1
0

sampling.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. #include "sampling.h"
  2. #include "common.h"
  3. #include <cmath>
  4. #include <unordered_map>
  5. #include <algorithm>
  6. // the ring buffer works similarly to std::deque, but with a fixed capacity
  7. // TODO: deduplicate with llama-impl.h
  8. template<typename T>
  9. struct ring_buffer {
  10. ring_buffer(size_t cap) : capacity(cap), data(cap) {}
  11. T & front() {
  12. if (sz == 0) {
  13. throw std::runtime_error("ring buffer is empty");
  14. }
  15. return data[first];
  16. }
  17. const T & front() const {
  18. if (sz == 0) {
  19. throw std::runtime_error("ring buffer is empty");
  20. }
  21. return data[first];
  22. }
  23. T & back() {
  24. if (sz == 0) {
  25. throw std::runtime_error("ring buffer is empty");
  26. }
  27. return data[pos];
  28. }
  29. const T & back() const {
  30. if (sz == 0) {
  31. throw std::runtime_error("ring buffer is empty");
  32. }
  33. return data[pos];
  34. }
  35. void push_back(const T & value) {
  36. if (sz == capacity) {
  37. // advance the start when buffer is full
  38. first = (first + 1) % capacity;
  39. } else {
  40. sz++;
  41. }
  42. data[pos] = value;
  43. pos = (pos + 1) % capacity;
  44. }
  45. T pop_front() {
  46. if (sz == 0) {
  47. throw std::runtime_error("ring buffer is empty");
  48. }
  49. T value = data[first];
  50. first = (first + 1) % capacity;
  51. sz--;
  52. return value;
  53. }
  54. const T & rat(size_t i) const {
  55. if (i >= sz) {
  56. throw std::runtime_error("ring buffer: index out of bounds");
  57. }
  58. return data[(first + sz - i - 1) % capacity];
  59. }
  60. std::vector<T> to_vector() const {
  61. std::vector<T> result;
  62. result.reserve(sz);
  63. for (size_t i = 0; i < sz; i++) {
  64. result.push_back(data[(first + i) % capacity]);
  65. }
  66. return result;
  67. }
  68. void clear() {
  69. // here only reset the status of the buffer
  70. sz = 0;
  71. first = 0;
  72. pos = 0;
  73. }
  74. bool empty() const {
  75. return sz == 0;
  76. }
  77. size_t size() const {
  78. return sz;
  79. }
  80. size_t capacity = 0;
  81. size_t sz = 0;
  82. size_t first = 0;
  83. size_t pos = 0;
  84. std::vector<T> data;
  85. };
  86. struct common_sampler {
  87. common_params_sampling params;
  88. struct llama_sampler * grmr;
  89. struct llama_sampler * chain;
  90. ring_buffer<llama_token> prev;
  91. std::vector<llama_token_data> cur;
  92. llama_token_data_array cur_p;
  93. void set_logits(struct llama_context * ctx, int idx) {
  94. const auto * logits = llama_get_logits_ith(ctx, idx);
  95. const llama_model * model = llama_get_model(ctx);
  96. const llama_vocab * vocab = llama_model_get_vocab(model);
  97. const int n_vocab = llama_vocab_n_tokens(vocab);
  98. cur.resize(n_vocab);
  99. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  100. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  101. }
  102. cur_p = { cur.data(), cur.size(), -1, false };
  103. }
  104. };
  105. std::string common_params_sampling::print() const {
  106. char result[1024];
  107. snprintf(result, sizeof(result),
  108. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  109. "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
  110. "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
  111. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  112. penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
  113. dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
  114. top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
  115. mirostat, mirostat_eta, mirostat_tau);
  116. return std::string(result);
  117. }
  118. struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
  119. const llama_vocab * vocab = llama_model_get_vocab(model);
  120. llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
  121. lparams.no_perf = params.no_perf;
  122. struct llama_sampler * grmr;
  123. if (params.grammar.compare(0, 11, "%llguidance") == 0) {
  124. #ifdef LLAMA_USE_LLGUIDANCE
  125. grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
  126. #else
  127. GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
  128. #endif // LLAMA_USE_LLGUIDANCE
  129. } else {
  130. std::vector<std::string> patterns_at_start;
  131. std::vector<std::string> patterns_anywhere;
  132. std::vector<llama_token> trigger_tokens;
