1674. r[i - GGML_ENDIAN_BYTE(0)]), \
  1675. 0, p - GGML_F16_EPR)
  1676. #elif defined(__wasm_simd128__)
  1677. #define GGML_SIMD
  1678. // F32 WASM
  1679. #define GGML_F32_STEP 16
  1680. #define GGML_F32_EPR 4
  1681. #define GGML_F32x4 v128_t
  1682. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1683. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1684. #define GGML_F32x4_LOAD wasm_v128_load
  1685. #define GGML_F32x4_STORE wasm_v128_store
  1686. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1687. #define GGML_F32x4_ADD wasm_f32x4_add
  1688. #define GGML_F32x4_MUL wasm_f32x4_mul
  1689. #define GGML_F32x4_REDUCE(res, x) \
  1690. { \
  1691. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1692. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1693. } \
  1694. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1695. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1696. } \
  1697. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1698. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1699. } \
  1700. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1701. wasm_f32x4_extract_lane(x[0], 1) + \
  1702. wasm_f32x4_extract_lane(x[0], 2) + \
  1703. wasm_f32x4_extract_lane(x[0], 3); \
  1704. }
  1705. #define GGML_F32_VEC GGML_F32x4
  1706. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1707. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1708. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1709. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1710. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1711. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1712. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1713. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // F16 WASM
  1715. #define GGML_F16_STEP 16
  1716. #define GGML_F16_EPR 4
  1717. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1718. float tmp[4];
  1719. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1720. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1721. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1722. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1723. return wasm_v128_load(tmp);
  1724. }
  1725. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1726. float tmp[4];
  1727. wasm_v128_store(tmp, x);
  1728. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1729. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1730. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1731. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1732. }
  1733. #define GGML_F16x4 v128_t
  1734. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1735. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1736. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1737. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1738. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1739. #define GGML_F16x4_ADD wasm_f32x4_add
  1740. #define GGML_F16x4_MUL wasm_f32x4_mul
  1741. #define GGML_F16x4_REDUCE(res, x) \
  1742. { \
  1743. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1744. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1745. } \
  1746. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1747. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1748. } \
  1749. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1750. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1751. } \
  1752. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1753. wasm_f32x4_extract_lane(x[0], 1) + \
  1754. wasm_f32x4_extract_lane(x[0], 2) + \
  1755. wasm_f32x4_extract_lane(x[0], 3); \
  1756. }
  1757. #define GGML_F16_VEC GGML_F16x4
  1758. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1760. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1761. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1762. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1763. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1764. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1765. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1766. #elif defined(__SSE3__)
  1767. #define GGML_SIMD
  1768. // F32 SSE
  1769. #define GGML_F32_STEP 32
  1770. #define GGML_F32_EPR 4
  1771. #define GGML_F32x4 __m128
  1772. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1773. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1774. #define GGML_F32x4_LOAD _mm_loadu_ps
  1775. #define GGML_F32x4_STORE _mm_storeu_ps
  1776. #if defined(__FMA__)
  1777. // TODO: Does this work?
  1778. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1779. #else
  1780. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1781. #endif
  1782. #define GGML_F32x4_ADD _mm_add_ps
  1783. #define GGML_F32x4_MUL _mm_mul_ps
  1784. #define GGML_F32x4_REDUCE(res, x) \
  1785. { \
  1786. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1787. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1788. } \
  1789. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1790. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1791. } \
  1792. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1793. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1794. } \
  1795. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1796. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1797. }
  1798. // TODO: is this optimal ?
  1799. #define GGML_F32_VEC GGML_F32x4
  1800. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1801. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1802. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1803. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1804. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1805. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1806. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1807. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1808. // F16 SSE
  1809. #define GGML_F16_STEP 32
  1810. #define GGML_F16_EPR 4
  1811. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1812. float tmp[4];
  1813. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1814. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1815. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1816. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1817. return _mm_loadu_ps(tmp);
  1818. }
  1819. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1820. float arr[4];
  1821. _mm_storeu_ps(arr, y);
  1822. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1823. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1824. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1825. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1826. }
  1827. #define GGML_F32Cx4 __m128
  1828. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1829. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1830. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1831. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1832. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1833. #define GGML_F32Cx4_ADD _mm_add_ps
  1834. #define GGML_F32Cx4_MUL _mm_mul_ps
  1835. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1836. #define GGML_F16_VEC GGML_F32Cx4
  1837. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1838. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1839. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1840. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1841. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1842. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1843. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1844. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1845. #endif
  1846. // GGML_F32_ARR / GGML_F16_ARR
  1847. // number of registers to use per step
  1848. #ifdef GGML_SIMD
  1849. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1850. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1851. #endif
  1852. //
  1853. // fundamental operations
  1854. //
  1855. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1856. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1857. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1858. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1859. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1860. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1861. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1862. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1863. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1864. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1865. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1866. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1867. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1868. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1869. #ifdef GGML_SIMD
  1870. float sumf = 0.0f;
  1871. const int np = (n & ~(GGML_F32_STEP - 1));
  1872. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1873. GGML_F32_VEC ax[GGML_F32_ARR];
  1874. GGML_F32_VEC ay[GGML_F32_ARR];
  1875. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1876. for (int j = 0; j < GGML_F32_ARR; j++) {
  1877. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1878. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1879. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1880. }
  1881. }
  1882. // reduce sum0..sum3 to sum0
  1883. GGML_F32_VEC_REDUCE(sumf, sum);
  1884. // leftovers
  1885. for (int i = np; i < n; ++i) {
  1886. sumf += x[i]*y[i];
  1887. }
  1888. #else
  1889. // scalar
  1890. ggml_float sumf = 0.0;
  1891. for (int i = 0; i < n; ++i) {
  1892. sumf += (ggml_float)(x[i]*y[i]);
  1893. }
  1894. #endif
  1895. *s = sumf;
  1896. }
  1897. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1898. ggml_float sumf = 0.0;
  1899. #if defined(GGML_SIMD)
  1900. const int np = (n & ~(GGML_F16_STEP - 1));
  1901. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1902. GGML_F16_VEC ax[GGML_F16_ARR];
  1903. GGML_F16_VEC ay[GGML_F16_ARR];
  1904. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1905. for (int j = 0; j < GGML_F16_ARR; j++) {
  1906. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1907. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1908. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1909. }
  1910. }
  1911. // reduce sum0..sum3 to sum0
  1912. GGML_F16_VEC_REDUCE(sumf, sum);
  1913. // leftovers
  1914. for (int i = np; i < n; ++i) {
  1915. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1916. }
  1917. #else
  1918. for (int i = 0; i < n; ++i) {
  1919. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1920. }
  1921. #endif
  1922. *s = sumf;
  1923. }
  1924. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1925. const int nb = n / QK8_0;
  1926. assert(n % QK8_0 == 0);
  1927. assert(nb % 2 == 0);
  1928. const block_q4_0 * restrict x = vx;
  1929. const block_q8_0 * restrict y = vy;
  1930. float sumf = 0.0;
  1931. #if defined(__ARM_NEON)
  1932. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1933. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1934. for (int i = 0; i < nb; i += 2) {
  1935. const block_q4_0 * restrict x0 = &x[i + 0];
  1936. const block_q4_0 * restrict x1 = &x[i + 1];
  1937. const block_q8_0 * restrict y0 = &y[i + 0];
  1938. const block_q8_0 * restrict y1 = &y[i + 1];
  1939. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1940. const int8x16_t s8b = vdupq_n_s8(0x8);
  1941. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1942. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1943. // 4-bit -> 8-bit
  1944. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1945. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1946. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1947. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1948. // sub 8
  1949. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1950. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1951. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1952. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1953. // load y
  1954. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1955. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1956. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1957. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1958. // interleave
  1959. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1960. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1961. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1962. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1963. #if defined(__ARM_FEATURE_DOTPROD)
  1964. // dot product into int32x4_t
  1965. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  1966. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  1967. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1968. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1969. #else
  1970. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1971. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1972. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1973. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1974. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1975. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1976. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1977. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1978. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1979. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1980. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1981. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1982. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1983. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1984. #endif
  1985. }
  1986. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1987. #elif defined(__AVX2__)
  1988. // Initialize accumulator with zeros
  1989. __m256 acc = _mm256_setzero_ps();
  1990. // Main loop
  1991. for (int i = 0; i < nb; ++i) {
  1992. /* Compute combined scale for the block */
  1993. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1994. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1995. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1996. const __m256i off = _mm256_set1_epi8( 8 );
  1997. bx = _mm256_sub_epi8( bx, off );
  1998. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1999. // Get absolute values of x vectors
  2000. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2001. // Sign the values of the y vectors
  2002. const __m256i sy = _mm256_sign_epi8(by, bx);
  2003. // Perform multiplication and create 16-bit values
  2004. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2005. const __m256i ones = _mm256_set1_epi16(1);
  2006. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2007. /* Convert to vectore of 8 int32_t to 8 floats */
  2008. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2009. /* Multiply q with scale and accumulate */
  2010. acc = _mm256_fmadd_ps( d, q, acc );
  2011. }
  2012. // Return horizontal sum of the acc vector
  2013. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2014. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2015. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2016. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2017. sumf = _mm_cvtss_f32( res );
  2018. #elif defined(__AVX__)
  2019. // Initialize accumulator with zeros
  2020. __m256 acc = _mm256_setzero_ps();
  2021. // Main loop
  2022. for (int i = 0; i < nb; ++i) {
  2023. // Compute combined scale for the block
  2024. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2025. __m128i i32[2];
  2026. for (int j = 0; j < 2; ++j) {
  2027. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2028. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2029. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2030. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2031. const __m128i off = _mm_set1_epi8( 8 );
  2032. bx = _mm_sub_epi8( bx, off );
  2033. // Get absolute values of x vectors
  2034. const __m128i ax = _mm_sign_epi8(bx, bx);
  2035. // Sign the values of the y vectors
  2036. const __m128i sy = _mm_sign_epi8(by, bx);
  2037. // Perform multiplication and create 16-bit values
  2038. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2039. const __m128i ones = _mm_set1_epi16(1);
  2040. i32[j] = _mm_madd_epi16(ones, dot);
  2041. }
  2042. // Convert int32_t to float
  2043. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2044. // Apply the scale, and accumulate
  2045. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2046. }
  2047. // Return horizontal sum of the acc vector
  2048. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2049. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2050. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2051. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2052. sumf = _mm_cvtss_f32( res );
  2053. #else
  2054. // scalar
  2055. for (int i = 0; i < nb; i++) {
  2056. const float d0 = x[i].d;
  2057. const float d1 = y[i].d;
  2058. const uint8_t * restrict p0 = x[i].qs;
  2059. const int8_t * restrict p1 = y[i].qs;
  2060. int sumi = 0;
  2061. for (int j = 0; j < QK8_0/2; j++) {
  2062. const uint8_t v0 = p0[j];
  2063. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2064. const int i1 = (int8_t) (v0 >> 4) - 8;
  2065. const int i2 = p1[2*j + 0];
  2066. const int i3 = p1[2*j + 1];
  2067. sumi += i0*i2 + i1*i3;
  2068. }
  2069. sumf += d0*d1*sumi;
  2070. }
  2071. #endif
  2072. *s = sumf;
  2073. }
  2074. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2075. const int nb = n / QK8_0;
  2076. assert(n % QK8_0 == 0);
  2077. assert(nb % 2 == 0);
  2078. const block_q4_1 * restrict x = vx;
  2079. const block_q8_0 * restrict y = vy;
  2080. float sumf = 0.0;
  2081. // TODO: add AVX / WASM SIMD / etc
  2082. #if defined(__ARM_NEON)
  2083. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2084. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2085. for (int i = 0; i < nb; i += 2) {
  2086. const block_q4_1 * restrict x0 = &x[i + 0];
  2087. const block_q4_1 * restrict x1 = &x[i + 1];
  2088. const block_q8_0 * restrict y0 = &y[i + 0];
  2089. const block_q8_0 * restrict y1 = &y[i + 1];
  2090. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2091. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2092. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2093. // 4-bit -> 8-bit
  2094. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2095. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2096. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2097. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2098. // load y
  2099. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2100. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2101. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2102. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2103. // interleave
  2104. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2105. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2106. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2107. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2108. const int16x8_t s0i = vaddq_s16(
  2109. vaddq_s16(vmovl_s8(vget_low_s8(v1_0ls)), vmovl_s8(vget_high_s8(v1_0ls))),
  2110. vaddq_s16(vmovl_s8(vget_low_s8(v1_0hs)), vmovl_s8(vget_high_s8(v1_0hs))));
  2111. const int16x8_t s1i = vaddq_s16(
  2112. vaddq_s16(vmovl_s8(vget_low_s8(v1_1ls)), vmovl_s8(vget_high_s8(v1_1ls))),
  2113. vaddq_s16(vmovl_s8(vget_low_s8(v1_1hs)), vmovl_s8(vget_high_s8(v1_1hs))));
  2114. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s0i), vget_high_s16(s0i))), x0->m*y0->d);
  2115. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s1i), vget_high_s16(s1i))), x1->m*y1->d);
  2116. #if defined(__ARM_FEATURE_DOTPROD)
  2117. // dot product into int32x4_t
  2118. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2119. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2120. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2121. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2122. #else
  2123. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2124. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2125. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2126. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2127. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2128. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2129. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2130. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2131. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2132. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2133. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2134. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2135. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2136. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2137. #endif
  2138. }
  2139. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2140. #elif defined(__AVX2__)
  2141. // Initialize accumulator with zeros
  2142. __m256 acc = _mm256_setzero_ps();
  2143. // Main loop
  2144. for (int i = 0; i < nb; ++i) {
  2145. const float * d0 = &x[i].d;
  2146. const float * d1 = &y[i].d;
  2147. const float * m0 = &x[i].m;
  2148. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2149. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2150. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2151. // Compute combined scales
  2152. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2153. const __m256 d1m0 = _mm256_mul_ps( d1v, m0v );
  2154. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2155. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2156. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2157. // Get absolute values of x vectors
  2158. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2159. // Sign the values of the y vectors
  2160. const __m256i sy = _mm256_sign_epi8( by, bx );
  2161. // Perform multiplication and create 16-bit values
  2162. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2163. const __m256i ones = _mm256_set1_epi16( 1 );
  2164. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2165. // Convert to vector of 8 int32_t to 8 floats
  2166. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2167. // Accumulate d0*d1*x*y
  2168. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2169. // Compute sum of y values
  2170. const __m256i y16_l = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2171. const __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2172. const __m256i ysumi = _mm256_madd_epi16( _mm256_add_epi16(y16_l, y16_h), ones );
  2173. const __m256 ysum = _mm256_cvtepi32_ps( ysumi );
  2174. // Accumulate d1*m0*y
  2175. acc = _mm256_fmadd_ps( d1m0, ysum, acc );
  2176. }
  2177. // Return horizontal sum of the acc vector
  2178. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2179. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2180. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2181. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2182. sumf = _mm_cvtss_f32( res );
  2183. #else
  2184. // scalar
  2185. for (int i = 0; i < nb; i++) {
  2186. const float d0 = x[i].d;
  2187. const float m0 = x[i].m;
  2188. const float d1 = y[i].d;
  2189. const uint8_t * restrict p0 = x[i].qs;
  2190. const int8_t * restrict p1 = y[i].qs;
  2191. // TODO: this is very slow ..
  2192. for (int j = 0; j < QK8_0/2; j++) {
  2193. const uint8_t v0 = p0[j];
  2194. const float f0 = d0*(v0 & 0xf) + m0;
  2195. const float f1 = d0*(v0 >> 4) + m0;
  2196. const float f2 = d1*p1[2*j + 0];
  2197. const float f3 = d1*p1[2*j + 1];
  2198. sumf += f0*f2 + f1*f3;
  2199. }
  2200. }
  2201. #endif
  2202. *s = sumf;
  2203. }
  2204. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2205. const int nb = n / QK8_0;
  2206. assert(n % QK8_0 == 0);
  2207. assert(nb % 2 == 0);
  2208. assert(QK8_0 == 2*QK4_2);
  2209. const block_q4_2 * restrict x = vx;
  2210. const block_q8_0 * restrict y = vy;
  2211. float sumf = 0.0;
  2212. #if defined(__ARM_NEON)
  2213. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2214. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2215. for (int i = 0; i < nb; i += 2) {
  2216. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2217. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2218. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2219. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2220. const block_q8_0 * restrict y0 = &y[i + 0];
  2221. const block_q8_0 * restrict y1 = &y[i + 1];
  2222. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2223. const int8x16_t s8b = vdupq_n_s8(0x8);
  2224. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2225. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2226. // 4-bit -> 8-bit
  2227. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2228. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2229. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2230. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2231. // sub 8
  2232. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2233. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2234. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2235. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2236. // interleave
  2237. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2238. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2239. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2240. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2241. // load y
  2242. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2243. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2244. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2245. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2246. #if defined(__ARM_FEATURE_DOTPROD)
  2247. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2248. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2249. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2250. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2251. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2252. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2253. #else
  2254. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2255. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2256. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2257. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2258. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2259. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2260. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2261. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2262. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2263. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2264. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2265. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2266. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2267. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2268. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2269. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2270. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2271. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2272. #endif
  2273. }
  2274. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2275. #elif defined(__AVX2__)
  2276. // Initialize accumulator with zeros
  2277. __m256 acc = _mm256_setzero_ps();
  2278. // Main loop
  2279. for (int i = 0; i < nb; i++) {
  2280. /* Compute combined scale for the block */
  2281. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2282. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2283. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2284. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2285. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2286. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2287. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2288. const __m256i off = _mm256_set1_epi8(8);
  2289. bx = _mm256_sub_epi8(bx, off);
  2290. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2291. // Get absolute values of x vectors
  2292. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2293. // Sign the values of the y vectors
  2294. const __m256i sy = _mm256_sign_epi8(by, bx);
  2295. // Perform multiplication and create 16-bit values
  2296. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2297. const __m256i ones = _mm256_set1_epi16(1);
  2298. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2299. /* Convert to vectore of 8 int32_t to 8 floats */
  2300. __m256 q = _mm256_cvtepi32_ps(xy_q);
  2301. /* Multiply q with scale and accumulate */
  2302. acc = _mm256_fmadd_ps(d, q, acc);
  2303. }
  2304. // Return horizontal sum of the acc vector
  2305. __m128 res = _mm256_extractf128_ps(acc, 1);
  2306. res = _mm_add_ps(res, _mm256_castps256_ps128(acc));
  2307. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  2308. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  2309. sumf = _mm_cvtss_f32(res);
  2310. #else
  2311. // scalar
  2312. for (int i = 0; i < nb; i++) {
  2313. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2314. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2315. const int8_t * restrict y0 = y[i].qs;
  2316. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2317. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2318. int sumi_0 = 0;
  2319. int sumi_1 = 0;
  2320. for (int j = 0; j < QK8_0/4; j++) {
  2321. const uint8_t v0 = x0[j];
  2322. const uint8_t v1 = x1[j];
  2323. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2324. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2325. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2326. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2327. const int i2_0 = y0[2*j + 0];
  2328. const int i3_0 = y0[2*j + 1];
  2329. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2330. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2331. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2332. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2333. }
  2334. sumf += (d0 * y[i].d) * sumi_0;
  2335. sumf += (d1 * y[i].d) * sumi_1;
  2336. }
  2337. #endif
  2338. *s = sumf;
  2339. }
  2340. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2341. const int nb = n / QK8_0;
  2342. assert(n % QK8_0 == 0);
  2343. assert(nb % 2 == 0);
  2344. assert(QK8_0 == 2*QK4_2);
  2345. const block_q4_3 * restrict x = vx;
  2346. const block_q8_0 * restrict y = vy;
  2347. float sumf = 0.0;
  2348. #if defined(__ARM_NEON)
  2349. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2350. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2351. for (int i = 0; i < nb; i += 2) {
  2352. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2353. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2354. const block_q4_3 * restrict x1_0 = &x[2*(i + 1) + 0];
  2355. const block_q4_3 * restrict x1_1 = &x[2*(i + 1) + 1];
  2356. const block_q8_0 * restrict y0 = &y[i + 0];
  2357. const block_q8_0 * restrict y1 = &y[i + 1];
  2358. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2359. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2360. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2361. const float x1_0d = GGML_FP16_TO_FP32(x1_0->d);
  2362. const float x1_1d = GGML_FP16_TO_FP32(x1_1->d);
  2363. const float x0_0m = GGML_FP16_TO_FP32(x0_0->m);
  2364. const float x0_1m = GGML_FP16_TO_FP32(x0_1->m);
  2365. const float x1_0m = GGML_FP16_TO_FP32(x1_0->m);
  2366. const float x1_1m = GGML_FP16_TO_FP32(x1_1->m);
  2367. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2368. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2369. // 4-bit -> 8-bit
  2370. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2371. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2372. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2373. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2374. // interleave
  2375. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2376. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2377. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2378. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2379. // load y
  2380. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2381. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2382. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2383. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2384. const int16x8_t sy0_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0l)), vmovl_s8(vget_high_s8(v1_0l)));
  2385. const int16x8_t sy0_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0h)), vmovl_s8(vget_high_s8(v1_0h)));
  2386. const int16x8_t sy1_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1l)), vmovl_s8(vget_high_s8(v1_1l)));
  2387. const int16x8_t sy1_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1h)), vmovl_s8(vget_high_s8(v1_1h)));
  2388. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_0), vget_high_s16(sy0_0))), x0_0m*y0->d);
  2389. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_1), vget_high_s16(sy0_1))), x0_1m*y0->d);
  2390. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_0), vget_high_s16(sy1_0))), x1_0m*y1->d);
  2391. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_1), vget_high_s16(sy1_1))), x1_1m*y1->d);
  2392. #if defined(__ARM_FEATURE_DOTPROD)
  2393. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2394. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2395. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), x1_0d*y1->d);
  2396. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), x1_1d*y1->d);
  2397. #else
  2398. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2399. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2400. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2401. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2402. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2403. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2404. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2405. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2406. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2407. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2408. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2409. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2410. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2411. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2412. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(pl1), x1_0d*y1->d);
  2413. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph1), x1_1d*y1->d);
  2414. #endif
  2415. }
  2416. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2417. #else
  2418. // scalar
  2419. for (int i = 0; i < nb; i++) {
  2420. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2421. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2422. const int8_t * restrict y0 = y[i].qs;
  2423. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2424. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2425. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2426. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2427. int sy_0 = 0;
  2428. int sy_1 = 0;
  2429. int sxy_0 = 0;
  2430. int sxy_1 = 0;
  2431. for (int j = 0; j < QK8_0/4; j++) {
  2432. const uint8_t v0 = x0[j];
  2433. const uint8_t v1 = x1[j];
  2434. const int x0_0 = v0 & 0xf;
  2435. const int x1_0 = v0 >> 4;
  2436. const int x0_1 = v1 & 0xf;
  2437. const int x1_1 = v1 >> 4;
  2438. const int y0_0 = y0[2*j + 0];
  2439. const int y1_0 = y0[2*j + 1];
  2440. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2441. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2442. sy_0 += y0_0 + y1_0;
  2443. sy_1 += y0_1 + y1_1;
  2444. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2445. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2446. }
  2447. sumf += (d0*sxy_0 + m0*sy_0)*y[i].d;
  2448. sumf += (d1*sxy_1 + m1*sy_1)*y[i].d;
  2449. }
  2450. #endif
  2451. *s = sumf;
  2452. }
  2453. // compute GGML_VEC_DOT_UNROLL dot products at once
  2454. // xs - x row stride in bytes
  2455. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2456. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2457. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2458. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2459. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2460. }
  2461. #if defined(GGML_SIMD)
  2462. const int np = (n & ~(GGML_F16_STEP - 1));
  2463. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2464. GGML_F16_VEC ax[GGML_F16_ARR];
  2465. GGML_F16_VEC ay[GGML_F16_ARR];
  2466. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2467. for (int j = 0; j < GGML_F16_ARR; j++) {
  2468. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2469. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2470. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2471. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2472. }
  2473. }
  2474. }
  2475. // reduce sum0..sum3 to sum0
  2476. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2477. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2478. }
  2479. // leftovers
  2480. for (int i = np; i < n; ++i) {
  2481. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2482. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2483. }
  2484. }
  2485. #else
  2486. for (int i = 0; i < n; ++i) {
  2487. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2488. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2489. }
  2490. }
  2491. #endif
  2492. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2493. s[i] = sumf[i];
  2494. }
  2495. }
  2496. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2497. #if defined(GGML_SIMD)
  2498. const int np = (n & ~(GGML_F32_STEP - 1));
  2499. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2500. GGML_F32_VEC ax[GGML_F32_ARR];
  2501. GGML_F32_VEC ay[GGML_F32_ARR];
  2502. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2503. for (int j = 0; j < GGML_F32_ARR; j++) {
  2504. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2505. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2506. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2507. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2508. }
  2509. }
  2510. // leftovers
  2511. for (int i = np; i < n; ++i) {
  2512. y[i] += x[i]*v;
  2513. }
  2514. #else
  2515. // scalar
  2516. for (int i = 0; i < n; ++i) {
  2517. y[i] += x[i]*v;
  2518. }
  2519. #endif
  2520. }
  2521. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2522. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2523. #if defined(GGML_SIMD)
  2524. const int np = (n & ~(GGML_F32_STEP - 1));
  2525. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2526. GGML_F32_VEC ay[GGML_F32_ARR];
  2527. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2528. for (int j = 0; j < GGML_F32_ARR; j++) {
  2529. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2530. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2531. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2532. }
  2533. }
  2534. // leftovers
  2535. for (int i = np; i < n; ++i) {
  2536. y[i] *= v;
  2537. }
  2538. #else
  2539. // scalar
  2540. for (int i = 0; i < n; ++i) {
  2541. y[i] *= v;
  2542. }
  2543. #endif
  2544. }
  2545. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2546. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2547. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2548. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2549. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2550. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2551. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2552. static const float GELU_COEF_A = 0.044715f;
  2553. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2554. inline static float ggml_gelu_f32(float x) {
  2555. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2556. }
  2557. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2558. const uint16_t * i16 = (const uint16_t *) x;
  2559. for (int i = 0; i < n; ++i) {
  2560. y[i] = table_gelu_f16[i16[i]];
  2561. }
  2562. }
  2563. #ifdef GGML_GELU_FP16
  2564. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2565. uint16_t t;
  2566. for (int i = 0; i < n; ++i) {
  2567. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2568. memcpy(&t, &fp16, sizeof(uint16_t));
  2569. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2570. }
  2571. }
  2572. #else
  2573. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2574. for (int i = 0; i < n; ++i) {
  2575. y[i] = ggml_gelu_f32(x[i]);
  2576. }
  2577. }
  2578. #endif
  2579. // Sigmoid Linear Unit (SiLU) function
  2580. inline static float ggml_silu_f32(float x) {
  2581. return x/(1.0f + expf(-x));
  2582. }
  2583. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2584. const uint16_t * i16 = (const uint16_t *) x;
  2585. for (int i = 0; i < n; ++i) {
  2586. y[i] = table_silu_f16[i16[i]];
  2587. }
  2588. }
  2589. #ifdef GGML_SILU_FP16
  2590. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2591. uint16_t t;
  2592. for (int i = 0; i < n; ++i) {
  2593. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2594. memcpy(&t, &fp16, sizeof(uint16_t));
  2595. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2596. }
  2597. }
  2598. #else
  2599. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2600. for (int i = 0; i < n; ++i) {
  2601. y[i] = ggml_silu_f32(x[i]);
  2602. }
  2603. }
  2604. #endif
  2605. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2606. #ifndef GGML_USE_ACCELERATE
  2607. ggml_float sum = 0.0;
  2608. for (int i = 0; i < n; ++i) {
  2609. sum += (ggml_float)x[i];
  2610. }
  2611. *s = sum;
  2612. #else
  2613. vDSP_sve(x, 1, s, n);
  2614. #endif
  2615. }
  2616. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2617. #ifndef GGML_USE_ACCELERATE
  2618. float max = -INFINITY;
  2619. for (int i = 0; i < n; ++i) {
  2620. max = MAX(max, x[i]);
  2621. }
  2622. *s = max;
  2623. #else
  2624. vDSP_maxv(x, 1, s, n);
  2625. #endif
  2626. }
  2627. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2628. ggml_vec_norm_f32(n, s, x);
  2629. *s = 1.f/(*s);
  2630. }
  2631. //
  2632. // logging
  2633. //
  2634. #if (GGML_DEBUG >= 1)
  2635. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2636. #else
  2637. #define GGML_PRINT_DEBUG(...)
  2638. #endif
  2639. #if (GGML_DEBUG >= 5)
  2640. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2641. #else
  2642. #define GGML_PRINT_DEBUG_5(...)
  2643. #endif
  2644. #if (GGML_DEBUG >= 10)
  2645. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2646. #else
  2647. #define GGML_PRINT_DEBUG_10(...)
