server.cpp 182 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. auto grammar_triggers = json::array();
  113. for (const auto & trigger : sampling.grammar_triggers) {
  114. server_grammar_trigger ct(std::move(trigger));
  115. grammar_triggers.push_back(ct.to_json());
  116. }
  117. return json {
  118. {"n_predict", n_predict}, // Server configured n_predict
  119. {"seed", sampling.seed},
  120. {"temperature", sampling.temp},
  121. {"dynatemp_range", sampling.dynatemp_range},
  122. {"dynatemp_exponent", sampling.dynatemp_exponent},
  123. {"top_k", sampling.top_k},
  124. {"top_p", sampling.top_p},
  125. {"min_p", sampling.min_p},
  126. {"xtc_probability", sampling.xtc_probability},
  127. {"xtc_threshold", sampling.xtc_threshold},
  128. {"typical_p", sampling.typ_p},
  129. {"repeat_last_n", sampling.penalty_last_n},
  130. {"repeat_penalty", sampling.penalty_repeat},
  131. {"presence_penalty", sampling.penalty_present},
  132. {"frequency_penalty", sampling.penalty_freq},
  133. {"dry_multiplier", sampling.dry_multiplier},
  134. {"dry_base", sampling.dry_base},
  135. {"dry_allowed_length", sampling.dry_allowed_length},
  136. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  137. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  138. {"mirostat", sampling.mirostat},
  139. {"mirostat_tau", sampling.mirostat_tau},
  140. {"mirostat_eta", sampling.mirostat_eta},
  141. {"stop", antiprompt},
  142. {"max_tokens", n_predict}, // User configured n_predict
  143. {"n_keep", n_keep},
  144. {"n_discard", n_discard},
  145. {"ignore_eos", sampling.ignore_eos},
  146. {"stream", stream},
  147. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  148. {"n_probs", sampling.n_probs},
  149. {"min_keep", sampling.min_keep},
  150. {"grammar", sampling.grammar},
  151. {"grammar_lazy", sampling.grammar_lazy},
  152. {"grammar_triggers", grammar_triggers},
  153. {"preserved_tokens", sampling.preserved_tokens},
  154. {"chat_format", common_chat_format_name(oaicompat_chat_format)},
  155. {"samplers", samplers},
  156. {"speculative.n_max", speculative.n_max},
  157. {"speculative.n_min", speculative.n_min},
  158. {"speculative.p_min", speculative.p_min},
  159. {"timings_per_token", timings_per_token},
  160. {"post_sampling_probs", post_sampling_probs},
  161. {"lora", lora},
  162. };
  163. }
  164. };
  165. struct server_task {
  166. int id = -1; // to be filled by server_queue
  167. int index = -1; // used when there are multiple prompts (batch request)
  168. server_task_type type;
  169. // used by SERVER_TASK_TYPE_CANCEL
  170. int id_target = -1;
  171. // used by SERVER_TASK_TYPE_INFERENCE
  172. slot_params params;
  173. llama_tokens prompt_tokens;
  174. int id_selected_slot = -1;
  175. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  176. struct slot_action {
  177. int slot_id;
  178. std::string filename;
  179. std::string filepath;
  180. };
  181. slot_action slot_action;
  182. // used by SERVER_TASK_TYPE_METRICS
  183. bool metrics_reset_bucket = false;
  184. // used by SERVER_TASK_TYPE_SET_LORA
  185. std::vector<common_adapter_lora_info> set_lora;
  186. server_task(server_task_type type) : type(type) {}
  187. static slot_params params_from_json_cmpl(
  188. const llama_context * ctx,
  189. const common_params & params_base,
  190. const json & data) {
  191. const llama_model * model = llama_get_model(ctx);
  192. const llama_vocab * vocab = llama_model_get_vocab(model);
  193. slot_params params;
  194. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  195. slot_params defaults;
  196. defaults.sampling = params_base.sampling;
  197. defaults.speculative = params_base.speculative;
  198. // enabling this will output extra debug information in the HTTP responses from the server
  199. params.verbose = params_base.verbosity > 9;
  200. params.timings_per_token = json_value(data, "timings_per_token", false);
  201. params.stream = json_value(data, "stream", false);
  202. params.cache_prompt = json_value(data, "cache_prompt", true);
  203. params.return_tokens = json_value(data, "return_tokens", false);
  204. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  205. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  206. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  207. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  208. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  209. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  210. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  211. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  212. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  213. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  214. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  215. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  216. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  217. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  218. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  219. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  220. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  221. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  222. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  223. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  224. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  225. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  226. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  227. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  228. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  229. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  230. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  231. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  232. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  233. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  234. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  235. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  236. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  237. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  238. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  239. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  240. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  241. // Use OpenAI API logprobs only if n_probs wasn't provided
  242. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  243. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  244. }
  245. if (data.contains("lora")) {
  246. if (data.at("lora").is_array()) {
  247. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  248. } else {
  249. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  250. }
  251. } else {
  252. params.lora = params_base.lora_adapters;
  253. }
  254. // TODO: add more sanity checks for the input parameters
  255. if (params.sampling.penalty_last_n < -1) {
  256. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  257. }
  258. if (params.sampling.dry_penalty_last_n < -1) {
  259. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  260. }
  261. if (params.sampling.penalty_last_n == -1) {
  262. // note: should be the slot's context and not the full context, but it's ok
  263. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  264. }
  265. if (params.sampling.dry_penalty_last_n == -1) {
  266. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  267. }
  268. if (params.sampling.dry_base < 1.0f) {
  269. params.sampling.dry_base = defaults.sampling.dry_base;
  270. }
  271. // sequence breakers for DRY
  272. {
  273. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  274. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  275. if (data.contains("dry_sequence_breakers")) {
  276. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  277. if (params.sampling.dry_sequence_breakers.empty()) {
  278. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  279. }
  280. }
  281. }
  282. // process "json_schema" and "grammar"
  283. if (data.contains("json_schema") && !data.contains("grammar")) {
  284. try {
  285. auto schema = json_value(data, "json_schema", json::object());
  286. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  287. params.sampling.grammar = json_schema_to_grammar(schema);
  288. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  289. } catch (const std::exception & e) {
  290. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  291. }
  292. } else {
  293. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  294. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  295. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  296. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  297. }
  298. {
  299. auto it = data.find("chat_format");
  300. if (it != data.end()) {
  301. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  302. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  303. } else {
  304. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  305. }
  306. }
  307. {
  308. const auto preserved_tokens = data.find("preserved_tokens");
  309. if (preserved_tokens != data.end()) {
  310. for (const auto & t : *preserved_tokens) {
  311. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  312. if (ids.size() == 1) {
  313. SRV_DBG("Preserved token: %d\n", ids[0]);
  314. params.sampling.preserved_tokens.insert(ids[0]);
  315. } else {
  316. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  317. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  318. }
  319. }
  320. }
  321. const auto grammar_triggers = data.find("grammar_triggers");
  322. if (grammar_triggers != data.end()) {
  323. for (const auto & t : *grammar_triggers) {
  324. server_grammar_trigger ct(t);
  325. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  326. const auto & word = ct.value.value;
  327. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  328. if (ids.size() == 1) {
  329. auto token = ids[0];
  330. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  331. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  332. }
  333. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  334. common_grammar_trigger trigger;
  335. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  336. trigger.value = word;
  337. trigger.token = token;
  338. params.sampling.grammar_triggers.push_back(std::move(trigger));
  339. } else {
  340. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  341. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  342. }
  343. } else {
  344. params.sampling.grammar_triggers.push_back(std::move(ct.value));
  345. }
  346. }
  347. }
  348. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  349. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  350. }
  351. }
  352. {
  353. params.sampling.logit_bias.clear();
  354. params.ignore_eos = json_value(data, "ignore_eos", false);
  355. const auto & logit_bias = data.find("logit_bias");
  356. if (logit_bias != data.end() && logit_bias->is_array()) {
  357. const int n_vocab = llama_vocab_n_tokens(vocab);
  358. for (const auto & el : *logit_bias) {
  359. // TODO: we may want to throw errors here, in case "el" is incorrect
  360. if (el.is_array() && el.size() == 2) {
  361. float bias;
  362. if (el[1].is_number()) {
  363. bias = el[1].get<float>();
  364. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  365. bias = -INFINITY;
  366. } else {
  367. continue;
  368. }
  369. if (el[0].is_number_integer()) {
  370. llama_token tok = el[0].get<llama_token>();
  371. if (tok >= 0 && tok < n_vocab) {
  372. params.sampling.logit_bias.push_back({tok, bias});
  373. }
  374. } else if (el[0].is_string()) {
  375. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  376. for (auto tok : toks) {
  377. params.sampling.logit_bias.push_back({tok, bias});
  378. }
  379. }
  380. }
  381. }
  382. }
  383. }
  384. {
  385. params.antiprompt.clear();
  386. const auto & stop = data.find("stop");
  387. if (stop != data.end() && stop->is_array()) {
  388. for (const auto & word : *stop) {
  389. if (!word.empty()) {
  390. params.antiprompt.push_back(word);
  391. }
  392. }
  393. }
  394. }
  395. {
  396. const auto samplers = data.find("samplers");
  397. if (samplers != data.end()) {
  398. if (samplers->is_array()) {
  399. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  400. } else if (samplers->is_string()){
  401. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  402. }
  403. } else {
  404. params.sampling.samplers = defaults.sampling.samplers;
  405. }
  406. }
  407. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  408. params.oaicompat_model = json_value(data, "model", model_name);
  409. return params;
  410. }
  411. // utility function
  412. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  413. std::unordered_set<int> ids(tasks.size());
  414. for (size_t i = 0; i < tasks.size(); i++) {
  415. ids.insert(tasks[i].id);
  416. }
  417. return ids;
  418. }
  419. };
  420. struct result_timings {
  421. int32_t prompt_n = -1;
  422. double prompt_ms;
  423. double prompt_per_token_ms;
  424. double prompt_per_second;
  425. int32_t predicted_n = -1;
  426. double predicted_ms;
  427. double predicted_per_token_ms;
  428. double predicted_per_second;
  429. // Optional speculative metrics - only included when > 0
  430. int32_t draft_n = 0;
  431. int32_t draft_n_accepted = 0;
  432. json to_json() const {
  433. json base = {
  434. {"prompt_n", prompt_n},
  435. {"prompt_ms", prompt_ms},
  436. {"prompt_per_token_ms", prompt_per_token_ms},
  437. {"prompt_per_second", prompt_per_second},
  438. {"predicted_n", predicted_n},
  439. {"predicted_ms", predicted_ms},
  440. {"predicted_per_token_ms", predicted_per_token_ms},
  441. {"predicted_per_second", predicted_per_second},
  442. };
  443. if (draft_n > 0) {
  444. base["draft_n"] = draft_n;
  445. base["draft_n_accepted"] = draft_n_accepted;
  446. }
  447. return base;
  448. }
  449. };
  450. struct server_task_result {
  451. int id = -1;
  452. int id_slot = -1;
  453. virtual bool is_error() {
  454. // only used by server_task_result_error
  455. return false;
  456. }
  457. virtual bool is_stop() {
  458. // only used by server_task_result_cmpl_*
  459. return false;
  460. }
  461. virtual int get_index() {
  462. return -1;
  463. }
  464. virtual json to_json() = 0;
  465. virtual ~server_task_result() = default;
  466. };
  467. // using shared_ptr for polymorphism of server_task_result
  468. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  469. inline std::string stop_type_to_str(stop_type type) {
  470. switch (type) {
  471. case STOP_TYPE_EOS: return "eos";
  472. case STOP_TYPE_WORD: return "word";
  473. case STOP_TYPE_LIMIT: return "limit";
  474. default: return "none";
  475. }
  476. }
  477. struct completion_token_output {
  478. llama_token tok;
  479. float prob;
  480. std::string text_to_send;
  481. struct prob_info {
  482. llama_token tok;
  483. std::string txt;
  484. float prob;
  485. };
  486. std::vector<prob_info> probs;
  487. json to_json(bool post_sampling_probs) const {
  488. json probs_for_token = json::array();
  489. for (const auto & p : probs) {
  490. std::string txt(p.txt);
  491. txt.resize(validate_utf8(txt));
  492. probs_for_token.push_back(json {
  493. {"id", p.tok},
  494. {"token", txt},
  495. {"bytes", str_to_bytes(p.txt)},
  496. {
  497. post_sampling_probs ? "prob" : "logprob",
  498. post_sampling_probs ? p.prob : logarithm(p.prob)
  499. },
  500. });
  501. }
  502. return probs_for_token;
  503. }
  504. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  505. json out = json::array();
  506. for (const auto & p : probs) {
  507. std::string txt(p.text_to_send);
  508. txt.resize(validate_utf8(txt));
  509. out.push_back(json {
  510. {"id", p.tok},
  511. {"token", txt},
  512. {"bytes", str_to_bytes(p.text_to_send)},
  513. {
  514. post_sampling_probs ? "prob" : "logprob",
  515. post_sampling_probs ? p.prob : logarithm(p.prob)
  516. },
  517. {
  518. post_sampling_probs ? "top_probs" : "top_logprobs",
  519. p.to_json(post_sampling_probs)
  520. },
  521. });
  522. }
  523. return out;
  524. }
  525. static float logarithm(float x) {
  526. // nlohmann::json converts -inf to null, so we need to prevent that
  527. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  528. }
  529. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  530. std::vector<unsigned char> bytes;
  531. for (unsigned char c : str) {
  532. bytes.push_back(c);
  533. }
  534. return bytes;
  535. }
  536. };
  537. struct server_task_result_cmpl_final : server_task_result {
  538. int index = 0;
  539. std::string content;
  540. llama_tokens tokens;
  541. bool stream;
  542. result_timings timings;
  543. std::string prompt;
  544. bool truncated;
  545. int32_t n_decoded;
  546. int32_t n_prompt_tokens;
  547. int32_t n_tokens_cached;
  548. bool has_new_line;
  549. std::string stopping_word;
  550. stop_type stop = STOP_TYPE_NONE;
  551. bool post_sampling_probs;
  552. std::vector<completion_token_output> probs_output;
  553. std::vector<std::string> response_fields;
  554. slot_params generation_params;
  555. // OAI-compat fields
  556. bool verbose = false;
  557. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  558. std::string oaicompat_model;
  559. std::string oaicompat_cmpl_id;
  560. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  561. virtual int get_index() override {
  562. return index;
  563. }
  564. virtual bool is_stop() override {