  133. for (const auto & trigger : params.grammar_triggers) {
  134. switch (trigger.type) {
  135. case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
  136. {
  137. const auto & word = trigger.value;
  138. patterns_anywhere.push_back(regex_escape(word));
  139. break;
  140. }
  141. case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
  142. case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
  143. {
  144. const auto & pattern = trigger.value;
  145. (trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
  146. break;
  147. }
  148. case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
  149. {
  150. const auto token = trigger.token;
  151. trigger_tokens.push_back(token);
  152. break;
  153. }
  154. default:
  155. GGML_ASSERT(false && "unknown trigger type");
  156. }
  157. }
  158. std::vector<std::string> trigger_patterns;
  159. if (!patterns_at_start.empty()) {
  160. trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
  161. }
  162. if (!patterns_anywhere.empty()) {
  163. trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
  164. }
  165. std::vector<const char *> trigger_patterns_c;
  166. trigger_patterns_c.reserve(trigger_patterns.size());
  167. for (const auto & regex : trigger_patterns) {
  168. trigger_patterns_c.push_back(regex.c_str());
  169. }
  170. grmr = params.grammar_lazy
  171. ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
  172. trigger_patterns_c.data(), trigger_patterns_c.size(),
  173. trigger_tokens.data(), trigger_tokens.size())
  174. : llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
  175. if (!grmr) {
  176. return nullptr;
  177. }
  178. }
  179. auto * result = new common_sampler {
  180. /* .params = */ params,
  181. /* .grmr = */ grmr,
  182. /* .chain = */ llama_sampler_chain_init(lparams),
  183. /* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
  184. /* .cur = */ {},
  185. /* .cur_p = */ {},
  186. };
  187. llama_sampler_chain_add(result->chain,
  188. llama_sampler_init_logit_bias(
  189. llama_vocab_n_tokens(vocab),
  190. params.logit_bias.size(),
  191. params.logit_bias.data()));
  192. if (params.mirostat == 0) {
  193. if (params.top_n_sigma >= 0) {
  194. llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
  195. llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
  196. llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
  197. } else {
  198. for (const auto & cnstr : params.samplers) {
  199. switch (cnstr) {
  200. case COMMON_SAMPLER_TYPE_DRY:
  201. {
  202. std::vector<const char *> c_breakers;
  203. c_breakers.reserve(params.dry_sequence_breakers.size());
  204. for (const auto & str : params.dry_sequence_breakers) {
  205. c_breakers.push_back(str.c_str());
  206. }
  207. llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
  208. }
  209. break;
  210. case COMMON_SAMPLER_TYPE_TOP_K:
  211. llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
  212. break;
  213. case COMMON_SAMPLER_TYPE_TOP_P:
  214. llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
  215. break;
  216. case COMMON_SAMPLER_TYPE_MIN_P:
  217. llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
  218. break;
  219. case COMMON_SAMPLER_TYPE_XTC:
  220. llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
  221. break;
  222. case COMMON_SAMPLER_TYPE_TYPICAL_P:
  223. llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
  224. break;
  225. case COMMON_SAMPLER_TYPE_TEMPERATURE:
  226. llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
  227. break;
  228. case COMMON_SAMPLER_TYPE_INFILL:
  229. llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
  230. break;
  231. case COMMON_SAMPLER_TYPE_PENALTIES:
  232. llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
  233. break;
  234. default:
  235. GGML_ASSERT(false && "unknown sampler type");
  236. }
  237. }
  238. }
  239. llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
  240. } else if (params.mirostat == 1) {
  241. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  242. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
  243. } else if (params.mirostat == 2) {
  244. llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
  245. llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
  246. } else {
  247. GGML_ASSERT(false && "unknown mirostat version");
  248. }
  249. return result;
  250. }
  251. void common_sampler_free(struct common_sampler * gsmpl) {