  2648. #endif
  2649. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2650. //
  2651. // data types
  2652. //
  2653. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2654. [GGML_TYPE_F32] = 1,
  2655. [GGML_TYPE_F16] = 1,
  2656. [GGML_TYPE_Q4_0] = QK4_0,
  2657. [GGML_TYPE_Q4_1] = QK4_1,
  2658. [GGML_TYPE_Q4_2] = QK4_2,
  2659. [GGML_TYPE_Q4_3] = QK4_3,
  2660. [GGML_TYPE_Q8_0] = QK8_0,
  2661. [GGML_TYPE_I8] = 1,
  2662. [GGML_TYPE_I16] = 1,
  2663. [GGML_TYPE_I32] = 1,
  2664. };
  2665. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2666. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2667. [GGML_TYPE_F32] = sizeof(float),
  2668. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2669. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2670. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2671. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2672. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2673. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2674. [GGML_TYPE_I8] = sizeof(int8_t),
  2675. [GGML_TYPE_I16] = sizeof(int16_t),
  2676. [GGML_TYPE_I32] = sizeof(int32_t),
  2677. };
  2678. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2679. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2680. [GGML_TYPE_F32] = "f32",
  2681. [GGML_TYPE_F16] = "f16",
  2682. [GGML_TYPE_Q4_0] = "q4_0",
  2683. [GGML_TYPE_Q4_1] = "q4_1",
  2684. [GGML_TYPE_Q4_2] = "q4_2",
  2685. [GGML_TYPE_Q4_3] = "q4_3",
  2686. [GGML_TYPE_Q8_0] = "q8_0",
  2687. [GGML_TYPE_I8] = "i8",
  2688. [GGML_TYPE_I16] = "i16",
  2689. [GGML_TYPE_I32] = "i32",
  2690. };
  2691. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2692. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2693. [GGML_TYPE_F32] = false,
  2694. [GGML_TYPE_F16] = false,
  2695. [GGML_TYPE_Q4_0] = true,
  2696. [GGML_TYPE_Q4_1] = true,
  2697. [GGML_TYPE_Q4_2] = true,
  2698. [GGML_TYPE_Q4_3] = true,
  2699. [GGML_TYPE_Q8_0] = true,
  2700. [GGML_TYPE_I8] = false,
  2701. [GGML_TYPE_I16] = false,
  2702. [GGML_TYPE_I32] = false,
  2703. };
  2704. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2705. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2706. "NONE",
  2707. "DUP",
  2708. "ADD",
  2709. "SUB",
  2710. "MUL",
  2711. "DIV",
  2712. "SQR",
  2713. "SQRT",
  2714. "SUM",
  2715. "MEAN",
  2716. "REPEAT",
  2717. "ABS",
  2718. "SGN",
  2719. "NEG",
  2720. "STEP",
  2721. "RELU",
  2722. "GELU",
  2723. "SILU",
  2724. "NORM",
  2725. "RMS_NORM",
  2726. "MUL_MAT",
  2727. "SCALE",
  2728. "CPY",
  2729. "CONT",
  2730. "RESHAPE",
  2731. "VIEW",
  2732. "PERMUTE",
  2733. "TRANSPOSE",
  2734. "GET_ROWS",
  2735. "DIAG_MASK_INF",
  2736. "SOFT_MAX",
  2737. "ROPE",
  2738. "CONV_1D_1S",
  2739. "CONV_1D_2S",
  2740. "FLASH_ATTN",
  2741. "FLASH_FF",
  2742. "MAP_UNARY",
  2743. "MAP_BINARY",
  2744. };
  2745. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2746. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2747. "none",
  2748. "x",
  2749. "x+y",
  2750. "x-y",
  2751. "x*y",
  2752. "x/y",
  2753. "x^2",
  2754. "√x",
  2755. "Σx",
  2756. "Σx/n",
  2757. "repeat(x)",
  2758. "abs(x)",
  2759. "sgn(x)",
  2760. "-x",
  2761. "step(x)",
  2762. "relu(x)",
  2763. "gelu(x)",
  2764. "silu(x)",
  2765. "norm(x)",
  2766. "rms_norm(x)",
  2767. "X*Y",
  2768. "x*v",
  2769. "x-\\>y",
  2770. "cont(x)",
  2771. "reshape(x)",
  2772. "view(x)",
  2773. "permute(x)",
  2774. "transpose(x)",
  2775. "get_rows(x)",
  2776. "diag_mask_inf(x)",
  2777. "soft_max(x)",
  2778. "rope(x)",
  2779. "conv_1d_1s(x)",
  2780. "conv_1d_2s(x)",
  2781. "flash_attn(x)",
  2782. "flash_ff(x)",
  2783. "f(x)",
  2784. "f(x,y)",
  2785. };
  2786. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2787. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2788. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2789. //
  2790. // ggml context
  2791. //
  2792. struct ggml_context {
  2793. size_t mem_size;
  2794. void * mem_buffer;
  2795. bool mem_buffer_owned;
  2796. bool no_alloc;
  2797. int n_objects;
  2798. struct ggml_object * objects_begin;
  2799. struct ggml_object * objects_end;
  2800. struct ggml_scratch scratch;
  2801. struct ggml_scratch scratch_save;
  2802. };
  2803. struct ggml_context_container {
  2804. bool used;
  2805. struct ggml_context context;
  2806. };
  2807. //
  2808. // compute types
  2809. //
  2810. enum ggml_task_type {
  2811. GGML_TASK_INIT = 0,
  2812. GGML_TASK_COMPUTE,
  2813. GGML_TASK_FINALIZE,
  2814. };
  2815. struct ggml_compute_params {
  2816. enum ggml_task_type type;
  2817. int ith, nth;
  2818. // work buffer for all threads
  2819. size_t wsize;
  2820. void * wdata;
  2821. };
  2822. //
  2823. // ggml state
  2824. //
  2825. struct ggml_state {
  2826. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2827. };
  2828. // global state
  2829. static struct ggml_state g_state;
  2830. static atomic_int g_state_barrier = 0;
  2831. // barrier via spin lock
  2832. inline static void ggml_critical_section_start(void) {
  2833. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2834. while (processing > 0) {
  2835. // wait for other threads to finish
  2836. atomic_fetch_sub(&g_state_barrier, 1);
  2837. sched_yield(); // TODO: reconsider this
  2838. processing = atomic_fetch_add(&g_state_barrier, 1);
  2839. }
  2840. }
  2841. // TODO: make this somehow automatically executed
  2842. // some sort of "sentry" mechanism
  2843. inline static void ggml_critical_section_end(void) {
  2844. atomic_fetch_sub(&g_state_barrier, 1);
  2845. }
  2846. ////////////////////////////////////////////////////////////////////////////////
  2847. void ggml_print_object(const struct ggml_object * obj) {
  2848. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2849. obj->offs, obj->size, (const void *) obj->next);
  2850. }
  2851. void ggml_print_objects(const struct ggml_context * ctx) {
  2852. struct ggml_object * obj = ctx->objects_begin;
  2853. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2854. while (obj != NULL) {
  2855. ggml_print_object(obj);
  2856. obj = obj->next;
  2857. }
  2858. GGML_PRINT("%s: --- end ---\n", __func__);
  2859. }
  2860. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2863. }
  2864. int ggml_nrows(const struct ggml_tensor * tensor) {
  2865. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2866. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2867. }
  2868. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2869. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2870. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2871. }
  2872. int ggml_blck_size(enum ggml_type type) {
  2873. return GGML_BLCK_SIZE[type];
  2874. }
  2875. size_t ggml_type_size(enum ggml_type type) {
  2876. return GGML_TYPE_SIZE[type];
  2877. }
  2878. float ggml_type_sizef(enum ggml_type type) {
  2879. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2880. }
  2881. const char * ggml_type_name(enum ggml_type type) {
  2882. return GGML_TYPE_NAME[type];
  2883. }
  2884. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2885. return GGML_TYPE_SIZE[tensor->type];
  2886. }
  2887. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2890. }
  2891. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2893. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2894. }
  2895. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2896. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2897. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2898. }
  2899. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2900. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2901. return
  2902. (t0->ne[0] == t1->ne[0]) &&
  2903. (t0->ne[2] == t1->ne[2]) &&
  2904. (t0->ne[3] == t1->ne[3]);
  2905. }
  2906. bool ggml_is_quantized(enum ggml_type type) {
  2907. return GGML_IS_QUANTIZED[type];
  2908. }
  2909. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2910. return tensor->nb[0] > tensor->nb[1];
  2911. }
  2912. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2914. return
  2915. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2916. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2917. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2918. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2919. }
  2920. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2921. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2922. return
  2923. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2924. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2925. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2926. }
  2927. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2928. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2929. return
  2930. (t0->ne[0] == t1->ne[0] ) &&
  2931. (t0->ne[1] == t1->ne[1] ) &&
  2932. (t0->ne[2] == t1->ne[2] ) &&
  2933. (t0->ne[3] == t1->ne[3] );
  2934. }
  2935. // check if t1 can be represented as a repeatition of t0
  2936. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2937. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2938. return
  2939. (t1->ne[0]%t0->ne[0] == 0) &&
  2940. (t1->ne[1]%t0->ne[1] == 0) &&
  2941. (t1->ne[2]%t0->ne[2] == 0) &&
  2942. (t1->ne[3]%t0->ne[3] == 0);
  2943. }
  2944. static inline int ggml_up32(int n) {
  2945. return (n + 31) & ~31;
  2946. }
  2947. static inline int ggml_up64(int n) {
  2948. return (n + 63) & ~63;
  2949. }
  2950. static inline int ggml_up(int n, int m) {
  2951. // assert m is a power of 2
  2952. GGML_ASSERT((m & (m - 1)) == 0);
  2953. return (n + m - 1) & ~(m - 1);
  2954. }
  2955. // assert that pointer is aligned to GGML_MEM_ALIGN
  2956. #define ggml_assert_aligned(ptr) \
  2957. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2958. ////////////////////////////////////////////////////////////////////////////////
  2959. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2960. // make this function thread safe
  2961. ggml_critical_section_start();
  2962. static bool is_first_call = true;
  2963. if (is_first_call) {
  2964. // initialize time system (required on Windows)
  2965. ggml_time_init();
  2966. // initialize GELU, SILU and EXP F32 tables
  2967. {
  2968. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2969. ggml_fp16_t ii;
  2970. for (int i = 0; i < (1 << 16); ++i) {
  2971. uint16_t ui = i;
  2972. memcpy(&ii, &ui, sizeof(ii));
  2973. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2974. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2975. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2976. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2977. }
  2978. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2979. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2980. }
  2981. // initialize g_state
  2982. {
  2983. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2984. g_state = (struct ggml_state) {
  2985. /*.contexts =*/ { { 0 } },
  2986. };
  2987. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2988. g_state.contexts[i].used = false;
  2989. }
  2990. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2991. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2992. }
  2993. // initialize cuBLAS
  2994. #if defined(GGML_USE_CUBLAS)
  2995. init_cublas();
  2996. #endif
  2997. is_first_call = false;
  2998. }
  2999. // find non-used context in g_state
  3000. struct ggml_context * ctx = NULL;
  3001. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3002. if (!g_state.contexts[i].used) {
  3003. g_state.contexts[i].used = true;
  3004. ctx = &g_state.contexts[i].context;
  3005. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3006. break;
  3007. }
  3008. }
  3009. if (ctx == NULL) {
  3010. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3011. ggml_critical_section_end();
  3012. return NULL;
  3013. }
  3014. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3015. *ctx = (struct ggml_context) {
  3016. /*.mem_size =*/ mem_size,
  3017. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3018. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3019. /*.no_alloc =*/ params.no_alloc,
  3020. /*.n_objects =*/ 0,
  3021. /*.objects_begin =*/ NULL,
  3022. /*.objects_end =*/ NULL,
  3023. /*.scratch =*/ { 0, 0, NULL, },
  3024. /*.scratch_save =*/ { 0, 0, NULL, },
  3025. };
  3026. GGML_ASSERT(ctx->mem_buffer != NULL);
  3027. ggml_assert_aligned(ctx->mem_buffer);
  3028. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3029. ggml_critical_section_end();
  3030. return ctx;
  3031. }
  3032. void ggml_free(struct ggml_context * ctx) {
  3033. // make this function thread safe
  3034. ggml_critical_section_start();
  3035. bool found = false;
  3036. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3037. if (&g_state.contexts[i].context == ctx) {
  3038. g_state.contexts[i].used = false;
  3039. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3040. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3041. if (ctx->mem_buffer_owned) {
  3042. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3043. }
  3044. found = true;
  3045. break;
  3046. }
  3047. }
  3048. if (!found) {
  3049. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3050. }
  3051. ggml_critical_section_end();
  3052. }
  3053. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3054. return ctx->objects_end->offs + ctx->objects_end->size;
  3055. }
  3056. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3057. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3058. ctx->scratch = scratch;
  3059. return result;
  3060. }
  3061. ////////////////////////////////////////////////////////////////////////////////
  3062. struct ggml_tensor * ggml_new_tensor_impl(
  3063. struct ggml_context * ctx,
  3064. enum ggml_type type,
  3065. int n_dims,
  3066. const int64_t* ne,
  3067. void* data) {
  3068. // always insert objects at the end of the context's memory pool
  3069. struct ggml_object * obj_cur = ctx->objects_end;
  3070. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3071. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3072. const size_t cur_end = cur_offs + cur_size;
  3073. size_t size_needed = 0;
  3074. if (data == NULL && !ctx->no_alloc) {
  3075. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3076. for (int i = 1; i < n_dims; i++) {
  3077. size_needed *= ne[i];
  3078. }
  3079. // align to GGML_MEM_ALIGN
  3080. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3081. }
  3082. char * const mem_buffer = ctx->mem_buffer;
  3083. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3084. if (ctx->scratch.data == NULL || data != NULL) {
  3085. size_needed += sizeof(struct ggml_tensor);
  3086. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3087. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3088. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3089. assert(false);
  3090. return NULL;
  3091. }
  3092. *obj_new = (struct ggml_object) {
  3093. .offs = cur_end + GGML_OBJECT_SIZE,
  3094. .size = size_needed,
  3095. .next = NULL,
  3096. };
  3097. } else {
  3098. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3099. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3100. assert(false);
  3101. return NULL;
  3102. }
  3103. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3104. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3105. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3106. assert(false);
  3107. return NULL;
  3108. }
  3109. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3110. *obj_new = (struct ggml_object) {
  3111. .offs = cur_end + GGML_OBJECT_SIZE,
  3112. .size = sizeof(struct ggml_tensor),
  3113. .next = NULL,
  3114. };
  3115. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3116. ctx->scratch.offs += size_needed;
  3117. }
  3118. if (obj_cur != NULL) {
  3119. obj_cur->next = obj_new;
  3120. } else {
  3121. // this is the first object in this context
  3122. ctx->objects_begin = obj_new;
  3123. }
  3124. ctx->objects_end = obj_new;
  3125. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3126. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3127. ggml_assert_aligned(result);
  3128. *result = (struct ggml_tensor) {
  3129. /*.type =*/ type,
  3130. /*.n_dims =*/ n_dims,
  3131. /*.ne =*/ { 1, 1, 1, 1 },
  3132. /*.nb =*/ { 0, 0, 0, 0 },
  3133. /*.op =*/ GGML_OP_NONE,
  3134. /*.is_param =*/ false,
  3135. /*.grad =*/ NULL,
  3136. /*.src0 =*/ NULL,
  3137. /*.src1 =*/ NULL,
  3138. /*.opt =*/ { NULL },
  3139. /*.n_tasks =*/ 0,
  3140. /*.perf_runs =*/ 0,
  3141. /*.perf_cycles =*/ 0,
  3142. /*.perf_time_us =*/ 0,
  3143. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3144. /*.pad =*/ { 0 },
  3145. };
  3146. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3147. //ggml_assert_aligned(result->data);
  3148. for (int i = 0; i < n_dims; i++) {
  3149. result->ne[i] = ne[i];
  3150. }
  3151. result->nb[0] = GGML_TYPE_SIZE[type];
  3152. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3153. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3154. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3155. }
  3156. ctx->n_objects++;
  3157. return result;
  3158. }
  3159. struct ggml_tensor * ggml_new_tensor(
  3160. struct ggml_context * ctx,
  3161. enum ggml_type type,
  3162. int n_dims,
  3163. const int64_t * ne) {
  3164. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3165. }
  3166. struct ggml_tensor * ggml_new_tensor_1d(
  3167. struct ggml_context * ctx,
  3168. enum ggml_type type,
  3169. int64_t ne0) {
  3170. return ggml_new_tensor(ctx, type, 1, &ne0);
  3171. }
  3172. struct ggml_tensor * ggml_new_tensor_2d(
  3173. struct ggml_context * ctx,
  3174. enum ggml_type type,
  3175. int64_t ne0,
  3176. int64_t ne1) {
  3177. const int64_t ne[2] = { ne0, ne1 };
  3178. return ggml_new_tensor(ctx, type, 2, ne);
  3179. }
  3180. struct ggml_tensor * ggml_new_tensor_3d(
  3181. struct ggml_context * ctx,
  3182. enum ggml_type type,
  3183. int64_t ne0,
  3184. int64_t ne1,
  3185. int64_t ne2) {
  3186. const int64_t ne[3] = { ne0, ne1, ne2 };
  3187. return ggml_new_tensor(ctx, type, 3, ne);
  3188. }
  3189. struct ggml_tensor * ggml_new_tensor_4d(
  3190. struct ggml_context * ctx,
  3191. enum ggml_type type,
  3192. int64_t ne0,
  3193. int64_t ne1,
  3194. int64_t ne2,
  3195. int64_t ne3) {
  3196. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3197. return ggml_new_tensor(ctx, type, 4, ne);
  3198. }
  3199. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3200. ctx->scratch_save = ctx->scratch;
  3201. ctx->scratch.data = NULL;
  3202. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3203. ctx->scratch = ctx->scratch_save;
  3204. ggml_set_i32(result, value);
  3205. return result;
  3206. }
  3207. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3208. ctx->scratch_save = ctx->scratch;
  3209. ctx->scratch.data = NULL;
  3210. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3211. ctx->scratch = ctx->scratch_save;
  3212. ggml_set_f32(result, value);
  3213. return result;
  3214. }
  3215. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3216. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3217. }
  3218. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3219. memset(tensor->data, 0, ggml_nbytes(tensor));
  3220. return tensor;
  3221. }
  3222. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3223. const int n = ggml_nrows(tensor);
  3224. const int nc = tensor->ne[0];
  3225. const size_t n1 = tensor->nb[1];
  3226. char * const data = tensor->data;
  3227. switch (tensor->type) {
  3228. case GGML_TYPE_I8:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int8_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_I16:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(int16_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3240. }
  3241. } break;
  3242. case GGML_TYPE_I32:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(int32_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3247. }
  3248. } break;
  3249. case GGML_TYPE_F16:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3254. }
  3255. } break;
  3256. case GGML_TYPE_F32:
  3257. {
  3258. assert(tensor->nb[0] == sizeof(float));
  3259. for (int i = 0; i < n; i++) {
  3260. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3261. }
  3262. } break;
  3263. default:
  3264. {
  3265. GGML_ASSERT(false);
  3266. } break;
  3267. }
  3268. return tensor;
  3269. }
  3270. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3271. const int n = ggml_nrows(tensor);
  3272. const int nc = tensor->ne[0];
  3273. const size_t n1 = tensor->nb[1];
  3274. char * const data = tensor->data;
  3275. switch (tensor->type) {
  3276. case GGML_TYPE_I8:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int8_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I16:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int16_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_I32:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(int32_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3295. }
  3296. } break;
  3297. case GGML_TYPE_F16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3302. }
  3303. } break;
  3304. case GGML_TYPE_F32:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(float));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3309. }
  3310. } break;
  3311. default:
  3312. {
  3313. GGML_ASSERT(false);
  3314. } break;
  3315. }
  3316. return tensor;
  3317. }
  3318. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3319. switch (tensor->type) {
  3320. case GGML_TYPE_I8:
  3321. {
  3322. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3323. return ((int8_t *)(tensor->data))[i];
  3324. } break;
  3325. case GGML_TYPE_I16:
  3326. {
  3327. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3328. return ((int16_t *)(tensor->data))[i];
  3329. } break;
  3330. case GGML_TYPE_I32:
  3331. {
  3332. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3333. return ((int32_t *)(tensor->data))[i];
  3334. } break;
  3335. case GGML_TYPE_F16:
  3336. {
  3337. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3338. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3339. } break;
  3340. case GGML_TYPE_F32:
  3341. {
  3342. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3343. return ((float *)(tensor->data))[i];
  3344. } break;
  3345. default:
  3346. {
  3347. GGML_ASSERT(false);
  3348. } break;
  3349. }
  3350. return 0.0f;
  3351. }
  3352. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3353. switch (tensor->type) {
  3354. case GGML_TYPE_I8:
  3355. {
  3356. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3357. ((int8_t *)(tensor->data))[i] = value;
  3358. } break;
  3359. case GGML_TYPE_I16:
  3360. {
  3361. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3362. ((int16_t *)(tensor->data))[i] = value;
  3363. } break;
  3364. case GGML_TYPE_I32:
  3365. {
  3366. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3367. ((int32_t *)(tensor->data))[i] = value;
  3368. } break;
  3369. case GGML_TYPE_F16:
  3370. {
  3371. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3372. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3373. } break;
  3374. case GGML_TYPE_F32:
  3375. {
  3376. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3377. ((float *)(tensor->data))[i] = value;
  3378. } break;
  3379. default:
  3380. {
  3381. GGML_ASSERT(false);
  3382. } break;
  3383. }
  3384. }
  3385. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3386. switch (tensor->type) {
  3387. case GGML_TYPE_I8:
  3388. {
  3389. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3390. return ((int8_t *)(tensor->data))[i];
  3391. } break;
  3392. case GGML_TYPE_I16:
  3393. {
  3394. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3395. return ((int16_t *)(tensor->data))[i];
  3396. } break;
  3397. case GGML_TYPE_I32:
  3398. {
  3399. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3400. return ((int32_t *)(tensor->data))[i];
  3401. } break;
  3402. case GGML_TYPE_F16:
  3403. {
  3404. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3405. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3406. } break;
  3407. case GGML_TYPE_F32:
  3408. {
  3409. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3410. return ((float *)(tensor->data))[i];
  3411. } break;
  3412. default:
  3413. {
  3414. GGML_ASSERT(false);
  3415. } break;
  3416. }
  3417. return 0.0f;
  3418. }
  3419. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3420. switch (tensor->type) {
  3421. case GGML_TYPE_I8:
  3422. {
  3423. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3424. ((int8_t *)(tensor->data))[i] = value;
  3425. } break;
  3426. case GGML_TYPE_I16:
  3427. {
  3428. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3429. ((int16_t *)(tensor->data))[i] = value;
  3430. } break;
  3431. case GGML_TYPE_I32:
  3432. {
  3433. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3434. ((int32_t *)(tensor->data))[i] = value;
  3435. } break;
  3436. case GGML_TYPE_F16:
  3437. {
  3438. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3439. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3440. } break;
  3441. case GGML_TYPE_F32:
  3442. {
  3443. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3444. ((float *)(tensor->data))[i] = value;
  3445. } break;
  3446. default:
  3447. {
  3448. GGML_ASSERT(false);
  3449. } break;
  3450. }
  3451. }
  3452. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3453. return tensor->data;
  3454. }
  3455. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3456. assert(tensor->type == GGML_TYPE_F32);
  3457. return (float *)(tensor->data);
  3458. }
  3459. struct ggml_tensor * ggml_view_tensor(
  3460. struct ggml_context * ctx,
  3461. const struct ggml_tensor * src) {
  3462. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3463. result->nb[0] = src->nb[0];
  3464. result->nb[1] = src->nb[1];
  3465. result->nb[2] = src->nb[2];
  3466. result->nb[3] = src->nb[3];
  3467. return result;
  3468. }
  3469. ////////////////////////////////////////////////////////////////////////////////
  3470. // ggml_dup
  3471. struct ggml_tensor * ggml_dup_impl(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. bool inplace) {
  3475. bool is_node = false;
  3476. if (!inplace && (a->grad)) {
  3477. is_node = true;
  3478. }
  3479. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3480. result->op = GGML_OP_DUP;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src0 = a;
  3483. result->src1 = NULL;
  3484. return result;
  3485. }
  3486. struct ggml_tensor * ggml_dup(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a) {
  3489. return ggml_dup_impl(ctx, a, false);
  3490. }
  3491. struct ggml_tensor * ggml_dup_inplace(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a) {
  3494. return ggml_dup_impl(ctx, a, true);
  3495. }
  3496. // ggml_add
  3497. struct ggml_tensor * ggml_add_impl(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * a,
  3500. struct ggml_tensor * b,
  3501. bool inplace) {
  3502. GGML_ASSERT(ggml_are_same_shape(a, b));
  3503. bool is_node = false;
  3504. if (!inplace && (a->grad || b->grad)) {
  3505. is_node = true;
  3506. }
  3507. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3508. result->op = GGML_OP_ADD;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src0 = a;
  3511. result->src1 = b;
  3512. return result;
  3513. }
  3514. struct ggml_tensor * ggml_add(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. struct ggml_tensor * b) {
  3518. return ggml_add_impl(ctx, a, b, false);
  3519. }
  3520. struct ggml_tensor * ggml_add_inplace(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b) {
  3524. return ggml_add_impl(ctx, a, b, true);
  3525. }
  3526. // ggml_sub
  3527. struct ggml_tensor * ggml_sub_impl(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a,
  3530. struct ggml_tensor * b,
  3531. bool inplace) {
  3532. GGML_ASSERT(ggml_are_same_shape(a, b));
  3533. bool is_node = false;
  3534. if (!inplace && (a->grad || b->grad)) {
  3535. is_node = true;
  3536. }
  3537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3538. result->op = GGML_OP_SUB;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = b;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_sub(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. struct ggml_tensor * b) {
  3548. return ggml_sub_impl(ctx, a, b, false);
  3549. }
  3550. struct ggml_tensor * ggml_sub_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b) {
  3554. return ggml_sub_impl(ctx, a, b, true);
  3555. }
  3556. // ggml_mul
  3557. struct ggml_tensor * ggml_mul_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. struct ggml_tensor * b,
  3561. bool inplace) {
  3562. GGML_ASSERT(ggml_are_same_shape(a, b));
  3563. bool is_node = false;
  3564. if (!inplace && (a->grad || b->grad)) {
  3565. is_node = true;
  3566. }
  3567. if (inplace) {
  3568. GGML_ASSERT(is_node == false);
  3569. }
  3570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3571. result->op = GGML_OP_MUL;
  3572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3573. result->src0 = a;
  3574. result->src1 = b;
  3575. return result;
  3576. }
  3577. struct ggml_tensor * ggml_mul(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b) {
  3581. return ggml_mul_impl(ctx, a, b, false);
  3582. }
  3583. struct ggml_tensor * ggml_mul_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. struct ggml_tensor * b) {
  3587. return ggml_mul_impl(ctx, a, b, true);
  3588. }
  3589. // ggml_div
  3590. struct ggml_tensor * ggml_div_impl(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b,
  3594. bool inplace) {
  3595. GGML_ASSERT(ggml_are_same_shape(a, b));
  3596. bool is_node = false;
  3597. if (!inplace && (a->grad || b->grad)) {
  3598. is_node = true;
  3599. }
  3600. if (inplace) {
  3601. GGML_ASSERT(is_node == false);
  3602. }
  3603. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3604. result->op = GGML_OP_DIV;
  3605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3606. result->src0 = a;
  3607. result->src1 = b;
  3608. return result;
  3609. }
  3610. struct ggml_tensor * ggml_div(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. struct ggml_tensor * b) {
  3614. return ggml_div_impl(ctx, a, b, false);
  3615. }
  3616. struct ggml_tensor * ggml_div_inplace(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. struct ggml_tensor * b) {
  3620. return ggml_div_impl(ctx, a, b, true);
  3621. }
  3622. // ggml_sqr
  3623. struct ggml_tensor * ggml_sqr_impl(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a,
  3626. bool inplace) {
  3627. bool is_node = false;
  3628. if (!inplace && (a->grad)) {
  3629. is_node = true;
  3630. }
  3631. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3632. result->op = GGML_OP_SQR;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src0 = a;
  3635. result->src1 = NULL;
  3636. return result;
  3637. }
  3638. struct ggml_tensor * ggml_sqr(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a) {
  3641. return ggml_sqr_impl(ctx, a, false);
  3642. }
  3643. struct ggml_tensor * ggml_sqr_inplace(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a) {
  3646. return ggml_sqr_impl(ctx, a, true);
  3647. }
  3648. // ggml_sqrt
  3649. struct ggml_tensor * ggml_sqrt_impl(
  3650. struct ggml_context * ctx,
  3651. struct ggml_tensor * a,
  3652. bool inplace) {
  3653. bool is_node = false;
  3654. if (!inplace && (a->grad)) {
  3655. is_node = true;
  3656. }
  3657. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3658. result->op = GGML_OP_SQRT;
  3659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3660. result->src0 = a;
  3661. result->src1 = NULL;
  3662. return result;
  3663. }
  3664. struct ggml_tensor * ggml_sqrt(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a) {
  3667. return ggml_sqrt_impl(ctx, a, false);
  3668. }
  3669. struct ggml_tensor * ggml_sqrt_inplace(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. return ggml_sqrt_impl(ctx, a, true);
  3673. }
  3674. // ggml_sum
  3675. struct ggml_tensor * ggml_sum(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a) {
  3678. bool is_node = false;
  3679. if (a->grad) {
  3680. is_node = true;
  3681. }
  3682. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3683. result->op = GGML_OP_SUM;
  3684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3685. result->src0 = a;
  3686. result->src1 = NULL;
  3687. return result;
  3688. }
  3689. // ggml_mean
  3690. struct ggml_tensor * ggml_mean(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a) {
  3693. bool is_node = false;
  3694. if (a->grad) {
  3695. GGML_ASSERT(false); // TODO: implement
  3696. is_node = true;
  3697. }
  3698. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3700. result->op = GGML_OP_MEAN;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src0 = a;
  3703. result->src1 = NULL;
  3704. return result;
  3705. }
  3706. // ggml_repeat
  3707. struct ggml_tensor * ggml_repeat(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a,
  3710. struct ggml_tensor * b) {
  3711. GGML_ASSERT(ggml_can_repeat(a, b));
  3712. bool is_node = false;
  3713. if (a->grad) {
  3714. is_node = true;
  3715. }
  3716. if (ggml_are_same_shape(a, b) && !is_node) {
  3717. return a;
  3718. }
  3719. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3720. result->op = GGML_OP_REPEAT;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src0 = a;
  3723. result->src1 = b;
  3724. return result;
  3725. }
  3726. // ggml_abs
  3727. struct ggml_tensor * ggml_abs_impl(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. bool inplace) {
  3731. bool is_node = false;
  3732. if (!inplace && (a->grad)) {
  3733. is_node = true;
  3734. }
  3735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3736. result->op = GGML_OP_ABS;
  3737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3738. result->src0 = a;
  3739. result->src1 = NULL;
  3740. return result;
  3741. }
  3742. struct ggml_tensor * ggml_abs(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. return ggml_abs_impl(ctx, a, false);
  3746. }
  3747. struct ggml_tensor * ggml_abs_inplace(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a) {
  3750. return ggml_abs_impl(ctx, a, true);
  3751. }
  3752. // ggml_sgn
  3753. struct ggml_tensor * ggml_sgn_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. bool inplace) {
  3757. bool is_node = false;
  3758. if (!inplace && (a->grad)) {
  3759. is_node = true;
  3760. }
  3761. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3762. result->op = GGML_OP_SGN;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src0 = a;
  3765. result->src1 = NULL;
  3766. return result;
  3767. }
  3768. struct ggml_tensor * ggml_sgn(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a) {
  3771. return ggml_sgn_impl(ctx, a, false);
  3772. }
  3773. struct ggml_tensor * ggml_sgn_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a) {
  3776. return ggml_sgn_impl(ctx, a, true);
  3777. }
  3778. // ggml_neg
  3779. struct ggml_tensor * ggml_neg_impl(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. bool inplace) {
  3783. bool is_node = false;
  3784. if (!inplace && (a->grad)) {
  3785. is_node = true;
  3786. }
  3787. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3788. result->op = GGML_OP_NEG;
  3789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3790. result->src0 = a;
  3791. result->src1 = NULL;
  3792. return result;
  3793. }
  3794. struct ggml_tensor * ggml_neg(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a) {
  3797. return ggml_neg_impl(ctx, a, false);
  3798. }
  3799. struct ggml_tensor * ggml_neg_inplace(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. return ggml_neg_impl(ctx, a, true);
  3803. }
  3804. // ggml_step
  3805. struct ggml_tensor * ggml_step_impl(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. bool inplace) {
  3809. bool is_node = false;
  3810. if (!inplace && (a->grad)) {
  3811. is_node = true;
  3812. }
  3813. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3814. result->op = GGML_OP_STEP;
  3815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3816. result->src0 = a;
  3817. result->src1 = NULL;
  3818. return result;
  3819. }
  3820. struct ggml_tensor * ggml_step(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a) {
  3823. return ggml_step_impl(ctx, a, false);
  3824. }
  3825. struct ggml_tensor * ggml_step_inplace(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a) {
  3828. return ggml_step_impl(ctx, a, true);
  3829. }
  3830. // ggml_relu
  3831. struct ggml_tensor * ggml_relu_impl(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. bool inplace) {
  3835. bool is_node = false;
  3836. if (!inplace && (a->grad)) {
  3837. is_node = true;
  3838. }
  3839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3840. result->op = GGML_OP_RELU;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src0 = a;
  3843. result->src1 = NULL;
  3844. return result;
  3845. }
  3846. struct ggml_tensor * ggml_relu(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a) {
  3849. return ggml_relu_impl(ctx, a, false);
  3850. }
  3851. struct ggml_tensor * ggml_relu_inplace(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a) {
  3854. return ggml_relu_impl(ctx, a, true);
  3855. }
  3856. // ggml_gelu
  3857. struct ggml_tensor * ggml_gelu_impl(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. bool inplace) {
  3861. bool is_node = false;
  3862. if (!inplace && (a->grad)) {
  3863. is_node = true;
  3864. }
  3865. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3866. result->op = GGML_OP_GELU;
  3867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3868. result->src0 = a;
  3869. result->src1 = NULL;
  3870. return result;
  3871. }
  3872. struct ggml_tensor * ggml_gelu(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a) {
  3875. return ggml_gelu_impl(ctx, a, false);
  3876. }
  3877. struct ggml_tensor * ggml_gelu_inplace(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a) {
  3880. return ggml_gelu_impl(ctx, a, true);
  3881. }
  3882. // ggml_silu
  3883. struct ggml_tensor * ggml_silu_impl(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. bool inplace) {
  3887. bool is_node = false;
  3888. if (!inplace && (a->grad)) {
  3889. is_node = true;
  3890. }
  3891. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3892. result->op = GGML_OP_SILU;
  3893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3894. result->src0 = a;
  3895. result->src1 = NULL;
  3896. return result;
  3897. }
  3898. struct ggml_tensor * ggml_silu(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a) {
  3901. return ggml_silu_impl(ctx, a, false);
  3902. }
  3903. struct ggml_tensor * ggml_silu_inplace(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a) {
  3906. return ggml_silu_impl(ctx, a, true);
  3907. }
  3908. // ggml_norm
  3909. struct ggml_tensor * ggml_norm_impl(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. bool inplace) {
  3913. bool is_node = false;
  3914. if (!inplace && (a->grad)) {
  3915. GGML_ASSERT(false); // TODO: implement backward
  3916. is_node = true;
  3917. }
  3918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3919. result->op = GGML_OP_NORM;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src0 = a;
  3922. result->src1 = NULL; // TODO: maybe store epsilon here?
  3923. return result;
  3924. }
  3925. struct ggml_tensor * ggml_norm(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a) {
  3928. return ggml_norm_impl(ctx, a, false);
  3929. }
  3930. struct ggml_tensor * ggml_norm_inplace(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a) {
  3933. return ggml_norm_impl(ctx, a, true);
  3934. }
  3935. struct ggml_tensor * ggml_rms_norm_impl(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. bool inplace) {
  3939. bool is_node = false;
  3940. if (!inplace && (a->grad)) {
  3941. GGML_ASSERT(false); // TODO: implement backward
  3942. is_node = true;
  3943. }
  3944. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3945. result->op = GGML_OP_RMS_NORM;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src0 = a;
  3948. result->src1 = NULL; // TODO: maybe store epsilon here?
