| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- #include "arg.h"
- #include "base64.hpp"
- #include "log.h"
- #include "common.h"
- #include "sampling.h"
- #include "clip.h"
- #include "llava.h"
- #include "llama.h"
- #include "ggml.h"
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <vector>
- static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
- int N = (int) tokens.size();
- for (int i = 0; i < N; i += n_batch) {
- int n_eval = (int) tokens.size() - i;
- if (n_eval > n_batch) {
- n_eval = n_batch;
- }
- if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
- LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
- return false;
- }
- *n_past += n_eval;
- }
- return true;
- }
- static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
- std::vector<llama_token> tokens;
- tokens.push_back(id);
- return eval_tokens(ctx_llama, tokens, 1, n_past);
- }
- static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
- std::string str2 = str;
- std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
- eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
- return true;
- }
- static const char * sample(struct common_sampler * smpl,
- struct llama_context * ctx_llama,
- int * n_past) {
- const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
- common_sampler_accept(smpl, id, true);
- const llama_model * model = llama_get_model(ctx_llama);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- static std::string ret;
- if (llama_vocab_is_eog(vocab, id)) {
- ret = "</s>";
- } else {
- ret = common_token_to_piece(ctx_llama, id);
- }
- eval_id(ctx_llama, id, n_past);
- return ret.c_str();
- }
- static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
- static const char* IMG_BASE64_TAG_END = "\">";
- static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
- begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
- end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
- }
- static bool prompt_contains_image(const std::string& prompt) {
- size_t begin, end;
- find_image_tag_in_prompt(prompt, begin, end);
- return (begin != std::string::npos);
- }
- // replaces the base64 image tag in the prompt with `replacement`
- static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
- size_t img_base64_str_start, img_base64_str_end;
- find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
- if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
- LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
- return NULL;
- }
- auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
- auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
- auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
- auto required_bytes = base64::required_encode_size(base64_str.size());
- auto img_bytes = std::vector<unsigned char>(required_bytes);
- base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
- auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
- if (!embed) {
- LOG_ERR("%s: could not load image from base64 string.\n", __func__);
- return NULL;
- }
- return embed;
- }
- static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
- size_t begin, end;
- find_image_tag_in_prompt(prompt, begin, end);
- if (begin == std::string::npos || end == std::string::npos) {
- return prompt;
- }
- auto pre = prompt.substr(0, begin);
- auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
- return pre + replacement + post;
- }
- struct llava_context {
- struct clip_ctx * ctx_clip = NULL;
- struct llama_context * ctx_llama = NULL;
- struct llama_model * model = NULL;
- };
- static void print_usage(int, char ** argv) {
- LOG("\n example usage:\n");
- LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
- LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
- }
- static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
- // load and preprocess the image
- llava_image_embed * embed = NULL;
- auto prompt = params->prompt;
- if (prompt_contains_image(prompt)) {
- if (!params->image.empty()) {
- LOG_INF("using base64 encoded image instead of command line image path\n");
- }
- embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
- if (!embed) {
- LOG_ERR("%s: can't load image from prompt\n", __func__);
- return NULL;
- }
- params->prompt = remove_image_from_prompt(prompt);
- } else {
- embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
- if (!embed) {
- fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
- return NULL;
- }
- }
- return embed;
- }
- static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
- int n_past = 0;
- const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
- std::string system_prompt, user_prompt;
- size_t image_pos = prompt.find("<image>");
- if (image_pos != std::string::npos) {
- // new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
- system_prompt = prompt.substr(0, image_pos);
- user_prompt = prompt.substr(image_pos + std::string("<image>").length());
- LOG_INF("system_prompt: %s\n", system_prompt.c_str());
- if (params->verbose_prompt) {
- auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
- for (int i = 0; i < (int) tmp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
- }
- }
- LOG_INF("user_prompt: %s\n", user_prompt.c_str());
- if (params->verbose_prompt) {
- auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
- for (int i = 0; i < (int) tmp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
- }
- }
- } else {
- // llava-1.5 native mode
- system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
- user_prompt = prompt + "\nASSISTANT:";
- if (params->verbose_prompt) {
- auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
- for (int i = 0; i < (int) tmp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
- }
- }
- }
- eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
- llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
- eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
- // generate the response
- LOG("\n");
- struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
- if (!smpl) {
- LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
- exit(1);
- }
- std::string response = "";
- for (int i = 0; i < max_tgt_len; i++) {
- const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
- response += tmp;
- if (strcmp(tmp, "</s>") == 0) break;
- if (strstr(tmp, "###")) break; // Yi-VL behavior
- LOG("%s", tmp);
- if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
- if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
- if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
- fflush(stdout);
- }
- common_sampler_free(smpl);
- LOG("\n");
- }
- static struct llama_model * llava_init(common_params * params) {
- llama_backend_init();
- llama_numa_init(params->numa);
- llama_model_params model_params = common_model_params_to_llama(*params);
- llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
- if (model == NULL) {
- LOG_ERR("%s: unable to load model\n" , __func__);
- return NULL;
- }
- return model;
- }
- static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
- const char * clip_path = params->mmproj.path.c_str();
- auto prompt = params->prompt;
- if (prompt.empty()) {
- prompt = "describe the image in detail.";
- }
- auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
- llama_context_params ctx_params = common_context_params_to_llama(*params);
- ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
- llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
- if (ctx_llama == NULL) {
- LOG_ERR("%s: failed to create the llama_context\n" , __func__);
- return NULL;
- }
- auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
- ctx_llava->ctx_llama = ctx_llama;
- ctx_llava->ctx_clip = ctx_clip;
- ctx_llava->model = model;
- return ctx_llava;
- }
- static void llava_free(struct llava_context * ctx_llava) {
- if (ctx_llava->ctx_clip) {
- clip_free(ctx_llava->ctx_clip);
- ctx_llava->ctx_clip = NULL;
- }
- llama_free(ctx_llava->ctx_llama);
- llama_model_free(ctx_llava->model);
- llama_backend_free();
- }
- int main(int argc, char ** argv) {
- ggml_time_init();
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
- return 1;
- }
- common_init();
- if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
- print_usage(argc, argv);
- return 1;
- }
- auto * model = llava_init(¶ms);
- if (model == NULL) {
- fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
- return 1;
- }
- if (prompt_contains_image(params.prompt)) {
- auto * ctx_llava = llava_init_context(¶ms, model);
- auto * image_embed = load_image(ctx_llava, ¶ms, "");
- // process the prompt
- process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
- llama_perf_context_print(ctx_llava->ctx_llama);
- llava_image_embed_free(image_embed);
- ctx_llava->model = NULL;
- llava_free(ctx_llava);
- } else {
- for (auto & image : params.image) {
- auto * ctx_llava = llava_init_context(¶ms, model);
- auto * image_embed = load_image(ctx_llava, ¶ms, image);
- if (!image_embed) {
- LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
- return 1;
- }
- // process the prompt
- process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
- llama_perf_context_print(ctx_llava->ctx_llama);
- llava_image_embed_free(image_embed);
- ctx_llava->model = NULL;
- llava_free(ctx_llava);
- }
- }
- llama_model_free(model);
- return 0;
- }
|