ggml.c 762 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. #if QK_K == 64
  790. .blck_size = QK4_NL,
  791. #else
  792. .blck_size = QK_K,
  793. #endif
  794. .type_size = sizeof(block_iq4_xs),
  795. .is_quantized = true,
  796. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  797. .from_float = quantize_row_iq4_xs,
  798. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  799. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  800. #if QK_K == 64
  801. .vec_dot_type = GGML_TYPE_Q8_0,
  802. #else
  803. .vec_dot_type = GGML_TYPE_Q8_K,
  804. #endif
  805. .nrows = 1,
  806. },
  807. [GGML_TYPE_Q8_K] = {
  808. .type_name = "q8_K",
  809. .blck_size = QK_K,
  810. .type_size = sizeof(block_q8_K),
  811. .is_quantized = true,
  812. .from_float = quantize_row_q8_K,
  813. },
  814. [GGML_TYPE_BF16] = {
  815. .type_name = "bf16",
  816. .blck_size = 1,
  817. .type_size = sizeof(ggml_bf16_t),
  818. .is_quantized = false,
  819. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  820. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  821. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  822. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  823. .vec_dot_type = GGML_TYPE_BF16,
  824. .nrows = 1,
  825. }
  826. };
  827. // For internal test use
  828. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  829. GGML_ASSERT(type < GGML_TYPE_COUNT);
  830. return type_traits[type];
  831. }
  832. //
  833. // simd mappings
  834. //
  835. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  836. // we then implement the fundamental computation operations below using only these macros
  837. // adding support for new architectures requires to define the corresponding SIMD macros
  838. //
  839. // GGML_F32_STEP / GGML_F16_STEP
  840. // number of elements to process in a single step
  841. //
  842. // GGML_F32_EPR / GGML_F16_EPR
  843. // number of elements to fit in a single register
  844. //
  845. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  846. #define GGML_SIMD
  847. // F32 NEON
  848. #define GGML_F32_STEP 16
  849. #define GGML_F32_EPR 4
  850. #define GGML_F32x4 float32x4_t
  851. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  852. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  853. #define GGML_F32x4_LOAD vld1q_f32
  854. #define GGML_F32x4_STORE vst1q_f32
  855. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  856. #define GGML_F32x4_ADD vaddq_f32
  857. #define GGML_F32x4_MUL vmulq_f32
  858. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 NEON
  885. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  886. #define GGML_F16_STEP 32
  887. #define GGML_F16_EPR 8
  888. #define GGML_F16x8 float16x8_t
  889. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  890. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  891. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  892. #define GGML_F16x8_STORE vst1q_f16
  893. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  894. #define GGML_F16x8_ADD vaddq_f16
  895. #define GGML_F16x8_MUL vmulq_f16
  896. #define GGML_F16x8_REDUCE(res, x) \
  897. do { \
  898. int offset = GGML_F16_ARR >> 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. offset >>= 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  911. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  912. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  913. } while (0)
  914. #define GGML_F16_VEC GGML_F16x8
  915. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  916. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  917. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  918. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  919. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  920. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  921. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  922. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  923. #else
  924. // if FP16 vector arithmetic is not supported, we use FP32 instead
  925. // and take advantage of the vcvt_ functions to convert to/from FP16
  926. #define GGML_F16_STEP 16
  927. #define GGML_F16_EPR 4
  928. #define GGML_F32Cx4 float32x4_t
  929. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  930. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  931. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  932. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  933. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  934. #define GGML_F32Cx4_ADD vaddq_f32
  935. #define GGML_F32Cx4_MUL vmulq_f32
  936. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  937. #define GGML_F16_VEC GGML_F32Cx4
  938. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  939. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  940. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  941. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  942. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  943. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  944. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  945. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  946. #endif
  947. #elif defined(__AVX512F__)
  948. #define GGML_SIMD
  949. // F32 AVX512
  950. #define GGML_F32_STEP 64
  951. #define GGML_F32_EPR 16
  952. #define GGML_F32x16 __m512
  953. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  954. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  955. #define GGML_F32x16_LOAD _mm512_loadu_ps
  956. #define GGML_F32x16_STORE _mm512_storeu_ps
  957. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  958. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  959. #define GGML_F32x16_ADD _mm512_add_ps
  960. #define GGML_F32x16_MUL _mm512_mul_ps
  961. #define GGML_F32x16_REDUCE(res, x) \
  962. do { \
  963. int offset = GGML_F32_ARR >> 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. offset >>= 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. res = _mm512_reduce_add_ps(x[0]); \
  976. } while (0)
  977. // TODO: is this optimal ?
  978. #define GGML_F32_VEC GGML_F32x16
  979. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  980. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  981. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  982. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  983. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  984. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  985. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  986. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  987. // F16 AVX512
  988. // F16 AVX
  989. #define GGML_F16_STEP 64
  990. #define GGML_F16_EPR 16
  991. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  992. #define GGML_F32Cx16 __m512
  993. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  994. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  995. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  996. // so F16C guard isn't required
  997. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  998. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  999. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1000. #define GGML_F32Cx16_ADD _mm512_add_ps
  1001. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1002. #define GGML_F32Cx16_REDUCE(res, x) \
  1003. do { \
  1004. int offset = GGML_F32_ARR >> 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. res = _mm512_reduce_add_ps(x[0]); \
  1017. } while (0)
  1018. #define GGML_F16_VEC GGML_F32Cx16
  1019. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1027. #elif defined(__AVX__)
  1028. #define GGML_SIMD
  1029. // F32 AVX
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 8
  1032. #define GGML_F32x8 __m256
  1033. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1034. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1035. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1036. #define GGML_F32x8_STORE _mm256_storeu_ps
  1037. #if defined(__FMA__)
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1039. #else
  1040. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1041. #endif
  1042. #define GGML_F32x8_ADD _mm256_add_ps
  1043. #define GGML_F32x8_MUL _mm256_mul_ps
  1044. #define GGML_F32x8_REDUCE(res, x) \
  1045. do { \
  1046. int offset = GGML_F32_ARR >> 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. offset >>= 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1059. _mm256_extractf128_ps(x[0], 1)); \
  1060. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1061. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1062. } while (0)
  1063. // TODO: is this optimal ?
  1064. #define GGML_F32_VEC GGML_F32x8
  1065. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1066. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1067. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1068. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1069. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1070. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1071. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1072. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1073. // F16 AVX
  1074. #define GGML_F16_STEP 32
  1075. #define GGML_F16_EPR 8
  1076. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1077. #define GGML_F32Cx8 __m256
  1078. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1080. #if defined(__F16C__)
  1081. // the _mm256_cvt intrinsics require F16C
  1082. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1083. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1084. #else
  1085. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1086. float tmp[8];
  1087. for (int i = 0; i < 8; i++) {
  1088. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1089. }
  1090. return _mm256_loadu_ps(tmp);
  1091. }
  1092. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1093. float arr[8];
  1094. _mm256_storeu_ps(arr, y);
  1095. for (int i = 0; i < 8; i++)
  1096. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1097. }
  1098. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1099. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1100. #endif
  1101. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1102. #define GGML_F32Cx8_ADD _mm256_add_ps
  1103. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1104. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1105. #define GGML_F16_VEC GGML_F32Cx8
  1106. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1107. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1108. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1109. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1110. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1111. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1112. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1113. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1114. #elif defined(__POWER9_VECTOR__)
  1115. #define GGML_SIMD
  1116. // F32 POWER9
  1117. #define GGML_F32_STEP 32
  1118. #define GGML_F32_EPR 4
  1119. #define GGML_F32x4 vector float
  1120. #define GGML_F32x4_ZERO 0.0f
  1121. #define GGML_F32x4_SET1 vec_splats
  1122. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1123. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1124. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1125. #define GGML_F32x4_ADD vec_add
  1126. #define GGML_F32x4_MUL vec_mul
  1127. #define GGML_F32x4_REDUCE(res, x) \
  1128. { \
  1129. int offset = GGML_F32_ARR >> 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. offset >>= 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. res = vec_extract(x[0], 0) + \
  1142. vec_extract(x[0], 1) + \
  1143. vec_extract(x[0], 2) + \
  1144. vec_extract(x[0], 3); \
  1145. }
  1146. #define GGML_F32_VEC GGML_F32x4
  1147. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1148. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1149. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1150. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1151. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1152. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1153. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1154. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1155. // F16 POWER9
  1156. #define GGML_F16_STEP GGML_F32_STEP
  1157. #define GGML_F16_EPR GGML_F32_EPR
  1158. #define GGML_F16_VEC GGML_F32x4
  1159. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1161. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1166. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1167. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1168. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1169. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1170. #define GGML_F16_VEC_STORE(p, r, i) \
  1171. if (i & 0x1) \
  1172. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1173. r[i - GGML_ENDIAN_BYTE(0)]), \
  1174. 0, p - GGML_F16_EPR)
  1175. #elif defined(__wasm_simd128__)
  1176. #define GGML_SIMD
  1177. // F32 WASM
  1178. #define GGML_F32_STEP 16
  1179. #define GGML_F32_EPR 4
  1180. #define GGML_F32x4 v128_t
  1181. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1182. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1183. #define GGML_F32x4_LOAD wasm_v128_load
  1184. #define GGML_F32x4_STORE wasm_v128_store
  1185. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1186. #define GGML_F32x4_ADD wasm_f32x4_add
  1187. #define GGML_F32x4_MUL wasm_f32x4_mul
  1188. #define GGML_F32x4_REDUCE(res, x) \
  1189. { \
  1190. int offset = GGML_F32_ARR >> 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. offset >>= 1; \
  1195. for (int i = 0; i < offset; ++i) { \
  1196. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1197. } \
  1198. offset >>= 1; \
  1199. for (int i = 0; i < offset; ++i) { \
  1200. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1201. } \
  1202. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1203. wasm_f32x4_extract_lane(x[0], 1) + \
  1204. wasm_f32x4_extract_lane(x[0], 2) + \
  1205. wasm_f32x4_extract_lane(x[0], 3); \
  1206. }
  1207. #define GGML_F32_VEC GGML_F32x4
  1208. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1209. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1210. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1211. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1212. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1213. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1214. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1215. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1216. // F16 WASM
  1217. #define GGML_F16_STEP 16
  1218. #define GGML_F16_EPR 4
  1219. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1220. float tmp[4];
  1221. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1222. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1223. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1224. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1225. return wasm_v128_load(tmp);
  1226. }
  1227. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1228. float tmp[4];
  1229. wasm_v128_store(tmp, x);
  1230. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1231. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1232. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1233. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1234. }
  1235. #define GGML_F16x4 v128_t
  1236. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1237. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1238. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1239. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1240. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1241. #define GGML_F16x4_ADD wasm_f32x4_add
  1242. #define GGML_F16x4_MUL wasm_f32x4_mul
  1243. #define GGML_F16x4_REDUCE(res, x) \
  1244. { \
  1245. int offset = GGML_F16_ARR >> 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. offset >>= 1; \
  1250. for (int i = 0; i < offset; ++i) { \
  1251. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1252. } \
  1253. offset >>= 1; \
  1254. for (int i = 0; i < offset; ++i) { \
  1255. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1256. } \
  1257. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1258. wasm_f32x4_extract_lane(x[0], 1) + \
  1259. wasm_f32x4_extract_lane(x[0], 2) + \
  1260. wasm_f32x4_extract_lane(x[0], 3); \
  1261. }
  1262. #define GGML_F16_VEC GGML_F16x4
  1263. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1271. #elif defined(__SSE3__)
  1272. #define GGML_SIMD
  1273. // F32 SSE
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 __m128
  1277. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1278. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1279. #define GGML_F32x4_LOAD _mm_loadu_ps
  1280. #define GGML_F32x4_STORE _mm_storeu_ps
  1281. #if defined(__FMA__)
  1282. // TODO: Does this work?
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1284. #else
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1286. #endif
  1287. #define GGML_F32x4_ADD _mm_add_ps
  1288. #define GGML_F32x4_MUL _mm_mul_ps
  1289. #define GGML_F32x4_REDUCE(res, x) \
  1290. { \
  1291. int offset = GGML_F32_ARR >> 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. offset >>= 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1302. } \
  1303. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1305. }
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x4
  1308. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1316. // F16 SSE
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 4
  1319. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1320. float tmp[4];
  1321. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1322. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1323. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1324. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1325. return _mm_loadu_ps(tmp);
  1326. }
  1327. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1328. float arr[4];
  1329. _mm_storeu_ps(arr, y);
  1330. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1331. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1332. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1333. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1334. }
  1335. #define GGML_F32Cx4 __m128
  1336. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1337. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1338. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1339. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1340. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1341. #define GGML_F32Cx4_ADD _mm_add_ps
  1342. #define GGML_F32Cx4_MUL _mm_mul_ps
  1343. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1344. #define GGML_F16_VEC GGML_F32Cx4
  1345. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1346. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1347. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1348. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1349. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1350. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1351. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1352. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1353. #elif defined(__loongarch_asx)
  1354. #define GGML_SIMD
  1355. // F32 LASX
  1356. #define GGML_F32_STEP 32
  1357. #define GGML_F32_EPR 8
  1358. #define GGML_F32x8 __m256
  1359. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1360. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1361. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1362. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1363. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1364. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1365. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1366. #define GGML_F32x8_REDUCE(res, x) \
  1367. do { \
  1368. int offset = GGML_F32_ARR >> 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. offset >>= 1; \
  1373. for (int i = 0; i < offset; ++i) { \
  1374. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1375. } \
  1376. offset >>= 1; \
  1377. for (int i = 0; i < offset; ++i) { \
  1378. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1379. } \
  1380. float *tmp_p = (float *)&x[0]; \
  1381. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1382. } while (0)
  1383. // TODO: is this optimal ?
  1384. #define GGML_F32_VEC GGML_F32x8
  1385. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1386. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1387. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1388. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1389. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1390. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1391. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1392. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1393. // F16 LASX
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1397. #define GGML_F32Cx8 __m256
  1398. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1399. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1400. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1401. float tmp[8];
  1402. for (int i = 0; i < 8; i++) {
  1403. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1404. }
  1405. return (__m256)__lasx_xvld(tmp, 0);
  1406. }
  1407. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1408. float arr[8];
  1409. __lasx_xvst(y, arr, 0);
  1410. for (int i = 0; i < 8; i++)
  1411. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1412. }
  1413. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1414. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1415. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1416. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1417. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1418. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1419. #define GGML_F16_VEC GGML_F32Cx8
  1420. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1428. #elif defined(__loongarch_sx)
  1429. #define GGML_SIMD
  1430. // F32 LSX
  1431. #define GGML_F32_STEP 32
  1432. #define GGML_F32_EPR 4
  1433. #define GGML_F32x4 __m128
  1434. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1435. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1436. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1437. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1438. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1439. #define GGML_F32x4_ADD __lsx_vfadd_s
  1440. #define GGML_F32x4_MUL __lsx_vfmul_s
  1441. #define GGML_F32x4_REDUCE(res, x) \
  1442. { \
  1443. int offset = GGML_F32_ARR >> 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. offset >>= 1; \
  1448. for (int i = 0; i < offset; ++i) { \
  1449. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1450. } \
  1451. offset >>= 1; \
  1452. for (int i = 0; i < offset; ++i) { \
  1453. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1454. } \
  1455. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1456. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1457. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1458. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1459. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1460. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1461. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1462. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1463. }
  1464. #define GGML_F32_VEC GGML_F32x4
  1465. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1468. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1469. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1470. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1471. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1472. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1473. // F16 LSX
  1474. #define GGML_F16_STEP 32
  1475. #define GGML_F16_EPR 4
  1476. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1477. float tmp[4];
  1478. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1479. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1480. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1481. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1482. return __lsx_vld(tmp, 0);
  1483. }
  1484. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1485. float arr[4];
  1486. __lsx_vst(y, arr, 0);
  1487. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1488. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1489. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1490. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1491. }
  1492. #define GGML_F32Cx4 __m128
  1493. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1494. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1495. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1496. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1497. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1498. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1499. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1500. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1501. #define GGML_F16_VEC GGML_F32Cx4
  1502. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1503. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1504. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1505. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1506. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1507. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1508. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1509. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1510. #endif
  1511. // GGML_F32_ARR / GGML_F16_ARR
  1512. // number of registers to use per step
  1513. #ifdef GGML_SIMD
  1514. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1515. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1516. #endif
  1517. //
  1518. // ggml context
  1519. //
  1520. struct ggml_context {
  1521. size_t mem_size;
  1522. void* mem_buffer;
  1523. bool mem_buffer_owned;
  1524. bool no_alloc;
  1525. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1526. int n_objects;
  1527. struct ggml_object* objects_begin;
  1528. struct ggml_object* objects_end;
  1529. struct ggml_scratch scratch;
  1530. struct ggml_scratch scratch_save;
  1531. };
  1532. struct ggml_context_container {
  1533. bool used;
  1534. struct ggml_context context;
  1535. };
  1536. struct ggml_compute_state_shared {
  1537. const struct ggml_cgraph* cgraph;
  1538. const struct ggml_cplan* cplan;
  1539. int64_t perf_node_start_cycles;
  1540. int64_t perf_node_start_time_us;
  1541. const int n_threads;
  1542. // synchronization primitives
  1543. atomic_int n_active; // num active threads
  1544. atomic_int node_n; // active graph node
  1545. atomic_int node_task; // active graph node task phase
  1546. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1547. void* abort_callback_data;
  1548. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1549. };
  1550. struct ggml_compute_state {
  1551. ggml_thread_t thrd;
  1552. int ith;
  1553. struct ggml_compute_state_shared* shared;
  1554. enum ggml_status ec;
  1555. };
  1556. //
  1557. // fundamental operations
  1558. //
  1559. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1565. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1566. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1567. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1568. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1569. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1570. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1571. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1572. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1573. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1574. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1575. assert(nrc == 1);
  1576. UNUSED(nrc);
  1577. UNUSED(bx);
  1578. UNUSED(by);
  1579. UNUSED(bs);
  1580. #if defined(GGML_SIMD)
  1581. float sumf = 0.0f;
  1582. const int np = (n & ~(GGML_F32_STEP - 1));
  1583. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1584. GGML_F32_VEC ax[GGML_F32_ARR];
  1585. GGML_F32_VEC ay[GGML_F32_ARR];
  1586. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1587. for (int j = 0; j < GGML_F32_ARR; j++) {
  1588. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1589. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1590. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1591. }
  1592. }
  1593. // reduce sum0..sum3 to sum0
  1594. GGML_F32_VEC_REDUCE(sumf, sum);
  1595. // leftovers
  1596. for (int i = np; i < n; ++i) {
  1597. sumf += x[i]*y[i];
  1598. }
  1599. #else
  1600. // scalar
  1601. ggml_float sumf = 0.0;
  1602. for (int i = 0; i < n; ++i) {
  1603. sumf += (ggml_float)(x[i]*y[i]);
  1604. }
  1605. #endif
  1606. *s = sumf;
  1607. }
  1608. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1609. assert(nrc == 1);
  1610. UNUSED(nrc);
  1611. UNUSED(bx);
  1612. UNUSED(by);
  1613. UNUSED(bs);
  1614. int i = 0;
  1615. ggml_float sumf = 0;
  1616. #if defined(__AVX512BF16__)
  1617. __m512 c1 = _mm512_setzero_ps();
  1618. __m512 c2 = _mm512_setzero_ps();
  1619. for (; i + 64 <= n; i += 64) {
  1620. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1621. m512bh(_mm512_loadu_si512((y + i))));
  1622. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1623. m512bh(_mm512_loadu_si512((y + i + 32))));
  1624. }
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1626. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1627. #elif defined(__AVX512F__)
  1628. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1629. __m512 c1 = _mm512_setzero_ps();
  1630. __m512 c2 = _mm512_setzero_ps();
  1631. for (; i + 32 <= n; i += 32) {
  1632. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1633. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1634. }
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1636. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1637. #undef LOAD
  1638. #elif defined(__AVX2__)
  1639. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1640. __m256 c1 = _mm256_setzero_ps();
  1641. __m256 c2 = _mm256_setzero_ps();
  1642. __m256 c3 = _mm256_setzero_ps();
  1643. __m256 c4 = _mm256_setzero_ps();
  1644. for (; i + 32 <= n; i += 32) {
  1645. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1646. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1647. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1648. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1649. }
  1650. __m128 g;
  1651. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1652. _mm256_add_ps(c2, c4));
  1653. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1654. _mm256_castps256_ps128(c1));
  1655. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1656. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1657. sumf += (ggml_float)_mm_cvtss_f32(g);
  1658. #undef LOAD
  1659. #endif
  1660. for (; i < n; ++i) {
  1661. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1662. GGML_BF16_TO_FP32(y[i]));
  1663. }
  1664. *s = sumf;
  1665. }
  1666. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1667. assert(nrc == 1);
  1668. UNUSED(nrc);
  1669. UNUSED(bx);
  1670. UNUSED(by);
  1671. UNUSED(bs);
  1672. ggml_float sumf = 0.0;
  1673. #if defined(GGML_SIMD)
  1674. const int np = (n & ~(GGML_F16_STEP - 1));
  1675. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1676. GGML_F16_VEC ax[GGML_F16_ARR];
  1677. GGML_F16_VEC ay[GGML_F16_ARR];
  1678. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1679. for (int j = 0; j < GGML_F16_ARR; j++) {
  1680. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1681. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1682. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1683. }
  1684. }
  1685. // reduce sum0..sum3 to sum0
  1686. GGML_F16_VEC_REDUCE(sumf, sum);
  1687. // leftovers
  1688. for (int i = np; i < n; ++i) {
  1689. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1690. }
  1691. #else
  1692. for (int i = 0; i < n; ++i) {
  1693. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1694. }
  1695. #endif
  1696. *s = sumf;
  1697. }
  1698. // compute GGML_VEC_DOT_UNROLL dot products at once
  1699. // xs - x row stride in bytes
  1700. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1701. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1702. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1703. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1704. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1705. }
  1706. #if defined(GGML_SIMD)
  1707. const int np = (n & ~(GGML_F16_STEP - 1));
  1708. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1709. GGML_F16_VEC ax[GGML_F16_ARR];
  1710. GGML_F16_VEC ay[GGML_F16_ARR];
  1711. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1712. for (int j = 0; j < GGML_F16_ARR; j++) {
  1713. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1714. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1715. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1716. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1717. }
  1718. }
  1719. }
  1720. // reduce sum0..sum3 to sum0
  1721. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1722. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1723. }
  1724. // leftovers
  1725. for (int i = np; i < n; ++i) {
  1726. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1727. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1728. }
  1729. }
  1730. #else
  1731. for (int i = 0; i < n; ++i) {
  1732. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1733. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1734. }
  1735. }
  1736. #endif
  1737. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1738. s[i] = sumf[i];
  1739. }
  1740. }
  1741. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1742. #if defined(GGML_SIMD)
  1743. const int np = (n & ~(GGML_F32_STEP - 1));
  1744. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1745. GGML_F32_VEC ax[GGML_F32_ARR];
  1746. GGML_F32_VEC ay[GGML_F32_ARR];
  1747. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1748. for (int j = 0; j < GGML_F32_ARR; j++) {
  1749. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1751. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1752. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1753. }
  1754. }
  1755. // leftovers
  1756. for (int i = np; i < n; ++i) {
  1757. y[i] += x[i]*v;
  1758. }
  1759. #else
  1760. // scalar
  1761. for (int i = 0; i < n; ++i) {
  1762. y[i] += x[i]*v;
  1763. }
  1764. #endif
  1765. }
  1766. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1767. #if defined(GGML_SIMD)
  1768. const int np = (n & ~(GGML_F16_STEP - 1));
  1769. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1770. GGML_F16_VEC ax[GGML_F16_ARR];
  1771. GGML_F16_VEC ay[GGML_F16_ARR];
  1772. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1773. for (int j = 0; j < GGML_F16_ARR; j++) {
  1774. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1776. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1777. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1778. }
  1779. }
  1780. // leftovers
  1781. for (int i = np; i < n; ++i) {
  1782. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1783. }
  1784. #else
  1785. // scalar
  1786. for (int i = 0; i < n; ++i) {
  1787. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1788. }
  1789. #endif
  1790. }
  1791. // xs and vs are byte strides of x and v
  1792. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1793. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1794. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1795. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1796. x[i] = (const float *) ((const char *) xv + i*xs);
  1797. v[i] = (const float *) ((const char *) vv + i*vs);
  1798. }
  1799. #if defined(GGML_SIMD)
  1800. const int np = (n & ~(GGML_F32_STEP - 1));
  1801. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1804. }
  1805. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1806. GGML_F32_VEC ay[GGML_F32_ARR];
  1807. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1808. for (int j = 0; j < GGML_F32_ARR; j++) {
  1809. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1812. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1813. }
  1814. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1815. }
  1816. }
  1817. // leftovers
  1818. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1819. for (int i = np; i < n; ++i) {
  1820. y[i] += x[k][i]*v[k][0];
  1821. }
  1822. }
  1823. #else
  1824. // scalar
  1825. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1826. for (int i = 0; i < n; ++i) {
  1827. y[i] += x[k][i]*v[k][0];
  1828. }
  1829. }
  1830. #endif
  1831. }
  1832. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1833. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1834. #if defined(GGML_USE_ACCELERATE)
  1835. vDSP_vsmul(y, 1, &v, y, 1, n);
  1836. #elif defined(GGML_SIMD)
  1837. const int np = (n & ~(GGML_F32_STEP - 1));
  1838. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1839. GGML_F32_VEC ay[GGML_F32_ARR];
  1840. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1841. for (int j = 0; j < GGML_F32_ARR; j++) {
  1842. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1843. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1844. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1845. }
  1846. }
  1847. // leftovers
  1848. for (int i = np; i < n; ++i) {
  1849. y[i] *= v;
  1850. }
  1851. #else
  1852. // scalar
  1853. for (int i = 0; i < n; ++i) {
  1854. y[i] *= v;
  1855. }
  1856. #endif
  1857. }
  1858. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1859. #if defined(GGML_SIMD)
  1860. const int np = (n & ~(GGML_F16_STEP - 1));
  1861. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1862. GGML_F16_VEC ay[GGML_F16_ARR];
  1863. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1864. for (int j = 0; j < GGML_F16_ARR; j++) {
  1865. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1866. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1867. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1868. }
  1869. }
  1870. // leftovers
  1871. for (int i = np; i < n; ++i) {
  1872. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1873. }
  1874. #else
  1875. // scalar
  1876. for (int i = 0; i < n; ++i) {
  1877. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1878. }
  1879. #endif
  1880. }
  1881. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1882. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1883. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1884. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1885. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1886. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1887. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1888. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1889. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1890. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1891. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1892. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1893. // TODO: optimize performance
  1894. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1896. static const float GELU_COEF_A = 0.044715f;
  1897. static const float GELU_QUICK_COEF = -1.702f;
  1898. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1899. inline static float ggml_gelu_f32(float x) {
  1900. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1901. }
  1902. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1903. const uint16_t * i16 = (const uint16_t *) x;
  1904. for (int i = 0; i < n; ++i) {
  1905. y[i] = ggml_table_gelu_f16[i16[i]];
  1906. }
  1907. }
  1908. #ifdef GGML_GELU_FP16
  1909. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1910. uint16_t t;
  1911. for (int i = 0; i < n; ++i) {
  1912. if (x[i] <= -10.0f) {
  1913. y[i] = 0.0f;
  1914. } else if (x[i] >= 10.0f) {
  1915. y[i] = x[i];
  1916. } else {
  1917. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1918. memcpy(&t, &fp16, sizeof(uint16_t));
  1919. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1920. }
  1921. }
  1922. }
  1923. #else
  1924. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1925. for (int i = 0; i < n; ++i) {
  1926. y[i] = ggml_gelu_f32(x[i]);
  1927. }
  1928. }
  1929. #endif
  1930. inline static float ggml_gelu_quick_f32(float x) {
  1931. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1932. }
  1933. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1934. // const uint16_t * i16 = (const uint16_t *) x;
  1935. // for (int i = 0; i < n; ++i) {
  1936. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1937. // }
  1938. //}
  1939. #ifdef GGML_GELU_QUICK_FP16
  1940. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1941. uint16_t t;
  1942. for (int i = 0; i < n; ++i) {
  1943. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1944. memcpy(&t, &fp16, sizeof(uint16_t));
  1945. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1946. }
  1947. }
  1948. #else
  1949. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1950. for (int i = 0; i < n; ++i) {
  1951. y[i] = ggml_gelu_quick_f32(x[i]);
  1952. }
  1953. }
  1954. #endif
  1955. // Sigmoid Linear Unit (SiLU) function
  1956. inline static float ggml_silu_f32(float x) {
  1957. return x/(1.0f + expf(-x));
  1958. }
  1959. #if defined(__ARM_NEON) && defined(__aarch64__)
  1960. // adapted from arm limited optimized routine
  1961. // the maximum error is 1.45358 plus 0.5 ulps
  1962. // numbers above 88.38 will flush to infinity
  1963. // numbers beneath -103.97 will flush to zero
  1964. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1965. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1966. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1967. const float32x4_t n = vsubq_f32(z, r);
  1968. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1969. vdupq_n_f32(0x1.7f7d1cp-20f));
  1970. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1971. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1972. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1973. const float32x4_t u = vmulq_f32(b, b);
  1974. const float32x4_t j = vfmaq_f32(
  1975. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1976. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1977. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1978. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1979. return vfmaq_f32(k, j, k);
  1980. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1981. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1982. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1983. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1984. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1985. }
  1986. // computes silu x/(1+exp(-x)) in single precision vector
  1987. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1988. const float32x4_t one = vdupq_n_f32(1.0f);
  1989. const float32x4_t zero = vdupq_n_f32(0.0f);
  1990. const float32x4_t neg_x = vsubq_f32(zero, x);
  1991. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1992. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1993. return vdivq_f32(x, one_plus_exp_neg_x);
  1994. }
  1995. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1996. // adapted from arm limited optimized routine
  1997. // the maximum error is 1.45358 plus 0.5 ulps
  1998. // numbers above 88.38 will flush to infinity
  1999. // numbers beneath -103.97 will flush to zero
  2000. inline static __m512 ggml_v_expf(__m512 x) {
  2001. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2002. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2003. const __m512 n = _mm512_sub_ps(z, r);
  2004. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2005. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2006. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  2007. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2008. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2009. const __m512 u = _mm512_mul_ps(b, b);
  2010. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2011. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2012. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2013. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2014. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2015. if (_mm512_kortestz(c, c))
  2016. return _mm512_fmadd_ps(j, k, k);
  2017. const __m512i g = _mm512_and_si512(
  2018. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2019. _mm512_set1_epi32(0x82000000u));
  2020. const __m512 s1 =
  2021. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2022. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2023. const __mmask16 d =
  2024. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2025. return _mm512_mask_blend_ps(
  2026. d, _mm512_mask_blend_ps(
  2027. c, _mm512_fmadd_ps(k, j, k),
  2028. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2029. _mm512_mul_ps(s1, s1));
  2030. }
  2031. // computes silu x/(1+exp(-x)) in single precision vector
  2032. inline static __m512 ggml_v_silu(__m512 x) {
  2033. const __m512 one = _mm512_set1_ps(1);
  2034. const __m512 zero = _mm512_setzero_ps();
  2035. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2036. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2037. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2038. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2039. }
  2040. #elif defined(__AVX2__) && defined(__FMA__)
  2041. // adapted from arm limited optimized routine
  2042. // the maximum error is 1.45358 plus 0.5 ulps
  2043. // numbers above 88.38 will flush to infinity
  2044. // numbers beneath -103.97 will flush to zero
  2045. inline static __m256 ggml_v_expf(__m256 x) {
  2046. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2047. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2048. const __m256 n = _mm256_sub_ps(z, r);
  2049. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2050. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2051. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2052. const __m256 k = _mm256_castsi256_ps(
  2053. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2054. const __m256i c = _mm256_castps_si256(
  2055. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2056. _mm256_set1_ps(126), _CMP_GT_OQ));
  2057. const __m256 u = _mm256_mul_ps(b, b);
  2058. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2059. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2060. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2061. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2062. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2063. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2064. return _mm256_fmadd_ps(j, k, k);
  2065. const __m256i g = _mm256_and_si256(
  2066. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2067. _mm256_set1_epi32(0x82000000u));
  2068. const __m256 s1 =
  2069. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2070. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2071. const __m256i d = _mm256_castps_si256(
  2072. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2073. _mm256_set1_ps(192), _CMP_GT_OQ));
  2074. return _mm256_or_ps(
  2075. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2076. _mm256_andnot_ps(
  2077. _mm256_castsi256_ps(d),
  2078. _mm256_or_ps(
  2079. _mm256_and_ps(_mm256_castsi256_ps(c),
  2080. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2081. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2082. }
  2083. // computes silu x/(1+exp(-x)) in single precision vector
  2084. inline static __m256 ggml_v_silu(__m256 x) {
  2085. const __m256 one = _mm256_set1_ps(1);
  2086. const __m256 zero = _mm256_setzero_ps();
  2087. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2088. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2089. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2090. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2091. }
  2092. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2093. #if defined(__FMA__)
  2094. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2095. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2096. #else
  2097. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2098. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2099. #endif
  2100. // adapted from arm limited optimized routine
  2101. // the maximum error is 1.45358 plus 0.5 ulps
  2102. // numbers above 88.38 will flush to infinity
  2103. // numbers beneath -103.97 will flush to zero
  2104. inline static __m128 ggml_v_expf(__m128 x) {
  2105. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2106. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2107. const __m128 n = _mm_sub_ps(z, r);
  2108. const __m128 b =
  2109. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2110. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2111. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2112. const __m128i c =
  2113. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2114. const __m128 u = _mm_mul_ps(b, b);
  2115. const __m128 j =
  2116. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2117. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2118. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2119. if (!_mm_movemask_epi8(c))
  2120. return MADD128(j, k, k);
  2121. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2122. _mm_set1_epi32(0x82000000u));
  2123. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2124. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2125. const __m128i d =
  2126. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2127. return _mm_or_ps(
  2128. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(d),
  2130. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2131. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2132. }
  2133. // computes silu x/(1+exp(-x)) in single precision vector
  2134. inline static __m128 ggml_v_silu(__m128 x) {
  2135. const __m128 one = _mm_set1_ps(1);
  2136. const __m128 zero = _mm_setzero_ps();
  2137. const __m128 neg_x = _mm_sub_ps(zero, x);
  2138. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2139. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2140. return _mm_div_ps(x, one_plus_exp_neg_x);
  2141. }
  2142. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2143. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2144. int i = 0;
  2145. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2146. for (; i + 15 < n; i += 16) {
  2147. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__AVX2__) && defined(__FMA__)
  2150. for (; i + 7 < n; i += 8) {
  2151. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2152. }
  2153. #elif defined(__SSE2__)
  2154. for (; i + 3 < n; i += 4) {
  2155. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2156. }
  2157. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2158. for (; i + 3 < n; i += 4) {
  2159. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2160. }
  2161. #endif
  2162. for (; i < n; ++i) {
  2163. y[i] = ggml_silu_f32(x[i]);
  2164. }
  2165. }
  2166. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2167. int i = 0;
  2168. ggml_float sum = 0;
  2169. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2170. for (; i + 15 < n; i += 16) {
  2171. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2172. _mm512_set1_ps(max)));
  2173. _mm512_storeu_ps(y + i, val);
  2174. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2175. }
  2176. #elif defined(__AVX2__) && defined(__FMA__)
  2177. for (; i + 7 < n; i += 8) {
  2178. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2179. _mm256_set1_ps(max)));
  2180. _mm256_storeu_ps(y + i, val);
  2181. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2182. _mm256_castps256_ps128(val));
  2183. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2184. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2185. sum += (ggml_float)_mm_cvtss_f32(val2);
  2186. }
  2187. #elif defined(__SSE2__)
  2188. for (; i + 3 < n; i += 4) {
  2189. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2190. _mm_set1_ps(max)));
  2191. _mm_storeu_ps(y + i, val);
  2192. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2193. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2194. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2195. #else
  2196. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2197. val = _mm_add_ps(val, tmp);
  2198. tmp = _mm_movehl_ps(tmp, val);
  2199. val = _mm_add_ss(val, tmp);
  2200. #endif
  2201. sum += (ggml_float)_mm_cvtss_f32(val);
  2202. }
  2203. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2204. for (; i + 3 < n; i += 4) {
  2205. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2206. vdupq_n_f32(max)));
  2207. vst1q_f32(y + i, val);
  2208. sum += (ggml_float)vaddvq_f32(val);
  2209. }
  2210. #endif
  2211. for (; i < n; ++i) {
  2212. float val = expf(x[i] - max);
  2213. sum += (ggml_float)val;
  2214. y[i] = val;
  2215. }
  2216. return sum;
  2217. }
  2218. inline static float ggml_silu_backward_f32(float x, float dy) {
  2219. const float s = 1.0f/(1.0f + expf(-x));
  2220. return dy*s*(1.0f + x*(1.0f - s));
  2221. }
  2222. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2223. for (int i = 0; i < n; ++i) {
  2224. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2225. }
  2226. }
  2227. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2228. #ifndef GGML_USE_ACCELERATE
  2229. ggml_float sum = 0.0;
  2230. for (int i = 0; i < n; ++i) {
  2231. sum += (ggml_float)x[i];
  2232. }
  2233. *s = sum;
  2234. #else
  2235. vDSP_sve(x, 1, s, n);
  2236. #endif
  2237. }
  2238. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2239. ggml_float sum = 0.0;
  2240. for (int i = 0; i < n; ++i) {
  2241. sum += (ggml_float)x[i];
  2242. }
  2243. *s = sum;
  2244. }
  2245. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2246. float sum = 0.0f;
  2247. for (int i = 0; i < n; ++i) {
  2248. sum += GGML_FP16_TO_FP32(x[i]);
  2249. }
  2250. *s = sum;
  2251. }
  2252. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2253. float sum = 0.0f;
  2254. for (int i = 0; i < n; ++i) {
  2255. sum += GGML_BF16_TO_FP32(x[i]);
  2256. }
  2257. *s = sum;
  2258. }
  2259. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2260. #ifndef GGML_USE_ACCELERATE
  2261. float max = -INFINITY;
  2262. for (int i = 0; i < n; ++i) {
  2263. max = MAX(max, x[i]);
  2264. }
  2265. *s = max;
  2266. #else
  2267. vDSP_maxv(x, 1, s, n);
  2268. #endif
  2269. }
  2270. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2271. ggml_vec_norm_f32(n, s, x);
  2272. *s = 1.f/(*s);
  2273. }
  2274. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2275. float max = -INFINITY;
  2276. int idx = 0;
  2277. for (int i = 0; i < n; ++i) {
  2278. max = MAX(max, x[i]);
  2279. if (max == x[i]) { idx = i; }
  2280. }
  2281. *s = idx;
  2282. }
  2283. //
  2284. // data types
  2285. //
  2286. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2287. "NONE",
  2288. "DUP",
  2289. "ADD",
  2290. "ADD1",
  2291. "ACC",
  2292. "SUB",
  2293. "MUL",
  2294. "DIV",
  2295. "SQR",
  2296. "SQRT",
  2297. "LOG",
  2298. "SUM",
  2299. "SUM_ROWS",
  2300. "MEAN",
  2301. "ARGMAX",
  2302. "REPEAT",
  2303. "REPEAT_BACK",
  2304. "CONCAT",
  2305. "SILU_BACK",
  2306. "NORM",
  2307. "RMS_NORM",
  2308. "RMS_NORM_BACK",
  2309. "GROUP_NORM",
  2310. "MUL_MAT",
  2311. "MUL_MAT_ID",
  2312. "OUT_PROD",
  2313. "SCALE",
  2314. "SET",
  2315. "CPY",
  2316. "CONT",
  2317. "RESHAPE",
  2318. "VIEW",
  2319. "PERMUTE",
  2320. "TRANSPOSE",
  2321. "GET_ROWS",
  2322. "GET_ROWS_BACK",
  2323. "DIAG",
  2324. "DIAG_MASK_INF",
  2325. "DIAG_MASK_ZERO",
  2326. "SOFT_MAX",
  2327. "SOFT_MAX_BACK",
  2328. "ROPE",
  2329. "ROPE_BACK",
  2330. "CLAMP",
  2331. "CONV_TRANSPOSE_1D",
  2332. "IM2COL",
  2333. "CONV_TRANSPOSE_2D",
  2334. "POOL_1D",
  2335. "POOL_2D",
  2336. "UPSCALE",
  2337. "PAD",
  2338. "ARANGE",
  2339. "TIMESTEP_EMBEDDING",
  2340. "ARGSORT",
  2341. "LEAKY_RELU",
  2342. "FLASH_ATTN",
  2343. "FLASH_ATTN_EXT",
  2344. "FLASH_FF",
  2345. "FLASH_ATTN_BACK",
  2346. "SSM_CONV",
  2347. "SSM_SCAN",
  2348. "WIN_PART",
  2349. "WIN_UNPART",
  2350. "GET_REL_POS",
  2351. "ADD_REL_POS",
  2352. "UNARY",
  2353. "MAP_UNARY",
  2354. "MAP_BINARY",
  2355. "MAP_CUSTOM1_F32",
  2356. "MAP_CUSTOM2_F32",
  2357. "MAP_CUSTOM3_F32",
  2358. "MAP_CUSTOM1",
  2359. "MAP_CUSTOM2",
  2360. "MAP_CUSTOM3",
  2361. "CROSS_ENTROPY_LOSS",
  2362. "CROSS_ENTROPY_LOSS_BACK",
  2363. };
  2364. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2365. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2366. "none",
  2367. "x",
  2368. "x+y",
  2369. "x+y",
  2370. "view(x,nb,offset)+=y->x",
  2371. "x-y",
  2372. "x*y",
  2373. "x/y",
  2374. "x^2",
  2375. "√x",
  2376. "log(x)",
  2377. "Σx",
  2378. "Σx_k",
  2379. "Σx/n",
  2380. "argmax(x)",
  2381. "repeat(x)",
  2382. "repeat_back(x)",
  2383. "concat(x, y)",
  2384. "silu_back(x)",
  2385. "norm(x)",
  2386. "rms_norm(x)",
  2387. "rms_norm_back(x)",
  2388. "group_norm(x)",
  2389. "X*Y",
  2390. "X[i]*Y",
  2391. "X*Y",
  2392. "x*v",
  2393. "y-\\>view(x)",
  2394. "x-\\>y",
  2395. "cont(x)",
  2396. "reshape(x)",
  2397. "view(x)",
  2398. "permute(x)",
  2399. "transpose(x)",
  2400. "get_rows(x)",
  2401. "get_rows_back(x)",
  2402. "diag(x)",
  2403. "diag_mask_inf(x)",
  2404. "diag_mask_zero(x)",
  2405. "soft_max(x)",
  2406. "soft_max_back(x)",
  2407. "rope(x)",
  2408. "rope_back(x)",
  2409. "clamp(x)",
  2410. "conv_transpose_1d(x)",
  2411. "im2col(x)",
  2412. "conv_transpose_2d(x)",
  2413. "pool_1d(x)",
  2414. "pool_2d(x)",
  2415. "upscale(x)",
  2416. "pad(x)",
  2417. "arange(start, stop, step)",
  2418. "timestep_embedding(timesteps, dim, max_period)",
  2419. "argsort(x)",
  2420. "leaky_relu(x)",
  2421. "flash_attn(x)",
  2422. "flash_attn_ext(x)",
  2423. "flash_ff(x)",
  2424. "flash_attn_back(x)",
  2425. "ssm_conv(x)",
  2426. "ssm_scan(x)",
  2427. "win_part(x)",
  2428. "win_unpart(x)",
  2429. "get_rel_pos(x)",
  2430. "add_rel_pos(x)",
  2431. "unary(x)",
  2432. "f(x)",
  2433. "f(x,y)",
  2434. "custom_f32(x)",
  2435. "custom_f32(x,y)",
  2436. "custom_f32(x,y,z)",
  2437. "custom(x)",
  2438. "custom(x,y)",
  2439. "custom(x,y,z)",
  2440. "cross_entropy_loss(x,y)",
  2441. "cross_entropy_loss_back(x,y)",
  2442. };
  2443. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2444. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2445. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2446. "ABS",
  2447. "SGN",
  2448. "NEG",
  2449. "STEP",
  2450. "TANH",
  2451. "ELU",
  2452. "RELU",
  2453. "SIGMOID",
  2454. "GELU",
  2455. "GELU_QUICK",
  2456. "SILU",
  2457. "HARDSWISH",
  2458. "HARDSIGMOID",
  2459. };
  2460. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2461. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2462. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2463. // WARN:
  2464. // Mis-configuration can lead to problem that's hard to reason about:
  2465. // * At best it crash or talks nosense.
  2466. // * At worst it talks slightly difference but hard to perceive.
  2467. //
  2468. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2469. // Take care about compile options (e.g., GGML_USE_xxx).