  3949. return result;
  3950. }
  3951. struct ggml_tensor * ggml_rms_norm(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a) {
  3954. return ggml_rms_norm_impl(ctx, a, false);
  3955. }
  3956. struct ggml_tensor * ggml_rms_norm_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a) {
  3959. return ggml_rms_norm_impl(ctx, a, true);
  3960. }
  3961. // ggml_mul_mat
  3962. struct ggml_tensor * ggml_mul_mat(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3967. GGML_ASSERT(!ggml_is_transposed(a));
  3968. bool is_node = false;
  3969. if (a->grad || b->grad) {
  3970. is_node = true;
  3971. }
  3972. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3973. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3974. result->op = GGML_OP_MUL_MAT;
  3975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3976. result->src0 = a;
  3977. result->src1 = b;
  3978. return result;
  3979. }
  3980. // ggml_scale
  3981. struct ggml_tensor * ggml_scale_impl(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b,
  3985. bool inplace) {
  3986. GGML_ASSERT(ggml_is_scalar(b));
  3987. GGML_ASSERT(ggml_is_padded_1d(a));
  3988. bool is_node = false;
  3989. if (!inplace && (a->grad || b->grad)) {
  3990. GGML_ASSERT(false); // TODO: implement backward
  3991. is_node = true;
  3992. }
  3993. // TODO: when implement backward, fix this:
  3994. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3996. result->op = GGML_OP_SCALE;
  3997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3998. result->src0 = a;
  3999. result->src1 = b;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_scale(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. struct ggml_tensor * b) {
  4006. return ggml_scale_impl(ctx, a, b, false);
  4007. }
  4008. struct ggml_tensor * ggml_scale_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * b) {
  4012. return ggml_scale_impl(ctx, a, b, true);
  4013. }
  4014. // ggml_cpy
  4015. struct ggml_tensor * ggml_cpy_impl(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * b,
  4019. bool inplace) {
  4020. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4021. bool is_node = false;
  4022. if (!inplace && (a->grad || b->grad)) {
  4023. GGML_ASSERT(false); // TODO: implement backward
  4024. is_node = true;
  4025. }
  4026. // make a view of the destination
  4027. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4028. result->op = GGML_OP_CPY;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src0 = a;
  4031. result->src1 = b;
  4032. return result;
  4033. }
  4034. struct ggml_tensor * ggml_cpy(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. struct ggml_tensor * b) {
  4038. return ggml_cpy_impl(ctx, a, b, false);
  4039. }
  4040. struct ggml_tensor * ggml_cpy_inplace(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. struct ggml_tensor * b) {
  4044. return ggml_cpy_impl(ctx, a, b, true);
  4045. }
  4046. // ggml_cont
  4047. struct ggml_tensor * ggml_cont_impl(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. bool inplace) {
  4051. bool is_node = false;
  4052. if (!inplace && a->grad) {
  4053. GGML_ASSERT(false); // TODO: implement backward
  4054. is_node = true;
  4055. }
  4056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4057. result->op = GGML_OP_CONT;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src0 = a;
  4060. result->src1 = NULL;
  4061. return result;
  4062. }
  4063. struct ggml_tensor * ggml_cont(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. return ggml_cont_impl(ctx, a, false);
  4067. }
  4068. struct ggml_tensor * ggml_cont_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a) {
  4071. return ggml_cont_impl(ctx, a, true);
  4072. }
  4073. // ggml_reshape
  4074. struct ggml_tensor * ggml_reshape(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b) {
  4078. GGML_ASSERT(ggml_is_contiguous(a));
  4079. GGML_ASSERT(ggml_is_contiguous(b));
  4080. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4081. bool is_node = false;
  4082. if (a->grad || b->grad) {
  4083. GGML_ASSERT(false); // TODO: implement backward
  4084. is_node = true;
  4085. }
  4086. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4087. result->op = GGML_OP_RESHAPE;
  4088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4089. result->src0 = a;
  4090. result->src1 = NULL;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_reshape_2d(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. int64_t ne0,
  4097. int64_t ne1) {
  4098. GGML_ASSERT(ggml_is_contiguous(a));
  4099. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4100. bool is_node = false;
  4101. if (a->grad) {
  4102. GGML_ASSERT(false); // TODO: implement backward
  4103. is_node = true;
  4104. }
  4105. const int64_t ne[2] = { ne0, ne1 };
  4106. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4107. result->op = GGML_OP_RESHAPE;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src0 = a;
  4110. result->src1 = NULL;
  4111. return result;
  4112. }
  4113. struct ggml_tensor * ggml_reshape_3d(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a,
  4116. int64_t ne0,
  4117. int64_t ne1,
  4118. int64_t ne2) {
  4119. GGML_ASSERT(ggml_is_contiguous(a));
  4120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4121. bool is_node = false;
  4122. if (a->grad) {
  4123. GGML_ASSERT(false); // TODO: implement backward
  4124. is_node = true;
  4125. }
  4126. const int64_t ne[3] = { ne0, ne1, ne2 };
  4127. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4128. result->op = GGML_OP_RESHAPE;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = NULL;
  4132. return result;
  4133. }
  4134. // ggml_view_1d
  4135. struct ggml_tensor * ggml_view_1d(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. int64_t ne0,
  4139. size_t offset) {
  4140. if (a->grad) {
  4141. GGML_ASSERT(false); // gradient propagation is not supported
  4142. }
  4143. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4144. result->op = GGML_OP_VIEW;
  4145. result->grad = NULL;
  4146. result->src0 = a;
  4147. result->src1 = NULL; // TODO: maybe store the offset here?
  4148. return result;
  4149. }
  4150. // ggml_view_2d
  4151. struct ggml_tensor * ggml_view_2d(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. int64_t ne0,
  4155. int64_t ne1,
  4156. size_t nb1,
  4157. size_t offset) {
  4158. if (a->grad) {
  4159. GGML_ASSERT(false); // gradient propagation is not supported
  4160. }
  4161. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4162. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4163. result->nb[1] = nb1;
  4164. result->nb[2] = result->nb[1]*ne1;
  4165. result->nb[3] = result->nb[2];
  4166. result->op = GGML_OP_VIEW;
  4167. result->grad = NULL;
  4168. result->src0 = a;
  4169. result->src1 = NULL; // TODO: maybe store the offset here?
  4170. return result;
  4171. }
  4172. // ggml_view_3d
  4173. struct ggml_tensor * ggml_view_3d(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. int64_t ne0,
  4177. int64_t ne1,
  4178. int64_t ne2,
  4179. size_t nb1,
  4180. size_t nb2,
  4181. size_t offset) {
  4182. if (a->grad) {
  4183. GGML_ASSERT(false); // gradient propagation is not supported
  4184. }
  4185. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4186. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4187. result->nb[1] = nb1;
  4188. result->nb[2] = nb2;
  4189. result->nb[3] = result->nb[2]*ne2;
  4190. result->op = GGML_OP_VIEW;
  4191. result->grad = NULL;
  4192. result->src0 = a;
  4193. result->src1 = NULL; // TODO: maybe store the offset here?
  4194. return result;
  4195. }
  4196. // ggml_permute
  4197. struct ggml_tensor * ggml_permute(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. int axis0,
  4201. int axis1,
  4202. int axis2,
  4203. int axis3) {
  4204. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4205. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4206. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4207. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4208. GGML_ASSERT(axis0 != axis1);
  4209. GGML_ASSERT(axis0 != axis2);
  4210. GGML_ASSERT(axis0 != axis3);
  4211. GGML_ASSERT(axis1 != axis2);
  4212. GGML_ASSERT(axis1 != axis3);
  4213. GGML_ASSERT(axis2 != axis3);
  4214. bool is_node = false;
  4215. if (a->grad) {
  4216. GGML_ASSERT(false); // TODO: implement backward
  4217. is_node = true;
  4218. }
  4219. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4220. int ne[GGML_MAX_DIMS];
  4221. int nb[GGML_MAX_DIMS];
  4222. ne[axis0] = a->ne[0];
  4223. ne[axis1] = a->ne[1];
  4224. ne[axis2] = a->ne[2];
  4225. ne[axis3] = a->ne[3];
  4226. nb[axis0] = a->nb[0];
  4227. nb[axis1] = a->nb[1];
  4228. nb[axis2] = a->nb[2];
  4229. nb[axis3] = a->nb[3];
  4230. result->ne[0] = ne[0];
  4231. result->ne[1] = ne[1];
  4232. result->ne[2] = ne[2];
  4233. result->ne[3] = ne[3];
  4234. result->nb[0] = nb[0];
  4235. result->nb[1] = nb[1];
  4236. result->nb[2] = nb[2];
  4237. result->nb[3] = nb[3];
  4238. result->op = GGML_OP_PERMUTE;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src0 = a;
  4241. result->src1 = NULL; // TODO: maybe store the permutation here?
  4242. return result;
  4243. }
  4244. // ggml_transpose
  4245. struct ggml_tensor * ggml_transpose(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. bool is_node = false;
  4249. if (a->grad) {
  4250. GGML_ASSERT(false); // TODO: implement backward
  4251. is_node = true;
  4252. }
  4253. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4254. result->ne[0] = a->ne[1];
  4255. result->ne[1] = a->ne[0];
  4256. result->nb[0] = a->nb[1];
  4257. result->nb[1] = a->nb[0];
  4258. result->op = GGML_OP_TRANSPOSE;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src0 = a;
  4261. result->src1 = NULL;
  4262. return result;
  4263. }
  4264. // ggml_get_rows
  4265. struct ggml_tensor * ggml_get_rows(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. struct ggml_tensor * b) {
  4269. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4270. bool is_node = false;
  4271. if (a->grad || b->grad) {
  4272. GGML_ASSERT(false); // TODO: implement backward
  4273. is_node = true;
  4274. }
  4275. // TODO: implement non F32 return
  4276. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4277. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4278. result->op = GGML_OP_GET_ROWS;
  4279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4280. result->src0 = a;
  4281. result->src1 = b;
  4282. return result;
  4283. }
  4284. // ggml_diag_mask_inf
  4285. struct ggml_tensor * ggml_diag_mask_inf(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. int n_past) {
  4289. bool is_node = false;
  4290. if (a->grad) {
  4291. GGML_ASSERT(false); // TODO: implement backward
  4292. is_node = true;
  4293. }
  4294. // TODO: when implement backward, fix this:
  4295. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4296. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4297. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4298. result->op = GGML_OP_DIAG_MASK_INF;
  4299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4300. result->src0 = a;
  4301. result->src1 = b;
  4302. return result;
  4303. }
  4304. // ggml_soft_max
  4305. struct ggml_tensor * ggml_soft_max(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. bool is_node = false;
  4309. if (a->grad) {
  4310. GGML_ASSERT(false); // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. // TODO: when implement backward, fix this:
  4314. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4316. result->op = GGML_OP_SOFT_MAX;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = a;
  4319. result->src1 = NULL;
  4320. return result;
  4321. }
  4322. // ggml_rope
  4323. struct ggml_tensor * ggml_rope(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. int n_past,
  4327. int n_dims,
  4328. int mode) {
  4329. GGML_ASSERT(n_past >= 0);
  4330. bool is_node = false;
  4331. if (a->grad) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. // TODO: when implement backward, fix this:
  4336. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4338. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4339. ((int32_t *) b->data)[0] = n_past;
  4340. ((int32_t *) b->data)[1] = n_dims;
  4341. ((int32_t *) b->data)[2] = mode;
  4342. result->op = GGML_OP_ROPE;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src0 = a;
  4345. result->src1 = b;
  4346. return result;
  4347. }
  4348. // ggml_conv_1d_1s
  4349. struct ggml_tensor * ggml_conv_1d_1s(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b) {
  4353. GGML_ASSERT(ggml_is_matrix(b));
  4354. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4355. GGML_ASSERT(a->ne[3] == 1);
  4356. bool is_node = false;
  4357. if (a->grad || b->grad) {
  4358. GGML_ASSERT(false); // TODO: implement backward
  4359. is_node = true;
  4360. }
  4361. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4362. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4363. result->op = GGML_OP_CONV_1D_1S;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->src1 = b;
  4367. return result;
  4368. }
  4369. // ggml_conv_1d_2s
  4370. struct ggml_tensor * ggml_conv_1d_2s(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. struct ggml_tensor * b) {
  4374. GGML_ASSERT(ggml_is_matrix(b));
  4375. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4376. GGML_ASSERT(a->ne[3] == 1);
  4377. bool is_node = false;
  4378. if (a->grad || b->grad) {
  4379. GGML_ASSERT(false); // TODO: implement backward
  4380. is_node = true;
  4381. }
  4382. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4383. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4384. result->op = GGML_OP_CONV_1D_2S;
  4385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4386. result->src0 = a;
  4387. result->src1 = b;
  4388. return result;
  4389. }
  4390. // ggml_flash_attn
  4391. struct ggml_tensor * ggml_flash_attn(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * q,
  4394. struct ggml_tensor * k,
  4395. struct ggml_tensor * v,
  4396. bool masked) {
  4397. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4398. // TODO: check if vT can be multiplied by (k*qT)
  4399. bool is_node = false;
  4400. if (q->grad || k->grad || v->grad) {
  4401. GGML_ASSERT(false); // TODO: implement backward
  4402. is_node = true;
  4403. }
  4404. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4406. result->op = GGML_OP_FLASH_ATTN;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = q;
  4409. result->src1 = k;
  4410. result->opt[0] = v;
  4411. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4412. return result;
  4413. }
  4414. // ggml_flash_ff
  4415. struct ggml_tensor * ggml_flash_ff(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b0,
  4419. struct ggml_tensor * b1,
  4420. struct ggml_tensor * c0,
  4421. struct ggml_tensor * c1) {
  4422. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4423. // TODO: more checks
  4424. bool is_node = false;
  4425. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4426. GGML_ASSERT(false); // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4430. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4431. result->op = GGML_OP_FLASH_FF;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src0 = a;
  4434. result->src1 = b0;
  4435. result->opt[0] = b1;
  4436. result->opt[1] = c0;
  4437. result->opt[2] = c1;
  4438. return result;
  4439. }
  4440. // ggml_map_unary
  4441. struct ggml_tensor * ggml_map_unary_impl_f32(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. const ggml_unary_op_f32_t fun,
  4445. bool inplace) {
  4446. bool is_node = false;
  4447. if (!inplace && a->grad) {
  4448. is_node = true;
  4449. }
  4450. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4451. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4452. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4453. result->op = GGML_OP_MAP_UNARY;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src0 = a;
  4456. result->opt[0] = addr_tensor;
  4457. return result;
  4458. }
  4459. struct ggml_tensor * ggml_map_unary_f32(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a,
  4462. const ggml_unary_op_f32_t fun) {
  4463. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4464. }
  4465. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. const ggml_unary_op_f32_t fun) {
  4469. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4470. }
  4471. // ggml_map_binary
  4472. struct ggml_tensor * ggml_map_binary_impl_f32(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a,
  4475. struct ggml_tensor * b,
  4476. const ggml_binary_op_f32_t fun,
  4477. bool inplace) {
  4478. GGML_ASSERT(ggml_are_same_shape(a, b));
  4479. bool is_node = false;
  4480. if (!inplace && (a->grad || b->grad)) {
  4481. is_node = true;
  4482. }
  4483. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4484. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4485. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4486. result->op = GGML_OP_MAP_BINARY;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src0 = a;
  4489. result->src1 = b;
  4490. result->opt[0] = addr_tensor;
  4491. return result;
  4492. }
  4493. struct ggml_tensor * ggml_map_binary_f32(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b,
  4497. const ggml_binary_op_f32_t fun) {
  4498. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4499. }
  4500. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b,
  4504. const ggml_binary_op_f32_t fun) {
  4505. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4506. }
  4507. ////////////////////////////////////////////////////////////////////////////////
  4508. void ggml_set_param(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * tensor) {
  4511. tensor->is_param = true;
  4512. GGML_ASSERT(tensor->grad == NULL);
  4513. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4514. }
  4515. // ggml_compute_forward_dup
  4516. static void ggml_compute_forward_dup_f16(
  4517. const struct ggml_compute_params * params,
  4518. const struct ggml_tensor * src0,
  4519. struct ggml_tensor * dst) {
  4520. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4522. return;
  4523. }
  4524. const int64_t ne00 = src0->ne[0];
  4525. const int64_t ne01 = src0->ne[1];
  4526. const int64_t ne02 = src0->ne[2];
  4527. const int64_t ne03 = src0->ne[3];
  4528. const int64_t ne0 = dst->ne[0];
  4529. const int64_t ne1 = dst->ne[1];
  4530. const int64_t ne2 = dst->ne[2];
  4531. const int64_t ne3 = dst->ne[3];
  4532. const size_t nb00 = src0->nb[0];
  4533. const size_t nb01 = src0->nb[1];
  4534. const size_t nb02 = src0->nb[2];
  4535. const size_t nb03 = src0->nb[3];
  4536. const size_t nb0 = dst->nb[0];
  4537. const size_t nb1 = dst->nb[1];
  4538. const size_t nb2 = dst->nb[2];
  4539. const size_t nb3 = dst->nb[3];
  4540. const int ith = params->ith; // thread index
  4541. const int nth = params->nth; // number of threads
  4542. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4543. // parallelize by elements
  4544. const int ne = ggml_nelements(dst);
  4545. const int dr = (ne + nth - 1) / nth;
  4546. const int ie0 = dr * ith;
  4547. const int ie1 = MIN(ie0 + dr, ne);
  4548. memcpy(
  4549. ((char *) dst->data + ie0*nb0),
  4550. ((char *) src0->data + ie0*nb00),
  4551. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4552. return;
  4553. }
  4554. // parallelize by rows
  4555. const int nr = ne01;
  4556. // number of rows per thread
  4557. const int dr = (nr + nth - 1) / nth;
  4558. // row range for this thread
  4559. const int ir0 = dr * ith;
  4560. const int ir1 = MIN(ir0 + dr, nr);
  4561. if (src0->type == dst->type &&
  4562. ne00 == ne0 &&
  4563. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4564. // copy by rows
  4565. const size_t rs = ne00*nb00;
  4566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4568. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4569. memcpy(
  4570. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4571. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4572. rs);
  4573. }
  4574. }
  4575. }
  4576. return;
  4577. }
  4578. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4579. if (ggml_is_contiguous(dst)) {
  4580. if (nb00 == sizeof(ggml_fp16_t)) {
  4581. if (dst->type == GGML_TYPE_F16) {
  4582. size_t id = 0;
  4583. const size_t rs = ne00 * nb00;
  4584. char * dst_ptr = (char *) dst->data;
  4585. for (int i03 = 0; i03 < ne03; i03++) {
  4586. for (int i02 = 0; i02 < ne02; i02++) {
  4587. id += rs * ir0;
  4588. for (int i01 = ir0; i01 < ir1; i01++) {
  4589. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4590. memcpy(dst_ptr + id, src0_ptr, rs);
  4591. id += rs;
  4592. }
  4593. id += rs * (ne01 - ir1);
  4594. }
  4595. }
  4596. } else if (dst->type == GGML_TYPE_F32) {
  4597. size_t id = 0;
  4598. float * dst_ptr = (float *) dst->data;
  4599. for (int i03 = 0; i03 < ne03; i03++) {
  4600. for (int i02 = 0; i02 < ne02; i02++) {
  4601. id += ne00 * ir0;
  4602. for (int i01 = ir0; i01 < ir1; i01++) {
  4603. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4604. for (int i00 = 0; i00 < ne00; i00++) {
  4605. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4606. id++;
  4607. }
  4608. }
  4609. id += ne00 * (ne01 - ir1);
  4610. }
  4611. }
  4612. } else if (ggml_is_quantized(dst->type)) {
  4613. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4614. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4615. size_t id = 0;
  4616. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4617. char * dst_ptr = (char *) dst->data;
  4618. for (int i03 = 0; i03 < ne03; i03++) {
  4619. for (int i02 = 0; i02 < ne02; i02++) {
  4620. id += rs * ir0;
  4621. for (int i01 = ir0; i01 < ir1; i01++) {
  4622. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4623. for (int i00 = 0; i00 < ne00; i00++) {
  4624. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4625. }
  4626. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4627. id += rs;
  4628. }
  4629. id += rs * (ne01 - ir1);
  4630. }
  4631. }
  4632. } else {
  4633. GGML_ASSERT(false); // TODO: implement
  4634. }
  4635. } else {
  4636. //printf("%s: this is not optimal - fix me\n", __func__);
  4637. if (dst->type == GGML_TYPE_F32) {
  4638. size_t id = 0;
  4639. float * dst_ptr = (float *) dst->data;
  4640. for (int i03 = 0; i03 < ne03; i03++) {
  4641. for (int i02 = 0; i02 < ne02; i02++) {
  4642. id += ne00 * ir0;
  4643. for (int i01 = ir0; i01 < ir1; i01++) {
  4644. for (int i00 = 0; i00 < ne00; i00++) {
  4645. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4646. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4647. id++;
  4648. }
  4649. }
  4650. id += ne00 * (ne01 - ir1);
  4651. }
  4652. }
  4653. } else if (dst->type == GGML_TYPE_F16) {
  4654. size_t id = 0;
  4655. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4656. for (int i03 = 0; i03 < ne03; i03++) {
  4657. for (int i02 = 0; i02 < ne02; i02++) {
  4658. id += ne00 * ir0;
  4659. for (int i01 = ir0; i01 < ir1; i01++) {
  4660. for (int i00 = 0; i00 < ne00; i00++) {
  4661. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4662. dst_ptr[id] = *src0_ptr;
  4663. id++;
  4664. }
  4665. }
  4666. id += ne00 * (ne01 - ir1);
  4667. }
  4668. }
  4669. } else {
  4670. GGML_ASSERT(false); // TODO: implement
  4671. }
  4672. }
  4673. return;
  4674. }
  4675. // dst counters
  4676. int64_t i10 = 0;
  4677. int64_t i11 = 0;
  4678. int64_t i12 = 0;
  4679. int64_t i13 = 0;
  4680. if (dst->type == GGML_TYPE_F16) {
  4681. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4682. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4683. i10 += ne00 * ir0;
  4684. while (i10 >= ne0) {
  4685. i10 -= ne0;
  4686. if (++i11 == ne1) {
  4687. i11 = 0;
  4688. if (++i12 == ne2) {
  4689. i12 = 0;
  4690. if (++i13 == ne3) {
  4691. i13 = 0;
  4692. }
  4693. }
  4694. }
  4695. }
  4696. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4698. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4699. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4700. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4701. if (++i10 == ne00) {
  4702. i10 = 0;
  4703. if (++i11 == ne01) {
  4704. i11 = 0;
  4705. if (++i12 == ne02) {
  4706. i12 = 0;
  4707. if (++i13 == ne03) {
  4708. i13 = 0;
  4709. }
  4710. }
  4711. }
  4712. }
  4713. }
  4714. }
  4715. i10 += ne00 * (ne01 - ir1);
  4716. while (i10 >= ne0) {
  4717. i10 -= ne0;
  4718. if (++i11 == ne1) {
  4719. i11 = 0;
  4720. if (++i12 == ne2) {
  4721. i12 = 0;
  4722. if (++i13 == ne3) {
  4723. i13 = 0;
  4724. }
  4725. }
  4726. }
  4727. }
  4728. }
  4729. }
  4730. } else if (dst->type == GGML_TYPE_F32) {
  4731. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4732. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4733. i10 += ne00 * ir0;
  4734. while (i10 >= ne0) {
  4735. i10 -= ne0;
  4736. if (++i11 == ne1) {
  4737. i11 = 0;
  4738. if (++i12 == ne2) {
  4739. i12 = 0;
  4740. if (++i13 == ne3) {
  4741. i13 = 0;
  4742. }
  4743. }
  4744. }
  4745. }
  4746. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4747. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4748. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4749. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4750. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4751. if (++i10 == ne0) {
  4752. i10 = 0;
  4753. if (++i11 == ne1) {
  4754. i11 = 0;
  4755. if (++i12 == ne2) {
  4756. i12 = 0;
  4757. if (++i13 == ne3) {
  4758. i13 = 0;
  4759. }
  4760. }
  4761. }
  4762. }
  4763. }
  4764. }
  4765. i10 += ne00 * (ne01 - ir1);
  4766. while (i10 >= ne0) {
  4767. i10 -= ne0;
  4768. if (++i11 == ne1) {
  4769. i11 = 0;
  4770. if (++i12 == ne2) {
  4771. i12 = 0;
  4772. if (++i13 == ne3) {
  4773. i13 = 0;
  4774. }
  4775. }
  4776. }
  4777. }
  4778. }
  4779. }
  4780. } else {
  4781. GGML_ASSERT(false); // TODO: implement
  4782. }
  4783. }
  4784. static void ggml_compute_forward_dup_f32(
  4785. const struct ggml_compute_params * params,
  4786. const struct ggml_tensor * src0,
  4787. struct ggml_tensor * dst) {
  4788. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4790. return;
  4791. }
  4792. const int64_t ne00 = src0->ne[0];
  4793. const int64_t ne01 = src0->ne[1];
  4794. const int64_t ne02 = src0->ne[2];
  4795. const int64_t ne03 = src0->ne[3];
  4796. const int64_t ne0 = dst->ne[0];
  4797. const int64_t ne1 = dst->ne[1];
  4798. const int64_t ne2 = dst->ne[2];
  4799. const int64_t ne3 = dst->ne[3];
  4800. const size_t nb00 = src0->nb[0];
  4801. const size_t nb01 = src0->nb[1];
  4802. const size_t nb02 = src0->nb[2];
  4803. const size_t nb03 = src0->nb[3];
  4804. const size_t nb0 = dst->nb[0];
  4805. const size_t nb1 = dst->nb[1];
  4806. const size_t nb2 = dst->nb[2];
  4807. const size_t nb3 = dst->nb[3];
  4808. const int ith = params->ith; // thread index
  4809. const int nth = params->nth; // number of threads
  4810. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4811. // parallelize by elements
  4812. const int ne = ggml_nelements(dst);
  4813. const int dr = (ne + nth - 1) / nth;
  4814. const int ie0 = dr * ith;
  4815. const int ie1 = MIN(ie0 + dr, ne);
  4816. memcpy(
  4817. ((char *) dst->data + ie0*nb0),
  4818. ((char *) src0->data + ie0*nb00),
  4819. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4820. return;
  4821. }
  4822. // parallelize by rows
  4823. const int nr = ne01;
  4824. // number of rows per thread
  4825. const int dr = (nr + nth - 1) / nth;
  4826. // row range for this thread
  4827. const int ir0 = dr * ith;
  4828. const int ir1 = MIN(ir0 + dr, nr);
  4829. if (src0->type == dst->type &&
  4830. ne00 == ne0 &&
  4831. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4832. // copy by rows
  4833. const size_t rs = ne00*nb00;
  4834. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4835. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4836. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4837. memcpy(
  4838. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4839. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4840. rs);
  4841. }
  4842. }
  4843. }
  4844. return;
  4845. }
  4846. if (ggml_is_contiguous(dst)) {
  4847. // TODO: simplify
  4848. if (nb00 == sizeof(float)) {
  4849. if (dst->type == GGML_TYPE_F32) {
  4850. size_t id = 0;
  4851. const size_t rs = ne00 * nb00;
  4852. char * dst_ptr = (char *) dst->data;
  4853. for (int i03 = 0; i03 < ne03; i03++) {
  4854. for (int i02 = 0; i02 < ne02; i02++) {
  4855. id += rs * ir0;
  4856. for (int i01 = ir0; i01 < ir1; i01++) {
  4857. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4858. memcpy(dst_ptr + id, src0_ptr, rs);
  4859. id += rs;
  4860. }
  4861. id += rs * (ne01 - ir1);
  4862. }
  4863. }
  4864. } else if (dst->type == GGML_TYPE_F16) {
  4865. size_t id = 0;
  4866. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4867. for (int i03 = 0; i03 < ne03; i03++) {
  4868. for (int i02 = 0; i02 < ne02; i02++) {
  4869. id += ne00 * ir0;
  4870. for (int i01 = ir0; i01 < ir1; i01++) {
  4871. for (int i00 = 0; i00 < ne00; i00++) {
  4872. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4873. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4874. id++;
  4875. }
  4876. }
  4877. id += ne00 * (ne01 - ir1);
  4878. }
  4879. }
  4880. } else if (ggml_is_quantized(dst->type)) {
  4881. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4882. size_t id = 0;
  4883. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4884. char * dst_ptr = (char *) dst->data;
  4885. for (int i03 = 0; i03 < ne03; i03++) {
  4886. for (int i02 = 0; i02 < ne02; i02++) {
  4887. id += rs * ir0;
  4888. for (int i01 = ir0; i01 < ir1; i01++) {
  4889. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4890. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4891. id += rs;
  4892. }
  4893. id += rs * (ne01 - ir1);
  4894. }
  4895. }
  4896. } else {
  4897. GGML_ASSERT(false); // TODO: implement
  4898. }
  4899. } else {
  4900. //printf("%s: this is not optimal - fix me\n", __func__);
  4901. if (dst->type == GGML_TYPE_F32) {
  4902. size_t id = 0;
  4903. float * dst_ptr = (float *) dst->data;
  4904. for (int i03 = 0; i03 < ne03; i03++) {
  4905. for (int i02 = 0; i02 < ne02; i02++) {
  4906. id += ne00 * ir0;
  4907. for (int i01 = ir0; i01 < ir1; i01++) {
  4908. for (int i00 = 0; i00 < ne00; i00++) {
  4909. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4910. dst_ptr[id] = *src0_ptr;
  4911. id++;
  4912. }
  4913. }
  4914. id += ne00 * (ne01 - ir1);
  4915. }
  4916. }
  4917. } else if (dst->type == GGML_TYPE_F16) {
  4918. size_t id = 0;
  4919. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4920. for (int i03 = 0; i03 < ne03; i03++) {
  4921. for (int i02 = 0; i02 < ne02; i02++) {
  4922. id += ne00 * ir0;
  4923. for (int i01 = ir0; i01 < ir1; i01++) {
  4924. for (int i00 = 0; i00 < ne00; i00++) {
  4925. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4926. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4927. id++;
  4928. }
  4929. }
  4930. id += ne00 * (ne01 - ir1);
  4931. }
  4932. }
  4933. } else {
  4934. GGML_ASSERT(false); // TODO: implement
  4935. }
  4936. }
  4937. return;
  4938. }
  4939. // dst counters
  4940. int64_t i10 = 0;
  4941. int64_t i11 = 0;
  4942. int64_t i12 = 0;
  4943. int64_t i13 = 0;
  4944. if (dst->type == GGML_TYPE_F32) {
  4945. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4946. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4947. i10 += ne00 * ir0;
  4948. while (i10 >= ne0) {
  4949. i10 -= ne0;
  4950. i11++;
  4951. if (++i11 == ne1) {
  4952. i11 = 0;
  4953. if (++i12 == ne2) {
  4954. i12 = 0;
  4955. if (++i13 == ne3) {
  4956. i13 = 0;
  4957. }
  4958. }
  4959. }
  4960. }
  4961. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4962. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4963. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4964. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4965. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4966. if (++i10 == ne0) {
  4967. i10 = 0;
  4968. if (++i11 == ne1) {
  4969. i11 = 0;
  4970. if (++i12 == ne2) {
  4971. i12 = 0;
  4972. if (++i13 == ne3) {
  4973. i13 = 0;
  4974. }
  4975. }
  4976. }
  4977. }
  4978. }
  4979. }
  4980. i10 += ne00 * (ne01 - ir1);
  4981. while (i10 >= ne0) {
  4982. i10 -= ne0;
  4983. if (++i11 == ne1) {
  4984. i11 = 0;
  4985. if (++i12 == ne2) {
  4986. i12 = 0;
  4987. if (++i13 == ne3) {
  4988. i13 = 0;
  4989. }
  4990. }
  4991. }
  4992. }
  4993. }
  4994. }
  4995. } else if (dst->type == GGML_TYPE_F16) {
  4996. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4997. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4998. i10 += ne00 * ir0;
  4999. while (i10 >= ne0) {
  5000. i10 -= ne0;
  5001. if (++i11 == ne1) {
  5002. i11 = 0;
  5003. if (++i12 == ne2) {
  5004. i12 = 0;
  5005. if (++i13 == ne3) {
  5006. i13 = 0;
  5007. }
  5008. }
  5009. }
  5010. }
  5011. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5012. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5013. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5014. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5015. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5016. if (++i10 == ne0) {
  5017. i10 = 0;
  5018. if (++i11 == ne1) {
  5019. i11 = 0;
  5020. if (++i12 == ne2) {
  5021. i12 = 0;
  5022. if (++i13 == ne3) {
  5023. i13 = 0;
  5024. }
  5025. }
  5026. }
  5027. }
  5028. }
  5029. }
  5030. i10 += ne00 * (ne01 - ir1);
  5031. while (i10 >= ne0) {
  5032. i10 -= ne0;
  5033. if (++i11 == ne1) {
  5034. i11 = 0;
  5035. if (++i12 == ne2) {
  5036. i12 = 0;
  5037. if (++i13 == ne3) {
  5038. i13 = 0;
  5039. }
  5040. }
  5041. }
  5042. }
  5043. }
  5044. }