  565. return true; // in stream mode, final responses are considered stop
  566. }
  567. virtual json to_json() override {
  568. switch (oaicompat) {
  569. case OAICOMPAT_TYPE_NONE:
  570. return to_json_non_oaicompat();
  571. case OAICOMPAT_TYPE_COMPLETION:
  572. return to_json_oaicompat();
  573. case OAICOMPAT_TYPE_CHAT:
  574. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  575. default:
  576. GGML_ASSERT(false && "Invalid oaicompat_type");
  577. }
  578. }
  579. json to_json_non_oaicompat() {
  580. json res = json {
  581. {"index", index},
  582. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  583. {"tokens", stream ? llama_tokens {} : tokens},
  584. {"id_slot", id_slot},
  585. {"stop", true},
  586. {"model", oaicompat_model},
  587. {"tokens_predicted", n_decoded},
  588. {"tokens_evaluated", n_prompt_tokens},
  589. {"generation_settings", generation_params.to_json()},
  590. {"prompt", prompt},
  591. {"has_new_line", has_new_line},
  592. {"truncated", truncated},
  593. {"stop_type", stop_type_to_str(stop)},
  594. {"stopping_word", stopping_word},
  595. {"tokens_cached", n_tokens_cached},
  596. {"timings", timings.to_json()},
  597. };
  598. if (!stream && !probs_output.empty()) {
  599. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  600. }
  601. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  602. }
  603. json to_json_oaicompat() {
  604. std::time_t t = std::time(0);
  605. json logprobs = json(nullptr); // OAI default to null
  606. if (!stream && probs_output.size() > 0) {
  607. logprobs = json{
  608. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  609. };
  610. }
  611. json finish_reason = "length";
  612. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  613. finish_reason = "stop";
  614. }
  615. json res = json {
  616. {"choices", json::array({
  617. json{
  618. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  619. {"index", index},
  620. {"logprobs", logprobs},
  621. {"finish_reason", finish_reason},
  622. }
  623. })},
  624. {"created", t},
  625. {"model", oaicompat_model},
  626. {"system_fingerprint", build_info},
  627. {"object", "text_completion"},
  628. {"usage", json {
  629. {"completion_tokens", n_decoded},
  630. {"prompt_tokens", n_prompt_tokens},
  631. {"total_tokens", n_decoded + n_prompt_tokens}
  632. }},
  633. {"id", oaicompat_cmpl_id}
  634. };
  635. // extra fields for debugging purposes
  636. if (verbose) {
  637. res["__verbose"] = to_json_non_oaicompat();
  638. }
  639. if (timings.prompt_n >= 0) {
  640. res.push_back({"timings", timings.to_json()});
  641. }
  642. return res;
  643. }
  644. json to_json_oaicompat_chat() {
  645. std::string finish_reason = "length";
  646. common_chat_msg msg;
  647. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  648. SRV_DBG("Parsing chat message: %s\n", content.c_str());
  649. msg = common_chat_parse(content, oaicompat_chat_format);
  650. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  651. } else {
  652. msg.content = content;
  653. }
  654. json message {
  655. {"role", "assistant"},
  656. };
  657. if (!msg.reasoning_content.empty()) {
  658. message["reasoning_content"] = msg.reasoning_content;
  659. }
  660. if (msg.content.empty() && !msg.tool_calls.empty()) {
  661. message["content"] = json();
  662. } else {
  663. message["content"] = msg.content;
  664. }
  665. if (!msg.tool_calls.empty()) {
  666. auto tool_calls = json::array();
  667. for (const auto & tc : msg.tool_calls) {
  668. tool_calls.push_back({
  669. {"type", "function"},
  670. {"function", {
  671. {"name", tc.name},
  672. {"arguments", tc.arguments},
  673. }},
  674. // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
  675. // We only generate a random id for the ones that don't generate one by themselves
  676. // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
  677. {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
  678. });
  679. }
  680. message["tool_calls"] = tool_calls;
  681. }
  682. json choice {
  683. {"finish_reason", finish_reason},
  684. {"index", 0},
  685. {"message", message},
  686. };
  687. if (!stream && probs_output.size() > 0) {
  688. choice["logprobs"] = json{
  689. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  690. };
  691. }
  692. std::time_t t = std::time(0);
  693. json res = json {
  694. {"choices", json::array({choice})},
  695. {"created", t},
  696. {"model", oaicompat_model},
  697. {"system_fingerprint", build_info},
  698. {"object", "chat.completion"},
  699. {"usage", json {
  700. {"completion_tokens", n_decoded},
  701. {"prompt_tokens", n_prompt_tokens},
  702. {"total_tokens", n_decoded + n_prompt_tokens}
  703. }},
  704. {"id", oaicompat_cmpl_id}
  705. };
  706. // extra fields for debugging purposes
  707. if (verbose) {
  708. res["__verbose"] = to_json_non_oaicompat();
  709. }
  710. if (timings.prompt_n >= 0) {
  711. res.push_back({"timings", timings.to_json()});
  712. }
  713. return res;
  714. }
  715. json to_json_oaicompat_chat_stream() {
  716. std::time_t t = std::time(0);
  717. std::string finish_reason = "length";
  718. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  719. finish_reason = "stop";
  720. }
  721. json choice = json {
  722. {"finish_reason", finish_reason},
  723. {"index", 0},
  724. {"delta", json::object()}
  725. };
  726. json ret = json {
  727. {"choices", json::array({choice})},
  728. {"created", t},
  729. {"id", oaicompat_cmpl_id},
  730. {"model", oaicompat_model},
  731. {"system_fingerprint", build_info},
  732. {"object", "chat.completion.chunk"},
  733. {"usage", json {
  734. {"completion_tokens", n_decoded},
  735. {"prompt_tokens", n_prompt_tokens},
  736. {"total_tokens", n_decoded + n_prompt_tokens},
  737. }},
  738. };
  739. if (timings.prompt_n >= 0) {
  740. ret.push_back({"timings", timings.to_json()});
  741. }
  742. // extra fields for debugging purposes
  743. if (verbose) {
  744. ret["__verbose"] = to_json_non_oaicompat();
  745. }
  746. return ret;
  747. }
  748. };
  749. struct server_task_result_cmpl_partial : server_task_result {
  750. int index = 0;
  751. std::string content;
  752. llama_tokens tokens;
  753. int32_t n_decoded;
  754. int32_t n_prompt_tokens;
  755. bool post_sampling_probs;
  756. completion_token_output prob_output;
  757. result_timings timings;
  758. // OAI-compat fields
  759. bool verbose = false;
  760. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  761. std::string oaicompat_model;
  762. std::string oaicompat_cmpl_id;
  763. virtual int get_index() override {
  764. return index;
  765. }
  766. virtual bool is_stop() override {
  767. return false; // in stream mode, partial responses are not considered stop
  768. }
  769. virtual json to_json() override {
  770. switch (oaicompat) {
  771. case OAICOMPAT_TYPE_NONE:
  772. return to_json_non_oaicompat();
  773. case OAICOMPAT_TYPE_COMPLETION:
  774. return to_json_oaicompat();
  775. case OAICOMPAT_TYPE_CHAT:
  776. return to_json_oaicompat_chat();
  777. default:
  778. GGML_ASSERT(false && "Invalid oaicompat_type");
  779. }
  780. }
  781. json to_json_non_oaicompat() {
  782. // non-OAI-compat JSON
  783. json res = json {
  784. {"index", index},
  785. {"content", content},
  786. {"tokens", tokens},
  787. {"stop", false},
  788. {"id_slot", id_slot},
  789. {"tokens_predicted", n_decoded},
  790. {"tokens_evaluated", n_prompt_tokens},
  791. };
  792. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  793. if (timings.prompt_n > 0) {
  794. res.push_back({"timings", timings.to_json()});
  795. }
  796. if (!prob_output.probs.empty()) {
  797. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  798. }
  799. return res;
  800. }
  801. json to_json_oaicompat() {
  802. std::time_t t = std::time(0);
  803. json logprobs = json(nullptr); // OAI default to null
  804. if (prob_output.probs.size() > 0) {
  805. logprobs = json{
  806. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  807. };
  808. }
  809. json res = json {
  810. {"choices", json::array({
  811. json{
  812. {"text", content},
  813. {"index", index},
  814. {"logprobs", logprobs},
  815. {"finish_reason", nullptr},
  816. }
  817. })},
  818. {"created", t},
  819. {"model", oaicompat_model},
  820. {"system_fingerprint", build_info},
  821. {"object", "text_completion"},
  822. {"id", oaicompat_cmpl_id}
  823. };
  824. // extra fields for debugging purposes
  825. if (verbose) {
  826. res["__verbose"] = to_json_non_oaicompat();
  827. }
  828. if (timings.prompt_n >= 0) {
  829. res.push_back({"timings", timings.to_json()});
  830. }
  831. return res;
  832. }
  833. json to_json_oaicompat_chat() {
  834. bool first = n_decoded == 0;
  835. std::time_t t = std::time(0);
  836. json choices;
  837. if (first) {
  838. if (content.empty()) {
  839. choices = json::array({json{{"finish_reason", nullptr},
  840. {"index", 0},
  841. {"delta", json{{"role", "assistant"}}}}});
  842. } else {
  843. // We have to send this as two updates to conform to openai behavior
  844. json initial_ret = json{{"choices", json::array({json{
  845. {"finish_reason", nullptr},
  846. {"index", 0},
  847. {"delta", json{
  848. {"role", "assistant"}
  849. }}}})},
  850. {"created", t},
  851. {"id", oaicompat_cmpl_id},
  852. {"model", oaicompat_model},
  853. {"object", "chat.completion.chunk"}};
  854. json second_ret = json{
  855. {"choices", json::array({json{{"finish_reason", nullptr},
  856. {"index", 0},
  857. {"delta", json {
  858. {"content", content}}}
  859. }})},
  860. {"created", t},
  861. {"id", oaicompat_cmpl_id},
  862. {"model", oaicompat_model},
  863. {"object", "chat.completion.chunk"}};
  864. return std::vector<json>({initial_ret, second_ret});
  865. }
  866. } else {
  867. choices = json::array({json{
  868. {"finish_reason", nullptr},
  869. {"index", 0},
  870. {"delta",
  871. json {
  872. {"content", content},
  873. }},
  874. }});
  875. }
  876. GGML_ASSERT(choices.size() >= 1);
  877. if (prob_output.probs.size() > 0) {
  878. choices[0]["logprobs"] = json{
  879. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  880. };
  881. }
  882. json ret = json {
  883. {"choices", choices},
  884. {"created", t},
  885. {"id", oaicompat_cmpl_id},
  886. {"model", oaicompat_model},
  887. {"system_fingerprint", build_info},
  888. {"object", "chat.completion.chunk"}
  889. };
  890. if (timings.prompt_n >= 0) {
  891. ret.push_back({"timings", timings.to_json()});
  892. }
  893. return std::vector<json>({ret});
  894. }
  895. };
  896. struct server_task_result_embd : server_task_result {
  897. int index = 0;
  898. std::vector<std::vector<float>> embedding;
  899. int32_t n_tokens;
  900. // OAI-compat fields
  901. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  902. virtual int get_index() override {
  903. return index;
  904. }
  905. virtual json to_json() override {
  906. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  907. ? to_json_oaicompat()
  908. : to_json_non_oaicompat();
  909. }
  910. json to_json_non_oaicompat() {
  911. return json {
  912. {"index", index},
  913. {"embedding", embedding},
  914. };
  915. }
  916. json to_json_oaicompat() {
  917. return json {
  918. {"index", index},
  919. {"embedding", embedding[0]},
  920. {"tokens_evaluated", n_tokens},
  921. };
  922. }
  923. };
  924. struct server_task_result_rerank : server_task_result {
  925. int index = 0;
  926. float score = -1e6;
  927. int32_t n_tokens;
  928. virtual int get_index() override {
  929. return index;
  930. }
  931. virtual json to_json() override {
  932. return json {
  933. {"index", index},
  934. {"score", score},
  935. {"tokens_evaluated", n_tokens},
  936. };
  937. }
  938. };
  939. // this function maybe used outside of server_task_result_error
  940. static json format_error_response(const std::string & message, const enum error_type type) {
  941. std::string type_str;
  942. int code = 500;
  943. switch (type) {
  944. case ERROR_TYPE_INVALID_REQUEST:
  945. type_str = "invalid_request_error";
  946. code = 400;
  947. break;
  948. case ERROR_TYPE_AUTHENTICATION:
  949. type_str = "authentication_error";
  950. code = 401;
  951. break;
  952. case ERROR_TYPE_NOT_FOUND:
  953. type_str = "not_found_error";
  954. code = 404;
  955. break;
  956. case ERROR_TYPE_SERVER:
  957. type_str = "server_error";
  958. code = 500;
  959. break;
  960. case ERROR_TYPE_PERMISSION:
  961. type_str = "permission_error";
  962. code = 403;
  963. break;
  964. case ERROR_TYPE_NOT_SUPPORTED:
  965. type_str = "not_supported_error";
  966. code = 501;
  967. break;
  968. case ERROR_TYPE_UNAVAILABLE:
  969. type_str = "unavailable_error";
  970. code = 503;
  971. break;
  972. }
  973. return json {
  974. {"code", code},
  975. {"message", message},
  976. {"type", type_str},
  977. };
  978. }
  979. struct server_task_result_error : server_task_result {
  980. int index = 0;
  981. error_type err_type = ERROR_TYPE_SERVER;
  982. std::string err_msg;
  983. virtual bool is_error() override {
  984. return true;
  985. }
  986. virtual json to_json() override {
  987. return format_error_response(err_msg, err_type);
  988. }
  989. };
  990. struct server_task_result_metrics : server_task_result {
  991. int n_idle_slots;
  992. int n_processing_slots;
  993. int n_tasks_deferred;
  994. int64_t t_start;
  995. int32_t kv_cache_tokens_count;
  996. int32_t kv_cache_used_cells;
  997. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  998. uint64_t n_prompt_tokens_processed_total = 0;
  999. uint64_t t_prompt_processing_total = 0;
  1000. uint64_t n_tokens_predicted_total = 0;
  1001. uint64_t t_tokens_generation_total = 0;
  1002. uint64_t n_prompt_tokens_processed = 0;
  1003. uint64_t t_prompt_processing = 0;
  1004. uint64_t n_tokens_predicted = 0;
  1005. uint64_t t_tokens_generation = 0;
  1006. uint64_t n_decode_total = 0;
  1007. uint64_t n_busy_slots_total = 0;
  1008. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1009. // therefore, we use json to temporarily store the slot.to_json() result
  1010. json slots_data = json::array();
  1011. virtual json to_json() override {
  1012. return json {
  1013. { "idle", n_idle_slots },
  1014. { "processing", n_processing_slots },
  1015. { "deferred", n_tasks_deferred },
  1016. { "t_start", t_start },
  1017. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1018. { "t_tokens_generation_total", t_tokens_generation_total },
  1019. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1020. { "t_prompt_processing_total", t_prompt_processing_total },
  1021. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1022. { "t_prompt_processing", t_prompt_processing },
  1023. { "n_tokens_predicted", n_tokens_predicted },
  1024. { "t_tokens_generation", t_tokens_generation },
  1025. { "n_decode_total", n_decode_total },
  1026. { "n_busy_slots_total", n_busy_slots_total },
  1027. { "kv_cache_tokens_count", kv_cache_tokens_count },
  1028. { "kv_cache_used_cells", kv_cache_used_cells },
  1029. { "slots", slots_data },
  1030. };
  1031. }
  1032. };
  1033. struct server_task_result_slot_save_load : server_task_result {
  1034. std::string filename;
  1035. bool is_save; // true = save, false = load
  1036. size_t n_tokens;
  1037. size_t n_bytes;
  1038. double t_ms;
  1039. virtual json to_json() override {
  1040. if (is_save) {
  1041. return json {
  1042. { "id_slot", id_slot },
  1043. { "filename", filename },
  1044. { "n_saved", n_tokens },
  1045. { "n_written", n_bytes },
  1046. { "timings", {
  1047. { "save_ms", t_ms }
  1048. }},
  1049. };
  1050. } else {
  1051. return json {
  1052. { "id_slot", id_slot },
  1053. { "filename", filename },
  1054. { "n_restored", n_tokens },
  1055. { "n_read", n_bytes },
  1056. { "timings", {
  1057. { "restore_ms", t_ms }
  1058. }},
  1059. };
  1060. }
  1061. }
  1062. };
  1063. struct server_task_result_slot_erase : server_task_result {
  1064. size_t n_erased;
  1065. virtual json to_json() override {
  1066. return json {
  1067. { "id_slot", id_slot },
  1068. { "n_erased", n_erased },
  1069. };
  1070. }
  1071. };
  1072. struct server_task_result_apply_lora : server_task_result {
  1073. virtual json to_json() override {
  1074. return json {{ "success", true }};
  1075. }
  1076. };
  1077. struct server_slot {
  1078. int id;
  1079. int id_task = -1;
  1080. // only used for completion/embedding/infill/rerank
  1081. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1082. llama_batch batch_spec = {};
  1083. llama_context * ctx = nullptr;
  1084. llama_context * ctx_dft = nullptr;
  1085. common_speculative * spec = nullptr;
  1086. std::vector<common_adapter_lora_info> lora;
  1087. // the index relative to completion multi-task request
  1088. size_t index = 0;
  1089. struct slot_params params;
  1090. slot_state state = SLOT_STATE_IDLE;
  1091. // used to determine the slot that has been used the longest
  1092. int64_t t_last_used = -1;
  1093. // generation props
  1094. int32_t n_ctx = 0; // context size per slot
  1095. int32_t n_past = 0;
  1096. int32_t n_decoded = 0;
  1097. int32_t n_remaining = -1;
  1098. int32_t i_batch = -1;
  1099. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1100. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1101. int32_t n_prompt_tokens = 0;
  1102. int32_t n_prompt_tokens_processed = 0;
  1103. // input prompt tokens
  1104. llama_tokens prompt_tokens;
  1105. size_t last_nl_pos = 0;