  2470. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2471. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2472. static void ggml_setup_op_has_task_pass(void) {
  2473. { // INIT
  2474. bool * p = GGML_OP_HAS_INIT;
  2475. p[GGML_OP_ACC ] = true;
  2476. p[GGML_OP_MUL_MAT ] = true;
  2477. p[GGML_OP_MUL_MAT_ID ] = true;
  2478. p[GGML_OP_OUT_PROD ] = true;
  2479. p[GGML_OP_SET ] = true;
  2480. p[GGML_OP_GET_ROWS_BACK ] = true;
  2481. p[GGML_OP_DIAG_MASK_INF ] = true;
  2482. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2483. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2484. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2485. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2486. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2487. p[GGML_OP_ADD_REL_POS ] = true;
  2488. }
  2489. { // FINALIZE
  2490. bool * p = GGML_OP_HAS_FINALIZE;
  2491. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2492. }
  2493. }
  2494. //
  2495. // NUMA support
  2496. //
  2497. #define GGML_NUMA_MAX_NODES 8
  2498. #define GGML_NUMA_MAX_CPUS 512
  2499. struct ggml_numa_node {
  2500. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2501. uint32_t n_cpus;
  2502. };
  2503. struct ggml_numa_nodes {
  2504. enum ggml_numa_strategy numa_strategy;
  2505. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2506. uint32_t n_nodes;
  2507. uint32_t total_cpus; // hardware threads on system
  2508. uint32_t current_node; // node on which main process is execting
  2509. #if defined(__gnu_linux__)
  2510. cpu_set_t cpuset; // cpuset from numactl
  2511. #else
  2512. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2513. #endif
  2514. };
  2515. //
  2516. // ggml state
  2517. //
  2518. struct ggml_state {
  2519. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2520. struct ggml_numa_nodes numa;
  2521. };
  2522. // global state
  2523. static struct ggml_state g_state;
  2524. static atomic_int g_state_barrier = 0;
  2525. // barrier via spin lock
  2526. inline static void ggml_critical_section_start(void) {
  2527. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2528. while (processing > 0) {
  2529. // wait for other threads to finish
  2530. atomic_fetch_sub(&g_state_barrier, 1);
  2531. sched_yield(); // TODO: reconsider this
  2532. processing = atomic_fetch_add(&g_state_barrier, 1);
  2533. }
  2534. }
  2535. // TODO: make this somehow automatically executed
  2536. // some sort of "sentry" mechanism
  2537. inline static void ggml_critical_section_end(void) {
  2538. atomic_fetch_sub(&g_state_barrier, 1);
  2539. }
  2540. #if defined(__gnu_linux__)
  2541. static cpu_set_t ggml_get_numa_affinity(void) {
  2542. cpu_set_t cpuset;
  2543. pthread_t thread;
  2544. thread = pthread_self();
  2545. CPU_ZERO(&cpuset);
  2546. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2547. return cpuset;
  2548. }
  2549. #else
  2550. static uint32_t ggml_get_numa_affinity(void) {
  2551. return 0; // no NUMA support
  2552. }
  2553. #endif
  2554. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2555. if (g_state.numa.n_nodes > 0) {
  2556. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2557. return;
  2558. }
  2559. #if defined(__gnu_linux__)
  2560. struct stat st;
  2561. char path[256];
  2562. int rv;
  2563. // set numa scheme
  2564. g_state.numa.numa_strategy = numa_flag;
  2565. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2566. g_state.numa.cpuset = ggml_get_numa_affinity();
  2567. // enumerate nodes
  2568. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2569. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2570. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2571. if (stat(path, &st) != 0) { break; }
  2572. ++g_state.numa.n_nodes;
  2573. }
  2574. // enumerate CPUs
  2575. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2576. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2577. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2578. if (stat(path, &st) != 0) { break; }
  2579. ++g_state.numa.total_cpus;
  2580. }
  2581. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2582. // figure out which node we're on
  2583. uint current_cpu;
  2584. int getcpu_ret = 0;
  2585. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2586. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2587. #else
  2588. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2589. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2590. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2591. # endif
  2592. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2593. #endif
  2594. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2595. g_state.numa.n_nodes = 0;
  2596. return;
  2597. }
  2598. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2599. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2600. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2601. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2602. node->n_cpus = 0;
  2603. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2604. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2605. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2606. if (stat(path, &st) == 0) {
  2607. node->cpus[node->n_cpus++] = c;
  2608. GGML_PRINT_DEBUG(" %u", c);
  2609. }
  2610. }
  2611. GGML_PRINT_DEBUG("\n");
  2612. }
  2613. if (ggml_is_numa()) {
  2614. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2615. if (fptr != NULL) {
  2616. char buf[42];
  2617. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2618. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2619. }
  2620. fclose(fptr);
  2621. }
  2622. }
  2623. #else
  2624. GGML_UNUSED(numa_flag);
  2625. // TODO
  2626. #endif
  2627. }
  2628. bool ggml_is_numa(void) {
  2629. return g_state.numa.n_nodes > 1;
  2630. }
  2631. ////////////////////////////////////////////////////////////////////////////////
  2632. void ggml_print_object(const struct ggml_object * obj) {
  2633. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2634. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2635. }
  2636. void ggml_print_objects(const struct ggml_context * ctx) {
  2637. struct ggml_object * obj = ctx->objects_begin;
  2638. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2639. while (obj != NULL) {
  2640. ggml_print_object(obj);
  2641. obj = obj->next;
  2642. }
  2643. GGML_PRINT("%s: --- end ---\n", __func__);
  2644. }
  2645. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2646. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2647. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2648. }
  2649. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2650. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2651. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2652. }
  2653. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2654. size_t nbytes;
  2655. size_t blck_size = ggml_blck_size(tensor->type);
  2656. if (blck_size == 1) {
  2657. nbytes = ggml_type_size(tensor->type);
  2658. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2659. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2660. }
  2661. }
  2662. else {
  2663. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2664. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2665. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2666. }
  2667. }
  2668. return nbytes;
  2669. }
  2670. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2671. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2672. }
  2673. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2674. return type_traits[type].blck_size;
  2675. }
  2676. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2677. return type_traits[type].type_size;
  2678. }
  2679. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2680. assert(ne % ggml_blck_size(type) == 0);
  2681. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2682. }
  2683. double ggml_type_sizef(enum ggml_type type) {
  2684. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2685. }
  2686. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2687. return type_traits[type].type_name;
  2688. }
  2689. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2690. return type_traits[type].is_quantized;
  2691. }
  2692. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2693. return GGML_OP_NAME[op];
  2694. }
  2695. const char * ggml_op_symbol(enum ggml_op op) {
  2696. return GGML_OP_SYMBOL[op];
  2697. }
  2698. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2699. return GGML_UNARY_OP_NAME[op];
  2700. }
  2701. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2702. if (t->op == GGML_OP_UNARY) {
  2703. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2704. return ggml_unary_op_name(uop);
  2705. }
  2706. else {
  2707. return ggml_op_name(t->op);
  2708. }
  2709. }
  2710. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2711. return ggml_type_size(tensor->type);
  2712. }
  2713. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2715. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2716. }
  2717. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2718. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2719. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2720. }
  2721. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2722. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2723. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2724. }
  2725. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2726. return tensor->ne[3] == 1;
  2727. }
  2728. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2729. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2730. if (tensor->ne[i] > 1) {
  2731. return i + 1;
  2732. }
  2733. }
  2734. return 1;
  2735. }
  2736. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2737. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2738. return (t0->ne[0] == t1->ne[0]) &&
  2739. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2740. (t1->ne[3]%t0->ne[3] == 0);
  2741. }
  2742. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2743. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2744. return (t0->ne[1] == t1->ne[1]) &&
  2745. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2746. (t1->ne[3]%t0->ne[3] == 0);
  2747. }
  2748. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2749. enum ggml_type wtype = GGML_TYPE_COUNT;
  2750. switch (ftype) {
  2751. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2752. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2753. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2754. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2755. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2756. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2757. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2758. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2759. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2760. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2761. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2762. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2763. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2764. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2765. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2766. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2767. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2768. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2769. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2770. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2771. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2772. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2773. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2774. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2775. }
  2776. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2777. return wtype;
  2778. }
  2779. size_t ggml_tensor_overhead(void) {
  2780. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2781. }
  2782. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2783. return tensor->nb[0] > tensor->nb[1];
  2784. }
  2785. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2786. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2787. return
  2788. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2789. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2790. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2791. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2792. }
  2793. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2795. return
  2796. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2797. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2798. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2799. }
  2800. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2801. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2802. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2803. }
  2804. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2806. return
  2807. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2808. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2809. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2810. }
  2811. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2812. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2813. if (tensor->ne[i] == 0) {
  2814. // empty if any dimension has no elements
  2815. return true;
  2816. }
  2817. }
  2818. return false;
  2819. }
  2820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return
  2823. (t0->ne[0] == t1->ne[0] ) &&
  2824. (t0->ne[1] == t1->ne[1] ) &&
  2825. (t0->ne[2] == t1->ne[2] ) &&
  2826. (t0->ne[3] == t1->ne[3] );
  2827. }
  2828. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return
  2831. (t0->nb[0] == t1->nb[0] ) &&
  2832. (t0->nb[1] == t1->nb[1] ) &&
  2833. (t0->nb[2] == t1->nb[2] ) &&
  2834. (t0->nb[3] == t1->nb[3] );
  2835. }
  2836. // check if t1 can be represented as a repeatition of t0
  2837. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2840. (t1->ne[0]%t0->ne[0] == 0) &&
  2841. (t1->ne[1]%t0->ne[1] == 0) &&
  2842. (t1->ne[2]%t0->ne[2] == 0) &&
  2843. (t1->ne[3]%t0->ne[3] == 0);
  2844. }
  2845. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2848. }
  2849. static inline int ggml_up32(int n) {
  2850. return (n + 31) & ~31;
  2851. }
  2852. //static inline int ggml_up64(int n) {
  2853. // return (n + 63) & ~63;
  2854. //}
  2855. static inline int ggml_up(int n, int m) {
  2856. // assert m is a power of 2
  2857. GGML_ASSERT((m & (m - 1)) == 0);
  2858. return (n + m - 1) & ~(m - 1);
  2859. }
  2860. // assert that pointer is aligned to GGML_MEM_ALIGN
  2861. #define ggml_assert_aligned(ptr) \
  2862. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2863. ////////////////////////////////////////////////////////////////////////////////
  2864. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2865. // make this function thread safe
  2866. ggml_critical_section_start();
  2867. static bool is_first_call = true;
  2868. if (is_first_call) {
  2869. // initialize time system (required on Windows)
  2870. ggml_time_init();
  2871. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2872. {
  2873. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2874. for (int i = 0; i < (1 << 16); ++i) {
  2875. union {
  2876. uint16_t u16;
  2877. ggml_fp16_t fp16;
  2878. } u = {i};
  2879. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2880. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2881. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2882. }
  2883. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2884. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2885. }
  2886. // initialize g_state
  2887. {
  2888. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2889. g_state = (struct ggml_state) {
  2890. /*.contexts =*/ { { 0 } },
  2891. /*.numa =*/ {
  2892. .n_nodes = 0,
  2893. .total_cpus = 0,
  2894. },
  2895. };
  2896. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2897. g_state.contexts[i].used = false;
  2898. }
  2899. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2900. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2901. }
  2902. #if defined(GGML_USE_CLBLAST)
  2903. ggml_cl_init();
  2904. #endif
  2905. ggml_setup_op_has_task_pass();
  2906. is_first_call = false;
  2907. }
  2908. // find non-used context in g_state
  2909. struct ggml_context * ctx = NULL;
  2910. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2911. if (!g_state.contexts[i].used) {
  2912. g_state.contexts[i].used = true;
  2913. ctx = &g_state.contexts[i].context;
  2914. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2915. break;
  2916. }
  2917. }
  2918. if (ctx == NULL) {
  2919. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2920. ggml_critical_section_end();
  2921. return NULL;
  2922. }
  2923. // allow to call ggml_init with 0 size
  2924. if (params.mem_size == 0) {
  2925. params.mem_size = GGML_MEM_ALIGN;
  2926. }
  2927. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2928. *ctx = (struct ggml_context) {
  2929. /*.mem_size =*/ mem_size,
  2930. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2931. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2932. /*.no_alloc =*/ params.no_alloc,
  2933. /*.no_alloc_save =*/ params.no_alloc,
  2934. /*.n_objects =*/ 0,
  2935. /*.objects_begin =*/ NULL,
  2936. /*.objects_end =*/ NULL,
  2937. /*.scratch =*/ { 0, 0, NULL, },
  2938. /*.scratch_save =*/ { 0, 0, NULL, },
  2939. };
  2940. GGML_ASSERT(ctx->mem_buffer != NULL);
  2941. ggml_assert_aligned(ctx->mem_buffer);
  2942. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2943. ggml_critical_section_end();
  2944. return ctx;
  2945. }
  2946. void ggml_free(struct ggml_context * ctx) {
  2947. if (ctx == NULL) {
  2948. return;
  2949. }
  2950. // make this function thread safe
  2951. ggml_critical_section_start();
  2952. bool found = false;
  2953. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2954. if (&g_state.contexts[i].context == ctx) {
  2955. g_state.contexts[i].used = false;
  2956. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2957. __func__, i, ggml_used_mem(ctx));
  2958. if (ctx->mem_buffer_owned) {
  2959. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2960. }
  2961. found = true;
  2962. break;
  2963. }
  2964. }
  2965. if (!found) {
  2966. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2967. }
  2968. ggml_critical_section_end();
  2969. }
  2970. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2971. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2972. }
  2973. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2974. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2975. ctx->scratch = scratch;
  2976. return result;
  2977. }
  2978. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2979. return ctx->no_alloc;
  2980. }
  2981. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2982. ctx->no_alloc = no_alloc;
  2983. }
  2984. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2985. return ctx->mem_buffer;
  2986. }
  2987. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2988. return ctx->mem_size;
  2989. }
  2990. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2991. size_t max_size = 0;
  2992. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2993. size_t bytes = ggml_nbytes(tensor);
  2994. max_size = MAX(max_size, bytes);
  2995. }
  2996. return max_size;
  2997. }
  2998. // IMPORTANT:
  2999. // when creating "opt" tensors, always save and load the scratch buffer
  3000. // this is an error prone process, but it is necessary to support inplace
  3001. // operators when using scratch buffers
  3002. // TODO: implement a better way
  3003. static void ggml_scratch_save(struct ggml_context * ctx) {
  3004. // this is needed to allow opt tensors to store their data
  3005. // TODO: again, need to find a better way
  3006. ctx->no_alloc_save = ctx->no_alloc;
  3007. ctx->no_alloc = false;
  3008. ctx->scratch_save = ctx->scratch;
  3009. ctx->scratch.data = NULL;
  3010. }
  3011. static void ggml_scratch_load(struct ggml_context * ctx) {
  3012. ctx->no_alloc = ctx->no_alloc_save;
  3013. ctx->scratch = ctx->scratch_save;
  3014. }
  3015. ////////////////////////////////////////////////////////////////////////////////
  3016. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3017. // always insert objects at the end of the context's memory pool
  3018. struct ggml_object * obj_cur = ctx->objects_end;
  3019. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3020. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3021. const size_t cur_end = cur_offs + cur_size;
  3022. // align to GGML_MEM_ALIGN
  3023. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3024. char * const mem_buffer = ctx->mem_buffer;
  3025. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3026. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3027. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3028. __func__, cur_end + size_needed, ctx->mem_size);
  3029. assert(false);
  3030. return NULL;
  3031. }
  3032. *obj_new = (struct ggml_object) {
  3033. .offs = cur_end + GGML_OBJECT_SIZE,
  3034. .size = size_needed,
  3035. .next = NULL,
  3036. .type = type,
  3037. };
  3038. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3039. if (obj_cur != NULL) {
  3040. obj_cur->next = obj_new;
  3041. } else {
  3042. // this is the first object in this context
  3043. ctx->objects_begin = obj_new;
  3044. }
  3045. ctx->objects_end = obj_new;
  3046. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3047. return obj_new;
  3048. }
  3049. static struct ggml_tensor * ggml_new_tensor_impl(
  3050. struct ggml_context * ctx,
  3051. enum ggml_type type,
  3052. int n_dims,
  3053. const int64_t * ne,
  3054. struct ggml_tensor * view_src,
  3055. size_t view_offs) {
  3056. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3057. // find the base tensor and absolute offset
  3058. if (view_src != NULL && view_src->view_src != NULL) {
  3059. view_offs += view_src->view_offs;
  3060. view_src = view_src->view_src;
  3061. }
  3062. size_t data_size = ggml_row_size(type, ne[0]);
  3063. for (int i = 1; i < n_dims; i++) {
  3064. data_size *= ne[i];
  3065. }
  3066. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3067. void * data = view_src != NULL ? view_src->data : NULL;
  3068. if (data != NULL) {
  3069. data = (char *) data + view_offs;
  3070. }
  3071. size_t obj_alloc_size = 0;
  3072. if (view_src == NULL && !ctx->no_alloc) {
  3073. if (ctx->scratch.data != NULL) {
  3074. // allocate tensor data in the scratch buffer
  3075. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3076. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3077. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3078. assert(false);
  3079. return NULL;
  3080. }
  3081. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3082. ctx->scratch.offs += data_size;
  3083. } else {
  3084. // allocate tensor data in the context's memory pool
  3085. obj_alloc_size = data_size;
  3086. }
  3087. }
  3088. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3089. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3090. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3091. #ifdef __clang__
  3092. // temporary until ggml_tensor::backend is removed
  3093. #pragma clang diagnostic push
  3094. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3095. #endif
  3096. *result = (struct ggml_tensor) {
  3097. /*.type =*/ type,
  3098. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3099. /*.buffer =*/ NULL,
  3100. /*.ne =*/ { 1, 1, 1, 1 },
  3101. /*.nb =*/ { 0, 0, 0, 0 },
  3102. /*.op =*/ GGML_OP_NONE,
  3103. /*.op_params =*/ { 0 },
  3104. /*.flags =*/ 0,
  3105. /*.grad =*/ NULL,
  3106. /*.src =*/ { NULL },
  3107. /*.perf_runs =*/ 0,
  3108. /*.perf_cycles =*/ 0,
  3109. /*.perf_time_us =*/ 0,
  3110. /*.view_src =*/ view_src,
  3111. /*.view_offs =*/ view_offs,
  3112. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3113. /*.name =*/ { 0 },
  3114. /*.extra =*/ NULL,
  3115. /*.padding =*/ { 0 },
  3116. };
  3117. #ifdef __clang__
  3118. #pragma clang diagnostic pop
  3119. #endif
  3120. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3121. //ggml_assert_aligned(result->data);
  3122. for (int i = 0; i < n_dims; i++) {
  3123. result->ne[i] = ne[i];
  3124. }
  3125. result->nb[0] = ggml_type_size(type);
  3126. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3127. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3128. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3129. }
  3130. ctx->n_objects++;
  3131. return result;
  3132. }
  3133. struct ggml_tensor * ggml_new_tensor(
  3134. struct ggml_context * ctx,
  3135. enum ggml_type type,
  3136. int n_dims,
  3137. const int64_t * ne) {
  3138. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3139. }
  3140. struct ggml_tensor * ggml_new_tensor_1d(
  3141. struct ggml_context * ctx,
  3142. enum ggml_type type,
  3143. int64_t ne0) {
  3144. return ggml_new_tensor(ctx, type, 1, &ne0);
  3145. }
  3146. struct ggml_tensor * ggml_new_tensor_2d(
  3147. struct ggml_context * ctx,
  3148. enum ggml_type type,
  3149. int64_t ne0,
  3150. int64_t ne1) {
  3151. const int64_t ne[2] = { ne0, ne1 };
  3152. return ggml_new_tensor(ctx, type, 2, ne);
  3153. }
  3154. struct ggml_tensor * ggml_new_tensor_3d(
  3155. struct ggml_context * ctx,
  3156. enum ggml_type type,
  3157. int64_t ne0,
  3158. int64_t ne1,
  3159. int64_t ne2) {
  3160. const int64_t ne[3] = { ne0, ne1, ne2 };
  3161. return ggml_new_tensor(ctx, type, 3, ne);
  3162. }
  3163. struct ggml_tensor * ggml_new_tensor_4d(
  3164. struct ggml_context * ctx,
  3165. enum ggml_type type,
  3166. int64_t ne0,
  3167. int64_t ne1,
  3168. int64_t ne2,
  3169. int64_t ne3) {
  3170. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3171. return ggml_new_tensor(ctx, type, 4, ne);
  3172. }
  3173. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3174. ggml_scratch_save(ctx);
  3175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3176. ggml_scratch_load(ctx);
  3177. ggml_set_i32(result, value);
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3181. ggml_scratch_save(ctx);
  3182. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3183. ggml_scratch_load(ctx);
  3184. ggml_set_f32(result, value);
  3185. return result;
  3186. }
  3187. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3188. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3189. }
  3190. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3191. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3192. assert(params_size <= GGML_MAX_OP_PARAMS);
  3193. memcpy(tensor->op_params, params, params_size);
  3194. }
  3195. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3196. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3197. return ((const int32_t *)(tensor->op_params))[i];
  3198. }
  3199. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3200. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3201. return ((const float *)(tensor->op_params))[i];
  3202. }
  3203. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3204. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3205. ((int32_t *)(tensor->op_params))[i] = value;
  3206. }
  3207. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3208. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3209. ((float *)(tensor->op_params))[i] = value;
  3210. }
  3211. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3212. memset(tensor->data, 0, ggml_nbytes(tensor));
  3213. return tensor;
  3214. }
  3215. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3216. const int n = ggml_nrows(tensor);
  3217. const int nc = tensor->ne[0];
  3218. const size_t n1 = tensor->nb[1];
  3219. char * const data = tensor->data;
  3220. switch (tensor->type) {
  3221. case GGML_TYPE_I8:
  3222. {
  3223. assert(tensor->nb[0] == sizeof(int8_t));
  3224. for (int i = 0; i < n; i++) {
  3225. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3226. }
  3227. } break;
  3228. case GGML_TYPE_I16:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int16_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_I32:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(int32_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3240. }
  3241. } break;
  3242. case GGML_TYPE_F16:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3247. }
  3248. } break;
  3249. case GGML_TYPE_BF16:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3254. }
  3255. } break;
  3256. case GGML_TYPE_F32:
  3257. {
  3258. assert(tensor->nb[0] == sizeof(float));
  3259. for (int i = 0; i < n; i++) {
  3260. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3261. }
  3262. } break;
  3263. default:
  3264. {
  3265. GGML_ASSERT(false);
  3266. } break;
  3267. }
  3268. return tensor;
  3269. }
  3270. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3271. const int n = ggml_nrows(tensor);
  3272. const int nc = tensor->ne[0];
  3273. const size_t n1 = tensor->nb[1];
  3274. char * const data = tensor->data;
  3275. switch (tensor->type) {
  3276. case GGML_TYPE_I8:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int8_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I16:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int16_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_I32:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(int32_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3295. }
  3296. } break;
  3297. case GGML_TYPE_F16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3302. }
  3303. } break;
  3304. case GGML_TYPE_BF16:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3309. }
  3310. } break;
  3311. case GGML_TYPE_F32:
  3312. {
  3313. assert(tensor->nb[0] == sizeof(float));
  3314. for (int i = 0; i < n; i++) {
  3315. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3316. }
  3317. } break;
  3318. default:
  3319. {
  3320. GGML_ASSERT(false);
  3321. } break;
  3322. }
  3323. return tensor;
  3324. }
  3325. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3326. const int64_t ne2 = tensor->ne[2];
  3327. const int64_t ne1 = tensor->ne[1];
  3328. const int64_t ne0 = tensor->ne[0];
  3329. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3330. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3331. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3332. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3333. if (i0) {
  3334. * i0 = i0_;
  3335. }
  3336. if (i1) {
  3337. * i1 = i1_;
  3338. }
  3339. if (i2) {
  3340. * i2 = i2_;
  3341. }
  3342. if (i3) {
  3343. * i3 = i3_;
  3344. }
  3345. }
  3346. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3347. if (!ggml_is_contiguous(tensor)) {
  3348. int64_t id[4] = { 0, 0, 0, 0 };
  3349. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3350. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3351. }
  3352. switch (tensor->type) {
  3353. case GGML_TYPE_I8:
  3354. {
  3355. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3356. return ((int8_t *)(tensor->data))[i];
  3357. }
  3358. case GGML_TYPE_I16:
  3359. {
  3360. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3361. return ((int16_t *)(tensor->data))[i];
  3362. }
  3363. case GGML_TYPE_I32:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3366. return ((int32_t *)(tensor->data))[i];
  3367. }
  3368. case GGML_TYPE_F16:
  3369. {
  3370. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3371. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3372. }
  3373. case GGML_TYPE_BF16:
  3374. {
  3375. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3376. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3377. }
  3378. case GGML_TYPE_F32:
  3379. {
  3380. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3381. return ((float *)(tensor->data))[i];
  3382. }
  3383. default:
  3384. {
  3385. GGML_ASSERT(false);
  3386. }
  3387. }
  3388. return 0.0f;
  3389. }
  3390. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3391. if (!ggml_is_contiguous(tensor)) {
  3392. int64_t id[4] = { 0, 0, 0, 0 };
  3393. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3394. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3395. return;
  3396. }
  3397. switch (tensor->type) {
  3398. case GGML_TYPE_I8:
  3399. {
  3400. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3401. ((int8_t *)(tensor->data))[i] = value;
  3402. } break;
  3403. case GGML_TYPE_I16:
  3404. {
  3405. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3406. ((int16_t *)(tensor->data))[i] = value;
  3407. } break;
  3408. case GGML_TYPE_I32:
  3409. {
  3410. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3411. ((int32_t *)(tensor->data))[i] = value;
  3412. } break;
  3413. case GGML_TYPE_F16:
  3414. {
  3415. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3416. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3417. } break;
  3418. case GGML_TYPE_BF16:
  3419. {
  3420. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3421. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3422. } break;
  3423. case GGML_TYPE_F32:
  3424. {
  3425. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3426. ((float *)(tensor->data))[i] = value;
  3427. } break;
  3428. default:
  3429. {
  3430. GGML_ASSERT(false);
  3431. } break;
  3432. }
  3433. }
  3434. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3435. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3436. switch (tensor->type) {
  3437. case GGML_TYPE_I8:
  3438. return ((int8_t *) data)[0];
  3439. case GGML_TYPE_I16:
  3440. return ((int16_t *) data)[0];
  3441. case GGML_TYPE_I32:
  3442. return ((int32_t *) data)[0];
  3443. case GGML_TYPE_F16:
  3444. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3445. case GGML_TYPE_BF16:
  3446. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3447. case GGML_TYPE_F32:
  3448. return ((float *) data)[0];
  3449. default:
  3450. GGML_ASSERT(false);
  3451. }
  3452. return 0.0f;
  3453. }
  3454. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3455. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3456. switch (tensor->type) {
  3457. case GGML_TYPE_I8:
  3458. {
  3459. ((int8_t *)(data))[0] = value;
  3460. } break;
  3461. case GGML_TYPE_I16:
  3462. {
  3463. ((int16_t *)(data))[0] = value;
  3464. } break;
  3465. case GGML_TYPE_I32:
  3466. {
  3467. ((int32_t *)(data))[0] = value;
  3468. } break;
  3469. case GGML_TYPE_F16:
  3470. {
  3471. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3472. } break;
  3473. case GGML_TYPE_BF16:
  3474. {
  3475. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3476. } break;
  3477. case GGML_TYPE_F32:
  3478. {
  3479. ((float *)(data))[0] = value;
  3480. } break;
  3481. default:
  3482. {
  3483. GGML_ASSERT(false);
  3484. } break;
  3485. }
  3486. }
  3487. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3488. if (!ggml_is_contiguous(tensor)) {
  3489. int64_t id[4] = { 0, 0, 0, 0 };
  3490. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3491. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3492. }
  3493. switch (tensor->type) {
  3494. case GGML_TYPE_I8:
  3495. {
  3496. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3497. return ((int8_t *)(tensor->data))[i];
  3498. }
  3499. case GGML_TYPE_I16:
  3500. {
  3501. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3502. return ((int16_t *)(tensor->data))[i];
  3503. }
  3504. case GGML_TYPE_I32:
  3505. {
  3506. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3507. return ((int32_t *)(tensor->data))[i];
  3508. }
  3509. case GGML_TYPE_F16:
  3510. {
  3511. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3512. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3513. }
  3514. case GGML_TYPE_BF16:
  3515. {
  3516. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3517. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3518. }
  3519. case GGML_TYPE_F32:
  3520. {
  3521. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3522. return ((float *)(tensor->data))[i];
  3523. }
  3524. default:
  3525. {
  3526. GGML_ASSERT(false);
  3527. }
  3528. }
  3529. return 0.0f;
  3530. }
  3531. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3532. if (!ggml_is_contiguous(tensor)) {
  3533. int64_t id[4] = { 0, 0, 0, 0 };
  3534. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3535. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3536. return;
  3537. }
  3538. switch (tensor->type) {
  3539. case GGML_TYPE_I8:
  3540. {
  3541. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3542. ((int8_t *)(tensor->data))[i] = value;
  3543. } break;
  3544. case GGML_TYPE_I16:
  3545. {
  3546. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3547. ((int16_t *)(tensor->data))[i] = value;
  3548. } break;
  3549. case GGML_TYPE_I32:
  3550. {
  3551. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3552. ((int32_t *)(tensor->data))[i] = value;
  3553. } break;
  3554. case GGML_TYPE_F16:
  3555. {
  3556. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3557. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3558. } break;
  3559. case GGML_TYPE_BF16:
  3560. {
  3561. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3562. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3563. } break;
  3564. case GGML_TYPE_F32:
  3565. {
  3566. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3567. ((float *)(tensor->data))[i] = value;
  3568. } break;
  3569. default:
  3570. {
  3571. GGML_ASSERT(false);
  3572. } break;
  3573. }
  3574. }
  3575. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3576. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3577. switch (tensor->type) {
  3578. case GGML_TYPE_I8:
  3579. return ((int8_t *) data)[0];
  3580. case GGML_TYPE_I16:
  3581. return ((int16_t *) data)[0];
  3582. case GGML_TYPE_I32:
  3583. return ((int32_t *) data)[0];
  3584. case GGML_TYPE_F16:
  3585. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3586. case GGML_TYPE_BF16:
  3587. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3588. case GGML_TYPE_F32:
  3589. return ((float *) data)[0];
  3590. default:
  3591. GGML_ASSERT(false);
  3592. }
  3593. return 0.0f;
  3594. }
  3595. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3596. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3597. switch (tensor->type) {
  3598. case GGML_TYPE_I8:
  3599. {
  3600. ((int8_t *)(data))[0] = value;
  3601. } break;
  3602. case GGML_TYPE_I16:
  3603. {
  3604. ((int16_t *)(data))[0] = value;
  3605. } break;
  3606. case GGML_TYPE_I32:
  3607. {
  3608. ((int32_t *)(data))[0] = value;
  3609. } break;
  3610. case GGML_TYPE_F16:
  3611. {
  3612. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3613. } break;
  3614. case GGML_TYPE_BF16:
  3615. {
  3616. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3617. } break;
  3618. case GGML_TYPE_F32:
  3619. {
  3620. ((float *)(data))[0] = value;
  3621. } break;
  3622. default:
  3623. {
  3624. GGML_ASSERT(false);
  3625. } break;
  3626. }
  3627. }
  3628. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3629. return tensor->data;
  3630. }
  3631. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3632. assert(tensor->type == GGML_TYPE_F32);
  3633. return (float *)(tensor->data);
  3634. }
  3635. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3636. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3637. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3638. }
  3639. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3640. return tensor->name;
  3641. }
  3642. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3643. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3644. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3645. return tensor;
  3646. }
  3647. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3648. va_list args;
  3649. va_start(args, fmt);
  3650. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3651. va_end(args);
  3652. return tensor;
  3653. }
  3654. struct ggml_tensor * ggml_view_tensor(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * src) {
  3657. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3658. ggml_format_name(result, "%s (view)", src->name);
  3659. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3660. result->nb[i] = src->nb[i];
  3661. }
  3662. return result;
  3663. }
  3664. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3665. struct ggml_object * obj = ctx->objects_begin;
  3666. char * const mem_buffer = ctx->mem_buffer;
  3667. while (obj != NULL) {
  3668. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3669. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3670. }
  3671. obj = obj->next;
  3672. }
  3673. return NULL;
  3674. }
  3675. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3676. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3677. obj = obj->next;
  3678. char * const mem_buffer = ctx->mem_buffer;
  3679. while (obj != NULL) {
  3680. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3681. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3682. }
  3683. obj = obj->next;
  3684. }
  3685. return NULL;
  3686. }
  3687. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3688. struct ggml_object * obj = ctx->objects_begin;
  3689. char * const mem_buffer = ctx->mem_buffer;
  3690. while (obj != NULL) {
  3691. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3692. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3693. if (strcmp(cur->name, name) == 0) {
  3694. return cur;
  3695. }
  3696. }
  3697. obj = obj->next;
  3698. }
  3699. return NULL;
  3700. }
  3701. ////////////////////////////////////////////////////////////////////////////////
  3702. // ggml_dup
  3703. static struct ggml_tensor * ggml_dup_impl(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. bool inplace) {
  3707. bool is_node = false;
  3708. if (!inplace && (a->grad)) {
  3709. is_node = true;
  3710. }
  3711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3712. result->op = GGML_OP_DUP;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src[0] = a;
  3715. return result;
  3716. }
  3717. struct ggml_tensor * ggml_dup(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a) {
  3720. return ggml_dup_impl(ctx, a, false);
  3721. }
  3722. struct ggml_tensor * ggml_dup_inplace(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a) {
  3725. return ggml_dup_impl(ctx, a, true);
  3726. }
  3727. // ggml_add
  3728. static struct ggml_tensor * ggml_add_impl(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b,
  3732. bool inplace) {
  3733. GGML_ASSERT(ggml_can_repeat(b, a));
  3734. bool is_node = false;
  3735. if (!inplace && (a->grad || b->grad)) {
  3736. // TODO: support backward pass for broadcasting
  3737. GGML_ASSERT(ggml_are_same_shape(a, b));
  3738. is_node = true;
  3739. }
  3740. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3741. result->op = GGML_OP_ADD;
  3742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3743. result->src[0] = a;
  3744. result->src[1] = b;
  3745. return result;
  3746. }
  3747. struct ggml_tensor * ggml_add(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. struct ggml_tensor * b) {
  3751. return ggml_add_impl(ctx, a, b, false);
  3752. }
  3753. struct ggml_tensor * ggml_add_inplace(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. struct ggml_tensor * b) {
  3757. return ggml_add_impl(ctx, a, b, true);
  3758. }
  3759. // ggml_add_cast
  3760. static struct ggml_tensor * ggml_add_cast_impl(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a,
  3763. struct ggml_tensor * b,
  3764. enum ggml_type type) {
  3765. // TODO: support less-strict constraint
  3766. // GGML_ASSERT(ggml_can_repeat(b, a));
  3767. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3768. // currently only supported for quantized input and f16
  3769. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3770. a->type == GGML_TYPE_F16 ||
  3771. a->type == GGML_TYPE_BF16);
  3772. bool is_node = false;
  3773. if (a->grad || b->grad) {
  3774. // TODO: support backward pass for broadcasting
  3775. GGML_ASSERT(ggml_are_same_shape(a, b));
  3776. is_node = true;
  3777. }
  3778. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3779. result->op = GGML_OP_ADD;
  3780. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3781. result->src[0] = a;
  3782. result->src[1] = b;
  3783. return result;
  3784. }
  3785. struct ggml_tensor * ggml_add_cast(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a,
  3788. struct ggml_tensor * b,
  3789. enum ggml_type type) {
  3790. return ggml_add_cast_impl(ctx, a, b, type);
  3791. }
  3792. // ggml_add1
  3793. static struct ggml_tensor * ggml_add1_impl(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a,
  3796. struct ggml_tensor * b,
  3797. bool inplace) {
  3798. GGML_ASSERT(ggml_is_scalar(b));
  3799. GGML_ASSERT(ggml_is_padded_1d(a));
  3800. bool is_node = false;
  3801. if (a->grad || b->grad) {
  3802. is_node = true;
  3803. }
  3804. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3805. result->op = GGML_OP_ADD1;
  3806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3807. result->src[0] = a;
  3808. result->src[1] = b;
  3809. return result;
  3810. }
  3811. struct ggml_tensor * ggml_add1(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b) {
  3815. return ggml_add1_impl(ctx, a, b, false);
  3816. }
  3817. struct ggml_tensor * ggml_add1_inplace(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b) {
  3821. return ggml_add1_impl(ctx, a, b, true);
  3822. }
  3823. // ggml_acc
  3824. static struct ggml_tensor * ggml_acc_impl(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b,
  3828. size_t nb1,
  3829. size_t nb2,
  3830. size_t nb3,
  3831. size_t offset,
  3832. bool inplace) {
  3833. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3834. GGML_ASSERT(ggml_is_contiguous(a));
  3835. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3836. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3837. bool is_node = false;
  3838. if (!inplace && (a->grad || b->grad)) {
  3839. is_node = true;
  3840. }
  3841. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3842. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3843. ggml_set_op_params(result, params, sizeof(params));
  3844. result->op = GGML_OP_ACC;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src[0] = a;
  3847. result->src[1] = b;
  3848. return result;
  3849. }
  3850. struct ggml_tensor * ggml_acc(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. struct ggml_tensor * b,
  3854. size_t nb1,
  3855. size_t nb2,
  3856. size_t nb3,
  3857. size_t offset) {
  3858. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3859. }
  3860. struct ggml_tensor * ggml_acc_inplace(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b,
  3864. size_t nb1,
  3865. size_t nb2,
  3866. size_t nb3,
  3867. size_t offset) {
  3868. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3869. }
  3870. // ggml_sub
  3871. static struct ggml_tensor * ggml_sub_impl(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a,
  3874. struct ggml_tensor * b,
  3875. bool inplace) {
  3876. GGML_ASSERT(ggml_are_same_shape(a, b));
  3877. bool is_node = false;
  3878. if (!inplace && (a->grad || b->grad)) {
  3879. is_node = true;
  3880. }
  3881. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3882. result->op = GGML_OP_SUB;
  3883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3884. result->src[0] = a;
  3885. result->src[1] = b;
  3886. return result;
  3887. }
  3888. struct ggml_tensor * ggml_sub(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. struct ggml_tensor * b) {
  3892. return ggml_sub_impl(ctx, a, b, false);
  3893. }
  3894. struct ggml_tensor * ggml_sub_inplace(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a,
  3897. struct ggml_tensor * b) {
  3898. return ggml_sub_impl(ctx, a, b, true);
  3899. }
  3900. // ggml_mul
  3901. static struct ggml_tensor * ggml_mul_impl(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. struct ggml_tensor * b,
  3905. bool inplace) {
  3906. GGML_ASSERT(ggml_can_repeat(b, a));
  3907. bool is_node = false;
  3908. if (!inplace && (a->grad || b->grad)) {
  3909. // TODO: support backward pass for broadcasting
  3910. GGML_ASSERT(ggml_are_same_shape(a, b));
  3911. is_node = true;
  3912. }
  3913. if (inplace) {
  3914. GGML_ASSERT(!is_node);
  3915. }
  3916. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3917. result->op = GGML_OP_MUL;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. result->src[1] = b;
  3921. return result;
  3922. }
  3923. struct ggml_tensor * ggml_mul(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b) {
  3927. return ggml_mul_impl(ctx, a, b, false);
  3928. }
  3929. struct ggml_tensor * ggml_mul_inplace(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b) {
  3933. return ggml_mul_impl(ctx, a, b, true);
  3934. }
  3935. // ggml_div
  3936. static struct ggml_tensor * ggml_div_impl(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b,
  3940. bool inplace) {
  3941. GGML_ASSERT(ggml_can_repeat(b, a));
  3942. bool is_node = false;
  3943. if (!inplace && (a->grad || b->grad)) {
  3944. is_node = true;
  3945. }
  3946. if (inplace) {
  3947. GGML_ASSERT(!is_node);
  3948. }
  3949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3950. result->op = GGML_OP_DIV;
  3951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3952. result->src[0] = a;
  3953. result->src[1] = b;
  3954. return result;
  3955. }
  3956. struct ggml_tensor * ggml_div(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b) {
  3960. return ggml_div_impl(ctx, a, b, false);
  3961. }
  3962. struct ggml_tensor * ggml_div_inplace(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. return ggml_div_impl(ctx, a, b, true);
  3967. }
  3968. // ggml_sqr
  3969. static struct ggml_tensor * ggml_sqr_impl(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. bool inplace) {
  3973. bool is_node = false;
  3974. if (!inplace && (a->grad)) {
  3975. is_node = true;
  3976. }
  3977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3978. result->op = GGML_OP_SQR;
  3979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3980. result->src[0] = a;
  3981. return result;
  3982. }
  3983. struct ggml_tensor * ggml_sqr(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a) {
  3986. return ggml_sqr_impl(ctx, a, false);
  3987. }
  3988. struct ggml_tensor * ggml_sqr_inplace(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a) {
  3991. return ggml_sqr_impl(ctx, a, true);
  3992. }
  3993. // ggml_sqrt
  3994. static struct ggml_tensor * ggml_sqrt_impl(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. bool inplace) {
  3998. bool is_node = false;
  3999. if (!inplace && (a->grad)) {
  4000. is_node = true;
  4001. }
  4002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4003. result->op = GGML_OP_SQRT;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src[0] = a;
  4006. return result;
  4007. }
  4008. struct ggml_tensor * ggml_sqrt(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a) {
  4011. return ggml_sqrt_impl(ctx, a, false);
  4012. }
  4013. struct ggml_tensor * ggml_sqrt_inplace(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a) {
  4016. return ggml_sqrt_impl(ctx, a, true);
  4017. }
  4018. // ggml_log
  4019. static struct ggml_tensor * ggml_log_impl(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. bool inplace) {
  4023. bool is_node = false;
  4024. if (!inplace && (a->grad)) {
  4025. is_node = true;
  4026. }
  4027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4028. result->op = GGML_OP_LOG;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src[0] = a;
  4031. return result;
  4032. }
  4033. struct ggml_tensor * ggml_log(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a) {
  4036. return ggml_log_impl(ctx, a, false);
  4037. }
  4038. struct ggml_tensor * ggml_log_inplace(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a) {
  4041. return ggml_log_impl(ctx, a, true);
  4042. }
  4043. // ggml_sum
  4044. struct ggml_tensor * ggml_sum(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a) {
  4047. bool is_node = false;
  4048. if (a->grad) {
  4049. is_node = true;
  4050. }
  4051. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4052. result->op = GGML_OP_SUM;
  4053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4054. result->src[0] = a;
  4055. return result;
  4056. }
  4057. // ggml_sum_rows
  4058. struct ggml_tensor * ggml_sum_rows(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a) {
  4061. bool is_node = false;
  4062. if (a->grad) {
  4063. is_node = true;
  4064. }
  4065. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4066. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4067. ne[i] = a->ne[i];
  4068. }
  4069. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4070. result->op = GGML_OP_SUM_ROWS;
  4071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4072. result->src[0] = a;
  4073. return result;
  4074. }
  4075. // ggml_mean
  4076. struct ggml_tensor * ggml_mean(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a) {
  4079. bool is_node = false;
  4080. if (a->grad) {
  4081. GGML_ASSERT(false); // TODO: implement
  4082. is_node = true;
  4083. }
  4084. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4085. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4086. result->op = GGML_OP_MEAN;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src[0] = a;
  4089. return result;
  4090. }
  4091. // ggml_argmax
  4092. struct ggml_tensor * ggml_argmax(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. GGML_ASSERT(ggml_is_matrix(a));
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. GGML_ASSERT(false);
  4099. is_node = true;
  4100. }
  4101. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4102. result->op = GGML_OP_ARGMAX;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. // ggml_repeat
  4108. struct ggml_tensor * ggml_repeat(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b) {
  4112. GGML_ASSERT(ggml_can_repeat(a, b));
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4118. result->op = GGML_OP_REPEAT;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src[0] = a;
  4121. return result;
  4122. }
  4123. // ggml_repeat_back
  4124. struct ggml_tensor * ggml_repeat_back(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b) {
  4128. GGML_ASSERT(ggml_can_repeat(b, a));
  4129. bool is_node = false;
  4130. if (a->grad) {
  4131. is_node = true;
  4132. }
  4133. if (ggml_are_same_shape(a, b) && !is_node) {
  4134. return a;
  4135. }
  4136. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4137. result->op = GGML_OP_REPEAT_BACK;
  4138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4139. result->src[0] = a;
  4140. return result;
  4141. }
  4142. // ggml_concat
  4143. struct ggml_tensor * ggml_concat(
  4144. struct ggml_context* ctx,
  4145. struct ggml_tensor* a,
  4146. struct ggml_tensor* b) {
  4147. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4148. bool is_node = false;
  4149. if (a->grad || b->grad) {
  4150. is_node = true;
  4151. }
  4152. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4153. result->op = GGML_OP_CONCAT;
  4154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4155. result->src[0] = a;
  4156. result->src[1] = b;
  4157. return result;
  4158. }
  4159. // ggml_abs
  4160. struct ggml_tensor * ggml_abs(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4164. }
  4165. struct ggml_tensor * ggml_abs_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a) {
  4168. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4169. }
  4170. // ggml_sgn
  4171. struct ggml_tensor * ggml_sgn(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a) {
  4174. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4175. }
  4176. struct ggml_tensor * ggml_sgn_inplace(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4180. }
  4181. // ggml_neg
  4182. struct ggml_tensor * ggml_neg(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a) {
  4185. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4186. }
  4187. struct ggml_tensor * ggml_neg_inplace(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a) {
  4190. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4191. }
  4192. // ggml_step
  4193. struct ggml_tensor * ggml_step(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a) {
  4196. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4197. }
  4198. struct ggml_tensor * ggml_step_inplace(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a) {
  4201. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4202. }
  4203. // ggml_tanh
  4204. struct ggml_tensor * ggml_tanh(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a) {
  4207. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4208. }
  4209. struct ggml_tensor * ggml_tanh_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4213. }
  4214. // ggml_elu
  4215. struct ggml_tensor * ggml_elu(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a) {
  4218. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4219. }
  4220. struct ggml_tensor * ggml_elu_inplace(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a) {
  4223. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4224. }
  4225. // ggml_relu
  4226. struct ggml_tensor * ggml_relu(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a) {
  4229. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4230. }
  4231. struct ggml_tensor * ggml_relu_inplace(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4235. }
  4236. // ggml_leaky_relu
  4237. struct ggml_tensor * ggml_leaky_relu(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4240. bool is_node = false;
  4241. if (!inplace && (a->grad)) {
  4242. is_node = true;
  4243. }
  4244. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4245. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4246. result->op = GGML_OP_LEAKY_RELU;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. return result;
  4250. }
  4251. // ggml_sigmoid
  4252. struct ggml_tensor * ggml_sigmoid(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a) {
  4255. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4256. }
  4257. struct ggml_tensor * ggml_sigmoid_inplace(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a) {
  4260. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4261. }
  4262. // ggml_gelu
  4263. struct ggml_tensor * ggml_gelu(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a) {
  4266. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4267. }
  4268. struct ggml_tensor * ggml_gelu_inplace(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a) {
  4271. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4272. }
  4273. // ggml_gelu_quick
  4274. struct ggml_tensor * ggml_gelu_quick(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a) {
  4277. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4278. }
  4279. struct ggml_tensor * ggml_gelu_quick_inplace(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a) {
  4282. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4283. }
  4284. // ggml_silu
  4285. struct ggml_tensor * ggml_silu(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4289. }
  4290. struct ggml_tensor * ggml_silu_inplace(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4294. }
  4295. // ggml_silu_back
  4296. struct ggml_tensor * ggml_silu_back(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. bool is_node = false;
  4301. if (a->grad || b->grad) {
  4302. // TODO: implement backward
  4303. is_node = true;
  4304. }
  4305. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4306. result->op = GGML_OP_SILU_BACK;
  4307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4308. result->src[0] = a;
  4309. result->src[1] = b;
  4310. return result;
  4311. }
  4312. // ggml hardswish
  4313. struct ggml_tensor * ggml_hardswish(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a) {
  4316. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4317. }
  4318. // ggml hardsigmoid
  4319. struct ggml_tensor * ggml_hardsigmoid(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a) {
  4322. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4323. }
  4324. // ggml_norm
  4325. static struct ggml_tensor * ggml_norm_impl(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. float eps,
  4329. bool inplace) {
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad)) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4336. ggml_set_op_params(result, &eps, sizeof(eps));
  4337. result->op = GGML_OP_NORM;
  4338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4339. result->src[0] = a;
  4340. return result;
  4341. }
  4342. struct ggml_tensor * ggml_norm(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. float eps) {
  4346. return ggml_norm_impl(ctx, a, eps, false);
  4347. }
  4348. struct ggml_tensor * ggml_norm_inplace(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. float eps) {
  4352. return ggml_norm_impl(ctx, a, eps, true);
  4353. }
  4354. // ggml_rms_norm
  4355. static struct ggml_tensor * ggml_rms_norm_impl(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. float eps,
  4359. bool inplace) {
  4360. bool is_node = false;
  4361. if (!inplace && (a->grad)) {
  4362. is_node = true;
  4363. }
  4364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4365. ggml_set_op_params(result, &eps, sizeof(eps));
  4366. result->op = GGML_OP_RMS_NORM;
  4367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4368. result->src[0] = a;
  4369. return result;
  4370. }
  4371. struct ggml_tensor * ggml_rms_norm(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. float eps) {
  4375. return ggml_rms_norm_impl(ctx, a, eps, false);
  4376. }
  4377. struct ggml_tensor * ggml_rms_norm_inplace(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. float eps) {
  4381. return ggml_rms_norm_impl(ctx, a, eps, true);
  4382. }
  4383. // ggml_rms_norm_back
  4384. struct ggml_tensor * ggml_rms_norm_back(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a,
  4387. struct ggml_tensor * b,
  4388. float eps) {
  4389. bool is_node = false;
  4390. if (a->grad) {
  4391. // TODO: implement backward
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4395. ggml_set_op_params(result, &eps, sizeof(eps));
  4396. result->op = GGML_OP_RMS_NORM_BACK;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src[0] = a;
  4399. result->src[1] = b;
  4400. return result;
  4401. }
  4402. // ggml_group_norm
  4403. static struct ggml_tensor * ggml_group_norm_impl(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. int n_groups,
  4407. bool inplace) {
  4408. bool is_node = false;
  4409. if (!inplace && (a->grad)) {
  4410. GGML_ASSERT(false); // TODO: implement backward
  4411. is_node = true;
  4412. }
  4413. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4414. result->op_params[0] = n_groups;
  4415. result->op = GGML_OP_GROUP_NORM;
  4416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4417. result->src[0] = a;
  4418. return result;
  4419. }
  4420. struct ggml_tensor * ggml_group_norm(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. int n_groups) {
  4424. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4425. }
  4426. struct ggml_tensor * ggml_group_norm_inplace(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. int n_groups) {
  4430. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4431. }
  4432. // ggml_mul_mat
  4433. struct ggml_tensor * ggml_mul_mat(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b) {