  5045. } else {
  5046. GGML_ASSERT(false); // TODO: implement
  5047. }
  5048. }
  5049. static void ggml_compute_forward_dup(
  5050. const struct ggml_compute_params * params,
  5051. const struct ggml_tensor * src0,
  5052. struct ggml_tensor * dst) {
  5053. switch (src0->type) {
  5054. case GGML_TYPE_F16:
  5055. {
  5056. ggml_compute_forward_dup_f16(params, src0, dst);
  5057. } break;
  5058. case GGML_TYPE_F32:
  5059. {
  5060. ggml_compute_forward_dup_f32(params, src0, dst);
  5061. } break;
  5062. default:
  5063. {
  5064. GGML_ASSERT(false);
  5065. } break;
  5066. }
  5067. }
  5068. // ggml_compute_forward_add
  5069. static void ggml_compute_forward_add_f32(
  5070. const struct ggml_compute_params * params,
  5071. const struct ggml_tensor * src0,
  5072. const struct ggml_tensor * src1,
  5073. struct ggml_tensor * dst) {
  5074. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5075. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5076. return;
  5077. }
  5078. const int ith = params->ith;
  5079. const int nth = params->nth;
  5080. const int n = ggml_nrows(src0);
  5081. const int nc = src0->ne[0];
  5082. const size_t nb00 = src0->nb[0];
  5083. const size_t nb01 = src0->nb[1];
  5084. const size_t nb10 = src1->nb[0];
  5085. const size_t nb11 = src1->nb[1];
  5086. const size_t nb0 = dst->nb[0];
  5087. const size_t nb1 = dst->nb[1];
  5088. GGML_ASSERT( nb0 == sizeof(float));
  5089. GGML_ASSERT(nb00 == sizeof(float));
  5090. if (nb10 == sizeof(float)) {
  5091. for (int j = ith; j < n; j += nth) {
  5092. #ifdef GGML_USE_ACCELERATE
  5093. vDSP_vadd(
  5094. (float *) ((char *) src0->data + j*nb01), 1,
  5095. (float *) ((char *) src1->data + j*nb11), 1,
  5096. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5097. #else
  5098. ggml_vec_add_f32(nc,
  5099. (float *) ((char *) dst->data + j*nb1),
  5100. (float *) ((char *) src0->data + j*nb01),
  5101. (float *) ((char *) src1->data + j*nb11));
  5102. #endif
  5103. }
  5104. } else {
  5105. // src1 is not contiguous
  5106. for (int j = ith; j < n; j += nth) {
  5107. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5108. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5109. for (int i = 0; i < nc; i++) {
  5110. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5111. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5112. }
  5113. }
  5114. }
  5115. }
  5116. static void ggml_compute_forward_add_f16_f32(
  5117. const struct ggml_compute_params * params,
  5118. const struct ggml_tensor * src0,
  5119. const struct ggml_tensor * src1,
  5120. struct ggml_tensor * dst) {
  5121. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5123. return;
  5124. }
  5125. const int ith = params->ith;
  5126. const int nth = params->nth;
  5127. const int n = ggml_nrows(src0);
  5128. const int nc = src0->ne[0];
  5129. const size_t nb00 = src0->nb[0];
  5130. const size_t nb01 = src0->nb[1];
  5131. const size_t nb10 = src1->nb[0];
  5132. const size_t nb11 = src1->nb[1];
  5133. const size_t nb0 = dst->nb[0];
  5134. const size_t nb1 = dst->nb[1];
  5135. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5136. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5137. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5138. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5139. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5140. if (nb10 == sizeof(float)) {
  5141. for (int j = ith; j < n; j += nth) {
  5142. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5143. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5144. for (int i = 0; i < nc; i++) {
  5145. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5146. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5147. }
  5148. }
  5149. }
  5150. else {
  5151. // src1 is not contiguous
  5152. GGML_ASSERT(false);
  5153. }
  5154. }
  5155. static void ggml_compute_forward_add_f16_f16(
  5156. const struct ggml_compute_params * params,
  5157. const struct ggml_tensor * src0,
  5158. const struct ggml_tensor * src1,
  5159. struct ggml_tensor * dst) {
  5160. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5162. return;
  5163. }
  5164. const int ith = params->ith;
  5165. const int nth = params->nth;
  5166. const int n = ggml_nrows(src0);
  5167. const int nc = src0->ne[0];
  5168. const size_t nb00 = src0->nb[0];
  5169. const size_t nb01 = src0->nb[1];
  5170. const size_t nb10 = src1->nb[0];
  5171. const size_t nb11 = src1->nb[1];
  5172. const size_t nb0 = dst->nb[0];
  5173. const size_t nb1 = dst->nb[1];
  5174. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5175. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5176. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5177. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5178. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5179. if (nb10 == sizeof(ggml_fp16_t)) {
  5180. for (int j = ith; j < n; j += nth) {
  5181. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5182. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5183. for (int i = 0; i < nc; i++) {
  5184. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5185. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5186. }
  5187. }
  5188. }
  5189. else {
  5190. // src1 is not contiguous
  5191. GGML_ASSERT(false);
  5192. }
  5193. }
  5194. static void ggml_compute_forward_add_q_f32(
  5195. const struct ggml_compute_params * params,
  5196. const struct ggml_tensor * src0,
  5197. const struct ggml_tensor * src1,
  5198. struct ggml_tensor * dst) {
  5199. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5201. return;
  5202. }
  5203. const int64_t ne00 = src0->ne[0];
  5204. const int64_t ne01 = src0->ne[1];
  5205. const int64_t ne02 = src0->ne[2];
  5206. const int64_t ne03 = src0->ne[3];
  5207. //const int64_t ne10 = src1->ne[0];
  5208. //const int64_t ne11 = src1->ne[1];
  5209. const int64_t ne12 = src1->ne[2];
  5210. const int64_t ne13 = src1->ne[3];
  5211. //const int64_t ne0 = dst->ne[0];
  5212. //const int64_t ne1 = dst->ne[1];
  5213. const int64_t ne2 = dst->ne[2];
  5214. const int64_t ne3 = dst->ne[3];
  5215. const int nb00 = src0->nb[0];
  5216. const int nb01 = src0->nb[1];
  5217. const int nb02 = src0->nb[2];
  5218. const int nb03 = src0->nb[3];
  5219. const int nb10 = src1->nb[0];
  5220. const int nb11 = src1->nb[1];
  5221. const int nb12 = src1->nb[2];
  5222. const int nb13 = src1->nb[3];
  5223. const int nb0 = dst->nb[0];
  5224. const int nb1 = dst->nb[1];
  5225. const int nb2 = dst->nb[2];
  5226. const int nb3 = dst->nb[3];
  5227. const int ith = params->ith;
  5228. const int nth = params->nth;
  5229. GGML_ASSERT(ne02 == ne12);
  5230. GGML_ASSERT(ne03 == ne13);
  5231. GGML_ASSERT(ne2 == ne12);
  5232. GGML_ASSERT(ne3 == ne13);
  5233. const enum ggml_type type = src0->type;
  5234. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5235. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5236. // we don't support permuted src0 or src1
  5237. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5238. GGML_ASSERT(nb10 == sizeof(float));
  5239. // dst cannot be transposed or permuted
  5240. GGML_ASSERT(nb0 <= nb1);
  5241. GGML_ASSERT(nb1 <= nb2);
  5242. GGML_ASSERT(nb2 <= nb3);
  5243. GGML_ASSERT(ggml_is_quantized(src0->type));
  5244. GGML_ASSERT(dst->type == src0->type);
  5245. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5246. // total rows in src0
  5247. const int nr = ne01*ne02*ne03;
  5248. // rows per thread
  5249. const int dr = (nr + nth - 1)/nth;
  5250. // row range for this thread
  5251. const int ir0 = dr*ith;
  5252. const int ir1 = MIN(ir0 + dr, nr);
  5253. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5254. for (int ir = ir0; ir < ir1; ++ir) {
  5255. // src0 indices
  5256. const int i03 = ir/(ne02*ne01);
  5257. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5258. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5259. // src1 and dst are same shape as src0 => same indices
  5260. const int i13 = i03;
  5261. const int i12 = i02;
  5262. const int i11 = i01;
  5263. const int i3 = i03;
  5264. const int i2 = i02;
  5265. const int i1 = i01;
  5266. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5267. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5268. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5269. assert(ne00 % 32 == 0);
  5270. // unquantize row from src0 to temp buffer
  5271. dequantize_row_q(src0_row, wdata, ne00);
  5272. // add src1
  5273. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5274. // quantize row to dst
  5275. quantize_row_q(wdata, dst_row, ne00);
  5276. }
  5277. }
  5278. static void ggml_compute_forward_add(
  5279. const struct ggml_compute_params * params,
  5280. const struct ggml_tensor * src0,
  5281. const struct ggml_tensor * src1,
  5282. struct ggml_tensor * dst) {
  5283. switch (src0->type) {
  5284. case GGML_TYPE_F32:
  5285. {
  5286. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5287. } break;
  5288. case GGML_TYPE_F16:
  5289. {
  5290. if (src1->type == GGML_TYPE_F16) {
  5291. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5292. }
  5293. else if (src1->type == GGML_TYPE_F32) {
  5294. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5295. }
  5296. else {
  5297. GGML_ASSERT(false);
  5298. }
  5299. } break;
  5300. case GGML_TYPE_Q4_0:
  5301. case GGML_TYPE_Q4_1:
  5302. case GGML_TYPE_Q4_2:
  5303. case GGML_TYPE_Q4_3:
  5304. {
  5305. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5306. } break;
  5307. default:
  5308. {
  5309. GGML_ASSERT(false);
  5310. } break;
  5311. }
  5312. }
  5313. // ggml_compute_forward_sub
  5314. static void ggml_compute_forward_sub_f32(
  5315. const struct ggml_compute_params * params,
  5316. const struct ggml_tensor * src0,
  5317. const struct ggml_tensor * src1,
  5318. struct ggml_tensor * dst) {
  5319. assert(params->ith == 0);
  5320. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5322. return;
  5323. }
  5324. const int n = ggml_nrows(src0);
  5325. const int nc = src0->ne[0];
  5326. assert( dst->nb[0] == sizeof(float));
  5327. assert(src0->nb[0] == sizeof(float));
  5328. assert(src1->nb[0] == sizeof(float));
  5329. for (int i = 0; i < n; i++) {
  5330. ggml_vec_sub_f32(nc,
  5331. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5332. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5333. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5334. }
  5335. }
  5336. static void ggml_compute_forward_sub(
  5337. const struct ggml_compute_params * params,
  5338. const struct ggml_tensor * src0,
  5339. const struct ggml_tensor * src1,
  5340. struct ggml_tensor * dst) {
  5341. switch (src0->type) {
  5342. case GGML_TYPE_F32:
  5343. {
  5344. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5345. } break;
  5346. default:
  5347. {
  5348. GGML_ASSERT(false);
  5349. } break;
  5350. }
  5351. }
  5352. // ggml_compute_forward_mul
  5353. static void ggml_compute_forward_mul_f32(
  5354. const struct ggml_compute_params * params,
  5355. const struct ggml_tensor * src0,
  5356. const struct ggml_tensor * src1,
  5357. struct ggml_tensor * dst) {
  5358. assert(params->ith == 0);
  5359. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5360. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5361. return;
  5362. }
  5363. const int n = ggml_nrows(src0);
  5364. const int nc = src0->ne[0];
  5365. assert( dst->nb[0] == sizeof(float));
  5366. assert(src0->nb[0] == sizeof(float));
  5367. assert(src1->nb[0] == sizeof(float));
  5368. for (int i = 0; i < n; i++) {
  5369. ggml_vec_mul_f32(nc,
  5370. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5371. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5372. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5373. }
  5374. }
  5375. static void ggml_compute_forward_mul(
  5376. const struct ggml_compute_params * params,
  5377. const struct ggml_tensor * src0,
  5378. const struct ggml_tensor * src1,
  5379. struct ggml_tensor * dst) {
  5380. switch (src0->type) {
  5381. case GGML_TYPE_F32:
  5382. {
  5383. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5384. } break;
  5385. default:
  5386. {
  5387. GGML_ASSERT(false);
  5388. } break;
  5389. }
  5390. }
  5391. // ggml_compute_forward_div
  5392. static void ggml_compute_forward_div_f32(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0,
  5395. const struct ggml_tensor * src1,
  5396. struct ggml_tensor * dst) {
  5397. assert(params->ith == 0);
  5398. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5400. return;
  5401. }
  5402. const int n = ggml_nrows(src0);
  5403. const int nc = src0->ne[0];
  5404. assert( dst->nb[0] == sizeof(float));
  5405. assert(src0->nb[0] == sizeof(float));
  5406. assert(src1->nb[0] == sizeof(float));
  5407. for (int i = 0; i < n; i++) {
  5408. ggml_vec_div_f32(nc,
  5409. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5410. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5411. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5412. }
  5413. }
  5414. static void ggml_compute_forward_div(
  5415. const struct ggml_compute_params * params,
  5416. const struct ggml_tensor * src0,
  5417. const struct ggml_tensor * src1,
  5418. struct ggml_tensor * dst) {
  5419. switch (src0->type) {
  5420. case GGML_TYPE_F32:
  5421. {
  5422. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5423. } break;
  5424. default:
  5425. {
  5426. GGML_ASSERT(false);
  5427. } break;
  5428. }
  5429. }
  5430. // ggml_compute_forward_sqr
  5431. static void ggml_compute_forward_sqr_f32(
  5432. const struct ggml_compute_params * params,
  5433. const struct ggml_tensor * src0,
  5434. struct ggml_tensor * dst) {
  5435. assert(params->ith == 0);
  5436. assert(ggml_are_same_shape(src0, dst));
  5437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5438. return;
  5439. }
  5440. const int n = ggml_nrows(src0);
  5441. const int nc = src0->ne[0];
  5442. assert( dst->nb[0] == sizeof(float));
  5443. assert(src0->nb[0] == sizeof(float));
  5444. for (int i = 0; i < n; i++) {
  5445. ggml_vec_sqr_f32(nc,
  5446. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5447. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5448. }
  5449. }
  5450. static void ggml_compute_forward_sqr(
  5451. const struct ggml_compute_params * params,
  5452. const struct ggml_tensor * src0,
  5453. struct ggml_tensor * dst) {
  5454. switch (src0->type) {
  5455. case GGML_TYPE_F32:
  5456. {
  5457. ggml_compute_forward_sqr_f32(params, src0, dst);
  5458. } break;
  5459. default:
  5460. {
  5461. GGML_ASSERT(false);
  5462. } break;
  5463. }
  5464. }
  5465. // ggml_compute_forward_sqrt
  5466. static void ggml_compute_forward_sqrt_f32(
  5467. const struct ggml_compute_params * params,
  5468. const struct ggml_tensor * src0,
  5469. struct ggml_tensor * dst) {
  5470. assert(params->ith == 0);
  5471. assert(ggml_are_same_shape(src0, dst));
  5472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5473. return;
  5474. }
  5475. const int n = ggml_nrows(src0);
  5476. const int nc = src0->ne[0];
  5477. assert( dst->nb[0] == sizeof(float));
  5478. assert(src0->nb[0] == sizeof(float));
  5479. for (int i = 0; i < n; i++) {
  5480. ggml_vec_sqrt_f32(nc,
  5481. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5482. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5483. }
  5484. }
  5485. static void ggml_compute_forward_sqrt(
  5486. const struct ggml_compute_params * params,
  5487. const struct ggml_tensor * src0,
  5488. struct ggml_tensor * dst) {
  5489. switch (src0->type) {
  5490. case GGML_TYPE_F32:
  5491. {
  5492. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5493. } break;
  5494. default:
  5495. {
  5496. GGML_ASSERT(false);
  5497. } break;
  5498. }
  5499. }
  5500. // ggml_compute_forward_sum
  5501. static void ggml_compute_forward_sum_f32(
  5502. const struct ggml_compute_params * params,
  5503. const struct ggml_tensor * src0,
  5504. struct ggml_tensor * dst) {
  5505. assert(params->ith == 0);
  5506. assert(ggml_is_scalar(dst));
  5507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5508. return;
  5509. }
  5510. assert(ggml_is_scalar(dst));
  5511. assert(src0->nb[0] == sizeof(float));
  5512. const int64_t ne00 = src0->ne[0];
  5513. const int64_t ne01 = src0->ne[1];
  5514. const int64_t ne02 = src0->ne[2];
  5515. const int64_t ne03 = src0->ne[3];
  5516. const size_t nb01 = src0->nb[1];
  5517. const size_t nb02 = src0->nb[2];
  5518. const size_t nb03 = src0->nb[3];
  5519. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5520. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5521. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5522. ggml_vec_sum_f32(ne00,
  5523. (float *) (dst->data),
  5524. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5525. }
  5526. }
  5527. }
  5528. }
  5529. static void ggml_compute_forward_sum(
  5530. const struct ggml_compute_params * params,
  5531. const struct ggml_tensor * src0,
  5532. struct ggml_tensor * dst) {
  5533. switch (src0->type) {
  5534. case GGML_TYPE_F32:
  5535. {
  5536. ggml_compute_forward_sum_f32(params, src0, dst);
  5537. } break;
  5538. default:
  5539. {
  5540. GGML_ASSERT(false);
  5541. } break;
  5542. }
  5543. }
  5544. // ggml_compute_forward_mean
  5545. static void ggml_compute_forward_mean_f32(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0,
  5548. struct ggml_tensor * dst) {
  5549. assert(params->ith == 0);
  5550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5551. return;
  5552. }
  5553. assert(src0->nb[0] == sizeof(float));
  5554. const int64_t ne00 = src0->ne[0];
  5555. const int64_t ne01 = src0->ne[1];
  5556. const int64_t ne02 = src0->ne[2];
  5557. const int64_t ne03 = src0->ne[3];
  5558. const size_t nb01 = src0->nb[1];
  5559. const size_t nb02 = src0->nb[2];
  5560. const size_t nb03 = src0->nb[3];
  5561. const int64_t ne0 = dst->ne[0];
  5562. const int64_t ne1 = dst->ne[1];
  5563. const int64_t ne2 = dst->ne[2];
  5564. const int64_t ne3 = dst->ne[3];
  5565. assert(ne0 == 1);
  5566. assert(ne1 == ne01);
  5567. assert(ne2 == ne02);
  5568. assert(ne3 == ne03);
  5569. UNUSED(ne0);
  5570. UNUSED(ne1);
  5571. UNUSED(ne2);
  5572. UNUSED(ne3);
  5573. const size_t nb1 = dst->nb[1];
  5574. const size_t nb2 = dst->nb[2];
  5575. const size_t nb3 = dst->nb[3];
  5576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5578. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5579. ggml_vec_sum_f32(ne00,
  5580. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5581. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5582. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5583. }
  5584. }
  5585. }
  5586. }
  5587. static void ggml_compute_forward_mean(
  5588. const struct ggml_compute_params * params,
  5589. const struct ggml_tensor * src0,
  5590. struct ggml_tensor * dst) {
  5591. switch (src0->type) {
  5592. case GGML_TYPE_F32:
  5593. {
  5594. ggml_compute_forward_mean_f32(params, src0, dst);
  5595. } break;
  5596. default:
  5597. {
  5598. GGML_ASSERT(false);
  5599. } break;
  5600. }
  5601. }
  5602. // ggml_compute_forward_repeat
  5603. static void ggml_compute_forward_repeat_f32(
  5604. const struct ggml_compute_params * params,
  5605. const struct ggml_tensor * src0,
  5606. struct ggml_tensor * dst) {
  5607. assert(params->ith == 0);
  5608. assert(ggml_can_repeat(src0, dst));
  5609. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5610. return;
  5611. }
  5612. // TODO: implement support for rank > 2 tensors
  5613. assert(src0->ne[2] == 1);
  5614. assert(src0->ne[3] == 1);
  5615. assert( dst->ne[2] == 1);
  5616. assert( dst->ne[3] == 1);
  5617. const int nc = dst->ne[0];
  5618. const int nr = dst->ne[1];
  5619. const int nc0 = src0->ne[0];
  5620. const int nr0 = src0->ne[1];
  5621. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5622. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5623. // TODO: support for transposed / permuted tensors
  5624. assert( dst->nb[0] == sizeof(float));
  5625. assert(src0->nb[0] == sizeof(float));
  5626. // TODO: maybe this is not optimal?
  5627. for (int i = 0; i < nrr; i++) {
  5628. for (int j = 0; j < ncr; j++) {
  5629. for (int k = 0; k < nr0; k++) {
  5630. ggml_vec_cpy_f32(nc0,
  5631. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5632. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5633. }
  5634. }
  5635. }
  5636. }
  5637. static void ggml_compute_forward_repeat(
  5638. const struct ggml_compute_params * params,
  5639. const struct ggml_tensor * src0,
  5640. struct ggml_tensor * dst) {
  5641. switch (src0->type) {
  5642. case GGML_TYPE_F32:
  5643. {
  5644. ggml_compute_forward_repeat_f32(params, src0, dst);
  5645. } break;
  5646. default:
  5647. {
  5648. GGML_ASSERT(false);
  5649. } break;
  5650. }
  5651. }
  5652. // ggml_compute_forward_abs
  5653. static void ggml_compute_forward_abs_f32(
  5654. const struct ggml_compute_params * params,
  5655. const struct ggml_tensor * src0,
  5656. struct ggml_tensor * dst) {
  5657. assert(params->ith == 0);
  5658. assert(ggml_are_same_shape(src0, dst));
  5659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5660. return;
  5661. }
  5662. const int n = ggml_nrows(src0);
  5663. const int nc = src0->ne[0];
  5664. assert(dst->nb[0] == sizeof(float));
  5665. assert(src0->nb[0] == sizeof(float));
  5666. for (int i = 0; i < n; i++) {
  5667. ggml_vec_abs_f32(nc,
  5668. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5669. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5670. }
  5671. }
  5672. static void ggml_compute_forward_abs(
  5673. const struct ggml_compute_params * params,
  5674. const struct ggml_tensor * src0,
  5675. struct ggml_tensor * dst) {
  5676. switch (src0->type) {
  5677. case GGML_TYPE_F32:
  5678. {
  5679. ggml_compute_forward_abs_f32(params, src0, dst);
  5680. } break;
  5681. default:
  5682. {
  5683. GGML_ASSERT(false);
  5684. } break;
  5685. }
  5686. }
  5687. // ggml_compute_forward_sgn
  5688. static void ggml_compute_forward_sgn_f32(
  5689. const struct ggml_compute_params * params,
  5690. const struct ggml_tensor * src0,
  5691. struct ggml_tensor * dst) {
  5692. assert(params->ith == 0);
  5693. assert(ggml_are_same_shape(src0, dst));
  5694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5695. return;
  5696. }
  5697. const int n = ggml_nrows(src0);
  5698. const int nc = src0->ne[0];
  5699. assert(dst->nb[0] == sizeof(float));
  5700. assert(src0->nb[0] == sizeof(float));
  5701. for (int i = 0; i < n; i++) {
  5702. ggml_vec_sgn_f32(nc,
  5703. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5704. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5705. }
  5706. }
  5707. static void ggml_compute_forward_sgn(
  5708. const struct ggml_compute_params * params,
  5709. const struct ggml_tensor * src0,
  5710. struct ggml_tensor * dst) {
  5711. switch (src0->type) {
  5712. case GGML_TYPE_F32:
  5713. {
  5714. ggml_compute_forward_sgn_f32(params, src0, dst);
  5715. } break;
  5716. default:
  5717. {
  5718. GGML_ASSERT(false);
  5719. } break;
  5720. }
  5721. }
  5722. // ggml_compute_forward_neg
  5723. static void ggml_compute_forward_neg_f32(
  5724. const struct ggml_compute_params * params,
  5725. const struct ggml_tensor * src0,
  5726. struct ggml_tensor * dst) {
  5727. assert(params->ith == 0);
  5728. assert(ggml_are_same_shape(src0, dst));
  5729. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5730. return;
  5731. }
  5732. const int n = ggml_nrows(src0);
  5733. const int nc = src0->ne[0];
  5734. assert(dst->nb[0] == sizeof(float));
  5735. assert(src0->nb[0] == sizeof(float));
  5736. for (int i = 0; i < n; i++) {
  5737. ggml_vec_neg_f32(nc,
  5738. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5739. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5740. }
  5741. }
  5742. static void ggml_compute_forward_neg(
  5743. const struct ggml_compute_params * params,
  5744. const struct ggml_tensor * src0,
  5745. struct ggml_tensor * dst) {
  5746. switch (src0->type) {
  5747. case GGML_TYPE_F32:
  5748. {
  5749. ggml_compute_forward_neg_f32(params, src0, dst);
  5750. } break;
  5751. default:
  5752. {
  5753. GGML_ASSERT(false);
  5754. } break;
  5755. }
  5756. }
  5757. // ggml_compute_forward_step
  5758. static void ggml_compute_forward_step_f32(
  5759. const struct ggml_compute_params * params,
  5760. const struct ggml_tensor * src0,
  5761. struct ggml_tensor * dst) {
  5762. assert(params->ith == 0);
  5763. assert(ggml_are_same_shape(src0, dst));
  5764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5765. return;
  5766. }
  5767. const int n = ggml_nrows(src0);
  5768. const int nc = src0->ne[0];
  5769. assert(dst->nb[0] == sizeof(float));
  5770. assert(src0->nb[0] == sizeof(float));
  5771. for (int i = 0; i < n; i++) {
  5772. ggml_vec_step_f32(nc,
  5773. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5774. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5775. }
  5776. }
  5777. static void ggml_compute_forward_step(
  5778. const struct ggml_compute_params * params,
  5779. const struct ggml_tensor * src0,
  5780. struct ggml_tensor * dst) {
  5781. switch (src0->type) {
  5782. case GGML_TYPE_F32:
  5783. {
  5784. ggml_compute_forward_step_f32(params, src0, dst);
  5785. } break;
  5786. default:
  5787. {
  5788. GGML_ASSERT(false);
  5789. } break;
  5790. }
  5791. }
  5792. // ggml_compute_forward_relu
  5793. static void ggml_compute_forward_relu_f32(
  5794. const struct ggml_compute_params * params,
  5795. const struct ggml_tensor * src0,
  5796. struct ggml_tensor * dst) {
  5797. assert(params->ith == 0);
  5798. assert(ggml_are_same_shape(src0, dst));
  5799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5800. return;
  5801. }
  5802. const int n = ggml_nrows(src0);
  5803. const int nc = src0->ne[0];
  5804. assert(dst->nb[0] == sizeof(float));
  5805. assert(src0->nb[0] == sizeof(float));
  5806. for (int i = 0; i < n; i++) {
  5807. ggml_vec_relu_f32(nc,
  5808. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5809. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5810. }
  5811. }
  5812. static void ggml_compute_forward_relu(
  5813. const struct ggml_compute_params * params,
  5814. const struct ggml_tensor * src0,
  5815. struct ggml_tensor * dst) {
  5816. switch (src0->type) {
  5817. case GGML_TYPE_F32:
  5818. {
  5819. ggml_compute_forward_relu_f32(params, src0, dst);
  5820. } break;
  5821. default:
  5822. {
  5823. GGML_ASSERT(false);
  5824. } break;
  5825. }
  5826. }
  5827. // ggml_compute_forward_gelu
  5828. static void ggml_compute_forward_gelu_f32(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. struct ggml_tensor * dst) {
  5832. GGML_ASSERT(ggml_is_contiguous(src0));
  5833. GGML_ASSERT(ggml_is_contiguous(dst));
  5834. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5836. return;
  5837. }
  5838. const int ith = params->ith;
  5839. const int nth = params->nth;
  5840. const int nc = src0->ne[0];
  5841. const int nr = ggml_nrows(src0);
  5842. // rows per thread
  5843. const int dr = (nr + nth - 1)/nth;
  5844. // row range for this thread
  5845. const int ir0 = dr*ith;
  5846. const int ir1 = MIN(ir0 + dr, nr);
  5847. for (int i1 = ir0; i1 < ir1; i1++) {
  5848. ggml_vec_gelu_f32(nc,
  5849. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5850. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5851. #ifndef NDEBUG
  5852. for (int k = 0; k < nc; k++) {
  5853. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5854. UNUSED(x);
  5855. assert(!isnan(x));
  5856. assert(!isinf(x));
  5857. }
  5858. #endif
  5859. }
  5860. }
  5861. static void ggml_compute_forward_gelu(
  5862. const struct ggml_compute_params * params,
  5863. const struct ggml_tensor * src0,
  5864. struct ggml_tensor * dst) {
  5865. switch (src0->type) {
  5866. case GGML_TYPE_F32:
  5867. {
  5868. ggml_compute_forward_gelu_f32(params, src0, dst);
  5869. } break;
  5870. default:
  5871. {
  5872. GGML_ASSERT(false);
  5873. } break;
  5874. }
  5875. //printf("XXXXXXXX gelu\n");
  5876. }
  5877. // ggml_compute_forward_silu
  5878. static void ggml_compute_forward_silu_f32(
  5879. const struct ggml_compute_params * params,
  5880. const struct ggml_tensor * src0,
  5881. struct ggml_tensor * dst) {
  5882. GGML_ASSERT(ggml_is_contiguous(src0));
  5883. GGML_ASSERT(ggml_is_contiguous(dst));
  5884. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5886. return;
  5887. }
  5888. const int ith = params->ith;
  5889. const int nth = params->nth;
  5890. const int nc = src0->ne[0];
  5891. const int nr = ggml_nrows(src0);
  5892. // rows per thread
  5893. const int dr = (nr + nth - 1)/nth;
  5894. // row range for this thread
  5895. const int ir0 = dr*ith;
  5896. const int ir1 = MIN(ir0 + dr, nr);
  5897. for (int i1 = ir0; i1 < ir1; i1++) {
  5898. ggml_vec_silu_f32(nc,
  5899. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5900. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5901. #ifndef NDEBUG
  5902. for (int k = 0; k < nc; k++) {
  5903. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5904. UNUSED(x);
  5905. assert(!isnan(x));
  5906. assert(!isinf(x));
  5907. }
  5908. #endif
  5909. }
  5910. }
  5911. static void ggml_compute_forward_silu(
  5912. const struct ggml_compute_params * params,
  5913. const struct ggml_tensor * src0,
  5914. struct ggml_tensor * dst) {
  5915. switch (src0->type) {
  5916. case GGML_TYPE_F32:
  5917. {
  5918. ggml_compute_forward_silu_f32(params, src0, dst);
  5919. } break;
  5920. default:
  5921. {
  5922. GGML_ASSERT(false);
  5923. } break;
  5924. }
  5925. }
  5926. // ggml_compute_forward_norm
  5927. static void ggml_compute_forward_norm_f32(
  5928. const struct ggml_compute_params * params,
  5929. const struct ggml_tensor * src0,
  5930. struct ggml_tensor * dst) {
  5931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5933. return;
  5934. }
  5935. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5936. const int ith = params->ith;
  5937. const int nth = params->nth;
  5938. const int64_t ne00 = src0->ne[0];
  5939. const int64_t ne01 = src0->ne[1];
  5940. const int64_t ne02 = src0->ne[2];
  5941. const int64_t ne03 = src0->ne[3];
  5942. const size_t nb01 = src0->nb[1];
  5943. const size_t nb02 = src0->nb[2];
  5944. const size_t nb03 = src0->nb[3];
  5945. const size_t nb1 = dst->nb[1];
  5946. const size_t nb2 = dst->nb[2];
  5947. const size_t nb3 = dst->nb[3];
  5948. const float eps = 1e-5f; // TODO: make this a parameter
  5949. // TODO: optimize
  5950. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5951. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5952. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5953. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5954. ggml_float sum = 0.0;
  5955. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5956. sum += (ggml_float)x[i00];
  5957. }
  5958. float mean = sum/ne00;
  5959. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5960. ggml_float sum2 = 0.0;
  5961. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5962. float v = x[i00] - mean;
  5963. y[i00] = v;
  5964. sum2 += (ggml_float)(v*v);
  5965. }
  5966. float variance = sum2/ne00;
  5967. const float scale = 1.0f/sqrtf(variance + eps);
  5968. ggml_vec_scale_f32(ne00, y, scale);
  5969. }
  5970. }
  5971. }
  5972. }
  5973. static void ggml_compute_forward_norm(
  5974. const struct ggml_compute_params * params,
  5975. const struct ggml_tensor * src0,
  5976. struct ggml_tensor * dst) {
  5977. switch (src0->type) {
  5978. case GGML_TYPE_F32:
  5979. {
  5980. ggml_compute_forward_norm_f32(params, src0, dst);
  5981. } break;
  5982. default:
  5983. {
  5984. GGML_ASSERT(false);
  5985. } break;
  5986. }
  5987. }
  5988. static void ggml_compute_forward_rms_norm_f32(
  5989. const struct ggml_compute_params * params,
  5990. const struct ggml_tensor * src0,
  5991. struct ggml_tensor * dst) {
  5992. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5994. return;
  5995. }
  5996. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5997. const int ith = params->ith;
  5998. const int nth = params->nth;
  5999. const int64_t ne00 = src0->ne[0];
  6000. const int64_t ne01 = src0->ne[1];
  6001. const int64_t ne02 = src0->ne[2];
  6002. const int64_t ne03 = src0->ne[3];
  6003. const size_t nb01 = src0->nb[1];
  6004. const size_t nb02 = src0->nb[2];
  6005. const size_t nb03 = src0->nb[3];
  6006. const size_t nb1 = dst->nb[1];
  6007. const size_t nb2 = dst->nb[2];
  6008. const size_t nb3 = dst->nb[3];
  6009. const float eps = 1e-6f; // TODO: make this a parameter
  6010. // TODO: optimize
  6011. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6013. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6014. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6015. ggml_float sum = 0.0;
  6016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6017. sum += (ggml_float)(x[i00] * x[i00]);
  6018. }
  6019. float mean = sum/ne00;
  6020. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6021. memcpy(y, x, ne00 * sizeof(float));
  6022. // for (int i00 = 0; i00 < ne00; i00++) {
  6023. // y[i00] = x[i00];
  6024. // }
  6025. const float scale = 1.0f/sqrtf(mean + eps);
  6026. ggml_vec_scale_f32(ne00, y, scale);
  6027. }
  6028. }
  6029. }
  6030. }
  6031. static void ggml_compute_forward_rms_norm(
  6032. const struct ggml_compute_params * params,
  6033. const struct ggml_tensor * src0,
  6034. struct ggml_tensor * dst) {
  6035. switch (src0->type) {
  6036. case GGML_TYPE_F32:
  6037. {
  6038. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6039. } break;
  6040. default:
  6041. {
  6042. GGML_ASSERT(false);
  6043. } break;
  6044. }