  1106. std::string generated_text;
  1107. llama_tokens generated_tokens;
  1108. llama_tokens cache_tokens;
  1109. std::vector<completion_token_output> generated_token_probs;
  1110. bool has_next_token = true;
  1111. bool has_new_line = false;
  1112. bool truncated = false;
  1113. stop_type stop;
  1114. std::string stopping_word;
  1115. // sampling
  1116. json json_schema;
  1117. struct common_sampler * smpl = nullptr;
  1118. llama_token sampled;
  1119. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1120. // stats
  1121. size_t n_sent_text = 0; // number of sent text character
  1122. int64_t t_start_process_prompt;
  1123. int64_t t_start_generation;
  1124. double t_prompt_processing; // ms
  1125. double t_token_generation; // ms
  1126. std::function<void(int)> callback_on_release;
  1127. // Speculative decoding stats
  1128. int32_t n_draft_total = 0; // Total draft tokens generated
  1129. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1130. void reset() {
  1131. SLT_DBG(*this, "%s", "\n");
  1132. n_prompt_tokens = 0;
  1133. last_nl_pos = 0;
  1134. generated_text = "";
  1135. has_new_line = false;
  1136. truncated = false;
  1137. stop = STOP_TYPE_NONE;
  1138. stopping_word = "";
  1139. n_past = 0;
  1140. n_sent_text = 0;
  1141. task_type = SERVER_TASK_TYPE_COMPLETION;
  1142. generated_tokens.clear();
  1143. generated_token_probs.clear();
  1144. // clear speculative decoding stats
  1145. n_draft_total = 0;
  1146. n_draft_accepted = 0;
  1147. }
  1148. bool is_non_causal() const {
  1149. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1150. }
  1151. bool can_batch_with(server_slot & other_slot) const {
  1152. return is_non_causal() == other_slot.is_non_causal()
  1153. && are_lora_equal(lora, other_slot.lora);
  1154. }
  1155. bool has_budget(const common_params & global_params) {
  1156. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1157. return true; // limitless
  1158. }
  1159. n_remaining = -1;
  1160. if (params.n_predict != -1) {
  1161. n_remaining = params.n_predict - n_decoded;
  1162. } else if (global_params.n_predict != -1) {
  1163. n_remaining = global_params.n_predict - n_decoded;
  1164. }
  1165. return n_remaining > 0; // no budget
  1166. }
  1167. bool is_processing() const {
  1168. return state != SLOT_STATE_IDLE;
  1169. }
  1170. bool can_speculate() const {
  1171. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1172. }
  1173. void add_token(const completion_token_output & token) {
  1174. if (!is_processing()) {
  1175. SLT_WRN(*this, "%s", "slot is not processing\n");
  1176. return;
  1177. }
  1178. generated_token_probs.push_back(token);
  1179. }
  1180. void release() {
  1181. if (is_processing()) {
  1182. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1183. t_last_used = ggml_time_us();
  1184. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1185. state = SLOT_STATE_IDLE;
  1186. callback_on_release(id);
  1187. }
  1188. }
  1189. result_timings get_timings() const {
  1190. result_timings timings;
  1191. timings.prompt_n = n_prompt_tokens_processed;
  1192. timings.prompt_ms = t_prompt_processing;
  1193. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1194. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1195. timings.predicted_n = n_decoded;
  1196. timings.predicted_ms = t_token_generation;
  1197. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1198. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1199. // Add speculative metrics
  1200. if (n_draft_total > 0) {
  1201. timings.draft_n = n_draft_total;
  1202. timings.draft_n_accepted = n_draft_accepted;
  1203. }
  1204. return timings;
  1205. }
  1206. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1207. size_t stop_pos = std::string::npos;
  1208. for (const std::string & word : params.antiprompt) {
  1209. size_t pos;
  1210. if (is_full_stop) {
  1211. const size_t tmp = word.size() + last_token_size;
  1212. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1213. pos = text.find(word, from_pos);
  1214. } else {
  1215. // otherwise, partial stop
  1216. pos = find_partial_stop_string(word, text);
  1217. }
  1218. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1219. if (is_full_stop) {
  1220. stop = STOP_TYPE_WORD;
  1221. stopping_word = word;
  1222. has_next_token = false;
  1223. }
  1224. stop_pos = pos;
  1225. }
  1226. }
  1227. return stop_pos;
  1228. }
  1229. void print_timings() const {
  1230. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1231. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1232. const double t_gen = t_token_generation / n_decoded;
  1233. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1234. SLT_INF(*this,
  1235. "\n"
  1236. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1237. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1238. " total time = %10.2f ms / %5d tokens\n",
  1239. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1240. t_token_generation, n_decoded, t_gen, n_gen_second,
  1241. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1242. if (n_draft_total > 0) {
  1243. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1244. SLT_INF(*this,
  1245. "\n"
  1246. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1247. draft_ratio, n_draft_accepted, n_draft_total
  1248. );
  1249. }
  1250. }
  1251. json to_json() const {
  1252. return json {
  1253. {"id", id},
  1254. {"id_task", id_task},
  1255. {"n_ctx", n_ctx},
  1256. {"speculative", can_speculate()},
  1257. {"is_processing", is_processing()},
  1258. {"non_causal", is_non_causal()},
  1259. {"params", params.to_json()},
  1260. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1261. {"next_token",
  1262. {
  1263. {"has_next_token", has_next_token},
  1264. {"has_new_line", has_new_line},
  1265. {"n_remain", n_remaining},
  1266. {"n_decoded", n_decoded},
  1267. {"stopping_word", stopping_word},
  1268. }
  1269. },
  1270. };
  1271. }
  1272. };
  1273. struct server_metrics {
  1274. int64_t t_start = 0;
  1275. uint64_t n_prompt_tokens_processed_total = 0;
  1276. uint64_t t_prompt_processing_total = 0;
  1277. uint64_t n_tokens_predicted_total = 0;
  1278. uint64_t t_tokens_generation_total = 0;
  1279. uint64_t n_prompt_tokens_processed = 0;
  1280. uint64_t t_prompt_processing = 0;
  1281. uint64_t n_tokens_predicted = 0;
  1282. uint64_t t_tokens_generation = 0;
  1283. uint64_t n_decode_total = 0;
  1284. uint64_t n_busy_slots_total = 0;
  1285. void init() {
  1286. t_start = ggml_time_us();
  1287. }
  1288. void on_prompt_eval(const server_slot & slot) {
  1289. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1290. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1291. t_prompt_processing += slot.t_prompt_processing;
  1292. t_prompt_processing_total += slot.t_prompt_processing;
  1293. }
  1294. void on_prediction(const server_slot & slot) {
  1295. n_tokens_predicted_total += slot.n_decoded;
  1296. n_tokens_predicted += slot.n_decoded;
  1297. t_tokens_generation += slot.t_token_generation;
  1298. t_tokens_generation_total += slot.t_token_generation;
  1299. }
  1300. void on_decoded(const std::vector<server_slot> & slots) {
  1301. n_decode_total++;
  1302. for (const auto & slot : slots) {
  1303. if (slot.is_processing()) {
  1304. n_busy_slots_total++;
  1305. }
  1306. }
  1307. }
  1308. void reset_bucket() {
  1309. n_prompt_tokens_processed = 0;
  1310. t_prompt_processing = 0;
  1311. n_tokens_predicted = 0;
  1312. t_tokens_generation = 0;
  1313. }
  1314. };
  1315. struct server_queue {
  1316. int id = 0;
  1317. bool running;
  1318. // queues
  1319. std::deque<server_task> queue_tasks;
  1320. std::deque<server_task> queue_tasks_deferred;
  1321. std::mutex mutex_tasks;
  1322. std::condition_variable condition_tasks;
  1323. // callback functions
  1324. std::function<void(server_task &&)> callback_new_task;
  1325. std::function<void(void)> callback_update_slots;
  1326. // Add a new task to the end of the queue
  1327. int post(server_task && task, bool front = false) {
  1328. std::unique_lock<std::mutex> lock(mutex_tasks);
  1329. GGML_ASSERT(task.id != -1);
  1330. // if this is cancel task make sure to clean up pending tasks
  1331. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1332. cleanup_pending_task(task.id_target);
  1333. }
  1334. const int task_id = task.id;
  1335. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1336. if (front) {
  1337. queue_tasks.push_front(std::move(task));
  1338. } else {
  1339. queue_tasks.push_back(std::move(task));
  1340. }
  1341. condition_tasks.notify_one();
  1342. return task_id;
  1343. }
  1344. // multi-task version of post()
  1345. int post(std::vector<server_task> && tasks, bool front = false) {
  1346. std::unique_lock<std::mutex> lock(mutex_tasks);
  1347. for (auto & task : tasks) {
  1348. if (task.id == -1) {
  1349. task.id = id++;
  1350. }
  1351. // if this is cancel task make sure to clean up pending tasks
  1352. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1353. cleanup_pending_task(task.id_target);
  1354. }
  1355. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1356. if (front) {
  1357. queue_tasks.push_front(std::move(task));
  1358. } else {
  1359. queue_tasks.push_back(std::move(task));
  1360. }
  1361. }
  1362. condition_tasks.notify_one();
  1363. return 0;
  1364. }
  1365. // Add a new task, but defer until one slot is available
  1366. void defer(server_task && task) {
  1367. std::unique_lock<std::mutex> lock(mutex_tasks);
  1368. QUE_DBG("defer task, id = %d\n", task.id);
  1369. queue_tasks_deferred.push_back(std::move(task));
  1370. condition_tasks.notify_one();
  1371. }
  1372. // Get the next id for creating a new task
  1373. int get_new_id() {
  1374. std::unique_lock<std::mutex> lock(mutex_tasks);
  1375. int new_id = id++;
  1376. return new_id;
  1377. }
  1378. // Register function to process a new task
  1379. void on_new_task(std::function<void(server_task &&)> callback) {
  1380. callback_new_task = std::move(callback);
  1381. }
  1382. // Register the function to be called when all slots data is ready to be processed
  1383. void on_update_slots(std::function<void(void)> callback) {
  1384. callback_update_slots = std::move(callback);
  1385. }
  1386. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1387. void pop_deferred_task() {
  1388. std::unique_lock<std::mutex> lock(mutex_tasks);
  1389. if (!queue_tasks_deferred.empty()) {
  1390. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1391. queue_tasks_deferred.pop_front();
  1392. }
  1393. condition_tasks.notify_one();
  1394. }
  1395. // end the start_loop routine
  1396. void terminate() {
  1397. std::unique_lock<std::mutex> lock(mutex_tasks);
  1398. running = false;
  1399. condition_tasks.notify_all();
  1400. }
  1401. /**
  1402. * Main loop consists of these steps:
  1403. * - Wait until a new task arrives
  1404. * - Process the task (i.e. maybe copy data into slot)
  1405. * - Check if multitask is finished
  1406. * - Update all slots
  1407. */
  1408. void start_loop() {
  1409. running = true;
  1410. while (true) {
  1411. QUE_DBG("%s", "processing new tasks\n");
  1412. while (true) {
  1413. std::unique_lock<std::mutex> lock(mutex_tasks);
  1414. if (!running) {
  1415. QUE_DBG("%s", "terminate\n");
  1416. return;
  1417. }
  1418. if (queue_tasks.empty()) {
  1419. lock.unlock();
  1420. break;
  1421. }
  1422. server_task task = std::move(queue_tasks.front());
  1423. queue_tasks.pop_front();
  1424. lock.unlock();
  1425. QUE_DBG("processing task, id = %d\n", task.id);
  1426. callback_new_task(std::move(task));
  1427. }
  1428. // all tasks in the current loop is processed, slots data is now ready
  1429. QUE_DBG("%s", "update slots\n");
  1430. callback_update_slots();
  1431. QUE_DBG("%s", "waiting for new tasks\n");
  1432. {
  1433. std::unique_lock<std::mutex> lock(mutex_tasks);
  1434. if (!running) {
  1435. QUE_DBG("%s", "terminate\n");
  1436. return;
  1437. }
  1438. if (queue_tasks.empty()) {
  1439. condition_tasks.wait(lock, [&]{
  1440. return (!queue_tasks.empty() || !running);
  1441. });
  1442. }
  1443. }
  1444. }
  1445. }
  1446. private:
  1447. void cleanup_pending_task(int id_target) {
  1448. // no need lock because this is called exclusively by post()
  1449. auto rm_func = [id_target](const server_task & task) {
  1450. return task.id_target == id_target;
  1451. };
  1452. queue_tasks.erase(
  1453. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1454. queue_tasks.end());
  1455. queue_tasks_deferred.erase(
  1456. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1457. queue_tasks_deferred.end());
  1458. }
  1459. };
  1460. struct server_response {
  1461. bool running = true;
  1462. // for keeping track of all tasks waiting for the result
  1463. std::unordered_set<int> waiting_task_ids;
  1464. // the main result queue (using ptr for polymorphism)
  1465. std::vector<server_task_result_ptr> queue_results;
  1466. std::mutex mutex_results;
  1467. std::condition_variable condition_results;
  1468. // add the id_task to the list of tasks waiting for response
  1469. void add_waiting_task_id(int id_task) {
  1470. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1471. std::unique_lock<std::mutex> lock(mutex_results);
  1472. waiting_task_ids.insert(id_task);
  1473. }
  1474. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1475. std::unique_lock<std::mutex> lock(mutex_results);
  1476. for (const auto & task : tasks) {
  1477. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1478. waiting_task_ids.insert(task.id);
  1479. }
  1480. }
  1481. // when the request is finished, we can remove task associated with it
  1482. void remove_waiting_task_id(int id_task) {
  1483. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1484. std::unique_lock<std::mutex> lock(mutex_results);
  1485. waiting_task_ids.erase(id_task);
  1486. // make sure to clean up all pending results
  1487. queue_results.erase(
  1488. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1489. return res->id == id_task;
  1490. }),
  1491. queue_results.end());
  1492. }
  1493. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1494. std::unique_lock<std::mutex> lock(mutex_results);
  1495. for (const auto & id_task : id_tasks) {
  1496. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1497. waiting_task_ids.erase(id_task);
  1498. }
  1499. }
  1500. // This function blocks the thread until there is a response for one of the id_tasks
  1501. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1502. while (true) {
  1503. std::unique_lock<std::mutex> lock(mutex_results);
  1504. condition_results.wait(lock, [&]{
  1505. if (!running) {
  1506. SRV_DBG("%s : queue result stop\n", __func__);
  1507. std::terminate(); // we cannot return here since the caller is HTTP code
  1508. }
  1509. return !queue_results.empty();
  1510. });
  1511. for (size_t i = 0; i < queue_results.size(); i++) {
  1512. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1513. server_task_result_ptr res = std::move(queue_results[i]);
  1514. queue_results.erase(queue_results.begin() + i);
  1515. return res;
  1516. }
  1517. }
  1518. }
  1519. // should never reach here
  1520. }
  1521. // same as recv(), but have timeout in seconds
  1522. // if timeout is reached, nullptr is returned
  1523. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1524. while (true) {
  1525. std::unique_lock<std::mutex> lock(mutex_results);
  1526. for (int i = 0; i < (int) queue_results.size(); i++) {
  1527. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1528. server_task_result_ptr res = std::move(queue_results[i]);
  1529. queue_results.erase(queue_results.begin() + i);
  1530. return res;
  1531. }
  1532. }
  1533. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1534. if (!running) {
  1535. SRV_DBG("%s : queue result stop\n", __func__);
  1536. std::terminate(); // we cannot return here since the caller is HTTP code
  1537. }
  1538. if (cr_res == std::cv_status::timeout) {
  1539. return nullptr;
  1540. }
  1541. }
  1542. // should never reach here
  1543. }
  1544. // single-task version of recv()
  1545. server_task_result_ptr recv(int id_task) {
  1546. std::unordered_set<int> id_tasks = {id_task};
  1547. return recv(id_tasks);
  1548. }
  1549. // Send a new result to a waiting id_task
  1550. void send(server_task_result_ptr && result) {
  1551. SRV_DBG("sending result for task id = %d\n", result->id);
  1552. std::unique_lock<std::mutex> lock(mutex_results);
  1553. for (const auto & id_task : waiting_task_ids) {
  1554. if (result->id == id_task) {
  1555. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1556. queue_results.emplace_back(std::move(result));
  1557. condition_results.notify_all();
  1558. return;
  1559. }
  1560. }
  1561. }
  1562. // terminate the waiting loop
  1563. void terminate() {
  1564. running = false;
  1565. condition_results.notify_all();
  1566. }
  1567. };
  1568. struct server_context {
  1569. common_params params_base;
  1570. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1571. common_init_result llama_init;
  1572. common_init_result llama_init_dft;
  1573. llama_model * model = nullptr;
  1574. llama_context * ctx = nullptr;
  1575. const llama_vocab * vocab = nullptr;
  1576. llama_model * model_dft = nullptr;
  1577. llama_context_params cparams_dft;
  1578. llama_batch batch = {};
  1579. bool clean_kv_cache = true;
  1580. bool add_bos_token = true;