  4437. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4438. GGML_ASSERT(!ggml_is_transposed(a));
  4439. bool is_node = false;
  4440. if (a->grad || b->grad) {
  4441. is_node = true;
  4442. }
  4443. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4444. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4445. result->op = GGML_OP_MUL_MAT;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src[0] = a;
  4448. result->src[1] = b;
  4449. return result;
  4450. }
  4451. void ggml_mul_mat_set_prec(
  4452. struct ggml_tensor * a,
  4453. enum ggml_prec prec) {
  4454. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4455. const int32_t prec_i32 = (int32_t) prec;
  4456. ggml_set_op_params_i32(a, 0, prec_i32);
  4457. }
  4458. // ggml_mul_mat_id
  4459. /*
  4460. c = ggml_mul_mat_id(ctx, as, b, ids);
  4461. as -> [cols, rows, n_expert]
  4462. ids -> [n_experts_used, n_tokens] (i32)
  4463. b -> [cols, n_expert_used, n_tokens]
  4464. c -> [cols, n_expert_used, n_tokens]
  4465. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4466. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4467. */
  4468. struct ggml_tensor * ggml_mul_mat_id(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * as,
  4471. struct ggml_tensor * b,
  4472. struct ggml_tensor * ids) {
  4473. GGML_ASSERT(!ggml_is_transposed(as));
  4474. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4475. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4476. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4477. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4478. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4479. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4480. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4481. bool is_node = false;
  4482. if (as->grad || b->grad) {
  4483. is_node = true;
  4484. }
  4485. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4486. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4487. result->op = GGML_OP_MUL_MAT_ID;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = as;
  4490. result->src[1] = b;
  4491. result->src[2] = ids;
  4492. return result;
  4493. }
  4494. // ggml_out_prod
  4495. struct ggml_tensor * ggml_out_prod(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. struct ggml_tensor * b) {
  4499. GGML_ASSERT(ggml_can_out_prod(a, b));
  4500. GGML_ASSERT(!ggml_is_transposed(a));
  4501. bool is_node = false;
  4502. if (a->grad || b->grad) {
  4503. is_node = true;
  4504. }
  4505. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4506. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4507. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4508. result->op = GGML_OP_OUT_PROD;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. result->src[1] = b;
  4512. return result;
  4513. }
  4514. // ggml_scale
  4515. static struct ggml_tensor * ggml_scale_impl(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. float s,
  4519. bool inplace) {
  4520. GGML_ASSERT(ggml_is_padded_1d(a));
  4521. bool is_node = false;
  4522. if (a->grad) {
  4523. is_node = true;
  4524. }
  4525. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4526. ggml_set_op_params(result, &s, sizeof(s));
  4527. result->op = GGML_OP_SCALE;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src[0] = a;
  4530. return result;
  4531. }
  4532. struct ggml_tensor * ggml_scale(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. float s) {
  4536. return ggml_scale_impl(ctx, a, s, false);
  4537. }
  4538. struct ggml_tensor * ggml_scale_inplace(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a,
  4541. float s) {
  4542. return ggml_scale_impl(ctx, a, s, true);
  4543. }
  4544. // ggml_set
  4545. static struct ggml_tensor * ggml_set_impl(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b,
  4549. size_t nb1,
  4550. size_t nb2,
  4551. size_t nb3,
  4552. size_t offset,
  4553. bool inplace) {
  4554. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4555. bool is_node = false;
  4556. if (a->grad || b->grad) {
  4557. is_node = true;
  4558. }
  4559. // make a view of the destination
  4560. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4561. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4562. ggml_set_op_params(result, params, sizeof(params));
  4563. result->op = GGML_OP_SET;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src[0] = a;
  4566. result->src[1] = b;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_set(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b,
  4573. size_t nb1,
  4574. size_t nb2,
  4575. size_t nb3,
  4576. size_t offset) {
  4577. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4578. }
  4579. struct ggml_tensor * ggml_set_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a,
  4582. struct ggml_tensor * b,
  4583. size_t nb1,
  4584. size_t nb2,
  4585. size_t nb3,
  4586. size_t offset) {
  4587. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4588. }
  4589. struct ggml_tensor * ggml_set_1d(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. struct ggml_tensor * b,
  4593. size_t offset) {
  4594. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4595. }
  4596. struct ggml_tensor * ggml_set_1d_inplace(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. struct ggml_tensor * b,
  4600. size_t offset) {
  4601. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4602. }
  4603. struct ggml_tensor * ggml_set_2d(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. size_t nb1,
  4608. size_t offset) {
  4609. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4610. }
  4611. struct ggml_tensor * ggml_set_2d_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. struct ggml_tensor * b,
  4615. size_t nb1,
  4616. size_t offset) {
  4617. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4618. }
  4619. // ggml_cpy
  4620. static struct ggml_tensor * ggml_cpy_impl(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. struct ggml_tensor * b) {
  4624. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4625. bool is_node = false;
  4626. if (a->grad || b->grad) {
  4627. // inplace is false and either one have a grad
  4628. is_node = true;
  4629. }
  4630. // make a view of the destination
  4631. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4632. if (strlen(b->name) > 0) {
  4633. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4634. } else {
  4635. ggml_format_name(result, "%s (copy)", a->name);
  4636. }
  4637. result->op = GGML_OP_CPY;
  4638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4639. result->src[0] = a;
  4640. result->src[1] = b;
  4641. return result;
  4642. }
  4643. struct ggml_tensor * ggml_cpy(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. struct ggml_tensor * b) {
  4647. return ggml_cpy_impl(ctx, a, b);
  4648. }
  4649. struct ggml_tensor * ggml_cast(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. enum ggml_type type) {
  4653. bool is_node = false;
  4654. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4655. ggml_format_name(result, "%s (copy)", a->name);
  4656. result->op = GGML_OP_CPY;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src[0] = a;
  4659. result->src[1] = result;
  4660. return result;
  4661. }
  4662. // ggml_cont
  4663. static struct ggml_tensor * ggml_cont_impl(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a) {
  4666. bool is_node = false;
  4667. if (a->grad) {
  4668. is_node = true;
  4669. }
  4670. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4671. ggml_format_name(result, "%s (cont)", a->name);
  4672. result->op = GGML_OP_CONT;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = a;
  4675. return result;
  4676. }
  4677. struct ggml_tensor * ggml_cont(
  4678. struct ggml_context * ctx,
  4679. struct ggml_tensor * a) {
  4680. return ggml_cont_impl(ctx, a);
  4681. }
  4682. // make contiguous, with new shape
  4683. GGML_API struct ggml_tensor * ggml_cont_1d(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. int64_t ne0) {
  4687. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4688. }
  4689. GGML_API struct ggml_tensor * ggml_cont_2d(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a,
  4692. int64_t ne0,
  4693. int64_t ne1) {
  4694. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4695. }
  4696. GGML_API struct ggml_tensor * ggml_cont_3d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0,
  4700. int64_t ne1,
  4701. int64_t ne2) {
  4702. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4703. }
  4704. struct ggml_tensor * ggml_cont_4d(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. int64_t ne0,
  4708. int64_t ne1,
  4709. int64_t ne2,
  4710. int64_t ne3) {
  4711. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4712. bool is_node = false;
  4713. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4714. ggml_format_name(result, "%s (cont)", a->name);
  4715. result->op = GGML_OP_CONT;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src[0] = a;
  4718. return result;
  4719. }
  4720. // ggml_reshape
  4721. struct ggml_tensor * ggml_reshape(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. struct ggml_tensor * b) {
  4725. GGML_ASSERT(ggml_is_contiguous(a));
  4726. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4727. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4728. bool is_node = false;
  4729. if (a->grad) {
  4730. is_node = true;
  4731. }
  4732. if (b->grad) {
  4733. // gradient propagation is not supported
  4734. //GGML_ASSERT(false);
  4735. }
  4736. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4737. ggml_format_name(result, "%s (reshaped)", a->name);
  4738. result->op = GGML_OP_RESHAPE;
  4739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4740. result->src[0] = a;
  4741. return result;
  4742. }
  4743. struct ggml_tensor * ggml_reshape_1d(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. int64_t ne0) {
  4747. GGML_ASSERT(ggml_is_contiguous(a));
  4748. GGML_ASSERT(ggml_nelements(a) == ne0);
  4749. bool is_node = false;
  4750. if (a->grad) {
  4751. is_node = true;
  4752. }
  4753. const int64_t ne[1] = { ne0 };
  4754. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4755. ggml_format_name(result, "%s (reshaped)", a->name);
  4756. result->op = GGML_OP_RESHAPE;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_reshape_2d(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int64_t ne0,
  4765. int64_t ne1) {
  4766. GGML_ASSERT(ggml_is_contiguous(a));
  4767. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4768. bool is_node = false;
  4769. if (a->grad) {
  4770. is_node = true;
  4771. }
  4772. const int64_t ne[2] = { ne0, ne1 };
  4773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4774. ggml_format_name(result, "%s (reshaped)", a->name);
  4775. result->op = GGML_OP_RESHAPE;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src[0] = a;
  4778. return result;
  4779. }
  4780. struct ggml_tensor * ggml_reshape_3d(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. int64_t ne0,
  4784. int64_t ne1,
  4785. int64_t ne2) {
  4786. GGML_ASSERT(ggml_is_contiguous(a));
  4787. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4788. bool is_node = false;
  4789. if (a->grad) {
  4790. is_node = true;
  4791. }
  4792. const int64_t ne[3] = { ne0, ne1, ne2 };
  4793. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4794. ggml_format_name(result, "%s (reshaped)", a->name);
  4795. result->op = GGML_OP_RESHAPE;
  4796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4797. result->src[0] = a;
  4798. return result;
  4799. }
  4800. struct ggml_tensor * ggml_reshape_4d(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. int64_t ne0,
  4804. int64_t ne1,
  4805. int64_t ne2,
  4806. int64_t ne3) {
  4807. GGML_ASSERT(ggml_is_contiguous(a));
  4808. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4809. bool is_node = false;
  4810. if (a->grad) {
  4811. is_node = true;
  4812. }
  4813. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4814. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4815. ggml_format_name(result, "%s (reshaped)", a->name);
  4816. result->op = GGML_OP_RESHAPE;
  4817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4818. result->src[0] = a;
  4819. return result;
  4820. }
  4821. static struct ggml_tensor * ggml_view_impl(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. int n_dims,
  4825. const int64_t * ne,
  4826. size_t offset) {
  4827. bool is_node = false;
  4828. if (a->grad) {
  4829. is_node = true;
  4830. }
  4831. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4832. ggml_format_name(result, "%s (view)", a->name);
  4833. ggml_set_op_params(result, &offset, sizeof(offset));
  4834. result->op = GGML_OP_VIEW;
  4835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4836. result->src[0] = a;
  4837. return result;
  4838. }
  4839. // ggml_view_1d
  4840. struct ggml_tensor * ggml_view_1d(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. int64_t ne0,
  4844. size_t offset) {
  4845. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4846. return result;
  4847. }
  4848. // ggml_view_2d
  4849. struct ggml_tensor * ggml_view_2d(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. int64_t ne0,
  4853. int64_t ne1,
  4854. size_t nb1,
  4855. size_t offset) {
  4856. const int64_t ne[2] = { ne0, ne1 };
  4857. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4858. result->nb[1] = nb1;
  4859. result->nb[2] = result->nb[1]*ne1;
  4860. result->nb[3] = result->nb[2];
  4861. return result;
  4862. }
  4863. // ggml_view_3d
  4864. struct ggml_tensor * ggml_view_3d(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. int64_t ne0,
  4868. int64_t ne1,
  4869. int64_t ne2,
  4870. size_t nb1,
  4871. size_t nb2,
  4872. size_t offset) {
  4873. const int64_t ne[3] = { ne0, ne1, ne2 };
  4874. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4875. result->nb[1] = nb1;
  4876. result->nb[2] = nb2;
  4877. result->nb[3] = result->nb[2]*ne2;
  4878. return result;
  4879. }
  4880. // ggml_view_4d
  4881. struct ggml_tensor * ggml_view_4d(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. int64_t ne0,
  4885. int64_t ne1,
  4886. int64_t ne2,
  4887. int64_t ne3,
  4888. size_t nb1,
  4889. size_t nb2,
  4890. size_t nb3,
  4891. size_t offset) {
  4892. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4893. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4894. result->nb[1] = nb1;
  4895. result->nb[2] = nb2;
  4896. result->nb[3] = nb3;
  4897. return result;
  4898. }
  4899. // ggml_permute
  4900. struct ggml_tensor * ggml_permute(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. int axis0,
  4904. int axis1,
  4905. int axis2,
  4906. int axis3) {
  4907. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4908. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4909. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4910. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4911. GGML_ASSERT(axis0 != axis1);
  4912. GGML_ASSERT(axis0 != axis2);
  4913. GGML_ASSERT(axis0 != axis3);
  4914. GGML_ASSERT(axis1 != axis2);
  4915. GGML_ASSERT(axis1 != axis3);
  4916. GGML_ASSERT(axis2 != axis3);
  4917. bool is_node = false;
  4918. if (a->grad) {
  4919. is_node = true;
  4920. }
  4921. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4922. ggml_format_name(result, "%s (permuted)", a->name);
  4923. int ne[GGML_MAX_DIMS];
  4924. int nb[GGML_MAX_DIMS];
  4925. ne[axis0] = a->ne[0];
  4926. ne[axis1] = a->ne[1];
  4927. ne[axis2] = a->ne[2];
  4928. ne[axis3] = a->ne[3];
  4929. nb[axis0] = a->nb[0];
  4930. nb[axis1] = a->nb[1];
  4931. nb[axis2] = a->nb[2];
  4932. nb[axis3] = a->nb[3];
  4933. result->ne[0] = ne[0];
  4934. result->ne[1] = ne[1];
  4935. result->ne[2] = ne[2];
  4936. result->ne[3] = ne[3];
  4937. result->nb[0] = nb[0];
  4938. result->nb[1] = nb[1];
  4939. result->nb[2] = nb[2];
  4940. result->nb[3] = nb[3];
  4941. result->op = GGML_OP_PERMUTE;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src[0] = a;
  4944. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4945. ggml_set_op_params(result, params, sizeof(params));
  4946. return result;
  4947. }
  4948. // ggml_transpose
  4949. struct ggml_tensor * ggml_transpose(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a) {
  4952. bool is_node = false;
  4953. if (a->grad) {
  4954. is_node = true;
  4955. }
  4956. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4957. ggml_format_name(result, "%s (transposed)", a->name);
  4958. result->ne[0] = a->ne[1];
  4959. result->ne[1] = a->ne[0];
  4960. result->nb[0] = a->nb[1];
  4961. result->nb[1] = a->nb[0];
  4962. result->op = GGML_OP_TRANSPOSE;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. // ggml_get_rows
  4968. struct ggml_tensor * ggml_get_rows(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b) {
  4972. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4973. GGML_ASSERT(b->ne[3] == 1);
  4974. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4975. bool is_node = false;
  4976. if (a->grad || b->grad) {
  4977. is_node = true;
  4978. }
  4979. // TODO: implement non F32 return
  4980. enum ggml_type type = GGML_TYPE_F32;
  4981. if (a->type == GGML_TYPE_I32) {
  4982. type = a->type;
  4983. }
  4984. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4985. result->op = GGML_OP_GET_ROWS;
  4986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4987. result->src[0] = a;
  4988. result->src[1] = b;
  4989. return result;
  4990. }
  4991. // ggml_get_rows_back
  4992. struct ggml_tensor * ggml_get_rows_back(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. struct ggml_tensor * c) {
  4997. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4998. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4999. bool is_node = false;
  5000. if (a->grad || b->grad) {
  5001. is_node = true;
  5002. }
  5003. // TODO: implement non F32 return
  5004. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5005. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5006. result->op = GGML_OP_GET_ROWS_BACK;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src[0] = a;
  5009. result->src[1] = b;
  5010. return result;
  5011. }
  5012. // ggml_diag
  5013. struct ggml_tensor * ggml_diag(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a) {
  5016. GGML_ASSERT(a->ne[1] == 1);
  5017. bool is_node = false;
  5018. if (a->grad) {
  5019. is_node = true;
  5020. }
  5021. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5022. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5023. result->op = GGML_OP_DIAG;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src[0] = a;
  5026. return result;
  5027. }
  5028. // ggml_diag_mask_inf
  5029. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. int n_past,
  5033. bool inplace) {
  5034. bool is_node = false;
  5035. if (a->grad) {
  5036. is_node = true;
  5037. }
  5038. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5039. int32_t params[] = { n_past };
  5040. ggml_set_op_params(result, params, sizeof(params));
  5041. result->op = GGML_OP_DIAG_MASK_INF;
  5042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5043. result->src[0] = a;
  5044. return result;
  5045. }
  5046. struct ggml_tensor * ggml_diag_mask_inf(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. int n_past) {
  5050. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5051. }
  5052. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. int n_past) {
  5056. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5057. }
  5058. // ggml_diag_mask_zero
  5059. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. int n_past,
  5063. bool inplace) {
  5064. bool is_node = false;
  5065. if (a->grad) {
  5066. is_node = true;
  5067. }
  5068. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5069. int32_t params[] = { n_past };
  5070. ggml_set_op_params(result, params, sizeof(params));
  5071. result->op = GGML_OP_DIAG_MASK_ZERO;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. return result;
  5075. }
  5076. struct ggml_tensor * ggml_diag_mask_zero(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. int n_past) {
  5080. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5081. }
  5082. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. int n_past) {
  5086. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5087. }
  5088. // ggml_soft_max
  5089. static struct ggml_tensor * ggml_soft_max_impl(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. struct ggml_tensor * mask,
  5093. float scale,
  5094. float max_bias,
  5095. bool inplace) {
  5096. GGML_ASSERT(ggml_is_contiguous(a));
  5097. if (mask) {
  5098. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5099. GGML_ASSERT(ggml_is_contiguous(mask));
  5100. GGML_ASSERT(ggml_is_matrix(mask));
  5101. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5102. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5103. }
  5104. if (max_bias > 0.0f) {
  5105. GGML_ASSERT(mask);
  5106. }
  5107. bool is_node = false;
  5108. if (a->grad) {
  5109. is_node = true;
  5110. }
  5111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5112. float params[] = { scale, max_bias };
  5113. ggml_set_op_params(result, params, sizeof(params));
  5114. result->op = GGML_OP_SOFT_MAX;
  5115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5116. result->src[0] = a;
  5117. result->src[1] = mask;
  5118. return result;
  5119. }
  5120. struct ggml_tensor * ggml_soft_max(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a) {
  5123. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5124. }
  5125. struct ggml_tensor * ggml_soft_max_inplace(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a) {
  5128. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5129. }
  5130. struct ggml_tensor * ggml_soft_max_ext(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a,
  5133. struct ggml_tensor * mask,
  5134. float scale,
  5135. float max_bias) {
  5136. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5137. }
  5138. // ggml_soft_max_back
  5139. static struct ggml_tensor * ggml_soft_max_back_impl(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b,
  5143. bool inplace) {
  5144. bool is_node = false;
  5145. if (a->grad || b->grad) {
  5146. is_node = true; // TODO : implement backward pass
  5147. }
  5148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5149. result->op = GGML_OP_SOFT_MAX_BACK;
  5150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5151. result->src[0] = a;
  5152. result->src[1] = b;
  5153. return result;
  5154. }
  5155. struct ggml_tensor * ggml_soft_max_back(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b) {
  5159. return ggml_soft_max_back_impl(ctx, a, b, false);
  5160. }
  5161. struct ggml_tensor * ggml_soft_max_back_inplace(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a,
  5164. struct ggml_tensor * b) {
  5165. return ggml_soft_max_back_impl(ctx, a, b, true);
  5166. }
  5167. // ggml_rope
  5168. static struct ggml_tensor * ggml_rope_impl(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * a,
  5171. struct ggml_tensor * b,
  5172. struct ggml_tensor * c,
  5173. int n_dims,
  5174. int mode,
  5175. int n_ctx,
  5176. int n_orig_ctx,
  5177. float freq_base,
  5178. float freq_scale,
  5179. float ext_factor,
  5180. float attn_factor,
  5181. float beta_fast,
  5182. float beta_slow,
  5183. float xpos_base,
  5184. bool xpos_down,
  5185. bool inplace) {
  5186. GGML_ASSERT(ggml_is_vector(b));
  5187. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5188. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5189. if (c) {
  5190. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5191. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5192. }
  5193. bool is_node = false;
  5194. if (a->grad) {
  5195. is_node = true;
  5196. }
  5197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5198. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5199. memcpy(params + 5, &freq_base, sizeof(float));
  5200. memcpy(params + 6, &freq_scale, sizeof(float));
  5201. memcpy(params + 7, &ext_factor, sizeof(float));
  5202. memcpy(params + 8, &attn_factor, sizeof(float));
  5203. memcpy(params + 9, &beta_fast, sizeof(float));
  5204. memcpy(params + 10, &beta_slow, sizeof(float));
  5205. memcpy(params + 11, &xpos_base, sizeof(float));
  5206. memcpy(params + 12, &xpos_down, sizeof(bool));
  5207. ggml_set_op_params(result, params, sizeof(params));
  5208. result->op = GGML_OP_ROPE;
  5209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5210. result->src[0] = a;
  5211. result->src[1] = b;
  5212. result->src[2] = c;
  5213. return result;
  5214. }
  5215. struct ggml_tensor * ggml_rope(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. struct ggml_tensor * b,
  5219. int n_dims,
  5220. int mode,
  5221. int n_ctx) {
  5222. return ggml_rope_impl(
  5223. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5224. );
  5225. }
  5226. struct ggml_tensor * ggml_rope_inplace(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. int n_dims,
  5231. int mode,
  5232. int n_ctx) {
  5233. return ggml_rope_impl(
  5234. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5235. );
  5236. }
  5237. struct ggml_tensor * ggml_rope_ext(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. struct ggml_tensor * b,
  5241. struct ggml_tensor * c,
  5242. int n_dims,
  5243. int mode,
  5244. int n_ctx,
  5245. int n_orig_ctx,
  5246. float freq_base,
  5247. float freq_scale,
  5248. float ext_factor,
  5249. float attn_factor,
  5250. float beta_fast,
  5251. float beta_slow) {
  5252. return ggml_rope_impl(
  5253. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5254. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5255. );
  5256. }
  5257. struct ggml_tensor * ggml_rope_ext_inplace(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. struct ggml_tensor * b,
  5261. struct ggml_tensor * c,
  5262. int n_dims,
  5263. int mode,
  5264. int n_ctx,
  5265. int n_orig_ctx,
  5266. float freq_base,
  5267. float freq_scale,
  5268. float ext_factor,
  5269. float attn_factor,
  5270. float beta_fast,
  5271. float beta_slow) {
  5272. return ggml_rope_impl(
  5273. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5274. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5275. );
  5276. }
  5277. struct ggml_tensor * ggml_rope_custom(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. struct ggml_tensor * b,
  5281. int n_dims,
  5282. int mode,
  5283. int n_ctx,
  5284. int n_orig_ctx,
  5285. float freq_base,
  5286. float freq_scale,
  5287. float ext_factor,
  5288. float attn_factor,
  5289. float beta_fast,
  5290. float beta_slow) {
  5291. return ggml_rope_impl(
  5292. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5293. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5294. );
  5295. }
  5296. struct ggml_tensor * ggml_rope_custom_inplace(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. int n_dims,
  5301. int mode,
  5302. int n_ctx,
  5303. int n_orig_ctx,
  5304. float freq_base,
  5305. float freq_scale,
  5306. float ext_factor,
  5307. float attn_factor,
  5308. float beta_fast,
  5309. float beta_slow) {
  5310. return ggml_rope_impl(
  5311. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5312. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5313. );
  5314. }
  5315. // ggml_rope_back
  5316. struct ggml_tensor * ggml_rope_back(
  5317. struct ggml_context * ctx,
  5318. struct ggml_tensor * a,
  5319. struct ggml_tensor * b,
  5320. struct ggml_tensor * c,
  5321. int n_dims,
  5322. int mode,
  5323. int n_ctx,
  5324. int n_orig_ctx,
  5325. float freq_base,
  5326. float freq_scale,
  5327. float ext_factor,
  5328. float attn_factor,
  5329. float beta_fast,
  5330. float beta_slow,
  5331. float xpos_base,
  5332. bool xpos_down) {
  5333. GGML_ASSERT(ggml_is_vector(b));
  5334. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5335. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5336. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5337. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5338. bool is_node = false;
  5339. if (a->grad) {
  5340. is_node = false; // TODO: implement backward
  5341. }
  5342. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5343. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5344. memcpy(params + 5, &freq_base, sizeof(float));
  5345. memcpy(params + 6, &freq_scale, sizeof(float));
  5346. memcpy(params + 7, &ext_factor, sizeof(float));
  5347. memcpy(params + 8, &attn_factor, sizeof(float));
  5348. memcpy(params + 9, &beta_fast, sizeof(float));
  5349. memcpy(params + 10, &beta_slow, sizeof(float));
  5350. memcpy(params + 11, &xpos_base, sizeof(float));
  5351. memcpy(params + 12, &xpos_down, sizeof(bool));
  5352. ggml_set_op_params(result, params, sizeof(params));
  5353. result->op = GGML_OP_ROPE_BACK;
  5354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5355. result->src[0] = a;
  5356. result->src[1] = b;
  5357. return result;
  5358. }
  5359. // ggml_clamp
  5360. struct ggml_tensor * ggml_clamp(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. float min,
  5364. float max) {
  5365. bool is_node = false;
  5366. if (a->grad) {
  5367. GGML_ASSERT(false); // TODO: implement backward
  5368. is_node = true;
  5369. }
  5370. // TODO: when implement backward, fix this:
  5371. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5372. float params[] = { min, max };
  5373. ggml_set_op_params(result, params, sizeof(params));
  5374. result->op = GGML_OP_CLAMP;
  5375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5376. result->src[0] = a;
  5377. return result;
  5378. }
  5379. // ggml_conv_1d
  5380. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5381. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5382. }
  5383. GGML_API struct ggml_tensor * ggml_conv_1d(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b,
  5387. int s0,
  5388. int p0,
  5389. int d0) {
  5390. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5391. struct ggml_tensor * result =
  5392. ggml_mul_mat(ctx,
  5393. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5394. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5395. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5396. return result;
  5397. }
  5398. // ggml_conv_1d_ph
  5399. struct ggml_tensor* ggml_conv_1d_ph(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. struct ggml_tensor * b,
  5403. int s,
  5404. int d) {
  5405. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5406. }
  5407. // ggml_conv_transpose_1d
  5408. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5409. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5410. }
  5411. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b,
  5415. int s0,
  5416. int p0,
  5417. int d0) {
  5418. GGML_ASSERT(ggml_is_matrix(b));
  5419. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5420. GGML_ASSERT(a->ne[3] == 1);
  5421. GGML_ASSERT(p0 == 0);
  5422. GGML_ASSERT(d0 == 1);
  5423. bool is_node = false;
  5424. if (a->grad || b->grad) {
  5425. GGML_ASSERT(false); // TODO: implement backward
  5426. is_node = true;
  5427. }
  5428. const int64_t ne[4] = {
  5429. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5430. a->ne[1], b->ne[2], 1,
  5431. };
  5432. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5433. int32_t params[] = { s0, p0, d0 };
  5434. ggml_set_op_params(result, params, sizeof(params));
  5435. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5437. result->src[0] = a;
  5438. result->src[1] = b;
  5439. return result;
  5440. }
  5441. // ggml_conv_depthwise
  5442. struct ggml_tensor * ggml_conv_depthwise_2d(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * a,
  5445. struct ggml_tensor * b,
  5446. int s0,
  5447. int s1,
  5448. int p0,
  5449. int p1,
  5450. int d0,
  5451. int d1) {
  5452. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5453. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5454. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5455. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5456. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5457. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5458. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5459. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5460. return result;
  5461. }
  5462. // ggml_conv_2d
  5463. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5464. // a: [OC,IC, KH, KW]
  5465. // b: [N, IC, IH, IW]
  5466. // result: [N, OH, OW, IC*KH*KW]
  5467. struct ggml_tensor * ggml_im2col(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. int s0,
  5472. int s1,
  5473. int p0,
  5474. int p1,
  5475. int d0,
  5476. int d1,
  5477. bool is_2D,
  5478. enum ggml_type dst_type) {
  5479. if(is_2D) {
  5480. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5481. } else {
  5482. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5483. }
  5484. bool is_node = false;
  5485. if (a->grad || b->grad) {
  5486. GGML_ASSERT(false); // TODO: implement backward
  5487. is_node = true;
  5488. }
  5489. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5490. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5491. const int64_t ne[4] = {
  5492. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5493. OW,
  5494. is_2D ? OH : b->ne[2],
  5495. is_2D ? b->ne[3] : 1,
  5496. };
  5497. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5498. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5499. ggml_set_op_params(result, params, sizeof(params));
  5500. result->op = GGML_OP_IM2COL;
  5501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5502. result->src[0] = a;
  5503. result->src[1] = b;
  5504. return result;
  5505. }
  5506. // a: [OC,IC, KH, KW]
  5507. // b: [N, IC, IH, IW]
  5508. // result: [N, OC, OH, OW]
  5509. struct ggml_tensor * ggml_conv_2d(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * a,
  5512. struct ggml_tensor * b,
  5513. int s0,
  5514. int s1,
  5515. int p0,
  5516. int p1,
  5517. int d0,
  5518. int d1) {
  5519. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5520. struct ggml_tensor * result =
  5521. ggml_mul_mat(ctx,
  5522. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5523. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5524. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5525. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5526. return result;
  5527. }
  5528. // ggml_conv_2d_sk_p0
  5529. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b) {
  5533. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5534. }
  5535. // ggml_conv_2d_s1_ph
  5536. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b) {
  5540. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5541. }
  5542. // ggml_conv_transpose_2d_p0
  5543. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5544. return (ins - 1) * s - 2 * p + ks;
  5545. }
  5546. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5547. struct ggml_context * ctx,
  5548. struct ggml_tensor * a,
  5549. struct ggml_tensor * b,
  5550. int stride) {
  5551. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5552. bool is_node = false;
  5553. if (a->grad || b->grad) {
  5554. GGML_ASSERT(false); // TODO: implement backward
  5555. is_node = true;
  5556. }
  5557. const int64_t ne[4] = {
  5558. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5559. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5560. a->ne[2], b->ne[3],
  5561. };
  5562. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5563. ggml_set_op_params_i32(result, 0, stride);
  5564. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5566. result->src[0] = a;
  5567. result->src[1] = b;
  5568. return result;
  5569. }
  5570. // ggml_pool_*
  5571. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5572. return (ins + 2 * p - ks) / s + 1;
  5573. }
  5574. // ggml_pool_1d
  5575. struct ggml_tensor * ggml_pool_1d(
  5576. struct ggml_context * ctx,
  5577. struct ggml_tensor * a,
  5578. enum ggml_op_pool op,
  5579. int k0,
  5580. int s0,
  5581. int p0) {
  5582. bool is_node = false;
  5583. if (a->grad) {
  5584. GGML_ASSERT(false); // TODO: implement backward
  5585. is_node = true;
  5586. }
  5587. const int64_t ne[4] = {
  5588. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5589. a->ne[1],
  5590. a->ne[2],
  5591. a->ne[3],
  5592. };
  5593. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5594. int32_t params[] = { op, k0, s0, p0 };
  5595. ggml_set_op_params(result, params, sizeof(params));
  5596. result->op = GGML_OP_POOL_1D;
  5597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5598. result->src[0] = a;
  5599. return result;
  5600. }
  5601. // ggml_pool_2d
  5602. struct ggml_tensor * ggml_pool_2d(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. enum ggml_op_pool op,
  5606. int k0,
  5607. int k1,
  5608. int s0,
  5609. int s1,
  5610. float p0,
  5611. float p1) {
  5612. bool is_node = false;
  5613. if (a->grad) {
  5614. GGML_ASSERT(false); // TODO: implement backward
  5615. is_node = true;
  5616. }
  5617. struct ggml_tensor * result;
  5618. const int64_t ne[3] = {
  5619. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5620. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5621. a->ne[2],
  5622. };
  5623. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5624. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5625. ggml_set_op_params(result, params, sizeof(params));
  5626. result->op = GGML_OP_POOL_2D;
  5627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5628. result->src[0] = a;
  5629. return result;
  5630. }
  5631. // ggml_upscale
  5632. static struct ggml_tensor * ggml_upscale_impl(
  5633. struct ggml_context * ctx,
  5634. struct ggml_tensor * a,
  5635. int ne0,
  5636. int ne1,
  5637. int ne2,
  5638. int ne3) {
  5639. bool is_node = false;
  5640. if (a->grad) {
  5641. GGML_ASSERT(false); // TODO: implement backward
  5642. is_node = true;
  5643. }
  5644. GGML_ASSERT(a->ne[0] <= ne0);
  5645. GGML_ASSERT(a->ne[1] <= ne1);
  5646. GGML_ASSERT(a->ne[2] <= ne2);
  5647. GGML_ASSERT(a->ne[3] <= ne3);
  5648. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5649. ne0,
  5650. ne1,
  5651. ne2,
  5652. ne3
  5653. );
  5654. result->op = GGML_OP_UPSCALE;
  5655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5656. result->src[0] = a;
  5657. return result;
  5658. }
  5659. struct ggml_tensor * ggml_upscale(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. int scale_factor) {
  5663. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5664. }
  5665. struct ggml_tensor * ggml_upscale_ext(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. int ne0,
  5669. int ne1,
  5670. int ne2,
  5671. int ne3) {
  5672. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5673. }
  5674. // ggml_pad
  5675. struct ggml_tensor * ggml_pad(
  5676. struct ggml_context * ctx,
  5677. struct ggml_tensor * a,
  5678. int p0, int p1, int p2, int p3) {
  5679. bool is_node = false;
  5680. if (a->grad) {
  5681. GGML_ASSERT(false); // TODO: implement backward
  5682. is_node = true;
  5683. }
  5684. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5685. a->ne[0] + p0,
  5686. a->ne[1] + p1,
  5687. a->ne[2] + p2,
  5688. a->ne[3] + p3);
  5689. result->op = GGML_OP_PAD;
  5690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5691. result->src[0] = a;
  5692. return result;
  5693. }
  5694. // ggml_arange
  5695. struct ggml_tensor * ggml_arange(
  5696. struct ggml_context * ctx,
  5697. float start,
  5698. float stop,
  5699. float step) {
  5700. GGML_ASSERT(stop > start);
  5701. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5702. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5703. result->op = GGML_OP_ARANGE;
  5704. ggml_set_op_params_f32(result, 0, start);
  5705. ggml_set_op_params_f32(result, 1, stop);
  5706. ggml_set_op_params_f32(result, 2, step);
  5707. return result;
  5708. }
  5709. // ggml_timestep_embedding
  5710. struct ggml_tensor * ggml_timestep_embedding(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * timesteps,
  5713. int dim,
  5714. int max_period) {
  5715. bool is_node = false;
  5716. if (timesteps->grad) {
  5717. GGML_ASSERT(false); // TODO: implement backward
  5718. is_node = true;
  5719. }
  5720. int actual_dim = dim;
  5721. if (dim % 2 != 0) {
  5722. actual_dim = dim + 1;
  5723. }
  5724. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5725. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5726. ggml_set_op_params_i32(result, 0, dim);
  5727. ggml_set_op_params_i32(result, 1, max_period);
  5728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5729. result->src[0] = timesteps;
  5730. return result;
  5731. }
  5732. // ggml_argsort
  5733. struct ggml_tensor * ggml_argsort(
  5734. struct ggml_context * ctx,
  5735. struct ggml_tensor * a,
  5736. enum ggml_sort_order order) {
  5737. bool is_node = false;
  5738. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5739. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5740. result->op = GGML_OP_ARGSORT;
  5741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5742. result->src[0] = a;
  5743. return result;
  5744. }
  5745. // ggml_top_k
  5746. struct ggml_tensor * ggml_top_k(
  5747. struct ggml_context * ctx,
  5748. struct ggml_tensor * a,
  5749. int k) {
  5750. GGML_ASSERT(a->ne[0] >= k);
  5751. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5752. result = ggml_view_4d(ctx, result,
  5753. k, result->ne[1], result->ne[2], result->ne[3],
  5754. result->nb[1], result->nb[2], result->nb[3],
  5755. 0);
  5756. return result;
  5757. }
  5758. // ggml_flash_attn
  5759. struct ggml_tensor * ggml_flash_attn(
  5760. struct ggml_context * ctx,
  5761. struct ggml_tensor * q,
  5762. struct ggml_tensor * k,
  5763. struct ggml_tensor * v,
  5764. bool masked) {
  5765. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5766. // TODO: check if vT can be multiplied by (k*qT)
  5767. bool is_node = false;
  5768. if (q->grad || k->grad || v->grad) {
  5769. is_node = true;
  5770. }
  5771. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5772. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5773. int32_t t = masked ? 1 : 0;
  5774. ggml_set_op_params(result, &t, sizeof(t));
  5775. result->op = GGML_OP_FLASH_ATTN;
  5776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5777. result->src[0] = q;
  5778. result->src[1] = k;
  5779. result->src[2] = v;
  5780. return result;
  5781. }
  5782. // ggml_flash_attn_ext
  5783. struct ggml_tensor * ggml_flash_attn_ext(
  5784. struct ggml_context * ctx,
  5785. struct ggml_tensor * q,
  5786. struct ggml_tensor * k,
  5787. struct ggml_tensor * v,
  5788. struct ggml_tensor * mask,
  5789. float scale,
  5790. float max_bias) {
  5791. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5792. // TODO: check if vT can be multiplied by (k*qT)
  5793. if (mask) {
  5794. GGML_ASSERT(ggml_is_contiguous(mask));
  5795. GGML_ASSERT(mask->ne[2] == 1);
  5796. GGML_ASSERT(mask->ne[3] == 1);
  5797. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5798. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5799. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5800. }
  5801. if (max_bias > 0.0f) {
  5802. GGML_ASSERT(mask);
  5803. }
  5804. bool is_node = false;
  5805. if (q->grad || k->grad || v->grad) {
  5806. is_node = true;
  5807. }
  5808. // permute(0, 2, 1, 3)
  5809. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5810. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5811. float params[] = { scale, max_bias };
  5812. ggml_set_op_params(result, params, sizeof(params));
  5813. result->op = GGML_OP_FLASH_ATTN_EXT;
  5814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5815. result->src[0] = q;
  5816. result->src[1] = k;
  5817. result->src[2] = v;
  5818. result->src[3] = mask;
  5819. return result;
  5820. }
  5821. void ggml_flash_attn_ext_set_prec(
  5822. struct ggml_tensor * a,
  5823. enum ggml_prec prec) {
  5824. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5825. const int32_t prec_i32 = (int32_t) prec;
  5826. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5827. }
  5828. // ggml_flash_ff
  5829. struct ggml_tensor * ggml_flash_ff(
  5830. struct ggml_context * ctx,
  5831. struct ggml_tensor * a,
  5832. struct ggml_tensor * b0,
  5833. struct ggml_tensor * b1,
  5834. struct ggml_tensor * c0,
  5835. struct ggml_tensor * c1) {
  5836. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5837. // TODO: more checks
  5838. bool is_node = false;
  5839. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5840. is_node = true;
  5841. }
  5842. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5843. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5844. result->op = GGML_OP_FLASH_FF;
  5845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5846. result->src[0] = a;
  5847. result->src[1] = b0;
  5848. result->src[2] = b1;
  5849. result->src[3] = c0;
  5850. result->src[4] = c1;
  5851. return result;
  5852. }
  5853. // ggml_flash_attn_back
  5854. struct ggml_tensor * ggml_flash_attn_back(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * q,
  5857. struct ggml_tensor * k,
  5858. struct ggml_tensor * v,
  5859. struct ggml_tensor * d,
  5860. bool masked) {
  5861. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5862. // TODO: check if vT can be multiplied by (k*qT)
  5863. // d shape [D,N,ne2,ne3]
  5864. // q shape [D,N,ne2,ne3]
  5865. // k shape [D,M,kvne2,ne3]
  5866. // v shape [M,D,kvne2,ne3]
  5867. const int64_t D = q->ne[0];
  5868. const int64_t N = q->ne[1];
  5869. const int64_t M = k->ne[1];
  5870. const int64_t ne2 = q->ne[2];
  5871. const int64_t ne3 = q->ne[3];
  5872. const int64_t kvne2 = k->ne[2];
  5873. GGML_ASSERT(k->ne[0] == D);
  5874. GGML_ASSERT(v->ne[0] == M);
  5875. GGML_ASSERT(v->ne[1] == D);
  5876. GGML_ASSERT(d->ne[0] == D);
  5877. GGML_ASSERT(d->ne[1] == N);
  5878. GGML_ASSERT(k->ne[2] == kvne2);
  5879. GGML_ASSERT(k->ne[3] == ne3);
  5880. GGML_ASSERT(v->ne[2] == kvne2);
  5881. GGML_ASSERT(v->ne[3] == ne3);
  5882. GGML_ASSERT(d->ne[2] == ne2);
  5883. GGML_ASSERT(d->ne[3] == ne3);
  5884. GGML_ASSERT(ne2 % kvne2 == 0);
  5885. bool is_node = false;
  5886. if (q->grad || k->grad || v->grad) {
  5887. // when using this operation (in backwards pass) these grads are set.
  5888. // we don't want to create (big) grad of our result, so is_node is false.
  5889. is_node = false;
  5890. }
  5891. // store gradients of q, k and v as continuous tensors concatenated in result.
  5892. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5893. const int64_t elem_q = ggml_nelements(q);
  5894. const int64_t elem_k = ggml_nelements(k);
  5895. const int64_t elem_v = ggml_nelements(v);
  5896. enum ggml_type result_type = GGML_TYPE_F32;
  5897. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5898. const size_t tsize = ggml_type_size(result_type);
  5899. const size_t offs_q = 0;
  5900. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5901. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5902. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5903. const size_t nelements = (end + tsize - 1)/tsize;
  5904. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5905. int32_t masked_i = masked ? 1 : 0;
  5906. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5907. result->op = GGML_OP_FLASH_ATTN_BACK;
  5908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5909. result->src[0] = q;
  5910. result->src[1] = k;
  5911. result->src[2] = v;
  5912. result->src[3] = d;
  5913. return result;
  5914. }
  5915. // ggml_ssm_conv
  5916. struct ggml_tensor * ggml_ssm_conv(
  5917. struct ggml_context * ctx,
  5918. struct ggml_tensor * s,
  5919. struct ggml_tensor * x,
  5920. struct ggml_tensor * c,
  5921. struct ggml_tensor * sq) {
  5922. GGML_ASSERT(ggml_is_3d(s));
  5923. GGML_ASSERT(ggml_is_matrix(x));
  5924. GGML_ASSERT(ggml_is_matrix(c));
  5925. GGML_ASSERT(ggml_is_matrix(sq));
  5926. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5927. const int64_t d_conv = c->ne[0];
  5928. const int64_t d_inner = c->ne[1];
  5929. const int64_t n_tokens = x->ne[1];
  5930. const int64_t n_kv = s->ne[2];
  5931. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5932. GGML_ASSERT( s->ne[1] == d_inner);
  5933. GGML_ASSERT( x->ne[0] == d_inner);
  5934. GGML_ASSERT(sq->ne[0] == n_kv);
  5935. GGML_ASSERT(sq->ne[1] == n_tokens);
  5936. bool is_node = false;
  5937. if (s->grad || x->grad || c->grad || sq->grad) {
  5938. GGML_ASSERT(false); // TODO: implement
  5939. is_node = true;
  5940. }
  5941. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5942. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5943. result->op = GGML_OP_SSM_CONV;
  5944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5945. result->src[0] = s;
  5946. result->src[1] = x;
  5947. result->src[2] = c;
  5948. result->src[3] = sq;
  5949. return result;
  5950. }
  5951. // ggml_ssm_scan
  5952. struct ggml_tensor * ggml_ssm_scan(
  5953. struct ggml_context * ctx,
  5954. struct ggml_tensor * s,
  5955. struct ggml_tensor * x,
  5956. struct ggml_tensor * dt,
  5957. struct ggml_tensor * A,
  5958. struct ggml_tensor * B,
  5959. struct ggml_tensor * C,
  5960. struct ggml_tensor * sq) {
  5961. GGML_ASSERT(ggml_is_contiguous(s));
  5962. GGML_ASSERT(ggml_is_contiguous(x));
  5963. GGML_ASSERT(ggml_is_contiguous(dt));
  5964. GGML_ASSERT(ggml_is_contiguous(A));
  5965. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5966. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5967. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5968. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5969. {
  5970. const int64_t d_state = s->ne[0];
  5971. const int64_t d_inner = s->ne[1];
  5972. const int64_t n_tokens = x->ne[1];
  5973. GGML_ASSERT(x->ne[0] == d_inner);
  5974. GGML_ASSERT(A->ne[0] == d_state);
  5975. GGML_ASSERT(A->ne[1] == d_inner);
  5976. GGML_ASSERT(B->ne[0] == d_state);
  5977. GGML_ASSERT(B->ne[1] == n_tokens);
  5978. GGML_ASSERT(C->ne[0] == d_state);
  5979. GGML_ASSERT(C->ne[1] == n_tokens);
  5980. }
  5981. bool is_node = false;
  5982. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5983. GGML_ASSERT(false); // TODO: implement
  5984. is_node = true;
  5985. }
  5986. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5987. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5988. result->op = GGML_OP_SSM_SCAN;
  5989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5990. result->src[0] = s;
  5991. result->src[1] = x;
  5992. result->src[2] = dt;
  5993. result->src[3] = A;
  5994. result->src[4] = B;
  5995. result->src[5] = C;
  5996. result->src[6] = sq;
  5997. return result;
  5998. }
  5999. // ggml_win_part
  6000. struct ggml_tensor * ggml_win_part(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * a,
  6003. int w) {
  6004. GGML_ASSERT(a->ne[3] == 1);
  6005. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6006. bool is_node = false;
  6007. if (a->grad) {
  6008. GGML_ASSERT(false); // TODO: implement backward
  6009. is_node = true;
  6010. }
  6011. // padding
  6012. const int px = (w - a->ne[1]%w)%w;
  6013. const int py = (w - a->ne[2]%w)%w;
  6014. const int npx = (px + a->ne[1])/w;
  6015. const int npy = (py + a->ne[2])/w;
  6016. const int np = npx*npy;
  6017. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6018. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6019. int32_t params[] = { npx, npy, w };
  6020. ggml_set_op_params(result, params, sizeof(params));
  6021. result->op = GGML_OP_WIN_PART;
  6022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6023. result->src[0] = a;
  6024. return result;
  6025. }
  6026. // ggml_win_unpart
  6027. struct ggml_tensor * ggml_win_unpart(
  6028. struct ggml_context * ctx,
  6029. struct ggml_tensor * a,
  6030. int w0,
  6031. int h0,
  6032. int w) {
  6033. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6034. bool is_node = false;
  6035. if (a->grad) {
  6036. GGML_ASSERT(false); // TODO: implement backward
  6037. is_node = true;
  6038. }
  6039. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6040. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6041. int32_t params[] = { w };
  6042. ggml_set_op_params(result, params, sizeof(params));
  6043. result->op = GGML_OP_WIN_UNPART;
  6044. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6045. result->src[0] = a;
  6046. return result;
  6047. }
  6048. // ggml_get_rel_pos
  6049. struct ggml_tensor * ggml_get_rel_pos(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. int qh,
  6053. int kh) {
  6054. GGML_ASSERT(qh == kh);
  6055. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6056. bool is_node = false;
  6057. if (a->grad) {
  6058. GGML_ASSERT(false); // TODO: implement backward
  6059. is_node = true;
  6060. }
  6061. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6062. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6063. result->op = GGML_OP_GET_REL_POS;
  6064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6065. result->src[0] = a;
  6066. return result;
  6067. }
  6068. // ggml_add_rel_pos
  6069. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6070. struct ggml_context * ctx,
  6071. struct ggml_tensor * a,
  6072. struct ggml_tensor * pw,
  6073. struct ggml_tensor * ph,
  6074. bool inplace) {
  6075. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6076. GGML_ASSERT(ggml_is_contiguous(a));
  6077. GGML_ASSERT(ggml_is_contiguous(pw));
  6078. GGML_ASSERT(ggml_is_contiguous(ph));
  6079. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6080. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6081. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6082. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6083. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6084. bool is_node = false;
  6085. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6086. is_node = true;
  6087. }
  6088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6089. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6090. result->op = GGML_OP_ADD_REL_POS;
  6091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6092. result->src[0] = a;
  6093. result->src[1] = pw;
  6094. result->src[2] = ph;
  6095. return result;
  6096. }
  6097. struct ggml_tensor * ggml_add_rel_pos(
  6098. struct ggml_context * ctx,
  6099. struct ggml_tensor * a,
  6100. struct ggml_tensor * pw,
  6101. struct ggml_tensor * ph) {
  6102. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6103. }
  6104. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6105. struct ggml_context * ctx,
  6106. struct ggml_tensor * a,
  6107. struct ggml_tensor * pw,
  6108. struct ggml_tensor * ph) {
  6109. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6110. }
  6111. // gmml_unary
  6112. static struct ggml_tensor * ggml_unary_impl(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. enum ggml_unary_op op,
  6116. bool inplace) {
  6117. bool is_node = false;
  6118. if (!inplace && (a->grad)) {
  6119. is_node = true;
  6120. }
  6121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6122. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6123. result->op = GGML_OP_UNARY;
  6124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6125. result->src[0] = a;
  6126. return result;
  6127. }
  6128. struct ggml_tensor * ggml_unary(
  6129. struct ggml_context * ctx,
  6130. struct ggml_tensor * a,
  6131. enum ggml_unary_op op) {
  6132. return ggml_unary_impl(ctx, a, op, false);
  6133. }
  6134. struct ggml_tensor * ggml_unary_inplace(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. enum ggml_unary_op op) {
  6138. return ggml_unary_impl(ctx, a, op, true);
  6139. }
  6140. // ggml_map_unary
  6141. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. const ggml_unary_op_f32_t fun,
  6145. bool inplace) {
  6146. bool is_node = false;
  6147. if (!inplace && a->grad) {
  6148. is_node = true;
  6149. }
  6150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6151. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6152. result->op = GGML_OP_MAP_UNARY;
  6153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6154. result->src[0] = a;
  6155. return result;
  6156. }
  6157. struct ggml_tensor * ggml_map_unary_f32(
  6158. struct ggml_context * ctx,
  6159. struct ggml_tensor * a,
  6160. const ggml_unary_op_f32_t fun) {
  6161. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6162. }
  6163. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * a,
  6166. const ggml_unary_op_f32_t fun) {
  6167. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6168. }
  6169. // ggml_map_binary
  6170. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6171. struct ggml_context * ctx,
  6172. struct ggml_tensor * a,
  6173. struct ggml_tensor * b,
  6174. const ggml_binary_op_f32_t fun,
  6175. bool inplace) {
  6176. GGML_ASSERT(ggml_are_same_shape(a, b));
  6177. bool is_node = false;
  6178. if (!inplace && (a->grad || b->grad)) {
  6179. is_node = true;
  6180. }
  6181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6182. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6183. result->op = GGML_OP_MAP_BINARY;
  6184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6185. result->src[0] = a;
  6186. result->src[1] = b;
  6187. return result;
  6188. }
  6189. struct ggml_tensor * ggml_map_binary_f32(
  6190. struct ggml_context * ctx,
  6191. struct ggml_tensor * a,
  6192. struct ggml_tensor * b,
  6193. const ggml_binary_op_f32_t fun) {
  6194. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6195. }
  6196. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. struct ggml_tensor * b,
  6200. const ggml_binary_op_f32_t fun) {
  6201. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6202. }
  6203. // ggml_map_custom1_f32
  6204. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6205. struct ggml_context * ctx,
  6206. struct ggml_tensor * a,
  6207. const ggml_custom1_op_f32_t fun,
  6208. bool inplace) {
  6209. bool is_node = false;
  6210. if (!inplace && a->grad) {
  6211. is_node = true;
  6212. }
  6213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6214. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6215. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6217. result->src[0] = a;
  6218. return result;
  6219. }
  6220. struct ggml_tensor * ggml_map_custom1_f32(
  6221. struct ggml_context * ctx,
  6222. struct ggml_tensor * a,
  6223. const ggml_custom1_op_f32_t fun) {
  6224. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6225. }
  6226. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6227. struct ggml_context * ctx,
  6228. struct ggml_tensor * a,
  6229. const ggml_custom1_op_f32_t fun) {
  6230. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6231. }
  6232. // ggml_map_custom2_f32
  6233. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6234. struct ggml_context * ctx,
  6235. struct ggml_tensor * a,
  6236. struct ggml_tensor * b,
  6237. const ggml_custom2_op_f32_t fun,
  6238. bool inplace) {
  6239. bool is_node = false;
  6240. if (!inplace && (a->grad || b->grad)) {
  6241. is_node = true;
  6242. }
  6243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6244. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6245. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6247. result->src[0] = a;
  6248. result->src[1] = b;
  6249. return result;
  6250. }
  6251. struct ggml_tensor * ggml_map_custom2_f32(
  6252. struct ggml_context * ctx,
  6253. struct ggml_tensor * a,
  6254. struct ggml_tensor * b,
  6255. const ggml_custom2_op_f32_t fun) {
  6256. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6257. }
  6258. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6259. struct ggml_context * ctx,
  6260. struct ggml_tensor * a,
  6261. struct ggml_tensor * b,
  6262. const ggml_custom2_op_f32_t fun) {
  6263. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6264. }
  6265. // ggml_map_custom3_f32
  6266. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6267. struct ggml_context * ctx,
  6268. struct ggml_tensor * a,
  6269. struct ggml_tensor * b,
  6270. struct ggml_tensor * c,
  6271. const ggml_custom3_op_f32_t fun,
  6272. bool inplace) {
  6273. bool is_node = false;
  6274. if (!inplace && (a->grad || b->grad || c->grad)) {
  6275. is_node = true;
  6276. }
  6277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6278. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6279. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6281. result->src[0] = a;
  6282. result->src[1] = b;
  6283. result->src[2] = c;
  6284. return result;
  6285. }
  6286. struct ggml_tensor * ggml_map_custom3_f32(
  6287. struct ggml_context * ctx,
  6288. struct ggml_tensor * a,
  6289. struct ggml_tensor * b,
  6290. struct ggml_tensor * c,
  6291. const ggml_custom3_op_f32_t fun) {
  6292. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6293. }
  6294. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6295. struct ggml_context * ctx,
  6296. struct ggml_tensor * a,
  6297. struct ggml_tensor * b,
  6298. struct ggml_tensor * c,
  6299. const ggml_custom3_op_f32_t fun) {
  6300. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6301. }
  6302. // ggml_map_custom1
  6303. struct ggml_map_custom1_op_params {
  6304. ggml_custom1_op_t fun;
  6305. int n_tasks;
  6306. void * userdata;
  6307. };
  6308. static struct ggml_tensor * ggml_map_custom1_impl(
  6309. struct ggml_context * ctx,
  6310. struct ggml_tensor * a,
  6311. const ggml_custom1_op_t fun,
  6312. int n_tasks,
  6313. void * userdata,
  6314. bool inplace) {
  6315. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6316. bool is_node = false;
  6317. if (!inplace && a->grad) {
  6318. is_node = true;
  6319. }
  6320. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6321. struct ggml_map_custom1_op_params params = {
  6322. /*.fun =*/ fun,
  6323. /*.n_tasks =*/ n_tasks,
  6324. /*.userdata =*/ userdata
  6325. };
  6326. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6327. result->op = GGML_OP_MAP_CUSTOM1;
  6328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6329. result->src[0] = a;
  6330. return result;
  6331. }
  6332. struct ggml_tensor * ggml_map_custom1(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. const ggml_custom1_op_t fun,
  6336. int n_tasks,
  6337. void * userdata) {
  6338. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6339. }
  6340. struct ggml_tensor * ggml_map_custom1_inplace(
  6341. struct ggml_context * ctx,
  6342. struct ggml_tensor * a,
  6343. const ggml_custom1_op_t fun,
  6344. int n_tasks,
  6345. void * userdata) {
  6346. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6347. }
  6348. // ggml_map_custom2
  6349. struct ggml_map_custom2_op_params {
  6350. ggml_custom2_op_t fun;
  6351. int n_tasks;
  6352. void * userdata;
  6353. };
  6354. static struct ggml_tensor * ggml_map_custom2_impl(
  6355. struct ggml_context * ctx,
  6356. struct ggml_tensor * a,
  6357. struct ggml_tensor * b,
  6358. const ggml_custom2_op_t fun,
  6359. int n_tasks,
  6360. void * userdata,
  6361. bool inplace) {
  6362. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6363. bool is_node = false;
  6364. if (!inplace && (a->grad || b->grad)) {
  6365. is_node = true;
  6366. }
  6367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6368. struct ggml_map_custom2_op_params params = {
  6369. /*.fun =*/ fun,
  6370. /*.n_tasks =*/ n_tasks,
  6371. /*.userdata =*/ userdata
  6372. };