  6045. }
  6046. // ggml_compute_forward_mul_mat
  6047. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6048. // helper function to determine if it is better to use BLAS or not
  6049. // for large matrices, BLAS is faster
  6050. static bool ggml_compute_forward_mul_mat_use_blas(
  6051. const struct ggml_tensor * src0,
  6052. const struct ggml_tensor * src1,
  6053. struct ggml_tensor * dst) {
  6054. //const int64_t ne00 = src0->ne[0];
  6055. //const int64_t ne01 = src0->ne[1];
  6056. const int64_t ne10 = src1->ne[0];
  6057. const int64_t ne0 = dst->ne[0];
  6058. const int64_t ne1 = dst->ne[1];
  6059. // TODO: find the optimal values for these
  6060. if (ggml_is_contiguous(src0) &&
  6061. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6062. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6063. return true;
  6064. }
  6065. return false;
  6066. }
  6067. #endif
  6068. static void ggml_compute_forward_mul_mat_f32(
  6069. const struct ggml_compute_params * params,
  6070. const struct ggml_tensor * src0,
  6071. const struct ggml_tensor * src1,
  6072. struct ggml_tensor * dst) {
  6073. int64_t t0 = ggml_perf_time_us();
  6074. UNUSED(t0);
  6075. const int64_t ne00 = src0->ne[0];
  6076. const int64_t ne01 = src0->ne[1];
  6077. const int64_t ne02 = src0->ne[2];
  6078. const int64_t ne03 = src0->ne[3];
  6079. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6080. const int64_t ne10 = src1->ne[0];
  6081. #endif
  6082. const int64_t ne11 = src1->ne[1];
  6083. #ifndef NDEBUG
  6084. const int64_t ne12 = src1->ne[2];
  6085. const int64_t ne13 = src1->ne[3];
  6086. const int64_t ne0 = dst->ne[0];
  6087. const int64_t ne1 = dst->ne[1];
  6088. const int64_t ne2 = dst->ne[2];
  6089. const int64_t ne3 = dst->ne[3];
  6090. const int nb00 = src0->nb[0];
  6091. #endif
  6092. const int nb01 = src0->nb[1];
  6093. const int nb02 = src0->nb[2];
  6094. const int nb03 = src0->nb[3];
  6095. #ifndef NDEBUG
  6096. const int nb10 = src1->nb[0];
  6097. #endif
  6098. const int nb11 = src1->nb[1];
  6099. const int nb12 = src1->nb[2];
  6100. const int nb13 = src1->nb[3];
  6101. const int nb0 = dst->nb[0];
  6102. const int nb1 = dst->nb[1];
  6103. const int nb2 = dst->nb[2];
  6104. const int nb3 = dst->nb[3];
  6105. const int ith = params->ith;
  6106. const int nth = params->nth;
  6107. assert(ne02 == ne12);
  6108. assert(ne03 == ne13);
  6109. assert(ne2 == ne12);
  6110. assert(ne3 == ne13);
  6111. // we don't support permuted src0 or src1
  6112. assert(nb00 == sizeof(float));
  6113. assert(nb10 == sizeof(float));
  6114. // dst cannot be transposed or permuted
  6115. assert(nb0 == sizeof(float));
  6116. assert(nb0 <= nb1);
  6117. assert(nb1 <= nb2);
  6118. assert(nb2 <= nb3);
  6119. assert(ne0 == ne01);
  6120. assert(ne1 == ne11);
  6121. assert(ne2 == ne02);
  6122. assert(ne3 == ne03);
  6123. // nb01 >= nb00 - src0 is not transposed
  6124. // compute by src0 rows
  6125. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6126. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6127. if (params->ith != 0) {
  6128. return;
  6129. }
  6130. if (params->type == GGML_TASK_INIT) {
  6131. return;
  6132. }
  6133. if (params->type == GGML_TASK_FINALIZE) {
  6134. return;
  6135. }
  6136. #if defined(GGML_USE_CUBLAS)
  6137. float *d_X = NULL;
  6138. float *d_Y = NULL;
  6139. float *d_D = NULL;
  6140. const float alpha = 1.0f;
  6141. const float beta = 0.0f;
  6142. const int x_ne = ne01 * ne10;
  6143. const int y_ne = ne11 * ne10;
  6144. const int d_ne = ne11 * ne01;
  6145. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6146. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6147. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6148. #endif
  6149. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6150. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6151. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6152. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6153. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6154. #if defined(GGML_USE_CUBLAS)
  6155. // copy data to device
  6156. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6157. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6158. // compute
  6159. CUBLAS_CHECK(
  6160. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6161. ne01, ne11, ne10,
  6162. &alpha, d_X, ne00,
  6163. d_Y, ne10,
  6164. &beta, d_D, ne01));
  6165. // copy data to host
  6166. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6167. #else
  6168. // zT = y * xT
  6169. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6170. ne11, ne01, ne10,
  6171. 1.0f, y, ne10,
  6172. x, ne00,
  6173. 0.0f, d, ne01);
  6174. #endif
  6175. }
  6176. }
  6177. #if defined(GGML_USE_CUBLAS)
  6178. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6179. CUDA_CHECK(cudaFree(d_X));
  6180. CUDA_CHECK(cudaFree(d_Y));
  6181. CUDA_CHECK(cudaFree(d_D));
  6182. #endif
  6183. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6184. return;
  6185. }
  6186. #endif
  6187. if (params->type == GGML_TASK_INIT) {
  6188. return;
  6189. }
  6190. if (params->type == GGML_TASK_FINALIZE) {
  6191. return;
  6192. }
  6193. // parallelize by src0 rows using ggml_vec_dot_f32
  6194. // total rows in src0
  6195. const int nr = ne01*ne02*ne03;
  6196. // rows per thread
  6197. const int dr = (nr + nth - 1)/nth;
  6198. // row range for this thread
  6199. const int ir0 = dr*ith;
  6200. const int ir1 = MIN(ir0 + dr, nr);
  6201. for (int ir = ir0; ir < ir1; ++ir) {
  6202. // src0 indices
  6203. const int i03 = ir/(ne02*ne01);
  6204. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6205. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6206. for (int64_t ic = 0; ic < ne11; ++ic) {
  6207. // src1 indices
  6208. const int i13 = i03;
  6209. const int i12 = i02;
  6210. const int i11 = ic;
  6211. // dst indices
  6212. const int i0 = i01;
  6213. const int i1 = i11;
  6214. const int i2 = i02;
  6215. const int i3 = i03;
  6216. ggml_vec_dot_f32(ne00,
  6217. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6218. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6219. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6220. }
  6221. }
  6222. //int64_t t1 = ggml_perf_time_us();
  6223. //static int64_t acc = 0;
  6224. //acc += t1 - t0;
  6225. //if (t1 - t0 > 10) {
  6226. // printf("\n");
  6227. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6228. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6229. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6230. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6231. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6232. //}
  6233. }
  6234. static void ggml_compute_forward_mul_mat_f16_f32(
  6235. const struct ggml_compute_params * params,
  6236. const struct ggml_tensor * src0,
  6237. const struct ggml_tensor * src1,
  6238. struct ggml_tensor * dst) {
  6239. int64_t t0 = ggml_perf_time_us();
  6240. UNUSED(t0);
  6241. const int64_t ne00 = src0->ne[0];
  6242. const int64_t ne01 = src0->ne[1];
  6243. const int64_t ne02 = src0->ne[2];
  6244. const int64_t ne03 = src0->ne[3];
  6245. const int64_t ne10 = src1->ne[0];
  6246. const int64_t ne11 = src1->ne[1];
  6247. const int64_t ne12 = src1->ne[2];
  6248. const int64_t ne13 = src1->ne[3];
  6249. const int64_t ne0 = dst->ne[0];
  6250. const int64_t ne1 = dst->ne[1];
  6251. const int64_t ne2 = dst->ne[2];
  6252. const int64_t ne3 = dst->ne[3];
  6253. //const int64_t ne = ne0*ne1*ne2*ne3;
  6254. const int nb00 = src0->nb[0];
  6255. const int nb01 = src0->nb[1];
  6256. const int nb02 = src0->nb[2];
  6257. const int nb03 = src0->nb[3];
  6258. const int nb10 = src1->nb[0];
  6259. const int nb11 = src1->nb[1];
  6260. const int nb12 = src1->nb[2];
  6261. const int nb13 = src1->nb[3];
  6262. const int nb0 = dst->nb[0];
  6263. const int nb1 = dst->nb[1];
  6264. const int nb2 = dst->nb[2];
  6265. const int nb3 = dst->nb[3];
  6266. const int ith = params->ith;
  6267. const int nth = params->nth;
  6268. GGML_ASSERT(ne02 == ne12);
  6269. GGML_ASSERT(ne03 == ne13);
  6270. GGML_ASSERT(ne2 == ne12);
  6271. GGML_ASSERT(ne3 == ne13);
  6272. // TODO: we don't support permuted src0
  6273. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6274. // dst cannot be transposed or permuted
  6275. GGML_ASSERT(nb0 == sizeof(float));
  6276. GGML_ASSERT(nb0 <= nb1);
  6277. GGML_ASSERT(nb1 <= nb2);
  6278. GGML_ASSERT(nb2 <= nb3);
  6279. GGML_ASSERT(ne0 == ne01);
  6280. GGML_ASSERT(ne1 == ne11);
  6281. GGML_ASSERT(ne2 == ne02);
  6282. GGML_ASSERT(ne3 == ne03);
  6283. // nb01 >= nb00 - src0 is not transposed
  6284. // compute by src0 rows
  6285. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6286. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6287. GGML_ASSERT(nb10 == sizeof(float));
  6288. if (params->ith != 0) {
  6289. return;
  6290. }
  6291. if (params->type == GGML_TASK_INIT) {
  6292. return;
  6293. }
  6294. if (params->type == GGML_TASK_FINALIZE) {
  6295. return;
  6296. }
  6297. #if defined(GGML_USE_CUBLAS)
  6298. ggml_fp16_t * const wdata = params->wdata;
  6299. float *d_X = NULL;
  6300. float *d_Y = NULL;
  6301. float *d_D = NULL;
  6302. const float alpha = 1.0f;
  6303. const float beta = 0.0f;
  6304. const int x_ne = ne01 * ne10;
  6305. const int y_ne = ne11 * ne10;
  6306. const int d_ne = ne11 * ne01;
  6307. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6308. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6309. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6310. #else
  6311. float * const wdata = params->wdata;
  6312. #endif
  6313. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6314. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6315. #if defined(GGML_USE_CUBLAS)
  6316. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6317. {
  6318. size_t id = 0;
  6319. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6320. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6321. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6322. }
  6323. }
  6324. }
  6325. #else
  6326. {
  6327. size_t id = 0;
  6328. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6329. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6330. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6331. }
  6332. }
  6333. }
  6334. #endif
  6335. #if defined(GGML_USE_CUBLAS)
  6336. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6337. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6338. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6339. // copy data to device
  6340. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6341. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6342. // compute
  6343. CUBLAS_CHECK(
  6344. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6345. ne01, ne11, ne10,
  6346. &alpha, d_X, CUDA_R_16F, ne00,
  6347. d_Y, CUDA_R_16F, ne10,
  6348. &beta, d_D, CUDA_R_32F, ne01,
  6349. CUBLAS_COMPUTE_32F,
  6350. CUBLAS_GEMM_DEFAULT));
  6351. // copy data to host
  6352. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6353. #else
  6354. const float * x = wdata;
  6355. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6356. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6357. // zT = y * xT
  6358. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6359. ne11, ne01, ne10,
  6360. 1.0f, y, ne10,
  6361. x, ne00,
  6362. 0.0f, d, ne01);
  6363. #endif
  6364. }
  6365. }
  6366. #if defined(GGML_USE_CUBLAS)
  6367. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6368. CUDA_CHECK(cudaFree(d_X));
  6369. CUDA_CHECK(cudaFree(d_Y));
  6370. CUDA_CHECK(cudaFree(d_D));
  6371. #endif
  6372. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6373. return;
  6374. }
  6375. #endif
  6376. if (params->type == GGML_TASK_INIT) {
  6377. ggml_fp16_t * const wdata = params->wdata;
  6378. size_t id = 0;
  6379. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6380. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6381. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6382. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6383. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6384. }
  6385. }
  6386. }
  6387. }
  6388. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6389. return;
  6390. }
  6391. if (params->type == GGML_TASK_FINALIZE) {
  6392. return;
  6393. }
  6394. // fp16 -> half the size, so divide by 2
  6395. // TODO: do not support transposed src1
  6396. assert(nb10/2 == sizeof(ggml_fp16_t));
  6397. // parallelize by src0 rows using ggml_vec_dot_f16
  6398. // total rows in src0
  6399. const int nr = ne01*ne02*ne03;
  6400. // rows per thread
  6401. const int dr = (nr + nth - 1)/nth;
  6402. // row range for this thread
  6403. const int ir0 = dr*ith;
  6404. const int ir1 = MIN(ir0 + dr, nr);
  6405. ggml_fp16_t * wdata = params->wdata;
  6406. for (int ir = ir0; ir < ir1; ++ir) {
  6407. // src0 indices
  6408. const int i03 = ir/(ne02*ne01);
  6409. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6410. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6411. const int i13 = i03;
  6412. const int i12 = i02;
  6413. const int i0 = i01;
  6414. const int i2 = i02;
  6415. const int i3 = i03;
  6416. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6417. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6418. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6419. for (int64_t ic = 0; ic < ne11; ++ic) {
  6420. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6421. }
  6422. }
  6423. //int64_t t1 = ggml_time_us();
  6424. //static int64_t acc = 0;
  6425. //acc += t1 - t0;
  6426. //if (t1 - t0 > 10) {
  6427. // printf("\n");
  6428. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6429. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6430. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6431. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6432. //}
  6433. }
  6434. static void ggml_compute_forward_mul_mat_q_f32(
  6435. const struct ggml_compute_params * params,
  6436. const struct ggml_tensor * src0,
  6437. const struct ggml_tensor * src1,
  6438. struct ggml_tensor * dst) {
  6439. int64_t t0 = ggml_perf_time_us();
  6440. UNUSED(t0);
  6441. const int64_t ne00 = src0->ne[0];
  6442. const int64_t ne01 = src0->ne[1];
  6443. const int64_t ne02 = src0->ne[2];
  6444. const int64_t ne03 = src0->ne[3];
  6445. const int64_t ne10 = src1->ne[0];
  6446. const int64_t ne11 = src1->ne[1];
  6447. const int64_t ne12 = src1->ne[2];
  6448. const int64_t ne13 = src1->ne[3];
  6449. const int64_t ne0 = dst->ne[0];
  6450. const int64_t ne1 = dst->ne[1];
  6451. const int64_t ne2 = dst->ne[2];
  6452. const int64_t ne3 = dst->ne[3];
  6453. const int nb00 = src0->nb[0];
  6454. const int nb01 = src0->nb[1];
  6455. const int nb02 = src0->nb[2];
  6456. const int nb03 = src0->nb[3];
  6457. const int nb10 = src1->nb[0];
  6458. const int nb11 = src1->nb[1];
  6459. const int nb12 = src1->nb[2];
  6460. const int nb13 = src1->nb[3];
  6461. const int nb0 = dst->nb[0];
  6462. const int nb1 = dst->nb[1];
  6463. const int nb2 = dst->nb[2];
  6464. const int nb3 = dst->nb[3];
  6465. const int ith = params->ith;
  6466. const int nth = params->nth;
  6467. GGML_ASSERT(ne02 == ne12);
  6468. GGML_ASSERT(ne03 == ne13);
  6469. GGML_ASSERT(ne2 == ne12);
  6470. GGML_ASSERT(ne3 == ne13);
  6471. const enum ggml_type type = src0->type;
  6472. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6473. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6474. // we don't support permuted src0 or src1
  6475. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6476. GGML_ASSERT(nb10 == sizeof(float));
  6477. // dst cannot be transposed or permuted
  6478. GGML_ASSERT(nb0 == sizeof(float));
  6479. GGML_ASSERT(nb0 <= nb1);
  6480. GGML_ASSERT(nb1 <= nb2);
  6481. GGML_ASSERT(nb2 <= nb3);
  6482. GGML_ASSERT(ne0 == ne01);
  6483. GGML_ASSERT(ne1 == ne11);
  6484. GGML_ASSERT(ne2 == ne02);
  6485. GGML_ASSERT(ne3 == ne03);
  6486. // nb01 >= nb00 - src0 is not transposed
  6487. // compute by src0 rows
  6488. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6489. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6490. if (params->ith != 0) {
  6491. return;
  6492. }
  6493. if (params->type == GGML_TASK_INIT) {
  6494. return;
  6495. }
  6496. if (params->type == GGML_TASK_FINALIZE) {
  6497. return;
  6498. }
  6499. #if defined(GGML_USE_CUBLAS)
  6500. float *d_X = NULL;
  6501. float *d_Y = NULL;
  6502. float *d_D = NULL;
  6503. float *d_Q = NULL;
  6504. const float alpha = 1.0f;
  6505. const float beta = 0.0f;
  6506. const int x_ne = ne01 * ne10;
  6507. const int y_ne = ne11 * ne10;
  6508. const int d_ne = ne11 * ne01;
  6509. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6510. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6511. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6512. CUDA_CHECK(cudaMalloc((void **)(&d_Q), GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type]));
  6513. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6514. if (type == GGML_TYPE_Q4_0) {
  6515. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6516. }
  6517. else if (type == GGML_TYPE_Q4_1) {
  6518. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6519. }
  6520. else if (type == GGML_TYPE_Q4_2) {
  6521. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6522. }
  6523. else {
  6524. GGML_ASSERT(false);
  6525. }
  6526. #else
  6527. float * const wdata = params->wdata;
  6528. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6529. #endif
  6530. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6531. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6532. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6533. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6534. #if defined(GGML_USE_CUBLAS)
  6535. // copy and dequantize on device
  6536. CUDA_CHECK(
  6537. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6538. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, cudaStream));
  6539. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, cudaStream);
  6540. CUDA_CHECK(cudaGetLastError());
  6541. #else
  6542. {
  6543. size_t id = 0;
  6544. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6545. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6546. id += ne00;
  6547. }
  6548. }
  6549. const float * x = wdata;
  6550. #endif
  6551. #if defined(GGML_USE_CUBLAS)
  6552. // copy data to device
  6553. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6554. // compute
  6555. CUBLAS_CHECK(
  6556. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6557. ne01, ne11, ne10,
  6558. &alpha, d_X, ne00,
  6559. d_Y, ne10,
  6560. &beta, d_D, ne01));
  6561. // copy data to host
  6562. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6563. #else
  6564. // zT = y * xT
  6565. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6566. ne11, ne01, ne10,
  6567. 1.0f, y, ne10,
  6568. x, ne00,
  6569. 0.0f, d, ne01);
  6570. #endif
  6571. }
  6572. }
  6573. #if defined(GGML_USE_CUBLAS)
  6574. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6575. CUDA_CHECK(cudaFree(d_X));
  6576. CUDA_CHECK(cudaFree(d_Y));
  6577. CUDA_CHECK(cudaFree(d_D));
  6578. CUDA_CHECK(cudaFree(d_Q));
  6579. #endif
  6580. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6581. return;
  6582. }
  6583. #endif
  6584. if (params->type == GGML_TASK_INIT) {
  6585. char * wdata = params->wdata;
  6586. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6587. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6588. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6589. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6590. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6591. wdata += row_size;
  6592. }
  6593. }
  6594. }
  6595. return;
  6596. }
  6597. if (params->type == GGML_TASK_FINALIZE) {
  6598. return;
  6599. }
  6600. // parallelize by src0 rows using ggml_vec_dot_q
  6601. // total rows in src0
  6602. const int nr = ne01*ne02*ne03;
  6603. // rows per thread
  6604. const int dr = (nr + nth - 1)/nth;
  6605. // row range for this thread
  6606. const int ir0 = dr*ith;
  6607. const int ir1 = MIN(ir0 + dr, nr);
  6608. void * wdata = params->wdata;
  6609. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6610. for (int ir = ir0; ir < ir1; ++ir) {
  6611. // src0 indices
  6612. const int i03 = ir/(ne02*ne01);
  6613. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6614. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6615. const int i13 = i03;
  6616. const int i12 = i02;
  6617. const int i0 = i01;
  6618. const int i2 = i02;
  6619. const int i3 = i03;
  6620. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6621. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6622. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6623. assert(ne00 % 32 == 0);
  6624. for (int64_t ic = 0; ic < ne11; ++ic) {
  6625. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6626. }
  6627. }
  6628. //int64_t t1 = ggml_time_us();
  6629. //static int64_t acc = 0;
  6630. //acc += t1 - t0;
  6631. //if (t1 - t0 > 10) {
  6632. // printf("\n");
  6633. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6634. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6635. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6636. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6637. //}
  6638. }
  6639. static void ggml_compute_forward_mul_mat(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. const struct ggml_tensor * src1,
  6643. struct ggml_tensor * dst) {
  6644. switch (src0->type) {
  6645. case GGML_TYPE_Q4_0:
  6646. case GGML_TYPE_Q4_1:
  6647. case GGML_TYPE_Q4_2:
  6648. case GGML_TYPE_Q4_3:
  6649. case GGML_TYPE_Q8_0:
  6650. {
  6651. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6652. } break;
  6653. case GGML_TYPE_F16:
  6654. {
  6655. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6656. } break;
  6657. case GGML_TYPE_F32:
  6658. {
  6659. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6660. } break;
  6661. default:
  6662. {
  6663. GGML_ASSERT(false);
  6664. } break;
  6665. }
  6666. }
  6667. // ggml_compute_forward_scale
  6668. static void ggml_compute_forward_scale_f32(
  6669. const struct ggml_compute_params * params,
  6670. const struct ggml_tensor * src0,
  6671. const struct ggml_tensor * src1,
  6672. struct ggml_tensor * dst) {
  6673. GGML_ASSERT(ggml_is_contiguous(src0));
  6674. GGML_ASSERT(ggml_is_contiguous(dst));
  6675. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6676. GGML_ASSERT(ggml_is_scalar(src1));
  6677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6678. return;
  6679. }
  6680. // scale factor
  6681. const float v = *(float *) src1->data;
  6682. const int ith = params->ith;
  6683. const int nth = params->nth;
  6684. const int nc = src0->ne[0];
  6685. const int nr = ggml_nrows(src0);
  6686. // rows per thread
  6687. const int dr = (nr + nth - 1)/nth;
  6688. // row range for this thread
  6689. const int ir0 = dr*ith;
  6690. const int ir1 = MIN(ir0 + dr, nr);
  6691. for (int i1 = ir0; i1 < ir1; i1++) {
  6692. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6693. }
  6694. }
  6695. static void ggml_compute_forward_scale(
  6696. const struct ggml_compute_params * params,
  6697. const struct ggml_tensor * src0,
  6698. const struct ggml_tensor * src1,
  6699. struct ggml_tensor * dst) {
  6700. switch (src0->type) {
  6701. case GGML_TYPE_F32:
  6702. {
  6703. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6704. } break;
  6705. default:
  6706. {
  6707. GGML_ASSERT(false);
  6708. } break;
  6709. }
  6710. }
  6711. // ggml_compute_forward_cpy
  6712. static void ggml_compute_forward_cpy(
  6713. const struct ggml_compute_params * params,
  6714. const struct ggml_tensor * src0,
  6715. struct ggml_tensor * dst) {
  6716. ggml_compute_forward_dup(params, src0, dst);
  6717. }
  6718. // ggml_compute_forward_cont
  6719. static void ggml_compute_forward_cont(
  6720. const struct ggml_compute_params * params,
  6721. const struct ggml_tensor * src0,
  6722. struct ggml_tensor * dst) {
  6723. ggml_compute_forward_dup(params, src0, dst);
  6724. }
  6725. // ggml_compute_forward_reshape
  6726. static void ggml_compute_forward_reshape(
  6727. const struct ggml_compute_params * params,
  6728. const struct ggml_tensor * src0,
  6729. struct ggml_tensor * dst) {
  6730. // NOP
  6731. UNUSED(params);
  6732. UNUSED(src0);
  6733. UNUSED(dst);
  6734. }
  6735. // ggml_compute_forward_view
  6736. static void ggml_compute_forward_view(
  6737. const struct ggml_compute_params * params,
  6738. const struct ggml_tensor * src0) {
  6739. // NOP
  6740. UNUSED(params);
  6741. UNUSED(src0);
  6742. }
  6743. // ggml_compute_forward_permute
  6744. static void ggml_compute_forward_permute(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * src0) {
  6747. // NOP
  6748. UNUSED(params);
  6749. UNUSED(src0);
  6750. }
  6751. // ggml_compute_forward_transpose
  6752. static void ggml_compute_forward_transpose(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0) {
  6755. // NOP
  6756. UNUSED(params);
  6757. UNUSED(src0);
  6758. }
  6759. // ggml_compute_forward_get_rows
  6760. static void ggml_compute_forward_get_rows_q(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. const struct ggml_tensor * src1,
  6764. struct ggml_tensor * dst) {
  6765. assert(params->ith == 0);
  6766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6767. return;
  6768. }
  6769. const int nc = src0->ne[0];
  6770. const int nr = ggml_nelements(src1);
  6771. const enum ggml_type type = src0->type;
  6772. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6773. assert( dst->ne[0] == nc);
  6774. assert( dst->ne[1] == nr);
  6775. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6776. for (int i = 0; i < nr; ++i) {
  6777. const int r = ((int32_t *) src1->data)[i];
  6778. dequantize_row_q(
  6779. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6780. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6781. }
  6782. }
  6783. static void ggml_compute_forward_get_rows_f16(
  6784. const struct ggml_compute_params * params,
  6785. const struct ggml_tensor * src0,
  6786. const struct ggml_tensor * src1,
  6787. struct ggml_tensor * dst) {
  6788. assert(params->ith == 0);
  6789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6790. return;
  6791. }
  6792. const int nc = src0->ne[0];
  6793. const int nr = ggml_nelements(src1);
  6794. assert( dst->ne[0] == nc);
  6795. assert( dst->ne[1] == nr);
  6796. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6797. for (int i = 0; i < nr; ++i) {
  6798. const int r = ((int32_t *) src1->data)[i];
  6799. for (int j = 0; j < nc; ++j) {
  6800. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6801. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6802. }
  6803. }
  6804. }
  6805. static void ggml_compute_forward_get_rows_f32(
  6806. const struct ggml_compute_params * params,
  6807. const struct ggml_tensor * src0,
  6808. const struct ggml_tensor * src1,
  6809. struct ggml_tensor * dst) {
  6810. assert(params->ith == 0);
  6811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6812. return;
  6813. }
  6814. const int nc = src0->ne[0];
  6815. const int nr = ggml_nelements(src1);
  6816. assert( dst->ne[0] == nc);
  6817. assert( dst->ne[1] == nr);
  6818. assert(src0->nb[0] == sizeof(float));
  6819. for (int i = 0; i < nr; ++i) {
  6820. const int r = ((int32_t *) src1->data)[i];
  6821. ggml_vec_cpy_f32(nc,
  6822. (float *) ((char *) dst->data + i*dst->nb[1]),
  6823. (float *) ((char *) src0->data + r*src0->nb[1]));
  6824. }
  6825. }
  6826. static void ggml_compute_forward_get_rows(
  6827. const struct ggml_compute_params * params,
  6828. const struct ggml_tensor * src0,
  6829. const struct ggml_tensor * src1,
  6830. struct ggml_tensor * dst) {
  6831. switch (src0->type) {
  6832. case GGML_TYPE_Q4_0:
  6833. case GGML_TYPE_Q4_1:
  6834. case GGML_TYPE_Q4_2:
  6835. case GGML_TYPE_Q4_3:
  6836. case GGML_TYPE_Q8_0:
  6837. {
  6838. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6839. } break;
  6840. case GGML_TYPE_F16:
  6841. {
  6842. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6843. } break;
  6844. case GGML_TYPE_F32:
  6845. {
  6846. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6847. } break;
  6848. default:
  6849. {
  6850. GGML_ASSERT(false);
  6851. } break;
  6852. }
  6853. //static bool first = true;
  6854. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6855. //if (first) {
  6856. // first = false;
  6857. //} else {
  6858. // for (int k = 0; k < dst->ne[1]; ++k) {
  6859. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6860. // for (int i = 0; i < 16; ++i) {
  6861. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6862. // }
  6863. // printf("\n");
  6864. // }
  6865. // printf("\n");
  6866. // }
  6867. // printf("\n");
  6868. // exit(0);
  6869. //}
  6870. }
  6871. // ggml_compute_forward_diag_mask_inf
  6872. static void ggml_compute_forward_diag_mask_inf_f32(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. const struct ggml_tensor * src1,
  6876. struct ggml_tensor * dst) {
  6877. assert(params->ith == 0);
  6878. assert(src1->type == GGML_TYPE_I32);
  6879. assert(ggml_nelements(src1) == 1);
  6880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6881. return;
  6882. }
  6883. const int n_past = ((int32_t *) src1->data)[0];
  6884. // TODO: handle transposed/permuted matrices
  6885. const int n = ggml_nrows(src0);
  6886. const int nc = src0->ne[0];
  6887. const int nr = src0->ne[1];
  6888. const int nz = n/nr;
  6889. assert( dst->nb[0] == sizeof(float));
  6890. assert(src0->nb[0] == sizeof(float));
  6891. for (int k = 0; k < nz; k++) {
  6892. for (int j = 0; j < nr; j++) {
  6893. for (int i = n_past; i < nc; i++) {
  6894. if (i > n_past + j) {
  6895. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6896. }
  6897. }
  6898. }
  6899. }
  6900. }
  6901. static void ggml_compute_forward_diag_mask_inf(
  6902. const struct ggml_compute_params * params,
  6903. const struct ggml_tensor * src0,
  6904. const struct ggml_tensor * src1,
  6905. struct ggml_tensor * dst) {
  6906. switch (src0->type) {
  6907. case GGML_TYPE_F32:
  6908. {
  6909. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6910. } break;
  6911. default:
  6912. {
  6913. GGML_ASSERT(false);
  6914. } break;
  6915. }
  6916. }
  6917. // ggml_compute_forward_soft_max
  6918. static void ggml_compute_forward_soft_max_f32(
  6919. const struct ggml_compute_params * params,
  6920. const struct ggml_tensor * src0,
  6921. struct ggml_tensor * dst) {
  6922. GGML_ASSERT(ggml_is_contiguous(src0));
  6923. GGML_ASSERT(ggml_is_contiguous(dst));
  6924. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6926. return;
  6927. }
  6928. // TODO: handle transposed/permuted matrices
  6929. const int ith = params->ith;
  6930. const int nth = params->nth;
  6931. const int nc = src0->ne[0];
  6932. const int nr = ggml_nrows(src0);
  6933. // rows per thread
  6934. const int dr = (nr + nth - 1)/nth;
  6935. // row range for this thread
  6936. const int ir0 = dr*ith;
  6937. const int ir1 = MIN(ir0 + dr, nr);
  6938. for (int i1 = ir0; i1 < ir1; i1++) {
  6939. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6940. #ifndef NDEBUG
  6941. for (int i = 0; i < nc; ++i) {
  6942. //printf("p[%d] = %f\n", i, p[i]);
  6943. assert(!isnan(p[i]));
  6944. }
  6945. #endif
  6946. float max = -INFINITY;
  6947. ggml_vec_max_f32(nc, &max, p);
  6948. ggml_float sum = 0.0;
  6949. uint16_t scvt;
  6950. for (int i = 0; i < nc; i++) {
  6951. if (p[i] == -INFINITY) {
  6952. p[i] = 0.0f;
  6953. } else {
  6954. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6955. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6956. memcpy(&scvt, &s, sizeof(scvt));
  6957. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6958. sum += (ggml_float)val;
  6959. p[i] = val;
  6960. }
  6961. }
  6962. assert(sum > 0.0);
  6963. sum = 1.0/sum;
  6964. ggml_vec_scale_f32(nc, p, sum);
  6965. #ifndef NDEBUG
  6966. for (int i = 0; i < nc; ++i) {
  6967. assert(!isnan(p[i]));
  6968. assert(!isinf(p[i]));
  6969. }
  6970. #endif
  6971. }
  6972. }
  6973. static void ggml_compute_forward_soft_max(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. struct ggml_tensor * dst) {
  6977. switch (src0->type) {
  6978. case GGML_TYPE_F32:
  6979. {
  6980. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6981. } break;
  6982. default:
  6983. {
  6984. GGML_ASSERT(false);
  6985. } break;
  6986. }
  6987. }
  6988. // ggml_compute_forward_rope
  6989. static void ggml_compute_forward_rope_f32(
  6990. const struct ggml_compute_params * params,
  6991. const struct ggml_tensor * src0,
  6992. const struct ggml_tensor * src1,
  6993. struct ggml_tensor * dst) {
  6994. assert(src1->type == GGML_TYPE_I32);
  6995. assert(ggml_nelements(src1) == 3);
  6996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6997. return;
  6998. }
  6999. const int n_past = ((int32_t *) src1->data)[0];
  7000. const int n_dims = ((int32_t *) src1->data)[1];
  7001. const int mode = ((int32_t *) src1->data)[2];
  7002. //const int64_t ne0 = src0->ne[0];
  7003. const int64_t ne1 = src0->ne[1];
  7004. const int64_t ne2 = src0->ne[2];
  7005. const int64_t ne3 = src0->ne[3];
  7006. const int nb0 = src0->nb[0];
  7007. const int nb1 = src0->nb[1];
  7008. const int nb2 = src0->nb[2];
  7009. const int nb3 = src0->nb[3];
  7010. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7011. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7012. assert(nb0 == sizeof(float));
  7013. const int ith = params->ith;
  7014. const int nth = params->nth;
  7015. const int nr = ggml_nrows(src0);