  1581. bool has_eos_token = false;
  1582. int32_t n_ctx; // total context for all clients / slots
  1583. // slots / clients
  1584. std::vector<server_slot> slots;
  1585. json default_generation_settings_for_props;
  1586. server_queue queue_tasks;
  1587. server_response queue_results;
  1588. server_metrics metrics;
  1589. // Necessary similarity of prompt for slot selection
  1590. float slot_prompt_similarity = 0.0f;
  1591. common_chat_templates_ptr chat_templates;
  1592. ~server_context() {
  1593. // Clear any sampling context
  1594. for (server_slot & slot : slots) {
  1595. common_sampler_free(slot.smpl);
  1596. slot.smpl = nullptr;
  1597. llama_free(slot.ctx_dft);
  1598. slot.ctx_dft = nullptr;
  1599. common_speculative_free(slot.spec);
  1600. slot.spec = nullptr;
  1601. llama_batch_free(slot.batch_spec);
  1602. }
  1603. llama_batch_free(batch);
  1604. }
  1605. bool load_model(const common_params & params) {
  1606. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1607. params_base = params;
  1608. llama_init = common_init_from_params(params_base);
  1609. model = llama_init.model.get();
  1610. ctx = llama_init.context.get();
  1611. if (model == nullptr) {
  1612. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1613. return false;
  1614. }
  1615. vocab = llama_model_get_vocab(model);
  1616. n_ctx = llama_n_ctx(ctx);
  1617. add_bos_token = llama_vocab_get_add_bos(vocab);
  1618. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1619. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1620. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1621. auto params_dft = params_base;
  1622. params_dft.devices = params_base.speculative.devices;
  1623. params_dft.model = params_base.speculative.model;
  1624. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1625. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1626. params_dft.n_parallel = 1;
  1627. // force F16 KV cache for the draft model for extra performance
  1628. params_dft.cache_type_k = GGML_TYPE_F16;
  1629. params_dft.cache_type_v = GGML_TYPE_F16;
  1630. llama_init_dft = common_init_from_params(params_dft);
  1631. model_dft = llama_init_dft.model.get();
  1632. if (model_dft == nullptr) {
  1633. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1634. return false;
  1635. }
  1636. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1637. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1638. return false;
  1639. }
  1640. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1641. cparams_dft = common_context_params_to_llama(params_dft);
  1642. cparams_dft.n_batch = n_ctx_dft;
  1643. // the context is not needed - we will create one for each slot
  1644. llama_init_dft.context.reset();
  1645. }
  1646. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1647. try {
  1648. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1649. } catch (const std::exception & e) {
  1650. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1651. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1652. chat_templates = common_chat_templates_init(model, "chatml");
  1653. }
  1654. return true;
  1655. }
  1656. void init() {
  1657. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1658. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1659. for (int i = 0; i < params_base.n_parallel; i++) {
  1660. server_slot slot;
  1661. slot.id = i;
  1662. slot.ctx = ctx;
  1663. slot.n_ctx = n_ctx_slot;
  1664. slot.n_predict = params_base.n_predict;
  1665. if (model_dft) {
  1666. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1667. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1668. if (slot.ctx_dft == nullptr) {
  1669. SRV_ERR("%s", "failed to create draft context\n");
  1670. return;
  1671. }
  1672. slot.spec = common_speculative_init(slot.ctx_dft);
  1673. if (slot.spec == nullptr) {
  1674. SRV_ERR("%s", "failed to create speculator\n");
  1675. return;
  1676. }
  1677. }
  1678. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1679. slot.params.sampling = params_base.sampling;
  1680. slot.callback_on_release = [this](int) {
  1681. queue_tasks.pop_deferred_task();
  1682. };
  1683. slot.reset();
  1684. slots.push_back(std::move(slot));
  1685. }
  1686. default_generation_settings_for_props = slots[0].to_json();
  1687. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1688. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1689. {
  1690. const int32_t n_batch = llama_n_batch(ctx);
  1691. // only a single seq_id per token is needed
  1692. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1693. }
  1694. metrics.init();
  1695. }
  1696. server_slot * get_slot_by_id(int id) {
  1697. for (server_slot & slot : slots) {
  1698. if (slot.id == id) {
  1699. return &slot;
  1700. }
  1701. }
  1702. return nullptr;
  1703. }
  1704. server_slot * get_available_slot(const server_task & task) {
  1705. server_slot * ret = nullptr;
  1706. // find the slot that has at least n% prompt similarity
  1707. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1708. int lcs_len = 0;
  1709. float similarity = 0;
  1710. for (server_slot & slot : slots) {
  1711. // skip the slot if it is not available
  1712. if (slot.is_processing()) {
  1713. continue;
  1714. }
  1715. // skip the slot if it does not contains cached tokens
  1716. if (slot.cache_tokens.empty()) {
  1717. continue;
  1718. }
  1719. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1720. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1721. // fraction of the common subsequence length compared to the current slot's prompt length
  1722. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1723. // select the current slot if the criteria match
  1724. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1725. lcs_len = cur_lcs_len;
  1726. similarity = cur_similarity;
  1727. ret = &slot;
  1728. }
  1729. }
  1730. if (ret != nullptr) {
  1731. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1732. }
  1733. }
  1734. // find the slot that has been least recently used
  1735. if (ret == nullptr) {
  1736. int64_t t_last = ggml_time_us();
  1737. for (server_slot & slot : slots) {
  1738. // skip the slot if it is not available
  1739. if (slot.is_processing()) {
  1740. continue;
  1741. }
  1742. // select the current slot if the criteria match
  1743. if (slot.t_last_used < t_last) {
  1744. t_last = slot.t_last_used;
  1745. ret = &slot;
  1746. }
  1747. }
  1748. if (ret != nullptr) {
  1749. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1750. }
  1751. }
  1752. return ret;
  1753. }
  1754. bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
  1755. const llama_model * model = llama_get_model(ctx);
  1756. const llama_vocab * vocab = llama_model_get_vocab(model);
  1757. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1758. for (const auto & token : tokens) {
  1759. if (token < 0 || token >= n_vocab) {
  1760. return false;
  1761. }
  1762. }
  1763. return true;
  1764. }
  1765. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1766. slot.reset();
  1767. slot.id_task = task.id;
  1768. slot.index = task.index;
  1769. slot.task_type = task.type;
  1770. slot.params = std::move(task.params);
  1771. slot.prompt_tokens = std::move(task.prompt_tokens);
  1772. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1773. // if lora is changed, we cannot reuse cached tokens
  1774. slot.cache_tokens.clear();
  1775. slot.lora = slot.params.lora;
  1776. }
  1777. bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
  1778. if (!can_detokenize) {
  1779. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1780. return false;
  1781. }
  1782. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1783. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1784. // Might be better to reject the request with a 400 ?
  1785. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1786. slot.params.n_predict = slot.n_predict;
  1787. }
  1788. if (slot.params.ignore_eos && has_eos_token) {
  1789. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1790. }
  1791. {
  1792. if (slot.smpl != nullptr) {
  1793. common_sampler_free(slot.smpl);
  1794. }
  1795. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1796. if (slot.smpl == nullptr) {
  1797. // for now, the only error that may happen here is invalid grammar
  1798. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1799. return false;
  1800. }
  1801. }
  1802. if (slot.ctx_dft) {
  1803. llama_batch_free(slot.batch_spec);
  1804. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1805. }
  1806. slot.state = SLOT_STATE_STARTED;
  1807. SLT_INF(slot, "%s", "processing task\n");
  1808. return true;
  1809. }
  1810. void kv_cache_clear() {
  1811. SRV_DBG("%s", "clearing KV cache\n");
  1812. // clear the entire KV cache
  1813. llama_kv_self_clear(ctx);
  1814. clean_kv_cache = false;
  1815. }
  1816. bool process_token(completion_token_output & result, server_slot & slot) {
  1817. // remember which tokens were sampled - used for repetition penalties during sampling
  1818. const std::string token_str = result.text_to_send;
  1819. slot.sampled = result.tok;
  1820. slot.generated_text += token_str;
  1821. if (slot.params.return_tokens) {
  1822. slot.generated_tokens.push_back(result.tok);
  1823. }
  1824. slot.has_next_token = true;
  1825. // check if there is incomplete UTF-8 character at the end
  1826. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1827. // search stop word and delete it
  1828. if (!incomplete) {
  1829. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1830. const std::string str_test = slot.generated_text.substr(pos);
  1831. bool send_text = true;
  1832. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1833. if (stop_pos != std::string::npos) {
  1834. slot.generated_text.erase(
  1835. slot.generated_text.begin() + pos + stop_pos,
  1836. slot.generated_text.end());
  1837. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1838. } else if (slot.has_next_token) {
  1839. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1840. send_text = stop_pos == std::string::npos;
  1841. }
  1842. // check if there is any token to predict
  1843. if (send_text) {
  1844. // no send the stop word in the response
  1845. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1846. slot.n_sent_text += result.text_to_send.size();
  1847. // add the token to slot queue and cache
  1848. } else {
  1849. result.text_to_send = "";
  1850. }
  1851. slot.add_token(result);
  1852. if (slot.params.stream) {
  1853. send_partial_response(slot, result);
  1854. }
  1855. }
  1856. if (incomplete) {
  1857. slot.has_next_token = true;
  1858. }
  1859. // check the limits
  1860. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1861. slot.stop = STOP_TYPE_LIMIT;
  1862. slot.has_next_token = false;
  1863. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1864. }
  1865. if (slot.has_new_line) {
  1866. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1867. if (slot.params.n_indent > 0) {
  1868. // check the current indentation
  1869. // TODO: improve by not doing it more than once for each new line
  1870. if (slot.last_nl_pos > 0) {
  1871. size_t pos = slot.last_nl_pos;
  1872. int n_indent = 0;
  1873. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1874. n_indent++;
  1875. pos++;
  1876. }
  1877. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1878. slot.stop = STOP_TYPE_LIMIT;
  1879. slot.has_next_token = false;
  1880. // cut the last line
  1881. slot.generated_text.erase(pos, std::string::npos);
  1882. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1883. }
  1884. }
  1885. // find the next new line
  1886. {
  1887. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1888. if (pos != std::string::npos) {
  1889. slot.last_nl_pos = pos + 1;
  1890. }
  1891. }
  1892. }
  1893. }
  1894. // check if there is a new line in the generated text
  1895. if (result.text_to_send.find('\n') != std::string::npos) {
  1896. slot.has_new_line = true;
  1897. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1898. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1899. slot.stop = STOP_TYPE_LIMIT;
  1900. slot.has_next_token = false;
  1901. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1902. }
  1903. }
  1904. // if context shift is disabled, we stop when it reaches the context limit
  1905. if (slot.n_past >= slot.n_ctx) {
  1906. slot.truncated = true;
  1907. slot.stop = STOP_TYPE_LIMIT;
  1908. slot.has_next_token = false;
  1909. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1910. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1911. }
  1912. if (llama_vocab_is_eog(vocab, result.tok)) {
  1913. slot.stop = STOP_TYPE_EOS;
  1914. slot.has_next_token = false;
  1915. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1916. }
  1917. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1918. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1919. slot.truncated = true;
  1920. slot.stop = STOP_TYPE_LIMIT;
  1921. slot.has_next_token = false; // stop prediction
  1922. SLT_WRN(slot,
  1923. "n_predict (%d) is set for infinite generation. "
  1924. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1925. slot.params.n_predict, n_ctx_train);
  1926. }
  1927. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1928. return slot.has_next_token; // continue
  1929. }
  1930. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1931. size_t n_probs = slot.params.sampling.n_probs;
  1932. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1933. if (post_sampling) {
  1934. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1935. const size_t max_probs = cur_p->size;
  1936. // set probability for sampled token
  1937. for (size_t i = 0; i < max_probs; i++) {
  1938. if (cur_p->data[i].id == result.tok) {
  1939. result.prob = cur_p->data[i].p;
  1940. break;
  1941. }
  1942. }
  1943. // set probability for top n_probs tokens
  1944. result.probs.reserve(max_probs);
  1945. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1946. result.probs.push_back({
  1947. cur_p->data[i].id,
  1948. common_token_to_piece(ctx, cur_p->data[i].id, special),
  1949. cur_p->data[i].p
  1950. });
  1951. }
  1952. } else {
  1953. // TODO: optimize this with min-p optimization
  1954. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1955. // set probability for sampled token
  1956. for (size_t i = 0; i < n_vocab; i++) {
  1957. // set probability for sampled token
  1958. if (cur[i].id == result.tok) {
  1959. result.prob = cur[i].p;
  1960. break;
  1961. }
  1962. }
  1963. // set probability for top n_probs tokens
  1964. result.probs.reserve(n_probs);
  1965. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1966. result.probs.push_back({
  1967. cur[i].id,
  1968. common_token_to_piece(ctx, cur[i].id, special),
  1969. cur[i].p
  1970. });
  1971. }
  1972. }
  1973. }
  1974. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1975. send_error(task.id, error, type);
  1976. }
  1977. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1978. send_error(slot.id_task, error, type);
  1979. }
  1980. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1981. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1982. auto res = std::make_unique<server_task_result_error>();
  1983. res->id = id_task;
  1984. res->err_type = type;
  1985. res->err_msg = error;
  1986. queue_results.send(std::move(res));
  1987. }
  1988. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1989. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1990. res->id = slot.id_task;
  1991. res->index = slot.index;
  1992. res->content = tkn.text_to_send;
  1993. res->tokens = { tkn.tok };
  1994. res->n_decoded = slot.n_decoded;
  1995. res->n_prompt_tokens = slot.n_prompt_tokens;
  1996. res->post_sampling_probs = slot.params.post_sampling_probs;
  1997. res->verbose = slot.params.verbose;
  1998. res->oaicompat = slot.params.oaicompat;
  1999. res->oaicompat_model = slot.params.oaicompat_model;
  2000. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2001. // populate res.probs_output
  2002. if (slot.params.sampling.n_probs > 0) {
  2003. res->prob_output = tkn; // copy the token probs
  2004. }
  2005. // populate timings if this is final response or timings_per_token is enabled
  2006. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2007. res->timings = slot.get_timings();
  2008. }
  2009. queue_results.send(std::move(res));
  2010. }
  2011. void send_final_response(server_slot & slot) {
  2012. auto res = std::make_unique<server_task_result_cmpl_final>();
  2013. res->id = slot.id_task;
  2014. res->id_slot = slot.id;
  2015. res->index = slot.index;
  2016. res->content = std::move(slot.generated_text);
  2017. res->tokens = std::move(slot.generated_tokens);
  2018. res->timings = slot.get_timings();
  2019. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  2020. res->response_fields = std::move(slot.params.response_fields);
  2021. res->truncated = slot.truncated;
  2022. res->n_decoded = slot.n_decoded;
  2023. res->n_prompt_tokens = slot.n_prompt_tokens;
  2024. res->n_tokens_cached = slot.n_past;
  2025. res->has_new_line = slot.has_new_line;
  2026. res->stopping_word = slot.stopping_word;
  2027. res->stop = slot.stop;
  2028. res->post_sampling_probs = slot.params.post_sampling_probs;
  2029. res->verbose = slot.params.verbose;
  2030. res->stream = slot.params.stream;
  2031. res->oaicompat = slot.params.oaicompat;
  2032. res->oaicompat_model = slot.params.oaicompat_model;