  252. if (gsmpl) {
  253. llama_sampler_free(gsmpl->grmr);
  254. llama_sampler_free(gsmpl->chain);
  255. delete gsmpl;
  256. }
  257. }
  258. void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
  259. if (accept_grammar) {
  260. llama_sampler_accept(gsmpl->grmr, token);
  261. }
  262. llama_sampler_accept(gsmpl->chain, token);
  263. gsmpl->prev.push_back(token);
  264. }
  265. void common_sampler_reset(struct common_sampler * gsmpl) {
  266. llama_sampler_reset(gsmpl->grmr);
  267. llama_sampler_reset(gsmpl->chain);
  268. }
  269. struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
  270. return new common_sampler {
  271. /* .params = */ gsmpl->params,
  272. /* .grmr = */ llama_sampler_clone(gsmpl->grmr),
  273. /* .chain = */ llama_sampler_clone(gsmpl->chain),
  274. /* .prev = */ gsmpl->prev,
  275. /* .cur = */ gsmpl->cur,
  276. /* .cur_p = */ gsmpl->cur_p,
  277. };
  278. }
  279. void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
  280. // TODO: measure grammar performance
  281. if (gsmpl) {
  282. llama_perf_sampler_print(gsmpl->chain);
  283. }
  284. if (ctx) {
  285. llama_perf_context_print(ctx);
  286. }
  287. }
  288. llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
  289. gsmpl->set_logits(ctx, idx);
  290. auto & grmr = gsmpl->grmr;
  291. auto & chain = gsmpl->chain;
  292. auto & cur_p = gsmpl->cur_p; // initialized by set_logits
  293. if (grammar_first) {
  294. llama_sampler_apply(grmr, &cur_p);
  295. }
  296. llama_sampler_apply(chain, &cur_p);
  297. GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
  298. const llama_token id = cur_p.data[cur_p.selected].id;
  299. if (grammar_first) {
  300. return id;
  301. }
  302. // check if it the sampled token fits the grammar
  303. {
  304. llama_token_data single_token_data = { id, 1.0f, 0.0f };
  305. llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
  306. llama_sampler_apply(grmr, &single_token_data_array);
  307. const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  308. if (is_valid) {
  309. return id;
  310. }
  311. }
  312. // resampling:
  313. // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
  314. gsmpl->set_logits(ctx, idx);
  315. llama_sampler_apply(grmr, &cur_p);
  316. llama_sampler_apply(chain, &cur_p);
  317. GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
  318. return cur_p.data[cur_p.selected].id;
  319. }
  320. std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
  321. GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
  322. std::vector<llama_token> result;
  323. result.reserve(idxs.size());
  324. size_t i = 0;
  325. for (; i < draft.size(); i++) {
  326. const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
  327. common_sampler_accept(gsmpl, id, true);
  328. result.push_back(id);
  329. if (draft[i] != id) {
  330. break;
  331. }
  332. }
  333. if (i == draft.size()) {
  334. const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
  335. common_sampler_accept(gsmpl, id, true);
  336. result.push_back(id);
  337. }
  338. return result;
  339. }
  340. std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
  341. std::vector<int> idxs(draft.size() + 1);
  342. for (size_t i = 0; i < idxs.size(); ++i) {
  343. idxs[i] = i;
  344. }
  345. return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
  346. }
  347. uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
  348. return llama_sampler_get_seed(gsmpl->chain);
  349. }
  350. // helpers
  351. llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
  352. return &gsmpl->cur_p;
  353. }
  354. llama_token common_sampler_last(const struct common_sampler * gsmpl) {
  355. return gsmpl->prev.rat(0);
  356. }
  357. std::string common_sampler_print(const struct common_sampler * gsmpl) {
  358. std::string result = "logits ";
  359. for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
  360. const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
  361. result += std::string("-> ") + llama_sampler_name(smpl) + " ";
  362. }
  363. return result;
  364. }
  365. std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
  366. n = std::min(n, (int) gsmpl->prev.size());
  367. if (n <= 0) {
  368. return "";
  369. }
  370. std::string result;
  371. result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
  372. for (int i = n - 1; i >= 0; i--) {
  373. const llama_token id = gsmpl->prev.rat(i);