  7016. // rows per thread
  7017. const int dr = (nr + nth - 1)/nth;
  7018. // row range for this thread
  7019. const int ir0 = dr*ith;
  7020. const int ir1 = MIN(ir0 + dr, nr);
  7021. // row index used to determine which thread to use
  7022. int ir = 0;
  7023. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7024. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7025. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7026. const int p = (mode == 0 ? n_past + i2 : i2);
  7027. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7028. if (ir++ < ir0) continue;
  7029. if (ir > ir1) break;
  7030. float theta = (float)p;
  7031. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7032. const float cos_theta = cosf(theta);
  7033. const float sin_theta = sinf(theta);
  7034. theta *= theta_scale;
  7035. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7036. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7037. const float x0 = src[0];
  7038. const float x1 = src[1];
  7039. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7040. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7041. }
  7042. }
  7043. }
  7044. }
  7045. }
  7046. static void ggml_compute_forward_rope_f16(
  7047. const struct ggml_compute_params * params,
  7048. const struct ggml_tensor * src0,
  7049. const struct ggml_tensor * src1,
  7050. struct ggml_tensor * dst) {
  7051. assert(src1->type == GGML_TYPE_I32);
  7052. assert(ggml_nelements(src1) == 3);
  7053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7054. return;
  7055. }
  7056. const int n_past = ((int32_t *) src1->data)[0];
  7057. const int n_dims = ((int32_t *) src1->data)[1];
  7058. const int mode = ((int32_t *) src1->data)[2];
  7059. //const int64_t ne0 = src0->ne[0];
  7060. const int64_t ne1 = src0->ne[1];
  7061. const int64_t ne2 = src0->ne[2];
  7062. const int64_t ne3 = src0->ne[3];
  7063. const int nb0 = src0->nb[0];
  7064. const int nb1 = src0->nb[1];
  7065. const int nb2 = src0->nb[2];
  7066. const int nb3 = src0->nb[3];
  7067. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7068. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7069. assert(nb0 == sizeof(ggml_fp16_t));
  7070. const int ith = params->ith;
  7071. const int nth = params->nth;
  7072. const int nr = ggml_nrows(src0);
  7073. // rows per thread
  7074. const int dr = (nr + nth - 1)/nth;
  7075. // row range for this thread
  7076. const int ir0 = dr*ith;
  7077. const int ir1 = MIN(ir0 + dr, nr);
  7078. // row index used to determine which thread to use
  7079. int ir = 0;
  7080. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7081. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7082. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7083. const int p = (mode == 0 ? n_past + i2 : i2);
  7084. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7085. if (ir++ < ir0) continue;
  7086. if (ir > ir1) break;
  7087. float theta = (float)p;
  7088. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7089. const float cos_theta = cosf(theta);
  7090. const float sin_theta = sinf(theta);
  7091. theta *= theta_scale;
  7092. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7093. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7094. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7095. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7096. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7097. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7098. }
  7099. }
  7100. }
  7101. }
  7102. }
  7103. static void ggml_compute_forward_rope(
  7104. const struct ggml_compute_params * params,
  7105. const struct ggml_tensor * src0,
  7106. const struct ggml_tensor * src1,
  7107. struct ggml_tensor * dst) {
  7108. switch (src0->type) {
  7109. case GGML_TYPE_F16:
  7110. {
  7111. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7112. } break;
  7113. case GGML_TYPE_F32:
  7114. {
  7115. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7116. } break;
  7117. default:
  7118. {
  7119. GGML_ASSERT(false);
  7120. } break;
  7121. }
  7122. }
  7123. // ggml_compute_forward_conv_1d_1s
  7124. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7125. const struct ggml_compute_params * params,
  7126. const struct ggml_tensor * src0,
  7127. const struct ggml_tensor * src1,
  7128. struct ggml_tensor * dst) {
  7129. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7130. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7131. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7132. int64_t t0 = ggml_perf_time_us();
  7133. UNUSED(t0);
  7134. const int64_t ne00 = src0->ne[0];
  7135. const int64_t ne01 = src0->ne[1];
  7136. const int64_t ne02 = src0->ne[2];
  7137. //const int64_t ne03 = src0->ne[3];
  7138. const int64_t ne10 = src1->ne[0];
  7139. const int64_t ne11 = src1->ne[1];
  7140. //const int64_t ne12 = src1->ne[2];
  7141. //const int64_t ne13 = src1->ne[3];
  7142. //const int64_t ne0 = dst->ne[0];
  7143. //const int64_t ne1 = dst->ne[1];
  7144. //const int64_t ne2 = dst->ne[2];
  7145. //const int64_t ne3 = dst->ne[3];
  7146. //const int64_t ne = ne0*ne1*ne2*ne3;
  7147. const int nb00 = src0->nb[0];
  7148. const int nb01 = src0->nb[1];
  7149. const int nb02 = src0->nb[2];
  7150. //const int nb03 = src0->nb[3];
  7151. const int nb10 = src1->nb[0];
  7152. const int nb11 = src1->nb[1];
  7153. //const int nb12 = src1->nb[2];
  7154. //const int nb13 = src1->nb[3];
  7155. //const int nb0 = dst->nb[0];
  7156. const int nb1 = dst->nb[1];
  7157. //const int nb2 = dst->nb[2];
  7158. //const int nb3 = dst->nb[3];
  7159. const int ith = params->ith;
  7160. const int nth = params->nth;
  7161. const int nk = ne00;
  7162. const int nh = nk/2;
  7163. const int ew0 = ggml_up32(ne01);
  7164. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7165. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7166. GGML_ASSERT(nb10 == sizeof(float));
  7167. if (params->type == GGML_TASK_INIT) {
  7168. // TODO: fix this memset (wsize is overestimated)
  7169. memset(params->wdata, 0, params->wsize);
  7170. // prepare kernel data (src0)
  7171. {
  7172. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7173. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7174. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7175. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7176. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7177. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7178. dst_data[i00*ew0 + i01] = src[i00];
  7179. }
  7180. }
  7181. }
  7182. }
  7183. // prepare source data (src1)
  7184. {
  7185. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7186. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7187. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7188. ggml_fp16_t * dst_data = wdata;
  7189. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7190. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7191. }
  7192. }
  7193. }
  7194. return;
  7195. }
  7196. if (params->type == GGML_TASK_FINALIZE) {
  7197. return;
  7198. }
  7199. // total rows in dst
  7200. const int nr = ne02;
  7201. // rows per thread
  7202. const int dr = (nr + nth - 1)/nth;
  7203. // row range for this thread
  7204. const int ir0 = dr*ith;
  7205. const int ir1 = MIN(ir0 + dr, nr);
  7206. for (int i1 = ir0; i1 < ir1; i1++) {
  7207. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7208. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7209. dst_data[i0] = 0;
  7210. for (int k = -nh; k <= nh; k++) {
  7211. float v = 0.0f;
  7212. ggml_vec_dot_f16(ew0, &v,
  7213. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7214. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7215. dst_data[i0] += v;
  7216. }
  7217. }
  7218. }
  7219. }
  7220. static void ggml_compute_forward_conv_1d_1s_f32(
  7221. const struct ggml_compute_params * params,
  7222. const struct ggml_tensor * src0,
  7223. const struct ggml_tensor * src1,
  7224. struct ggml_tensor * dst) {
  7225. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7226. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7227. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7228. int64_t t0 = ggml_perf_time_us();
  7229. UNUSED(t0);
  7230. const int64_t ne00 = src0->ne[0];
  7231. const int64_t ne01 = src0->ne[1];
  7232. const int64_t ne02 = src0->ne[2];
  7233. //const int64_t ne03 = src0->ne[3];
  7234. const int64_t ne10 = src1->ne[0];
  7235. const int64_t ne11 = src1->ne[1];
  7236. //const int64_t ne12 = src1->ne[2];
  7237. //const int64_t ne13 = src1->ne[3];
  7238. //const int64_t ne0 = dst->ne[0];
  7239. //const int64_t ne1 = dst->ne[1];
  7240. //const int64_t ne2 = dst->ne[2];
  7241. //const int64_t ne3 = dst->ne[3];
  7242. //const int64_t ne = ne0*ne1*ne2*ne3;
  7243. const int nb00 = src0->nb[0];
  7244. const int nb01 = src0->nb[1];
  7245. const int nb02 = src0->nb[2];
  7246. //const int nb03 = src0->nb[3];
  7247. const int nb10 = src1->nb[0];
  7248. const int nb11 = src1->nb[1];
  7249. //const int nb12 = src1->nb[2];
  7250. //const int nb13 = src1->nb[3];
  7251. //const int nb0 = dst->nb[0];
  7252. const int nb1 = dst->nb[1];
  7253. //const int nb2 = dst->nb[2];
  7254. //const int nb3 = dst->nb[3];
  7255. const int ith = params->ith;
  7256. const int nth = params->nth;
  7257. const int nk = ne00;
  7258. const int nh = nk/2;
  7259. const int ew0 = ggml_up32(ne01);
  7260. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7261. GGML_ASSERT(nb00 == sizeof(float));
  7262. GGML_ASSERT(nb10 == sizeof(float));
  7263. if (params->type == GGML_TASK_INIT) {
  7264. // TODO: fix this memset (wsize is overestimated)
  7265. memset(params->wdata, 0, params->wsize);
  7266. // prepare kernel data (src0)
  7267. {
  7268. float * const wdata = (float *) params->wdata + 0;
  7269. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7270. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7271. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7272. float * dst_data = wdata + i02*ew0*ne00;
  7273. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7274. dst_data[i00*ew0 + i01] = src[i00];
  7275. }
  7276. }
  7277. }
  7278. }
  7279. // prepare source data (src1)
  7280. {
  7281. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7282. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7283. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7284. float * dst_data = wdata;
  7285. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7286. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7287. }
  7288. }
  7289. }
  7290. return;
  7291. }
  7292. if (params->type == GGML_TASK_FINALIZE) {
  7293. return;
  7294. }
  7295. // total rows in dst
  7296. const int nr = ne02;
  7297. // rows per thread
  7298. const int dr = (nr + nth - 1)/nth;
  7299. // row range for this thread
  7300. const int ir0 = dr*ith;
  7301. const int ir1 = MIN(ir0 + dr, nr);
  7302. for (int i1 = ir0; i1 < ir1; i1++) {
  7303. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7304. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7305. dst_data[i0] = 0;
  7306. for (int k = -nh; k <= nh; k++) {
  7307. float v = 0.0f;
  7308. ggml_vec_dot_f32(ew0, &v,
  7309. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7310. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7311. dst_data[i0] += v;
  7312. }
  7313. }
  7314. }
  7315. }
  7316. static void ggml_compute_forward_conv_1d_1s(
  7317. const struct ggml_compute_params * params,
  7318. const struct ggml_tensor * src0,
  7319. const struct ggml_tensor * src1,
  7320. struct ggml_tensor * dst) {
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F16:
  7323. {
  7324. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7325. } break;
  7326. case GGML_TYPE_F32:
  7327. {
  7328. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7329. } break;
  7330. default:
  7331. {
  7332. GGML_ASSERT(false);
  7333. } break;
  7334. }
  7335. }
  7336. // ggml_compute_forward_conv_1d_2s
  7337. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * src1,
  7341. struct ggml_tensor * dst) {
  7342. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7343. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7344. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7345. int64_t t0 = ggml_perf_time_us();
  7346. UNUSED(t0);
  7347. const int64_t ne00 = src0->ne[0];
  7348. const int64_t ne01 = src0->ne[1];
  7349. const int64_t ne02 = src0->ne[2];
  7350. //const int64_t ne03 = src0->ne[3];
  7351. const int64_t ne10 = src1->ne[0];
  7352. const int64_t ne11 = src1->ne[1];
  7353. //const int64_t ne12 = src1->ne[2];
  7354. //const int64_t ne13 = src1->ne[3];
  7355. //const int64_t ne0 = dst->ne[0];
  7356. //const int64_t ne1 = dst->ne[1];
  7357. //const int64_t ne2 = dst->ne[2];
  7358. //const int64_t ne3 = dst->ne[3];
  7359. //const int64_t ne = ne0*ne1*ne2*ne3;
  7360. const int nb00 = src0->nb[0];
  7361. const int nb01 = src0->nb[1];
  7362. const int nb02 = src0->nb[2];
  7363. //const int nb03 = src0->nb[3];
  7364. const int nb10 = src1->nb[0];
  7365. const int nb11 = src1->nb[1];
  7366. //const int nb12 = src1->nb[2];
  7367. //const int nb13 = src1->nb[3];
  7368. //const int nb0 = dst->nb[0];
  7369. const int nb1 = dst->nb[1];
  7370. //const int nb2 = dst->nb[2];
  7371. //const int nb3 = dst->nb[3];
  7372. const int ith = params->ith;
  7373. const int nth = params->nth;
  7374. const int nk = ne00;
  7375. const int nh = nk/2;
  7376. const int ew0 = ggml_up32(ne01);
  7377. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7378. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7379. GGML_ASSERT(nb10 == sizeof(float));
  7380. if (params->type == GGML_TASK_INIT) {
  7381. // TODO: fix this memset (wsize is overestimated)
  7382. memset(params->wdata, 0, params->wsize);
  7383. // prepare kernel data (src0)
  7384. {
  7385. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7386. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7387. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7388. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7389. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7390. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7391. dst_data[i00*ew0 + i01] = src[i00];
  7392. }
  7393. }
  7394. }
  7395. }
  7396. // prepare source data (src1)
  7397. {
  7398. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7399. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7400. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7401. ggml_fp16_t * dst_data = wdata;
  7402. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7403. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7404. }
  7405. }
  7406. }
  7407. return;
  7408. }
  7409. if (params->type == GGML_TASK_FINALIZE) {
  7410. return;
  7411. }
  7412. // total rows in dst
  7413. const int nr = ne02;
  7414. // rows per thread
  7415. const int dr = (nr + nth - 1)/nth;
  7416. // row range for this thread
  7417. const int ir0 = dr*ith;
  7418. const int ir1 = MIN(ir0 + dr, nr);
  7419. for (int i1 = ir0; i1 < ir1; i1++) {
  7420. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7421. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7422. dst_data[i0/2] = 0;
  7423. for (int k = -nh; k <= nh; k++) {
  7424. float v = 0.0f;
  7425. ggml_vec_dot_f16(ew0, &v,
  7426. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7427. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7428. dst_data[i0/2] += v;
  7429. }
  7430. }
  7431. }
  7432. }
  7433. static void ggml_compute_forward_conv_1d_2s_f32(
  7434. const struct ggml_compute_params * params,
  7435. const struct ggml_tensor * src0,
  7436. const struct ggml_tensor * src1,
  7437. struct ggml_tensor * dst) {
  7438. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7439. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7440. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7441. int64_t t0 = ggml_perf_time_us();
  7442. UNUSED(t0);
  7443. const int64_t ne00 = src0->ne[0];
  7444. const int64_t ne01 = src0->ne[1];
  7445. const int64_t ne02 = src0->ne[2];
  7446. //const int64_t ne03 = src0->ne[3];
  7447. const int64_t ne10 = src1->ne[0];
  7448. const int64_t ne11 = src1->ne[1];
  7449. //const int64_t ne12 = src1->ne[2];
  7450. //const int64_t ne13 = src1->ne[3];
  7451. //const int64_t ne0 = dst->ne[0];
  7452. //const int64_t ne1 = dst->ne[1];
  7453. //const int64_t ne2 = dst->ne[2];
  7454. //const int64_t ne3 = dst->ne[3];
  7455. //const int64_t ne = ne0*ne1*ne2*ne3;
  7456. const int nb00 = src0->nb[0];
  7457. const int nb01 = src0->nb[1];
  7458. const int nb02 = src0->nb[2];
  7459. //const int nb03 = src0->nb[3];
  7460. const int nb10 = src1->nb[0];
  7461. const int nb11 = src1->nb[1];
  7462. //const int nb12 = src1->nb[2];
  7463. //const int nb13 = src1->nb[3];
  7464. //const int nb0 = dst->nb[0];
  7465. const int nb1 = dst->nb[1];
  7466. //const int nb2 = dst->nb[2];
  7467. //const int nb3 = dst->nb[3];
  7468. const int ith = params->ith;
  7469. const int nth = params->nth;
  7470. const int nk = ne00;
  7471. const int nh = nk/2;
  7472. const int ew0 = ggml_up32(ne01);
  7473. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7474. GGML_ASSERT(nb00 == sizeof(float));
  7475. GGML_ASSERT(nb10 == sizeof(float));
  7476. if (params->type == GGML_TASK_INIT) {
  7477. // TODO: fix this memset (wsize is overestimated)
  7478. memset(params->wdata, 0, params->wsize);
  7479. // prepare kernel data (src0)
  7480. {
  7481. float * const wdata = (float *) params->wdata + 0;
  7482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7483. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7484. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7485. float * dst_data = wdata + i02*ew0*ne00;
  7486. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7487. dst_data[i00*ew0 + i01] = src[i00];
  7488. }
  7489. }
  7490. }
  7491. }
  7492. // prepare source data (src1)
  7493. {
  7494. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7495. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7496. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7497. float * dst_data = wdata;
  7498. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7499. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7500. }
  7501. }
  7502. }
  7503. return;
  7504. }
  7505. if (params->type == GGML_TASK_FINALIZE) {
  7506. return;
  7507. }
  7508. // total rows in dst
  7509. const int nr = ne02;
  7510. // rows per thread
  7511. const int dr = (nr + nth - 1)/nth;
  7512. // row range for this thread
  7513. const int ir0 = dr*ith;
  7514. const int ir1 = MIN(ir0 + dr, nr);
  7515. for (int i1 = ir0; i1 < ir1; i1++) {
  7516. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7517. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7518. dst_data[i0/2] = 0;
  7519. for (int k = -nh; k <= nh; k++) {
  7520. float v = 0.0f;
  7521. ggml_vec_dot_f32(ew0, &v,
  7522. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7523. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7524. dst_data[i0/2] += v;
  7525. }
  7526. }
  7527. }
  7528. }
  7529. static void ggml_compute_forward_conv_1d_2s(
  7530. const struct ggml_compute_params * params,
  7531. const struct ggml_tensor * src0,
  7532. const struct ggml_tensor * src1,
  7533. struct ggml_tensor * dst) {
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F16:
  7536. {
  7537. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7538. } break;
  7539. case GGML_TYPE_F32:
  7540. {
  7541. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7542. } break;
  7543. default:
  7544. {
  7545. GGML_ASSERT(false);
  7546. } break;
  7547. }
  7548. }
  7549. // ggml_compute_forward_flash_attn
  7550. static void ggml_compute_forward_flash_attn_f32(
  7551. const struct ggml_compute_params * params,
  7552. const struct ggml_tensor * q,
  7553. const struct ggml_tensor * k,
  7554. const struct ggml_tensor * v,
  7555. const bool masked,
  7556. struct ggml_tensor * dst) {
  7557. int64_t t0 = ggml_perf_time_us();
  7558. UNUSED(t0);
  7559. const int64_t neq0 = q->ne[0];
  7560. const int64_t neq1 = q->ne[1];
  7561. const int64_t neq2 = q->ne[2];
  7562. const int64_t neq3 = q->ne[3];
  7563. const int64_t nek0 = k->ne[0];
  7564. const int64_t nek1 = k->ne[1];
  7565. //const int64_t nek2 = k->ne[2];
  7566. //const int64_t nek3 = k->ne[3];
  7567. //const int64_t nev0 = v->ne[0];
  7568. const int64_t nev1 = v->ne[1];
  7569. //const int64_t nev2 = v->ne[2];
  7570. //const int64_t nev3 = v->ne[3];
  7571. const int64_t ne0 = dst->ne[0];
  7572. const int64_t ne1 = dst->ne[1];
  7573. //const int64_t ne2 = dst->ne[2];
  7574. //const int64_t ne3 = dst->ne[3];
  7575. const int nbk0 = k->nb[0];
  7576. const int nbk1 = k->nb[1];
  7577. const int nbk2 = k->nb[2];
  7578. const int nbk3 = k->nb[3];
  7579. const int nbq0 = q->nb[0];
  7580. const int nbq1 = q->nb[1];
  7581. const int nbq2 = q->nb[2];
  7582. const int nbq3 = q->nb[3];
  7583. const int nbv0 = v->nb[0];
  7584. const int nbv1 = v->nb[1];
  7585. const int nbv2 = v->nb[2];
  7586. const int nbv3 = v->nb[3];
  7587. const int nb0 = dst->nb[0];
  7588. const int nb1 = dst->nb[1];
  7589. const int nb2 = dst->nb[2];
  7590. const int nb3 = dst->nb[3];
  7591. const int ith = params->ith;
  7592. const int nth = params->nth;
  7593. const int64_t D = neq0;
  7594. const int64_t N = neq1;
  7595. const int64_t P = nek1 - N;
  7596. const int64_t M = P + N;
  7597. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7598. GGML_ASSERT(ne0 == D);
  7599. GGML_ASSERT(ne1 == N);
  7600. GGML_ASSERT(P >= 0);
  7601. GGML_ASSERT(nbq0 == sizeof(float));
  7602. GGML_ASSERT(nbk0 == sizeof(float));
  7603. GGML_ASSERT(nbv0 == sizeof(float));
  7604. GGML_ASSERT(neq0 == D);
  7605. GGML_ASSERT(nek0 == D);
  7606. GGML_ASSERT(nev1 == D);
  7607. GGML_ASSERT(neq1 == N);
  7608. GGML_ASSERT(nek1 == N + P);
  7609. GGML_ASSERT(nev1 == D);
  7610. // dst cannot be transposed or permuted
  7611. GGML_ASSERT(nb0 == sizeof(float));
  7612. GGML_ASSERT(nb0 <= nb1);
  7613. GGML_ASSERT(nb1 <= nb2);
  7614. GGML_ASSERT(nb2 <= nb3);
  7615. if (params->type == GGML_TASK_INIT) {
  7616. return;
  7617. }
  7618. if (params->type == GGML_TASK_FINALIZE) {
  7619. return;
  7620. }
  7621. // parallelize by q rows using ggml_vec_dot_f32
  7622. // total rows in q
  7623. const int nr = neq1*neq2*neq3;
  7624. // rows per thread
  7625. const int dr = (nr + nth - 1)/nth;
  7626. // row range for this thread
  7627. const int ir0 = dr*ith;
  7628. const int ir1 = MIN(ir0 + dr, nr);
  7629. const float scale = 1.0f/sqrtf(D);
  7630. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7631. for (int ir = ir0; ir < ir1; ++ir) {
  7632. // q indices
  7633. const int iq3 = ir/(neq2*neq1);
  7634. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7635. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7636. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7637. for (int i = M; i < Mup; ++i) {
  7638. S[i] = -INFINITY;
  7639. }
  7640. for (int64_t ic = 0; ic < nek1; ++ic) {
  7641. // k indices
  7642. const int ik3 = iq3;
  7643. const int ik2 = iq2;
  7644. const int ik1 = ic;
  7645. // S indices
  7646. const int i1 = ik1;
  7647. ggml_vec_dot_f32(neq0,
  7648. S + i1,
  7649. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7650. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7651. }
  7652. // scale
  7653. ggml_vec_scale_f32(nek1, S, scale);
  7654. if (masked) {
  7655. for (int64_t i = P; i < M; i++) {
  7656. if (i > P + iq1) {
  7657. S[i] = -INFINITY;
  7658. }
  7659. }
  7660. }
  7661. // softmax
  7662. {
  7663. float max = -INFINITY;
  7664. ggml_vec_max_f32(M, &max, S);
  7665. ggml_float sum = 0.0;
  7666. {
  7667. #ifdef GGML_SOFT_MAX_ACCELERATE
  7668. max = -max;
  7669. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7670. vvexpf(S, S, &Mup);
  7671. ggml_vec_sum_f32(Mup, &sum, S);
  7672. #else
  7673. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7674. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7675. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7676. float * SS = S + i;
  7677. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7678. if (SS[j] == -INFINITY) {
  7679. SS[j] = 0.0f;
  7680. } else {
  7681. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7682. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7683. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7684. sump[j] += (ggml_float)val;
  7685. SS[j] = val;
  7686. }
  7687. }
  7688. }
  7689. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7690. sum += sump[i];
  7691. }
  7692. #endif
  7693. }
  7694. assert(sum > 0.0);
  7695. sum = 1.0/sum;
  7696. ggml_vec_scale_f32(M, S, sum);
  7697. #ifndef NDEBUG
  7698. for (int i = 0; i < M; ++i) {
  7699. assert(!isnan(S[i]));
  7700. assert(!isinf(S[i]));
  7701. }
  7702. #endif
  7703. }
  7704. for (int64_t ic = 0; ic < nev1; ++ic) {
  7705. // dst indices
  7706. const int i1 = iq1;
  7707. const int i2 = iq2;
  7708. const int i3 = iq3;
  7709. ggml_vec_dot_f32(nek1,
  7710. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7711. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7712. S);
  7713. }
  7714. }
  7715. }
  7716. static void ggml_compute_forward_flash_attn_f16(
  7717. const struct ggml_compute_params * params,
  7718. const struct ggml_tensor * q,
  7719. const struct ggml_tensor * k,
  7720. const struct ggml_tensor * v,
  7721. const bool masked,
  7722. struct ggml_tensor * dst) {
  7723. int64_t t0 = ggml_perf_time_us();
  7724. UNUSED(t0);
  7725. const int64_t neq0 = q->ne[0];
  7726. const int64_t neq1 = q->ne[1];
  7727. const int64_t neq2 = q->ne[2];
  7728. const int64_t neq3 = q->ne[3];
  7729. const int64_t nek0 = k->ne[0];
  7730. const int64_t nek1 = k->ne[1];
  7731. //const int64_t nek2 = k->ne[2];
  7732. //const int64_t nek3 = k->ne[3];
  7733. //const int64_t nev0 = v->ne[0];
  7734. const int64_t nev1 = v->ne[1];
  7735. //const int64_t nev2 = v->ne[2];
  7736. //const int64_t nev3 = v->ne[3];
  7737. const int64_t ne0 = dst->ne[0];
  7738. const int64_t ne1 = dst->ne[1];
  7739. //const int64_t ne2 = dst->ne[2];
  7740. //const int64_t ne3 = dst->ne[3];
  7741. const int nbk0 = k->nb[0];
  7742. const int nbk1 = k->nb[1];
  7743. const int nbk2 = k->nb[2];
  7744. const int nbk3 = k->nb[3];
  7745. const int nbq0 = q->nb[0];
  7746. const int nbq1 = q->nb[1];
  7747. const int nbq2 = q->nb[2];
  7748. const int nbq3 = q->nb[3];
  7749. const int nbv0 = v->nb[0];
  7750. const int nbv1 = v->nb[1];
  7751. const int nbv2 = v->nb[2];
  7752. const int nbv3 = v->nb[3];
  7753. const int nb0 = dst->nb[0];
  7754. const int nb1 = dst->nb[1];
  7755. const int nb2 = dst->nb[2];
  7756. const int nb3 = dst->nb[3];
  7757. const int ith = params->ith;
  7758. const int nth = params->nth;
  7759. const int64_t D = neq0;
  7760. const int64_t N = neq1;
  7761. const int64_t P = nek1 - N;
  7762. const int64_t M = P + N;
  7763. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7764. GGML_ASSERT(ne0 == D);
  7765. GGML_ASSERT(ne1 == N);
  7766. GGML_ASSERT(P >= 0);
  7767. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7768. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7769. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7770. GGML_ASSERT(neq0 == D);
  7771. GGML_ASSERT(nek0 == D);
  7772. GGML_ASSERT(nev1 == D);
  7773. GGML_ASSERT(neq1 == N);
  7774. GGML_ASSERT(nek1 == N + P);
  7775. GGML_ASSERT(nev1 == D);
  7776. // dst cannot be transposed or permuted
  7777. GGML_ASSERT(nb0 == sizeof(float));
  7778. GGML_ASSERT(nb0 <= nb1);
  7779. GGML_ASSERT(nb1 <= nb2);
  7780. GGML_ASSERT(nb2 <= nb3);
  7781. if (params->type == GGML_TASK_INIT) {
  7782. return;
  7783. }
  7784. if (params->type == GGML_TASK_FINALIZE) {
  7785. return;
  7786. }
  7787. // parallelize by q rows using ggml_vec_dot_f32
  7788. // total rows in q
  7789. const int nr = neq1*neq2*neq3;
  7790. // rows per thread
  7791. const int dr = (nr + nth - 1)/nth;
  7792. // row range for this thread
  7793. const int ir0 = dr*ith;
  7794. const int ir1 = MIN(ir0 + dr, nr);
  7795. const float scale = 1.0f/sqrtf(D);
  7796. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7797. for (int ir = ir0; ir < ir1; ++ir) {
  7798. // q indices
  7799. const int iq3 = ir/(neq2*neq1);
  7800. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7801. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7802. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7803. for (int i = M; i < Mup; ++i) {
  7804. S[i] = -INFINITY;
  7805. }
  7806. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7807. for (int64_t ic = 0; ic < nek1; ++ic) {
  7808. // k indices
  7809. const int ik3 = iq3;
  7810. const int ik2 = iq2;
  7811. const int ik1 = ic;
  7812. // S indices
  7813. const int i1 = ik1;
  7814. ggml_vec_dot_f16(neq0,
  7815. S + i1,
  7816. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7817. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7818. }
  7819. } else {
  7820. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7821. // k indices
  7822. const int ik3 = iq3;
  7823. const int ik2 = iq2;
  7824. const int ik1 = ic;
  7825. // S indices
  7826. const int i1 = ik1;
  7827. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7828. S + i1,
  7829. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7830. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7831. }
  7832. }
  7833. // scale
  7834. ggml_vec_scale_f32(nek1, S, scale);
  7835. if (masked) {
  7836. for (int64_t i = P; i < M; i++) {
  7837. if (i > P + iq1) {
  7838. S[i] = -INFINITY;
  7839. }
  7840. }
  7841. }
  7842. // softmax
  7843. {
  7844. float max = -INFINITY;
  7845. ggml_vec_max_f32(M, &max, S);
  7846. ggml_float sum = 0.0;
  7847. {
  7848. #ifdef GGML_SOFT_MAX_ACCELERATE
  7849. max = -max;
  7850. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7851. vvexpf(S, S, &Mup);
  7852. ggml_vec_sum_f32(Mup, &sum, S);
  7853. #else
  7854. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7855. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7856. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7857. float * SS = S + i;
  7858. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7859. if (SS[j] == -INFINITY) {
  7860. SS[j] = 0.0f;
  7861. } else {
  7862. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7863. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7864. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7865. sump[j] += (ggml_float)val;
  7866. SS[j] = val;
  7867. }
  7868. }
  7869. }
  7870. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7871. sum += sump[i];
  7872. }
  7873. #endif
  7874. }
  7875. assert(sum > 0.0);
  7876. sum = 1.0/sum;
  7877. ggml_vec_scale_f32(M, S, sum);
  7878. #ifndef NDEBUG
  7879. for (int i = 0; i < M; ++i) {
  7880. assert(!isnan(S[i]));
  7881. assert(!isinf(S[i]));
  7882. }
  7883. #endif
  7884. }
  7885. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7886. for (int64_t i = 0; i < M; i++) {
  7887. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7888. }
  7889. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7890. for (int64_t ic = 0; ic < nev1; ++ic) {
  7891. // dst indices
  7892. const int i1 = iq1;
  7893. const int i2 = iq2;
  7894. const int i3 = iq3;
  7895. ggml_vec_dot_f16(nek1,
  7896. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7897. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7898. S16);
  7899. }
  7900. } else {
  7901. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7902. // dst indices
  7903. const int i1 = iq1;
  7904. const int i2 = iq2;
  7905. const int i3 = iq3;
  7906. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7907. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7908. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7909. S16);
  7910. }
  7911. }
  7912. }
  7913. }
  7914. static void ggml_compute_forward_flash_attn(
  7915. const struct ggml_compute_params * params,
  7916. const struct ggml_tensor * q,
  7917. const struct ggml_tensor * k,
  7918. const struct ggml_tensor * v,
  7919. const bool masked,
  7920. struct ggml_tensor * dst) {
  7921. switch (q->type) {
  7922. case GGML_TYPE_F16:
  7923. {
  7924. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7925. } break;
  7926. case GGML_TYPE_F32:
  7927. {
  7928. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7929. } break;
  7930. default:
  7931. {
  7932. GGML_ASSERT(false);
  7933. } break;
  7934. }
  7935. }
  7936. // ggml_compute_forward_flash_ff
  7937. static void ggml_compute_forward_flash_ff_f16(
  7938. const struct ggml_compute_params * params,
  7939. const struct ggml_tensor * a, // F16
  7940. const struct ggml_tensor * b0, // F16 fc_w
  7941. const struct ggml_tensor * b1, // F32 fc_b
  7942. const struct ggml_tensor * c0, // F16 proj_w
  7943. const struct ggml_tensor * c1, // F32 proj_b
  7944. struct ggml_tensor * dst) {
  7945. int64_t t0 = ggml_perf_time_us();
  7946. UNUSED(t0);
  7947. const int64_t nea0 = a->ne[0];
  7948. const int64_t nea1 = a->ne[1];
  7949. const int64_t nea2 = a->ne[2];
  7950. const int64_t nea3 = a->ne[3];
  7951. const int64_t neb00 = b0->ne[0];
  7952. const int64_t neb01 = b0->ne[1];
  7953. //const int64_t neb02 = b0->ne[2];
  7954. //const int64_t neb03 = b0->ne[3];
  7955. const int64_t neb10 = b1->ne[0];
  7956. const int64_t neb11 = b1->ne[1];
  7957. //const int64_t neb12 = b1->ne[2];
  7958. //const int64_t neb13 = b1->ne[3];
  7959. const int64_t nec00 = c0->ne[0];
  7960. const int64_t nec01 = c0->ne[1];
  7961. //const int64_t nec02 = c0->ne[2];
  7962. //const int64_t nec03 = c0->ne[3];
  7963. const int64_t nec10 = c1->ne[0];
  7964. const int64_t nec11 = c1->ne[1];
  7965. //const int64_t nec12 = c1->ne[2];
  7966. //const int64_t nec13 = c1->ne[3];