  6373. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6374. result->op = GGML_OP_MAP_CUSTOM2;
  6375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6376. result->src[0] = a;
  6377. result->src[1] = b;
  6378. return result;
  6379. }
  6380. struct ggml_tensor * ggml_map_custom2(
  6381. struct ggml_context * ctx,
  6382. struct ggml_tensor * a,
  6383. struct ggml_tensor * b,
  6384. const ggml_custom2_op_t fun,
  6385. int n_tasks,
  6386. void * userdata) {
  6387. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6388. }
  6389. struct ggml_tensor * ggml_map_custom2_inplace(
  6390. struct ggml_context * ctx,
  6391. struct ggml_tensor * a,
  6392. struct ggml_tensor * b,
  6393. const ggml_custom2_op_t fun,
  6394. int n_tasks,
  6395. void * userdata) {
  6396. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6397. }
  6398. // ggml_map_custom3
  6399. struct ggml_map_custom3_op_params {
  6400. ggml_custom3_op_t fun;
  6401. int n_tasks;
  6402. void * userdata;
  6403. };
  6404. static struct ggml_tensor * ggml_map_custom3_impl(
  6405. struct ggml_context * ctx,
  6406. struct ggml_tensor * a,
  6407. struct ggml_tensor * b,
  6408. struct ggml_tensor * c,
  6409. const ggml_custom3_op_t fun,
  6410. int n_tasks,
  6411. void * userdata,
  6412. bool inplace) {
  6413. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6414. bool is_node = false;
  6415. if (!inplace && (a->grad || b->grad || c->grad)) {
  6416. is_node = true;
  6417. }
  6418. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6419. struct ggml_map_custom3_op_params params = {
  6420. /*.fun =*/ fun,
  6421. /*.n_tasks =*/ n_tasks,
  6422. /*.userdata =*/ userdata
  6423. };
  6424. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6425. result->op = GGML_OP_MAP_CUSTOM3;
  6426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6427. result->src[0] = a;
  6428. result->src[1] = b;
  6429. result->src[2] = c;
  6430. return result;
  6431. }
  6432. struct ggml_tensor * ggml_map_custom3(
  6433. struct ggml_context * ctx,
  6434. struct ggml_tensor * a,
  6435. struct ggml_tensor * b,
  6436. struct ggml_tensor * c,
  6437. const ggml_custom3_op_t fun,
  6438. int n_tasks,
  6439. void * userdata) {
  6440. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6441. }
  6442. struct ggml_tensor * ggml_map_custom3_inplace(
  6443. struct ggml_context * ctx,
  6444. struct ggml_tensor * a,
  6445. struct ggml_tensor * b,
  6446. struct ggml_tensor * c,
  6447. const ggml_custom3_op_t fun,
  6448. int n_tasks,
  6449. void * userdata) {
  6450. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6451. }
  6452. // ggml_cross_entropy_loss
  6453. struct ggml_tensor * ggml_cross_entropy_loss(
  6454. struct ggml_context * ctx,
  6455. struct ggml_tensor * a,
  6456. struct ggml_tensor * b) {
  6457. GGML_ASSERT(ggml_are_same_shape(a, b));
  6458. bool is_node = false;
  6459. if (a->grad || b->grad) {
  6460. is_node = true;
  6461. }
  6462. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6463. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6465. result->src[0] = a;
  6466. result->src[1] = b;
  6467. return result;
  6468. }
  6469. // ggml_cross_entropy_loss_back
  6470. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6471. struct ggml_context * ctx,
  6472. struct ggml_tensor * a,
  6473. struct ggml_tensor * b,
  6474. struct ggml_tensor * c) {
  6475. GGML_ASSERT(ggml_are_same_shape(a, b));
  6476. GGML_ASSERT(ggml_is_scalar(c));
  6477. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6478. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6479. result->grad = NULL;
  6480. result->src[0] = a;
  6481. result->src[1] = b;
  6482. result->src[2] = c;
  6483. return result;
  6484. }
  6485. ////////////////////////////////////////////////////////////////////////////////
  6486. void ggml_set_param(
  6487. struct ggml_context * ctx,
  6488. struct ggml_tensor * tensor) {
  6489. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6490. GGML_ASSERT(tensor->grad == NULL);
  6491. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6492. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6493. }
  6494. // ggml_compute_forward_dup
  6495. static void ggml_compute_forward_dup_same_cont(
  6496. const struct ggml_compute_params * params,
  6497. struct ggml_tensor * dst) {
  6498. const struct ggml_tensor * src0 = dst->src[0];
  6499. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6500. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6501. GGML_ASSERT(src0->type == dst->type);
  6502. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6503. return;
  6504. }
  6505. const size_t nb00 = src0->nb[0];
  6506. const size_t nb0 = dst->nb[0];
  6507. const int ith = params->ith; // thread index
  6508. const int nth = params->nth; // number of threads
  6509. // parallelize by elements
  6510. const int ne = ggml_nelements(dst);
  6511. const int dr = (ne + nth - 1) / nth;
  6512. const int ie0 = dr * ith;
  6513. const int ie1 = MIN(ie0 + dr, ne);
  6514. if (ie0 < ie1) {
  6515. memcpy(
  6516. ((char *) dst->data + ie0*nb0),
  6517. ((char *) src0->data + ie0*nb00),
  6518. (ie1 - ie0) * ggml_type_size(src0->type));
  6519. }
  6520. }
  6521. static void ggml_compute_forward_dup_f16(
  6522. const struct ggml_compute_params * params,
  6523. struct ggml_tensor * dst) {
  6524. const struct ggml_tensor * src0 = dst->src[0];
  6525. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6526. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6527. return;
  6528. }
  6529. GGML_TENSOR_UNARY_OP_LOCALS
  6530. const int ith = params->ith; // thread index
  6531. const int nth = params->nth; // number of threads
  6532. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6533. ggml_compute_forward_dup_same_cont(params, dst);
  6534. return;
  6535. }
  6536. // parallelize by rows
  6537. const int nr = ne01;
  6538. // number of rows per thread
  6539. const int dr = (nr + nth - 1) / nth;
  6540. // row range for this thread
  6541. const int ir0 = dr * ith;
  6542. const int ir1 = MIN(ir0 + dr, nr);
  6543. if (src0->type == dst->type &&
  6544. ne00 == ne0 &&
  6545. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6546. // copy by rows
  6547. const size_t rs = ne00*nb00;
  6548. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6549. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6550. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6551. memcpy(
  6552. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6553. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6554. rs);
  6555. }
  6556. }
  6557. }
  6558. return;
  6559. }
  6560. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6561. if (ggml_is_contiguous(dst)) {
  6562. if (nb00 == sizeof(ggml_fp16_t)) {
  6563. if (dst->type == GGML_TYPE_F16) {
  6564. size_t id = 0;
  6565. const size_t rs = ne00 * nb00;
  6566. char * dst_ptr = (char *) dst->data;
  6567. for (int i03 = 0; i03 < ne03; i03++) {
  6568. for (int i02 = 0; i02 < ne02; i02++) {
  6569. id += rs * ir0;
  6570. for (int i01 = ir0; i01 < ir1; i01++) {
  6571. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6572. memcpy(dst_ptr + id, src0_ptr, rs);
  6573. id += rs;
  6574. }
  6575. id += rs * (ne01 - ir1);
  6576. }
  6577. }
  6578. } else if (dst->type == GGML_TYPE_F32) {
  6579. size_t id = 0;
  6580. float * dst_ptr = (float *) dst->data;
  6581. for (int i03 = 0; i03 < ne03; i03++) {
  6582. for (int i02 = 0; i02 < ne02; i02++) {
  6583. id += ne00 * ir0;
  6584. for (int i01 = ir0; i01 < ir1; i01++) {
  6585. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6586. for (int i00 = 0; i00 < ne00; i00++) {
  6587. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6588. id++;
  6589. }
  6590. }
  6591. id += ne00 * (ne01 - ir1);
  6592. }
  6593. }
  6594. } else if (type_traits[dst->type].from_float) {
  6595. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6596. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6597. size_t id = 0;
  6598. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6599. char * dst_ptr = (char *) dst->data;
  6600. for (int i03 = 0; i03 < ne03; i03++) {
  6601. for (int i02 = 0; i02 < ne02; i02++) {
  6602. id += rs * ir0;
  6603. for (int i01 = ir0; i01 < ir1; i01++) {
  6604. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6605. for (int i00 = 0; i00 < ne00; i00++) {
  6606. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6607. }
  6608. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6609. id += rs;
  6610. }
  6611. id += rs * (ne01 - ir1);
  6612. }
  6613. }
  6614. } else {
  6615. GGML_ASSERT(false); // TODO: implement
  6616. }
  6617. } else {
  6618. //printf("%s: this is not optimal - fix me\n", __func__);
  6619. if (dst->type == GGML_TYPE_F32) {
  6620. size_t id = 0;
  6621. float * dst_ptr = (float *) dst->data;
  6622. for (int i03 = 0; i03 < ne03; i03++) {
  6623. for (int i02 = 0; i02 < ne02; i02++) {
  6624. id += ne00 * ir0;
  6625. for (int i01 = ir0; i01 < ir1; i01++) {
  6626. for (int i00 = 0; i00 < ne00; i00++) {
  6627. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6628. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6629. id++;
  6630. }
  6631. }
  6632. id += ne00 * (ne01 - ir1);
  6633. }
  6634. }
  6635. } else if (dst->type == GGML_TYPE_F16) {
  6636. size_t id = 0;
  6637. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6638. for (int i03 = 0; i03 < ne03; i03++) {
  6639. for (int i02 = 0; i02 < ne02; i02++) {
  6640. id += ne00 * ir0;
  6641. for (int i01 = ir0; i01 < ir1; i01++) {
  6642. for (int i00 = 0; i00 < ne00; i00++) {
  6643. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6644. dst_ptr[id] = *src0_ptr;
  6645. id++;
  6646. }
  6647. }
  6648. id += ne00 * (ne01 - ir1);
  6649. }
  6650. }
  6651. } else {
  6652. GGML_ASSERT(false); // TODO: implement
  6653. }
  6654. }
  6655. return;
  6656. }
  6657. // dst counters
  6658. int64_t i10 = 0;
  6659. int64_t i11 = 0;
  6660. int64_t i12 = 0;
  6661. int64_t i13 = 0;
  6662. if (dst->type == GGML_TYPE_F16) {
  6663. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6664. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6665. i10 += ne00 * ir0;
  6666. while (i10 >= ne0) {
  6667. i10 -= ne0;
  6668. if (++i11 == ne1) {
  6669. i11 = 0;
  6670. if (++i12 == ne2) {
  6671. i12 = 0;
  6672. if (++i13 == ne3) {
  6673. i13 = 0;
  6674. }
  6675. }
  6676. }
  6677. }
  6678. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6679. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6680. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6681. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6682. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6683. if (++i10 == ne00) {
  6684. i10 = 0;
  6685. if (++i11 == ne01) {
  6686. i11 = 0;
  6687. if (++i12 == ne02) {
  6688. i12 = 0;
  6689. if (++i13 == ne03) {
  6690. i13 = 0;
  6691. }
  6692. }
  6693. }
  6694. }
  6695. }
  6696. }
  6697. i10 += ne00 * (ne01 - ir1);
  6698. while (i10 >= ne0) {
  6699. i10 -= ne0;
  6700. if (++i11 == ne1) {
  6701. i11 = 0;
  6702. if (++i12 == ne2) {
  6703. i12 = 0;
  6704. if (++i13 == ne3) {
  6705. i13 = 0;
  6706. }
  6707. }
  6708. }
  6709. }
  6710. }
  6711. }
  6712. } else if (dst->type == GGML_TYPE_F32) {
  6713. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6714. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6715. i10 += ne00 * ir0;
  6716. while (i10 >= ne0) {
  6717. i10 -= ne0;
  6718. if (++i11 == ne1) {
  6719. i11 = 0;
  6720. if (++i12 == ne2) {
  6721. i12 = 0;
  6722. if (++i13 == ne3) {
  6723. i13 = 0;
  6724. }
  6725. }
  6726. }
  6727. }
  6728. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6729. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6730. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6731. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6732. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6733. if (++i10 == ne0) {
  6734. i10 = 0;
  6735. if (++i11 == ne1) {
  6736. i11 = 0;
  6737. if (++i12 == ne2) {
  6738. i12 = 0;
  6739. if (++i13 == ne3) {
  6740. i13 = 0;
  6741. }
  6742. }
  6743. }
  6744. }
  6745. }
  6746. }
  6747. i10 += ne00 * (ne01 - ir1);
  6748. while (i10 >= ne0) {
  6749. i10 -= ne0;
  6750. if (++i11 == ne1) {
  6751. i11 = 0;
  6752. if (++i12 == ne2) {
  6753. i12 = 0;
  6754. if (++i13 == ne3) {
  6755. i13 = 0;
  6756. }
  6757. }
  6758. }
  6759. }
  6760. }
  6761. }
  6762. } else {
  6763. GGML_ASSERT(false); // TODO: implement
  6764. }
  6765. }
  6766. static void ggml_compute_forward_dup_bf16(
  6767. const struct ggml_compute_params * params,
  6768. struct ggml_tensor * dst) {
  6769. const struct ggml_tensor * src0 = dst->src[0];
  6770. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6772. return;
  6773. }
  6774. GGML_TENSOR_UNARY_OP_LOCALS
  6775. const int ith = params->ith; // thread index
  6776. const int nth = params->nth; // number of threads
  6777. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6778. ggml_compute_forward_dup_same_cont(params, dst);
  6779. return;
  6780. }
  6781. // parallelize by rows
  6782. const int nr = ne01;
  6783. // number of rows per thread
  6784. const int dr = (nr + nth - 1) / nth;
  6785. // row range for this thread
  6786. const int ir0 = dr * ith;
  6787. const int ir1 = MIN(ir0 + dr, nr);
  6788. if (src0->type == dst->type &&
  6789. ne00 == ne0 &&
  6790. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6791. // copy by rows
  6792. const size_t rs = ne00*nb00;
  6793. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6794. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6795. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6796. memcpy(
  6797. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6798. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6799. rs);
  6800. }
  6801. }
  6802. }
  6803. return;
  6804. }
  6805. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6806. if (ggml_is_contiguous(dst)) {
  6807. if (nb00 == sizeof(ggml_bf16_t)) {
  6808. if (dst->type == GGML_TYPE_BF16) {
  6809. size_t id = 0;
  6810. const size_t rs = ne00 * nb00;
  6811. char * dst_ptr = (char *) dst->data;
  6812. for (int i03 = 0; i03 < ne03; i03++) {
  6813. for (int i02 = 0; i02 < ne02; i02++) {
  6814. id += rs * ir0;
  6815. for (int i01 = ir0; i01 < ir1; i01++) {
  6816. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6817. memcpy(dst_ptr + id, src0_ptr, rs);
  6818. id += rs;
  6819. }
  6820. id += rs * (ne01 - ir1);
  6821. }
  6822. }
  6823. } else if (dst->type == GGML_TYPE_F16) {
  6824. size_t id = 0;
  6825. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6826. for (int i03 = 0; i03 < ne03; i03++) {
  6827. for (int i02 = 0; i02 < ne02; i02++) {
  6828. id += ne00 * ir0;
  6829. for (int i01 = ir0; i01 < ir1; i01++) {
  6830. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6831. for (int i00 = 0; i00 < ne00; i00++) {
  6832. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6833. id++;
  6834. }
  6835. }
  6836. id += ne00 * (ne01 - ir1);
  6837. }
  6838. }
  6839. } else if (dst->type == GGML_TYPE_F32) {
  6840. size_t id = 0;
  6841. float * dst_ptr = (float *) dst->data;
  6842. for (int i03 = 0; i03 < ne03; i03++) {
  6843. for (int i02 = 0; i02 < ne02; i02++) {
  6844. id += ne00 * ir0;
  6845. for (int i01 = ir0; i01 < ir1; i01++) {
  6846. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6847. for (int i00 = 0; i00 < ne00; i00++) {
  6848. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6849. id++;
  6850. }
  6851. }
  6852. id += ne00 * (ne01 - ir1);
  6853. }
  6854. }
  6855. } else if (type_traits[dst->type].from_float) {
  6856. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6857. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6858. size_t id = 0;
  6859. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6860. char * dst_ptr = (char *) dst->data;
  6861. for (int i03 = 0; i03 < ne03; i03++) {
  6862. for (int i02 = 0; i02 < ne02; i02++) {
  6863. id += rs * ir0;
  6864. for (int i01 = ir0; i01 < ir1; i01++) {
  6865. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6866. for (int i00 = 0; i00 < ne00; i00++) {
  6867. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6868. }
  6869. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6870. id += rs;
  6871. }
  6872. id += rs * (ne01 - ir1);
  6873. }
  6874. }
  6875. } else {
  6876. GGML_ASSERT(false); // TODO: implement
  6877. }
  6878. } else {
  6879. //printf("%s: this is not optimal - fix me\n", __func__);
  6880. if (dst->type == GGML_TYPE_F32) {
  6881. size_t id = 0;
  6882. float * dst_ptr = (float *) dst->data;
  6883. for (int i03 = 0; i03 < ne03; i03++) {
  6884. for (int i02 = 0; i02 < ne02; i02++) {
  6885. id += ne00 * ir0;
  6886. for (int i01 = ir0; i01 < ir1; i01++) {
  6887. for (int i00 = 0; i00 < ne00; i00++) {
  6888. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6889. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6890. id++;
  6891. }
  6892. }
  6893. id += ne00 * (ne01 - ir1);
  6894. }
  6895. }
  6896. } else if (dst->type == GGML_TYPE_BF16) {
  6897. size_t id = 0;
  6898. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6899. for (int i03 = 0; i03 < ne03; i03++) {
  6900. for (int i02 = 0; i02 < ne02; i02++) {
  6901. id += ne00 * ir0;
  6902. for (int i01 = ir0; i01 < ir1; i01++) {
  6903. for (int i00 = 0; i00 < ne00; i00++) {
  6904. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6905. dst_ptr[id] = *src0_ptr;
  6906. id++;
  6907. }
  6908. }
  6909. id += ne00 * (ne01 - ir1);
  6910. }
  6911. }
  6912. } else if (dst->type == GGML_TYPE_F16) {
  6913. size_t id = 0;
  6914. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6915. for (int i03 = 0; i03 < ne03; i03++) {
  6916. for (int i02 = 0; i02 < ne02; i02++) {
  6917. id += ne00 * ir0;
  6918. for (int i01 = ir0; i01 < ir1; i01++) {
  6919. for (int i00 = 0; i00 < ne00; i00++) {
  6920. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6921. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6922. id++;
  6923. }
  6924. }
  6925. id += ne00 * (ne01 - ir1);
  6926. }
  6927. }
  6928. } else {
  6929. GGML_ASSERT(false); // TODO: implement
  6930. }
  6931. }
  6932. return;
  6933. }
  6934. // dst counters
  6935. int64_t i10 = 0;
  6936. int64_t i11 = 0;
  6937. int64_t i12 = 0;
  6938. int64_t i13 = 0;
  6939. if (dst->type == GGML_TYPE_BF16) {
  6940. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6941. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6942. i10 += ne00 * ir0;
  6943. while (i10 >= ne0) {
  6944. i10 -= ne0;
  6945. if (++i11 == ne1) {
  6946. i11 = 0;
  6947. if (++i12 == ne2) {
  6948. i12 = 0;
  6949. if (++i13 == ne3) {
  6950. i13 = 0;
  6951. }
  6952. }
  6953. }
  6954. }
  6955. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6956. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6957. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6958. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6959. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6960. if (++i10 == ne00) {
  6961. i10 = 0;
  6962. if (++i11 == ne01) {
  6963. i11 = 0;
  6964. if (++i12 == ne02) {
  6965. i12 = 0;
  6966. if (++i13 == ne03) {
  6967. i13 = 0;
  6968. }
  6969. }
  6970. }
  6971. }
  6972. }
  6973. }
  6974. i10 += ne00 * (ne01 - ir1);
  6975. while (i10 >= ne0) {
  6976. i10 -= ne0;
  6977. if (++i11 == ne1) {
  6978. i11 = 0;
  6979. if (++i12 == ne2) {
  6980. i12 = 0;
  6981. if (++i13 == ne3) {
  6982. i13 = 0;
  6983. }
  6984. }
  6985. }
  6986. }
  6987. }
  6988. }
  6989. } else if (dst->type == GGML_TYPE_F16) {
  6990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6992. i10 += ne00 * ir0;
  6993. while (i10 >= ne0) {
  6994. i10 -= ne0;
  6995. if (++i11 == ne1) {
  6996. i11 = 0;
  6997. if (++i12 == ne2) {
  6998. i12 = 0;
  6999. if (++i13 == ne3) {
  7000. i13 = 0;
  7001. }
  7002. }
  7003. }
  7004. }
  7005. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7006. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7007. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7008. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7009. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7010. if (++i10 == ne0) {
  7011. i10 = 0;
  7012. if (++i11 == ne1) {
  7013. i11 = 0;
  7014. if (++i12 == ne2) {
  7015. i12 = 0;
  7016. if (++i13 == ne3) {
  7017. i13 = 0;
  7018. }
  7019. }
  7020. }
  7021. }
  7022. }
  7023. }
  7024. i10 += ne00 * (ne01 - ir1);
  7025. while (i10 >= ne0) {
  7026. i10 -= ne0;
  7027. if (++i11 == ne1) {
  7028. i11 = 0;
  7029. if (++i12 == ne2) {
  7030. i12 = 0;
  7031. if (++i13 == ne3) {
  7032. i13 = 0;
  7033. }
  7034. }
  7035. }
  7036. }
  7037. }
  7038. }
  7039. } else if (dst->type == GGML_TYPE_F32) {
  7040. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7041. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7042. i10 += ne00 * ir0;
  7043. while (i10 >= ne0) {
  7044. i10 -= ne0;
  7045. if (++i11 == ne1) {
  7046. i11 = 0;
  7047. if (++i12 == ne2) {
  7048. i12 = 0;
  7049. if (++i13 == ne3) {
  7050. i13 = 0;
  7051. }
  7052. }
  7053. }
  7054. }
  7055. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7056. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7057. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7058. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7059. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7060. if (++i10 == ne0) {
  7061. i10 = 0;
  7062. if (++i11 == ne1) {
  7063. i11 = 0;
  7064. if (++i12 == ne2) {
  7065. i12 = 0;
  7066. if (++i13 == ne3) {
  7067. i13 = 0;
  7068. }
  7069. }
  7070. }
  7071. }
  7072. }
  7073. }
  7074. i10 += ne00 * (ne01 - ir1);
  7075. while (i10 >= ne0) {
  7076. i10 -= ne0;
  7077. if (++i11 == ne1) {
  7078. i11 = 0;
  7079. if (++i12 == ne2) {
  7080. i12 = 0;
  7081. if (++i13 == ne3) {
  7082. i13 = 0;
  7083. }
  7084. }
  7085. }
  7086. }
  7087. }
  7088. }
  7089. } else {
  7090. GGML_ASSERT(false); // TODO: implement
  7091. }
  7092. }
  7093. static void ggml_compute_forward_dup_f32(
  7094. const struct ggml_compute_params * params,
  7095. struct ggml_tensor * dst) {
  7096. const struct ggml_tensor * src0 = dst->src[0];
  7097. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7098. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7099. return;
  7100. }
  7101. GGML_TENSOR_UNARY_OP_LOCALS
  7102. const int ith = params->ith; // thread index
  7103. const int nth = params->nth; // number of threads
  7104. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7105. ggml_compute_forward_dup_same_cont(params, dst);
  7106. return;
  7107. }
  7108. // parallelize by rows
  7109. const int nr = ne01;
  7110. // number of rows per thread
  7111. const int dr = (nr + nth - 1) / nth;
  7112. // row range for this thread
  7113. const int ir0 = dr * ith;
  7114. const int ir1 = MIN(ir0 + dr, nr);
  7115. if (src0->type == dst->type &&
  7116. ne00 == ne0 &&
  7117. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7118. // copy by rows
  7119. const size_t rs = ne00*nb00;
  7120. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7121. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7122. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7123. memcpy(
  7124. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7125. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7126. rs);
  7127. }
  7128. }
  7129. }
  7130. return;
  7131. }
  7132. if (ggml_is_contiguous(dst)) {
  7133. // TODO: simplify
  7134. if (nb00 == sizeof(float)) {
  7135. if (dst->type == GGML_TYPE_F32) {
  7136. size_t id = 0;
  7137. const size_t rs = ne00 * nb00;
  7138. char * dst_ptr = (char *) dst->data;
  7139. for (int i03 = 0; i03 < ne03; i03++) {
  7140. for (int i02 = 0; i02 < ne02; i02++) {
  7141. id += rs * ir0;
  7142. for (int i01 = ir0; i01 < ir1; i01++) {
  7143. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7144. memcpy(dst_ptr + id, src0_ptr, rs);
  7145. id += rs;
  7146. }
  7147. id += rs * (ne01 - ir1);
  7148. }
  7149. }
  7150. } else if (type_traits[dst->type].from_float) {
  7151. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7152. size_t id = 0;
  7153. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7154. char * dst_ptr = (char *) dst->data;
  7155. for (int i03 = 0; i03 < ne03; i03++) {
  7156. for (int i02 = 0; i02 < ne02; i02++) {
  7157. id += rs * ir0;
  7158. for (int i01 = ir0; i01 < ir1; i01++) {
  7159. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7160. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7161. id += rs;
  7162. }
  7163. id += rs * (ne01 - ir1);
  7164. }
  7165. }
  7166. } else {
  7167. GGML_ASSERT(false); // TODO: implement
  7168. }
  7169. } else {
  7170. //printf("%s: this is not optimal - fix me\n", __func__);
  7171. if (dst->type == GGML_TYPE_F32) {
  7172. size_t id = 0;
  7173. float * dst_ptr = (float *) dst->data;
  7174. for (int i03 = 0; i03 < ne03; i03++) {
  7175. for (int i02 = 0; i02 < ne02; i02++) {
  7176. id += ne00 * ir0;
  7177. for (int i01 = ir0; i01 < ir1; i01++) {
  7178. for (int i00 = 0; i00 < ne00; i00++) {
  7179. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7180. dst_ptr[id] = *src0_ptr;
  7181. id++;
  7182. }
  7183. }
  7184. id += ne00 * (ne01 - ir1);
  7185. }
  7186. }
  7187. } else if (dst->type == GGML_TYPE_F16) {
  7188. size_t id = 0;
  7189. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7190. for (int i03 = 0; i03 < ne03; i03++) {
  7191. for (int i02 = 0; i02 < ne02; i02++) {
  7192. id += ne00 * ir0;
  7193. for (int i01 = ir0; i01 < ir1; i01++) {
  7194. for (int i00 = 0; i00 < ne00; i00++) {
  7195. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7196. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7197. id++;
  7198. }
  7199. }
  7200. id += ne00 * (ne01 - ir1);
  7201. }
  7202. }
  7203. } else if (dst->type == GGML_TYPE_BF16) {
  7204. size_t id = 0;
  7205. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7206. for (int i03 = 0; i03 < ne03; i03++) {
  7207. for (int i02 = 0; i02 < ne02; i02++) {
  7208. id += ne00 * ir0;
  7209. for (int i01 = ir0; i01 < ir1; i01++) {
  7210. for (int i00 = 0; i00 < ne00; i00++) {
  7211. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7212. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7213. id++;
  7214. }
  7215. }
  7216. id += ne00 * (ne01 - ir1);
  7217. }
  7218. }
  7219. } else {
  7220. GGML_ASSERT(false); // TODO: implement
  7221. }
  7222. }
  7223. return;
  7224. }
  7225. // dst counters
  7226. int64_t i10 = 0;
  7227. int64_t i11 = 0;
  7228. int64_t i12 = 0;
  7229. int64_t i13 = 0;
  7230. if (dst->type == GGML_TYPE_F32) {
  7231. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7232. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7233. i10 += ne00 * ir0;
  7234. while (i10 >= ne0) {
  7235. i10 -= ne0;
  7236. if (++i11 == ne1) {
  7237. i11 = 0;
  7238. if (++i12 == ne2) {
  7239. i12 = 0;
  7240. if (++i13 == ne3) {
  7241. i13 = 0;
  7242. }
  7243. }
  7244. }
  7245. }
  7246. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7247. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7248. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7249. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7250. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7251. if (++i10 == ne0) {
  7252. i10 = 0;
  7253. if (++i11 == ne1) {
  7254. i11 = 0;
  7255. if (++i12 == ne2) {
  7256. i12 = 0;
  7257. if (++i13 == ne3) {
  7258. i13 = 0;
  7259. }
  7260. }
  7261. }
  7262. }
  7263. }
  7264. }
  7265. i10 += ne00 * (ne01 - ir1);
  7266. while (i10 >= ne0) {
  7267. i10 -= ne0;
  7268. if (++i11 == ne1) {
  7269. i11 = 0;
  7270. if (++i12 == ne2) {
  7271. i12 = 0;
  7272. if (++i13 == ne3) {
  7273. i13 = 0;
  7274. }
  7275. }
  7276. }
  7277. }
  7278. }
  7279. }
  7280. } else if (dst->type == GGML_TYPE_F16) {
  7281. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7282. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7283. i10 += ne00 * ir0;
  7284. while (i10 >= ne0) {
  7285. i10 -= ne0;
  7286. if (++i11 == ne1) {
  7287. i11 = 0;
  7288. if (++i12 == ne2) {
  7289. i12 = 0;
  7290. if (++i13 == ne3) {
  7291. i13 = 0;
  7292. }
  7293. }
  7294. }
  7295. }
  7296. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7297. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7298. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7299. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7300. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7301. if (++i10 == ne0) {
  7302. i10 = 0;
  7303. if (++i11 == ne1) {
  7304. i11 = 0;
  7305. if (++i12 == ne2) {
  7306. i12 = 0;
  7307. if (++i13 == ne3) {
  7308. i13 = 0;
  7309. }
  7310. }
  7311. }
  7312. }
  7313. }
  7314. }
  7315. i10 += ne00 * (ne01 - ir1);
  7316. while (i10 >= ne0) {
  7317. i10 -= ne0;
  7318. if (++i11 == ne1) {
  7319. i11 = 0;
  7320. if (++i12 == ne2) {
  7321. i12 = 0;
  7322. if (++i13 == ne3) {
  7323. i13 = 0;
  7324. }
  7325. }
  7326. }
  7327. }
  7328. }
  7329. }
  7330. } else if (dst->type == GGML_TYPE_BF16) {
  7331. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7332. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7333. i10 += ne00 * ir0;
  7334. while (i10 >= ne0) {
  7335. i10 -= ne0;
  7336. if (++i11 == ne1) {
  7337. i11 = 0;
  7338. if (++i12 == ne2) {
  7339. i12 = 0;
  7340. if (++i13 == ne3) {
  7341. i13 = 0;
  7342. }
  7343. }
  7344. }
  7345. }
  7346. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7347. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7348. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7349. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7350. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7351. if (++i10 == ne0) {
  7352. i10 = 0;
  7353. if (++i11 == ne1) {
  7354. i11 = 0;
  7355. if (++i12 == ne2) {
  7356. i12 = 0;
  7357. if (++i13 == ne3) {
  7358. i13 = 0;
  7359. }
  7360. }
  7361. }
  7362. }
  7363. }
  7364. }
  7365. i10 += ne00 * (ne01 - ir1);
  7366. while (i10 >= ne0) {
  7367. i10 -= ne0;
  7368. if (++i11 == ne1) {
  7369. i11 = 0;
  7370. if (++i12 == ne2) {
  7371. i12 = 0;
  7372. if (++i13 == ne3) {
  7373. i13 = 0;
  7374. }
  7375. }
  7376. }
  7377. }
  7378. }
  7379. }
  7380. } else {
  7381. GGML_ASSERT(false); // TODO: implement
  7382. }
  7383. }
  7384. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7385. static void ggml_compute_forward_dup_bytes(
  7386. const struct ggml_compute_params * params,
  7387. struct ggml_tensor * dst) {
  7388. const struct ggml_tensor * src0 = dst->src[0];
  7389. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7390. GGML_ASSERT(src0->type == dst->type);
  7391. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7392. return;
  7393. }
  7394. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7395. ggml_compute_forward_dup_same_cont(params, dst);
  7396. return;
  7397. }
  7398. GGML_TENSOR_UNARY_OP_LOCALS;
  7399. const size_t type_size = ggml_type_size(src0->type);
  7400. const int ith = params->ith; // thread index
  7401. const int nth = params->nth; // number of threads
  7402. // parallelize by rows
  7403. const int nr = ne01;
  7404. // number of rows per thread
  7405. const int dr = (nr + nth - 1) / nth;
  7406. // row range for this thread
  7407. const int ir0 = dr * ith;
  7408. const int ir1 = MIN(ir0 + dr, nr);
  7409. if (src0->type == dst->type &&
  7410. ne00 == ne0 &&
  7411. nb00 == type_size && nb0 == type_size) {
  7412. // copy by rows
  7413. const size_t rs = ne00 * type_size;
  7414. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7415. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7416. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7417. memcpy(
  7418. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7419. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7420. rs);
  7421. }
  7422. }
  7423. }
  7424. return;
  7425. }
  7426. if (ggml_is_contiguous(dst)) {
  7427. size_t id = 0;
  7428. char * dst_ptr = (char *) dst->data;
  7429. const size_t rs = ne00 * type_size;
  7430. if (nb00 == type_size) {
  7431. // src0 is contigous on first dimension, copy by rows
  7432. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7433. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7434. id += rs * ir0;
  7435. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7436. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7437. memcpy(dst_ptr + id, src0_ptr, rs);
  7438. id += rs;
  7439. }
  7440. id += rs * (ne01 - ir1);
  7441. }
  7442. }
  7443. } else {
  7444. //printf("%s: this is not optimal - fix me\n", __func__);
  7445. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7446. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7447. id += rs * ir0;
  7448. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7449. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7450. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7451. memcpy(dst_ptr + id, src0_ptr, type_size);
  7452. id += type_size;
  7453. }
  7454. }
  7455. id += rs * (ne01 - ir1);
  7456. }
  7457. }
  7458. }
  7459. return;
  7460. }
  7461. // dst counters
  7462. int64_t i10 = 0;
  7463. int64_t i11 = 0;
  7464. int64_t i12 = 0;
  7465. int64_t i13 = 0;
  7466. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7467. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7468. i10 += ne00 * ir0;
  7469. while (i10 >= ne0) {
  7470. i10 -= ne0;
  7471. if (++i11 == ne1) {
  7472. i11 = 0;
  7473. if (++i12 == ne2) {
  7474. i12 = 0;
  7475. if (++i13 == ne3) {
  7476. i13 = 0;
  7477. }
  7478. }
  7479. }
  7480. }
  7481. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7482. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7483. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7484. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7485. memcpy(dst_ptr, src0_ptr, type_size);
  7486. if (++i10 == ne0) {
  7487. i10 = 0;
  7488. if (++i11 == ne1) {
  7489. i11 = 0;
  7490. if (++i12 == ne2) {
  7491. i12 = 0;
  7492. if (++i13 == ne3) {
  7493. i13 = 0;
  7494. }
  7495. }
  7496. }
  7497. }
  7498. }
  7499. }
  7500. i10 += ne00 * (ne01 - ir1);
  7501. while (i10 >= ne0) {
  7502. i10 -= ne0;
  7503. if (++i11 == ne1) {
  7504. i11 = 0;
  7505. if (++i12 == ne2) {
  7506. i12 = 0;
  7507. if (++i13 == ne3) {
  7508. i13 = 0;
  7509. }
  7510. }
  7511. }
  7512. }
  7513. }
  7514. }
  7515. }
  7516. static void ggml_compute_forward_dup(
  7517. const struct ggml_compute_params * params,
  7518. struct ggml_tensor * dst) {
  7519. const struct ggml_tensor * src0 = dst->src[0];
  7520. if (src0->type == dst->type) {
  7521. ggml_compute_forward_dup_bytes(params, dst);
  7522. return;
  7523. }
  7524. switch (src0->type) {
  7525. case GGML_TYPE_F16:
  7526. {
  7527. ggml_compute_forward_dup_f16(params, dst);
  7528. } break;
  7529. case GGML_TYPE_BF16:
  7530. {
  7531. ggml_compute_forward_dup_bf16(params, dst);
  7532. } break;
  7533. case GGML_TYPE_F32:
  7534. {
  7535. ggml_compute_forward_dup_f32(params, dst);
  7536. } break;
  7537. default:
  7538. {
  7539. GGML_ASSERT(false);
  7540. } break;
  7541. }
  7542. }
  7543. // ggml_compute_forward_add
  7544. static void ggml_compute_forward_add_f32(
  7545. const struct ggml_compute_params * params,
  7546. struct ggml_tensor * dst) {
  7547. const struct ggml_tensor * src0 = dst->src[0];
  7548. const struct ggml_tensor * src1 = dst->src[1];
  7549. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7550. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7551. return;
  7552. }
  7553. const int ith = params->ith;
  7554. const int nth = params->nth;
  7555. #ifdef GGML_USE_CLBLAST
  7556. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7557. // TODO: OpenCL kernel support full broadcast
  7558. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7559. if (ith == 0) {
  7560. ggml_cl_add(src0, src1, dst);
  7561. }
  7562. return;
  7563. }
  7564. #endif
  7565. const int nr = ggml_nrows(src0);
  7566. GGML_TENSOR_BINARY_OP_LOCALS
  7567. GGML_ASSERT( nb0 == sizeof(float));
  7568. GGML_ASSERT(nb00 == sizeof(float));
  7569. // rows per thread
  7570. const int dr = (nr + nth - 1)/nth;
  7571. // row range for this thread
  7572. const int ir0 = dr*ith;
  7573. const int ir1 = MIN(ir0 + dr, nr);
  7574. if (nb10 == sizeof(float)) {
  7575. for (int ir = ir0; ir < ir1; ++ir) {
  7576. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7577. const int64_t i03 = ir/(ne02*ne01);
  7578. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7579. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7580. const int64_t i13 = i03 % ne13;
  7581. const int64_t i12 = i02 % ne12;
  7582. const int64_t i11 = i01 % ne11;
  7583. const int64_t nr0 = ne00 / ne10;
  7584. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7585. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7586. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7587. for (int64_t r = 0; r < nr0; ++r) {
  7588. #ifdef GGML_USE_ACCELERATE
  7589. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7590. #else
  7591. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7592. #endif
  7593. }
  7594. }
  7595. } else {
  7596. // src1 is not contiguous
  7597. for (int ir = ir0; ir < ir1; ++ir) {
  7598. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7599. const int64_t i03 = ir/(ne02*ne01);
  7600. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7601. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7602. const int64_t i13 = i03 % ne13;
  7603. const int64_t i12 = i02 % ne12;
  7604. const int64_t i11 = i01 % ne11;
  7605. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7606. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7607. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7608. const int64_t i10 = i0 % ne10;
  7609. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7610. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7611. }
  7612. }
  7613. }
  7614. }
  7615. static void ggml_compute_forward_add_f16_f32(
  7616. const struct ggml_compute_params * params,
  7617. struct ggml_tensor * dst) {
  7618. const struct ggml_tensor * src0 = dst->src[0];
  7619. const struct ggml_tensor * src1 = dst->src[1];
  7620. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7621. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7622. return;
  7623. }
  7624. const int ith = params->ith;
  7625. const int nth = params->nth;
  7626. const int nr = ggml_nrows(src0);
  7627. GGML_TENSOR_BINARY_OP_LOCALS
  7628. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7629. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7630. if (dst->type == GGML_TYPE_F32) {
  7631. GGML_ASSERT( nb0 == sizeof(float));
  7632. }
  7633. else {
  7634. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7635. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7636. }
  7637. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7638. // rows per thread
  7639. const int dr = (nr + nth - 1)/nth;
  7640. // row range for this thread
  7641. const int ir0 = dr*ith;
  7642. const int ir1 = MIN(ir0 + dr, nr);
  7643. if (nb10 == sizeof(float)) {
  7644. if (dst->type == GGML_TYPE_F16) {
  7645. for (int ir = ir0; ir < ir1; ++ir) {
  7646. // src0, src1 and dst are same shape => same indices
  7647. const int i3 = ir/(ne2*ne1);
  7648. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7649. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7650. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7651. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7652. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7653. for (int i = 0; i < ne0; i++) {
  7654. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7655. }
  7656. }
  7657. } else {
  7658. for (int ir = ir0; ir < ir1; ++ir) {
  7659. // src0, src1 and dst are same shape => same indices
  7660. const int i3 = ir/(ne2*ne1);
  7661. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7662. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7663. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7664. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7665. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7666. for (int i = 0; i < ne0; i++) {
  7667. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7668. }
  7669. }
  7670. }
  7671. }
  7672. else {
  7673. // src1 is not contiguous
  7674. GGML_ASSERT(false);
  7675. }
  7676. }
  7677. static void ggml_compute_forward_add_bf16_f32(
  7678. const struct ggml_compute_params * params,
  7679. struct ggml_tensor * dst) {
  7680. const struct ggml_tensor * src0 = dst->src[0];
  7681. const struct ggml_tensor * src1 = dst->src[1];
  7682. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7683. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7684. return;
  7685. }
  7686. const int ith = params->ith;
  7687. const int nth = params->nth;
  7688. const int nr = ggml_nrows(src0);
  7689. GGML_TENSOR_BINARY_OP_LOCALS
  7690. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7691. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7692. if (dst->type == GGML_TYPE_F32) {
  7693. GGML_ASSERT( nb0 == sizeof(float));
  7694. }
  7695. else {
  7696. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7697. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7698. }
  7699. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7700. // rows per thread
  7701. const int dr = (nr + nth - 1)/nth;
  7702. // row range for this thread
  7703. const int ir0 = dr*ith;
  7704. const int ir1 = MIN(ir0 + dr, nr);
  7705. if (nb10 == sizeof(float)) {
  7706. if (dst->type == GGML_TYPE_BF16) {
  7707. for (int ir = ir0; ir < ir1; ++ir) {
  7708. // src0, src1 and dst are same shape => same indices
  7709. const int i3 = ir/(ne2*ne1);
  7710. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7711. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7712. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7713. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7714. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7715. for (int i = 0; i < ne0; i++) {
  7716. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7717. }
  7718. }
  7719. } else {
  7720. for (int ir = ir0; ir < ir1; ++ir) {
  7721. // src0, src1 and dst are same shape => same indices
  7722. const int i3 = ir/(ne2*ne1);
  7723. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7724. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7725. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7726. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7727. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7728. for (int i = 0; i < ne0; i++) {
  7729. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7730. }
  7731. }
  7732. }
  7733. }
  7734. else {
  7735. // src1 is not contiguous
  7736. GGML_ASSERT(false);
  7737. }
  7738. }
  7739. static void ggml_compute_forward_add_f16_f16(
  7740. const struct ggml_compute_params * params,
  7741. struct ggml_tensor * dst) {
  7742. const struct ggml_tensor * src0 = dst->src[0];
  7743. const struct ggml_tensor * src1 = dst->src[1];
  7744. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7745. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7746. return;
  7747. }
  7748. const int ith = params->ith;
  7749. const int nth = params->nth;
  7750. const int nr = ggml_nrows(src0);
  7751. GGML_TENSOR_BINARY_OP_LOCALS
  7752. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7753. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7754. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7755. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7756. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7757. // rows per thread
  7758. const int dr = (nr + nth - 1)/nth;
  7759. // row range for this thread
  7760. const int ir0 = dr*ith;
  7761. const int ir1 = MIN(ir0 + dr, nr);
  7762. if (nb10 == sizeof(ggml_fp16_t)) {
  7763. for (int ir = ir0; ir < ir1; ++ir) {
  7764. // src0, src1 and dst are same shape => same indices
  7765. const int i3 = ir/(ne2*ne1);
  7766. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7767. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7768. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7769. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7770. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7771. for (int i = 0; i < ne0; i++) {
  7772. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7773. }
  7774. }
  7775. }
  7776. else {
  7777. // src1 is not contiguous
  7778. GGML_ASSERT(false);
  7779. }
  7780. }
  7781. static void ggml_compute_forward_add_bf16_bf16(
  7782. const struct ggml_compute_params * params,
  7783. struct ggml_tensor * dst) {
  7784. const struct ggml_tensor * src0 = dst->src[0];
  7785. const struct ggml_tensor * src1 = dst->src[1];
  7786. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7787. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7788. return;
  7789. }
  7790. const int ith = params->ith;
  7791. const int nth = params->nth;
  7792. const int nr = ggml_nrows(src0);
  7793. GGML_TENSOR_BINARY_OP_LOCALS
  7794. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7795. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7796. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7797. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7798. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7799. // rows per thread
  7800. const int dr = (nr + nth - 1)/nth;
  7801. // row range for this thread
  7802. const int ir0 = dr*ith;
  7803. const int ir1 = MIN(ir0 + dr, nr);
  7804. if (nb10 == sizeof(ggml_bf16_t)) {
  7805. for (int ir = ir0; ir < ir1; ++ir) {
  7806. // src0, src1 and dst are same shape => same indices
  7807. const int i3 = ir/(ne2*ne1);
  7808. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7809. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7810. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7811. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7812. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7813. for (int i = 0; i < ne0; i++) {
  7814. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7815. }
  7816. }
  7817. }
  7818. else {
  7819. // src1 is not contiguous
  7820. GGML_ASSERT(false);
  7821. }
  7822. }
  7823. static void ggml_compute_forward_add_q_f32(
  7824. const struct ggml_compute_params * params,
  7825. struct ggml_tensor * dst) {
  7826. const struct ggml_tensor * src0 = dst->src[0];
  7827. const struct ggml_tensor * src1 = dst->src[1];
  7828. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7830. return;
  7831. }
  7832. const int nr = ggml_nrows(src0);
  7833. GGML_TENSOR_BINARY_OP_LOCALS
  7834. const int ith = params->ith;
  7835. const int nth = params->nth;
  7836. const enum ggml_type type = src0->type;
  7837. const enum ggml_type dtype = dst->type;
  7838. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7839. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7840. // we don't support permuted src0 or src1
  7841. GGML_ASSERT(nb00 == ggml_type_size(type));
  7842. GGML_ASSERT(nb10 == sizeof(float));
  7843. // dst cannot be transposed or permuted
  7844. GGML_ASSERT(nb0 <= nb1);
  7845. GGML_ASSERT(nb1 <= nb2);
  7846. GGML_ASSERT(nb2 <= nb3);
  7847. GGML_ASSERT(ggml_is_quantized(src0->type));
  7848. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7849. // rows per thread
  7850. const int dr = (nr + nth - 1)/nth;
  7851. // row range for this thread
  7852. const int ir0 = dr*ith;
  7853. const int ir1 = MIN(ir0 + dr, nr);
  7854. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7855. for (int ir = ir0; ir < ir1; ++ir) {
  7856. // src0 indices
  7857. const int i03 = ir/(ne02*ne01);
  7858. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7859. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7860. // src1 and dst are same shape as src0 => same indices
  7861. const int i13 = i03;
  7862. const int i12 = i02;
  7863. const int i11 = i01;
  7864. const int i3 = i03;
  7865. const int i2 = i02;
  7866. const int i1 = i01;
  7867. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7868. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7869. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7870. assert(ne00 % 32 == 0);
  7871. // unquantize row from src0 to temp buffer
  7872. dequantize_row_q(src0_row, wdata, ne00);
  7873. // add src1
  7874. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7875. // quantize row to dst
  7876. if (quantize_row_q != NULL) {
  7877. quantize_row_q(wdata, dst_row, ne00);
  7878. } else {
  7879. memcpy(dst_row, wdata, ne0*nb0);
  7880. }
  7881. }
  7882. }
  7883. static void ggml_compute_forward_add(
  7884. const struct ggml_compute_params * params,
  7885. struct ggml_tensor * dst) {
  7886. const struct ggml_tensor * src0 = dst->src[0];
  7887. const struct ggml_tensor * src1 = dst->src[1];
  7888. switch (src0->type) {
  7889. case GGML_TYPE_F32:
  7890. {
  7891. if (src1->type == GGML_TYPE_F32) {
  7892. ggml_compute_forward_add_f32(params, dst);
  7893. }
  7894. else {
  7895. GGML_ASSERT(false);
  7896. }
  7897. } break;
  7898. case GGML_TYPE_F16:
  7899. {
  7900. if (src1->type == GGML_TYPE_F16) {
  7901. ggml_compute_forward_add_f16_f16(params, dst);
  7902. }
  7903. else if (src1->type == GGML_TYPE_F32) {
  7904. ggml_compute_forward_add_f16_f32(params, dst);
  7905. }
  7906. else {
  7907. GGML_ASSERT(false);
  7908. }
  7909. } break;
  7910. case GGML_TYPE_BF16:
  7911. {
  7912. if (src1->type == GGML_TYPE_BF16) {
  7913. ggml_compute_forward_add_bf16_bf16(params, dst);
  7914. }
  7915. else if (src1->type == GGML_TYPE_F32) {
  7916. ggml_compute_forward_add_bf16_f32(params, dst);
  7917. }
  7918. else {
  7919. GGML_ASSERT(false);
  7920. }
  7921. } break;
  7922. case GGML_TYPE_Q4_0:
  7923. case GGML_TYPE_Q4_1:
  7924. case GGML_TYPE_Q5_0:
  7925. case GGML_TYPE_Q5_1:
  7926. case GGML_TYPE_Q8_0:
  7927. case GGML_TYPE_Q2_K:
  7928. case GGML_TYPE_Q3_K:
  7929. case GGML_TYPE_Q4_K:
  7930. case GGML_TYPE_Q5_K:
  7931. case GGML_TYPE_Q6_K:
  7932. case GGML_TYPE_IQ2_XXS:
  7933. case GGML_TYPE_IQ2_XS:
  7934. case GGML_TYPE_IQ3_XXS:
  7935. case GGML_TYPE_IQ1_S:
  7936. case GGML_TYPE_IQ1_M:
  7937. case GGML_TYPE_IQ4_NL:
  7938. case GGML_TYPE_IQ4_XS:
  7939. case GGML_TYPE_IQ3_S:
  7940. case GGML_TYPE_IQ2_S:
  7941. {
  7942. ggml_compute_forward_add_q_f32(params, dst);
  7943. } break;
  7944. default:
  7945. {
  7946. GGML_ASSERT(false);
  7947. } break;
  7948. }
  7949. }
  7950. // ggml_compute_forward_add1
  7951. static void ggml_compute_forward_add1_f32(
  7952. const struct ggml_compute_params * params,
  7953. struct ggml_tensor * dst) {
  7954. const struct ggml_tensor * src0 = dst->src[0];
  7955. const struct ggml_tensor * src1 = dst->src[1];
  7956. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7957. GGML_ASSERT(ggml_is_scalar(src1));
  7958. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7959. return;
  7960. }
  7961. const int ith = params->ith;
  7962. const int nth = params->nth;
  7963. const int nr = ggml_nrows(src0);
  7964. GGML_TENSOR_UNARY_OP_LOCALS
  7965. GGML_ASSERT( nb0 == sizeof(float));
  7966. GGML_ASSERT(nb00 == sizeof(float));
  7967. // rows per thread
  7968. const int dr = (nr + nth - 1)/nth;
  7969. // row range for this thread
  7970. const int ir0 = dr*ith;
  7971. const int ir1 = MIN(ir0 + dr, nr);
  7972. for (int ir = ir0; ir < ir1; ++ir) {
  7973. // src0 and dst are same shape => same indices
  7974. const int i3 = ir/(ne2*ne1);
  7975. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7976. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7977. #ifdef GGML_USE_ACCELERATE
  7978. UNUSED(ggml_vec_add1_f32);
  7979. vDSP_vadd(
  7980. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7981. (float *) ((char *) src1->data), 0,
  7982. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7983. ne0);
  7984. #else
  7985. ggml_vec_add1_f32(ne0,
  7986. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7987. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7988. *(float *) src1->data);
  7989. #endif
  7990. }
  7991. }
  7992. static void ggml_compute_forward_add1_f16_f32(
  7993. const struct ggml_compute_params * params,
  7994. struct ggml_tensor * dst) {
  7995. const struct ggml_tensor * src0 = dst->src[0];
  7996. const struct ggml_tensor * src1 = dst->src[1];
  7997. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7998. GGML_ASSERT(ggml_is_scalar(src1));
  7999. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8000. return;
  8001. }
  8002. // scalar to add
  8003. const float v = *(float *) src1->data;
  8004. const int ith = params->ith;
  8005. const int nth = params->nth;
  8006. const int nr = ggml_nrows(src0);
  8007. GGML_TENSOR_UNARY_OP_LOCALS
  8008. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8009. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8010. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8011. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8012. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8013. // rows per thread
  8014. const int dr = (nr + nth - 1)/nth;
  8015. // row range for this thread
  8016. const int ir0 = dr*ith;
  8017. const int ir1 = MIN(ir0 + dr, nr);
  8018. for (int ir = ir0; ir < ir1; ++ir) {
  8019. // src0 and dst are same shape => same indices
  8020. const int i3 = ir/(ne2*ne1);
  8021. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8022. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8023. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8024. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8025. for (int i = 0; i < ne0; i++) {
  8026. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8027. }
  8028. }
  8029. }
  8030. static void ggml_compute_forward_add1_f16_f16(
  8031. const struct ggml_compute_params * params,
  8032. struct ggml_tensor * dst) {
  8033. const struct ggml_tensor * src0 = dst->src[0];
  8034. const struct ggml_tensor * src1 = dst->src[1];
  8035. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8036. GGML_ASSERT(ggml_is_scalar(src1));
  8037. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8038. return;
  8039. }
  8040. // scalar to add
  8041. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8042. const int ith = params->ith;
  8043. const int nth = params->nth;
  8044. const int nr = ggml_nrows(src0);
  8045. GGML_TENSOR_UNARY_OP_LOCALS
  8046. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8047. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8048. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8049. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8050. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8051. // rows per thread
  8052. const int dr = (nr + nth - 1)/nth;
  8053. // row range for this thread
  8054. const int ir0 = dr*ith;
  8055. const int ir1 = MIN(ir0 + dr, nr);
  8056. for (int ir = ir0; ir < ir1; ++ir) {
  8057. // src0 and dst are same shape => same indices
  8058. const int i3 = ir/(ne2*ne1);
  8059. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8060. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8061. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8062. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8063. for (int i = 0; i < ne0; i++) {
  8064. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8065. }
  8066. }
  8067. }
  8068. static void ggml_compute_forward_add1_q_f32(
  8069. const struct ggml_compute_params * params,
  8070. struct ggml_tensor * dst) {
  8071. const struct ggml_tensor * src0 = dst->src[0];
  8072. const struct ggml_tensor * src1 = dst->src[1];
  8073. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8074. GGML_ASSERT(ggml_is_scalar(src1));
  8075. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8076. return;
  8077. }
  8078. // scalar to add
  8079. const float v = *(float *) src1->data;
  8080. const int ith = params->ith;
  8081. const int nth = params->nth;
  8082. const int nr = ggml_nrows(src0);
  8083. GGML_TENSOR_UNARY_OP_LOCALS
  8084. const enum ggml_type type = src0->type;
  8085. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8086. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8087. // we don't support permuted src0
  8088. GGML_ASSERT(nb00 == ggml_type_size(type));
  8089. // dst cannot be transposed or permuted
  8090. GGML_ASSERT(nb0 <= nb1);
  8091. GGML_ASSERT(nb1 <= nb2);
  8092. GGML_ASSERT(nb2 <= nb3);
  8093. GGML_ASSERT(ggml_is_quantized(src0->type));
  8094. GGML_ASSERT(dst->type == src0->type);
  8095. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8096. // rows per thread
  8097. const int dr = (nr + nth - 1)/nth;
  8098. // row range for this thread
  8099. const int ir0 = dr*ith;
  8100. const int ir1 = MIN(ir0 + dr, nr);
  8101. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8102. for (int ir = ir0; ir < ir1; ++ir) {
  8103. // src0 and dst are same shape => same indices
  8104. const int i3 = ir/(ne2*ne1);
  8105. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8106. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8107. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8108. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8109. assert(ne0 % 32 == 0);
  8110. // unquantize row from src0 to temp buffer
  8111. dequantize_row_q(src0_row, wdata, ne0);
  8112. // add src1
  8113. ggml_vec_acc1_f32(ne0, wdata, v);
  8114. // quantize row to dst
  8115. quantize_row_q(wdata, dst_row, ne0);
  8116. }
  8117. }
  8118. static void ggml_compute_forward_add1_bf16_f32(
  8119. const struct ggml_compute_params * params,
  8120. struct ggml_tensor * dst) {
  8121. const struct ggml_tensor * src0 = dst->src[0];
  8122. const struct ggml_tensor * src1 = dst->src[1];
  8123. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8124. GGML_ASSERT(ggml_is_scalar(src1));
  8125. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8126. return;
  8127. }
  8128. // scalar to add
  8129. const float v = *(float *) src1->data;
  8130. const int ith = params->ith;
  8131. const int nth = params->nth;
  8132. const int nr = ggml_nrows(src0);
  8133. GGML_TENSOR_UNARY_OP_LOCALS
  8134. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8135. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8136. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8137. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8138. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8139. // rows per thread
  8140. const int dr = (nr + nth - 1)/nth;
  8141. // row range for this thread
  8142. const int ir0 = dr*ith;
  8143. const int ir1 = MIN(ir0 + dr, nr);
  8144. for (int ir = ir0; ir < ir1; ++ir) {
  8145. // src0 and dst are same shape => same indices
  8146. const int i3 = ir/(ne2*ne1);
  8147. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8148. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8149. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8150. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8151. for (int i = 0; i < ne0; i++) {
  8152. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8153. }
  8154. }
  8155. }
  8156. static void ggml_compute_forward_add1_bf16_bf16(
  8157. const struct ggml_compute_params * params,
  8158. struct ggml_tensor * dst) {
  8159. const struct ggml_tensor * src0 = dst->src[0];
  8160. const struct ggml_tensor * src1 = dst->src[1];
  8161. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8162. GGML_ASSERT(ggml_is_scalar(src1));
  8163. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8164. return;
  8165. }
  8166. // scalar to add
  8167. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8168. const int ith = params->ith;
  8169. const int nth = params->nth;
  8170. const int nr = ggml_nrows(src0);
  8171. GGML_TENSOR_UNARY_OP_LOCALS
  8172. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8173. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8174. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8175. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8176. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8177. // rows per thread
  8178. const int dr = (nr + nth - 1)/nth;
  8179. // row range for this thread
  8180. const int ir0 = dr*ith;
  8181. const int ir1 = MIN(ir0 + dr, nr);
  8182. for (int ir = ir0; ir < ir1; ++ir) {
  8183. // src0 and dst are same shape => same indices
  8184. const int i3 = ir/(ne2*ne1);
  8185. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8186. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8187. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8188. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8189. for (int i = 0; i < ne0; i++) {
  8190. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8191. }
  8192. }
  8193. }
  8194. static void ggml_compute_forward_add1(
  8195. const struct ggml_compute_params * params,
  8196. struct ggml_tensor * dst) {
  8197. const struct ggml_tensor * src0 = dst->src[0];
  8198. const struct ggml_tensor * src1 = dst->src[1];
  8199. switch (src0->type) {
  8200. case GGML_TYPE_F32:
  8201. {
  8202. ggml_compute_forward_add1_f32(params, dst);
  8203. } break;
  8204. case GGML_TYPE_F16:
  8205. {
  8206. if (src1->type == GGML_TYPE_F16) {
  8207. ggml_compute_forward_add1_f16_f16(params, dst);
  8208. }
  8209. else if (src1->type == GGML_TYPE_F32) {
  8210. ggml_compute_forward_add1_f16_f32(params, dst);
  8211. }
  8212. else {
  8213. GGML_ASSERT(false);
  8214. }
  8215. } break;
  8216. case GGML_TYPE_BF16:
  8217. {
  8218. if (src1->type == GGML_TYPE_BF16) {
  8219. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8220. }
  8221. else if (src1->type == GGML_TYPE_F32) {
  8222. ggml_compute_forward_add1_bf16_f32(params, dst);
  8223. }
  8224. else {
  8225. GGML_ASSERT(false);
  8226. }
  8227. } break;
  8228. case GGML_TYPE_Q4_0:
  8229. case GGML_TYPE_Q4_1:
  8230. case GGML_TYPE_Q5_0:
  8231. case GGML_TYPE_Q5_1:
  8232. case GGML_TYPE_Q8_0:
  8233. case GGML_TYPE_Q8_1:
  8234. case GGML_TYPE_Q2_K:
  8235. case GGML_TYPE_Q3_K:
  8236. case GGML_TYPE_Q4_K:
  8237. case GGML_TYPE_Q5_K:
  8238. case GGML_TYPE_Q6_K:
  8239. case GGML_TYPE_IQ2_XXS:
  8240. case GGML_TYPE_IQ2_XS:
  8241. case GGML_TYPE_IQ3_XXS:
  8242. case GGML_TYPE_IQ1_S:
  8243. case GGML_TYPE_IQ1_M:
  8244. case GGML_TYPE_IQ4_NL:
  8245. case GGML_TYPE_IQ4_XS:
  8246. case GGML_TYPE_IQ3_S:
  8247. case GGML_TYPE_IQ2_S:
  8248. {
  8249. ggml_compute_forward_add1_q_f32(params, dst);
  8250. } break;
  8251. default:
  8252. {
  8253. GGML_ASSERT(false);
  8254. } break;
  8255. }
  8256. }
  8257. // ggml_compute_forward_acc
  8258. static void ggml_compute_forward_acc_f32(
  8259. const struct ggml_compute_params * params,
  8260. struct ggml_tensor * dst) {
  8261. const struct ggml_tensor * src0 = dst->src[0];
  8262. const struct ggml_tensor * src1 = dst->src[1];
  8263. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8264. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8265. // view src0 and dst with these strides and data offset inbytes during acc
  8266. // nb0 is implicitly element_size because src0 and dst are contiguous
  8267. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8268. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8269. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8270. size_t offset = ((int32_t *) dst->op_params)[3];
  8271. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8272. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8273. if (params->ith != 0) {
  8274. return;
  8275. }
  8276. // memcpy needs to be synchronized across threads to avoid race conditions.