  374. GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
  375. result += common_token_to_piece(ctx_main, id);
  376. }
  377. return result;
  378. }
  379. char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
  380. switch (cnstr) {
  381. case COMMON_SAMPLER_TYPE_DRY: return 'd';
  382. case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
  383. case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
  384. case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
  385. case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
  386. case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
  387. case COMMON_SAMPLER_TYPE_XTC: return 'x';
  388. case COMMON_SAMPLER_TYPE_INFILL: return 'i';
  389. case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
  390. default : return '?';
  391. }
  392. }
  393. std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
  394. switch (cnstr) {
  395. case COMMON_SAMPLER_TYPE_DRY: return "dry";
  396. case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
  397. case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
  398. case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
  399. case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
  400. case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
  401. case COMMON_SAMPLER_TYPE_XTC: return "xtc";
  402. case COMMON_SAMPLER_TYPE_INFILL: return "infill";
  403. case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
  404. default : return "";
  405. }
  406. }
  407. std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  408. std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
  409. { "dry", COMMON_SAMPLER_TYPE_DRY },
  410. { "top_k", COMMON_SAMPLER_TYPE_TOP_K },
  411. { "top_p", COMMON_SAMPLER_TYPE_TOP_P },
  412. { "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  413. { "min_p", COMMON_SAMPLER_TYPE_MIN_P },
  414. { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
  415. { "xtc", COMMON_SAMPLER_TYPE_XTC },
  416. { "infill", COMMON_SAMPLER_TYPE_INFILL },
  417. { "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
  418. };
  419. // since samplers names are written multiple ways
  420. // make it ready for both system names and input names
  421. std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
  422. { "top-k", COMMON_SAMPLER_TYPE_TOP_K },
  423. { "top-p", COMMON_SAMPLER_TYPE_TOP_P },
  424. { "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
  425. { "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  426. { "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
  427. { "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
  428. { "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
  429. { "min-p", COMMON_SAMPLER_TYPE_MIN_P },
  430. { "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
  431. };
  432. std::vector<common_sampler_type> samplers;
  433. samplers.reserve(names.size());
  434. for (const auto & name : names) {
  435. auto sampler = sampler_canonical_name_map.find(name);
  436. if (sampler != sampler_canonical_name_map.end()) {
  437. samplers.push_back(sampler->second);
  438. } else {
  439. if (allow_alt_names) {
  440. sampler = sampler_alt_name_map.find(name);
  441. if (sampler != sampler_alt_name_map.end()) {
  442. samplers.push_back(sampler->second);
  443. }
  444. }
  445. }
  446. }
  447. return samplers;
  448. }
  449. std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
  450. std::unordered_map<char, common_sampler_type> sampler_name_map = {
  451. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
  452. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
  453. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
  454. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
  455. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
  456. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
  457. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
  458. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
  459. { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
  460. };
  461. std::vector<common_sampler_type> samplers;
  462. samplers.reserve(chars.size());
  463. for (const auto & c : chars) {
  464. const auto sampler = sampler_name_map.find(c);
  465. if (sampler != sampler_name_map.end()) {
  466. samplers.push_back(sampler->second);
  467. }
  468. }
  469. return samplers;
  470. }