  7967. const int64_t ne0 = dst->ne[0];
  7968. const int64_t ne1 = dst->ne[1];
  7969. const int64_t ne2 = dst->ne[2];
  7970. //const int64_t ne3 = dst->ne[3];
  7971. const int nba0 = a->nb[0];
  7972. const int nba1 = a->nb[1];
  7973. const int nba2 = a->nb[2];
  7974. const int nba3 = a->nb[3];
  7975. const int nbb00 = b0->nb[0];
  7976. const int nbb01 = b0->nb[1];
  7977. const int nbb02 = b0->nb[2];
  7978. const int nbb03 = b0->nb[3];
  7979. const int nbb10 = b1->nb[0];
  7980. //const int nbb11 = b1->nb[1];
  7981. //const int nbb12 = b1->nb[2];
  7982. //const int nbb13 = b1->nb[3];
  7983. const int nbc00 = c0->nb[0];
  7984. const int nbc01 = c0->nb[1];
  7985. const int nbc02 = c0->nb[2];
  7986. const int nbc03 = c0->nb[3];
  7987. const int nbc10 = c1->nb[0];
  7988. //const int nbc11 = c1->nb[1];
  7989. //const int nbc12 = c1->nb[2];
  7990. //const int nbc13 = c1->nb[3];
  7991. const int nb0 = dst->nb[0];
  7992. const int nb1 = dst->nb[1];
  7993. const int nb2 = dst->nb[2];
  7994. const int nb3 = dst->nb[3];
  7995. const int ith = params->ith;
  7996. const int nth = params->nth;
  7997. const int64_t D = nea0;
  7998. //const int64_t N = nea1;
  7999. const int64_t M = neb01;
  8000. GGML_ASSERT(ne0 == nea0);
  8001. GGML_ASSERT(ne1 == nea1);
  8002. GGML_ASSERT(ne2 == nea2);
  8003. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8004. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8005. GGML_ASSERT(nbb10 == sizeof(float));
  8006. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8007. GGML_ASSERT(nbc10 == sizeof(float));
  8008. GGML_ASSERT(neb00 == D);
  8009. GGML_ASSERT(neb01 == M);
  8010. GGML_ASSERT(neb10 == M);
  8011. GGML_ASSERT(neb11 == 1);
  8012. GGML_ASSERT(nec00 == M);
  8013. GGML_ASSERT(nec01 == D);
  8014. GGML_ASSERT(nec10 == D);
  8015. GGML_ASSERT(nec11 == 1);
  8016. // dst cannot be transposed or permuted
  8017. GGML_ASSERT(nb0 == sizeof(float));
  8018. GGML_ASSERT(nb0 <= nb1);
  8019. GGML_ASSERT(nb1 <= nb2);
  8020. GGML_ASSERT(nb2 <= nb3);
  8021. if (params->type == GGML_TASK_INIT) {
  8022. return;
  8023. }
  8024. if (params->type == GGML_TASK_FINALIZE) {
  8025. return;
  8026. }
  8027. // parallelize by a rows using ggml_vec_dot_f32
  8028. // total rows in a
  8029. const int nr = nea1*nea2*nea3;
  8030. // rows per thread
  8031. const int dr = (nr + nth - 1)/nth;
  8032. // row range for this thread
  8033. const int ir0 = dr*ith;
  8034. const int ir1 = MIN(ir0 + dr, nr);
  8035. for (int ir = ir0; ir < ir1; ++ir) {
  8036. // a indices
  8037. const int ia3 = ir/(nea2*nea1);
  8038. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8039. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8040. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8041. for (int64_t ic = 0; ic < neb01; ++ic) {
  8042. // b0 indices
  8043. const int ib03 = ia3;
  8044. const int ib02 = ia2;
  8045. const int ib01 = ic;
  8046. // S indices
  8047. const int i1 = ib01;
  8048. ggml_vec_dot_f16(nea0,
  8049. S + i1,
  8050. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8051. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8052. }
  8053. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8054. //ggml_vec_gelu_f32(neb01, S, S);
  8055. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8056. for (int64_t i = 0; i < M; i++) {
  8057. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8058. }
  8059. ggml_vec_gelu_f16(neb01, S16, S16);
  8060. {
  8061. // dst indices
  8062. const int i1 = ia1;
  8063. const int i2 = ia2;
  8064. const int i3 = ia3;
  8065. for (int64_t ic = 0; ic < nec01; ++ic) {
  8066. ggml_vec_dot_f16(neb01,
  8067. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8068. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8069. S16);
  8070. }
  8071. ggml_vec_add_f32(nec01,
  8072. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8073. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8074. (float *) c1->data);
  8075. }
  8076. }
  8077. }
  8078. static void ggml_compute_forward_flash_ff(
  8079. const struct ggml_compute_params * params,
  8080. const struct ggml_tensor * a,
  8081. const struct ggml_tensor * b0,
  8082. const struct ggml_tensor * b1,
  8083. const struct ggml_tensor * c0,
  8084. const struct ggml_tensor * c1,
  8085. struct ggml_tensor * dst) {
  8086. switch (b0->type) {
  8087. case GGML_TYPE_F16:
  8088. {
  8089. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8090. } break;
  8091. case GGML_TYPE_F32:
  8092. {
  8093. GGML_ASSERT(false); // TODO
  8094. } break;
  8095. default:
  8096. {
  8097. GGML_ASSERT(false);
  8098. } break;
  8099. }
  8100. }
  8101. // ggml_compute_forward_map_unary
  8102. static void ggml_compute_forward_map_unary_f32(
  8103. const struct ggml_compute_params * params,
  8104. const struct ggml_tensor * src0,
  8105. struct ggml_tensor * dst,
  8106. const ggml_unary_op_f32_t fun) {
  8107. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8109. return;
  8110. }
  8111. const int n = ggml_nrows(src0);
  8112. const int nc = src0->ne[0];
  8113. assert( dst->nb[0] == sizeof(float));
  8114. assert(src0->nb[0] == sizeof(float));
  8115. for (int i = 0; i < n; i++) {
  8116. fun(nc,
  8117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8118. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8119. }
  8120. }
  8121. static void ggml_compute_forward_map_unary(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. struct ggml_tensor * dst,
  8125. const ggml_unary_op_f32_t fun) {
  8126. switch (src0->type) {
  8127. case GGML_TYPE_F32:
  8128. {
  8129. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8130. } break;
  8131. default:
  8132. {
  8133. GGML_ASSERT(false);
  8134. } break;
  8135. }
  8136. }
  8137. // ggml_compute_forward_map_binary
  8138. static void ggml_compute_forward_map_binary_f32(
  8139. const struct ggml_compute_params * params,
  8140. const struct ggml_tensor * src0,
  8141. const struct ggml_tensor * src1,
  8142. struct ggml_tensor * dst,
  8143. const ggml_binary_op_f32_t fun) {
  8144. assert(params->ith == 0);
  8145. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8146. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8147. return;
  8148. }
  8149. const int n = ggml_nrows(src0);
  8150. const int nc = src0->ne[0];
  8151. assert( dst->nb[0] == sizeof(float));
  8152. assert(src0->nb[0] == sizeof(float));
  8153. assert(src1->nb[0] == sizeof(float));
  8154. for (int i = 0; i < n; i++) {
  8155. fun(nc,
  8156. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8157. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8158. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8159. }
  8160. }
  8161. static void ggml_compute_forward_map_binary(
  8162. const struct ggml_compute_params * params,
  8163. const struct ggml_tensor * src0,
  8164. const struct ggml_tensor * src1,
  8165. struct ggml_tensor * dst,
  8166. const ggml_binary_op_f32_t fun) {
  8167. switch (src0->type) {
  8168. case GGML_TYPE_F32:
  8169. {
  8170. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8171. } break;
  8172. default:
  8173. {
  8174. GGML_ASSERT(false);
  8175. } break;
  8176. }
  8177. }
  8178. /////////////////////////////////
  8179. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8180. GGML_ASSERT(params);
  8181. switch (tensor->op) {
  8182. case GGML_OP_DUP:
  8183. {
  8184. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8185. } break;
  8186. case GGML_OP_ADD:
  8187. {
  8188. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8189. } break;
  8190. case GGML_OP_SUB:
  8191. {
  8192. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8193. } break;
  8194. case GGML_OP_MUL:
  8195. {
  8196. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8197. } break;
  8198. case GGML_OP_DIV:
  8199. {
  8200. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8201. } break;
  8202. case GGML_OP_SQR:
  8203. {
  8204. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8205. } break;
  8206. case GGML_OP_SQRT:
  8207. {
  8208. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8209. } break;
  8210. case GGML_OP_SUM:
  8211. {
  8212. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8213. } break;
  8214. case GGML_OP_MEAN:
  8215. {
  8216. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8217. } break;
  8218. case GGML_OP_REPEAT:
  8219. {
  8220. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8221. } break;
  8222. case GGML_OP_ABS:
  8223. {
  8224. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8225. } break;
  8226. case GGML_OP_SGN:
  8227. {
  8228. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8229. } break;
  8230. case GGML_OP_NEG:
  8231. {
  8232. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8233. } break;
  8234. case GGML_OP_STEP:
  8235. {
  8236. ggml_compute_forward_step(params, tensor->src0, tensor);
  8237. } break;
  8238. case GGML_OP_RELU:
  8239. {
  8240. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8241. } break;
  8242. case GGML_OP_GELU:
  8243. {
  8244. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8245. } break;
  8246. case GGML_OP_SILU:
  8247. {
  8248. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8249. } break;
  8250. case GGML_OP_NORM:
  8251. {
  8252. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8253. } break;
  8254. case GGML_OP_RMS_NORM:
  8255. {
  8256. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8257. } break;
  8258. case GGML_OP_MUL_MAT:
  8259. {
  8260. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8261. } break;
  8262. case GGML_OP_SCALE:
  8263. {
  8264. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8265. } break;
  8266. case GGML_OP_CPY:
  8267. {
  8268. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8269. } break;
  8270. case GGML_OP_CONT:
  8271. {
  8272. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8273. } break;
  8274. case GGML_OP_RESHAPE:
  8275. {
  8276. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8277. } break;
  8278. case GGML_OP_VIEW:
  8279. {
  8280. ggml_compute_forward_view(params, tensor->src0);
  8281. } break;
  8282. case GGML_OP_PERMUTE:
  8283. {
  8284. ggml_compute_forward_permute(params, tensor->src0);
  8285. } break;
  8286. case GGML_OP_TRANSPOSE:
  8287. {
  8288. ggml_compute_forward_transpose(params, tensor->src0);
  8289. } break;
  8290. case GGML_OP_GET_ROWS:
  8291. {
  8292. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8293. } break;
  8294. case GGML_OP_DIAG_MASK_INF:
  8295. {
  8296. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8297. } break;
  8298. case GGML_OP_SOFT_MAX:
  8299. {
  8300. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8301. } break;
  8302. case GGML_OP_ROPE:
  8303. {
  8304. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8305. } break;
  8306. case GGML_OP_CONV_1D_1S:
  8307. {
  8308. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8309. } break;
  8310. case GGML_OP_CONV_1D_2S:
  8311. {
  8312. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8313. } break;
  8314. case GGML_OP_FLASH_ATTN:
  8315. {
  8316. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8317. GGML_ASSERT(t == 0 || t == 1);
  8318. bool masked = t != 0;
  8319. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8320. } break;
  8321. case GGML_OP_FLASH_FF:
  8322. {
  8323. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8324. } break;
  8325. case GGML_OP_MAP_UNARY:
  8326. {
  8327. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8328. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8329. }
  8330. break;
  8331. case GGML_OP_MAP_BINARY:
  8332. {
  8333. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8334. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8335. }
  8336. break;
  8337. case GGML_OP_NONE:
  8338. {
  8339. // nop
  8340. } break;
  8341. case GGML_OP_COUNT:
  8342. {
  8343. GGML_ASSERT(false);
  8344. } break;
  8345. }
  8346. }
  8347. ////////////////////////////////////////////////////////////////////////////////
  8348. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8349. struct ggml_tensor * src0 = tensor->src0;
  8350. struct ggml_tensor * src1 = tensor->src1;
  8351. switch (tensor->op) {
  8352. case GGML_OP_DUP:
  8353. {
  8354. if (src0->grad) {
  8355. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8356. }
  8357. } break;
  8358. case GGML_OP_ADD:
  8359. {
  8360. if (src0->grad) {
  8361. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8362. }
  8363. if (src1->grad) {
  8364. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8365. }
  8366. } break;
  8367. case GGML_OP_SUB:
  8368. {
  8369. if (src0->grad) {
  8370. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8371. }
  8372. if (src1->grad) {
  8373. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8374. }
  8375. } break;
  8376. case GGML_OP_MUL:
  8377. {
  8378. if (src0->grad) {
  8379. src0->grad =
  8380. ggml_add_impl(ctx,
  8381. src0->grad,
  8382. ggml_mul(ctx, src1, tensor->grad),
  8383. inplace);
  8384. }
  8385. if (src1->grad) {
  8386. src1->grad =
  8387. ggml_add_impl(ctx,
  8388. src1->grad,
  8389. ggml_mul(ctx, src0, tensor->grad),
  8390. inplace);
  8391. }
  8392. } break;
  8393. case GGML_OP_DIV:
  8394. {
  8395. if (src0->grad) {
  8396. src0->grad =
  8397. ggml_add_impl(ctx,
  8398. src0->grad,
  8399. ggml_div(ctx, tensor->grad, src1),
  8400. inplace);
  8401. }
  8402. if (src1->grad) {
  8403. src1->grad =
  8404. ggml_sub_impl(ctx,
  8405. src1->grad,
  8406. ggml_mul(ctx,
  8407. tensor->grad,
  8408. ggml_div(ctx, tensor, src1)),
  8409. inplace);
  8410. }
  8411. } break;
  8412. case GGML_OP_SQR:
  8413. {
  8414. if (src0->grad) {
  8415. src0->grad =
  8416. ggml_add_impl(ctx,
  8417. src0->grad,
  8418. ggml_mul(ctx,
  8419. ggml_mul(ctx, src0, tensor->grad),
  8420. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8421. inplace);
  8422. }
  8423. } break;
  8424. case GGML_OP_SQRT:
  8425. {
  8426. if (src0->grad) {
  8427. src0->grad =
  8428. ggml_add_impl(ctx,
  8429. src0->grad,
  8430. ggml_div(ctx,
  8431. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8432. tensor),
  8433. inplace);
  8434. }
  8435. } break;
  8436. case GGML_OP_SUM:
  8437. {
  8438. if (src0->grad) {
  8439. src0->grad =
  8440. ggml_add_impl(ctx,
  8441. src0->grad,
  8442. ggml_repeat(ctx, tensor->grad, src0->grad),
  8443. inplace);
  8444. }
  8445. } break;
  8446. case GGML_OP_MEAN:
  8447. {
  8448. GGML_ASSERT(false); // TODO: implement
  8449. } break;
  8450. case GGML_OP_REPEAT:
  8451. {
  8452. if (src0->grad) {
  8453. src0->grad =
  8454. ggml_add_impl(ctx,
  8455. src0->grad,
  8456. ggml_sum(ctx, tensor->grad),
  8457. inplace);
  8458. }
  8459. } break;
  8460. case GGML_OP_ABS:
  8461. {
  8462. if (src0->grad) {
  8463. src0->grad =
  8464. ggml_add_impl(ctx,
  8465. src0->grad,
  8466. ggml_mul(ctx,
  8467. ggml_sgn(ctx, src0),
  8468. tensor->grad),
  8469. inplace);
  8470. }
  8471. } break;
  8472. case GGML_OP_SGN:
  8473. {
  8474. if (src0->grad) {
  8475. // noop
  8476. }
  8477. } break;
  8478. case GGML_OP_NEG:
  8479. {
  8480. if (src0->grad) {
  8481. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8482. }
  8483. } break;
  8484. case GGML_OP_STEP:
  8485. {
  8486. if (src0->grad) {
  8487. // noop
  8488. }
  8489. } break;
  8490. case GGML_OP_RELU:
  8491. {
  8492. if (src0->grad) {
  8493. src0->grad = ggml_sub_impl(ctx,
  8494. src0->grad,
  8495. ggml_mul(ctx,
  8496. ggml_step(ctx, src0),
  8497. tensor->grad),
  8498. inplace);
  8499. }
  8500. } break;
  8501. case GGML_OP_GELU:
  8502. {
  8503. GGML_ASSERT(false); // TODO: not implemented
  8504. } break;
  8505. case GGML_OP_SILU:
  8506. {
  8507. GGML_ASSERT(false); // TODO: not implemented
  8508. } break;
  8509. case GGML_OP_NORM:
  8510. {
  8511. GGML_ASSERT(false); // TODO: not implemented
  8512. } break;
  8513. case GGML_OP_RMS_NORM:
  8514. {
  8515. GGML_ASSERT(false); // TODO: not implemented
  8516. } break;
  8517. case GGML_OP_MUL_MAT:
  8518. {
  8519. if (src0->grad) {
  8520. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8521. GGML_ASSERT(false);
  8522. }
  8523. if (src1->grad) {
  8524. src1->grad =
  8525. ggml_add_impl(ctx,
  8526. src1->grad,
  8527. ggml_mul_mat(ctx,
  8528. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8529. tensor->grad),
  8530. inplace);
  8531. }
  8532. } break;
  8533. case GGML_OP_SCALE:
  8534. {
  8535. GGML_ASSERT(false); // TODO: not implemented
  8536. } break;
  8537. case GGML_OP_CPY:
  8538. {
  8539. GGML_ASSERT(false); // TODO: not implemented
  8540. } break;
  8541. case GGML_OP_CONT:
  8542. {
  8543. GGML_ASSERT(false); // TODO: not implemented
  8544. } break;
  8545. case GGML_OP_RESHAPE:
  8546. {
  8547. GGML_ASSERT(false); // TODO: not implemented
  8548. } break;
  8549. case GGML_OP_VIEW:
  8550. {
  8551. GGML_ASSERT(false); // not supported
  8552. } break;
  8553. case GGML_OP_PERMUTE:
  8554. {
  8555. GGML_ASSERT(false); // TODO: not implemented
  8556. } break;
  8557. case GGML_OP_TRANSPOSE:
  8558. {
  8559. GGML_ASSERT(false); // TODO: not implemented
  8560. } break;
  8561. case GGML_OP_GET_ROWS:
  8562. {
  8563. GGML_ASSERT(false); // TODO: not implemented
  8564. } break;
  8565. case GGML_OP_DIAG_MASK_INF:
  8566. {
  8567. GGML_ASSERT(false); // TODO: not implemented
  8568. } break;
  8569. case GGML_OP_SOFT_MAX:
  8570. {
  8571. GGML_ASSERT(false); // TODO: not implemented
  8572. } break;
  8573. case GGML_OP_ROPE:
  8574. {
  8575. GGML_ASSERT(false); // TODO: not implemented
  8576. } break;
  8577. case GGML_OP_CONV_1D_1S:
  8578. {
  8579. GGML_ASSERT(false); // TODO: not implemented
  8580. } break;
  8581. case GGML_OP_CONV_1D_2S:
  8582. {
  8583. GGML_ASSERT(false); // TODO: not implemented
  8584. } break;
  8585. case GGML_OP_FLASH_ATTN:
  8586. {
  8587. GGML_ASSERT(false); // not supported
  8588. } break;
  8589. case GGML_OP_FLASH_FF:
  8590. {
  8591. GGML_ASSERT(false); // not supported
  8592. } break;
  8593. case GGML_OP_MAP_UNARY:
  8594. case GGML_OP_MAP_BINARY:
  8595. {
  8596. GGML_ASSERT(false); // not supported
  8597. } break;
  8598. case GGML_OP_NONE:
  8599. {
  8600. // nop
  8601. } break;
  8602. case GGML_OP_COUNT:
  8603. {
  8604. GGML_ASSERT(false);
  8605. } break;
  8606. }
  8607. }
  8608. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8609. if (node->grad == NULL) {
  8610. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8611. // it can also happen during forward pass, if the user performs computations with constants
  8612. if (node->op != GGML_OP_NONE) {
  8613. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8614. }
  8615. }
  8616. // check if already visited
  8617. for (int i = 0; i < cgraph->n_nodes; i++) {
  8618. if (cgraph->nodes[i] == node) {
  8619. return;
  8620. }
  8621. }
  8622. for (int i = 0; i < cgraph->n_leafs; i++) {
  8623. if (cgraph->leafs[i] == node) {
  8624. return;
  8625. }
  8626. }
  8627. if (node->src0) {
  8628. ggml_visit_parents(cgraph, node->src0);
  8629. }
  8630. if (node->src1) {
  8631. ggml_visit_parents(cgraph, node->src1);
  8632. }
  8633. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8634. if (node->opt[i]) {
  8635. ggml_visit_parents(cgraph, node->opt[i]);
  8636. }
  8637. }
  8638. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8639. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8640. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8641. cgraph->leafs[cgraph->n_leafs] = node;
  8642. cgraph->n_leafs++;
  8643. } else {
  8644. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8645. cgraph->nodes[cgraph->n_nodes] = node;
  8646. cgraph->grads[cgraph->n_nodes] = node->grad;
  8647. cgraph->n_nodes++;
  8648. }
  8649. }
  8650. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8651. if (!expand) {
  8652. cgraph->n_nodes = 0;
  8653. cgraph->n_leafs = 0;
  8654. }
  8655. const int n0 = cgraph->n_nodes;
  8656. UNUSED(n0);
  8657. ggml_visit_parents(cgraph, tensor);
  8658. const int n_new = cgraph->n_nodes - n0;
  8659. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8660. if (n_new > 0) {
  8661. // the last added node should always be starting point
  8662. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8663. }
  8664. }
  8665. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8666. ggml_build_forward_impl(cgraph, tensor, true);
  8667. }
  8668. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8669. struct ggml_cgraph result = {
  8670. /*.n_nodes =*/ 0,
  8671. /*.n_leafs =*/ 0,
  8672. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8673. /*.work_size =*/ 0,
  8674. /*.work =*/ NULL,
  8675. /*.nodes =*/ { NULL },
  8676. /*.grads =*/ { NULL },
  8677. /*.leafs =*/ { NULL },
  8678. /*.perf_runs =*/ 0,
  8679. /*.perf_cycles =*/ 0,
  8680. /*.perf_time_us =*/ 0,
  8681. };
  8682. ggml_build_forward_impl(&result, tensor, false);
  8683. return result;
  8684. }
  8685. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8686. struct ggml_cgraph result = *gf;
  8687. GGML_ASSERT(gf->n_nodes > 0);
  8688. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8689. if (keep) {
  8690. for (int i = 0; i < gf->n_nodes; i++) {
  8691. struct ggml_tensor * node = gf->nodes[i];
  8692. if (node->grad) {
  8693. node->grad = ggml_dup_tensor(ctx, node);
  8694. gf->grads[i] = node->grad;
  8695. }
  8696. }
  8697. }
  8698. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8699. struct ggml_tensor * node = gf->nodes[i];
  8700. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8701. if (node->grad) {
  8702. ggml_compute_backward(ctx, node, keep);
  8703. }
  8704. }
  8705. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8706. struct ggml_tensor * node = gf->nodes[i];
  8707. if (node->is_param) {
  8708. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8709. ggml_build_forward_impl(&result, node->grad, true);
  8710. }
  8711. }
  8712. return result;
  8713. }
  8714. //
  8715. // thread data
  8716. //
  8717. // synchronization is done via busy loops
  8718. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8719. //
  8720. #ifdef __APPLE__
  8721. //#include <os/lock.h>
  8722. //
  8723. //typedef os_unfair_lock ggml_lock_t;
  8724. //
  8725. //#define ggml_lock_init(x) UNUSED(x)
  8726. //#define ggml_lock_destroy(x) UNUSED(x)
  8727. //#define ggml_lock_lock os_unfair_lock_lock
  8728. //#define ggml_lock_unlock os_unfair_lock_unlock
  8729. //
  8730. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8731. typedef int ggml_lock_t;
  8732. #define ggml_lock_init(x) UNUSED(x)
  8733. #define ggml_lock_destroy(x) UNUSED(x)
  8734. #define ggml_lock_lock(x) UNUSED(x)
  8735. #define ggml_lock_unlock(x) UNUSED(x)
  8736. #define GGML_LOCK_INITIALIZER 0
  8737. typedef pthread_t ggml_thread_t;
  8738. #define ggml_thread_create pthread_create
  8739. #define ggml_thread_join pthread_join
  8740. #else
  8741. //typedef pthread_spinlock_t ggml_lock_t;
  8742. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8743. //#define ggml_lock_destroy pthread_spin_destroy
  8744. //#define ggml_lock_lock pthread_spin_lock
  8745. //#define ggml_lock_unlock pthread_spin_unlock
  8746. typedef int ggml_lock_t;
  8747. #define ggml_lock_init(x) UNUSED(x)
  8748. #define ggml_lock_destroy(x) UNUSED(x)
  8749. #define ggml_lock_lock(x) UNUSED(x)
  8750. #define ggml_lock_unlock(x) UNUSED(x)
  8751. #define GGML_LOCK_INITIALIZER 0
  8752. typedef pthread_t ggml_thread_t;
  8753. #define ggml_thread_create pthread_create
  8754. #define ggml_thread_join pthread_join
  8755. #endif
  8756. struct ggml_compute_state_shared {
  8757. ggml_lock_t spin;
  8758. int n_threads;
  8759. // synchronization primitives
  8760. atomic_int n_ready;
  8761. atomic_bool has_work;
  8762. atomic_bool stop; // stop all threads
  8763. };
  8764. struct ggml_compute_state {
  8765. ggml_thread_t thrd;
  8766. struct ggml_compute_params params;
  8767. struct ggml_tensor * node;
  8768. struct ggml_compute_state_shared * shared;
  8769. };
  8770. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8771. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8772. const int n_threads = state->shared->n_threads;
  8773. while (true) {
  8774. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8775. atomic_store(&state->shared->has_work, false);
  8776. } else {
  8777. while (atomic_load(&state->shared->has_work)) {
  8778. if (atomic_load(&state->shared->stop)) {
  8779. return 0;
  8780. }
  8781. ggml_lock_lock (&state->shared->spin);
  8782. ggml_lock_unlock(&state->shared->spin);
  8783. }
  8784. }
  8785. atomic_fetch_sub(&state->shared->n_ready, 1);
  8786. // wait for work
  8787. while (!atomic_load(&state->shared->has_work)) {
  8788. if (atomic_load(&state->shared->stop)) {
  8789. return 0;
  8790. }
  8791. ggml_lock_lock (&state->shared->spin);
  8792. ggml_lock_unlock(&state->shared->spin);
  8793. }
  8794. // check if we should stop
  8795. if (atomic_load(&state->shared->stop)) {
  8796. break;
  8797. }
  8798. if (state->node) {
  8799. if (state->params.ith < state->params.nth) {
  8800. ggml_compute_forward(&state->params, state->node);
  8801. }
  8802. state->node = NULL;
  8803. } else {
  8804. break;
  8805. }
  8806. }
  8807. return 0;
  8808. }
  8809. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8810. const int n_threads = cgraph->n_threads;
  8811. struct ggml_compute_state_shared state_shared = {
  8812. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8813. /*.n_threads =*/ n_threads,
  8814. /*.n_ready =*/ 0,
  8815. /*.has_work =*/ false,
  8816. /*.stop =*/ false,
  8817. };
  8818. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8819. // create thread pool
  8820. if (n_threads > 1) {
  8821. ggml_lock_init(&state_shared.spin);
  8822. atomic_store(&state_shared.has_work, true);
  8823. for (int j = 0; j < n_threads - 1; j++) {
  8824. workers[j] = (struct ggml_compute_state) {
  8825. .thrd = 0,
  8826. .params = {
  8827. .type = GGML_TASK_COMPUTE,
  8828. .ith = j + 1,
  8829. .nth = n_threads,
  8830. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8831. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8832. },
  8833. .node = NULL,
  8834. .shared = &state_shared,
  8835. };
  8836. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8837. GGML_ASSERT(rc == 0);
  8838. UNUSED(rc);
  8839. }
  8840. }
  8841. // initialize tasks + work buffer
  8842. {
  8843. size_t work_size = 0;
  8844. // thread scheduling for the different operations
  8845. for (int i = 0; i < cgraph->n_nodes; i++) {
  8846. struct ggml_tensor * node = cgraph->nodes[i];
  8847. switch (node->op) {
  8848. case GGML_OP_CPY:
  8849. case GGML_OP_DUP:
  8850. {
  8851. node->n_tasks = n_threads;
  8852. size_t cur = 0;
  8853. if (ggml_is_quantized(node->type)) {
  8854. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8855. }
  8856. work_size = MAX(work_size, cur);
  8857. } break;
  8858. case GGML_OP_ADD:
  8859. {
  8860. node->n_tasks = n_threads;
  8861. size_t cur = 0;
  8862. if (ggml_is_quantized(node->src0->type)) {
  8863. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8864. }
  8865. work_size = MAX(work_size, cur);
  8866. } break;
  8867. case GGML_OP_SUB:
  8868. case GGML_OP_MUL:
  8869. case GGML_OP_DIV:
  8870. case GGML_OP_SQR:
  8871. case GGML_OP_SQRT:
  8872. case GGML_OP_SUM:
  8873. case GGML_OP_MEAN:
  8874. case GGML_OP_REPEAT:
  8875. case GGML_OP_ABS:
  8876. case GGML_OP_SGN:
  8877. case GGML_OP_NEG:
  8878. case GGML_OP_STEP:
  8879. case GGML_OP_RELU:
  8880. {
  8881. node->n_tasks = 1;
  8882. } break;
  8883. case GGML_OP_GELU:
  8884. {
  8885. node->n_tasks = n_threads;
  8886. } break;
  8887. case GGML_OP_SILU:
  8888. {
  8889. node->n_tasks = n_threads;
  8890. } break;
  8891. case GGML_OP_NORM:
  8892. case GGML_OP_RMS_NORM:
  8893. {
  8894. node->n_tasks = n_threads;
  8895. } break;
  8896. case GGML_OP_MUL_MAT:
  8897. {
  8898. node->n_tasks = n_threads;
  8899. // TODO: use different scheduling for different matrix sizes
  8900. //const int nr0 = ggml_nrows(node->src0);
  8901. //const int nr1 = ggml_nrows(node->src1);
  8902. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8903. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8904. size_t cur = 0;
  8905. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8906. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8907. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8908. node->n_tasks = 1; // TODO: this actually is doing nothing
  8909. // the threads are still spinning
  8910. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8911. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8912. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8913. //printf("cur = %zu\n", cur);
  8914. } else {
  8915. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8916. }
  8917. #else
  8918. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8919. #endif
  8920. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8921. cur = 0;
  8922. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8923. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8924. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8925. node->n_tasks = 1;
  8926. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8927. } else
  8928. #endif
  8929. {
  8930. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8931. }
  8932. } else {
  8933. GGML_ASSERT(false);
  8934. }
  8935. work_size = MAX(work_size, cur);
  8936. } break;
  8937. case GGML_OP_SCALE:
  8938. {
  8939. node->n_tasks = n_threads;
  8940. } break;
  8941. case GGML_OP_CONT:
  8942. case GGML_OP_RESHAPE:
  8943. case GGML_OP_VIEW:
  8944. case GGML_OP_PERMUTE:
  8945. case GGML_OP_TRANSPOSE:
  8946. case GGML_OP_GET_ROWS:
  8947. case GGML_OP_DIAG_MASK_INF:
  8948. {
  8949. node->n_tasks = 1;
  8950. } break;
  8951. case GGML_OP_SOFT_MAX:
  8952. {
  8953. node->n_tasks = n_threads;
  8954. } break;
  8955. case GGML_OP_ROPE:
  8956. {
  8957. node->n_tasks = n_threads;
  8958. } break;
  8959. case GGML_OP_CONV_1D_1S:
  8960. case GGML_OP_CONV_1D_2S:
  8961. {
  8962. node->n_tasks = n_threads;
  8963. GGML_ASSERT(node->src0->ne[3] == 1);
  8964. GGML_ASSERT(node->src1->ne[2] == 1);
  8965. GGML_ASSERT(node->src1->ne[3] == 1);
  8966. size_t cur = 0;
  8967. const int nk = node->src0->ne[0];
  8968. if (node->src0->type == GGML_TYPE_F16 &&
  8969. node->src1->type == GGML_TYPE_F32) {
  8970. cur = sizeof(ggml_fp16_t)*(
  8971. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8972. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8973. );
  8974. } else if (node->src0->type == GGML_TYPE_F32 &&
  8975. node->src1->type == GGML_TYPE_F32) {
  8976. cur = sizeof(float)*(
  8977. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8978. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8979. );
  8980. } else {
  8981. GGML_ASSERT(false);
  8982. }
  8983. work_size = MAX(work_size, cur);
  8984. } break;
  8985. case GGML_OP_FLASH_ATTN:
  8986. {
  8987. node->n_tasks = n_threads;
  8988. size_t cur = 0;
  8989. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8990. if (node->src1->type == GGML_TYPE_F32) {
  8991. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8992. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8993. }
  8994. if (node->src1->type == GGML_TYPE_F16) {
  8995. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8996. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8997. }
  8998. work_size = MAX(work_size, cur);
  8999. } break;
  9000. case GGML_OP_FLASH_FF:
  9001. {
  9002. node->n_tasks = n_threads;
  9003. size_t cur = 0;
  9004. if (node->src1->type == GGML_TYPE_F32) {
  9005. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9006. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9007. }
  9008. if (node->src1->type == GGML_TYPE_F16) {
  9009. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9010. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9011. }
  9012. work_size = MAX(work_size, cur);
  9013. } break;
  9014. case GGML_OP_MAP_UNARY:
  9015. case GGML_OP_MAP_BINARY:
  9016. {
  9017. node->n_tasks = 1;
  9018. } break;
  9019. case GGML_OP_NONE:
  9020. {
  9021. node->n_tasks = 1;
  9022. } break;
  9023. case GGML_OP_COUNT:
  9024. {
  9025. GGML_ASSERT(false);
  9026. } break;
  9027. }
  9028. }
  9029. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9030. GGML_ASSERT(false); // TODO: better handling
  9031. }
  9032. if (work_size > 0 && cgraph->work == NULL) {
  9033. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9034. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9035. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9036. }
  9037. }
  9038. const int64_t perf_start_cycles = ggml_perf_cycles();
  9039. const int64_t perf_start_time_us = ggml_perf_time_us();
  9040. for (int i = 0; i < cgraph->n_nodes; i++) {
  9041. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9042. struct ggml_tensor * node = cgraph->nodes[i];
  9043. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9044. //if (node->grad == NULL && node->perf_runs > 0) {
  9045. // continue;
  9046. //}
  9047. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9048. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9049. // INIT
  9050. struct ggml_compute_params params = {
  9051. /*.type =*/ GGML_TASK_INIT,
  9052. /*.ith =*/ 0,
  9053. /*.nth =*/ node->n_tasks,
  9054. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9055. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9056. };
  9057. ggml_compute_forward(&params, node);
  9058. // COMPUTE
  9059. if (node->n_tasks > 1) {
  9060. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9061. atomic_store(&state_shared.has_work, false);
  9062. }