  8277. // => do it in INIT phase
  8278. memcpy(
  8279. ((char *) dst->data),
  8280. ((char *) src0->data),
  8281. ggml_nbytes(dst));
  8282. }
  8283. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8284. return;
  8285. }
  8286. const int ith = params->ith;
  8287. const int nth = params->nth;
  8288. const int nr = ggml_nrows(src1);
  8289. const int nc = src1->ne[0];
  8290. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8291. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8292. // src0 and dst as viewed during acc
  8293. const size_t nb0 = ggml_element_size(src0);
  8294. const size_t nb00 = nb0;
  8295. const size_t nb01 = nb1;
  8296. const size_t nb02 = nb2;
  8297. const size_t nb03 = nb3;
  8298. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8299. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8300. GGML_ASSERT(nb10 == sizeof(float));
  8301. // rows per thread
  8302. const int dr = (nr + nth - 1)/nth;
  8303. // row range for this thread
  8304. const int ir0 = dr*ith;
  8305. const int ir1 = MIN(ir0 + dr, nr);
  8306. for (int ir = ir0; ir < ir1; ++ir) {
  8307. // src0 and dst are viewed with shape of src1 and offset
  8308. // => same indices
  8309. const int i3 = ir/(ne12*ne11);
  8310. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8311. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8312. #ifdef GGML_USE_ACCELERATE
  8313. vDSP_vadd(
  8314. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8315. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8316. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8317. #else
  8318. ggml_vec_add_f32(nc,
  8319. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8320. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8321. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8322. #endif
  8323. }
  8324. }
  8325. static void ggml_compute_forward_acc(
  8326. const struct ggml_compute_params * params,
  8327. struct ggml_tensor * dst) {
  8328. const struct ggml_tensor * src0 = dst->src[0];
  8329. switch (src0->type) {
  8330. case GGML_TYPE_F32:
  8331. {
  8332. ggml_compute_forward_acc_f32(params, dst);
  8333. } break;
  8334. case GGML_TYPE_F16:
  8335. case GGML_TYPE_BF16:
  8336. case GGML_TYPE_Q4_0:
  8337. case GGML_TYPE_Q4_1:
  8338. case GGML_TYPE_Q5_0:
  8339. case GGML_TYPE_Q5_1:
  8340. case GGML_TYPE_Q8_0:
  8341. case GGML_TYPE_Q8_1:
  8342. case GGML_TYPE_Q2_K:
  8343. case GGML_TYPE_Q3_K:
  8344. case GGML_TYPE_Q4_K:
  8345. case GGML_TYPE_Q5_K:
  8346. case GGML_TYPE_Q6_K:
  8347. case GGML_TYPE_IQ2_XXS:
  8348. case GGML_TYPE_IQ2_XS:
  8349. case GGML_TYPE_IQ3_XXS:
  8350. case GGML_TYPE_IQ1_S:
  8351. case GGML_TYPE_IQ1_M:
  8352. case GGML_TYPE_IQ4_NL:
  8353. case GGML_TYPE_IQ4_XS:
  8354. case GGML_TYPE_IQ3_S:
  8355. case GGML_TYPE_IQ2_S:
  8356. default:
  8357. {
  8358. GGML_ASSERT(false);
  8359. } break;
  8360. }
  8361. }
  8362. // ggml_compute_forward_sub
  8363. static void ggml_compute_forward_sub_f32(
  8364. const struct ggml_compute_params * params,
  8365. struct ggml_tensor * dst) {
  8366. const struct ggml_tensor * src0 = dst->src[0];
  8367. const struct ggml_tensor * src1 = dst->src[1];
  8368. assert(params->ith == 0);
  8369. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8371. return;
  8372. }
  8373. const int nr = ggml_nrows(src0);
  8374. GGML_TENSOR_BINARY_OP_LOCALS
  8375. GGML_ASSERT( nb0 == sizeof(float));
  8376. GGML_ASSERT(nb00 == sizeof(float));
  8377. if (nb10 == sizeof(float)) {
  8378. for (int ir = 0; ir < nr; ++ir) {
  8379. // src0, src1 and dst are same shape => same indices
  8380. const int i3 = ir/(ne2*ne1);
  8381. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8382. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8383. #ifdef GGML_USE_ACCELERATE
  8384. vDSP_vsub(
  8385. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8386. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8387. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8388. ne0);
  8389. #else
  8390. ggml_vec_sub_f32(ne0,
  8391. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8392. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8393. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8394. #endif
  8395. // }
  8396. // }
  8397. }
  8398. } else {
  8399. // src1 is not contiguous
  8400. for (int ir = 0; ir < nr; ++ir) {
  8401. // src0, src1 and dst are same shape => same indices
  8402. const int i3 = ir/(ne2*ne1);
  8403. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8404. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8405. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8406. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8407. for (int i0 = 0; i0 < ne0; i0++) {
  8408. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8409. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8410. }
  8411. }
  8412. }
  8413. }
  8414. static void ggml_compute_forward_sub(
  8415. const struct ggml_compute_params * params,
  8416. struct ggml_tensor * dst) {
  8417. const struct ggml_tensor * src0 = dst->src[0];
  8418. switch (src0->type) {
  8419. case GGML_TYPE_F32:
  8420. {
  8421. ggml_compute_forward_sub_f32(params, dst);
  8422. } break;
  8423. default:
  8424. {
  8425. GGML_ASSERT(false);
  8426. } break;
  8427. }
  8428. }
  8429. // ggml_compute_forward_mul
  8430. static void ggml_compute_forward_mul_f32(
  8431. const struct ggml_compute_params * params,
  8432. struct ggml_tensor * dst) {
  8433. const struct ggml_tensor * src0 = dst->src[0];
  8434. const struct ggml_tensor * src1 = dst->src[1];
  8435. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8436. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8437. return;
  8438. }
  8439. const int ith = params->ith;
  8440. const int nth = params->nth;
  8441. #if defined(GGML_USE_CLBLAST)
  8442. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8443. // TODO: OpenCL kernel support full broadcast
  8444. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8445. if (ith == 0) {
  8446. ggml_cl_mul(src0, src1, dst);
  8447. }
  8448. return;
  8449. }
  8450. #endif
  8451. const int64_t nr = ggml_nrows(src0);
  8452. GGML_TENSOR_BINARY_OP_LOCALS
  8453. GGML_ASSERT( nb0 == sizeof(float));
  8454. GGML_ASSERT(nb00 == sizeof(float));
  8455. if (nb10 == sizeof(float)) {
  8456. for (int64_t ir = ith; ir < nr; ir += nth) {
  8457. // src0 and dst are same shape => same indices
  8458. const int64_t i03 = ir/(ne02*ne01);
  8459. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8460. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8461. const int64_t i13 = i03 % ne13;
  8462. const int64_t i12 = i02 % ne12;
  8463. const int64_t i11 = i01 % ne11;
  8464. const int64_t nr0 = ne00 / ne10;
  8465. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8466. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8467. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8468. for (int64_t r = 0 ; r < nr0; ++r) {
  8469. #ifdef GGML_USE_ACCELERATE
  8470. UNUSED(ggml_vec_mul_f32);
  8471. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8472. #else
  8473. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8474. #endif
  8475. }
  8476. }
  8477. } else {
  8478. // src1 is not contiguous
  8479. for (int64_t ir = ith; ir < nr; ir += nth) {
  8480. // src0 and dst are same shape => same indices
  8481. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8482. const int64_t i03 = ir/(ne02*ne01);
  8483. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8484. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8485. const int64_t i13 = i03 % ne13;
  8486. const int64_t i12 = i02 % ne12;
  8487. const int64_t i11 = i01 % ne11;
  8488. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8489. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8490. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8491. const int64_t i10 = i0 % ne10;
  8492. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8493. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8494. }
  8495. }
  8496. }
  8497. }
  8498. static void ggml_compute_forward_mul(
  8499. const struct ggml_compute_params * params,
  8500. struct ggml_tensor * dst) {
  8501. const struct ggml_tensor * src0 = dst->src[0];
  8502. const struct ggml_tensor * src1 = dst->src[1];
  8503. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8504. switch (src0->type) {
  8505. case GGML_TYPE_F32:
  8506. {
  8507. ggml_compute_forward_mul_f32(params, dst);
  8508. } break;
  8509. default:
  8510. {
  8511. GGML_ASSERT(false);
  8512. } break;
  8513. }
  8514. }
  8515. // ggml_compute_forward_div
  8516. static void ggml_compute_forward_div_f32(
  8517. const struct ggml_compute_params * params,
  8518. struct ggml_tensor * dst) {
  8519. const struct ggml_tensor * src0 = dst->src[0];
  8520. const struct ggml_tensor * src1 = dst->src[1];
  8521. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8522. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8523. return;
  8524. }
  8525. const int ith = params->ith;
  8526. const int nth = params->nth;
  8527. const int64_t nr = ggml_nrows(src0);
  8528. GGML_TENSOR_BINARY_OP_LOCALS
  8529. GGML_ASSERT( nb0 == sizeof(float));
  8530. GGML_ASSERT(nb00 == sizeof(float));
  8531. if (nb10 == sizeof(float)) {
  8532. for (int64_t ir = ith; ir < nr; ir += nth) {
  8533. // src0 and dst are same shape => same indices
  8534. const int64_t i03 = ir/(ne02*ne01);
  8535. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8536. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8537. const int64_t i13 = i03 % ne13;
  8538. const int64_t i12 = i02 % ne12;
  8539. const int64_t i11 = i01 % ne11;
  8540. const int64_t nr0 = ne00 / ne10;
  8541. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8542. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8543. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8544. for (int64_t r = 0; r < nr0; ++r) {
  8545. #ifdef GGML_USE_ACCELERATE
  8546. UNUSED(ggml_vec_div_f32);
  8547. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8548. #else
  8549. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8550. #endif
  8551. }
  8552. }
  8553. } else {
  8554. // src1 is not contiguous
  8555. for (int64_t ir = ith; ir < nr; ir += nth) {
  8556. // src0 and dst are same shape => same indices
  8557. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8558. const int64_t i03 = ir/(ne02*ne01);
  8559. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8560. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8561. const int64_t i13 = i03 % ne13;
  8562. const int64_t i12 = i02 % ne12;
  8563. const int64_t i11 = i01 % ne11;
  8564. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8565. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8566. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8567. const int64_t i10 = i0 % ne10;
  8568. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8569. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8570. }
  8571. }
  8572. }
  8573. }
  8574. static void ggml_compute_forward_div(
  8575. const struct ggml_compute_params * params,
  8576. struct ggml_tensor * dst) {
  8577. const struct ggml_tensor * src0 = dst->src[0];
  8578. switch (src0->type) {
  8579. case GGML_TYPE_F32:
  8580. {
  8581. ggml_compute_forward_div_f32(params, dst);
  8582. } break;
  8583. default:
  8584. {
  8585. GGML_ASSERT(false);
  8586. } break;
  8587. }
  8588. }
  8589. // ggml_compute_forward_sqr
  8590. static void ggml_compute_forward_sqr_f32(
  8591. const struct ggml_compute_params * params,
  8592. struct ggml_tensor * dst) {
  8593. const struct ggml_tensor * src0 = dst->src[0];
  8594. assert(params->ith == 0);
  8595. assert(ggml_are_same_shape(src0, dst));
  8596. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8597. return;
  8598. }
  8599. const int n = ggml_nrows(src0);
  8600. const int nc = src0->ne[0];
  8601. assert( dst->nb[0] == sizeof(float));
  8602. assert(src0->nb[0] == sizeof(float));
  8603. for (int i = 0; i < n; i++) {
  8604. ggml_vec_sqr_f32(nc,
  8605. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8606. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8607. }
  8608. }
  8609. static void ggml_compute_forward_sqr(
  8610. const struct ggml_compute_params * params,
  8611. struct ggml_tensor * dst) {
  8612. const struct ggml_tensor * src0 = dst->src[0];
  8613. switch (src0->type) {
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_sqr_f32(params, dst);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_sqrt
  8625. static void ggml_compute_forward_sqrt_f32(
  8626. const struct ggml_compute_params * params,
  8627. struct ggml_tensor * dst) {
  8628. const struct ggml_tensor * src0 = dst->src[0];
  8629. assert(params->ith == 0);
  8630. assert(ggml_are_same_shape(src0, dst));
  8631. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8632. return;
  8633. }
  8634. const int n = ggml_nrows(src0);
  8635. const int nc = src0->ne[0];
  8636. assert( dst->nb[0] == sizeof(float));
  8637. assert(src0->nb[0] == sizeof(float));
  8638. for (int i = 0; i < n; i++) {
  8639. ggml_vec_sqrt_f32(nc,
  8640. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8641. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8642. }
  8643. }
  8644. static void ggml_compute_forward_sqrt(
  8645. const struct ggml_compute_params * params,
  8646. struct ggml_tensor * dst) {
  8647. const struct ggml_tensor * src0 = dst->src[0];
  8648. switch (src0->type) {
  8649. case GGML_TYPE_F32:
  8650. {
  8651. ggml_compute_forward_sqrt_f32(params, dst);
  8652. } break;
  8653. default:
  8654. {
  8655. GGML_ASSERT(false);
  8656. } break;
  8657. }
  8658. }
  8659. // ggml_compute_forward_log
  8660. static void ggml_compute_forward_log_f32(
  8661. const struct ggml_compute_params * params,
  8662. struct ggml_tensor * dst) {
  8663. const struct ggml_tensor * src0 = dst->src[0];
  8664. GGML_ASSERT(params->ith == 0);
  8665. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8666. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8667. return;
  8668. }
  8669. const int n = ggml_nrows(src0);
  8670. const int nc = src0->ne[0];
  8671. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8672. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8673. for (int i = 0; i < n; i++) {
  8674. ggml_vec_log_f32(nc,
  8675. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8676. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8677. }
  8678. }
  8679. static void ggml_compute_forward_log(
  8680. const struct ggml_compute_params * params,
  8681. struct ggml_tensor * dst) {
  8682. const struct ggml_tensor * src0 = dst->src[0];
  8683. switch (src0->type) {
  8684. case GGML_TYPE_F32:
  8685. {
  8686. ggml_compute_forward_log_f32(params, dst);
  8687. } break;
  8688. default:
  8689. {
  8690. GGML_ASSERT(false);
  8691. } break;
  8692. }
  8693. }
  8694. // ggml_compute_forward_sum
  8695. static void ggml_compute_forward_sum_f32(
  8696. const struct ggml_compute_params * params,
  8697. struct ggml_tensor * dst) {
  8698. const struct ggml_tensor * src0 = dst->src[0];
  8699. assert(params->ith == 0);
  8700. assert(ggml_is_scalar(dst));
  8701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8702. return;
  8703. }
  8704. assert(ggml_is_scalar(dst));
  8705. assert(src0->nb[0] == sizeof(float));
  8706. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8707. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8708. ggml_float sum = 0;
  8709. ggml_float row_sum = 0;
  8710. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8711. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8712. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8713. ggml_vec_sum_f32_ggf(ne00,
  8714. &row_sum,
  8715. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8716. sum += row_sum;
  8717. }
  8718. }
  8719. }
  8720. ((float *) dst->data)[0] = sum;
  8721. }
  8722. static void ggml_compute_forward_sum_f16(
  8723. const struct ggml_compute_params * params,
  8724. struct ggml_tensor * dst) {
  8725. const struct ggml_tensor * src0 = dst->src[0];
  8726. assert(params->ith == 0);
  8727. assert(ggml_is_scalar(dst));
  8728. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8729. return;
  8730. }
  8731. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8732. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8733. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8734. float sum = 0;
  8735. float row_sum = 0;
  8736. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8738. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8739. ggml_vec_sum_f16_ggf(ne00,
  8740. &row_sum,
  8741. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8742. sum += row_sum;
  8743. }
  8744. }
  8745. }
  8746. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8747. }
  8748. static void ggml_compute_forward_sum_bf16(
  8749. const struct ggml_compute_params * params,
  8750. struct ggml_tensor * dst) {
  8751. const struct ggml_tensor * src0 = dst->src[0];
  8752. assert(params->ith == 0);
  8753. assert(ggml_is_scalar(dst));
  8754. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8755. return;
  8756. }
  8757. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8758. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8759. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8760. float sum = 0;
  8761. float row_sum = 0;
  8762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8764. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8765. ggml_vec_sum_bf16_ggf(ne00,
  8766. &row_sum,
  8767. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8768. sum += row_sum;
  8769. }
  8770. }
  8771. }
  8772. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8773. }
  8774. static void ggml_compute_forward_sum(
  8775. const struct ggml_compute_params * params,
  8776. struct ggml_tensor * dst) {
  8777. const struct ggml_tensor * src0 = dst->src[0];
  8778. switch (src0->type) {
  8779. case GGML_TYPE_F32:
  8780. {
  8781. ggml_compute_forward_sum_f32(params, dst);
  8782. } break;
  8783. case GGML_TYPE_F16:
  8784. {
  8785. ggml_compute_forward_sum_f16(params, dst);
  8786. } break;
  8787. case GGML_TYPE_BF16:
  8788. {
  8789. ggml_compute_forward_sum_bf16(params, dst);
  8790. } break;
  8791. default:
  8792. {
  8793. GGML_ASSERT(false);
  8794. } break;
  8795. }
  8796. }
  8797. // ggml_compute_forward_sum_rows
  8798. static void ggml_compute_forward_sum_rows_f32(
  8799. const struct ggml_compute_params * params,
  8800. struct ggml_tensor * dst) {
  8801. const struct ggml_tensor * src0 = dst->src[0];
  8802. GGML_ASSERT(params->ith == 0);
  8803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8804. return;
  8805. }
  8806. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8807. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8808. GGML_TENSOR_UNARY_OP_LOCALS
  8809. GGML_ASSERT(ne0 == 1);
  8810. GGML_ASSERT(ne1 == ne01);
  8811. GGML_ASSERT(ne2 == ne02);
  8812. GGML_ASSERT(ne3 == ne03);
  8813. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8814. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8815. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8816. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8817. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8818. float row_sum = 0;
  8819. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8820. dst_row[0] = row_sum;
  8821. }
  8822. }
  8823. }
  8824. }
  8825. static void ggml_compute_forward_sum_rows(
  8826. const struct ggml_compute_params * params,
  8827. struct ggml_tensor * dst) {
  8828. const struct ggml_tensor * src0 = dst->src[0];
  8829. switch (src0->type) {
  8830. case GGML_TYPE_F32:
  8831. {
  8832. ggml_compute_forward_sum_rows_f32(params, dst);
  8833. } break;
  8834. default:
  8835. {
  8836. GGML_ASSERT(false);
  8837. } break;
  8838. }
  8839. }
  8840. // ggml_compute_forward_mean
  8841. static void ggml_compute_forward_mean_f32(
  8842. const struct ggml_compute_params * params,
  8843. struct ggml_tensor * dst) {
  8844. const struct ggml_tensor * src0 = dst->src[0];
  8845. assert(params->ith == 0);
  8846. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8847. return;
  8848. }
  8849. assert(src0->nb[0] == sizeof(float));
  8850. GGML_TENSOR_UNARY_OP_LOCALS
  8851. assert(ne0 == 1);
  8852. assert(ne1 == ne01);
  8853. assert(ne2 == ne02);
  8854. assert(ne3 == ne03);
  8855. UNUSED(ne0);
  8856. UNUSED(ne1);
  8857. UNUSED(ne2);
  8858. UNUSED(ne3);
  8859. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8860. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8861. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8862. ggml_vec_sum_f32(ne00,
  8863. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8864. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8865. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8866. }
  8867. }
  8868. }
  8869. }
  8870. static void ggml_compute_forward_mean(
  8871. const struct ggml_compute_params * params,
  8872. struct ggml_tensor * dst) {
  8873. const struct ggml_tensor * src0 = dst->src[0];
  8874. switch (src0->type) {
  8875. case GGML_TYPE_F32:
  8876. {
  8877. ggml_compute_forward_mean_f32(params, dst);
  8878. } break;
  8879. default:
  8880. {
  8881. GGML_ASSERT(false);
  8882. } break;
  8883. }
  8884. }
  8885. // ggml_compute_forward_argmax
  8886. static void ggml_compute_forward_argmax_f32(
  8887. const struct ggml_compute_params * params,
  8888. struct ggml_tensor * dst) {
  8889. const struct ggml_tensor * src0 = dst->src[0];
  8890. assert(params->ith == 0);
  8891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8892. return;
  8893. }
  8894. assert(src0->nb[0] == sizeof(float));
  8895. assert(dst->nb[0] == sizeof(float));
  8896. const int64_t ne00 = src0->ne[0];
  8897. const int64_t ne01 = src0->ne[1];
  8898. const size_t nb01 = src0->nb[1];
  8899. const size_t nb0 = dst->nb[0];
  8900. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8901. float * src = (float *) ((char *) src0->data + i1*nb01);
  8902. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8903. int v = 0;
  8904. ggml_vec_argmax_f32(ne00, &v, src);
  8905. dst_[0] = v;
  8906. }
  8907. }
  8908. static void ggml_compute_forward_argmax(
  8909. const struct ggml_compute_params * params,
  8910. struct ggml_tensor * dst) {
  8911. const struct ggml_tensor * src0 = dst->src[0];
  8912. switch (src0->type) {
  8913. case GGML_TYPE_F32:
  8914. {
  8915. ggml_compute_forward_argmax_f32(params, dst);
  8916. } break;
  8917. default:
  8918. {
  8919. GGML_ASSERT(false);
  8920. } break;
  8921. }
  8922. }
  8923. // ggml_compute_forward_repeat
  8924. static void ggml_compute_forward_repeat_f32(
  8925. const struct ggml_compute_params * params,
  8926. struct ggml_tensor * dst) {
  8927. const struct ggml_tensor * src0 = dst->src[0];
  8928. GGML_ASSERT(params->ith == 0);
  8929. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8930. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8931. return;
  8932. }
  8933. GGML_TENSOR_UNARY_OP_LOCALS
  8934. // guaranteed to be an integer due to the check in ggml_can_repeat
  8935. const int nr0 = (int)(ne0/ne00);
  8936. const int nr1 = (int)(ne1/ne01);
  8937. const int nr2 = (int)(ne2/ne02);
  8938. const int nr3 = (int)(ne3/ne03);
  8939. // TODO: support for transposed / permuted tensors
  8940. GGML_ASSERT(nb0 == sizeof(float));
  8941. GGML_ASSERT(nb00 == sizeof(float));
  8942. // TODO: maybe this is not optimal?
  8943. for (int i3 = 0; i3 < nr3; i3++) {
  8944. for (int k3 = 0; k3 < ne03; k3++) {
  8945. for (int i2 = 0; i2 < nr2; i2++) {
  8946. for (int k2 = 0; k2 < ne02; k2++) {
  8947. for (int i1 = 0; i1 < nr1; i1++) {
  8948. for (int k1 = 0; k1 < ne01; k1++) {
  8949. for (int i0 = 0; i0 < nr0; i0++) {
  8950. ggml_vec_cpy_f32(ne00,
  8951. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8952. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8953. }
  8954. }
  8955. }
  8956. }
  8957. }
  8958. }
  8959. }
  8960. }
  8961. static void ggml_compute_forward_repeat_f16(
  8962. const struct ggml_compute_params * params,
  8963. struct ggml_tensor * dst) {
  8964. const struct ggml_tensor * src0 = dst->src[0];
  8965. GGML_ASSERT(params->ith == 0);
  8966. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8968. return;
  8969. }
  8970. GGML_TENSOR_UNARY_OP_LOCALS
  8971. // guaranteed to be an integer due to the check in ggml_can_repeat
  8972. const int nr0 = (int)(ne0/ne00);
  8973. const int nr1 = (int)(ne1/ne01);
  8974. const int nr2 = (int)(ne2/ne02);
  8975. const int nr3 = (int)(ne3/ne03);
  8976. // TODO: support for transposed / permuted tensors
  8977. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8978. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8979. // TODO: maybe this is not optimal?
  8980. for (int i3 = 0; i3 < nr3; i3++) {
  8981. for (int k3 = 0; k3 < ne03; k3++) {
  8982. for (int i2 = 0; i2 < nr2; i2++) {
  8983. for (int k2 = 0; k2 < ne02; k2++) {
  8984. for (int i1 = 0; i1 < nr1; i1++) {
  8985. for (int k1 = 0; k1 < ne01; k1++) {
  8986. for (int i0 = 0; i0 < nr0; i0++) {
  8987. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8988. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8989. // ggml_vec_cpy_f16(ne00, y, x)
  8990. for (int i = 0; i < ne00; ++i) {
  8991. y[i] = x[i];
  8992. }
  8993. }
  8994. }
  8995. }
  8996. }
  8997. }
  8998. }
  8999. }
  9000. }
  9001. static void ggml_compute_forward_repeat(
  9002. const struct ggml_compute_params * params,
  9003. struct ggml_tensor * dst) {
  9004. const struct ggml_tensor * src0 = dst->src[0];
  9005. switch (src0->type) {
  9006. case GGML_TYPE_F16:
  9007. case GGML_TYPE_BF16:
  9008. case GGML_TYPE_I16:
  9009. {
  9010. ggml_compute_forward_repeat_f16(params, dst);
  9011. } break;
  9012. case GGML_TYPE_F32:
  9013. case GGML_TYPE_I32:
  9014. {
  9015. ggml_compute_forward_repeat_f32(params, dst);
  9016. } break;
  9017. default:
  9018. {
  9019. GGML_ASSERT(false);
  9020. } break;
  9021. }
  9022. }
  9023. // ggml_compute_forward_repeat_back
  9024. static void ggml_compute_forward_repeat_back_f32(
  9025. const struct ggml_compute_params * params,
  9026. struct ggml_tensor * dst) {
  9027. const struct ggml_tensor * src0 = dst->src[0];
  9028. GGML_ASSERT(params->ith == 0);
  9029. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9030. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9031. return;
  9032. }
  9033. GGML_TENSOR_UNARY_OP_LOCALS
  9034. // guaranteed to be an integer due to the check in ggml_can_repeat
  9035. const int nr0 = (int)(ne00/ne0);
  9036. const int nr1 = (int)(ne01/ne1);
  9037. const int nr2 = (int)(ne02/ne2);
  9038. const int nr3 = (int)(ne03/ne3);
  9039. // TODO: support for transposed / permuted tensors
  9040. GGML_ASSERT(nb0 == sizeof(float));
  9041. GGML_ASSERT(nb00 == sizeof(float));
  9042. if (ggml_is_contiguous(dst)) {
  9043. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9044. } else {
  9045. for (int k3 = 0; k3 < ne3; k3++) {
  9046. for (int k2 = 0; k2 < ne2; k2++) {
  9047. for (int k1 = 0; k1 < ne1; k1++) {
  9048. ggml_vec_set_f32(ne0,
  9049. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9050. 0);
  9051. }
  9052. }
  9053. }
  9054. }
  9055. // TODO: maybe this is not optimal?
  9056. for (int i3 = 0; i3 < nr3; i3++) {
  9057. for (int k3 = 0; k3 < ne3; k3++) {
  9058. for (int i2 = 0; i2 < nr2; i2++) {
  9059. for (int k2 = 0; k2 < ne2; k2++) {
  9060. for (int i1 = 0; i1 < nr1; i1++) {
  9061. for (int k1 = 0; k1 < ne1; k1++) {
  9062. for (int i0 = 0; i0 < nr0; i0++) {
  9063. ggml_vec_acc_f32(ne0,
  9064. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9065. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9066. }
  9067. }
  9068. }
  9069. }
  9070. }
  9071. }
  9072. }
  9073. }
  9074. static void ggml_compute_forward_repeat_back(
  9075. const struct ggml_compute_params * params,
  9076. struct ggml_tensor * dst) {
  9077. const struct ggml_tensor * src0 = dst->src[0];
  9078. switch (src0->type) {
  9079. case GGML_TYPE_F32:
  9080. {
  9081. ggml_compute_forward_repeat_back_f32(params, dst);
  9082. } break;
  9083. default:
  9084. {
  9085. GGML_ASSERT(false);
  9086. } break;
  9087. }
  9088. }
  9089. // ggml_compute_forward_concat
  9090. static void ggml_compute_forward_concat_f32(
  9091. const struct ggml_compute_params * params,
  9092. struct ggml_tensor * dst) {
  9093. const struct ggml_tensor * src0 = dst->src[0];
  9094. const struct ggml_tensor * src1 = dst->src[1];
  9095. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9096. return;
  9097. }
  9098. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9099. const int ith = params->ith;
  9100. const int nth = params->nth;
  9101. GGML_TENSOR_BINARY_OP_LOCALS
  9102. // TODO: support for transposed / permuted tensors
  9103. GGML_ASSERT(nb0 == sizeof(float));
  9104. GGML_ASSERT(nb00 == sizeof(float));
  9105. GGML_ASSERT(nb10 == sizeof(float));
  9106. for (int i3 = 0; i3 < ne3; i3++) {
  9107. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9108. if (i2 < ne02) { // src0
  9109. for (int i1 = 0; i1 < ne1; i1++) {
  9110. for (int i0 = 0; i0 < ne0; i0++) {
  9111. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  9112. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  9113. *y = *x;
  9114. }
  9115. }
  9116. } // src1
  9117. else {
  9118. for (int i1 = 0; i1 < ne1; i1++) {
  9119. for (int i0 = 0; i0 < ne0; i0++) {
  9120. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  9121. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  9122. *y = *x;
  9123. }
  9124. }
  9125. }
  9126. }
  9127. }
  9128. }
  9129. static void ggml_compute_forward_concat(
  9130. const struct ggml_compute_params* params,
  9131. struct ggml_tensor* dst) {
  9132. const struct ggml_tensor * src0 = dst->src[0];
  9133. switch (src0->type) {
  9134. case GGML_TYPE_F32:
  9135. case GGML_TYPE_I32:
  9136. {
  9137. ggml_compute_forward_concat_f32(params, dst);
  9138. } break;
  9139. default:
  9140. {
  9141. GGML_ASSERT(false);
  9142. } break;
  9143. }
  9144. }
  9145. // ggml_compute_forward_abs
  9146. static void ggml_compute_forward_abs_f32(
  9147. const struct ggml_compute_params * params,
  9148. struct ggml_tensor * dst) {
  9149. const struct ggml_tensor * src0 = dst->src[0];
  9150. assert(params->ith == 0);
  9151. assert(ggml_are_same_shape(src0, dst));
  9152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9153. return;
  9154. }
  9155. const int n = ggml_nrows(src0);
  9156. const int nc = src0->ne[0];
  9157. assert(dst->nb[0] == sizeof(float));
  9158. assert(src0->nb[0] == sizeof(float));
  9159. for (int i = 0; i < n; i++) {
  9160. ggml_vec_abs_f32(nc,
  9161. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9162. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9163. }
  9164. }
  9165. static void ggml_compute_forward_abs(
  9166. const struct ggml_compute_params * params,
  9167. struct ggml_tensor * dst) {
  9168. const struct ggml_tensor * src0 = dst->src[0];
  9169. switch (src0->type) {
  9170. case GGML_TYPE_F32:
  9171. {
  9172. ggml_compute_forward_abs_f32(params, dst);
  9173. } break;
  9174. default:
  9175. {
  9176. GGML_ASSERT(false);
  9177. } break;
  9178. }
  9179. }
  9180. // ggml_compute_forward_sgn
  9181. static void ggml_compute_forward_sgn_f32(
  9182. const struct ggml_compute_params * params,
  9183. struct ggml_tensor * dst) {
  9184. const struct ggml_tensor * src0 = dst->src[0];
  9185. assert(params->ith == 0);
  9186. assert(ggml_are_same_shape(src0, dst));
  9187. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9188. return;
  9189. }
  9190. const int n = ggml_nrows(src0);
  9191. const int nc = src0->ne[0];
  9192. assert(dst->nb[0] == sizeof(float));
  9193. assert(src0->nb[0] == sizeof(float));
  9194. for (int i = 0; i < n; i++) {
  9195. ggml_vec_sgn_f32(nc,
  9196. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9197. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9198. }
  9199. }
  9200. static void ggml_compute_forward_sgn(
  9201. const struct ggml_compute_params * params,
  9202. struct ggml_tensor * dst) {
  9203. const struct ggml_tensor * src0 = dst->src[0];
  9204. switch (src0->type) {
  9205. case GGML_TYPE_F32:
  9206. {
  9207. ggml_compute_forward_sgn_f32(params, dst);
  9208. } break;
  9209. default:
  9210. {
  9211. GGML_ASSERT(false);
  9212. } break;
  9213. }
  9214. }
  9215. // ggml_compute_forward_neg
  9216. static void ggml_compute_forward_neg_f32(
  9217. const struct ggml_compute_params * params,
  9218. struct ggml_tensor * dst) {
  9219. const struct ggml_tensor * src0 = dst->src[0];
  9220. assert(params->ith == 0);
  9221. assert(ggml_are_same_shape(src0, dst));
  9222. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9223. return;
  9224. }
  9225. const int n = ggml_nrows(src0);
  9226. const int nc = src0->ne[0];
  9227. assert(dst->nb[0] == sizeof(float));
  9228. assert(src0->nb[0] == sizeof(float));
  9229. for (int i = 0; i < n; i++) {
  9230. ggml_vec_neg_f32(nc,
  9231. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9232. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9233. }
  9234. }
  9235. static void ggml_compute_forward_neg(
  9236. const struct ggml_compute_params * params,
  9237. struct ggml_tensor * dst) {
  9238. const struct ggml_tensor * src0 = dst->src[0];
  9239. switch (src0->type) {
  9240. case GGML_TYPE_F32:
  9241. {
  9242. ggml_compute_forward_neg_f32(params, dst);
  9243. } break;
  9244. default:
  9245. {
  9246. GGML_ASSERT(false);
  9247. } break;
  9248. }
  9249. }
  9250. // ggml_compute_forward_step
  9251. static void ggml_compute_forward_step_f32(
  9252. const struct ggml_compute_params * params,
  9253. struct ggml_tensor * dst) {
  9254. const struct ggml_tensor * src0 = dst->src[0];
  9255. assert(params->ith == 0);
  9256. assert(ggml_are_same_shape(src0, dst));
  9257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9258. return;
  9259. }
  9260. const int n = ggml_nrows(src0);
  9261. const int nc = src0->ne[0];
  9262. assert(dst->nb[0] == sizeof(float));
  9263. assert(src0->nb[0] == sizeof(float));
  9264. for (int i = 0; i < n; i++) {
  9265. ggml_vec_step_f32(nc,
  9266. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9267. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9268. }
  9269. }
  9270. static void ggml_compute_forward_step(
  9271. const struct ggml_compute_params * params,
  9272. struct ggml_tensor * dst) {
  9273. const struct ggml_tensor * src0 = dst->src[0];
  9274. switch (src0->type) {
  9275. case GGML_TYPE_F32:
  9276. {
  9277. ggml_compute_forward_step_f32(params, dst);
  9278. } break;
  9279. default:
  9280. {
  9281. GGML_ASSERT(false);
  9282. } break;
  9283. }
  9284. }
  9285. // ggml_compute_forward_tanh
  9286. static void ggml_compute_forward_tanh_f32(
  9287. const struct ggml_compute_params * params,
  9288. struct ggml_tensor * dst) {
  9289. const struct ggml_tensor * src0 = dst->src[0];
  9290. assert(params->ith == 0);
  9291. assert(ggml_are_same_shape(src0, dst));
  9292. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9293. return;
  9294. }
  9295. const int n = ggml_nrows(src0);
  9296. const int nc = src0->ne[0];
  9297. assert(dst->nb[0] == sizeof(float));
  9298. assert(src0->nb[0] == sizeof(float));
  9299. for (int i = 0; i < n; i++) {
  9300. ggml_vec_tanh_f32(nc,
  9301. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9302. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9303. }
  9304. }
  9305. static void ggml_compute_forward_tanh(
  9306. const struct ggml_compute_params * params,
  9307. struct ggml_tensor * dst) {
  9308. const struct ggml_tensor * src0 = dst->src[0];
  9309. switch (src0->type) {
  9310. case GGML_TYPE_F32:
  9311. {
  9312. ggml_compute_forward_tanh_f32(params, dst);
  9313. } break;
  9314. default:
  9315. {
  9316. GGML_ASSERT(false);
  9317. } break;
  9318. }
  9319. }
  9320. // ggml_compute_forward_elu
  9321. static void ggml_compute_forward_elu_f32(
  9322. const struct ggml_compute_params * params,
  9323. struct ggml_tensor * dst) {
  9324. const struct ggml_tensor * src0 = dst->src[0];
  9325. assert(params->ith == 0);
  9326. assert(ggml_are_same_shape(src0, dst));
  9327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9328. return;
  9329. }
  9330. const int n = ggml_nrows(src0);
  9331. const int nc = src0->ne[0];
  9332. assert(dst->nb[0] == sizeof(float));
  9333. assert(src0->nb[0] == sizeof(float));
  9334. for (int i = 0; i < n; i++) {
  9335. ggml_vec_elu_f32(nc,
  9336. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9337. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9338. }
  9339. }
  9340. static void ggml_compute_forward_elu(
  9341. const struct ggml_compute_params * params,
  9342. struct ggml_tensor * dst) {
  9343. const struct ggml_tensor * src0 = dst->src[0];
  9344. switch (src0->type) {
  9345. case GGML_TYPE_F32:
  9346. {
  9347. ggml_compute_forward_elu_f32(params, dst);
  9348. } break;
  9349. default:
  9350. {
  9351. GGML_ASSERT(false);
  9352. } break;
  9353. }
  9354. }
  9355. // ggml_compute_forward_relu
  9356. static void ggml_compute_forward_relu_f32(
  9357. const struct ggml_compute_params * params,
  9358. struct ggml_tensor * dst) {
  9359. const struct ggml_tensor * src0 = dst->src[0];
  9360. assert(params->ith == 0);
  9361. assert(ggml_are_same_shape(src0, dst));
  9362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9363. return;
  9364. }
  9365. const int n = ggml_nrows(src0);
  9366. const int nc = src0->ne[0];
  9367. assert(dst->nb[0] == sizeof(float));
  9368. assert(src0->nb[0] == sizeof(float));
  9369. for (int i = 0; i < n; i++) {
  9370. ggml_vec_relu_f32(nc,
  9371. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9372. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9373. }
  9374. }
  9375. static void ggml_compute_forward_relu(
  9376. const struct ggml_compute_params * params,
  9377. struct ggml_tensor * dst) {
  9378. const struct ggml_tensor * src0 = dst->src[0];
  9379. switch (src0->type) {
  9380. case GGML_TYPE_F32:
  9381. {
  9382. ggml_compute_forward_relu_f32(params, dst);
  9383. } break;
  9384. default:
  9385. {
  9386. GGML_ASSERT(false);
  9387. } break;
  9388. }
  9389. }
  9390. // ggml_compute_forward_sigmoid
  9391. static void ggml_compute_forward_sigmoid_f32(
  9392. const struct ggml_compute_params * params,
  9393. struct ggml_tensor * dst) {
  9394. const struct ggml_tensor * src0 = dst->src[0];
  9395. assert(params->ith == 0);
  9396. assert(ggml_are_same_shape(src0, dst));
  9397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9398. return;
  9399. }
  9400. const int n = ggml_nrows(src0);
  9401. const int nc = src0->ne[0];
  9402. assert(dst->nb[0] == sizeof(float));
  9403. assert(src0->nb[0] == sizeof(float));
  9404. for (int i = 0; i < n; i++) {
  9405. ggml_vec_sigmoid_f32(nc,
  9406. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9407. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9408. }
  9409. }
  9410. static void ggml_compute_forward_sigmoid(
  9411. const struct ggml_compute_params * params,
  9412. struct ggml_tensor * dst) {
  9413. const struct ggml_tensor * src0 = dst->src[0];
  9414. switch (src0->type) {
  9415. case GGML_TYPE_F32:
  9416. {
  9417. ggml_compute_forward_sigmoid_f32(params, dst);
  9418. } break;
  9419. default:
  9420. {
  9421. GGML_ASSERT(false);
  9422. } break;
  9423. }
  9424. }
  9425. // ggml_compute_forward_gelu
  9426. static void ggml_compute_forward_gelu_f32(
  9427. const struct ggml_compute_params * params,
  9428. struct ggml_tensor * dst) {
  9429. const struct ggml_tensor * src0 = dst->src[0];
  9430. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9431. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9433. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9434. return;
  9435. }
  9436. const int ith = params->ith;
  9437. const int nth = params->nth;
  9438. const int nc = src0->ne[0];
  9439. const int nr = ggml_nrows(src0);
  9440. // rows per thread
  9441. const int dr = (nr + nth - 1)/nth;
  9442. // row range for this thread
  9443. const int ir0 = dr*ith;
  9444. const int ir1 = MIN(ir0 + dr, nr);
  9445. for (int i1 = ir0; i1 < ir1; i1++) {
  9446. ggml_vec_gelu_f32(nc,
  9447. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9448. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9449. #ifndef NDEBUG
  9450. for (int k = 0; k < nc; k++) {
  9451. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9452. UNUSED(x);
  9453. assert(!isnan(x));
  9454. assert(!isinf(x));
  9455. }
  9456. #endif
  9457. }
  9458. }
  9459. static void ggml_compute_forward_gelu(
  9460. const struct ggml_compute_params * params,
  9461. struct ggml_tensor * dst) {
  9462. const struct ggml_tensor * src0 = dst->src[0];
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_gelu_f32(params, dst);
  9467. } break;
  9468. default:
  9469. {
  9470. GGML_ASSERT(false);
  9471. } break;
  9472. }
  9473. }
  9474. // ggml_compute_forward_gelu_quick
  9475. static void ggml_compute_forward_gelu_quick_f32(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9480. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9481. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9482. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9483. return;
  9484. }
  9485. const int ith = params->ith;
  9486. const int nth = params->nth;
  9487. const int nc = src0->ne[0];
  9488. const int nr = ggml_nrows(src0);
  9489. // rows per thread
  9490. const int dr = (nr + nth - 1)/nth;
  9491. // row range for this thread
  9492. const int ir0 = dr*ith;
  9493. const int ir1 = MIN(ir0 + dr, nr);
  9494. for (int i1 = ir0; i1 < ir1; i1++) {
  9495. ggml_vec_gelu_quick_f32(nc,
  9496. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9497. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9498. #ifndef NDEBUG
  9499. for (int k = 0; k < nc; k++) {
  9500. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9501. UNUSED(x);
  9502. assert(!isnan(x));
  9503. assert(!isinf(x));
  9504. }
  9505. #endif
  9506. }
  9507. }
  9508. static void ggml_compute_forward_gelu_quick(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. const struct ggml_tensor * src0 = dst->src[0];
  9512. switch (src0->type) {
  9513. case GGML_TYPE_F32:
  9514. {
  9515. ggml_compute_forward_gelu_quick_f32(params, dst);
  9516. } break;
  9517. default:
  9518. {
  9519. GGML_ASSERT(false);
  9520. } break;
  9521. }
  9522. }
  9523. // ggml_compute_forward_silu
  9524. static void ggml_compute_forward_silu_f32(
  9525. const struct ggml_compute_params * params,
  9526. struct ggml_tensor * dst) {
  9527. const struct ggml_tensor * src0 = dst->src[0];
  9528. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9529. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9530. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9531. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9532. return;
  9533. }
  9534. const int ith = params->ith;
  9535. const int nth = params->nth;
  9536. const int nc = src0->ne[0];
  9537. const int nr = ggml_nrows(src0);
  9538. // rows per thread
  9539. const int dr = (nr + nth - 1)/nth;
  9540. // row range for this thread
  9541. const int ir0 = dr*ith;
  9542. const int ir1 = MIN(ir0 + dr, nr);
  9543. for (int i1 = ir0; i1 < ir1; i1++) {
  9544. ggml_vec_silu_f32(nc,
  9545. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9546. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9547. #ifndef NDEBUG
  9548. for (int k = 0; k < nc; k++) {
  9549. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9550. UNUSED(x);
  9551. assert(!isnan(x));
  9552. assert(!isinf(x));
  9553. }
  9554. #endif
  9555. }
  9556. }
  9557. static void ggml_compute_forward_silu(
  9558. const struct ggml_compute_params * params,
  9559. struct ggml_tensor * dst) {
  9560. const struct ggml_tensor * src0 = dst->src[0];
  9561. switch (src0->type) {
  9562. case GGML_TYPE_F32:
  9563. {
  9564. ggml_compute_forward_silu_f32(params, dst);
  9565. } break;
  9566. default:
  9567. {
  9568. GGML_ASSERT(false);
  9569. } break;
  9570. }
  9571. }
  9572. // ggml_compute_forward_leaky_relu
  9573. static void ggml_compute_forward_leaky_relu_f32(
  9574. const struct ggml_compute_params * params,
  9575. struct ggml_tensor * dst) {
  9576. const struct ggml_tensor * src0 = dst->src[0];
  9577. assert(params->ith == 0);
  9578. assert(ggml_are_same_shape(src0, dst));
  9579. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9580. return;
  9581. }
  9582. const int n = ggml_nrows(src0);
  9583. const int nc = src0->ne[0];
  9584. float negative_slope;
  9585. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9586. assert(dst->nb[0] == sizeof(float));
  9587. assert(src0->nb[0] == sizeof(float));
  9588. for (int i = 0; i < n; i++) {
  9589. ggml_vec_leaky_relu_f32(nc,
  9590. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9591. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9592. }
  9593. }
  9594. static void ggml_compute_forward_leaky_relu(
  9595. const struct ggml_compute_params * params,
  9596. struct ggml_tensor * dst) {
  9597. const struct ggml_tensor * src0 = dst->src[0];
  9598. switch (src0->type) {
  9599. case GGML_TYPE_F32:
  9600. {
  9601. ggml_compute_forward_leaky_relu_f32(params, dst);
  9602. } break;
  9603. default:
  9604. {
  9605. GGML_ASSERT(false);
  9606. } break;
  9607. }
  9608. }
  9609. // ggml_compute_forward_silu_back
  9610. static void ggml_compute_forward_silu_back_f32(
  9611. const struct ggml_compute_params * params,
  9612. struct ggml_tensor * dst) {
  9613. const struct ggml_tensor * src0 = dst->src[0];
  9614. const struct ggml_tensor * grad = dst->src[1];
  9615. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9616. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9617. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9618. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9619. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9620. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9621. return;
  9622. }
  9623. const int ith = params->ith;
  9624. const int nth = params->nth;
  9625. const int nc = src0->ne[0];
  9626. const int nr = ggml_nrows(src0);
  9627. // rows per thread
  9628. const int dr = (nr + nth - 1)/nth;
  9629. // row range for this thread
  9630. const int ir0 = dr*ith;
  9631. const int ir1 = MIN(ir0 + dr, nr);
  9632. for (int i1 = ir0; i1 < ir1; i1++) {
  9633. ggml_vec_silu_backward_f32(nc,
  9634. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9635. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9636. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9637. #ifndef NDEBUG
  9638. for (int k = 0; k < nc; k++) {
  9639. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9640. UNUSED(x);
  9641. assert(!isnan(x));
  9642. assert(!isinf(x));
  9643. }
  9644. #endif
  9645. }
  9646. }
  9647. static void ggml_compute_forward_silu_back(
  9648. const struct ggml_compute_params * params,
  9649. struct ggml_tensor * dst) {
  9650. const struct ggml_tensor * src0 = dst->src[0];
  9651. switch (src0->type) {
  9652. case GGML_TYPE_F32:
  9653. {
  9654. ggml_compute_forward_silu_back_f32(params, dst);
  9655. } break;
  9656. default:
  9657. {
  9658. GGML_ASSERT(false);
  9659. } break;
  9660. }
  9661. }
  9662. static void ggml_compute_forward_hardswish_f32(
  9663. const struct ggml_compute_params * params,
  9664. struct ggml_tensor * dst) {
  9665. const struct ggml_tensor * src0 = dst->src[0];
  9666. assert(params->ith == 0);
  9667. assert(ggml_are_same_shape(src0, dst));
  9668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9669. return;
  9670. }
  9671. const int n = ggml_nrows(src0);
  9672. const int nc = src0->ne[0];
  9673. assert(dst->nb[0] == sizeof(float));
  9674. assert(src0->nb[0] == sizeof(float));
  9675. for (int i = 0; i < n; i++) {
  9676. ggml_vec_hardswish_f32(nc,
  9677. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9678. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9679. }
  9680. }
  9681. static void ggml_compute_forward_hardswish(
  9682. const struct ggml_compute_params * params,
  9683. struct ggml_tensor * dst) {
  9684. const struct ggml_tensor * src0 = dst->src[0];
  9685. switch (src0->type) {
  9686. case GGML_TYPE_F32:
  9687. {
  9688. ggml_compute_forward_hardswish_f32(params, dst);
  9689. } break;
  9690. default:
  9691. {
  9692. GGML_ASSERT(false);
  9693. } break;
  9694. }
  9695. }
  9696. static void ggml_compute_forward_hardsigmoid_f32(
  9697. const struct ggml_compute_params * params,
  9698. struct ggml_tensor * dst) {
  9699. const struct ggml_tensor * src0 = dst->src[0];
  9700. assert(params->ith == 0);
  9701. assert(ggml_are_same_shape(src0, dst));
  9702. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9703. return;
  9704. }
  9705. const int n = ggml_nrows(src0);
  9706. const int nc = src0->ne[0];
  9707. assert(dst->nb[0] == sizeof(float));
  9708. assert(src0->nb[0] == sizeof(float));
  9709. for (int i = 0; i < n; i++) {
  9710. ggml_vec_hardsigmoid_f32(nc,
  9711. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9712. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9713. }
  9714. }
  9715. static void ggml_compute_forward_hardsigmoid(
  9716. const struct ggml_compute_params * params,
  9717. struct ggml_tensor * dst) {
  9718. const struct ggml_tensor * src0 = dst->src[0];
  9719. switch (src0->type) {
  9720. case GGML_TYPE_F32:
  9721. {
  9722. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9723. } break;
  9724. default:
  9725. {
  9726. GGML_ASSERT(false);
  9727. } break;
  9728. }
  9729. }
  9730. // ggml_compute_forward_norm
  9731. static void ggml_compute_forward_norm_f32(
  9732. const struct ggml_compute_params * params,
  9733. struct ggml_tensor * dst) {
  9734. const struct ggml_tensor * src0 = dst->src[0];
  9735. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9736. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9737. return;
  9738. }
  9739. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9740. const int ith = params->ith;
  9741. const int nth = params->nth;
  9742. GGML_TENSOR_UNARY_OP_LOCALS
  9743. float eps;
  9744. memcpy(&eps, dst->op_params, sizeof(float));
  9745. GGML_ASSERT(eps > 0.0f);
  9746. // TODO: optimize
  9747. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9748. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9749. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9750. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9751. ggml_float sum = 0.0;
  9752. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9753. sum += (ggml_float)x[i00];
  9754. }
  9755. float mean = sum/ne00;
  9756. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9757. ggml_float sum2 = 0.0;
  9758. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9759. float v = x[i00] - mean;
  9760. y[i00] = v;
  9761. sum2 += (ggml_float)(v*v);
  9762. }
  9763. float variance = sum2/ne00;
  9764. const float scale = 1.0f/sqrtf(variance + eps);
  9765. ggml_vec_scale_f32(ne00, y, scale);
  9766. }
  9767. }
  9768. }
  9769. }
  9770. static void ggml_compute_forward_norm(
  9771. const struct ggml_compute_params * params,
  9772. struct ggml_tensor * dst) {
  9773. const struct ggml_tensor * src0 = dst->src[0];
  9774. switch (src0->type) {
  9775. case GGML_TYPE_F32:
  9776. {
  9777. ggml_compute_forward_norm_f32(params, dst);
  9778. } break;
  9779. default:
  9780. {
  9781. GGML_ASSERT(false);
  9782. } break;
  9783. }
  9784. }
  9785. // ggml_compute_forward_group_rms_norm
  9786. static void ggml_compute_forward_rms_norm_f32(
  9787. const struct ggml_compute_params * params,
  9788. struct ggml_tensor * dst) {
  9789. const struct ggml_tensor * src0 = dst->src[0];
  9790. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9791. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9792. return;
  9793. }
  9794. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9795. const int ith = params->ith;
  9796. const int nth = params->nth;
  9797. GGML_TENSOR_UNARY_OP_LOCALS
  9798. float eps;
  9799. memcpy(&eps, dst->op_params, sizeof(float));
  9800. GGML_ASSERT(eps > 0.0f);
  9801. // TODO: optimize
  9802. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9803. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9804. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9805. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9806. ggml_float sum = 0.0;
  9807. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9808. sum += (ggml_float)(x[i00] * x[i00]);
  9809. }
  9810. const float mean = sum/ne00;
  9811. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9812. memcpy(y, x, ne00 * sizeof(float));
  9813. // for (int i00 = 0; i00 < ne00; i00++) {
  9814. // y[i00] = x[i00];
  9815. // }
  9816. const float scale = 1.0f/sqrtf(mean + eps);
  9817. ggml_vec_scale_f32(ne00, y, scale);
  9818. }
  9819. }
  9820. }
  9821. }
  9822. static void ggml_compute_forward_rms_norm(
  9823. const struct ggml_compute_params * params,
  9824. struct ggml_tensor * dst) {
  9825. const struct ggml_tensor * src0 = dst->src[0];
  9826. switch (src0->type) {
  9827. case GGML_TYPE_F32:
  9828. {
  9829. ggml_compute_forward_rms_norm_f32(params, dst);
  9830. } break;
  9831. default:
  9832. {
  9833. GGML_ASSERT(false);
  9834. } break;
  9835. }
  9836. }
  9837. static void ggml_compute_forward_rms_norm_back_f32(
  9838. const struct ggml_compute_params * params,
  9839. struct ggml_tensor * dst) {
  9840. const struct ggml_tensor * src0 = dst->src[0];
  9841. const struct ggml_tensor * src1 = dst->src[1];
  9842. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9844. return;
  9845. }
  9846. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9847. const int ith = params->ith;
  9848. const int nth = params->nth;
  9849. GGML_TENSOR_BINARY_OP_LOCALS
  9850. float eps;
  9851. memcpy(&eps, dst->op_params, sizeof(float));
  9852. // TODO: optimize
  9853. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9854. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9855. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9856. // src1 is same shape as src0 => same indices
  9857. const int64_t i11 = i01;
  9858. const int64_t i12 = i02;
  9859. const int64_t i13 = i03;
  9860. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9861. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9862. ggml_float sum_xx = 0.0;
  9863. ggml_float sum_xdz = 0.0;
  9864. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9865. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9866. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9867. }
  9868. //const float mean = (float)(sum_xx)/ne00;
  9869. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9870. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9871. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9872. // we could cache rms from forward pass to improve performance.