  2033. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2034. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  2035. // populate res.probs_output
  2036. if (slot.params.sampling.n_probs > 0) {
  2037. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2038. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2039. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2040. res->probs_output = std::vector<completion_token_output>(
  2041. slot.generated_token_probs.begin(),
  2042. slot.generated_token_probs.end() - safe_offset);
  2043. } else {
  2044. res->probs_output = std::vector<completion_token_output>(
  2045. slot.generated_token_probs.begin(),
  2046. slot.generated_token_probs.end());
  2047. }
  2048. }
  2049. res->generation_params = slot.params; // copy the parameters
  2050. queue_results.send(std::move(res));
  2051. }
  2052. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2053. auto res = std::make_unique<server_task_result_embd>();
  2054. res->id = slot.id_task;
  2055. res->index = slot.index;
  2056. res->n_tokens = slot.n_prompt_tokens;
  2057. res->oaicompat = slot.params.oaicompat;
  2058. const int n_embd = llama_model_n_embd(model);
  2059. std::vector<float> embd_res(n_embd, 0.0f);
  2060. for (int i = 0; i < batch.n_tokens; ++i) {
  2061. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2062. continue;
  2063. }
  2064. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2065. if (embd == NULL) {
  2066. embd = llama_get_embeddings_ith(ctx, i);
  2067. }
  2068. if (embd == NULL) {
  2069. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2070. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2071. continue;
  2072. }
  2073. // normalize only when there is pooling
  2074. // TODO: configurable
  2075. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2076. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2077. res->embedding.push_back(embd_res);
  2078. } else {
  2079. res->embedding.push_back({ embd, embd + n_embd });
  2080. }
  2081. }
  2082. SLT_DBG(slot, "%s", "sending embeddings\n");
  2083. queue_results.send(std::move(res));
  2084. }
  2085. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2086. auto res = std::make_unique<server_task_result_rerank>();
  2087. res->id = slot.id_task;
  2088. res->index = slot.index;
  2089. res->n_tokens = slot.n_prompt_tokens;
  2090. for (int i = 0; i < batch.n_tokens; ++i) {
  2091. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2092. continue;
  2093. }
  2094. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2095. if (embd == NULL) {
  2096. embd = llama_get_embeddings_ith(ctx, i);
  2097. }
  2098. if (embd == NULL) {
  2099. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2100. res->score = -1e6;
  2101. continue;
  2102. }
  2103. res->score = embd[0];
  2104. }
  2105. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2106. queue_results.send(std::move(res));
  2107. }
  2108. //
  2109. // Functions to create new task(s) and receive result(s)
  2110. //
  2111. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2112. std::vector<server_task> cancel_tasks;
  2113. cancel_tasks.reserve(id_tasks.size());
  2114. for (const auto & id_task : id_tasks) {
  2115. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2116. server_task task(SERVER_TASK_TYPE_CANCEL);
  2117. task.id_target = id_task;
  2118. queue_results.remove_waiting_task_id(id_task);
  2119. cancel_tasks.push_back(std::move(task));
  2120. }
  2121. // push to beginning of the queue, so it has highest priority
  2122. queue_tasks.post(std::move(cancel_tasks), true);
  2123. }
  2124. // receive the results from task(s)
  2125. void receive_multi_results(
  2126. const std::unordered_set<int> & id_tasks,
  2127. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2128. const std::function<void(json)> & error_handler,
  2129. const std::function<bool()> & is_connection_closed) {
  2130. std::vector<server_task_result_ptr> results(id_tasks.size());
  2131. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2132. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2133. if (is_connection_closed()) {
  2134. cancel_tasks(id_tasks);
  2135. return;
  2136. }
  2137. if (result == nullptr) {
  2138. i--; // retry
  2139. continue;
  2140. }
  2141. if (result->is_error()) {
  2142. error_handler(result->to_json());
  2143. cancel_tasks(id_tasks);
  2144. return;
  2145. }
  2146. GGML_ASSERT(
  2147. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2148. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2149. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2150. );
  2151. const size_t idx = result->get_index();
  2152. GGML_ASSERT(idx < results.size() && "index out of range");
  2153. results[idx] = std::move(result);
  2154. }
  2155. result_handler(results);
  2156. }
  2157. // receive the results from task(s), in stream mode
  2158. void receive_cmpl_results_stream(
  2159. const std::unordered_set<int> & id_tasks,
  2160. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2161. const std::function<void(json)> & error_handler,
  2162. const std::function<bool()> & is_connection_closed) {
  2163. size_t n_finished = 0;
  2164. while (true) {
  2165. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2166. if (is_connection_closed()) {
  2167. cancel_tasks(id_tasks);
  2168. return;
  2169. }
  2170. if (result == nullptr) {
  2171. continue; // retry
  2172. }
  2173. if (result->is_error()) {
  2174. error_handler(result->to_json());
  2175. cancel_tasks(id_tasks);
  2176. return;
  2177. }
  2178. GGML_ASSERT(
  2179. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2180. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2181. );
  2182. if (!result_handler(result)) {
  2183. cancel_tasks(id_tasks);
  2184. break;
  2185. }
  2186. if (result->is_stop()) {
  2187. if (++n_finished == id_tasks.size()) {
  2188. break;
  2189. }
  2190. }
  2191. }
  2192. }
  2193. //
  2194. // Functions to process the task
  2195. //
  2196. void process_single_task(server_task && task) {
  2197. switch (task.type) {
  2198. case SERVER_TASK_TYPE_COMPLETION:
  2199. case SERVER_TASK_TYPE_INFILL:
  2200. case SERVER_TASK_TYPE_EMBEDDING:
  2201. case SERVER_TASK_TYPE_RERANK:
  2202. {
  2203. const int id_slot = task.id_selected_slot;
  2204. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2205. if (slot == nullptr) {
  2206. // if no slot is available, we defer this task for processing later
  2207. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2208. queue_tasks.defer(std::move(task));
  2209. break;
  2210. }
  2211. if (slot->is_processing()) {
  2212. // if requested slot is unavailable, we defer this task for processing later
  2213. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2214. queue_tasks.defer(std::move(task));
  2215. break;
  2216. }
  2217. if (!launch_slot_with_task(*slot, std::move(task))) {
  2218. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2219. break;
  2220. }
  2221. } break;
  2222. case SERVER_TASK_TYPE_CANCEL:
  2223. {
  2224. // release slot linked with the task id
  2225. for (auto & slot : slots) {
  2226. if (slot.id_task == task.id_target) {
  2227. slot.release();
  2228. break;
  2229. }
  2230. }
  2231. } break;
  2232. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2233. {
  2234. // do nothing
  2235. } break;
  2236. case SERVER_TASK_TYPE_METRICS:
  2237. {
  2238. json slots_data = json::array();
  2239. int n_idle_slots = 0;
  2240. int n_processing_slots = 0;
  2241. for (server_slot & slot : slots) {
  2242. json slot_data = slot.to_json();
  2243. if (slot.is_processing()) {
  2244. n_processing_slots++;
  2245. } else {
  2246. n_idle_slots++;
  2247. }
  2248. slots_data.push_back(slot_data);
  2249. }
  2250. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2251. auto res = std::make_unique<server_task_result_metrics>();
  2252. res->id = task.id;
  2253. res->slots_data = std::move(slots_data);
  2254. res->n_idle_slots = n_idle_slots;
  2255. res->n_processing_slots = n_processing_slots;
  2256. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2257. res->t_start = metrics.t_start;
  2258. res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
  2259. res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
  2260. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2261. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2262. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2263. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2264. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2265. res->t_prompt_processing = metrics.t_prompt_processing;
  2266. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2267. res->t_tokens_generation = metrics.t_tokens_generation;
  2268. res->n_decode_total = metrics.n_decode_total;
  2269. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2270. if (task.metrics_reset_bucket) {
  2271. metrics.reset_bucket();
  2272. }
  2273. queue_results.send(std::move(res));
  2274. } break;
  2275. case SERVER_TASK_TYPE_SLOT_SAVE:
  2276. {
  2277. int id_slot = task.slot_action.slot_id;
  2278. server_slot * slot = get_slot_by_id(id_slot);
  2279. if (slot == nullptr) {
  2280. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2281. break;
  2282. }
  2283. if (slot->is_processing()) {
  2284. // if requested slot is unavailable, we defer this task for processing later
  2285. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2286. queue_tasks.defer(std::move(task));
  2287. break;
  2288. }
  2289. const size_t token_count = slot->cache_tokens.size();
  2290. const int64_t t_start = ggml_time_us();
  2291. std::string filename = task.slot_action.filename;
  2292. std::string filepath = task.slot_action.filepath;
  2293. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2294. const int64_t t_end = ggml_time_us();
  2295. const double t_save_ms = (t_end - t_start) / 1000.0;
  2296. auto res = std::make_unique<server_task_result_slot_save_load>();
  2297. res->id = task.id;
  2298. res->id_slot = id_slot;
  2299. res->filename = filename;
  2300. res->is_save = true;
  2301. res->n_tokens = token_count;
  2302. res->n_bytes = nwrite;
  2303. res->t_ms = t_save_ms;
  2304. queue_results.send(std::move(res));
  2305. } break;
  2306. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2307. {
  2308. int id_slot = task.slot_action.slot_id;
  2309. server_slot * slot = get_slot_by_id(id_slot);
  2310. if (slot == nullptr) {
  2311. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2312. break;
  2313. }
  2314. if (slot->is_processing()) {
  2315. // if requested slot is unavailable, we defer this task for processing later
  2316. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2317. queue_tasks.defer(std::move(task));
  2318. break;
  2319. }
  2320. const int64_t t_start = ggml_time_us();
  2321. std::string filename = task.slot_action.filename;
  2322. std::string filepath = task.slot_action.filepath;
  2323. slot->cache_tokens.resize(slot->n_ctx);
  2324. size_t token_count = 0;
  2325. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2326. if (nread == 0) {
  2327. slot->cache_tokens.resize(0);
  2328. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2329. break;
  2330. }
  2331. slot->cache_tokens.resize(token_count);
  2332. const int64_t t_end = ggml_time_us();
  2333. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2334. auto res = std::make_unique<server_task_result_slot_save_load>();
  2335. res->id = task.id;
  2336. res->id_slot = id_slot;
  2337. res->filename = filename;
  2338. res->is_save = false;
  2339. res->n_tokens = token_count;
  2340. res->n_bytes = nread;
  2341. res->t_ms = t_restore_ms;
  2342. queue_results.send(std::move(res));
  2343. } break;
  2344. case SERVER_TASK_TYPE_SLOT_ERASE:
  2345. {
  2346. int id_slot = task.slot_action.slot_id;
  2347. server_slot * slot = get_slot_by_id(id_slot);
  2348. if (slot == nullptr) {
  2349. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2350. break;
  2351. }
  2352. if (slot->is_processing()) {
  2353. // if requested slot is unavailable, we defer this task for processing later
  2354. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2355. queue_tasks.defer(std::move(task));
  2356. break;
  2357. }
  2358. // Erase token cache
  2359. const size_t n_erased = slot->cache_tokens.size();
  2360. llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
  2361. slot->cache_tokens.clear();
  2362. auto res = std::make_unique<server_task_result_slot_erase>();
  2363. res->id = task.id;
  2364. res->id_slot = id_slot;
  2365. res->n_erased = n_erased;
  2366. queue_results.send(std::move(res));
  2367. } break;
  2368. case SERVER_TASK_TYPE_SET_LORA:
  2369. {
  2370. params_base.lora_adapters = std::move(task.set_lora);
  2371. auto res = std::make_unique<server_task_result_apply_lora>();
  2372. res->id = task.id;
  2373. queue_results.send(std::move(res));
  2374. } break;
  2375. }
  2376. }
  2377. void update_slots() {
  2378. // check if all slots are idle
  2379. {
  2380. bool all_idle = true;
  2381. for (auto & slot : slots) {
  2382. if (slot.is_processing()) {
  2383. all_idle = false;
  2384. break;
  2385. }
  2386. }
  2387. if (all_idle) {
  2388. SRV_INF("%s", "all slots are idle\n");
  2389. if (clean_kv_cache) {
  2390. kv_cache_clear();
  2391. }
  2392. return;
  2393. }
  2394. }
  2395. {
  2396. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2397. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2398. task.id = queue_tasks.get_new_id();
  2399. queue_tasks.post(std::move(task));
  2400. }
  2401. // apply context-shift if needed
  2402. // TODO: simplify and improve
  2403. for (server_slot & slot : slots) {
  2404. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2405. if (!params_base.ctx_shift) {
  2406. // this check is redundant (for good)
  2407. // we should never get here, because generation should already stopped in process_token()
  2408. slot.release();
  2409. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2410. continue;
  2411. }
  2412. // Shift context
  2413. const int n_keep = slot.params.n_keep + add_bos_token;
  2414. const int n_left = slot.n_past - n_keep;
  2415. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2416. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2417. llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2418. llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2419. if (slot.params.cache_prompt) {
  2420. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2421. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2422. }
  2423. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2424. }
  2425. slot.n_past -= n_discard;
  2426. slot.truncated = true;
  2427. }
  2428. }
  2429. // start populating the batch for this iteration
  2430. common_batch_clear(batch);
  2431. // track if given slot can be batched with slots already in the batch
  2432. server_slot * slot_batched = nullptr;
  2433. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2434. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2435. };
  2436. // frist, add sampled tokens from any ongoing sequences
  2437. for (auto & slot : slots) {
  2438. if (slot.state != SLOT_STATE_GENERATING) {
  2439. continue;
  2440. }
  2441. // check if we can batch this slot with the previous one
  2442. if (!slot_batched) {
  2443. slot_batched = &slot;
  2444. } else if (!slot_batched->can_batch_with(slot)) {
  2445. continue;
  2446. }
  2447. slot.i_batch = batch.n_tokens;
  2448. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2449. slot.n_past += 1;
  2450. if (slot.params.cache_prompt) {
  2451. slot.cache_tokens.push_back(slot.sampled);
  2452. }
  2453. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2454. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2455. }
  2456. // process in chunks of params.n_batch
  2457. int32_t n_batch = llama_n_batch(ctx);
  2458. int32_t n_ubatch = llama_n_ubatch(ctx);
  2459. // next, batch any pending prompts without exceeding n_batch
  2460. if (params_base.cont_batching || batch.n_tokens == 0) {
  2461. for (auto & slot : slots) {
  2462. // check if we can batch this slot with the previous one
  2463. if (slot.is_processing()) {
  2464. if (!slot_batched) {
  2465. slot_batched = &slot;
  2466. } else if (!slot_batched->can_batch_with(slot)) {
  2467. continue;
  2468. }
  2469. }
  2470. // this slot still has a prompt to be processed
  2471. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2472. auto & prompt_tokens = slot.prompt_tokens;
  2473. // TODO: maybe move branch to outside of this loop in the future
  2474. if (slot.state == SLOT_STATE_STARTED) {
  2475. slot.t_start_process_prompt = ggml_time_us();
  2476. slot.t_start_generation = 0;
  2477. slot.n_past = 0;
  2478. slot.n_prompt_tokens = prompt_tokens.size();
  2479. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2480. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2481. // print prompt tokens (for debugging)
  2482. if (1) {
  2483. // first 16 tokens (avoid flooding logs)
  2484. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2485. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2486. }
  2487. } else {
  2488. // all
  2489. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2490. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2491. }
  2492. }
  2493. // empty prompt passed -> release the slot and send empty response
  2494. if (prompt_tokens.empty()) {