  9063. while (atomic_load(&state_shared.has_work)) {
  9064. ggml_lock_lock (&state_shared.spin);
  9065. ggml_lock_unlock(&state_shared.spin);
  9066. }
  9067. // launch thread pool
  9068. for (int j = 0; j < n_threads - 1; j++) {
  9069. workers[j].params = (struct ggml_compute_params) {
  9070. .type = GGML_TASK_COMPUTE,
  9071. .ith = j + 1,
  9072. .nth = node->n_tasks,
  9073. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9074. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9075. };
  9076. workers[j].node = node;
  9077. }
  9078. atomic_fetch_sub(&state_shared.n_ready, 1);
  9079. while (atomic_load(&state_shared.n_ready) > 0) {
  9080. ggml_lock_lock (&state_shared.spin);
  9081. ggml_lock_unlock(&state_shared.spin);
  9082. }
  9083. atomic_store(&state_shared.has_work, true);
  9084. }
  9085. params.type = GGML_TASK_COMPUTE;
  9086. ggml_compute_forward(&params, node);
  9087. // wait for thread pool
  9088. if (node->n_tasks > 1) {
  9089. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9090. atomic_store(&state_shared.has_work, false);
  9091. }
  9092. while (atomic_load(&state_shared.has_work)) {
  9093. ggml_lock_lock (&state_shared.spin);
  9094. ggml_lock_unlock(&state_shared.spin);
  9095. }
  9096. atomic_fetch_sub(&state_shared.n_ready, 1);
  9097. while (atomic_load(&state_shared.n_ready) != 0) {
  9098. ggml_lock_lock (&state_shared.spin);
  9099. ggml_lock_unlock(&state_shared.spin);
  9100. }
  9101. }
  9102. // FINALIZE
  9103. if (node->n_tasks > 1) {
  9104. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9105. atomic_store(&state_shared.has_work, false);
  9106. }
  9107. while (atomic_load(&state_shared.has_work)) {
  9108. ggml_lock_lock (&state_shared.spin);
  9109. ggml_lock_unlock(&state_shared.spin);
  9110. }
  9111. // launch thread pool
  9112. for (int j = 0; j < n_threads - 1; j++) {
  9113. workers[j].params = (struct ggml_compute_params) {
  9114. .type = GGML_TASK_FINALIZE,
  9115. .ith = j + 1,
  9116. .nth = node->n_tasks,
  9117. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9118. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9119. };
  9120. workers[j].node = node;
  9121. }
  9122. atomic_fetch_sub(&state_shared.n_ready, 1);
  9123. while (atomic_load(&state_shared.n_ready) > 0) {
  9124. ggml_lock_lock (&state_shared.spin);
  9125. ggml_lock_unlock(&state_shared.spin);
  9126. }
  9127. atomic_store(&state_shared.has_work, true);
  9128. }
  9129. params.type = GGML_TASK_FINALIZE;
  9130. ggml_compute_forward(&params, node);
  9131. // wait for thread pool
  9132. if (node->n_tasks > 1) {
  9133. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9134. atomic_store(&state_shared.has_work, false);
  9135. }
  9136. while (atomic_load(&state_shared.has_work)) {
  9137. ggml_lock_lock (&state_shared.spin);
  9138. ggml_lock_unlock(&state_shared.spin);
  9139. }
  9140. atomic_fetch_sub(&state_shared.n_ready, 1);
  9141. while (atomic_load(&state_shared.n_ready) != 0) {
  9142. ggml_lock_lock (&state_shared.spin);
  9143. ggml_lock_unlock(&state_shared.spin);
  9144. }
  9145. }
  9146. // performance stats (node)
  9147. {
  9148. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9149. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9150. node->perf_runs++;
  9151. node->perf_cycles += perf_cycles_cur;
  9152. node->perf_time_us += perf_time_us_cur;
  9153. }
  9154. }
  9155. // join thread pool
  9156. if (n_threads > 1) {
  9157. atomic_store(&state_shared.stop, true);
  9158. atomic_store(&state_shared.has_work, true);
  9159. for (int j = 0; j < n_threads - 1; j++) {
  9160. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9161. GGML_ASSERT(rc == 0);
  9162. UNUSED(rc);
  9163. }
  9164. ggml_lock_destroy(&state_shared.spin);
  9165. }
  9166. // performance stats (graph)
  9167. {
  9168. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9169. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9170. cgraph->perf_runs++;
  9171. cgraph->perf_cycles += perf_cycles_cur;
  9172. cgraph->perf_time_us += perf_time_us_cur;
  9173. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9174. __func__, cgraph->perf_runs,
  9175. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9176. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9177. (double) perf_time_us_cur / 1000.0,
  9178. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9179. }
  9180. }
  9181. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9182. for (int i = 0; i < cgraph->n_nodes; i++) {
  9183. struct ggml_tensor * grad = cgraph->grads[i];
  9184. if (grad) {
  9185. ggml_set_zero(grad);
  9186. }
  9187. }
  9188. }
  9189. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9190. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9191. GGML_PRINT("=== GRAPH ===\n");
  9192. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9193. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9194. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9195. for (int i = 0; i < cgraph->n_nodes; i++) {
  9196. struct ggml_tensor * node = cgraph->nodes[i];
  9197. perf_total_per_op_us[node->op] += node->perf_time_us;
  9198. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9199. i,
  9200. node->ne[0], node->ne[1], node->ne[2],
  9201. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9202. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9203. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9204. (double) node->perf_time_us / 1000.0,
  9205. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9206. }
  9207. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9208. for (int i = 0; i < cgraph->n_leafs; i++) {
  9209. struct ggml_tensor * node = cgraph->leafs[i];
  9210. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9211. i,
  9212. node->ne[0], node->ne[1],
  9213. GGML_OP_LABEL[node->op]);
  9214. }
  9215. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9216. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9217. }
  9218. GGML_PRINT("========================================\n");
  9219. }
  9220. // check if node is part of the graph
  9221. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9222. if (cgraph == NULL) {
  9223. return true;
  9224. }
  9225. for (int i = 0; i < cgraph->n_nodes; i++) {
  9226. if (cgraph->nodes[i] == node) {
  9227. return true;
  9228. }
  9229. }
  9230. return false;
  9231. }
  9232. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9233. for (int i = 0; i < cgraph->n_nodes; i++) {
  9234. struct ggml_tensor * parent = cgraph->nodes[i];
  9235. if (parent->grad == node) {
  9236. return parent;
  9237. }
  9238. }
  9239. return NULL;
  9240. }
  9241. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9242. char color[16];
  9243. FILE * fp = fopen(filename, "w");
  9244. GGML_ASSERT(fp);
  9245. fprintf(fp, "digraph G {\n");
  9246. fprintf(fp, " newrank = true;\n");
  9247. fprintf(fp, " rankdir = LR;\n");
  9248. for (int i = 0; i < gb->n_nodes; i++) {
  9249. struct ggml_tensor * node = gb->nodes[i];
  9250. if (ggml_graph_get_parent(gb, node) != NULL) {
  9251. continue;
  9252. }
  9253. if (node->is_param) {
  9254. snprintf(color, sizeof(color), "yellow");
  9255. } else if (node->grad) {
  9256. if (ggml_graph_find(gf, node)) {
  9257. snprintf(color, sizeof(color), "green");
  9258. } else {
  9259. snprintf(color, sizeof(color), "lightblue");
  9260. }
  9261. } else {
  9262. snprintf(color, sizeof(color), "white");
  9263. }
  9264. fprintf(fp, " \"%p\" [ \
  9265. style = filled; fillcolor = %s; shape = record; \
  9266. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9267. (void *) node, color,
  9268. i, node->ne[0], node->ne[1],
  9269. GGML_OP_SYMBOL[node->op]);
  9270. if (node->grad) {
  9271. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9272. } else {
  9273. fprintf(fp, "\"; ]\n");
  9274. }
  9275. }
  9276. for (int i = 0; i < gb->n_leafs; i++) {
  9277. struct ggml_tensor * node = gb->leafs[i];
  9278. snprintf(color, sizeof(color), "pink");
  9279. if (ggml_nelements(node) == 1) {
  9280. fprintf(fp, " \"%p\" [ \
  9281. style = filled; fillcolor = %s; shape = record; \
  9282. label=\"<x>%.1e\"; ]\n",
  9283. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9284. } else {
  9285. fprintf(fp, " \"%p\" [ \
  9286. style = filled; fillcolor = %s; shape = record; \
  9287. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9288. (void *) node, color,
  9289. i, node->ne[0], node->ne[1]);
  9290. }
  9291. }
  9292. for (int i = 0; i < gb->n_nodes; i++) {
  9293. struct ggml_tensor * node = gb->nodes[i];
  9294. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9295. if (node->src0) {
  9296. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9297. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9298. parent0 ? (void *) parent0 : (void *) node->src0,
  9299. parent0 ? "g" : "x",
  9300. parent ? (void *) parent : (void *) node,
  9301. parent ? "g" : "x",
  9302. parent ? "empty" : "vee",
  9303. parent ? "dashed" : "solid");
  9304. }
  9305. if (node->src1) {
  9306. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9307. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9308. parent1 ? (void *) parent1 : (void *) node->src1,
  9309. parent1 ? "g" : "x",
  9310. parent ? (void *) parent : (void *) node,
  9311. parent ? "g" : "x",
  9312. parent ? "empty" : "vee",
  9313. parent ? "dashed" : "solid");
  9314. }
  9315. }
  9316. for (int i = 0; i < gb->n_leafs; i++) {
  9317. struct ggml_tensor * node = gb->leafs[i];
  9318. if (node->src0) {
  9319. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9320. (void *) node->src0, "x",
  9321. (void *) node, "x");
  9322. }
  9323. if (node->src1) {
  9324. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9325. (void *) node->src1, "x",
  9326. (void *) node, "x");
  9327. }
  9328. }
  9329. fprintf(fp, "}\n");
  9330. fclose(fp);
  9331. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9332. }
  9333. ////////////////////////////////////////////////////////////////////////////////
  9334. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9335. int i = 0;
  9336. for (int p = 0; p < np; ++p) {
  9337. const int64_t ne = ggml_nelements(ps[p]) ;
  9338. // TODO: add function to set tensor from array
  9339. for (int64_t j = 0; j < ne; ++j) {
  9340. ggml_set_f32_1d(ps[p], j, x[i++]);
  9341. }
  9342. }
  9343. }
  9344. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9345. int i = 0;
  9346. for (int p = 0; p < np; ++p) {
  9347. const int64_t ne = ggml_nelements(ps[p]) ;
  9348. // TODO: add function to get all elements at once
  9349. for (int64_t j = 0; j < ne; ++j) {
  9350. x[i++] = ggml_get_f32_1d(ps[p], j);
  9351. }
  9352. }
  9353. }
  9354. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9355. int i = 0;
  9356. for (int p = 0; p < np; ++p) {
  9357. const int64_t ne = ggml_nelements(ps[p]) ;
  9358. // TODO: add function to get all elements at once
  9359. for (int64_t j = 0; j < ne; ++j) {
  9360. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9361. }
  9362. }
  9363. }
  9364. //
  9365. // ADAM
  9366. //
  9367. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9368. //
  9369. static enum ggml_opt_result ggml_opt_adam(
  9370. struct ggml_context * ctx,
  9371. struct ggml_opt_params params,
  9372. struct ggml_tensor * f,
  9373. struct ggml_cgraph * gf,
  9374. struct ggml_cgraph * gb) {
  9375. GGML_ASSERT(ggml_is_scalar(f));
  9376. gf->n_threads = params.n_threads;
  9377. gb->n_threads = params.n_threads;
  9378. // these will store the parameters we want to optimize
  9379. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9380. int np = 0;
  9381. int nx = 0;
  9382. for (int i = 0; i < gf->n_nodes; ++i) {
  9383. if (gf->nodes[i]->is_param) {
  9384. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9385. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9386. ps[np++] = gf->nodes[i];
  9387. nx += ggml_nelements(gf->nodes[i]);
  9388. }
  9389. }
  9390. // constants
  9391. const float alpha = params.adam.alpha;
  9392. const float beta1 = params.adam.beta1;
  9393. const float beta2 = params.adam.beta2;
  9394. const float eps = params.adam.eps;
  9395. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9396. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9397. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9398. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9399. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9400. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9401. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9402. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9403. // initialize
  9404. ggml_vec_set_f32(nx, m, 0.0f);
  9405. ggml_vec_set_f32(nx, v, 0.0f);
  9406. // update view
  9407. ggml_opt_get_params(np, ps, x);
  9408. // compute the function value
  9409. ggml_graph_reset (gf);
  9410. ggml_set_f32 (f->grad, 1.0f);
  9411. ggml_graph_compute(ctx, gb);
  9412. float fx_prev = ggml_get_f32_1d(f, 0);
  9413. if (pf) {
  9414. pf[0] = fx_prev;
  9415. }
  9416. int n_no_improvement = 0;
  9417. float fx_best = fx_prev;
  9418. // run the optimizer
  9419. for (int t = 0; t < params.adam.n_iter; ++t) {
  9420. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9421. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9422. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9423. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9424. for (int i = 0; i < np; ++i) {
  9425. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9426. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9427. }
  9428. const int64_t t_start_wall = ggml_time_us();
  9429. const int64_t t_start_cpu = ggml_cycles();
  9430. UNUSED(t_start_wall);
  9431. UNUSED(t_start_cpu);
  9432. {
  9433. // update the gradient
  9434. ggml_opt_get_grad(np, ps, g1);
  9435. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9436. ggml_vec_scale_f32(nx, m, beta1);
  9437. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9438. // g2 = g1^2
  9439. ggml_vec_sqr_f32 (nx, g2, g1);
  9440. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9441. ggml_vec_scale_f32(nx, v, beta2);
  9442. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9443. // m^hat = m_t / (1 - beta1^t)
  9444. // v^hat = v_t / (1 - beta2^t)
  9445. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9446. ggml_vec_cpy_f32 (nx, mh, m);
  9447. ggml_vec_cpy_f32 (nx, vh, v);
  9448. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9449. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9450. ggml_vec_sqrt_f32 (nx, vh, vh);
  9451. ggml_vec_acc1_f32 (nx, vh, eps);
  9452. ggml_vec_div_f32 (nx, mh, mh, vh);
  9453. ggml_vec_sub_f32 (nx, x, x, mh);
  9454. // update the parameters
  9455. ggml_opt_set_params(np, ps, x);
  9456. }
  9457. ggml_graph_reset (gf);
  9458. ggml_set_f32 (f->grad, 1.0f);
  9459. ggml_graph_compute(ctx, gb);
  9460. const float fx = ggml_get_f32_1d(f, 0);
  9461. // check convergence
  9462. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9463. GGML_PRINT_DEBUG("converged\n");
  9464. return GGML_OPT_OK;
  9465. }
  9466. // delta-based convergence test
  9467. if (pf != NULL) {
  9468. // need at least params.past iterations to start checking for convergence
  9469. if (params.past <= t) {
  9470. const float rate = (pf[t%params.past] - fx)/fx;
  9471. if (fabsf(rate) < params.delta) {
  9472. return GGML_OPT_OK;
  9473. }
  9474. }
  9475. pf[t%params.past] = fx;
  9476. }
  9477. // check for improvement
  9478. if (params.max_no_improvement > 0) {
  9479. if (fx_best > fx) {
  9480. fx_best = fx;
  9481. n_no_improvement = 0;
  9482. } else {
  9483. ++n_no_improvement;
  9484. if (n_no_improvement >= params.max_no_improvement) {
  9485. return GGML_OPT_OK;
  9486. }
  9487. }
  9488. }
  9489. fx_prev = fx;
  9490. {
  9491. const int64_t t_end_cpu = ggml_cycles();
  9492. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9493. UNUSED(t_end_cpu);
  9494. const int64_t t_end_wall = ggml_time_us();
  9495. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9496. UNUSED(t_end_wall);
  9497. }
  9498. }
  9499. return GGML_OPT_DID_NOT_CONVERGE;
  9500. }
  9501. //
  9502. // L-BFGS
  9503. //
  9504. // the L-BFGS implementation below is based on the following implementation:
  9505. //
  9506. // https://github.com/chokkan/liblbfgs
  9507. //
  9508. struct ggml_lbfgs_iteration_data {
  9509. float alpha;
  9510. float ys;
  9511. float * s;
  9512. float * y;
  9513. };
  9514. static enum ggml_opt_result linesearch_backtracking(
  9515. struct ggml_context * ctx,
  9516. const struct ggml_opt_params * params,
  9517. int nx,
  9518. float * x,
  9519. float * fx,
  9520. float * g,
  9521. float * d,
  9522. float * step,
  9523. const float * xp,
  9524. struct ggml_tensor * f,
  9525. struct ggml_cgraph * gf,
  9526. struct ggml_cgraph * gb,
  9527. const int np,
  9528. struct ggml_tensor * ps[]) {
  9529. int count = 0;
  9530. float width = 0.0f;
  9531. float dg = 0.0f;
  9532. float finit = 0.0f;
  9533. float dginit = 0.0f;
  9534. float dgtest = 0.0f;
  9535. const float dec = 0.5f;
  9536. const float inc = 2.1f;
  9537. if (*step <= 0.f) {
  9538. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9539. }
  9540. // compute the initial gradient in the search direction
  9541. ggml_vec_dot_f32(nx, &dginit, g, d);
  9542. // make sure that d points to a descent direction
  9543. if (0 < dginit) {
  9544. return GGML_LINESEARCH_FAIL;
  9545. }
  9546. // initialize local variables
  9547. finit = *fx;
  9548. dgtest = params->lbfgs.ftol*dginit;
  9549. while (true) {
  9550. ggml_vec_cpy_f32(nx, x, xp);
  9551. ggml_vec_mad_f32(nx, x, d, *step);
  9552. // evaluate the function and gradient values
  9553. {
  9554. ggml_opt_set_params(np, ps, x);
  9555. ggml_graph_reset (gf);
  9556. ggml_set_f32 (f->grad, 1.0f);
  9557. ggml_graph_compute(ctx, gb);
  9558. ggml_opt_get_grad(np, ps, g);
  9559. *fx = ggml_get_f32_1d(f, 0);
  9560. }
  9561. ++count;
  9562. if (*fx > finit + (*step)*dgtest) {
  9563. width = dec;
  9564. } else {
  9565. // Armijo condition is satisfied
  9566. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9567. return count;
  9568. }
  9569. ggml_vec_dot_f32(nx, &dg, g, d);
  9570. // check the Wolfe condition
  9571. if (dg < params->lbfgs.wolfe * dginit) {
  9572. width = inc;
  9573. } else {
  9574. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9575. // regular Wolfe conditions
  9576. return count;
  9577. }
  9578. if(dg > -params->lbfgs.wolfe*dginit) {
  9579. width = dec;
  9580. } else {
  9581. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9582. return count;
  9583. }
  9584. return count;
  9585. }
  9586. }
  9587. if (*step < params->lbfgs.min_step) {
  9588. return GGML_LINESEARCH_MINIMUM_STEP;
  9589. }
  9590. if (*step > params->lbfgs.max_step) {
  9591. return GGML_LINESEARCH_MAXIMUM_STEP;
  9592. }
  9593. if (params->lbfgs.max_linesearch <= count) {
  9594. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9595. }
  9596. (*step) *= width;
  9597. }
  9598. return GGML_LINESEARCH_FAIL;
  9599. }
  9600. static enum ggml_opt_result ggml_opt_lbfgs(
  9601. struct ggml_context * ctx,
  9602. struct ggml_opt_params params,
  9603. struct ggml_tensor * f,
  9604. struct ggml_cgraph * gf,
  9605. struct ggml_cgraph * gb) {
  9606. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9607. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9608. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9609. return GGML_OPT_INVALID_WOLFE;
  9610. }
  9611. }
  9612. gf->n_threads = params.n_threads;
  9613. gb->n_threads = params.n_threads;
  9614. const int m = params.lbfgs.m;
  9615. // these will store the parameters we want to optimize
  9616. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9617. int np = 0;
  9618. int nx = 0;
  9619. for (int i = 0; i < gf->n_nodes; ++i) {
  9620. if (gf->nodes[i]->is_param) {
  9621. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9622. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9623. ps[np++] = gf->nodes[i];
  9624. nx += ggml_nelements(gf->nodes[i]);
  9625. }
  9626. }
  9627. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9628. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9629. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9630. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9631. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9632. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9633. float fx = 0.0f; // cost function value
  9634. float xnorm = 0.0f; // ||x||
  9635. float gnorm = 0.0f; // ||g||
  9636. float step = 0.0f;
  9637. // initialize x from the graph nodes
  9638. ggml_opt_get_params(np, ps, x);
  9639. // the L-BFGS memory
  9640. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9641. for (int i = 0; i < m; ++i) {
  9642. lm[i].alpha = 0.0f;
  9643. lm[i].ys = 0.0f;
  9644. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9645. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9646. }
  9647. // evaluate the function value and its gradient
  9648. {
  9649. ggml_opt_set_params(np, ps, x);
  9650. ggml_graph_reset (gf);
  9651. ggml_set_f32 (f->grad, 1.0f);
  9652. ggml_graph_compute(ctx, gb);
  9653. ggml_opt_get_grad(np, ps, g);
  9654. fx = ggml_get_f32_1d(f, 0);
  9655. }
  9656. if (pf) {
  9657. pf[0] = fx;
  9658. }
  9659. float fx_best = fx;
  9660. // search direction = -gradient
  9661. ggml_vec_neg_f32(nx, d, g);
  9662. // ||x||, ||g||
  9663. ggml_vec_norm_f32(nx, &xnorm, x);
  9664. ggml_vec_norm_f32(nx, &gnorm, g);
  9665. if (xnorm < 1.0f) {
  9666. xnorm = 1.0f;
  9667. }
  9668. // already optimized
  9669. if (gnorm/xnorm <= params.lbfgs.eps) {
  9670. return GGML_OPT_OK;
  9671. }
  9672. // initial step
  9673. ggml_vec_norm_inv_f32(nx, &step, d);
  9674. int j = 0;
  9675. int k = 1;
  9676. int ls = 0;
  9677. int end = 0;
  9678. int bound = 0;
  9679. int n_no_improvement = 0;
  9680. float ys = 0.0f;
  9681. float yy = 0.0f;
  9682. float beta = 0.0f;
  9683. while (true) {
  9684. // store the current position and gradient vectors
  9685. ggml_vec_cpy_f32(nx, xp, x);
  9686. ggml_vec_cpy_f32(nx, gp, g);
  9687. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9688. if (ls < 0) {
  9689. // linesearch failed - go back to the previous point and return
  9690. ggml_vec_cpy_f32(nx, x, xp);
  9691. ggml_vec_cpy_f32(nx, g, gp);
  9692. return ls;
  9693. }
  9694. ggml_vec_norm_f32(nx, &xnorm, x);
  9695. ggml_vec_norm_f32(nx, &gnorm, g);
  9696. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9697. if (xnorm < 1.0f) {
  9698. xnorm = 1.0f;
  9699. }
  9700. if (gnorm/xnorm <= params.lbfgs.eps) {
  9701. // converged
  9702. return GGML_OPT_OK;
  9703. }
  9704. // delta-based convergence test
  9705. if (pf != NULL) {
  9706. // need at least params.past iterations to start checking for convergence
  9707. if (params.past <= k) {
  9708. const float rate = (pf[k%params.past] - fx)/fx;
  9709. if (fabsf(rate) < params.delta) {
  9710. return GGML_OPT_OK;
  9711. }
  9712. }
  9713. pf[k%params.past] = fx;
  9714. }
  9715. // check for improvement
  9716. if (params.max_no_improvement > 0) {
  9717. if (fx < fx_best) {
  9718. fx_best = fx;
  9719. n_no_improvement = 0;
  9720. } else {
  9721. n_no_improvement++;
  9722. if (n_no_improvement >= params.max_no_improvement) {
  9723. return GGML_OPT_OK;
  9724. }
  9725. }
  9726. }
  9727. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9728. // reached the maximum number of iterations
  9729. return GGML_OPT_DID_NOT_CONVERGE;
  9730. }
  9731. // update vectors s and y:
  9732. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9733. // y_{k+1} = g_{k+1} - g_{k}.
  9734. //
  9735. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9736. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9737. // compute scalars ys and yy:
  9738. // ys = y^t \cdot s -> 1 / \rho.
  9739. // yy = y^t \cdot y.
  9740. //
  9741. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9742. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9743. lm[end].ys = ys;
  9744. // find new search direction
  9745. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9746. bound = (m <= k) ? m : k;
  9747. k++;
  9748. end = (end + 1)%m;
  9749. // initialize search direction with -g
  9750. ggml_vec_neg_f32(nx, d, g);
  9751. j = end;
  9752. for (int i = 0; i < bound; ++i) {
  9753. j = (j + m - 1) % m;
  9754. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9755. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9756. lm[j].alpha /= lm[j].ys;
  9757. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9758. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9759. }
  9760. ggml_vec_scale_f32(nx, d, ys/yy);
  9761. for (int i = 0; i < bound; ++i) {
  9762. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9763. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9764. beta /= lm[j].ys;
  9765. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9766. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9767. j = (j + 1)%m;
  9768. }
  9769. step = 1.0;
  9770. }
  9771. return GGML_OPT_DID_NOT_CONVERGE;
  9772. }
  9773. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9774. struct ggml_opt_params result;
  9775. switch (type) {
  9776. case GGML_OPT_ADAM:
  9777. {
  9778. result = (struct ggml_opt_params) {
  9779. .type = GGML_OPT_ADAM,
  9780. .n_threads = 1,
  9781. .past = 0,
  9782. .delta = 1e-5f,
  9783. .max_no_improvement = 100,
  9784. .print_forward_graph = true,
  9785. .print_backward_graph = true,
  9786. .adam = {
  9787. .n_iter = 10000,
  9788. .alpha = 0.001f,
  9789. .beta1 = 0.9f,
  9790. .beta2 = 0.999f,
  9791. .eps = 1e-8f,
  9792. .eps_f = 1e-5f,
  9793. .eps_g = 1e-3f,
  9794. },
  9795. };
  9796. } break;
  9797. case GGML_OPT_LBFGS:
  9798. {
  9799. result = (struct ggml_opt_params) {
  9800. .type = GGML_OPT_LBFGS,
  9801. .n_threads = 1,
  9802. .past = 0,
  9803. .delta = 1e-5f,
  9804. .max_no_improvement = 0,
  9805. .print_forward_graph = true,
  9806. .print_backward_graph = true,
  9807. .lbfgs = {
  9808. .m = 6,
  9809. .n_iter = 100,
  9810. .max_linesearch = 20,
  9811. .eps = 1e-5f,
  9812. .ftol = 1e-4f,
  9813. .wolfe = 0.9f,
  9814. .min_step = 1e-20f,
  9815. .max_step = 1e+20f,
  9816. .linesearch = GGML_LINESEARCH_DEFAULT,
  9817. },
  9818. };
  9819. } break;
  9820. }
  9821. return result;
  9822. }
  9823. enum ggml_opt_result ggml_opt(
  9824. struct ggml_context * ctx,
  9825. struct ggml_opt_params params,
  9826. struct ggml_tensor * f) {
  9827. bool free_ctx = false;
  9828. if (ctx == NULL) {
  9829. struct ggml_init_params params_ctx = {
  9830. .mem_size = 16*1024*1024,
  9831. .mem_buffer = NULL,
  9832. .no_alloc = false,
  9833. };
  9834. ctx = ggml_init(params_ctx);
  9835. if (ctx == NULL) {
  9836. return GGML_OPT_NO_CONTEXT;
  9837. }
  9838. free_ctx = true;
  9839. }
  9840. enum ggml_opt_result result = GGML_OPT_OK;
  9841. // build forward + backward compute graphs
  9842. struct ggml_cgraph gf = ggml_build_forward (f);
  9843. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9844. switch (params.type) {
  9845. case GGML_OPT_ADAM:
  9846. {
  9847. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9848. } break;
  9849. case GGML_OPT_LBFGS:
  9850. {
  9851. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9852. } break;
  9853. }
  9854. if (params.print_forward_graph) {
  9855. ggml_graph_print (&gf);
  9856. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9857. }
  9858. if (params.print_backward_graph) {
  9859. ggml_graph_print (&gb);
  9860. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9861. }
  9862. if (free_ctx) {
  9863. ggml_free(ctx);
  9864. }
  9865. return result;
  9866. }
  9867. ////////////////////////////////////////////////////////////////////////////////
  9868. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9869. assert(k % QK4_0 == 0);
  9870. const int nb = k / QK4_0;
  9871. for (int j = 0; j < n; j += k) {
  9872. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9873. quantize_row_q4_0_reference(src + j, y, k);
  9874. for (int i = 0; i < nb; i++) {
  9875. for (int l = 0; l < QK4_0; l += 2) {
  9876. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9877. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9878. hist[vi0]++;
  9879. hist[vi1]++;
  9880. }
  9881. }
  9882. }
  9883. return (n/QK4_0*sizeof(block_q4_0));
  9884. }
  9885. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9886. assert(k % QK4_1 == 0);
  9887. const int nb = k / QK4_1;
  9888. for (int j = 0; j < n; j += k) {
  9889. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9890. quantize_row_q4_1_reference(src + j, y, k);
  9891. for (int i = 0; i < nb; i++) {
  9892. for (int l = 0; l < QK4_1; l += 2) {
  9893. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9894. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9895. hist[vi0]++;
  9896. hist[vi1]++;
  9897. }
  9898. }
  9899. }
  9900. return (n/QK4_1*sizeof(block_q4_1));
  9901. }
  9902. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9903. assert(k % QK4_2 == 0);
  9904. const int nb = k / QK4_2;
  9905. for (int j = 0; j < n; j += k) {
  9906. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9907. //quantize_row_q4_2_reference(src + j, y, k);
  9908. quantize_row_q4_2_rmse(src + j, y, k);
  9909. for (int i = 0; i < nb; i++) {
  9910. for (int l = 0; l < QK4_2; l += 2) {
  9911. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9912. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9913. hist[vi0]++;
  9914. hist[vi1]++;
  9915. }
  9916. }
  9917. }
  9918. return (n/QK4_2*sizeof(block_q4_2));
  9919. }
  9920. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9921. assert(k % QK4_3 == 0);
  9922. const int nb = k / QK4_3;
  9923. for (int j = 0; j < n; j += k) {
  9924. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9925. quantize_row_q4_3_reference(src + j, y, k);
  9926. for (int i = 0; i < nb; i++) {
  9927. for (int l = 0; l < QK4_3; l += 2) {
  9928. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9929. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9930. hist[vi0]++;
  9931. hist[vi1]++;
  9932. }
  9933. }
  9934. }
  9935. return (n/QK4_3*sizeof(block_q4_3));
  9936. }
  9937. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9938. size_t result = 0;
  9939. switch (type) {
  9940. case GGML_TYPE_Q4_0:
  9941. {
  9942. GGML_ASSERT(start % QK4_0 == 0);
  9943. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9944. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9945. } break;
  9946. case GGML_TYPE_Q4_1:
  9947. {
  9948. GGML_ASSERT(start % QK4_1 == 0);
  9949. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9950. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9951. } break;
  9952. case GGML_TYPE_Q4_2:
  9953. {
  9954. GGML_ASSERT(start % QK4_2 == 0);
  9955. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9956. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9957. } break;
  9958. case GGML_TYPE_Q4_3:
  9959. {
  9960. GGML_ASSERT(start % QK4_3 == 0);
  9961. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9962. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9963. } break;
  9964. default:
  9965. assert(false);
  9966. }
  9967. return result;
  9968. }
  9969. ////////////////////////////////////////////////////////////////////////////////
  9970. int ggml_cpu_has_avx(void) {
  9971. #if defined(__AVX__)
  9972. return 1;
  9973. #else
  9974. return 0;
  9975. #endif
  9976. }
  9977. int ggml_cpu_has_avx2(void) {
  9978. #if defined(__AVX2__)
  9979. return 1;
  9980. #else
  9981. return 0;
  9982. #endif
  9983. }
  9984. int ggml_cpu_has_avx512(void) {
  9985. #if defined(__AVX512F__)
  9986. return 1;
  9987. #else
  9988. return 0;
  9989. #endif
  9990. }
  9991. int ggml_cpu_has_avx512_vbmi(void) {
  9992. #if defined(__AVX512VBMI__)
  9993. return 1;
  9994. #else
  9995. return 0;
  9996. #endif
  9997. }
  9998. int ggml_cpu_has_avx512_vnni(void) {
  9999. #if defined(__AVX512VNNI__)
  10000. return 1;
  10001. #else
  10002. return 0;
  10003. #endif
  10004. }
  10005. int ggml_cpu_has_fma(void) {
  10006. #if defined(__FMA__)
  10007. return 1;
  10008. #else
  10009. return 0;
  10010. #endif
  10011. }
  10012. int ggml_cpu_has_neon(void) {
  10013. #if defined(__ARM_NEON)
  10014. return 1;
  10015. #else
  10016. return 0;
  10017. #endif
  10018. }
  10019. int ggml_cpu_has_arm_fma(void) {
  10020. #if defined(__ARM_FEATURE_FMA)
  10021. return 1;
  10022. #else
  10023. return 0;
  10024. #endif
  10025. }
  10026. int ggml_cpu_has_f16c(void) {
  10027. #if defined(__F16C__)
  10028. return 1;
  10029. #else
  10030. return 0;
  10031. #endif
  10032. }
  10033. int ggml_cpu_has_fp16_va(void) {
  10034. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10035. return 1;
  10036. #else
  10037. return 0;
  10038. #endif
  10039. }
  10040. int ggml_cpu_has_wasm_simd(void) {
  10041. #if defined(__wasm_simd128__)
  10042. return 1;
  10043. #else
  10044. return 0;
  10045. #endif
  10046. }
  10047. int ggml_cpu_has_blas(void) {
  10048. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10049. return 1;
  10050. #else
  10051. return 0;
  10052. #endif
  10053. }
  10054. int ggml_cpu_has_cublas(void) {
  10055. #if defined(GGML_USE_CUBLAS)
  10056. return 1;
  10057. #else
  10058. return 0;
  10059. #endif
  10060. }
  10061. int ggml_cpu_has_sse3(void) {
  10062. #if defined(__SSE3__)
  10063. return 1;
  10064. #else
  10065. return 0;
  10066. #endif
  10067. }
  10068. int ggml_cpu_has_vsx(void) {
  10069. #if defined(__POWER9_VECTOR__)
  10070. return 1;
  10071. #else
  10072. return 0;
  10073. #endif
  10074. }
  10075. ////////////////////////////////////////////////////////////////////////////////