  9873. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9874. //const float rms = sqrtf(mean_eps);
  9875. const float rrms = 1.0f / sqrtf(mean_eps);
  9876. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9877. {
  9878. // z = rms_norm(x)
  9879. //
  9880. // rms_norm(src0) =
  9881. // scale(
  9882. // src0,
  9883. // div(
  9884. // 1,
  9885. // sqrt(
  9886. // add(
  9887. // scale(
  9888. // sum(
  9889. // sqr(
  9890. // src0)),
  9891. // (1.0/N)),
  9892. // eps))));
  9893. // postorder:
  9894. // ## op args grad
  9895. // 00 param src0 grad[#00]
  9896. // 01 const 1
  9897. // 02 sqr (#00) grad[#02]
  9898. // 03 sum (#02) grad[#03]
  9899. // 04 const 1/N
  9900. // 05 scale (#03, #04) grad[#05]
  9901. // 06 const eps
  9902. // 07 add (#05, #06) grad[#07]
  9903. // 08 sqrt (#07) grad[#08]
  9904. // 09 div (#01,#08) grad[#09]
  9905. // 10 scale (#00,#09) grad[#10]
  9906. //
  9907. // backward pass, given grad[#10]
  9908. // #10: scale
  9909. // grad[#00] += scale(grad[#10],#09)
  9910. // grad[#09] += sum(mul(grad[#10],#00))
  9911. // #09: div
  9912. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9913. // #08: sqrt
  9914. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9915. // #07: add
  9916. // grad[#05] += grad[#07]
  9917. // #05: scale
  9918. // grad[#03] += scale(grad[#05],#04)
  9919. // #03: sum
  9920. // grad[#02] += repeat(grad[#03], #02)
  9921. // #02:
  9922. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9923. //
  9924. // substitute and simplify:
  9925. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9926. // grad[#02] = repeat(grad[#03], #02)
  9927. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9928. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9929. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9930. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9931. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9932. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9933. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9934. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9935. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9936. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9937. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9938. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9939. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9940. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9941. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9942. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9943. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9944. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9945. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9946. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9947. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9948. // a = b*c + d*e
  9949. // a = b*c*f/f + d*e*f/f
  9950. // a = (b*c*f + d*e*f)*(1/f)
  9951. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9952. // a = (b + d*e/c)*c
  9953. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9954. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9955. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9956. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9957. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9958. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9959. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9960. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9961. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9962. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9963. }
  9964. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9965. // post-order:
  9966. // dx := x
  9967. // dx := scale(dx,-mean_xdz/mean_eps)
  9968. // dx := add(dx, dz)
  9969. // dx := scale(dx, rrms)
  9970. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9971. ggml_vec_cpy_f32 (ne00, dx, x);
  9972. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9973. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9974. ggml_vec_acc_f32 (ne00, dx, dz);
  9975. ggml_vec_scale_f32(ne00, dx, rrms);
  9976. }
  9977. }
  9978. }
  9979. }
  9980. static void ggml_compute_forward_rms_norm_back(
  9981. const struct ggml_compute_params * params,
  9982. struct ggml_tensor * dst) {
  9983. const struct ggml_tensor * src0 = dst->src[0];
  9984. switch (src0->type) {
  9985. case GGML_TYPE_F32:
  9986. {
  9987. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9988. } break;
  9989. default:
  9990. {
  9991. GGML_ASSERT(false);
  9992. } break;
  9993. }
  9994. }
  9995. // ggml_compute_forward_group_norm
  9996. static void ggml_compute_forward_group_norm_f32(
  9997. const struct ggml_compute_params * params,
  9998. struct ggml_tensor * dst) {
  9999. const struct ggml_tensor * src0 = dst->src[0];
  10000. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10001. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10002. return;
  10003. }
  10004. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10005. const int ith = params->ith;
  10006. const int nth = params->nth;
  10007. GGML_TENSOR_UNARY_OP_LOCALS
  10008. const float eps = 1e-6f; // TODO: make this a parameter
  10009. // TODO: optimize
  10010. int n_channels = src0->ne[2];
  10011. int n_groups = dst->op_params[0];
  10012. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10013. for (int i = ith; i < n_groups; i += nth) {
  10014. int start = i * n_channels_per_group;
  10015. int end = start + n_channels_per_group;
  10016. if (end > n_channels) {
  10017. end = n_channels;
  10018. }
  10019. int step = end - start;
  10020. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10021. ggml_float sum = 0.0;
  10022. for (int64_t i02 = start; i02 < end; i02++) {
  10023. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10024. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10025. ggml_float sumr = 0.0;
  10026. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10027. sumr += (ggml_float)x[i00];
  10028. }
  10029. sum += sumr;
  10030. }
  10031. }
  10032. const float mean = sum / (ne00 * ne01 * step);
  10033. ggml_float sum2 = 0.0;
  10034. for (int64_t i02 = start; i02 < end; i02++) {
  10035. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10036. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10037. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10038. ggml_float sumr = 0.0;
  10039. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10040. float v = x[i00] - mean;
  10041. y[i00] = v;
  10042. sumr += (ggml_float)(v * v);
  10043. }
  10044. sum2 += sumr;
  10045. }
  10046. }
  10047. const float variance = sum2 / (ne00 * ne01 * step);
  10048. const float scale = 1.0f / sqrtf(variance + eps);
  10049. for (int64_t i02 = start; i02 < end; i02++) {
  10050. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10051. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10052. ggml_vec_scale_f32(ne00, y, scale);
  10053. }
  10054. }
  10055. }
  10056. }
  10057. }
  10058. static void ggml_compute_forward_group_norm(
  10059. const struct ggml_compute_params * params,
  10060. struct ggml_tensor * dst) {
  10061. const struct ggml_tensor * src0 = dst->src[0];
  10062. switch (src0->type) {
  10063. case GGML_TYPE_F32:
  10064. {
  10065. ggml_compute_forward_group_norm_f32(params, dst);
  10066. } break;
  10067. default:
  10068. {
  10069. GGML_ASSERT(false);
  10070. } break;
  10071. }
  10072. }
  10073. // ggml_compute_forward_mul_mat
  10074. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10075. // helper function to determine if it is better to use BLAS or not
  10076. // for large matrices, BLAS is faster
  10077. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10078. const struct ggml_tensor * src0 = dst->src[0];
  10079. const struct ggml_tensor * src1 = dst->src[1];
  10080. //const int64_t ne00 = src0->ne[0];
  10081. //const int64_t ne01 = src0->ne[1];
  10082. const int64_t ne10 = src1->ne[0];
  10083. const int64_t ne0 = dst->ne[0];
  10084. const int64_t ne1 = dst->ne[1];
  10085. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10086. // all the experts for each batch element and the processing would become incredibly slow
  10087. // TODO: find the optimal values for these
  10088. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10089. ggml_is_contiguous(src0) &&
  10090. ggml_is_contiguous(src1) &&
  10091. //src0->type == GGML_TYPE_F32 &&
  10092. src1->type == GGML_TYPE_F32 &&
  10093. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10094. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10095. return true;
  10096. }
  10097. return false;
  10098. }
  10099. #endif
  10100. static void ggml_compute_forward_mul_mat_one_chunk(
  10101. const struct ggml_compute_params * params,
  10102. struct ggml_tensor * dst,
  10103. const int64_t num_rows_per_vec_dot,
  10104. const int64_t ir0_start,
  10105. const int64_t ir0_end,
  10106. const int64_t ir1_start,
  10107. const int64_t ir1_end) {
  10108. const struct ggml_tensor * src0 = dst->src[0];
  10109. const struct ggml_tensor * src1 = dst->src[1];
  10110. GGML_TENSOR_BINARY_OP_LOCALS
  10111. const enum ggml_type type = src0->type;
  10112. const bool src1_cont = ggml_is_contiguous(src1);
  10113. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10114. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10115. // broadcast factors
  10116. const int64_t r2 = ne12 / ne02;
  10117. const int64_t r3 = ne13 / ne03;
  10118. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10119. // threads with no work simply yield (not sure if it helps)
  10120. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10121. return;
  10122. }
  10123. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10124. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10125. assert(ne12 % ne02 == 0);
  10126. assert(ne13 % ne03 == 0);
  10127. // block-tiling attempt
  10128. const int64_t blck_0 = 16;
  10129. const int64_t blck_1 = 16;
  10130. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10131. // attempt to reduce false-sharing (does not seem to make a difference)
  10132. // 16 * 2, accounting for mmla kernels
  10133. float tmp[32];
  10134. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10135. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10136. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10137. const int64_t i13 = (ir1 / (ne12 * ne1));
  10138. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10139. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10140. // broadcast src0 into src1
  10141. const int64_t i03 = i13 / r3;
  10142. const int64_t i02 = i12 / r2;
  10143. const int64_t i1 = i11;
  10144. const int64_t i2 = i12;
  10145. const int64_t i3 = i13;
  10146. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10147. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10148. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10149. // the original src1 data pointer, so we should index using the indices directly
  10150. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10151. const char * src1_col = (const char*)wdata +
  10152. (src1_cont || src1->type != vec_dot_type
  10153. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10154. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10155. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10156. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10157. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10158. //}
  10159. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10160. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10161. }
  10162. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10163. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10164. }
  10165. }
  10166. }
  10167. }
  10168. }
  10169. static void ggml_compute_forward_mul_mat(
  10170. const struct ggml_compute_params * params,
  10171. struct ggml_tensor * dst,
  10172. struct ggml_compute_state * state) {
  10173. const struct ggml_tensor * src0 = dst->src[0];
  10174. const struct ggml_tensor * src1 = dst->src[1];
  10175. int64_t t0 = ggml_perf_time_us();
  10176. UNUSED(t0);
  10177. GGML_TENSOR_BINARY_OP_LOCALS
  10178. const int ith = params->ith;
  10179. const int nth = params->nth;
  10180. const enum ggml_type type = src0->type;
  10181. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10182. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10183. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10184. GGML_ASSERT(ne0 == ne01);
  10185. GGML_ASSERT(ne1 == ne11);
  10186. GGML_ASSERT(ne2 == ne12);
  10187. GGML_ASSERT(ne3 == ne13);
  10188. // we don't support permuted src0 or src1
  10189. GGML_ASSERT(nb00 == ggml_type_size(type));
  10190. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10191. // dst cannot be transposed or permuted
  10192. GGML_ASSERT(nb0 == sizeof(float));
  10193. GGML_ASSERT(nb0 <= nb1);
  10194. GGML_ASSERT(nb1 <= nb2);
  10195. GGML_ASSERT(nb2 <= nb3);
  10196. // broadcast factors
  10197. const int64_t r2 = ne12 / ne02;
  10198. const int64_t r3 = ne13 / ne03;
  10199. UNUSED(r2);
  10200. UNUSED(r3);
  10201. // nb01 >= nb00 - src0 is not transposed
  10202. // compute by src0 rows
  10203. #if defined(GGML_USE_CLBLAST)
  10204. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10205. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10206. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10207. }
  10208. return;
  10209. }
  10210. #endif
  10211. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10212. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10213. const int64_t ne_plane = ne01*ne00;
  10214. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10215. UNUSED(desired_wsize);
  10216. if (params->type == GGML_TASK_TYPE_INIT) {
  10217. if (type != GGML_TYPE_F32) {
  10218. assert(params->wsize >= desired_wsize);
  10219. // parallelize by src0 rows
  10220. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10221. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10222. // broadcast src0 into src1 across 2nd,3rd dimension
  10223. const int64_t i03 = i13/r3;
  10224. const int64_t i02 = i12/r2;
  10225. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10226. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10227. ggml_to_float_t const to_float = type_traits[type].to_float;
  10228. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10229. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10230. }
  10231. }
  10232. }
  10233. }
  10234. return;
  10235. }
  10236. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10237. return;
  10238. }
  10239. // perform sgemm, parallelization controlled by blas lib
  10240. if (ith != 0) {
  10241. return;
  10242. }
  10243. //const int64_t tgemm0 = ggml_perf_time_us();
  10244. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10245. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10246. const int64_t i03 = i13/r3;
  10247. const int64_t i02 = i12/r2;
  10248. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10249. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10250. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10251. if (type != GGML_TYPE_F32) {
  10252. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10253. }
  10254. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10255. ne1, ne01, ne10,
  10256. 1.0f, y, ne10,
  10257. x, ne00,
  10258. 0.0f, d, ne01);
  10259. }
  10260. }
  10261. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10262. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10263. return;
  10264. }
  10265. #endif
  10266. #if GGML_USE_LLAMAFILE
  10267. const bool src1_cont = ggml_is_contiguous(src1);
  10268. if (src1_cont) {
  10269. for (int64_t i13 = 0; i13 < ne13; i13++)
  10270. for (int64_t i12 = 0; i12 < ne12; i12++)
  10271. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10272. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10273. nb01/ggml_type_size(src0->type),
  10274. (const char *)src1->data + i12*nb12 + i13*nb13,
  10275. nb11/ggml_type_size(src1->type),
  10276. (char *)dst->data + i12*nb2 + i13*nb3,
  10277. nb1/ggml_type_size(dst->type),
  10278. ith, nth,
  10279. params->type,
  10280. src0->type,
  10281. src1->type,
  10282. dst->type))
  10283. goto UseGgmlGemm1;
  10284. return;
  10285. }
  10286. UseGgmlGemm1:;
  10287. #endif
  10288. if (params->type == GGML_TASK_TYPE_INIT) {
  10289. if (ith != 0) {
  10290. return;
  10291. }
  10292. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10293. atomic_store(&state->shared->current_chunk, nth);
  10294. if (src1->type != vec_dot_type) {
  10295. char * wdata = params->wdata;
  10296. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10297. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10298. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10299. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10300. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10301. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10302. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10303. wdata += row_size;
  10304. }
  10305. }
  10306. }
  10307. }
  10308. return;
  10309. }
  10310. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10311. return;
  10312. }
  10313. #if GGML_USE_LLAMAFILE
  10314. if (src1->type != vec_dot_type) {
  10315. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10316. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10317. for (int64_t i13 = 0; i13 < ne13; i13++)
  10318. for (int64_t i12 = 0; i12 < ne12; i12++)
  10319. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10320. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10321. nb01/ggml_type_size(src0->type),
  10322. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10323. row_size/ggml_type_size(vec_dot_type),
  10324. (char *)dst->data + i12*nb2 + i13*nb3,
  10325. nb1/ggml_type_size(dst->type),
  10326. ith, nth,
  10327. params->type,
  10328. src0->type,
  10329. vec_dot_type,
  10330. dst->type))
  10331. goto UseGgmlGemm2;
  10332. return;
  10333. }
  10334. UseGgmlGemm2:;
  10335. #endif
  10336. #ifdef GGML_PERF
  10337. int chunks_executed = 0;
  10338. UNUSED(chunks_executed);
  10339. #endif
  10340. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10341. const int64_t nr0 = ne0;
  10342. // This is the size of the rest of the dimensions of the result
  10343. const int64_t nr1 = ne1 * ne2 * ne3;
  10344. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10345. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10346. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10347. // this check can be removed once they are extended to support odd numbered rows/cols too
  10348. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10349. num_rows_per_vec_dot = 1;
  10350. }
  10351. // Now select a reasonable chunk size.
  10352. int chunk_size = 16;
  10353. // We need to step up the size if it's small
  10354. if (nr0 == 1 || nr1 == 1) {
  10355. chunk_size = 64;
  10356. }
  10357. // distribute the work across the inner or outer loop based on which one is larger
  10358. // The number of chunks in the 0/1 dim.
  10359. // CEIL(nr0/chunk_size)
  10360. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10361. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10362. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10363. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10364. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10365. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10366. // distribute the thread work across the inner or outer loop based on which one is larger
  10367. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10368. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10369. }
  10370. // The number of elements in each chunk
  10371. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10372. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10373. //if (ith == 0)
  10374. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10375. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10376. int current_chunk = ith;
  10377. while (current_chunk < nchunk0 * nchunk1) {
  10378. const int64_t ith0 = current_chunk % nchunk0;
  10379. const int64_t ith1 = current_chunk / nchunk0;
  10380. const int64_t ir0_start = dr0 * ith0;
  10381. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10382. const int64_t ir1_start = dr1 * ith1;
  10383. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10384. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10385. #ifdef GGML_PERF
  10386. chunks_executed++;
  10387. #endif
  10388. if (nth >= nchunk0 * nchunk1) {
  10389. break;
  10390. }
  10391. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10392. }
  10393. #ifdef GGML_PERF
  10394. // These numbers are useful when trying to measure how well the threading scheduling works.
  10395. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10396. //float time = (ggml_perf_time_us() - t0);
  10397. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10398. #endif
  10399. }
  10400. // ggml_compute_forward_mul_mat_id
  10401. static void ggml_compute_forward_mul_mat_id(
  10402. const struct ggml_compute_params * params,
  10403. struct ggml_tensor * dst) {
  10404. const struct ggml_tensor * src0 = dst->src[0];
  10405. const struct ggml_tensor * src1 = dst->src[1];
  10406. const struct ggml_tensor * ids = dst->src[2];
  10407. GGML_TENSOR_BINARY_OP_LOCALS
  10408. const int ith = params->ith;
  10409. const int nth = params->nth;
  10410. const enum ggml_type type = src0->type;
  10411. const bool src1_cont = ggml_is_contiguous(src1);
  10412. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10413. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10414. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10415. // we don't support permuted src0 or src1
  10416. GGML_ASSERT(nb00 == ggml_type_size(type));
  10417. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10418. // dst cannot be transposed or permuted
  10419. GGML_ASSERT(nb0 == sizeof(float));
  10420. GGML_ASSERT(nb0 <= nb1);
  10421. GGML_ASSERT(nb1 <= nb2);
  10422. GGML_ASSERT(nb2 <= nb3);
  10423. // row groups
  10424. const int n_ids = ids->ne[0]; // n_expert_used
  10425. const int n_as = ne02; // n_expert
  10426. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10427. (char *) params->wdata :
  10428. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10429. struct mmid_row_mapping {
  10430. int32_t i1;
  10431. int32_t i2;
  10432. };
  10433. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10434. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10435. if (params->type == GGML_TASK_TYPE_INIT) {
  10436. if (ith != 0) {
  10437. return;
  10438. }
  10439. char * wdata = params->wdata;
  10440. if (src1->type != vec_dot_type) {
  10441. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10442. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10443. assert(src1->type == GGML_TYPE_F32);
  10444. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10445. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10446. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10447. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10448. wdata += row_size;
  10449. }
  10450. }
  10451. }
  10452. }
  10453. // initialize matrix_row_counts
  10454. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10455. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10456. // group rows by src0 matrix
  10457. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10458. for (int id = 0; id < n_ids; ++id) {
  10459. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10460. assert(i02 >= 0 && i02 < n_as);
  10461. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10462. matrix_row_counts[i02] += 1;
  10463. }
  10464. }
  10465. return;
  10466. }
  10467. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10468. return;
  10469. }
  10470. // compute each matrix multiplication in sequence
  10471. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10472. const int64_t cne1 = matrix_row_counts[cur_a];
  10473. if (cne1 == 0) {
  10474. continue;
  10475. }
  10476. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10477. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10478. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10479. const int64_t nr0 = ne01; // src0 rows
  10480. const int64_t nr1 = cne1; // src1 rows
  10481. // distribute the thread work across the inner or outer loop based on which one is larger
  10482. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10483. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10484. const int64_t ith0 = ith % nth0;
  10485. const int64_t ith1 = ith / nth0;
  10486. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10487. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10488. const int64_t ir010 = dr0*ith0;
  10489. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10490. const int64_t ir110 = dr1*ith1;
  10491. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10492. // threads with no work simply yield (not sure if it helps)
  10493. //if (ir010 >= ir011 || ir110 >= ir111) {
  10494. // sched_yield();
  10495. // continue;
  10496. //}
  10497. // block-tiling attempt
  10498. const int64_t blck_0 = 16;
  10499. const int64_t blck_1 = 16;
  10500. // attempt to reduce false-sharing (does not seem to make a difference)
  10501. float tmp[16];
  10502. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10503. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10504. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10505. const int64_t _i12 = ir1; // logical row index for this expert
  10506. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10507. const int id = row_mapping.i1; // selected expert index
  10508. const int64_t i11 = id % ne11;
  10509. const int64_t i12 = row_mapping.i2; // row index in src1
  10510. const int64_t i1 = id; // selected expert index
  10511. const int64_t i2 = i12; // row
  10512. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10513. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10514. // the original src1 data pointer, so we should index using the indices directly
  10515. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10516. const char * src1_col = (const char *) wdata +
  10517. (src1_cont || src1->type != vec_dot_type
  10518. ? (i11 + i12*ne11)*row_size
  10519. : (i11*nb11 + i12*nb12));
  10520. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10521. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10522. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10523. //}
  10524. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10525. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10526. }
  10527. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10528. }
  10529. }
  10530. }
  10531. }
  10532. #undef MMID_MATRIX_ROW
  10533. }
  10534. // ggml_compute_forward_out_prod
  10535. static void ggml_compute_forward_out_prod_f32(
  10536. const struct ggml_compute_params * params,
  10537. struct ggml_tensor * dst) {
  10538. const struct ggml_tensor * src0 = dst->src[0];
  10539. const struct ggml_tensor * src1 = dst->src[1];
  10540. // int64_t t0 = ggml_perf_time_us();
  10541. // UNUSED(t0);
  10542. GGML_TENSOR_BINARY_OP_LOCALS
  10543. const int ith = params->ith;
  10544. const int nth = params->nth;
  10545. GGML_ASSERT(ne0 == ne00);
  10546. GGML_ASSERT(ne1 == ne10);
  10547. GGML_ASSERT(ne2 == ne02);
  10548. GGML_ASSERT(ne02 == ne12);
  10549. GGML_ASSERT(ne3 == ne13);
  10550. GGML_ASSERT(ne03 == ne13);
  10551. // we don't support permuted src0 or src1
  10552. GGML_ASSERT(nb00 == sizeof(float));
  10553. // dst cannot be transposed or permuted
  10554. GGML_ASSERT(nb0 == sizeof(float));
  10555. // GGML_ASSERT(nb0 <= nb1);
  10556. // GGML_ASSERT(nb1 <= nb2);
  10557. // GGML_ASSERT(nb2 <= nb3);
  10558. // nb01 >= nb00 - src0 is not transposed
  10559. // compute by src0 rows
  10560. // TODO: #if defined(GGML_USE_CLBLAST)
  10561. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10562. bool use_blas = ggml_is_matrix(src0) &&
  10563. ggml_is_matrix(src1) &&
  10564. ggml_is_contiguous(src0) &&
  10565. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10566. #endif
  10567. if (params->type == GGML_TASK_TYPE_INIT) {
  10568. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10569. if (use_blas) {
  10570. return;
  10571. }
  10572. #endif
  10573. if (ith != 0) {
  10574. return;
  10575. }
  10576. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10577. return;
  10578. }
  10579. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10580. return;
  10581. }
  10582. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10583. if (use_blas) {
  10584. if (params->ith != 0) { // All threads other than the first do no work.
  10585. return;
  10586. }
  10587. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10588. // src0: (k,n)
  10589. // src1: (k,m)
  10590. // dst: (m,n)
  10591. //
  10592. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10593. // Also expressed as (major,minor)
  10594. // a: (m,k): so src1 transposed
  10595. // b: (k,n): so src0
  10596. // c: (m,n)
  10597. //
  10598. // However, if ggml_is_transposed(src1) is true, then
  10599. // src1->data already contains a transposed version, so sgemm mustn't
  10600. // transpose it further.
  10601. int n = src0->ne[0];
  10602. int k = src0->ne[1];
  10603. int m = src1->ne[0];
  10604. int transposeA, lda;
  10605. if (!ggml_is_transposed(src1)) {
  10606. transposeA = CblasTrans;
  10607. lda = m;
  10608. } else {
  10609. transposeA = CblasNoTrans;
  10610. lda = k;
  10611. }
  10612. float * a = (float *) ((char *) src1->data);
  10613. float * b = (float *) ((char *) src0->data);
  10614. float * c = (float *) ((char *) dst->data);
  10615. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10616. return;
  10617. }
  10618. #endif
  10619. // dst[:,:,:,:] = 0
  10620. // for i2,i3:
  10621. // for i1:
  10622. // for i01:
  10623. // for i0:
  10624. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10625. // parallelize by last three dimensions
  10626. // total rows in dst
  10627. const int64_t nr = ne1*ne2*ne3;
  10628. // rows per thread
  10629. const int64_t dr = (nr + nth - 1)/nth;
  10630. // row range for this thread
  10631. const int64_t ir0 = dr*ith;
  10632. const int64_t ir1 = MIN(ir0 + dr, nr);
  10633. // block-tiling attempt
  10634. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10635. const int64_t blck_1 = 16;
  10636. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10637. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10638. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10639. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10640. for (int64_t ir = bir; ir < bir1; ++ir) {
  10641. // dst indices
  10642. const int64_t i3 = ir/(ne2*ne1);
  10643. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10644. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10645. const int64_t i02 = i2;
  10646. const int64_t i03 = i3;
  10647. //const int64_t i10 = i1;
  10648. const int64_t i12 = i2;
  10649. const int64_t i13 = i3;
  10650. #if GGML_VEC_MAD_UNROLL > 2
  10651. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10652. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10653. const int64_t i11 = i01;
  10654. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10655. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10656. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10657. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10658. }
  10659. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10660. const int64_t i11 = i01;
  10661. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10662. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10663. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10664. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10665. }
  10666. #else
  10667. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10668. const int64_t i11 = i01;
  10669. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10670. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10671. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10672. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10673. }
  10674. #endif
  10675. }
  10676. }
  10677. }
  10678. //int64_t t1 = ggml_perf_time_us();
  10679. //static int64_t acc = 0;
  10680. //acc += t1 - t0;
  10681. //if (t1 - t0 > 10) {
  10682. // printf("\n");
  10683. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10684. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10685. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10686. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10687. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10688. //}
  10689. }
  10690. static void ggml_compute_forward_out_prod_q_f32(
  10691. const struct ggml_compute_params * params,
  10692. struct ggml_tensor * dst) {
  10693. const struct ggml_tensor * src0 = dst->src[0];
  10694. const struct ggml_tensor * src1 = dst->src[1];
  10695. // int64_t t0 = ggml_perf_time_us();
  10696. // UNUSED(t0);
  10697. GGML_TENSOR_BINARY_OP_LOCALS;
  10698. const int ith = params->ith;
  10699. const int nth = params->nth;
  10700. const enum ggml_type type = src0->type;
  10701. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10702. GGML_ASSERT(ne02 == ne12);
  10703. GGML_ASSERT(ne03 == ne13);
  10704. GGML_ASSERT(ne2 == ne12);
  10705. GGML_ASSERT(ne3 == ne13);
  10706. // we don't support permuted src0 dim0
  10707. GGML_ASSERT(nb00 == ggml_type_size(type));
  10708. // dst dim0 cannot be transposed or permuted
  10709. GGML_ASSERT(nb0 == sizeof(float));
  10710. // GGML_ASSERT(nb0 <= nb1);
  10711. // GGML_ASSERT(nb1 <= nb2);
  10712. // GGML_ASSERT(nb2 <= nb3);
  10713. GGML_ASSERT(ne0 == ne00);
  10714. GGML_ASSERT(ne1 == ne10);
  10715. GGML_ASSERT(ne2 == ne02);
  10716. GGML_ASSERT(ne3 == ne03);
  10717. // nb01 >= nb00 - src0 is not transposed
  10718. // compute by src0 rows
  10719. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10720. if (params->type == GGML_TASK_TYPE_INIT) {
  10721. if (ith != 0) {
  10722. return;
  10723. }
  10724. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10725. return;
  10726. }
  10727. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10728. return;
  10729. }
  10730. // parallelize by last three dimensions
  10731. // total rows in dst
  10732. const int64_t nr = ne1*ne2*ne3;
  10733. // rows per thread
  10734. const int64_t dr = (nr + nth - 1)/nth;
  10735. // row range for this thread
  10736. const int64_t ir0 = dr*ith;
  10737. const int64_t ir1 = MIN(ir0 + dr, nr);
  10738. // dst[:,:,:,:] = 0
  10739. // for i2,i3:
  10740. // for i1:
  10741. // for i01:
  10742. // for i0:
  10743. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10744. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10745. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10746. // dst indices
  10747. const int64_t i3 = ir/(ne2*ne1);
  10748. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10749. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10750. const int64_t i02 = i2;
  10751. const int64_t i03 = i3;
  10752. //const int64_t i10 = i1;
  10753. const int64_t i12 = i2;
  10754. const int64_t i13 = i3;
  10755. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10756. const int64_t i11 = i01;
  10757. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10758. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10759. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10760. dequantize_row_q(s0, wdata, ne0);
  10761. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10762. }
  10763. }
  10764. //int64_t t1 = ggml_perf_time_us();
  10765. //static int64_t acc = 0;
  10766. //acc += t1 - t0;
  10767. //if (t1 - t0 > 10) {
  10768. // printf("\n");
  10769. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10770. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10771. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10772. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10773. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10774. //}
  10775. }
  10776. static void ggml_compute_forward_out_prod(
  10777. const struct ggml_compute_params * params,
  10778. struct ggml_tensor * dst) {
  10779. const struct ggml_tensor * src0 = dst->src[0];
  10780. switch (src0->type) {
  10781. case GGML_TYPE_Q4_0:
  10782. case GGML_TYPE_Q4_1:
  10783. case GGML_TYPE_Q5_0:
  10784. case GGML_TYPE_Q5_1:
  10785. case GGML_TYPE_Q8_0:
  10786. case GGML_TYPE_Q2_K:
  10787. case GGML_TYPE_Q3_K:
  10788. case GGML_TYPE_Q4_K:
  10789. case GGML_TYPE_Q5_K:
  10790. case GGML_TYPE_Q6_K:
  10791. case GGML_TYPE_IQ2_XXS:
  10792. case GGML_TYPE_IQ2_XS:
  10793. case GGML_TYPE_IQ3_XXS:
  10794. case GGML_TYPE_IQ1_S:
  10795. case GGML_TYPE_IQ1_M:
  10796. case GGML_TYPE_IQ4_NL:
  10797. case GGML_TYPE_IQ4_XS:
  10798. case GGML_TYPE_IQ3_S:
  10799. case GGML_TYPE_IQ2_S:
  10800. {
  10801. ggml_compute_forward_out_prod_q_f32(params, dst);
  10802. } break;
  10803. case GGML_TYPE_F16:
  10804. {
  10805. GGML_ASSERT(false); // todo
  10806. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10807. } break;
  10808. case GGML_TYPE_F32:
  10809. {
  10810. ggml_compute_forward_out_prod_f32(params, dst);
  10811. } break;
  10812. default:
  10813. {
  10814. GGML_ASSERT(false);
  10815. } break;
  10816. }
  10817. }
  10818. // ggml_compute_forward_scale
  10819. static void ggml_compute_forward_scale_f32(
  10820. const struct ggml_compute_params * params,
  10821. struct ggml_tensor * dst) {
  10822. const struct ggml_tensor * src0 = dst->src[0];
  10823. GGML_ASSERT(ggml_is_contiguous(src0));
  10824. GGML_ASSERT(ggml_is_contiguous(dst));
  10825. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10826. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10827. return;
  10828. }
  10829. // scale factor
  10830. float v;
  10831. memcpy(&v, dst->op_params, sizeof(float));
  10832. const int ith = params->ith;
  10833. const int nth = params->nth;
  10834. const int nc = src0->ne[0];
  10835. const int nr = ggml_nrows(src0);
  10836. // rows per thread
  10837. const int dr = (nr + nth - 1)/nth;
  10838. // row range for this thread
  10839. const int ir0 = dr*ith;
  10840. const int ir1 = MIN(ir0 + dr, nr);
  10841. const size_t nb01 = src0->nb[1];
  10842. const size_t nb1 = dst->nb[1];
  10843. for (int i1 = ir0; i1 < ir1; i1++) {
  10844. if (dst->data != src0->data) {
  10845. // src0 is same shape as dst => same indices
  10846. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10847. }
  10848. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10849. }
  10850. }
  10851. static void ggml_compute_forward_scale(
  10852. const struct ggml_compute_params * params,
  10853. struct ggml_tensor * dst) {
  10854. const struct ggml_tensor * src0 = dst->src[0];
  10855. switch (src0->type) {
  10856. case GGML_TYPE_F32:
  10857. {
  10858. ggml_compute_forward_scale_f32(params, dst);
  10859. } break;
  10860. default:
  10861. {
  10862. GGML_ASSERT(false);
  10863. } break;
  10864. }
  10865. }
  10866. // ggml_compute_forward_set
  10867. static void ggml_compute_forward_set_f32(
  10868. const struct ggml_compute_params * params,
  10869. struct ggml_tensor * dst) {
  10870. const struct ggml_tensor * src0 = dst->src[0];
  10871. const struct ggml_tensor * src1 = dst->src[1];
  10872. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10873. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10874. // view src0 and dst with these strides and data offset inbytes during set
  10875. // nb0 is implicitly element_size because src0 and dst are contiguous
  10876. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10877. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10878. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10879. size_t offset = ((int32_t *) dst->op_params)[3];
  10880. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10881. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10882. if (params->ith != 0) {
  10883. return;
  10884. }
  10885. // memcpy needs to be synchronized across threads to avoid race conditions.
  10886. // => do it in INIT phase
  10887. memcpy(
  10888. ((char *) dst->data),
  10889. ((char *) src0->data),
  10890. ggml_nbytes(dst));
  10891. }
  10892. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10893. return;
  10894. }
  10895. const int ith = params->ith;
  10896. const int nth = params->nth;
  10897. const int nr = ggml_nrows(src1);
  10898. const int nc = src1->ne[0];
  10899. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10900. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10901. // src0 and dst as viewed during set
  10902. const size_t nb0 = ggml_element_size(src0);
  10903. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10904. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10905. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10906. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10907. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10908. GGML_ASSERT(nb10 == sizeof(float));
  10909. // rows per thread
  10910. const int dr = (nr + nth - 1)/nth;
  10911. // row range for this thread
  10912. const int ir0 = dr*ith;
  10913. const int ir1 = MIN(ir0 + dr, nr);
  10914. for (int ir = ir0; ir < ir1; ++ir) {
  10915. // src0 and dst are viewed with shape of src1 and offset
  10916. // => same indices
  10917. const int i3 = ir/(ne12*ne11);
  10918. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10919. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10920. ggml_vec_cpy_f32(nc,
  10921. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10922. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10923. }
  10924. }
  10925. static void ggml_compute_forward_set(
  10926. const struct ggml_compute_params * params,
  10927. struct ggml_tensor * dst) {
  10928. const struct ggml_tensor * src0 = dst->src[0];
  10929. switch (src0->type) {
  10930. case GGML_TYPE_F32:
  10931. {
  10932. ggml_compute_forward_set_f32(params, dst);
  10933. } break;
  10934. case GGML_TYPE_F16:
  10935. case GGML_TYPE_BF16:
  10936. case GGML_TYPE_Q4_0:
  10937. case GGML_TYPE_Q4_1:
  10938. case GGML_TYPE_Q5_0:
  10939. case GGML_TYPE_Q5_1:
  10940. case GGML_TYPE_Q8_0:
  10941. case GGML_TYPE_Q8_1:
  10942. case GGML_TYPE_Q2_K:
  10943. case GGML_TYPE_Q3_K:
  10944. case GGML_TYPE_Q4_K:
  10945. case GGML_TYPE_Q5_K:
  10946. case GGML_TYPE_Q6_K:
  10947. case GGML_TYPE_IQ2_XXS:
  10948. case GGML_TYPE_IQ2_XS:
  10949. case GGML_TYPE_IQ3_XXS:
  10950. case GGML_TYPE_IQ1_S:
  10951. case GGML_TYPE_IQ1_M:
  10952. case GGML_TYPE_IQ4_NL:
  10953. case GGML_TYPE_IQ4_XS:
  10954. case GGML_TYPE_IQ3_S:
  10955. case GGML_TYPE_IQ2_S:
  10956. default:
  10957. {
  10958. GGML_ASSERT(false);
  10959. } break;
  10960. }
  10961. }
  10962. // ggml_compute_forward_cpy
  10963. static void ggml_compute_forward_cpy(
  10964. const struct ggml_compute_params * params,
  10965. struct ggml_tensor * dst) {
  10966. ggml_compute_forward_dup(params, dst);
  10967. }
  10968. // ggml_compute_forward_cont
  10969. static void ggml_compute_forward_cont(
  10970. const struct ggml_compute_params * params,
  10971. struct ggml_tensor * dst) {
  10972. ggml_compute_forward_dup(params, dst);
  10973. }
  10974. // ggml_compute_forward_reshape
  10975. static void ggml_compute_forward_reshape(
  10976. const struct ggml_compute_params * params,
  10977. struct ggml_tensor * dst) {
  10978. // NOP
  10979. UNUSED(params);
  10980. UNUSED(dst);
  10981. }
  10982. // ggml_compute_forward_view
  10983. static void ggml_compute_forward_view(
  10984. const struct ggml_compute_params * params,
  10985. const struct ggml_tensor * dst) {
  10986. // NOP
  10987. UNUSED(params);
  10988. UNUSED(dst);
  10989. }
  10990. // ggml_compute_forward_permute
  10991. static void ggml_compute_forward_permute(
  10992. const struct ggml_compute_params * params,
  10993. const struct ggml_tensor * dst) {
  10994. // NOP
  10995. UNUSED(params);
  10996. UNUSED(dst);
  10997. }
  10998. // ggml_compute_forward_transpose
  10999. static void ggml_compute_forward_transpose(
  11000. const struct ggml_compute_params * params,
  11001. const struct ggml_tensor * dst) {
  11002. // NOP
  11003. UNUSED(params);
  11004. UNUSED(dst);
  11005. }
  11006. // ggml_compute_forward_get_rows
  11007. static void ggml_compute_forward_get_rows_q(
  11008. const struct ggml_compute_params * params,
  11009. struct ggml_tensor * dst) {
  11010. const struct ggml_tensor * src0 = dst->src[0];
  11011. const struct ggml_tensor * src1 = dst->src[1];
  11012. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11013. return;
  11014. }
  11015. GGML_TENSOR_BINARY_OP_LOCALS
  11016. const int64_t nc = ne00;
  11017. const int64_t nr = ggml_nelements(src1);
  11018. const enum ggml_type type = src0->type;
  11019. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11020. assert(ne0 == nc);
  11021. assert(ne02 == ne11);
  11022. assert(nb00 == ggml_type_size(type));
  11023. assert(ggml_nrows(dst) == nr);
  11024. const int ith = params->ith;
  11025. const int nth = params->nth;
  11026. // rows per thread
  11027. const int dr = (nr + nth - 1)/nth;
  11028. // row range for this thread
  11029. const int ir0 = dr*ith;
  11030. const int ir1 = MIN(ir0 + dr, nr);
  11031. for (int64_t i = ir0; i < ir1; ++i) {
  11032. const int64_t i12 = i/(ne11*ne10);
  11033. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11034. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11035. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11036. dequantize_row_q(
  11037. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11038. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11039. }
  11040. }
  11041. static void ggml_compute_forward_get_rows_f16(
  11042. const struct ggml_compute_params * params,
  11043. struct ggml_tensor * dst) {
  11044. const struct ggml_tensor * src0 = dst->src[0];
  11045. const struct ggml_tensor * src1 = dst->src[1];
  11046. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11047. return;
  11048. }
  11049. GGML_TENSOR_BINARY_OP_LOCALS
  11050. const int64_t nc = ne00;
  11051. const int64_t nr = ggml_nelements(src1);
  11052. assert(ne0 == nc);
  11053. assert(ne02 == ne11);
  11054. assert(nb00 == sizeof(ggml_fp16_t));
  11055. assert(ggml_nrows(dst) == nr);
  11056. const int ith = params->ith;
  11057. const int nth = params->nth;
  11058. // rows per thread
  11059. const int dr = (nr + nth - 1)/nth;
  11060. // row range for this thread
  11061. const int ir0 = dr*ith;
  11062. const int ir1 = MIN(ir0 + dr, nr);
  11063. for (int64_t i = ir0; i < ir1; ++i) {
  11064. const int64_t i12 = i/(ne11*ne10);
  11065. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11066. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11067. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11068. ggml_fp16_to_fp32_row(
  11069. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11070. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11071. }
  11072. }
  11073. static void ggml_compute_forward_get_rows_bf16(
  11074. const struct ggml_compute_params * params,
  11075. struct ggml_tensor * dst) {
  11076. const struct ggml_tensor * src0 = dst->src[0];
  11077. const struct ggml_tensor * src1 = dst->src[1];
  11078. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11079. return;
  11080. }
  11081. GGML_TENSOR_BINARY_OP_LOCALS
  11082. const int64_t nc = ne00;
  11083. const int64_t nr = ggml_nelements(src1);
  11084. assert(ne0 == nc);
  11085. assert(ne02 == ne11);
  11086. assert(nb00 == sizeof(ggml_bf16_t));
  11087. assert(ggml_nrows(dst) == nr);
  11088. const int ith = params->ith;
  11089. const int nth = params->nth;
  11090. // rows per thread
  11091. const int dr = (nr + nth - 1)/nth;
  11092. // row range for this thread
  11093. const int ir0 = dr*ith;
  11094. const int ir1 = MIN(ir0 + dr, nr);
  11095. for (int64_t i = ir0; i < ir1; ++i) {
  11096. const int64_t i12 = i/(ne11*ne10);
  11097. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11098. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11099. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11100. ggml_bf16_to_fp32_row(
  11101. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11102. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11103. }
  11104. }
  11105. static void ggml_compute_forward_get_rows_f32(
  11106. const struct ggml_compute_params * params,
  11107. struct ggml_tensor * dst) {
  11108. const struct ggml_tensor * src0 = dst->src[0];
  11109. const struct ggml_tensor * src1 = dst->src[1];
  11110. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11111. return;
  11112. }
  11113. GGML_TENSOR_BINARY_OP_LOCALS
  11114. const int64_t nc = ne00;
  11115. const int64_t nr = ggml_nelements(src1);
  11116. assert(ne0 == nc);
  11117. assert(ne02 == ne11);
  11118. assert(nb00 == sizeof(float));
  11119. assert(ggml_nrows(dst) == nr);
  11120. const int ith = params->ith;
  11121. const int nth = params->nth;
  11122. // rows per thread
  11123. const int dr = (nr + nth - 1)/nth;
  11124. // row range for this thread
  11125. const int ir0 = dr*ith;
  11126. const int ir1 = MIN(ir0 + dr, nr);
  11127. for (int64_t i = ir0; i < ir1; ++i) {
  11128. const int64_t i12 = i/(ne11*ne10);
  11129. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11130. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11131. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11132. ggml_vec_cpy_f32(nc,
  11133. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11134. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11135. }
  11136. }
  11137. static void ggml_compute_forward_get_rows(
  11138. const struct ggml_compute_params * params,
  11139. struct ggml_tensor * dst) {
  11140. const struct ggml_tensor * src0 = dst->src[0];
  11141. switch (src0->type) {
  11142. case GGML_TYPE_Q4_0:
  11143. case GGML_TYPE_Q4_1:
  11144. case GGML_TYPE_Q5_0:
  11145. case GGML_TYPE_Q5_1:
  11146. case GGML_TYPE_Q8_0:
  11147. case GGML_TYPE_Q8_1:
  11148. case GGML_TYPE_Q2_K:
  11149. case GGML_TYPE_Q3_K:
  11150. case GGML_TYPE_Q4_K:
  11151. case GGML_TYPE_Q5_K:
  11152. case GGML_TYPE_Q6_K:
  11153. case GGML_TYPE_IQ2_XXS:
  11154. case GGML_TYPE_IQ2_XS:
  11155. case GGML_TYPE_IQ3_XXS:
  11156. case GGML_TYPE_IQ1_S:
  11157. case GGML_TYPE_IQ1_M:
  11158. case GGML_TYPE_IQ4_NL:
  11159. case GGML_TYPE_IQ4_XS:
  11160. case GGML_TYPE_IQ3_S:
  11161. case GGML_TYPE_IQ2_S:
  11162. {
  11163. ggml_compute_forward_get_rows_q(params, dst);
  11164. } break;
  11165. case GGML_TYPE_F16:
  11166. {
  11167. ggml_compute_forward_get_rows_f16(params, dst);
  11168. } break;
  11169. case GGML_TYPE_BF16:
  11170. {
  11171. ggml_compute_forward_get_rows_bf16(params, dst);
  11172. } break;
  11173. case GGML_TYPE_F32:
  11174. case GGML_TYPE_I32:
  11175. {
  11176. ggml_compute_forward_get_rows_f32(params, dst);
  11177. } break;
  11178. default:
  11179. {
  11180. GGML_ASSERT(false);
  11181. } break;
  11182. }
  11183. //static bool first = true;
  11184. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11185. //if (first) {
  11186. // first = false;
  11187. //} else {
  11188. // for (int k = 0; k < dst->ne[1]; ++k) {
  11189. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11190. // for (int i = 0; i < 16; ++i) {
  11191. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11192. // }
  11193. // printf("\n");
  11194. // }
  11195. // printf("\n");
  11196. // }
  11197. // printf("\n");
  11198. // exit(0);
  11199. //}
  11200. }
  11201. // ggml_compute_forward_get_rows_back
  11202. static void ggml_compute_forward_get_rows_back_f32_f16(
  11203. const struct ggml_compute_params * params,
  11204. struct ggml_tensor * dst) {
  11205. const struct ggml_tensor * src0 = dst->src[0];
  11206. const struct ggml_tensor * src1 = dst->src[1];
  11207. GGML_ASSERT(params->ith == 0);
  11208. GGML_ASSERT(ggml_is_contiguous(dst));
  11209. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11210. if (params->type == GGML_TASK_TYPE_INIT) {
  11211. if (params->ith != 0) {
  11212. return;
  11213. }
  11214. memset(dst->data, 0, ggml_nbytes(dst));
  11215. }
  11216. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11217. return;
  11218. }
  11219. const int nc = src0->ne[0];
  11220. const int nr = ggml_nelements(src1);
  11221. GGML_ASSERT( dst->ne[0] == nc);
  11222. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11223. for (int i = 0; i < nr; ++i) {
  11224. const int r = ((int32_t *) src1->data)[i];
  11225. for (int j = 0; j < nc; ++j) {
  11226. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11227. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11228. }
  11229. }
  11230. }
  11231. static void ggml_compute_forward_get_rows_back_f32(
  11232. const struct ggml_compute_params * params,
  11233. struct ggml_tensor * dst) {
  11234. const struct ggml_tensor * src0 = dst->src[0];
  11235. const struct ggml_tensor * src1 = dst->src[1];
  11236. GGML_ASSERT(params->ith == 0);
  11237. GGML_ASSERT(ggml_is_contiguous(dst));
  11238. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11239. if (params->type == GGML_TASK_TYPE_INIT) {
  11240. if (params->ith != 0) {
  11241. return;
  11242. }
  11243. memset(dst->data, 0, ggml_nbytes(dst));
  11244. }
  11245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11246. return;
  11247. }
  11248. const int nc = src0->ne[0];
  11249. const int nr = ggml_nelements(src1);
  11250. GGML_ASSERT( dst->ne[0] == nc);
  11251. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11252. for (int i = 0; i < nr; ++i) {
  11253. const int r = ((int32_t *) src1->data)[i];
  11254. ggml_vec_add_f32(nc,
  11255. (float *) ((char *) dst->data + r*dst->nb[1]),
  11256. (float *) ((char *) dst->data + r*dst->nb[1]),
  11257. (float *) ((char *) src0->data + i*src0->nb[1]));
  11258. }
  11259. }
  11260. static void ggml_compute_forward_get_rows_back(
  11261. const struct ggml_compute_params * params,
  11262. struct ggml_tensor * dst) {
  11263. const struct ggml_tensor * src0 = dst->src[0];
  11264. switch (src0->type) {
  11265. case GGML_TYPE_F16:
  11266. {
  11267. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11268. } break;
  11269. case GGML_TYPE_F32:
  11270. {
  11271. ggml_compute_forward_get_rows_back_f32(params, dst);
  11272. } break;
  11273. default:
  11274. {
  11275. GGML_ASSERT(false);
  11276. } break;
  11277. }
  11278. //static bool first = true;
  11279. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11280. //if (first) {
  11281. // first = false;
  11282. //} else {
  11283. // for (int k = 0; k < dst->ne[1]; ++k) {
  11284. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11285. // for (int i = 0; i < 16; ++i) {
  11286. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11287. // }
  11288. // printf("\n");
  11289. // }
  11290. // printf("\n");
  11291. // }
  11292. // printf("\n");
  11293. // exit(0);
  11294. //}
  11295. }
  11296. // ggml_compute_forward_diag
  11297. static void ggml_compute_forward_diag_f32(
  11298. const struct ggml_compute_params * params,
  11299. struct ggml_tensor * dst) {
  11300. const struct ggml_tensor * src0 = dst->src[0];
  11301. GGML_ASSERT(params->ith == 0);
  11302. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11303. return;
  11304. }
  11305. // TODO: handle transposed/permuted matrices
  11306. GGML_TENSOR_UNARY_OP_LOCALS
  11307. GGML_ASSERT(ne00 == ne0);
  11308. GGML_ASSERT(ne00 == ne1);
  11309. GGML_ASSERT(ne01 == 1);
  11310. GGML_ASSERT(ne02 == ne2);
  11311. GGML_ASSERT(ne03 == ne3);
  11312. GGML_ASSERT(nb00 == sizeof(float));
  11313. GGML_ASSERT(nb0 == sizeof(float));
  11314. for (int i3 = 0; i3 < ne3; i3++) {
  11315. for (int i2 = 0; i2 < ne2; i2++) {
  11316. for (int i1 = 0; i1 < ne1; i1++) {
  11317. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11318. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11319. for (int i0 = 0; i0 < i1; i0++) {
  11320. d[i0] = 0;
  11321. }
  11322. d[i1] = s[i1];
  11323. for (int i0 = i1+1; i0 < ne0; i0++) {
  11324. d[i0] = 0;
  11325. }
  11326. }
  11327. }
  11328. }
  11329. }
  11330. static void ggml_compute_forward_diag(
  11331. const struct ggml_compute_params * params,
  11332. struct ggml_tensor * dst) {
  11333. const struct ggml_tensor * src0 = dst->src[0];
  11334. switch (src0->type) {
  11335. case GGML_TYPE_F32:
  11336. {
  11337. ggml_compute_forward_diag_f32(params, dst);
  11338. } break;
  11339. default:
  11340. {
  11341. GGML_ASSERT(false);
  11342. } break;
  11343. }
  11344. }
  11345. // ggml_compute_forward_diag_mask_inf
  11346. static void ggml_compute_forward_diag_mask_f32(
  11347. const struct ggml_compute_params * params,
  11348. struct ggml_tensor * dst,
  11349. const float value) {
  11350. const struct ggml_tensor * src0 = dst->src[0];
  11351. const int ith = params->ith;
  11352. const int nth = params->nth;
  11353. const int n_past = ((int32_t *) dst->op_params)[0];
  11354. const bool inplace = src0->data == dst->data;
  11355. GGML_ASSERT(n_past >= 0);
  11356. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11357. if (ith != 0) {
  11358. return;
  11359. }
  11360. // memcpy needs to be synchronized across threads to avoid race conditions.