  2495. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2496. slot.release();
  2497. slot.print_timings();
  2498. send_final_response(slot);
  2499. continue;
  2500. }
  2501. if (slot.is_non_causal()) {
  2502. if (slot.n_prompt_tokens > n_ubatch) {
  2503. slot.release();
  2504. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2505. continue;
  2506. }
  2507. if (slot.n_prompt_tokens > slot.n_ctx) {
  2508. slot.release();
  2509. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2510. continue;
  2511. }
  2512. } else {
  2513. if (!params_base.ctx_shift) {
  2514. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2515. // TODO: there should be a separate parameter that control prompt truncation
  2516. // context shift should be applied only during the generation phase
  2517. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2518. slot.release();
  2519. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2520. continue;
  2521. }
  2522. }
  2523. if (slot.params.n_keep < 0) {
  2524. slot.params.n_keep = slot.n_prompt_tokens;
  2525. }
  2526. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2527. // if input prompt is too big, truncate it
  2528. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2529. const int n_left = slot.n_ctx - slot.params.n_keep;
  2530. const int n_block_size = n_left / 2;
  2531. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2532. llama_tokens new_tokens(
  2533. prompt_tokens.begin(),
  2534. prompt_tokens.begin() + slot.params.n_keep);
  2535. new_tokens.insert(
  2536. new_tokens.end(),
  2537. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2538. prompt_tokens.end());
  2539. prompt_tokens = std::move(new_tokens);
  2540. slot.truncated = true;
  2541. slot.n_prompt_tokens = prompt_tokens.size();
  2542. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2543. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2544. }
  2545. if (slot.params.cache_prompt) {
  2546. // reuse any previously computed tokens that are common with the new prompt
  2547. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2548. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2549. if (params_base.n_cache_reuse > 0) {
  2550. size_t head_c = slot.n_past; // cache
  2551. size_t head_p = slot.n_past; // current prompt
  2552. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2553. while (head_c < slot.cache_tokens.size() &&
  2554. head_p < prompt_tokens.size()) {
  2555. size_t n_match = 0;
  2556. while (head_c + n_match < slot.cache_tokens.size() &&
  2557. head_p + n_match < prompt_tokens.size() &&
  2558. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2559. n_match++;
  2560. }
  2561. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2562. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2563. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2564. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2565. //}
  2566. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2567. llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
  2568. llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
  2569. for (size_t i = 0; i < n_match; i++) {
  2570. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2571. slot.n_past++;
  2572. }
  2573. head_c += n_match;
  2574. head_p += n_match;
  2575. } else {
  2576. head_c += 1;
  2577. }
  2578. }
  2579. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2580. }
  2581. }
  2582. }
  2583. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2584. // we have to evaluate at least 1 token to generate logits.
  2585. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2586. slot.n_past--;
  2587. }
  2588. slot.n_prompt_tokens_processed = 0;
  2589. }
  2590. // non-causal tasks require to fit the entire prompt in the physical batch
  2591. if (slot.is_non_causal()) {
  2592. // cannot fit the prompt in the current batch - will try next iter
  2593. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2594. continue;
  2595. }
  2596. }
  2597. // keep only the common part
  2598. if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2599. // could not partially delete (likely using a non-Transformer model)
  2600. llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
  2601. // there is no common part left
  2602. slot.n_past = 0;
  2603. }
  2604. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2605. // remove the non-common part from the cache
  2606. slot.cache_tokens.resize(slot.n_past);
  2607. // add prompt tokens for processing in the current batch
  2608. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2609. // without pooling, we want to output the embeddings for all the tokens in the batch
  2610. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2611. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2612. if (slot.params.cache_prompt) {
  2613. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2614. }
  2615. slot.n_prompt_tokens_processed++;
  2616. slot.n_past++;
  2617. }
  2618. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2619. // entire prompt has been processed
  2620. if (slot.n_past == slot.n_prompt_tokens) {
  2621. slot.state = SLOT_STATE_DONE_PROMPT;
  2622. GGML_ASSERT(batch.n_tokens > 0);
  2623. common_sampler_reset(slot.smpl);
  2624. // Process all prompt tokens through sampler system
  2625. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2626. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2627. }
  2628. // extract the logits only for the last token
  2629. batch.logits[batch.n_tokens - 1] = true;
  2630. slot.n_decoded = 0;
  2631. slot.i_batch = batch.n_tokens - 1;
  2632. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2633. }
  2634. }
  2635. if (batch.n_tokens >= n_batch) {
  2636. break;
  2637. }
  2638. }
  2639. }
  2640. if (batch.n_tokens == 0) {
  2641. SRV_WRN("%s", "no tokens to decode\n");
  2642. return;
  2643. }
  2644. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2645. if (slot_batched) {
  2646. // make sure we're in the right embedding mode
  2647. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2648. // apply lora, only need to do it once per batch
  2649. common_set_adapter_lora(ctx, slot_batched->lora);
  2650. }
  2651. // process the created batch of tokens
  2652. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2653. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2654. llama_batch batch_view = {
  2655. n_tokens,
  2656. batch.token + i,
  2657. nullptr,
  2658. batch.pos + i,
  2659. batch.n_seq_id + i,
  2660. batch.seq_id + i,
  2661. batch.logits + i,
  2662. };
  2663. const int ret = llama_decode(ctx, batch_view);
  2664. metrics.on_decoded(slots);
  2665. if (ret != 0) {
  2666. if (n_batch == 1 || ret < 0) {
  2667. // if you get here, it means the KV cache is full - try increasing it via the context size
  2668. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2669. for (auto & slot : slots) {
  2670. slot.release();
  2671. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2672. }
  2673. break; // break loop of n_batch
  2674. }
  2675. // retry with half the batch size to try to find a free slot in the KV cache
  2676. n_batch /= 2;
  2677. i -= n_batch;
  2678. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2679. continue; // continue loop of n_batch
  2680. }
  2681. for (auto & slot : slots) {
  2682. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2683. continue; // continue loop of slots
  2684. }
  2685. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2686. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2687. // prompt evaluated for embedding
  2688. send_embedding(slot, batch_view);
  2689. slot.release();
  2690. slot.i_batch = -1;
  2691. continue; // continue loop of slots
  2692. }
  2693. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2694. send_rerank(slot, batch_view);
  2695. slot.release();
  2696. slot.i_batch = -1;
  2697. continue; // continue loop of slots
  2698. }
  2699. // prompt evaluated for next-token prediction
  2700. slot.state = SLOT_STATE_GENERATING;
  2701. } else if (slot.state != SLOT_STATE_GENERATING) {
  2702. continue; // continue loop of slots
  2703. }
  2704. const int tok_idx = slot.i_batch - i;
  2705. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2706. slot.i_batch = -1;
  2707. common_sampler_accept(slot.smpl, id, true);
  2708. slot.n_decoded += 1;
  2709. const int64_t t_current = ggml_time_us();
  2710. if (slot.n_decoded == 1) {
  2711. slot.t_start_generation = t_current;
  2712. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2713. metrics.on_prompt_eval(slot);
  2714. }
  2715. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2716. completion_token_output result;
  2717. result.tok = id;
  2718. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2719. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2720. if (slot.params.sampling.n_probs > 0) {
  2721. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2722. }
  2723. if (!process_token(result, slot)) {
  2724. // release slot because of stop condition
  2725. slot.release();
  2726. slot.print_timings();
  2727. send_final_response(slot);
  2728. metrics.on_prediction(slot);
  2729. continue;
  2730. }
  2731. }
  2732. // do speculative decoding
  2733. for (auto & slot : slots) {
  2734. if (!slot.is_processing() || !slot.can_speculate()) {
  2735. continue;
  2736. }
  2737. if (slot.state != SLOT_STATE_GENERATING) {
  2738. continue;
  2739. }
  2740. // determine the max draft that fits the current slot state
  2741. int n_draft_max = slot.params.speculative.n_max;
  2742. // note: n_past is not yet increased for the `id` token sampled above
  2743. // also, need to leave space for 1 extra token to allow context shifts
  2744. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2745. if (slot.n_remaining > 0) {
  2746. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2747. }
  2748. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2749. if (n_draft_max < slot.params.speculative.n_min) {
  2750. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2751. continue;
  2752. }
  2753. llama_token id = slot.sampled;
  2754. struct common_speculative_params params_spec;
  2755. params_spec.n_draft = n_draft_max;
  2756. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2757. params_spec.p_min = slot.params.speculative.p_min;
  2758. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2759. // keep track of total number of tokens generated in the draft
  2760. slot.n_draft_total += draft.size();
  2761. // ignore small drafts
  2762. if (slot.params.speculative.n_min > (int) draft.size()) {
  2763. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2764. continue;
  2765. }
  2766. // construct the speculation batch
  2767. common_batch_clear(slot.batch_spec);
  2768. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2769. for (size_t i = 0; i < draft.size(); ++i) {
  2770. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2771. }
  2772. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2773. llama_decode(ctx, slot.batch_spec);
  2774. // the accepted tokens from the speculation
  2775. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2776. slot.n_past += ids.size();
  2777. slot.n_decoded += ids.size();
  2778. // update how many tokens out of draft was accepted
  2779. slot.n_draft_accepted += ids.size() - 1;
  2780. slot.cache_tokens.push_back(id);
  2781. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2782. llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
  2783. for (size_t i = 0; i < ids.size(); ++i) {
  2784. completion_token_output result;
  2785. result.tok = ids[i];
  2786. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2787. result.prob = 1.0f; // set later
  2788. // TODO: set result.probs
  2789. if (!process_token(result, slot)) {
  2790. // release slot because of stop condition
  2791. slot.release();
  2792. slot.print_timings();
  2793. send_final_response(slot);
  2794. metrics.on_prediction(slot);
  2795. break;
  2796. }
  2797. }
  2798. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2799. }
  2800. }
  2801. SRV_DBG("%s", "run slots completed\n");
  2802. }
  2803. json model_meta() const {
  2804. return json {
  2805. {"vocab_type", llama_vocab_type (vocab)},
  2806. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2807. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2808. {"n_embd", llama_model_n_embd (model)},
  2809. {"n_params", llama_model_n_params (model)},
  2810. {"size", llama_model_size (model)},
  2811. };
  2812. }
  2813. };
  2814. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2815. // skip GH copilot requests when using default port
  2816. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2817. return;
  2818. }
  2819. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2820. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2821. SRV_DBG("request: %s\n", req.body.c_str());
  2822. SRV_DBG("response: %s\n", res.body.c_str());
  2823. }
  2824. std::function<void(int)> shutdown_handler;
  2825. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2826. inline void signal_handler(int signal) {
  2827. if (is_terminating.test_and_set()) {
  2828. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2829. // this is for better developer experience, we can remove when the server is stable enough
  2830. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2831. exit(1);
  2832. }
  2833. shutdown_handler(signal);
  2834. }
  2835. int main(int argc, char ** argv) {
  2836. // own arguments required by this example
  2837. common_params params;
  2838. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2839. return 1;
  2840. }
  2841. common_init();
  2842. // struct that contains llama context and inference
  2843. server_context ctx_server;
  2844. llama_backend_init();
  2845. llama_numa_init(params.numa);
  2846. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2847. LOG_INF("\n");
  2848. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2849. LOG_INF("\n");
  2850. std::unique_ptr<httplib::Server> svr;
  2851. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2852. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2853. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2854. svr.reset(
  2855. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2856. );
  2857. } else {
  2858. LOG_INF("Running without SSL\n");
  2859. svr.reset(new httplib::Server());
  2860. }
  2861. #else
  2862. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2863. LOG_ERR("Server is built without SSL support\n");
  2864. return 1;
  2865. }
  2866. svr.reset(new httplib::Server());
  2867. #endif
  2868. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2869. svr->set_default_headers({{"Server", "llama.cpp"}});
  2870. svr->set_logger(log_server_request);
  2871. auto res_error = [](httplib::Response & res, const json & error_data) {
  2872. json final_response {{"error", error_data}};
  2873. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2874. res.status = json_value(error_data, "code", 500);
  2875. };
  2876. auto res_ok = [](httplib::Response & res, const json & data) {
  2877. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2878. res.status = 200;
  2879. };
  2880. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2881. std::string message;
  2882. try {
  2883. std::rethrow_exception(ep);
  2884. } catch (const std::exception & e) {
  2885. message = e.what();
  2886. } catch (...) {
  2887. message = "Unknown Exception";
  2888. }
  2889. try {
  2890. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2891. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2892. res_error(res, formatted_error);
  2893. } catch (const std::exception & e) {
  2894. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  2895. }
  2896. });
  2897. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2898. if (res.status == 404) {
  2899. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2900. }
  2901. // for other error codes, we skip processing here because it's already done by res_error()
  2902. });
  2903. // set timeouts and change hostname and port
  2904. svr->set_read_timeout (params.timeout_read);
  2905. svr->set_write_timeout(params.timeout_write);
  2906. std::unordered_map<std::string, std::string> log_data;
  2907. log_data["hostname"] = params.hostname;
  2908. log_data["port"] = std::to_string(params.port);
  2909. if (params.api_keys.size() == 1) {
  2910. auto key = params.api_keys[0];
  2911. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2912. } else if (params.api_keys.size() > 1) {
  2913. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2914. }
  2915. // Necessary similarity of prompt for slot selection
  2916. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2917. //
  2918. // Middlewares
  2919. //
  2920. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2921. static const std::unordered_set<std::string> public_endpoints = {
  2922. "/health",
  2923. "/models",
  2924. "/v1/models",
  2925. };
  2926. // If API key is not set, skip validation
  2927. if (params.api_keys.empty()) {
  2928. return true;
  2929. }
  2930. // If path is public or is static file, skip validation
  2931. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2932. return true;
  2933. }
  2934. // Check for API key in the header
  2935. auto auth_header = req.get_header_value("Authorization");
  2936. std::string prefix = "Bearer ";
  2937. if (auth_header.substr(0, prefix.size()) == prefix) {