  11361. // => do it in INIT phase
  11362. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11363. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11364. memcpy(
  11365. ((char *) dst->data),
  11366. ((char *) src0->data),
  11367. ggml_nbytes(dst));
  11368. }
  11369. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11370. return;
  11371. }
  11372. // TODO: handle transposed/permuted matrices
  11373. const int n = ggml_nrows(src0);
  11374. const int nc = src0->ne[0];
  11375. const int nr = src0->ne[1];
  11376. const int nz = n/nr;
  11377. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11378. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11379. for (int k = 0; k < nz; k++) {
  11380. for (int j = ith; j < nr; j += nth) {
  11381. for (int i = n_past; i < nc; i++) {
  11382. if (i > n_past + j) {
  11383. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11384. }
  11385. }
  11386. }
  11387. }
  11388. }
  11389. static void ggml_compute_forward_diag_mask_inf(
  11390. const struct ggml_compute_params * params,
  11391. struct ggml_tensor * dst) {
  11392. const struct ggml_tensor * src0 = dst->src[0];
  11393. switch (src0->type) {
  11394. case GGML_TYPE_F32:
  11395. {
  11396. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11397. } break;
  11398. default:
  11399. {
  11400. GGML_ASSERT(false);
  11401. } break;
  11402. }
  11403. }
  11404. static void ggml_compute_forward_diag_mask_zero(
  11405. const struct ggml_compute_params * params,
  11406. struct ggml_tensor * dst) {
  11407. const struct ggml_tensor * src0 = dst->src[0];
  11408. switch (src0->type) {
  11409. case GGML_TYPE_F32:
  11410. {
  11411. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11412. } break;
  11413. default:
  11414. {
  11415. GGML_ASSERT(false);
  11416. } break;
  11417. }
  11418. }
  11419. // ggml_compute_forward_soft_max
  11420. static void ggml_compute_forward_soft_max_f32(
  11421. const struct ggml_compute_params * params,
  11422. struct ggml_tensor * dst) {
  11423. const struct ggml_tensor * src0 = dst->src[0];
  11424. const struct ggml_tensor * src1 = dst->src[1];
  11425. assert(ggml_is_contiguous(dst));
  11426. assert(ggml_are_same_shape(src0, dst));
  11427. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11428. return;
  11429. }
  11430. float scale = 1.0f;
  11431. float max_bias = 0.0f;
  11432. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11433. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11434. // TODO: handle transposed/permuted matrices
  11435. const int ith = params->ith;
  11436. const int nth = params->nth;
  11437. GGML_TENSOR_UNARY_OP_LOCALS
  11438. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11439. // TODO: is this supposed to be ceil instead of floor?
  11440. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11441. const uint32_t n_head = ne02;
  11442. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11443. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11444. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11445. const int nc = src0->ne[0];
  11446. const int nr = ggml_nrows(src0);
  11447. // rows per thread
  11448. const int dr = (nr + nth - 1)/nth;
  11449. // row range for this thread
  11450. const int ir0 = dr*ith;
  11451. const int ir1 = MIN(ir0 + dr, nr);
  11452. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11453. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11454. for (int i1 = ir0; i1 < ir1; i1++) {
  11455. // ALiBi
  11456. const uint32_t h = (i1/ne01)%ne02; // head
  11457. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11458. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11459. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11460. // broadcast the mask across rows
  11461. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11462. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11463. ggml_vec_cpy_f32 (nc, wp, sp);
  11464. ggml_vec_scale_f32(nc, wp, scale);
  11465. if (mp_f32) {
  11466. if (use_f16) {
  11467. for (int i = 0; i < nc; ++i) {
  11468. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11469. }
  11470. } else {
  11471. for (int i = 0; i < nc; ++i) {
  11472. wp[i] += slope*mp_f32[i];
  11473. }
  11474. }
  11475. }
  11476. #ifndef NDEBUG
  11477. for (int i = 0; i < nc; ++i) {
  11478. //printf("p[%d] = %f\n", i, p[i]);
  11479. assert(!isnan(wp[i]));
  11480. }
  11481. #endif
  11482. float max = -INFINITY;
  11483. ggml_vec_max_f32(nc, &max, wp);
  11484. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11485. assert(sum > 0.0);
  11486. sum = 1.0/sum;
  11487. ggml_vec_scale_f32(nc, dp, sum);
  11488. #ifndef NDEBUG
  11489. for (int i = 0; i < nc; ++i) {
  11490. assert(!isnan(dp[i]));
  11491. assert(!isinf(dp[i]));
  11492. }
  11493. #endif
  11494. }
  11495. }
  11496. static void ggml_compute_forward_soft_max(
  11497. const struct ggml_compute_params * params,
  11498. struct ggml_tensor * dst) {
  11499. const struct ggml_tensor * src0 = dst->src[0];
  11500. switch (src0->type) {
  11501. case GGML_TYPE_F32:
  11502. {
  11503. ggml_compute_forward_soft_max_f32(params, dst);
  11504. } break;
  11505. default:
  11506. {
  11507. GGML_ASSERT(false);
  11508. } break;
  11509. }
  11510. }
  11511. // ggml_compute_forward_soft_max_back
  11512. static void ggml_compute_forward_soft_max_back_f32(
  11513. const struct ggml_compute_params * params,
  11514. struct ggml_tensor * dst) {
  11515. const struct ggml_tensor * src0 = dst->src[0];
  11516. const struct ggml_tensor * src1 = dst->src[1];
  11517. GGML_ASSERT(ggml_is_contiguous(src0));
  11518. GGML_ASSERT(ggml_is_contiguous(src1));
  11519. GGML_ASSERT(ggml_is_contiguous(dst));
  11520. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11521. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11522. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11523. return;
  11524. }
  11525. // TODO: handle transposed/permuted matrices
  11526. const int ith = params->ith;
  11527. const int nth = params->nth;
  11528. const int nc = src0->ne[0];
  11529. const int nr = ggml_nrows(src0);
  11530. // rows per thread
  11531. const int dr = (nr + nth - 1)/nth;
  11532. // row range for this thread
  11533. const int ir0 = dr*ith;
  11534. const int ir1 = MIN(ir0 + dr, nr);
  11535. for (int i1 = ir0; i1 < ir1; i1++) {
  11536. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11537. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11538. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11539. #ifndef NDEBUG
  11540. for (int i = 0; i < nc; ++i) {
  11541. //printf("p[%d] = %f\n", i, p[i]);
  11542. assert(!isnan(dy[i]));
  11543. assert(!isnan(y[i]));
  11544. }
  11545. #endif
  11546. // Jii = yi - yi*yi
  11547. // Jij = -yi*yj
  11548. // J = diag(y)-y.T*y
  11549. // dx = J * dy
  11550. // dxk = sum_i(Jki * dyi)
  11551. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11552. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11553. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11554. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11555. // dxk = -yk * dot(y, dy) + yk*dyk
  11556. // dxk = yk * (- dot(y, dy) + dyk)
  11557. // dxk = yk * (dyk - dot(y, dy))
  11558. //
  11559. // post-order:
  11560. // dot_y_dy := dot(y, dy)
  11561. // dx := dy
  11562. // dx := dx - dot_y_dy
  11563. // dx := dx * y
  11564. // linear runtime, no additional memory
  11565. float dot_y_dy = 0;
  11566. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11567. ggml_vec_cpy_f32 (nc, dx, dy);
  11568. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11569. ggml_vec_mul_f32 (nc, dx, dx, y);
  11570. #ifndef NDEBUG
  11571. for (int i = 0; i < nc; ++i) {
  11572. assert(!isnan(dx[i]));
  11573. assert(!isinf(dx[i]));
  11574. }
  11575. #endif
  11576. }
  11577. }
  11578. static void ggml_compute_forward_soft_max_back(
  11579. const struct ggml_compute_params * params,
  11580. struct ggml_tensor * dst) {
  11581. const struct ggml_tensor * src0 = dst->src[0];
  11582. switch (src0->type) {
  11583. case GGML_TYPE_F32:
  11584. {
  11585. ggml_compute_forward_soft_max_back_f32(params, dst);
  11586. } break;
  11587. default:
  11588. {
  11589. GGML_ASSERT(false);
  11590. } break;
  11591. }
  11592. }
  11593. // ggml_compute_forward_clamp
  11594. static void ggml_compute_forward_clamp_f32(
  11595. const struct ggml_compute_params * params,
  11596. struct ggml_tensor * dst) {
  11597. const struct ggml_tensor * src0 = dst->src[0];
  11598. assert(params->ith == 0);
  11599. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11600. return;
  11601. }
  11602. float min;
  11603. float max;
  11604. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11605. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11606. const int ith = params->ith;
  11607. const int nth = params->nth;
  11608. const int n = ggml_nrows(src0);
  11609. const int nc = src0->ne[0];
  11610. const size_t nb00 = src0->nb[0];
  11611. const size_t nb01 = src0->nb[1];
  11612. const size_t nb0 = dst->nb[0];
  11613. const size_t nb1 = dst->nb[1];
  11614. GGML_ASSERT( nb0 == sizeof(float));
  11615. GGML_ASSERT(nb00 == sizeof(float));
  11616. for (int j = ith; j < n; j += nth) {
  11617. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11618. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11619. for (int i = 0; i < nc; i++) {
  11620. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11621. }
  11622. }
  11623. }
  11624. static void ggml_compute_forward_clamp(
  11625. const struct ggml_compute_params * params,
  11626. struct ggml_tensor * dst) {
  11627. const struct ggml_tensor * src0 = dst->src[0];
  11628. switch (src0->type) {
  11629. case GGML_TYPE_F32:
  11630. {
  11631. ggml_compute_forward_clamp_f32(params, dst);
  11632. } break;
  11633. case GGML_TYPE_F16:
  11634. case GGML_TYPE_BF16:
  11635. case GGML_TYPE_Q4_0:
  11636. case GGML_TYPE_Q4_1:
  11637. case GGML_TYPE_Q5_0:
  11638. case GGML_TYPE_Q5_1:
  11639. case GGML_TYPE_Q8_0:
  11640. case GGML_TYPE_Q8_1:
  11641. case GGML_TYPE_Q2_K:
  11642. case GGML_TYPE_Q3_K:
  11643. case GGML_TYPE_Q4_K:
  11644. case GGML_TYPE_Q5_K:
  11645. case GGML_TYPE_Q6_K:
  11646. case GGML_TYPE_IQ2_XXS:
  11647. case GGML_TYPE_IQ2_XS:
  11648. case GGML_TYPE_IQ3_XXS:
  11649. case GGML_TYPE_IQ1_S:
  11650. case GGML_TYPE_IQ1_M:
  11651. case GGML_TYPE_IQ4_NL:
  11652. case GGML_TYPE_IQ4_XS:
  11653. case GGML_TYPE_IQ3_S:
  11654. case GGML_TYPE_IQ2_S:
  11655. case GGML_TYPE_Q8_K:
  11656. case GGML_TYPE_I8:
  11657. case GGML_TYPE_I16:
  11658. case GGML_TYPE_I32:
  11659. case GGML_TYPE_I64:
  11660. case GGML_TYPE_F64:
  11661. case GGML_TYPE_COUNT:
  11662. {
  11663. GGML_ASSERT(false);
  11664. } break;
  11665. }
  11666. }
  11667. // ggml_compute_forward_rope
  11668. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11669. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11670. return 1 - MIN(1, MAX(0, y));
  11671. }
  11672. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11673. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11674. static void rope_yarn(
  11675. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11676. float * cos_theta, float * sin_theta
  11677. ) {
  11678. // Get n-d rotational scaling corrected for extrapolation
  11679. float theta_interp = freq_scale * theta_extrap;
  11680. float theta = theta_interp;
  11681. if (ext_factor != 0.0f) {
  11682. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11683. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11684. // Get n-d magnitude scaling corrected for interpolation
  11685. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11686. }
  11687. *cos_theta = cosf(theta) * mscale;
  11688. *sin_theta = sinf(theta) * mscale;
  11689. }
  11690. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11691. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11692. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11693. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11694. }
  11695. static void ggml_rope_cache_init(
  11696. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11697. float * cache, float sin_sign, float theta_scale
  11698. ) {
  11699. float theta = theta_base;
  11700. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11701. rope_yarn(
  11702. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11703. );
  11704. cache[i0 + 1] *= sin_sign;
  11705. theta *= theta_scale;
  11706. }
  11707. }
  11708. GGML_CALL void ggml_rope_yarn_corr_dims(
  11709. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11710. ) {
  11711. // start and end correction dims
  11712. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11713. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11714. dims[0] = MAX(0, start);
  11715. dims[1] = MIN(n_dims - 1, end);
  11716. }
  11717. static void ggml_compute_forward_rope_f32(
  11718. const struct ggml_compute_params * params,
  11719. struct ggml_tensor * dst,
  11720. const bool forward) {
  11721. const struct ggml_tensor * src0 = dst->src[0];
  11722. const struct ggml_tensor * src1 = dst->src[1];
  11723. const struct ggml_tensor * src2 = dst->src[2];
  11724. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11725. return;
  11726. }
  11727. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11728. // these two only relevant for xPos RoPE:
  11729. float xpos_base;
  11730. bool xpos_down;
  11731. //const int n_past = ((int32_t *) dst->op_params)[0];
  11732. const int n_dims = ((int32_t *) dst->op_params)[1];
  11733. const int mode = ((int32_t *) dst->op_params)[2];
  11734. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11735. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11736. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11737. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11738. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11739. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11740. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11741. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11742. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11743. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11744. GGML_TENSOR_UNARY_OP_LOCALS
  11745. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11746. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11747. GGML_ASSERT(nb00 == sizeof(float));
  11748. const int ith = params->ith;
  11749. const int nth = params->nth;
  11750. const int nr = ggml_nrows(dst);
  11751. GGML_ASSERT(n_dims <= ne0);
  11752. GGML_ASSERT(n_dims % 2 == 0);
  11753. // rows per thread
  11754. const int dr = (nr + nth - 1)/nth;
  11755. // row range for this thread
  11756. const int ir0 = dr*ith;
  11757. const int ir1 = MIN(ir0 + dr, nr);
  11758. // row index used to determine which thread to use
  11759. int ir = 0;
  11760. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11761. const float inv_ndims = -1.f/n_dims;
  11762. float corr_dims[2];
  11763. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11764. const bool is_neox = mode & 2;
  11765. const bool is_glm = mode & 4;
  11766. const float * freq_factors = NULL;
  11767. if (is_neox) {
  11768. if (src2 != NULL) {
  11769. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11770. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11771. freq_factors = (const float *) src2->data;
  11772. }
  11773. } else {
  11774. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for mode 1");
  11775. }
  11776. // backward process uses inverse rotation by cos and sin.
  11777. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11778. // this essentially just switches the sign of sin.
  11779. const float sin_sign = forward ? 1.0f : -1.0f;
  11780. const int32_t * pos = (const int32_t *) src1->data;
  11781. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11782. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11783. const int64_t p = pos[i2];
  11784. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11785. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11786. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11787. }
  11788. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11789. if (ir++ < ir0) continue;
  11790. if (ir > ir1) break;
  11791. float theta_base = (float)p;
  11792. if (is_glm) {
  11793. theta_base = MIN(p, n_ctx - 2);
  11794. float block_theta = MAX(p - (n_ctx - 2), 0);
  11795. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11796. const float cos_theta = cosf(theta_base);
  11797. const float sin_theta = sinf(theta_base) * sin_sign;
  11798. const float cos_block_theta = cosf(block_theta);
  11799. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11800. theta_base *= theta_scale;
  11801. block_theta *= theta_scale;
  11802. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11803. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11804. const float x0 = src[0];
  11805. const float x1 = src[n_dims/2];
  11806. const float x2 = src[n_dims];
  11807. const float x3 = src[n_dims/2*3];
  11808. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11809. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11810. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11811. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11812. }
  11813. } else if (!is_neox) {
  11814. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11815. const float cos_theta = cache[i0 + 0];
  11816. const float sin_theta = cache[i0 + 1];
  11817. // zeta scaling for xPos only:
  11818. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11819. if (xpos_down) zeta = 1.0f / zeta;
  11820. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11821. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11822. const float x0 = src[0];
  11823. const float x1 = src[1];
  11824. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11825. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11826. }
  11827. } else {
  11828. // TODO: this might be wrong for ne0 != n_dims - need double check
  11829. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11830. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11831. theta_base *= freq_scale;
  11832. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11833. if (ic < n_dims) {
  11834. const int64_t ib = 0;
  11835. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11836. float cur_rot = inv_ndims * ic - ib;
  11837. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11838. float cos_theta, sin_theta;
  11839. rope_yarn(
  11840. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11841. &cos_theta, &sin_theta
  11842. );
  11843. sin_theta *= sin_sign;
  11844. theta_base *= theta_scale;
  11845. const int64_t i0 = ib*n_dims + ic/2;
  11846. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11847. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11848. const float x0 = src[0];
  11849. const float x1 = src[n_dims/2];
  11850. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11851. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11852. } else {
  11853. const int64_t i0 = ic;
  11854. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11855. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11856. dst_data[0] = src[0];
  11857. dst_data[1] = src[1];
  11858. }
  11859. }
  11860. }
  11861. }
  11862. }
  11863. }
  11864. }
  11865. static void ggml_compute_forward_rope_f16(
  11866. const struct ggml_compute_params * params,
  11867. struct ggml_tensor * dst,
  11868. const bool forward) {
  11869. const struct ggml_tensor * src0 = dst->src[0];
  11870. const struct ggml_tensor * src1 = dst->src[1];
  11871. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11872. return;
  11873. }
  11874. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11875. //const int n_past = ((int32_t *) dst->op_params)[0];
  11876. const int n_dims = ((int32_t *) dst->op_params)[1];
  11877. const int mode = ((int32_t *) dst->op_params)[2];
  11878. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11879. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11880. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11881. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11882. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11883. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11884. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11885. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11886. GGML_TENSOR_UNARY_OP_LOCALS
  11887. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11888. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11889. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11890. const int ith = params->ith;
  11891. const int nth = params->nth;
  11892. const int nr = ggml_nrows(dst);
  11893. GGML_ASSERT(n_dims <= ne0);
  11894. GGML_ASSERT(n_dims % 2 == 0);
  11895. // rows per thread
  11896. const int dr = (nr + nth - 1)/nth;
  11897. // row range for this thread
  11898. const int ir0 = dr*ith;
  11899. const int ir1 = MIN(ir0 + dr, nr);
  11900. // row index used to determine which thread to use
  11901. int ir = 0;
  11902. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11903. const float inv_ndims = -1.f/n_dims;
  11904. float corr_dims[2];
  11905. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11906. const bool is_neox = mode & 2;
  11907. const bool is_glm = mode & 4;
  11908. // backward process uses inverse rotation by cos and sin.
  11909. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11910. // this essentially just switches the sign of sin.
  11911. const float sin_sign = forward ? 1.0f : -1.0f;
  11912. const int32_t * pos = (const int32_t *) src1->data;
  11913. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11914. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11915. const int64_t p = pos[i2];
  11916. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11917. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11918. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11919. }
  11920. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11921. if (ir++ < ir0) continue;
  11922. if (ir > ir1) break;
  11923. float theta_base = (float)p;
  11924. if (is_glm) {
  11925. theta_base = MIN(p, n_ctx - 2);
  11926. float block_theta = MAX(p - (n_ctx - 2), 0);
  11927. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11928. const float cos_theta = cosf(theta_base);
  11929. const float sin_theta = sinf(theta_base) * sin_sign;
  11930. const float cos_block_theta = cosf(block_theta);
  11931. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11932. theta_base *= theta_scale;
  11933. block_theta *= theta_scale;
  11934. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11935. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11936. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11937. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11938. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11939. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11940. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11941. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11942. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11943. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11944. }
  11945. } else if (!is_neox) {
  11946. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11947. const float cos_theta = cache[i0 + 0];
  11948. const float sin_theta = cache[i0 + 1];
  11949. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11950. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11951. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11952. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11953. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11954. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11955. }
  11956. } else {
  11957. // TODO: this might be wrong for ne0 != n_dims - need double check
  11958. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11959. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11960. theta_base *= freq_scale;
  11961. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11962. if (ic < n_dims) {
  11963. const int64_t ib = 0;
  11964. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11965. float cur_rot = inv_ndims * ic - ib;
  11966. float cos_theta, sin_theta;
  11967. rope_yarn(
  11968. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11969. &cos_theta, &sin_theta
  11970. );
  11971. sin_theta *= sin_sign;
  11972. theta_base *= theta_scale;
  11973. const int64_t i0 = ib*n_dims + ic/2;
  11974. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11975. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11976. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11977. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11978. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11979. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11980. } else {
  11981. const int64_t i0 = ic;
  11982. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11983. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11984. dst_data[0] = src[0];
  11985. dst_data[1] = src[1];
  11986. }
  11987. }
  11988. }
  11989. }
  11990. }
  11991. }
  11992. }
  11993. static void ggml_compute_forward_rope(
  11994. const struct ggml_compute_params * params,
  11995. struct ggml_tensor * dst) {
  11996. const struct ggml_tensor * src0 = dst->src[0];
  11997. switch (src0->type) {
  11998. case GGML_TYPE_F16:
  11999. {
  12000. ggml_compute_forward_rope_f16(params, dst, true);
  12001. } break;
  12002. case GGML_TYPE_F32:
  12003. {
  12004. ggml_compute_forward_rope_f32(params, dst, true);
  12005. } break;
  12006. default:
  12007. {
  12008. GGML_ASSERT(false);
  12009. } break;
  12010. }
  12011. }
  12012. // ggml_compute_forward_rope_back
  12013. static void ggml_compute_forward_rope_back(
  12014. const struct ggml_compute_params * params,
  12015. struct ggml_tensor * dst) {
  12016. const struct ggml_tensor * src0 = dst->src[0];
  12017. switch (src0->type) {
  12018. case GGML_TYPE_F16:
  12019. {
  12020. ggml_compute_forward_rope_f16(params, dst, false);
  12021. } break;
  12022. case GGML_TYPE_F32:
  12023. {
  12024. ggml_compute_forward_rope_f32(params, dst, false);
  12025. } break;
  12026. default:
  12027. {
  12028. GGML_ASSERT(false);
  12029. } break;
  12030. }
  12031. }
  12032. // ggml_compute_forward_conv_transpose_1d
  12033. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12034. const struct ggml_compute_params * params,
  12035. struct ggml_tensor * dst) {
  12036. const struct ggml_tensor * src0 = dst->src[0];
  12037. const struct ggml_tensor * src1 = dst->src[1];
  12038. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12039. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12040. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12041. int64_t t0 = ggml_perf_time_us();
  12042. UNUSED(t0);
  12043. GGML_TENSOR_BINARY_OP_LOCALS
  12044. const int ith = params->ith;
  12045. const int nth = params->nth;
  12046. const int nk = ne00*ne01*ne02;
  12047. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12048. GGML_ASSERT(nb10 == sizeof(float));
  12049. if (params->type == GGML_TASK_TYPE_INIT) {
  12050. if (ith != 0) {
  12051. return;
  12052. }
  12053. memset(params->wdata, 0, params->wsize);
  12054. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12055. {
  12056. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12057. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12058. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12059. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12060. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12061. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12062. dst_data[i00*ne02 + i02] = src[i00];
  12063. }
  12064. }
  12065. }
  12066. }
  12067. // permute source data (src1) from (L x Cin) to (Cin x L)
  12068. {
  12069. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12070. ggml_fp16_t * dst_data = wdata;
  12071. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12072. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12073. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12074. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12075. }
  12076. }
  12077. }
  12078. // need to zero dst since we are accumulating into it
  12079. memset(dst->data, 0, ggml_nbytes(dst));
  12080. return;
  12081. }
  12082. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12083. return;
  12084. }
  12085. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12086. // total rows in dst
  12087. const int nr = ne1;
  12088. // rows per thread
  12089. const int dr = (nr + nth - 1)/nth;
  12090. // row range for this thread
  12091. const int ir0 = dr*ith;
  12092. const int ir1 = MIN(ir0 + dr, nr);
  12093. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12094. ggml_fp16_t * const wdata_src = wdata + nk;
  12095. for (int i1 = ir0; i1 < ir1; i1++) {
  12096. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12097. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12098. for (int i10 = 0; i10 < ne10; i10++) {
  12099. const int i1n = i10*ne11;
  12100. for (int i00 = 0; i00 < ne00; i00++) {
  12101. float v = 0;
  12102. ggml_vec_dot_f16(ne02, &v, 0,
  12103. (ggml_fp16_t *) wdata_src + i1n, 0,
  12104. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12105. dst_data[i10*s0 + i00] += v;
  12106. }
  12107. }
  12108. }
  12109. }
  12110. static void ggml_compute_forward_conv_transpose_1d_f32(
  12111. const struct ggml_compute_params * params,
  12112. struct ggml_tensor * dst) {
  12113. const struct ggml_tensor * src0 = dst->src[0];
  12114. const struct ggml_tensor * src1 = dst->src[1];
  12115. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12116. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12117. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12118. int64_t t0 = ggml_perf_time_us();
  12119. UNUSED(t0);
  12120. GGML_TENSOR_BINARY_OP_LOCALS
  12121. const int ith = params->ith;
  12122. const int nth = params->nth;
  12123. const int nk = ne00*ne01*ne02;
  12124. GGML_ASSERT(nb00 == sizeof(float));
  12125. GGML_ASSERT(nb10 == sizeof(float));
  12126. if (params->type == GGML_TASK_TYPE_INIT) {
  12127. if (ith != 0) {
  12128. return;
  12129. }
  12130. memset(params->wdata, 0, params->wsize);
  12131. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12132. {
  12133. float * const wdata = (float *) params->wdata + 0;
  12134. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12135. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12136. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12137. float * dst_data = wdata + i01*ne00*ne02;
  12138. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12139. dst_data[i00*ne02 + i02] = src[i00];
  12140. }
  12141. }
  12142. }
  12143. }
  12144. // prepare source data (src1)
  12145. {
  12146. float * const wdata = (float *) params->wdata + nk;
  12147. float * dst_data = wdata;
  12148. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12149. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12150. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12151. dst_data[i10*ne11 + i11] = src[i10];
  12152. }
  12153. }
  12154. }
  12155. // need to zero dst since we are accumulating into it
  12156. memset(dst->data, 0, ggml_nbytes(dst));
  12157. return;
  12158. }
  12159. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12160. return;
  12161. }
  12162. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12163. // total rows in dst
  12164. const int nr = ne1;
  12165. // rows per thread
  12166. const int dr = (nr + nth - 1)/nth;
  12167. // row range for this thread
  12168. const int ir0 = dr*ith;
  12169. const int ir1 = MIN(ir0 + dr, nr);
  12170. float * const wdata = (float *) params->wdata + 0;
  12171. float * const wdata_src = wdata + nk;
  12172. for (int i1 = ir0; i1 < ir1; i1++) {
  12173. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12174. float * wdata_kernel = wdata + i1*ne02*ne00;
  12175. for (int i10 = 0; i10 < ne10; i10++) {
  12176. const int i1n = i10*ne11;
  12177. for (int i00 = 0; i00 < ne00; i00++) {
  12178. float v = 0;
  12179. ggml_vec_dot_f32(ne02, &v, 0,
  12180. wdata_src + i1n, 0,
  12181. wdata_kernel + i00*ne02, 0, 1);
  12182. dst_data[i10*s0 + i00] += v;
  12183. }
  12184. }
  12185. }
  12186. }
  12187. static void ggml_compute_forward_conv_transpose_1d(
  12188. const struct ggml_compute_params * params,
  12189. struct ggml_tensor * dst) {
  12190. const struct ggml_tensor * src0 = dst->src[0];
  12191. switch (src0->type) {
  12192. case GGML_TYPE_F16:
  12193. {
  12194. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12195. } break;
  12196. case GGML_TYPE_F32:
  12197. {
  12198. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12199. } break;
  12200. default:
  12201. {
  12202. GGML_ASSERT(false);
  12203. } break;
  12204. }
  12205. }
  12206. // src0: kernel [OC, IC, KH, KW]
  12207. // src1: image [N, IC, IH, IW]
  12208. // dst: result [N, OH, OW, IC*KH*KW]
  12209. static void ggml_compute_forward_im2col_f32(
  12210. const struct ggml_compute_params * params,
  12211. struct ggml_tensor * dst) {
  12212. const struct ggml_tensor * src0 = dst->src[0];
  12213. const struct ggml_tensor * src1 = dst->src[1];
  12214. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12215. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12216. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12217. int64_t t0 = ggml_perf_time_us();
  12218. UNUSED(t0);
  12219. GGML_TENSOR_BINARY_OP_LOCALS;
  12220. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12221. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12222. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12223. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12224. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12225. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12226. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12227. const int ith = params->ith;
  12228. const int nth = params->nth;
  12229. const int64_t N = is_2D ? ne13 : ne12;
  12230. const int64_t IC = is_2D ? ne12 : ne11;
  12231. const int64_t IH = is_2D ? ne11 : 1;
  12232. const int64_t IW = ne10;
  12233. const int64_t KH = is_2D ? ne01 : 1;
  12234. const int64_t KW = ne00;
  12235. const int64_t OH = is_2D ? ne2 : 1;
  12236. const int64_t OW = ne1;
  12237. int ofs0 = is_2D ? nb13 : nb12;
  12238. int ofs1 = is_2D ? nb12 : nb11;
  12239. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12240. GGML_ASSERT(nb10 == sizeof(float));
  12241. if (params->type == GGML_TASK_TYPE_INIT) {
  12242. return;
  12243. }
  12244. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12245. return;
  12246. }
  12247. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12248. {
  12249. float * const wdata = (float *) dst->data;
  12250. for (int64_t in = 0; in < N; in++) {
  12251. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12252. for (int64_t iow = 0; iow < OW; iow++) {
  12253. for (int64_t iic = ith; iic < IC; iic += nth) {
  12254. // micro kernel
  12255. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12256. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12257. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12258. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12259. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12260. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12261. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12262. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12263. } else {
  12264. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12265. }
  12266. }
  12267. }
  12268. }
  12269. }
  12270. }
  12271. }
  12272. }
  12273. }
  12274. // src0: kernel [OC, IC, KH, KW]
  12275. // src1: image [N, IC, IH, IW]
  12276. // dst: result [N, OH, OW, IC*KH*KW]
  12277. static void ggml_compute_forward_im2col_f16(
  12278. const struct ggml_compute_params * params,
  12279. struct ggml_tensor * dst) {
  12280. const struct ggml_tensor * src0 = dst->src[0];
  12281. const struct ggml_tensor * src1 = dst->src[1];
  12282. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12283. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12284. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12285. int64_t t0 = ggml_perf_time_us();
  12286. UNUSED(t0);
  12287. GGML_TENSOR_BINARY_OP_LOCALS;
  12288. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12289. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12290. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12291. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12292. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12293. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12294. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12295. const int ith = params->ith;
  12296. const int nth = params->nth;
  12297. const int64_t N = is_2D ? ne13 : ne12;
  12298. const int64_t IC = is_2D ? ne12 : ne11;
  12299. const int64_t IH = is_2D ? ne11 : 1;
  12300. const int64_t IW = ne10;
  12301. const int64_t KH = is_2D ? ne01 : 1;
  12302. const int64_t KW = ne00;
  12303. const int64_t OH = is_2D ? ne2 : 1;
  12304. const int64_t OW = ne1;
  12305. int ofs0 = is_2D ? nb13 : nb12;
  12306. int ofs1 = is_2D ? nb12 : nb11;
  12307. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12308. GGML_ASSERT(nb10 == sizeof(float));
  12309. if (params->type == GGML_TASK_TYPE_INIT) {
  12310. return;
  12311. }
  12312. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12313. return;
  12314. }
  12315. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12316. {
  12317. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12318. for (int64_t in = 0; in < N; in++) {
  12319. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12320. for (int64_t iow = 0; iow < OW; iow++) {
  12321. for (int64_t iic = ith; iic < IC; iic += nth) {
  12322. // micro kernel
  12323. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12324. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12325. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12326. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12327. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12328. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12329. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12330. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12331. } else {
  12332. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12333. }
  12334. }
  12335. }
  12336. }
  12337. }
  12338. }
  12339. }
  12340. }
  12341. }
  12342. static void ggml_compute_forward_im2col(
  12343. const struct ggml_compute_params * params,
  12344. struct ggml_tensor * dst) {
  12345. switch (dst->type) {
  12346. case GGML_TYPE_F16:
  12347. {
  12348. ggml_compute_forward_im2col_f16(params, dst);
  12349. } break;
  12350. case GGML_TYPE_F32:
  12351. {
  12352. ggml_compute_forward_im2col_f32(params, dst);
  12353. } break;
  12354. default:
  12355. {
  12356. GGML_ASSERT(false);
  12357. } break;
  12358. }
  12359. }
  12360. // ggml_compute_forward_conv_transpose_2d
  12361. static void ggml_compute_forward_conv_transpose_2d(
  12362. const struct ggml_compute_params * params,
  12363. struct ggml_tensor * dst) {
  12364. const struct ggml_tensor * src0 = dst->src[0];
  12365. const struct ggml_tensor * src1 = dst->src[1];
  12366. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12367. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12368. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12369. int64_t t0 = ggml_perf_time_us();
  12370. UNUSED(t0);
  12371. GGML_TENSOR_BINARY_OP_LOCALS
  12372. const int ith = params->ith;
  12373. const int nth = params->nth;
  12374. const int nk = ne00*ne01*ne02*ne03;
  12375. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12376. GGML_ASSERT(nb10 == sizeof(float));
  12377. if (params->type == GGML_TASK_TYPE_INIT) {
  12378. if (ith != 0) {
  12379. return;
  12380. }
  12381. memset(params->wdata, 0, params->wsize);
  12382. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12383. {
  12384. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12385. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12386. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12387. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12388. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12389. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12390. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12391. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12392. }
  12393. }
  12394. }
  12395. }
  12396. }
  12397. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12398. {
  12399. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12400. for (int i12 = 0; i12 < ne12; i12++) {
  12401. for (int i11 = 0; i11 < ne11; i11++) {
  12402. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12403. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12404. for (int i10 = 0; i10 < ne10; i10++) {
  12405. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12406. }
  12407. }
  12408. }
  12409. }
  12410. memset(dst->data, 0, ggml_nbytes(dst));
  12411. return;
  12412. }
  12413. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12414. return;
  12415. }
  12416. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12417. // total patches in dst
  12418. const int np = ne2;
  12419. // patches per thread
  12420. const int dp = (np + nth - 1)/nth;
  12421. // patch range for this thread
  12422. const int ip0 = dp*ith;
  12423. const int ip1 = MIN(ip0 + dp, np);
  12424. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12425. ggml_fp16_t * const wdata_src = wdata + nk;
  12426. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12427. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12428. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12429. for (int i11 = 0; i11 < ne11; i11++) {
  12430. for (int i10 = 0; i10 < ne10; i10++) {
  12431. const int i1n = i11*ne10*ne12 + i10*ne12;
  12432. for (int i01 = 0; i01 < ne01; i01++) {
  12433. for (int i00 = 0; i00 < ne00; i00++) {
  12434. float v = 0;
  12435. ggml_vec_dot_f16(ne03, &v, 0,
  12436. wdata_src + i1n, 0,
  12437. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12438. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12439. }
  12440. }
  12441. }
  12442. }
  12443. }
  12444. }
  12445. // ggml_compute_forward_pool_1d_sk_p0
  12446. static void ggml_compute_forward_pool_1d_sk_p0(
  12447. const struct ggml_compute_params * params,
  12448. const enum ggml_op_pool op,
  12449. const int k,
  12450. struct ggml_tensor * dst) {
  12451. const struct ggml_tensor * src = dst->src[0];
  12452. assert(src->type == GGML_TYPE_F32);
  12453. assert(params->ith == 0);
  12454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12455. return;
  12456. }
  12457. const char * cdata = (const char *)src->data;
  12458. const char * const data_end = cdata + ggml_nbytes(src);
  12459. float * drow = (float *)dst->data;
  12460. const int64_t rs = dst->ne[0];
  12461. while (cdata < data_end) {
  12462. const float * const srow = (const float *)cdata;
  12463. int j = 0;
  12464. for (int64_t i = 0; i < rs; ++i) {
  12465. switch (op) {
  12466. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12467. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12468. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12469. }
  12470. for (int ki = 0; ki < k; ++ki) {
  12471. switch (op) {
  12472. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12473. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12474. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12475. }
  12476. ++j;
  12477. }
  12478. switch (op) {
  12479. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12480. case GGML_OP_POOL_MAX: break;
  12481. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12482. }
  12483. }
  12484. cdata += src->nb[1];
  12485. drow += rs;
  12486. }
  12487. }
  12488. // ggml_compute_forward_pool_1d
  12489. static void ggml_compute_forward_pool_1d(
  12490. const struct ggml_compute_params * params,
  12491. struct ggml_tensor * dst) {
  12492. const int32_t * opts = (const int32_t *)dst->op_params;
  12493. enum ggml_op_pool op = opts[0];
  12494. const int k0 = opts[1];
  12495. const int s0 = opts[2];
  12496. const int p0 = opts[3];
  12497. GGML_ASSERT(p0 == 0); // padding not supported
  12498. GGML_ASSERT(k0 == s0); // only s = k supported
  12499. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12500. }
  12501. // ggml_compute_forward_pool_2d
  12502. static void ggml_compute_forward_pool_2d(
  12503. const struct ggml_compute_params * params,
  12504. struct ggml_tensor * dst) {
  12505. const struct ggml_tensor * src = dst->src[0];
  12506. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12507. GGML_ASSERT(params->ith == 0);
  12508. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12509. return;
  12510. }
  12511. const int32_t * opts = (const int32_t *)dst->op_params;
  12512. enum ggml_op_pool op = opts[0];
  12513. const int k0 = opts[1];
  12514. const int k1 = opts[2];
  12515. const int s0 = opts[3];
  12516. const int s1 = opts[4];
  12517. const int p0 = opts[5];
  12518. const int p1 = opts[6];
  12519. const char * cdata = (const char*)src->data;
  12520. const char * const data_end = cdata + ggml_nbytes(src);
  12521. const int64_t px = dst->ne[0];
  12522. const int64_t py = dst->ne[1];
  12523. const int64_t pa = px * py;
  12524. float * dplane = (float *)dst->data;
  12525. const int ka = k0 * k1;
  12526. const int offset0 = -p0;
  12527. const int offset1 = -p1;
  12528. while (cdata < data_end) {
  12529. for (int oy = 0; oy < py; ++oy) {
  12530. float * const drow = dplane + oy * px;
  12531. for (int ox = 0; ox < px; ++ox) {
  12532. float * const out = drow + ox;
  12533. switch (op) {
  12534. case GGML_OP_POOL_AVG: *out = 0; break;
  12535. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12536. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12537. }
  12538. const int ix = offset0 + ox * s0;
  12539. const int iy = offset1 + oy * s1;
  12540. for (int ky = 0; ky < k1; ++ky) {
  12541. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12542. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12543. for (int kx = 0; kx < k0; ++kx) {
  12544. int j = ix + kx;
  12545. if (j < 0 || j >= src->ne[0]) continue;
  12546. switch (op) {
  12547. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12548. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12549. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12550. }
  12551. }
  12552. }
  12553. switch (op) {
  12554. case GGML_OP_POOL_AVG: *out /= ka; break;
  12555. case GGML_OP_POOL_MAX: break;
  12556. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12557. }
  12558. }
  12559. }
  12560. cdata += src->nb[2];
  12561. dplane += pa;
  12562. }
  12563. }
  12564. // ggml_compute_forward_upscale
  12565. static void ggml_compute_forward_upscale_f32(
  12566. const struct ggml_compute_params * params,
  12567. struct ggml_tensor * dst) {
  12568. const struct ggml_tensor * src0 = dst->src[0];
  12569. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12570. return;
  12571. }
  12572. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12573. const int ith = params->ith;
  12574. const int nth = params->nth;
  12575. GGML_TENSOR_UNARY_OP_LOCALS
  12576. const float sf0 = (float)ne0/src0->ne[0];
  12577. const float sf1 = (float)ne1/src0->ne[1];
  12578. const float sf2 = (float)ne2/src0->ne[2];
  12579. const float sf3 = (float)ne3/src0->ne[3];
  12580. // TODO: optimize
  12581. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12582. const int64_t i03 = i3 / sf3;
  12583. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12584. const int64_t i02 = i2 / sf2;
  12585. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12586. const int64_t i01 = i1 / sf1;
  12587. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12588. const int64_t i00 = i0 / sf0;
  12589. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12590. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12591. *y = *x;
  12592. }
  12593. }
  12594. }
  12595. }
  12596. }
  12597. static void ggml_compute_forward_upscale(
  12598. const struct ggml_compute_params * params,
  12599. struct ggml_tensor * dst) {
  12600. const struct ggml_tensor * src0 = dst->src[0];
  12601. switch (src0->type) {
  12602. case GGML_TYPE_F32:
  12603. {
  12604. ggml_compute_forward_upscale_f32(params, dst);
  12605. } break;
  12606. default:
  12607. {
  12608. GGML_ASSERT(false);
  12609. } break;
  12610. }
  12611. }
  12612. // ggml_compute_forward_pad
  12613. static void ggml_compute_forward_pad_f32(
  12614. const struct ggml_compute_params * params,
  12615. struct ggml_tensor * dst) {
  12616. const struct ggml_tensor * src0 = dst->src[0];
  12617. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12618. return;
  12619. }
  12620. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12621. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12622. const int ith = params->ith;
  12623. const int nth = params->nth;
  12624. GGML_TENSOR_UNARY_OP_LOCALS
  12625. float * dst_ptr = (float *) dst->data;
  12626. // TODO: optimize
  12627. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12628. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12629. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12630. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12631. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12632. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12633. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12634. dst_ptr[dst_idx] = *src_ptr;
  12635. } else {
  12636. dst_ptr[dst_idx] = 0;
  12637. }
  12638. }
  12639. }
  12640. }
  12641. }
  12642. }
  12643. static void ggml_compute_forward_pad(
  12644. const struct ggml_compute_params * params,
  12645. struct ggml_tensor * dst) {
  12646. const struct ggml_tensor * src0 = dst->src[0];
  12647. switch (src0->type) {
  12648. case GGML_TYPE_F32:
  12649. {
  12650. ggml_compute_forward_pad_f32(params, dst);
  12651. } break;
  12652. default:
  12653. {
  12654. GGML_ASSERT(false);
  12655. } break;
  12656. }
  12657. }
  12658. // ggml_compute_forward_arange
  12659. static void ggml_compute_forward_arange_f32(
  12660. const struct ggml_compute_params * params,
  12661. struct ggml_tensor * dst) {
  12662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12663. return;
  12664. }
  12665. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12666. const int ith = params->ith;
  12667. const int nth = params->nth;
  12668. const float start = ggml_get_op_params_f32(dst, 0);
  12669. const float stop = ggml_get_op_params_f32(dst, 1);
  12670. const float step = ggml_get_op_params_f32(dst, 2);
  12671. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12672. GGML_ASSERT(ggml_nelements(dst) == steps);
  12673. for (int64_t i = ith; i < steps; i+= nth) {
  12674. float value = start + step * i;
  12675. ((float *)dst->data)[i] = value;
  12676. }
  12677. }
  12678. static void ggml_compute_forward_arange(
  12679. const struct ggml_compute_params * params,
  12680. struct ggml_tensor * dst) {
  12681. switch (dst->type) {
  12682. case GGML_TYPE_F32:
  12683. {
  12684. ggml_compute_forward_arange_f32(params, dst);
  12685. } break;
  12686. default:
  12687. {
  12688. GGML_ASSERT(false);
  12689. } break;
  12690. }
  12691. }
  12692. static void ggml_compute_forward_timestep_embedding_f32(
  12693. const struct ggml_compute_params * params,
  12694. struct ggml_tensor * dst) {
  12695. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12696. return;
  12697. }
  12698. const struct ggml_tensor * src0 = dst->src[0];
  12699. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12700. const int ith = params->ith;
  12701. const int nth = params->nth;
  12702. GGML_TENSOR_UNARY_OP_LOCALS
  12703. const int dim = ggml_get_op_params_i32(dst, 0);
  12704. const int max_period = ggml_get_op_params_i32(dst, 1);
  12705. int half = dim / 2;
  12706. for (int64_t i = 0; i < ne00; i++) {
  12707. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12708. for (int64_t j = ith; j < half; j += nth) {
  12709. float timestep = ((float *)src0->data)[i];
  12710. float freq = (float)expf(-logf(max_period) * j / half);
  12711. float arg = timestep * freq;
  12712. embed_data[j] = cosf(arg);
  12713. embed_data[j + half] = sinf(arg);
  12714. }
  12715. if (dim % 2 != 0 && ith == 0) {
  12716. embed_data[dim] = 0.f;
  12717. }
  12718. }
  12719. }
  12720. static void ggml_compute_forward_timestep_embedding(
  12721. const struct ggml_compute_params * params,
  12722. struct ggml_tensor * dst) {
  12723. const struct ggml_tensor * src0 = dst->src[0];
  12724. switch (src0->type) {
  12725. case GGML_TYPE_F32:
  12726. {
  12727. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12728. } break;
  12729. default:
  12730. {
  12731. GGML_ASSERT(false);
  12732. } break;
  12733. }
  12734. }
  12735. // ggml_compute_forward_argsort
  12736. static void ggml_compute_forward_argsort_f32(
  12737. const struct ggml_compute_params * params,
  12738. struct ggml_tensor * dst) {
  12739. const struct ggml_tensor * src0 = dst->src[0];
  12740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12741. return;
  12742. }
  12743. GGML_TENSOR_UNARY_OP_LOCALS
  12744. GGML_ASSERT(nb0 == sizeof(float));
  12745. const int ith = params->ith;
  12746. const int nth = params->nth;
  12747. const int64_t nr = ggml_nrows(src0);
  12748. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12749. for (int64_t i = ith; i < nr; i += nth) {
  12750. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12751. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12752. for (int64_t j = 0; j < ne0; j++) {
  12753. dst_data[j] = j;
  12754. }
  12755. // C doesn't have a functional sort, so we do a bubble sort instead
  12756. for (int64_t j = 0; j < ne0; j++) {
  12757. for (int64_t k = j + 1; k < ne0; k++) {
  12758. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12759. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12760. int32_t tmp = dst_data[j];
  12761. dst_data[j] = dst_data[k];
  12762. dst_data[k] = tmp;
  12763. }
  12764. }
  12765. }
  12766. }
  12767. }
  12768. static void ggml_compute_forward_argsort(
  12769. const struct ggml_compute_params * params,
  12770. struct ggml_tensor * dst) {
  12771. const struct ggml_tensor * src0 = dst->src[0];
  12772. switch (src0->type) {
  12773. case GGML_TYPE_F32:
  12774. {
  12775. ggml_compute_forward_argsort_f32(params, dst);
  12776. } break;
  12777. default:
  12778. {
  12779. GGML_ASSERT(false);
  12780. } break;
  12781. }
  12782. }
  12783. // ggml_compute_forward_flash_attn
  12784. static void ggml_compute_forward_flash_attn_f32(
  12785. const struct ggml_compute_params * params,
  12786. const bool masked,
  12787. struct ggml_tensor * dst) {
  12788. const struct ggml_tensor * q = dst->src[0];
  12789. const struct ggml_tensor * k = dst->src[1];
  12790. const struct ggml_tensor * v = dst->src[2];
  12791. int64_t t0 = ggml_perf_time_us();
  12792. UNUSED(t0);
  12793. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12794. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12795. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12796. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12797. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12798. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12799. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12800. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12801. const int ith = params->ith;
  12802. const int nth = params->nth;
  12803. const int64_t D = neq0;
  12804. const int64_t N = neq1;
  12805. const int64_t P = nek1 - N;
  12806. const int64_t M = P + N;
  12807. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12808. GGML_ASSERT(ne0 == D);
  12809. GGML_ASSERT(ne1 == N);
  12810. GGML_ASSERT(P >= 0);
  12811. GGML_ASSERT(nbq0 == sizeof(float));
  12812. GGML_ASSERT(nbk0 == sizeof(float));
  12813. GGML_ASSERT(nbv0 == sizeof(float));
  12814. GGML_ASSERT(neq0 == D);
  12815. GGML_ASSERT(nek0 == D);
  12816. GGML_ASSERT(nev1 == D);
  12817. GGML_ASSERT(neq1 == N);
  12818. GGML_ASSERT(nek1 == N + P);
  12819. GGML_ASSERT(nev1 == D);
  12820. // dst cannot be transposed or permuted
  12821. GGML_ASSERT(nb0 == sizeof(float));
  12822. GGML_ASSERT(nb0 <= nb1);
  12823. GGML_ASSERT(nb1 <= nb2);
  12824. GGML_ASSERT(nb2 <= nb3);
  12825. if (params->type == GGML_TASK_TYPE_INIT) {
  12826. return;
  12827. }
  12828. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12829. return;
  12830. }
  12831. // parallelize by q rows using ggml_vec_dot_f32
  12832. // total rows in q
  12833. const int nr = neq1*neq2*neq3;
  12834. // rows per thread
  12835. const int dr = (nr + nth - 1)/nth;
  12836. // row range for this thread
  12837. const int ir0 = dr*ith;
  12838. const int ir1 = MIN(ir0 + dr, nr);
  12839. const float scale = 1.0f/sqrtf(D);
  12840. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12841. for (int ir = ir0; ir < ir1; ++ir) {
  12842. // q indices
  12843. const int iq3 = ir/(neq2*neq1);
  12844. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12845. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12846. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12847. for (int i = M; i < Mup; ++i) {
  12848. S[i] = -INFINITY;
  12849. }
  12850. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12851. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12852. // k indices
  12853. const int ik3 = iq3;
  12854. const int ik2 = iq2 % nek2;
  12855. const int ik1 = ic;
  12856. // S indices
  12857. const int i1 = ik1;
  12858. ggml_vec_dot_f32(neq0,
  12859. S + i1, 0,
  12860. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12861. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12862. }
  12863. // scale
  12864. ggml_vec_scale_f32(masked_begin, S, scale);
  12865. for (int64_t i = masked_begin; i < M; i++) {
  12866. S[i] = -INFINITY;
  12867. }
  12868. // softmax
  12869. // exclude known -INF S[..] values from max and loop
  12870. // dont forget to set their SW values to zero
  12871. {
  12872. float max = -INFINITY;
  12873. ggml_vec_max_f32(masked_begin, &max, S);
  12874. ggml_float sum = 0.0;
  12875. {
  12876. #ifdef GGML_SOFT_MAX_ACCELERATE
  12877. max = -max;
  12878. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12879. vvexpf(S, S, &Mup);
  12880. ggml_vec_sum_f32(Mup, &sum, S);
  12881. #else
  12882. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12883. #endif
  12884. }
  12885. assert(sum > 0.0);
  12886. sum = 1.0/sum;
  12887. ggml_vec_scale_f32(masked_begin, S, sum);
  12888. #ifndef NDEBUG
  12889. for (int i = 0; i < masked_begin; ++i) {