  2938. std::string received_api_key = auth_header.substr(prefix.size());
  2939. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2940. return true; // API key is valid
  2941. }
  2942. }
  2943. // API key is invalid or not provided
  2944. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2945. LOG_WRN("Unauthorized: Invalid API Key\n");
  2946. return false;
  2947. };
  2948. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2949. server_state current_state = state.load();
  2950. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2951. auto tmp = string_split<std::string>(req.path, '.');
  2952. if (req.path == "/" || tmp.back() == "html") {
  2953. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2954. res.status = 503;
  2955. } else {
  2956. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2957. }
  2958. return false;
  2959. }
  2960. return true;
  2961. };
  2962. // register server middlewares
  2963. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2964. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2965. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2966. if (req.method == "OPTIONS") {
  2967. res.set_header("Access-Control-Allow-Credentials", "true");
  2968. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2969. res.set_header("Access-Control-Allow-Headers", "*");
  2970. res.set_content("", "text/html"); // blank response, no data
  2971. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2972. }
  2973. if (!middleware_server_state(req, res)) {
  2974. return httplib::Server::HandlerResponse::Handled;
  2975. }
  2976. if (!middleware_validate_api_key(req, res)) {
  2977. return httplib::Server::HandlerResponse::Handled;
  2978. }
  2979. return httplib::Server::HandlerResponse::Unhandled;
  2980. });
  2981. //
  2982. // Route handlers (or controllers)
  2983. //
  2984. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2985. // error and loading states are handled by middleware
  2986. json health = {{"status", "ok"}};
  2987. res_ok(res, health);
  2988. };
  2989. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2990. if (!params.endpoint_slots) {
  2991. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2992. return;
  2993. }
  2994. // request slots data using task queue
  2995. int task_id = ctx_server.queue_tasks.get_new_id();
  2996. {
  2997. server_task task(SERVER_TASK_TYPE_METRICS);
  2998. task.id = task_id;
  2999. ctx_server.queue_results.add_waiting_task_id(task_id);
  3000. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3001. }
  3002. // get the result
  3003. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3004. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3005. if (result->is_error()) {
  3006. res_error(res, result->to_json());
  3007. return;
  3008. }
  3009. // TODO: get rid of this dynamic_cast
  3010. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3011. GGML_ASSERT(res_metrics != nullptr);
  3012. // optionally return "fail_on_no_slot" error
  3013. if (req.has_param("fail_on_no_slot")) {
  3014. if (res_metrics->n_idle_slots == 0) {
  3015. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3016. return;
  3017. }
  3018. }
  3019. res_ok(res, res_metrics->slots_data);
  3020. };
  3021. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3022. if (!params.endpoint_metrics) {
  3023. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3024. return;
  3025. }
  3026. // request slots data using task queue
  3027. int task_id = ctx_server.queue_tasks.get_new_id();
  3028. {
  3029. server_task task(SERVER_TASK_TYPE_METRICS);
  3030. task.id = task_id;
  3031. ctx_server.queue_results.add_waiting_task_id(task_id);
  3032. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3033. }
  3034. // get the result
  3035. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3036. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3037. if (result->is_error()) {
  3038. res_error(res, result->to_json());
  3039. return;
  3040. }
  3041. // TODO: get rid of this dynamic_cast
  3042. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3043. GGML_ASSERT(res_metrics != nullptr);
  3044. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3045. json all_metrics_def = json {
  3046. {"counter", {{
  3047. {"name", "prompt_tokens_total"},
  3048. {"help", "Number of prompt tokens processed."},
  3049. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3050. }, {
  3051. {"name", "prompt_seconds_total"},
  3052. {"help", "Prompt process time"},
  3053. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3054. }, {
  3055. {"name", "tokens_predicted_total"},
  3056. {"help", "Number of generation tokens processed."},
  3057. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3058. }, {
  3059. {"name", "tokens_predicted_seconds_total"},
  3060. {"help", "Predict process time"},
  3061. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3062. }, {
  3063. {"name", "n_decode_total"},
  3064. {"help", "Total number of llama_decode() calls"},
  3065. {"value", res_metrics->n_decode_total}
  3066. }, {
  3067. {"name", "n_busy_slots_per_decode"},
  3068. {"help", "Average number of busy slots per llama_decode() call"},
  3069. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3070. }}},
  3071. {"gauge", {{
  3072. {"name", "prompt_tokens_seconds"},
  3073. {"help", "Average prompt throughput in tokens/s."},
  3074. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3075. },{
  3076. {"name", "predicted_tokens_seconds"},
  3077. {"help", "Average generation throughput in tokens/s."},
  3078. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3079. },{
  3080. {"name", "kv_cache_usage_ratio"},
  3081. {"help", "KV-cache usage. 1 means 100 percent usage."},
  3082. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  3083. },{
  3084. {"name", "kv_cache_tokens"},
  3085. {"help", "KV-cache tokens."},
  3086. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  3087. },{
  3088. {"name", "requests_processing"},
  3089. {"help", "Number of requests processing."},
  3090. {"value", (uint64_t) res_metrics->n_processing_slots}
  3091. },{
  3092. {"name", "requests_deferred"},
  3093. {"help", "Number of requests deferred."},
  3094. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3095. }}}
  3096. };
  3097. std::stringstream prometheus;
  3098. for (const auto & el : all_metrics_def.items()) {
  3099. const auto & type = el.key();
  3100. const auto & metrics_def = el.value();
  3101. for (const auto & metric_def : metrics_def) {
  3102. const std::string name = metric_def.at("name");
  3103. const std::string help = metric_def.at("help");
  3104. auto value = json_value(metric_def, "value", 0.);
  3105. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3106. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3107. << "llamacpp:" << name << " " << value << "\n";
  3108. }
  3109. }
  3110. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3111. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3112. res.status = 200; // HTTP OK
  3113. };
  3114. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3115. json request_data = json::parse(req.body);
  3116. std::string filename = request_data.at("filename");
  3117. if (!fs_validate_filename(filename)) {
  3118. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3119. return;
  3120. }
  3121. std::string filepath = params.slot_save_path + filename;
  3122. int task_id = ctx_server.queue_tasks.get_new_id();
  3123. {
  3124. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3125. task.id = task_id;
  3126. task.slot_action.slot_id = id_slot;
  3127. task.slot_action.filename = filename;
  3128. task.slot_action.filepath = filepath;
  3129. ctx_server.queue_results.add_waiting_task_id(task_id);
  3130. ctx_server.queue_tasks.post(std::move(task));
  3131. }
  3132. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3133. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3134. if (result->is_error()) {
  3135. res_error(res, result->to_json());
  3136. return;
  3137. }
  3138. res_ok(res, result->to_json());
  3139. };
  3140. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3141. json request_data = json::parse(req.body);
  3142. std::string filename = request_data.at("filename");
  3143. if (!fs_validate_filename(filename)) {
  3144. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3145. return;
  3146. }
  3147. std::string filepath = params.slot_save_path + filename;
  3148. int task_id = ctx_server.queue_tasks.get_new_id();
  3149. {
  3150. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3151. task.id = task_id;
  3152. task.slot_action.slot_id = id_slot;
  3153. task.slot_action.filename = filename;
  3154. task.slot_action.filepath = filepath;
  3155. ctx_server.queue_results.add_waiting_task_id(task_id);
  3156. ctx_server.queue_tasks.post(std::move(task));
  3157. }
  3158. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3159. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3160. if (result->is_error()) {
  3161. res_error(res, result->to_json());
  3162. return;
  3163. }
  3164. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3165. res_ok(res, result->to_json());
  3166. };
  3167. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3168. int task_id = ctx_server.queue_tasks.get_new_id();
  3169. {
  3170. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3171. task.id = task_id;
  3172. task.slot_action.slot_id = id_slot;
  3173. ctx_server.queue_results.add_waiting_task_id(task_id);
  3174. ctx_server.queue_tasks.post(std::move(task));
  3175. }
  3176. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3177. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3178. if (result->is_error()) {
  3179. res_error(res, result->to_json());
  3180. return;
  3181. }
  3182. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3183. res_ok(res, result->to_json());
  3184. };
  3185. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3186. if (params.slot_save_path.empty()) {
  3187. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3188. return;
  3189. }
  3190. std::string id_slot_str = req.path_params.at("id_slot");
  3191. int id_slot;
  3192. try {
  3193. id_slot = std::stoi(id_slot_str);
  3194. } catch (const std::exception &) {
  3195. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3196. return;
  3197. }
  3198. std::string action = req.get_param_value("action");
  3199. if (action == "save") {
  3200. handle_slots_save(req, res, id_slot);
  3201. } else if (action == "restore") {
  3202. handle_slots_restore(req, res, id_slot);
  3203. } else if (action == "erase") {
  3204. handle_slots_erase(req, res, id_slot);
  3205. } else {
  3206. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3207. }
  3208. };
  3209. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3210. // this endpoint is publicly available, please only return what is safe to be exposed
  3211. json data = {
  3212. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3213. { "total_slots", ctx_server.params_base.n_parallel },
  3214. { "model_path", ctx_server.params_base.model.path },
  3215. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3216. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3217. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3218. { "build_info", build_info },
  3219. };
  3220. if (ctx_server.params_base.use_jinja) {
  3221. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3222. data["chat_template_tool_use"] = tool_use_src;
  3223. }
  3224. }
  3225. res_ok(res, data);
  3226. };
  3227. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3228. if (!ctx_server.params_base.endpoint_props) {
  3229. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3230. return;
  3231. }
  3232. json data = json::parse(req.body);
  3233. // update any props here
  3234. res_ok(res, {{ "success", true }});
  3235. };
  3236. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3237. json data = {
  3238. {
  3239. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3240. },
  3241. {
  3242. "model_info", {
  3243. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3244. }
  3245. },
  3246. };
  3247. res_ok(res, data);
  3248. };
  3249. // handle completion-like requests (completion, chat, infill)
  3250. // we can optionally provide a custom format for partial results and final results
  3251. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3252. server_task_type type,
  3253. json & data,
  3254. std::function<bool()> is_connection_closed,
  3255. httplib::Response & res,
  3256. oaicompat_type oaicompat) {
  3257. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3258. if (ctx_server.params_base.embedding) {
  3259. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3260. return;
  3261. }
  3262. auto completion_id = gen_chatcmplid();
  3263. std::unordered_set<int> task_ids;
  3264. try {
  3265. std::vector<server_task> tasks;
  3266. const auto & prompt = data.at("prompt");
  3267. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3268. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3269. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3270. tasks.reserve(tokenized_prompts.size());
  3271. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3272. server_task task = server_task(type);
  3273. task.id = ctx_server.queue_tasks.get_new_id();
  3274. task.index = i;
  3275. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3276. task.params = server_task::params_from_json_cmpl(
  3277. ctx_server.ctx,
  3278. ctx_server.params_base,
  3279. data);
  3280. task.id_selected_slot = json_value(data, "id_slot", -1);
  3281. // OAI-compat
  3282. task.params.oaicompat = oaicompat;
  3283. task.params.oaicompat_cmpl_id = completion_id;
  3284. // oaicompat_model is already populated by params_from_json_cmpl
  3285. tasks.push_back(std::move(task));
  3286. }
  3287. task_ids = server_task::get_list_id(tasks);
  3288. ctx_server.queue_results.add_waiting_tasks(tasks);
  3289. ctx_server.queue_tasks.post(std::move(tasks));
  3290. } catch (const std::exception & e) {
  3291. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3292. return;
  3293. }
  3294. bool stream = json_value(data, "stream", false);
  3295. if (!stream) {
  3296. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3297. if (results.size() == 1) {
  3298. // single result
  3299. res_ok(res, results[0]->to_json());
  3300. } else {
  3301. // multiple results (multitask)
  3302. json arr = json::array();
  3303. for (auto & res : results) {
  3304. arr.push_back(res->to_json());
  3305. }
  3306. res_ok(res, arr);
  3307. }
  3308. }, [&](const json & error_data) {
  3309. res_error(res, error_data);
  3310. }, is_connection_closed);
  3311. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3312. } else {
  3313. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3314. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3315. json res_json = result->to_json();
  3316. if (res_json.is_array()) {
  3317. for (const auto & res : res_json) {
  3318. if (!server_sent_event(sink, "data", res)) {
  3319. // sending failed (HTTP connection closed), cancel the generation
  3320. return false;
  3321. }
  3322. }
  3323. return true;
  3324. } else {
  3325. return server_sent_event(sink, "data", res_json);
  3326. }
  3327. }, [&](const json & error_data) {
  3328. server_sent_event(sink, "error", error_data);
  3329. }, [&sink]() {
  3330. // note: do not use req.is_connection_closed here because req is already destroyed
  3331. return !sink.is_writable();
  3332. });
  3333. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3334. static const std::string ev_done = "data: [DONE]\n\n";
  3335. sink.write(ev_done.data(), ev_done.size());
  3336. }
  3337. sink.done();
  3338. return false;
  3339. };
  3340. auto on_complete = [task_ids, &ctx_server] (bool) {
  3341. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3342. };
  3343. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3344. }
  3345. };
  3346. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3347. json data = json::parse(req.body);
  3348. return handle_completions_impl(
  3349. SERVER_TASK_TYPE_COMPLETION,
  3350. data,
  3351. req.is_connection_closed,
  3352. res,
  3353. OAICOMPAT_TYPE_NONE);
  3354. };
  3355. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3356. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3357. return handle_completions_impl(
  3358. SERVER_TASK_TYPE_COMPLETION,
  3359. data,
  3360. req.is_connection_closed,
  3361. res,
  3362. OAICOMPAT_TYPE_COMPLETION);
  3363. };
  3364. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3365. // check model compatibility
  3366. std::string err;
  3367. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3368. err += "prefix token is missing. ";
  3369. }
  3370. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3371. err += "suffix token is missing. ";
  3372. }
  3373. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3374. err += "middle token is missing. ";
  3375. }
  3376. if (!err.empty()) {
  3377. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3378. return;
  3379. }
  3380. json data = json::parse(req.body);
  3381. // validate input
  3382. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3383. // prompt is optional
  3384. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3385. }
  3386. if (!data.contains("input_prefix")) {
  3387. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3388. }
  3389. if (!data.contains("input_suffix")) {
  3390. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3391. }
  3392. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3393. // input_extra is optional
  3394. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3395. return;
  3396. }
  3397. json input_extra = json_value(data, "input_extra", json::array());
  3398. for (const auto & chunk : input_extra) {
  3399. // { "text": string, "filename": string }
  3400. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3401. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3402. return;
  3403. }
  3404. // filename is optional
  3405. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3406. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3407. return;
  3408. }
  3409. }
  3410. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3411. std::string prompt = json_value(data, "prompt", std::string());
  3412. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3413. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3414. data["prompt"] = format_infill(
  3415. ctx_server.vocab,
  3416. data.at("input_prefix"),
  3417. data.at("input_suffix"),
  3418. data.at("input_extra"),
  3419. ctx_server.params_base.n_batch,
  3420. ctx_server.params_base.n_predict,
  3421. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3422. ctx_server.params_base.spm_infill,
  3423. tokenized_prompts[0]
  3424. );
  3425. return handle_completions_impl(
  3426. SERVER_TASK_TYPE_INFILL,
  3427. data,
  3428. req.is_connection_closed,
  3429. res,
  3430. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3431. };
  3432. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3433. LOG_DBG("request: %s\n", req.body.c_str());
  3434. if (ctx_server.params_base.embedding) {
  3435. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3436. return;
  3437. }
  3438. auto body = json::parse(req.body);
  3439. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3440. return handle_completions_impl(
  3441. SERVER_TASK_TYPE_COMPLETION,
  3442. data,
  3443. req.is_connection_closed,
  3444. res,
  3445. OAICOMPAT_TYPE_CHAT);
  3446. };
  3447. // same with handle_chat_completions, but without inference part
  3448. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3449. auto body = json::parse(req.body);
  3450. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3451. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3452. };
  3453. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3454. json models = {
  3455. {"object", "list"},
  3456. {"data", {
  3457. {
  3458. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3459. {"object", "model"},
  3460. {"created", std::time(0)},
  3461. {"owned_by", "llamacpp"},
  3462. {"meta", ctx_server.model_meta()}
  3463. },
  3464. }}
  3465. };
  3466. res_ok(res, models);
  3467. };
  3468. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3469. const json body = json::parse(req.body);
  3470. json tokens_response = json::array();
  3471. if (body.count("content") != 0) {
  3472. const bool add_special = json_value(body, "add_special", false);
  3473. const bool with_pieces = json_value(body, "with_pieces", false);
  3474. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3475. if (with_pieces) {
  3476. for (const auto& token : tokens) {
  3477. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3478. json piece_json;
  3479. // Check if the piece is valid UTF-8
  3480. if (is_valid_utf8(piece)) {
  3481. piece_json = piece;
  3482. } else {
  3483. // If not valid UTF-8, store as array of byte values
  3484. piece_json = json::array();
  3485. for (unsigned char c : piece) {
  3486. piece_json.push_back(static_cast<int>(c));
  3487. }
  3488. }
  3489. tokens_response.push_back({
  3490. {"id", token},
  3491. {"piece", piece_json}
  3492. });
  3493. }
  3494. } else {
  3495. tokens_response = tokens;
  3496. }
  3497. }
  3498. const json data = format_tokenizer_response(tokens_response);
  3499. res_ok(res, data);
  3500. };
  3501. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3502. const json body = json::parse(req.body);
  3503. std::string content;
  3504. if (body.count("tokens") != 0) {
  3505. const llama_tokens tokens = body.at("tokens");
  3506. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3507. }
  3508. const json data = format_detokenized_response(content);
  3509. res_ok(res, data);
  3510. };
  3511. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3512. const json body = json::parse(req.body);
  3513. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3514. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3515. return;
  3516. }
  3517. // for the shape of input/content, see tokenize_input_prompts()
  3518. json prompt;
  3519. if (body.count("input") != 0) {
  3520. prompt = body.at("input");
  3521. } else if (body.contains("content")) {
  3522. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3523. prompt = body.at("content");
  3524. } else {
  3525. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3526. return;
  3527. }
  3528. bool use_base64 = false;
  3529. if (body.count("encoding_format") != 0) {
  3530. const std::string& format = body.at("encoding_format");
  3531. if (format == "base64") {
  3532. use_base64 = true;
  3533. } else if (format != "float") {
  3534. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3535. return;
  3536. }
  3537. }
  3538. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3539. for (const auto & tokens : tokenized_prompts) {
  3540. // this check is necessary for models that do not add BOS token to the input
  3541. if (tokens.empty()) {
  3542. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3543. return;
  3544. }
  3545. }
  3546. // create and queue the task
  3547. json responses = json::array();
  3548. bool error = false;
  3549. std::unordered_set<int> task_ids;
  3550. {
  3551. std::vector<server_task> tasks;
  3552. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3553. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3554. task.id = ctx_server.queue_tasks.get_new_id();
  3555. task.index = i;
  3556. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3557. // OAI-compat
  3558. task.params.oaicompat = oaicompat;
  3559. tasks.push_back(std::move(task));
  3560. }
  3561. task_ids = server_task::get_list_id(tasks);
  3562. ctx_server.queue_results.add_waiting_tasks(tasks);
  3563. ctx_server.queue_tasks.post(std::move(tasks));
  3564. }
  3565. // get the result
  3566. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3567. for (auto & res : results) {
  3568. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3569. responses.push_back(res->to_json());
  3570. }
  3571. }, [&](const json & error_data) {
  3572. res_error(res, error_data);
  3573. error = true;
  3574. }, req.is_connection_closed);
  3575. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3576. if (error) {
  3577. return;
  3578. }
  3579. // write JSON response
  3580. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3581. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3582. : json(responses);
  3583. res_ok(res, root);
  3584. };
  3585. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3586. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3587. };
  3588. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3589. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3590. };
  3591. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3592. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3593. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3594. return;
  3595. }
  3596. const json body = json::parse(req.body);
  3597. // TODO: implement
  3598. //int top_n = 1;
  3599. //if (body.count("top_n") != 1) {
  3600. // top_n = body.at("top_n");
  3601. //} else {
  3602. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3603. // return;
  3604. //}
  3605. // if true, use TEI API format, otherwise use Jina API format
  3606. // Jina: https://jina.ai/reranker/
  3607. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3608. bool is_tei_format = body.contains("texts");
  3609. json query;
  3610. if (body.count("query") == 1) {
  3611. query = body.at("query");
  3612. if (!query.is_string()) {
  3613. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3614. return;
  3615. }
  3616. } else {
  3617. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3618. return;
  3619. }
  3620. std::vector<std::string> documents = json_value(body, "documents",
  3621. json_value(body, "texts", std::vector<std::string>()));
  3622. if (documents.empty()) {
  3623. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3624. return;
  3625. }
  3626. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3627. // create and queue the task
  3628. json responses = json::array();
  3629. bool error = false;
  3630. std::unordered_set<int> task_ids;
  3631. {
  3632. std::vector<server_task> tasks;
  3633. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3634. tasks.reserve(tokenized_docs.size());
  3635. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3636. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3637. task.id = ctx_server.queue_tasks.get_new_id();
  3638. task.index = i;
  3639. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3640. tasks.push_back(std::move(task));
  3641. }
  3642. task_ids = server_task::get_list_id(tasks);
  3643. ctx_server.queue_results.add_waiting_tasks(tasks);
  3644. ctx_server.queue_tasks.post(std::move(tasks));
  3645. }
  3646. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3647. for (auto & res : results) {
  3648. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3649. responses.push_back(res->to_json());
  3650. }
  3651. }, [&](const json & error_data) {
  3652. res_error(res, error_data);
  3653. error = true;
  3654. }, req.is_connection_closed);
  3655. if (error) {
  3656. return;
  3657. }
  3658. // write JSON response
  3659. json root = format_response_rerank(
  3660. body,
  3661. responses,
  3662. is_tei_format,
  3663. documents);
  3664. res_ok(res, root);
  3665. };
  3666. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3667. json result = json::array();
  3668. const auto & loras = ctx_server.params_base.lora_adapters;
  3669. for (size_t i = 0; i < loras.size(); ++i) {
  3670. auto & lora = loras[i];
  3671. result.push_back({
  3672. {"id", i},
  3673. {"path", lora.path},
  3674. {"scale", lora.scale},
  3675. });
  3676. }
  3677. res_ok(res, result);
  3678. res.status = 200; // HTTP OK
  3679. };
  3680. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3681. const json body = json::parse(req.body);
  3682. if (!body.is_array()) {
  3683. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3684. return;
  3685. }
  3686. int task_id = ctx_server.queue_tasks.get_new_id();
  3687. {
  3688. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3689. task.id = task_id;
  3690. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3691. ctx_server.queue_results.add_waiting_task_id(task_id);
  3692. ctx_server.queue_tasks.post(std::move(task));
  3693. }
  3694. // get the result
  3695. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3696. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3697. if (result->is_error()) {
  3698. res_error(res, result->to_json());
  3699. return;
  3700. }
  3701. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3702. res_ok(res, result->to_json());
  3703. };
  3704. //
  3705. // Router
  3706. //
  3707. if (!params.webui) {
  3708. LOG_INF("Web UI is disabled\n");
  3709. } else {
  3710. // register static assets routes
  3711. if (!params.public_path.empty()) {
  3712. // Set the base directory for serving static files
  3713. bool is_found = svr->set_mount_point("/", params.public_path);
  3714. if (!is_found) {
  3715. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3716. return 1;
  3717. }
  3718. } else {
  3719. // using embedded static index.html
  3720. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3721. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3722. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3723. } else {
  3724. res.set_header("Content-Encoding", "gzip");
  3725. // COEP and COOP headers, required by pyodide (python interpreter)
  3726. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  3727. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  3728. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3729. }
  3730. return false;
  3731. });
  3732. }
  3733. }
  3734. // register API routes
  3735. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3736. svr->Get ("/metrics", handle_metrics);
  3737. svr->Get ("/props", handle_props);
  3738. svr->Post("/props", handle_props_change);
  3739. svr->Post("/api/show", handle_api_show);
  3740. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3741. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3742. svr->Post("/completion", handle_completions); // legacy
  3743. svr->Post("/completions", handle_completions);
  3744. svr->Post("/v1/completions", handle_completions_oai);
  3745. svr->Post("/chat/completions", handle_chat_completions);
  3746. svr->Post("/v1/chat/completions", handle_chat_completions);
  3747. svr->Post("/infill", handle_infill);
  3748. svr->Post("/embedding", handle_embeddings); // legacy
  3749. svr->Post("/embeddings", handle_embeddings);
  3750. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3751. svr->Post("/rerank", handle_rerank);
  3752. svr->Post("/reranking", handle_rerank);
  3753. svr->Post("/v1/rerank", handle_rerank);
  3754. svr->Post("/v1/reranking", handle_rerank);
  3755. svr->Post("/tokenize", handle_tokenize);
  3756. svr->Post("/detokenize", handle_detokenize);
  3757. svr->Post("/apply-template", handle_apply_template);
  3758. // LoRA adapters hotswap
  3759. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3760. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3761. // Save & load slots
  3762. svr->Get ("/slots", handle_slots);
  3763. svr->Post("/slots/:id_slot", handle_slots_action);
  3764. //
  3765. // Start the server
  3766. //
  3767. if (params.n_threads_http < 1) {
  3768. // +2 threads for monitoring endpoints
  3769. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3770. }
  3771. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3772. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3773. // clean up function, to be called before exit
  3774. auto clean_up = [&svr, &ctx_server]() {
  3775. SRV_INF("%s: cleaning up before exit...\n", __func__);
  3776. svr->stop();
  3777. ctx_server.queue_results.terminate();
  3778. llama_backend_free();
  3779. };
  3780. bool was_bound = false;
  3781. if (string_ends_with(std::string(params.hostname), ".sock")) {
  3782. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  3783. svr->set_address_family(AF_UNIX);
  3784. // bind_to_port requires a second arg, any value other than 0 should
  3785. // simply get ignored
  3786. was_bound = svr->bind_to_port(params.hostname, 8080);
  3787. } else {
  3788. LOG_INF("%s: binding port with default address family\n", __func__);
  3789. // bind HTTP listen port
  3790. if (params.port == 0) {
  3791. int bound_port = svr->bind_to_any_port(params.hostname);
  3792. if ((was_bound = (bound_port >= 0))) {
  3793. params.port = bound_port;
  3794. }
  3795. } else {
  3796. was_bound = svr->bind_to_port(params.hostname, params.port);
  3797. }
  3798. }
  3799. if (!was_bound) {
  3800. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3801. clean_up();
  3802. return 1;
  3803. }
  3804. // run the HTTP server in a thread
  3805. std::thread t([&]() { svr->listen_after_bind(); });
  3806. svr->wait_until_ready();
  3807. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3808. // load the model
  3809. LOG_INF("%s: loading model\n", __func__);
  3810. if (!ctx_server.load_model(params)) {
  3811. clean_up();
  3812. t.join();
  3813. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3814. return 1;
  3815. }
  3816. ctx_server.init();
  3817. state.store(SERVER_STATE_READY);
  3818. LOG_INF("%s: model loaded\n", __func__);
  3819. // print sample chat example to make it clear which template is used
  3820. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3821. common_chat_templates_source(ctx_server.chat_templates.get()),
  3822. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  3823. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  3824. ctx_server.process_single_task(std::move(task));
  3825. });
  3826. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3827. ctx_server.update_slots();
  3828. });
  3829. shutdown_handler = [&](int) {
  3830. // this will unblock start_loop()
  3831. ctx_server.queue_tasks.terminate();
  3832. };
  3833. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3834. struct sigaction sigint_action;
  3835. sigint_action.sa_handler = signal_handler;
  3836. sigemptyset (&sigint_action.sa_mask);
  3837. sigint_action.sa_flags = 0;
  3838. sigaction(SIGINT, &sigint_action, NULL);
  3839. sigaction(SIGTERM, &sigint_action, NULL);
  3840. #elif defined (_WIN32)
  3841. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3842. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3843. };
  3844. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3845. #endif
  3846. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3847. // this call blocks the main thread until queue_tasks.terminate() is called
  3848. ctx_server.queue_tasks.start_loop();
  3849. clean_up();
  3850. t.join();
  3851. return 0;
  3852. }