  12890. assert(!isnan(S[i]));
  12891. assert(!isinf(S[i]));
  12892. }
  12893. #endif
  12894. }
  12895. for (int64_t ic = 0; ic < nev1; ++ic) {
  12896. // dst indices
  12897. const int i1 = iq1;
  12898. const int i2 = iq2;
  12899. const int i3 = iq3;
  12900. // v indices
  12901. const int iv2 = iq2 % nev2;
  12902. const int iv3 = iq3;
  12903. ggml_vec_dot_f32(masked_begin,
  12904. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12905. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12906. S, 0, 1);
  12907. }
  12908. }
  12909. }
  12910. static void ggml_compute_forward_flash_attn_f16(
  12911. const struct ggml_compute_params * params,
  12912. const bool masked,
  12913. struct ggml_tensor * dst) {
  12914. const struct ggml_tensor * q = dst->src[0];
  12915. const struct ggml_tensor * k = dst->src[1];
  12916. const struct ggml_tensor * v = dst->src[2];
  12917. int64_t t0 = ggml_perf_time_us();
  12918. UNUSED(t0);
  12919. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12920. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12921. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12922. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12923. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12924. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12925. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12926. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12927. const int ith = params->ith;
  12928. const int nth = params->nth;
  12929. const int64_t D = neq0;
  12930. const int64_t N = neq1;
  12931. const int64_t P = nek1 - N;
  12932. const int64_t M = P + N;
  12933. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12934. GGML_ASSERT(ne0 == D);
  12935. GGML_ASSERT(ne1 == N);
  12936. GGML_ASSERT(P >= 0);
  12937. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12938. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12939. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12940. GGML_ASSERT(neq0 == D);
  12941. GGML_ASSERT(nek0 == D);
  12942. GGML_ASSERT(nev1 == D);
  12943. GGML_ASSERT(neq1 == N);
  12944. GGML_ASSERT(nek1 == N + P);
  12945. GGML_ASSERT(nev1 == D);
  12946. // dst cannot be transposed or permuted
  12947. GGML_ASSERT(nb0 == sizeof(float));
  12948. GGML_ASSERT(nb0 <= nb1);
  12949. GGML_ASSERT(nb1 <= nb2);
  12950. GGML_ASSERT(nb2 <= nb3);
  12951. if (params->type == GGML_TASK_TYPE_INIT) {
  12952. return;
  12953. }
  12954. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12955. return;
  12956. }
  12957. // parallelize by q rows using ggml_vec_dot_f32
  12958. // total rows in q
  12959. const int nr = neq1*neq2*neq3;
  12960. // rows per thread
  12961. const int dr = (nr + nth - 1)/nth;
  12962. // row range for this thread
  12963. const int ir0 = dr*ith;
  12964. const int ir1 = MIN(ir0 + dr, nr);
  12965. const float scale = 1.0f/sqrtf(D);
  12966. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12967. for (int ir = ir0; ir < ir1; ++ir) {
  12968. // q indices
  12969. const int iq3 = ir/(neq2*neq1);
  12970. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12971. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12972. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12973. for (int i = M; i < Mup; ++i) {
  12974. S[i] = -INFINITY;
  12975. }
  12976. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12977. for (int64_t ic = 0; ic < nek1; ++ic) {
  12978. // k indices
  12979. const int ik3 = iq3;
  12980. const int ik2 = iq2 % nek2;
  12981. const int ik1 = ic;
  12982. // S indices
  12983. const int i1 = ik1;
  12984. ggml_vec_dot_f16(neq0,
  12985. S + i1, 0,
  12986. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12987. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12988. }
  12989. } else {
  12990. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12991. // k indices
  12992. const int ik3 = iq3;
  12993. const int ik2 = iq2 % nek2;
  12994. const int ik1 = ic;
  12995. // S indices
  12996. const int i1 = ik1;
  12997. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12998. S + i1,
  12999. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13000. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  13001. }
  13002. }
  13003. // scale
  13004. ggml_vec_scale_f32(nek1, S, scale);
  13005. if (masked) {
  13006. for (int64_t i = P; i < M; i++) {
  13007. if (i > P + iq1) {
  13008. S[i] = -INFINITY;
  13009. }
  13010. }
  13011. }
  13012. // softmax
  13013. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  13014. // dont forget to set their S values to zero
  13015. {
  13016. float max = -INFINITY;
  13017. ggml_vec_max_f32(M, &max, S);
  13018. ggml_float sum = 0.0;
  13019. {
  13020. #ifdef GGML_SOFT_MAX_ACCELERATE
  13021. max = -max;
  13022. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  13023. vvexpf(S, S, &Mup);
  13024. ggml_vec_sum_f32(Mup, &sum, S);
  13025. #else
  13026. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  13027. #endif
  13028. }
  13029. assert(sum > 0.0);
  13030. sum = 1.0/sum;
  13031. ggml_vec_scale_f32(M, S, sum);
  13032. #ifndef NDEBUG
  13033. for (int i = 0; i < M; ++i) {
  13034. assert(!isnan(S[i]));
  13035. assert(!isinf(S[i]));
  13036. }
  13037. #endif
  13038. }
  13039. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  13040. for (int64_t i = 0; i < M; i++) {
  13041. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13042. }
  13043. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  13044. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  13045. for (int64_t ic = 0; ic < nev1; ++ic) {
  13046. // dst indices
  13047. const int i1 = iq1;
  13048. const int i2 = iq2;
  13049. const int i3 = iq3;
  13050. // v indices
  13051. const int iv2 = iq2 % nev2;
  13052. const int iv3 = iq3;
  13053. ggml_vec_dot_f16(nev0,
  13054. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13055. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  13056. S16, 0, 1);
  13057. }
  13058. } else {
  13059. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  13060. // dst indices
  13061. const int i1 = iq1;
  13062. const int i2 = iq2;
  13063. const int i3 = iq3;
  13064. // v indices
  13065. const int iv2 = iq2 % nev2;
  13066. const int iv3 = iq3;
  13067. ggml_vec_dot_f16_unroll(nev0, nbv1,
  13068. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  13069. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13070. S16);
  13071. }
  13072. }
  13073. }
  13074. }
  13075. static void ggml_compute_forward_flash_attn(
  13076. const struct ggml_compute_params * params,
  13077. const bool masked,
  13078. struct ggml_tensor * dst) {
  13079. const struct ggml_tensor * q = dst->src[0];
  13080. switch (q->type) {
  13081. case GGML_TYPE_F16:
  13082. {
  13083. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  13084. } break;
  13085. case GGML_TYPE_F32:
  13086. {
  13087. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  13088. } break;
  13089. default:
  13090. {
  13091. GGML_ASSERT(false);
  13092. } break;
  13093. }
  13094. }
  13095. // ggml_compute_forward_flash_attn_ext
  13096. static void ggml_compute_forward_flash_attn_ext_f16(
  13097. const struct ggml_compute_params * params,
  13098. const struct ggml_tensor * q,
  13099. const struct ggml_tensor * k,
  13100. const struct ggml_tensor * v,
  13101. const struct ggml_tensor * mask,
  13102. struct ggml_tensor * dst) {
  13103. int64_t t0 = ggml_perf_time_us();
  13104. UNUSED(t0);
  13105. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13106. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13107. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13108. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13109. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13110. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13111. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13112. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13113. const int ith = params->ith;
  13114. const int nth = params->nth;
  13115. const int64_t D = neq0;
  13116. const int64_t N = neq1;
  13117. GGML_ASSERT(ne0 == D);
  13118. GGML_ASSERT(ne2 == N);
  13119. // input tensor rows must be contiguous
  13120. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  13121. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  13122. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  13123. GGML_ASSERT(neq0 == D);
  13124. GGML_ASSERT(nek0 == D);
  13125. GGML_ASSERT(nev0 == D);
  13126. GGML_ASSERT(neq1 == N);
  13127. GGML_ASSERT(nev0 == D);
  13128. // dst cannot be transposed or permuted
  13129. GGML_ASSERT(nb0 == sizeof(float));
  13130. GGML_ASSERT(nb0 <= nb1);
  13131. GGML_ASSERT(nb1 <= nb2);
  13132. GGML_ASSERT(nb2 <= nb3);
  13133. // broadcast factors
  13134. const int64_t rk2 = neq2/nek2;
  13135. const int64_t rk3 = neq3/nek3;
  13136. const int64_t rv2 = neq2/nev2;
  13137. const int64_t rv3 = neq3/nev3;
  13138. if (params->type == GGML_TASK_TYPE_INIT) {
  13139. return;
  13140. }
  13141. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13142. return;
  13143. }
  13144. // parallelize by q rows using ggml_vec_dot_f32
  13145. // total rows in q
  13146. const int nr = neq1*neq2*neq3;
  13147. // rows per thread
  13148. const int dr = (nr + nth - 1)/nth;
  13149. // row range for this thread
  13150. const int ir0 = dr*ith;
  13151. const int ir1 = MIN(ir0 + dr, nr);
  13152. float scale = 1.0f;
  13153. float max_bias = 0.0f;
  13154. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  13155. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  13156. const uint32_t n_head = neq2;
  13157. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  13158. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  13159. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  13160. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  13161. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  13162. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  13163. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  13164. // loop over n_batch and n_head
  13165. for (int ir = ir0; ir < ir1; ++ir) {
  13166. // q indices
  13167. const int iq3 = ir/(neq2*neq1);
  13168. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  13169. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  13170. const uint32_t h = iq2; // head index
  13171. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  13172. float S = 0.0f; // sum
  13173. float M = -INFINITY; // maximum KQ value
  13174. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  13175. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  13176. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  13177. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  13178. if (v->type == GGML_TYPE_F16) {
  13179. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  13180. } else {
  13181. memset(VKQ32, 0, D*sizeof(float));
  13182. }
  13183. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  13184. // k indices
  13185. const int ik3 = iq3 / rk3;
  13186. const int ik2 = iq2 / rk2;
  13187. // v indices
  13188. const int iv3 = iq3 / rv3;
  13189. const int iv2 = iq2 / rv2;
  13190. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  13191. q_to_vec_dot(pq, Q_q, D);
  13192. // online softmax / attention
  13193. // loop over n_kv and n_head_kv
  13194. // ref: https://arxiv.org/pdf/2112.05682.pdf
  13195. for (int64_t ic = 0; ic < nek1; ++ic) {
  13196. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  13197. if (mv == -INFINITY) {
  13198. continue;
  13199. }
  13200. float s; // KQ value
  13201. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  13202. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  13203. s = s*scale + mv; // scale KQ value and apply mask
  13204. const float Mold = M;
  13205. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  13206. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  13207. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13208. if (v->type== GGML_TYPE_F16) {
  13209. if (s > M) {
  13210. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13211. M = s;
  13212. ms = expf(Mold - M);
  13213. // V = V*expf(Mold - M)
  13214. ggml_vec_scale_f16(D, VKQ16, ms);
  13215. } else {
  13216. // no new maximum, ms == 1.0f, vs != 1.0f
  13217. vs = expf(s - M);
  13218. }
  13219. // V += v*expf(s - M)
  13220. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  13221. } else {
  13222. if (s > M) {
  13223. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13224. M = s;
  13225. ms = expf(Mold - M);
  13226. // V = V*expf(Mold - M)
  13227. ggml_vec_scale_f32(D, VKQ32, ms);
  13228. } else {
  13229. // no new maximum, ms == 1.0f, vs != 1.0f
  13230. vs = expf(s - M);
  13231. }
  13232. v_to_float(v_data, V32, D);
  13233. // V += v*expf(s - M)
  13234. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  13235. }
  13236. S = S*ms + vs; // scale and increment sum with partial sum
  13237. }
  13238. if (v->type == GGML_TYPE_F16) {
  13239. for (int64_t d = 0; d < D; ++d) {
  13240. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  13241. }
  13242. }
  13243. // V /= S
  13244. const float S_inv = 1.0f/S;
  13245. ggml_vec_scale_f32(D, VKQ32, S_inv);
  13246. // dst indices
  13247. const int i1 = iq1;
  13248. const int i2 = iq2;
  13249. const int i3 = iq3;
  13250. // original
  13251. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13252. // permute(0, 2, 1, 3)
  13253. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  13254. }
  13255. }
  13256. static void ggml_compute_forward_flash_attn_ext(
  13257. const struct ggml_compute_params * params,
  13258. const struct ggml_tensor * q,
  13259. const struct ggml_tensor * k,
  13260. const struct ggml_tensor * v,
  13261. const struct ggml_tensor * mask,
  13262. struct ggml_tensor * dst) {
  13263. switch (dst->op_params[2]) {
  13264. case GGML_PREC_DEFAULT:
  13265. case GGML_PREC_F32:
  13266. {
  13267. // uses F32 accumulators
  13268. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13269. } break;
  13270. default:
  13271. {
  13272. GGML_ASSERT(false);
  13273. } break;
  13274. }
  13275. }
  13276. // ggml_compute_forward_flash_ff
  13277. static void ggml_compute_forward_flash_ff_f16(
  13278. const struct ggml_compute_params * params,
  13279. struct ggml_tensor * dst) {
  13280. const struct ggml_tensor * a = dst->src[0]; // F16
  13281. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  13282. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  13283. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  13284. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  13285. int64_t t0 = ggml_perf_time_us();
  13286. UNUSED(t0);
  13287. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  13288. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  13289. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  13290. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  13291. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  13292. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  13293. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  13294. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  13295. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  13296. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  13297. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13298. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13299. const int ith = params->ith;
  13300. const int nth = params->nth;
  13301. const int64_t D = nea0;
  13302. //const int64_t N = nea1;
  13303. const int64_t M = neb01;
  13304. GGML_ASSERT(ne0 == nea0);
  13305. GGML_ASSERT(ne1 == nea1);
  13306. GGML_ASSERT(ne2 == nea2);
  13307. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  13308. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  13309. GGML_ASSERT(nbb10 == sizeof(float));
  13310. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  13311. GGML_ASSERT(nbc10 == sizeof(float));
  13312. GGML_ASSERT(neb00 == D);
  13313. GGML_ASSERT(neb01 == M);
  13314. GGML_ASSERT(neb10 == M);
  13315. GGML_ASSERT(neb11 == 1);
  13316. GGML_ASSERT(nec00 == M);
  13317. GGML_ASSERT(nec01 == D);
  13318. GGML_ASSERT(nec10 == D);
  13319. GGML_ASSERT(nec11 == 1);
  13320. // dst cannot be transposed or permuted
  13321. GGML_ASSERT(nb0 == sizeof(float));
  13322. GGML_ASSERT(nb0 <= nb1);
  13323. GGML_ASSERT(nb1 <= nb2);
  13324. GGML_ASSERT(nb2 <= nb3);
  13325. if (params->type == GGML_TASK_TYPE_INIT) {
  13326. return;
  13327. }
  13328. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13329. return;
  13330. }
  13331. // parallelize by a rows using ggml_vec_dot_f32
  13332. // total rows in a
  13333. const int nr = nea1*nea2*nea3;
  13334. // rows per thread
  13335. const int dr = (nr + nth - 1)/nth;
  13336. // row range for this thread
  13337. const int ir0 = dr*ith;
  13338. const int ir1 = MIN(ir0 + dr, nr);
  13339. for (int ir = ir0; ir < ir1; ++ir) {
  13340. // a indices
  13341. const int ia3 = ir/(nea2*nea1);
  13342. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  13343. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  13344. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  13345. for (int64_t ic = 0; ic < neb01; ++ic) {
  13346. // b0 indices
  13347. const int ib03 = ia3;
  13348. const int ib02 = ia2;
  13349. const int ib01 = ic;
  13350. // S indices
  13351. const int i1 = ib01;
  13352. ggml_vec_dot_f16(nea0,
  13353. S + i1, 0,
  13354. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  13355. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  13356. }
  13357. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  13358. //ggml_vec_gelu_f32(neb01, S, S);
  13359. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  13360. for (int64_t i = 0; i < M; i++) {
  13361. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13362. }
  13363. ggml_vec_gelu_f16(neb01, S16, S16);
  13364. {
  13365. // dst indices
  13366. const int i1 = ia1;
  13367. const int i2 = ia2;
  13368. const int i3 = ia3;
  13369. for (int64_t ic = 0; ic < nec01; ++ic) {
  13370. ggml_vec_dot_f16(neb01,
  13371. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13372. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  13373. S16, 0, 1);
  13374. }
  13375. ggml_vec_add_f32(nec01,
  13376. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13377. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13378. (float *) c1->data);
  13379. }
  13380. }
  13381. }
  13382. static void ggml_compute_forward_flash_ff(
  13383. const struct ggml_compute_params * params,
  13384. struct ggml_tensor * dst) {
  13385. const struct ggml_tensor * b0 = dst->src[1];
  13386. switch (b0->type) {
  13387. case GGML_TYPE_F16:
  13388. {
  13389. ggml_compute_forward_flash_ff_f16(params, dst);
  13390. } break;
  13391. case GGML_TYPE_F32:
  13392. {
  13393. GGML_ASSERT(false); // TODO
  13394. } break;
  13395. default:
  13396. {
  13397. GGML_ASSERT(false);
  13398. } break;
  13399. }
  13400. }
  13401. // ggml_compute_forward_flash_attn_back
  13402. static void ggml_compute_forward_flash_attn_back_f32(
  13403. const struct ggml_compute_params * params,
  13404. const bool masked,
  13405. struct ggml_tensor * dst) {
  13406. const struct ggml_tensor * q = dst->src[0];
  13407. const struct ggml_tensor * k = dst->src[1];
  13408. const struct ggml_tensor * v = dst->src[2];
  13409. const struct ggml_tensor * d = dst->src[3];
  13410. int64_t t0 = ggml_perf_time_us();
  13411. UNUSED(t0);
  13412. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13413. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13414. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13415. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13416. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13417. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13418. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13419. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13420. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13421. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13422. const int ith = params->ith;
  13423. const int nth = params->nth;
  13424. const int64_t D = neq0;
  13425. const int64_t N = neq1;
  13426. const int64_t P = nek1 - N;
  13427. const int64_t M = P + N;
  13428. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13429. const int mxDM = MAX(D, Mup);
  13430. // GGML_ASSERT(ne0 == D);
  13431. // GGML_ASSERT(ne1 == N);
  13432. GGML_ASSERT(P >= 0);
  13433. GGML_ASSERT(nbq0 == sizeof(float));
  13434. GGML_ASSERT(nbk0 == sizeof(float));
  13435. GGML_ASSERT(nbv0 == sizeof(float));
  13436. GGML_ASSERT(neq0 == D);
  13437. GGML_ASSERT(nek0 == D);
  13438. GGML_ASSERT(nev1 == D);
  13439. GGML_ASSERT(ned0 == D);
  13440. GGML_ASSERT(neq1 == N);
  13441. GGML_ASSERT(nek1 == N + P);
  13442. GGML_ASSERT(nev1 == D);
  13443. GGML_ASSERT(ned1 == N);
  13444. // dst cannot be transposed or permuted
  13445. GGML_ASSERT(nb0 == sizeof(float));
  13446. GGML_ASSERT(nb0 <= nb1);
  13447. GGML_ASSERT(nb1 <= nb2);
  13448. GGML_ASSERT(nb2 <= nb3);
  13449. if (params->type == GGML_TASK_TYPE_INIT) {
  13450. if (ith == 0) {
  13451. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13452. }
  13453. return;
  13454. }
  13455. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13456. return;
  13457. }
  13458. const int64_t elem_q = ggml_nelements(q);
  13459. const int64_t elem_k = ggml_nelements(k);
  13460. enum ggml_type result_type = dst->type;
  13461. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13462. const size_t tsize = ggml_type_size(result_type);
  13463. const size_t offs_q = 0;
  13464. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13465. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13466. void * grad_q = (char *) dst->data;
  13467. void * grad_k = (char *) dst->data + offs_k;
  13468. void * grad_v = (char *) dst->data + offs_v;
  13469. const size_t nbgq1 = nb0*neq0;
  13470. const size_t nbgq2 = nb0*neq0*neq1;
  13471. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13472. const size_t nbgk1 = nb0*nek0;
  13473. const size_t nbgk2 = nb0*nek0*nek1;
  13474. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13475. const size_t nbgv1 = nb0*nev0;
  13476. const size_t nbgv2 = nb0*nev0*nev1;
  13477. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13478. // parallelize by k rows using ggml_vec_dot_f32
  13479. // total rows in k
  13480. const int nr = nek2*nek3;
  13481. // rows per thread
  13482. const int dr = (nr + nth - 1)/nth;
  13483. // row range for this thread
  13484. const int ir0 = dr*ith;
  13485. const int ir1 = MIN(ir0 + dr, nr);
  13486. const float scale = 1.0f/sqrtf(D);
  13487. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13488. // how often k2 (and v2) is repeated in q2
  13489. int nrep = neq2/nek2;
  13490. for (int ir = ir0; ir < ir1; ++ir) {
  13491. // q indices
  13492. const int ik3 = ir/(nek2);
  13493. const int ik2 = ir - ik3*nek2;
  13494. const int iq3 = ik3;
  13495. const int id3 = ik3;
  13496. const int iv3 = ik3;
  13497. const int iv2 = ik2;
  13498. for (int irep = 0; irep < nrep; ++irep) {
  13499. const int iq2 = ik2 + irep*nek2;
  13500. const int id2 = iq2;
  13501. // (ik2 + irep*nek2) % nek2 == ik2
  13502. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13503. const int id1 = iq1;
  13504. // not sure about CACHE_LINE_SIZE_F32..
  13505. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13506. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13507. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13508. for (int i = M; i < Mup; ++i) {
  13509. S[i] = -INFINITY;
  13510. }
  13511. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13512. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13513. // k indices
  13514. const int ik1 = ic;
  13515. // S indices
  13516. const int i1 = ik1;
  13517. ggml_vec_dot_f32(neq0,
  13518. S + i1, 0,
  13519. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13520. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13521. }
  13522. // scale
  13523. ggml_vec_scale_f32(masked_begin, S, scale);
  13524. for (int64_t i = masked_begin; i < M; i++) {
  13525. S[i] = -INFINITY;
  13526. }
  13527. // softmax
  13528. // exclude known -INF S[..] values from max and loop
  13529. // dont forget to set their SM values to zero
  13530. {
  13531. float max = -INFINITY;
  13532. ggml_vec_max_f32(masked_begin, &max, S);
  13533. ggml_float sum = 0.0;
  13534. {
  13535. #ifdef GGML_SOFT_MAX_ACCELERATE
  13536. max = -max;
  13537. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13538. vvexpf(SM, SM, &Mup);
  13539. ggml_vec_sum_f32(Mup, &sum, SM);
  13540. #else
  13541. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13542. #endif
  13543. }
  13544. assert(sum > 0.0);
  13545. sum = 1.0/sum;
  13546. ggml_vec_scale_f32(masked_begin, SM, sum);
  13547. }
  13548. // step-by-step explanation
  13549. {
  13550. // forward-process shape grads from backward process
  13551. // parallel_for ik2,ik3:
  13552. // for irep:
  13553. // iq2 = ik2 + irep*nek2
  13554. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13555. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13556. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13557. // for iq1:
  13558. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13559. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13560. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13561. // S0 = -Inf [D,1,1,1]
  13562. // ~S1[i] = dot(kcur[:D,i], qcur)
  13563. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13564. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13565. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13566. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13567. // ~S5[i] = dot(vcur[:,i], S4)
  13568. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13569. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13570. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13571. // dst backward-/ grad[dst] = d
  13572. //
  13573. // output gradients with their dependencies:
  13574. //
  13575. // grad[kcur] = grad[S1].T @ qcur
  13576. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13577. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13578. // grad[S4] = grad[S5] @ vcur
  13579. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13580. // grad[qcur] = grad[S1] @ kcur
  13581. // grad[vcur] = grad[S5].T @ S4
  13582. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13583. //
  13584. // in post-order:
  13585. //
  13586. // S1 = qcur @ kcur.T
  13587. // S2 = S1 * scale
  13588. // S3 = diag_mask_inf(S2, P)
  13589. // S4 = softmax(S3)
  13590. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13591. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13592. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13593. // grad[qcur] = grad[S1] @ kcur
  13594. // grad[kcur] = grad[S1].T @ qcur
  13595. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13596. //
  13597. // using less variables (SM=S4):
  13598. //
  13599. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13600. // SM = softmax(S)
  13601. // S = d[:D,iq1,iq2,iq3] @ vcur
  13602. // dot_SM_gradSM = dot(SM, S)
  13603. // S = SM * (S - dot(SM, S))
  13604. // S = diag_mask_zero(S, P) * scale
  13605. //
  13606. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13607. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13608. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13609. }
  13610. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13611. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13612. // for ic:
  13613. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13614. // exclude known future zero S[..] values from operation
  13615. ggml_vec_set_f32(masked_begin, S, 0);
  13616. for (int64_t ic = 0; ic < D; ++ic) {
  13617. ggml_vec_mad_f32(masked_begin,
  13618. S,
  13619. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13620. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13621. }
  13622. // S = SM * (S - dot(SM, S))
  13623. float dot_SM_gradSM = 0;
  13624. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13625. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13626. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13627. // S = diag_mask_zero(S, P) * scale
  13628. // already done by above ggml_vec_set_f32
  13629. // exclude known zero S[..] values from operation
  13630. ggml_vec_scale_f32(masked_begin, S, scale);
  13631. // S shape [M,1]
  13632. // SM shape [M,1]
  13633. // kcur shape [D,M]
  13634. // qcur shape [D,1]
  13635. // vcur shape [M,D]
  13636. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13637. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13638. // for ic:
  13639. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13640. // exclude known zero S[..] values from loop
  13641. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13642. ggml_vec_mad_f32(D,
  13643. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13644. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13645. S[ic]);
  13646. }
  13647. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13648. // for ic:
  13649. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13650. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13651. // exclude known zero S[..] values from loop
  13652. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13653. ggml_vec_mad_f32(D,
  13654. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13655. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13656. S[ic]);
  13657. }
  13658. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13659. // for ic:
  13660. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13661. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13662. // exclude known zero SM[..] values from mad
  13663. for (int64_t ic = 0; ic < D; ++ic) {
  13664. ggml_vec_mad_f32(masked_begin,
  13665. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13666. SM,
  13667. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13668. }
  13669. }
  13670. }
  13671. }
  13672. }
  13673. static void ggml_compute_forward_flash_attn_back(
  13674. const struct ggml_compute_params * params,
  13675. const bool masked,
  13676. struct ggml_tensor * dst) {
  13677. const struct ggml_tensor * q = dst->src[0];
  13678. switch (q->type) {
  13679. case GGML_TYPE_F32:
  13680. {
  13681. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13682. } break;
  13683. default:
  13684. {
  13685. GGML_ASSERT(false);
  13686. } break;
  13687. }
  13688. }
  13689. // ggml_compute_forward_ssm_conv
  13690. static void ggml_compute_forward_ssm_conv_f32(
  13691. const struct ggml_compute_params * params,
  13692. struct ggml_tensor * dst) {
  13693. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13694. return;
  13695. }
  13696. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13697. const struct ggml_tensor * src1 = dst->src[1]; // x
  13698. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13699. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13700. const int ith = params->ith;
  13701. const int nth = params->nth;
  13702. const int nc = src2->ne[0]; // d_conv
  13703. const int nr = src0->ne[1]; // d_inner
  13704. const int n_t = src1->ne[1]; // n_tokens
  13705. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13706. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13707. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13708. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13709. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13710. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13711. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13712. // for use with the destination state offset between sequences
  13713. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13714. // rows per thread
  13715. const int dr = (nr + nth - 1)/nth;
  13716. // row range for this thread
  13717. const int ir0 = dr*ith;
  13718. const int ir1 = MIN(ir0 + dr, nr);
  13719. const int ir = ir1 - ir0;
  13720. if (n_kv > 1) {
  13721. // multiple sequences means it's hard to know when it's the first time a state is read,
  13722. // so copy them all over to the destination, just to be sure.
  13723. for (int i3 = 0; i3 < n_kv; ++i3) {
  13724. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13725. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13726. // can't use memcpy because of d_conv vs d_conv - 1
  13727. for (int i1 = 0; i1 < ir; ++i1) {
  13728. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13729. // copy s0 to last (d_conv - 1) columns of s
  13730. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13731. }
  13732. }
  13733. }
  13734. }
  13735. for (int i2 = 0; i2 < n_t; ++i2) {
  13736. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13737. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13738. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13739. float * s0; // {d_conv - 1, d_inner, n_kv}
  13740. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13741. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13742. int ne0s0;
  13743. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13744. // avoid needing to copy the state for the first token
  13745. if (i2 == 0) {
  13746. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13747. ne0s0 = src0->ne[0];
  13748. } else {
  13749. // the source is the last (d_conv - 1) columns of the destination
  13750. s0 = s + 1;
  13751. ne0s0 = nc;
  13752. }
  13753. // d_inner
  13754. for (int i1 = 0; i1 < ir; ++i1) {
  13755. // shift state left
  13756. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13757. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13758. }
  13759. // insert x on the last column
  13760. s[(nc - 1) + i1*nc] = x0[i1];
  13761. }
  13762. // handle copies when there are multiple output states
  13763. for (int i3 = 1; i3 < n_kv; ++i3) {
  13764. int32_t seq = sq[i3];
  13765. if (0 <= seq && seq < n_kv) {
  13766. float * s1 = s + (seq - sq[0])*nc*nr;
  13767. memcpy(s1, s, nc*ir*sizeof(float));
  13768. } else {
  13769. // stop at negative or too big seq_ids
  13770. break;
  13771. }
  13772. }
  13773. // it seems a little faster when this is separate from the state shift
  13774. for (int i1 = 0; i1 < ir; ++i1) {
  13775. // rowwise dot product
  13776. float sumf = 0.0f;
  13777. for (int i0 = 0; i0 < nc; ++i0) {
  13778. int i = i0 + i1*nc;
  13779. sumf += s[i] * c[i];
  13780. }
  13781. x[i1] = sumf;
  13782. }
  13783. }
  13784. }
  13785. static void ggml_compute_forward_ssm_conv(
  13786. const struct ggml_compute_params * params,
  13787. struct ggml_tensor * dst) {
  13788. switch (dst->src[0]->type) {
  13789. case GGML_TYPE_F32:
  13790. {
  13791. ggml_compute_forward_ssm_conv_f32(params, dst);
  13792. } break;
  13793. default:
  13794. {
  13795. GGML_ASSERT(false);
  13796. } break;
  13797. }
  13798. }
  13799. // ggml_compute_forward_ssm_scan
  13800. static void ggml_compute_forward_ssm_scan_f32(
  13801. const struct ggml_compute_params * params,
  13802. struct ggml_tensor * dst) {
  13803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13804. return;
  13805. }
  13806. const struct ggml_tensor * src0 = dst->src[0]; // s
  13807. const struct ggml_tensor * src1 = dst->src[1]; // x
  13808. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13809. const struct ggml_tensor * src3 = dst->src[3]; // A
  13810. const struct ggml_tensor * src4 = dst->src[4]; // B
  13811. const struct ggml_tensor * src5 = dst->src[5]; // C
  13812. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13813. const int ith = params->ith;
  13814. const int nth = params->nth;
  13815. const int64_t nc = src0->ne[0]; // d_state
  13816. const int64_t nr = src0->ne[1]; // d_inner
  13817. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13818. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13819. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13820. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13821. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13822. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13823. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13824. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13825. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13826. // required for the dot product between s and C, and when copying the states
  13827. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13828. // required for per-sequence offsets for states
  13829. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13830. // required to get correct offset for state destination (i.e. src1->nb[2])
  13831. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13832. // rows per thread
  13833. const int dr = (nr + nth - 1)/nth;
  13834. // row range for this thread
  13835. const int ir0 = dr*ith;
  13836. const int ir1 = MIN(ir0 + dr, nr);
  13837. const int ir = ir1 - ir0;
  13838. if (n_kv > 1) {
  13839. // it's hard to know if the source states have already been copied
  13840. // when there are multiple, so copy them already.
  13841. for (int i3 = 0; i3 < n_kv; ++i3) {
  13842. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13843. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13844. memcpy(s, s0, nc*ir*sizeof(float));
  13845. }
  13846. }
  13847. for (int i2 = 0; i2 < n_t; ++i2) {
  13848. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13849. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13850. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13851. float * s0;
  13852. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13853. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13854. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13855. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13856. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13857. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13858. // avoid needing to copy the state for the first token
  13859. if (i2 == 0) {
  13860. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13861. } else {
  13862. // otherwise the source is the same as the destination
  13863. s0 = s;
  13864. }
  13865. // d_inner
  13866. for (int i1 = 0; i1 < ir; ++i1) {
  13867. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13868. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13869. float x_dt = x[i1] * dt_soft_plus;
  13870. float sumf = 0.0f;
  13871. // d_state
  13872. for (int i0 = 0; i0 < nc; ++i0) {
  13873. int i = i0 + i1*nc;
  13874. // state = prev_state * dA + dB * x
  13875. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13876. // y = rowwise_dotprod(state, C)
  13877. sumf += state * C[i0];
  13878. s[i] = state;
  13879. }
  13880. y[i1] = sumf;
  13881. }
  13882. // handle copies when there are multiple output states
  13883. for (int i3 = 1; i3 < n_kv; ++i3) {
  13884. int32_t seq = sq[i3];
  13885. if (0 <= seq && seq < n_kv) {
  13886. float * s1 = s + (seq - sq[0])*nc*nr;
  13887. memcpy(s1, s, nc*ir*sizeof(float));
  13888. } else {
  13889. // stop at negative or too big seq_ids
  13890. break;
  13891. }
  13892. }
  13893. }
  13894. }
  13895. static void ggml_compute_forward_ssm_scan(
  13896. const struct ggml_compute_params * params,
  13897. struct ggml_tensor * dst) {
  13898. switch (dst->src[0]->type) {
  13899. case GGML_TYPE_F32:
  13900. {
  13901. ggml_compute_forward_ssm_scan_f32(params, dst);
  13902. } break;
  13903. default:
  13904. {
  13905. GGML_ASSERT(false);
  13906. } break;
  13907. }
  13908. }
  13909. // ggml_compute_forward_win_part
  13910. static void ggml_compute_forward_win_part_f32(
  13911. const struct ggml_compute_params * params,
  13912. struct ggml_tensor * dst) {
  13913. const struct ggml_tensor * src0 = dst->src[0];
  13914. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13915. return;
  13916. }
  13917. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13918. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13919. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13920. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13921. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13922. assert(ne00 == ne0);
  13923. assert(ne3 == nep0*nep1);
  13924. // TODO: optimize / multi-thread
  13925. for (int py = 0; py < nep1; ++py) {
  13926. for (int px = 0; px < nep0; ++px) {
  13927. const int64_t i3 = py*nep0 + px;
  13928. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13929. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13930. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13931. const int64_t i02 = py*w + i2;
  13932. const int64_t i01 = px*w + i1;
  13933. const int64_t i00 = i0;
  13934. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13935. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13936. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13937. ((float *) dst->data)[i] = 0.0f;
  13938. } else {
  13939. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13940. }
  13941. }
  13942. }
  13943. }
  13944. }
  13945. }
  13946. }
  13947. static void ggml_compute_forward_win_part(
  13948. const struct ggml_compute_params * params,
  13949. struct ggml_tensor * dst) {
  13950. const struct ggml_tensor * src0 = dst->src[0];
  13951. switch (src0->type) {
  13952. case GGML_TYPE_F32:
  13953. {
  13954. ggml_compute_forward_win_part_f32(params, dst);
  13955. } break;
  13956. default:
  13957. {
  13958. GGML_ASSERT(false);
  13959. } break;
  13960. }
  13961. }
  13962. // ggml_compute_forward_win_unpart
  13963. static void ggml_compute_forward_win_unpart_f32(
  13964. const struct ggml_compute_params * params,
  13965. struct ggml_tensor * dst) {
  13966. const struct ggml_tensor * src0 = dst->src[0];
  13967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13968. return;
  13969. }
  13970. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13971. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13972. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13973. // padding
  13974. const int px = (w - ne1%w)%w;
  13975. //const int py = (w - ne2%w)%w;
  13976. const int npx = (px + ne1)/w;
  13977. //const int npy = (py + ne2)/w;
  13978. assert(ne0 == ne00);
  13979. // TODO: optimize / multi-thread
  13980. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13981. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13982. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13983. const int ip2 = i2/w;
  13984. const int ip1 = i1/w;
  13985. const int64_t i02 = i2%w;
  13986. const int64_t i01 = i1%w;
  13987. const int64_t i00 = i0;
  13988. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13989. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13990. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13991. }
  13992. }
  13993. }
  13994. }
  13995. static void ggml_compute_forward_win_unpart(
  13996. const struct ggml_compute_params * params,
  13997. struct ggml_tensor * dst) {
  13998. const struct ggml_tensor * src0 = dst->src[0];
  13999. switch (src0->type) {
  14000. case GGML_TYPE_F32:
  14001. {
  14002. ggml_compute_forward_win_unpart_f32(params, dst);
  14003. } break;
  14004. default:
  14005. {
  14006. GGML_ASSERT(false);
  14007. } break;
  14008. }
  14009. }
  14010. //gmml_compute_forward_unary
  14011. static void ggml_compute_forward_unary(
  14012. const struct ggml_compute_params * params,
  14013. struct ggml_tensor * dst) {
  14014. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  14015. switch (op) {
  14016. case GGML_UNARY_OP_ABS:
  14017. {
  14018. ggml_compute_forward_abs(params, dst);
  14019. } break;
  14020. case GGML_UNARY_OP_SGN:
  14021. {
  14022. ggml_compute_forward_sgn(params, dst);
  14023. } break;
  14024. case GGML_UNARY_OP_NEG:
  14025. {
  14026. ggml_compute_forward_neg(params, dst);
  14027. } break;
  14028. case GGML_UNARY_OP_STEP:
  14029. {
  14030. ggml_compute_forward_step(params, dst);
  14031. } break;
  14032. case GGML_UNARY_OP_TANH:
  14033. {
  14034. ggml_compute_forward_tanh(params, dst);
  14035. } break;
  14036. case GGML_UNARY_OP_ELU:
  14037. {
  14038. ggml_compute_forward_elu(params, dst);
  14039. } break;
  14040. case GGML_UNARY_OP_RELU:
  14041. {
  14042. ggml_compute_forward_relu(params, dst);
  14043. } break;
  14044. case GGML_UNARY_OP_SIGMOID:
  14045. {
  14046. ggml_compute_forward_sigmoid(params, dst);
  14047. } break;
  14048. case GGML_UNARY_OP_GELU:
  14049. {
  14050. ggml_compute_forward_gelu(params, dst);
  14051. } break;
  14052. case GGML_UNARY_OP_GELU_QUICK:
  14053. {
  14054. ggml_compute_forward_gelu_quick(params, dst);
  14055. } break;
  14056. case GGML_UNARY_OP_SILU:
  14057. {
  14058. ggml_compute_forward_silu(params, dst);
  14059. } break;
  14060. case GGML_UNARY_OP_HARDSWISH:
  14061. {
  14062. ggml_compute_forward_hardswish(params, dst);
  14063. } break;
  14064. case GGML_UNARY_OP_HARDSIGMOID:
  14065. {
  14066. ggml_compute_forward_hardsigmoid(params, dst);
  14067. } break;
  14068. default:
  14069. {
  14070. GGML_ASSERT(false);
  14071. } break;
  14072. }
  14073. }
  14074. // ggml_compute_forward_get_rel_pos
  14075. static void ggml_compute_forward_get_rel_pos_f16(
  14076. const struct ggml_compute_params * params,
  14077. struct ggml_tensor * dst) {
  14078. const struct ggml_tensor * src0 = dst->src[0];
  14079. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14080. return;
  14081. }
  14082. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  14083. GGML_TENSOR_UNARY_OP_LOCALS
  14084. const int64_t w = ne1;
  14085. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  14086. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  14087. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  14088. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  14089. const int64_t pos = (w - i1 - 1) + i2;
  14090. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  14091. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  14092. }
  14093. }
  14094. }
  14095. }
  14096. static void ggml_compute_forward_get_rel_pos(
  14097. const struct ggml_compute_params * params,
  14098. struct ggml_tensor * dst) {
  14099. const struct ggml_tensor * src0 = dst->src[0];
  14100. switch (src0->type) {
  14101. case GGML_TYPE_F16:
  14102. case GGML_TYPE_BF16:
  14103. {
  14104. ggml_compute_forward_get_rel_pos_f16(params, dst);
  14105. } break;
  14106. default:
  14107. {
  14108. GGML_ASSERT(false);
  14109. } break;
  14110. }
  14111. }
  14112. // ggml_compute_forward_add_rel_pos
  14113. static void ggml_compute_forward_add_rel_pos_f32(
  14114. const struct ggml_compute_params * params,
  14115. struct ggml_tensor * dst) {
  14116. const struct ggml_tensor * src0 = dst->src[0];
  14117. const struct ggml_tensor * src1 = dst->src[1];
  14118. const struct ggml_tensor * src2 = dst->src[2];
  14119. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  14120. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  14121. if (params->ith != 0) {
  14122. return;
  14123. }
  14124. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  14125. return;
  14126. }
  14127. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14128. return;
  14129. }
  14130. int64_t t0 = ggml_perf_time_us();
  14131. UNUSED(t0);
  14132. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  14133. float * src1_data = (float *) src1->data;
  14134. float * src2_data = (float *) src2->data;
  14135. float * dst_data = (float *) dst->data;
  14136. const int64_t ne10 = src1->ne[0];
  14137. const int64_t ne11 = src1->ne[1];
  14138. const int64_t ne12 = src1->ne[2];
  14139. const int64_t ne13 = src1->ne[3];
  14140. const int ith = params->ith;
  14141. const int nth = params->nth;
  14142. // total patches in dst
  14143. const int np = ne13;
  14144. // patches per thread
  14145. const int dp = (np + nth - 1)/nth;
  14146. // patch range for this thread
  14147. const int ip0 = dp*ith;
  14148. const int ip1 = MIN(ip0 + dp, np);
  14149. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  14150. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  14151. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  14152. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  14153. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  14154. const int64_t jp0 = jp1 + i10;
  14155. const float src1_e = src1_data[jp0];
  14156. const float src2_e = src2_data[jp0];
  14157. const int64_t jdh = jp0 * ne10;
  14158. const int64_t jdw = jdh - (ne10 - 1) * i10;
  14159. for (int64_t j = 0; j < ne10; ++j) {
  14160. dst_data[jdh + j ] += src2_e;
  14161. dst_data[jdw + j*ne10] += src1_e;
  14162. }
  14163. }
  14164. }
  14165. }
  14166. }
  14167. }
  14168. static void ggml_compute_forward_add_rel_pos(
  14169. const struct ggml_compute_params * params,
  14170. struct ggml_tensor * dst) {
  14171. const struct ggml_tensor * src0 = dst->src[0];
  14172. switch (src0->type) {
  14173. case GGML_TYPE_F32:
  14174. {
  14175. ggml_compute_forward_add_rel_pos_f32(params, dst);
  14176. } break;
  14177. default:
  14178. {
  14179. GGML_ASSERT(false);
  14180. } break;
  14181. }
  14182. }
  14183. // ggml_compute_forward_map_unary
  14184. static void ggml_compute_forward_map_unary_f32(
  14185. const struct ggml_compute_params * params,
  14186. struct ggml_tensor * dst,
  14187. const ggml_unary_op_f32_t fun) {
  14188. const struct ggml_tensor * src0 = dst->src[0];
  14189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  14190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14191. return;
  14192. }
  14193. const int n = ggml_nrows(src0);
  14194. const int nc = src0->ne[0];
  14195. assert( dst->nb[0] == sizeof(float));
  14196. assert(src0->nb[0] == sizeof(float));
  14197. for (int i = 0; i < n; i++) {
  14198. fun(nc,
  14199. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14200. (float *) ((char *) src0->data + i*(src0->nb[1])));
  14201. }
  14202. }
  14203. static void ggml_compute_forward_map_unary(
  14204. const struct ggml_compute_params * params,
  14205. struct ggml_tensor * dst,
  14206. const ggml_unary_op_f32_t fun) {
  14207. const struct ggml_tensor * src0 = dst->src[0];
  14208. switch (src0->type) {
  14209. case GGML_TYPE_F32:
  14210. {
  14211. ggml_compute_forward_map_unary_f32(params, dst, fun);
  14212. } break;
  14213. default:
  14214. {
  14215. GGML_ASSERT(false);
  14216. } break;
  14217. }
  14218. }
  14219. // ggml_compute_forward_map_binary
  14220. static void ggml_compute_forward_map_binary_f32(
  14221. const struct ggml_compute_params * params,
  14222. struct ggml_tensor * dst,
  14223. const ggml_binary_op_f32_t fun) {
  14224. const struct ggml_tensor * src0 = dst->src[0];
  14225. const struct ggml_tensor * src1 = dst->src[1];
  14226. assert(params->ith == 0);
  14227. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14229. return;
  14230. }
  14231. const int n = ggml_nrows(src0);
  14232. const int nc = src0->ne[0];
  14233. assert( dst->nb[0] == sizeof(float));
  14234. assert(src0->nb[0] == sizeof(float));
  14235. assert(src1->nb[0] == sizeof(float));
  14236. for (int i = 0; i < n; i++) {
  14237. fun(nc,
  14238. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14239. (float *) ((char *) src0->data + i*(src0->nb[1])),
  14240. (float *) ((char *) src1->data + i*(src1->nb[1])));
  14241. }
  14242. }
  14243. static void ggml_compute_forward_map_binary(
  14244. const struct ggml_compute_params * params,
  14245. struct ggml_tensor * dst,
  14246. const ggml_binary_op_f32_t fun) {
  14247. const struct ggml_tensor * src0 = dst->src[0];
  14248. switch (src0->type) {
  14249. case GGML_TYPE_F32:
  14250. {
  14251. ggml_compute_forward_map_binary_f32(params, dst, fun);
  14252. } break;
  14253. default:
  14254. {
  14255. GGML_ASSERT(false);
  14256. } break;
  14257. }
  14258. }
  14259. // ggml_compute_forward_map_custom1
  14260. static void ggml_compute_forward_map_custom1_f32(
  14261. const struct ggml_compute_params * params,
  14262. struct ggml_tensor * dst,
  14263. const ggml_custom1_op_f32_t fun) {
  14264. const struct ggml_tensor * a = dst->src[0];
  14265. assert(params->ith == 0);
  14266. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14267. return;
  14268. }
  14269. fun(dst, a);
  14270. }
  14271. // ggml_compute_forward_map_custom2
  14272. static void ggml_compute_forward_map_custom2_f32(
  14273. const struct ggml_compute_params * params,
  14274. struct ggml_tensor * dst,
  14275. const ggml_custom2_op_f32_t fun) {
  14276. const struct ggml_tensor * a = dst->src[0];
  14277. const struct ggml_tensor * b = dst->src[1];
  14278. assert(params->ith == 0);
  14279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14280. return;
  14281. }
  14282. fun(dst, a, b);
  14283. }
  14284. // ggml_compute_forward_map_custom3
  14285. static void ggml_compute_forward_map_custom3_f32(
  14286. const struct ggml_compute_params * params,
  14287. struct ggml_tensor * dst,
  14288. const ggml_custom3_op_f32_t fun) {
  14289. const struct ggml_tensor * a = dst->src[0];
  14290. const struct ggml_tensor * b = dst->src[1];
  14291. const struct ggml_tensor * c = dst->src[1];
  14292. assert(params->ith == 0);
  14293. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14294. return;
  14295. }
  14296. fun(dst, a, b, c);
  14297. }
  14298. // ggml_compute_forward_map_custom1
  14299. static void ggml_compute_forward_map_custom1(
  14300. const struct ggml_compute_params * params,
  14301. struct ggml_tensor * dst) {
  14302. const struct ggml_tensor * a = dst->src[0];
  14303. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14304. return;
  14305. }
  14306. struct ggml_map_custom1_op_params p;
  14307. memcpy(&p, dst->op_params, sizeof(p));
  14308. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14309. }
  14310. // ggml_compute_forward_map_custom2
  14311. static void ggml_compute_forward_map_custom2(
  14312. const struct ggml_compute_params * params,
  14313. struct ggml_tensor * dst) {
  14314. const struct ggml_tensor * a = dst->src[0];
  14315. const struct ggml_tensor * b = dst->src[1];
  14316. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14317. return;
  14318. }
  14319. struct ggml_map_custom2_op_params p;
  14320. memcpy(&p, dst->op_params, sizeof(p));
  14321. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14322. }
  14323. // ggml_compute_forward_map_custom3
  14324. static void ggml_compute_forward_map_custom3(
  14325. const struct ggml_compute_params * params,
  14326. struct ggml_tensor * dst) {
  14327. const struct ggml_tensor * a = dst->src[0];
  14328. const struct ggml_tensor * b = dst->src[1];
  14329. const struct ggml_tensor * c = dst->src[2];
  14330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14331. return;
  14332. }
  14333. struct ggml_map_custom3_op_params p;
  14334. memcpy(&p, dst->op_params, sizeof(p));
  14335. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14336. }
  14337. // ggml_compute_forward_cross_entropy_loss
  14338. static void ggml_compute_forward_cross_entropy_loss_f32(
  14339. const struct ggml_compute_params * params,
  14340. struct ggml_tensor * dst) {
  14341. const struct ggml_tensor * src0 = dst->src[0];
  14342. const struct ggml_tensor * src1 = dst->src[1];
  14343. GGML_ASSERT(ggml_is_contiguous(src0));
  14344. GGML_ASSERT(ggml_is_contiguous(src1));
  14345. GGML_ASSERT(ggml_is_scalar(dst));
  14346. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14347. const int ith = params->ith;
  14348. const int nth = params->nth;
  14349. float * sums = (float *) params->wdata;
  14350. // TODO: handle transposed/permuted matrices
  14351. const int nc = src0->ne[0];
  14352. const int nr = ggml_nrows(src0);
  14353. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14354. if (params->type == GGML_TASK_TYPE_INIT) {
  14355. if (ith == 0) {
  14356. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14357. }
  14358. return;
  14359. }
  14360. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  14361. if (ith == 0) {
  14362. float * dp = (float *) dst->data;
  14363. ggml_vec_sum_f32(nth, dp, sums);
  14364. dp[0] *= -1.0f / (float) nr;
  14365. }
  14366. return;
  14367. }
  14368. const double eps = 1e-9;
  14369. // rows per thread
  14370. const int dr = (nr + nth - 1)/nth;
  14371. // row range for this thread
  14372. const int ir0 = dr*ith;
  14373. const int ir1 = MIN(ir0 + dr, nr);
  14374. for (int i1 = ir0; i1 < ir1; i1++) {
  14375. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14376. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14377. float * st = ((float *) params->wdata) + nth + ith*nc;
  14378. #ifndef NDEBUG
  14379. for (int i = 0; i < nc; ++i) {
  14380. //printf("p[%d] = %f\n", i, p[i]);
  14381. assert(!isnan(s0[i]));
  14382. assert(!isnan(s1[i]));
  14383. }
  14384. #endif
  14385. // soft_max
  14386. float max = -INFINITY;
  14387. ggml_vec_max_f32(nc, &max, s0);
  14388. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  14389. assert(sum > 0.0);
  14390. sum = (1.0 - eps) / sum;
  14391. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14392. ggml_vec_scale_f32(nc, st, sum);
  14393. ggml_vec_add1_f32(nc, st, st, eps);
  14394. ggml_vec_log_f32(nc, st, st);
  14395. ggml_vec_mul_f32(nc, st, st, s1);
  14396. float st_sum = 0;
  14397. ggml_vec_sum_f32(nc, &st_sum, st);
  14398. sums[ith] += st_sum;
  14399. #ifndef NDEBUG
  14400. for (int i = 0; i < nc; ++i) {
  14401. assert(!isnan(st[i]));
  14402. assert(!isinf(st[i]));
  14403. }
  14404. #endif
  14405. }
  14406. }
  14407. static void ggml_compute_forward_cross_entropy_loss(
  14408. const struct ggml_compute_params * params,
  14409. struct ggml_tensor * dst) {
  14410. const struct ggml_tensor * src0 = dst->src[0];
  14411. switch (src0->type) {
  14412. case GGML_TYPE_F32:
  14413. {
  14414. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14415. } break;
  14416. default:
  14417. {
  14418. GGML_ASSERT(false);
  14419. } break;
  14420. }
  14421. }
  14422. // ggml_compute_forward_cross_entropy_loss_back
  14423. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14424. const struct ggml_compute_params * params,
  14425. struct ggml_tensor * dst) {
  14426. const struct ggml_tensor * src0 = dst->src[0];
  14427. const struct ggml_tensor * src1 = dst->src[1];
  14428. const struct ggml_tensor * opt0 = dst->src[2];
  14429. GGML_ASSERT(ggml_is_contiguous(dst));
  14430. GGML_ASSERT(ggml_is_contiguous(src0));
  14431. GGML_ASSERT(ggml_is_contiguous(src1));
  14432. GGML_ASSERT(ggml_is_contiguous(opt0));
  14433. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14434. const int64_t ith = params->ith;
  14435. const int64_t nth = params->nth;
  14436. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14437. return;
  14438. }
  14439. const double eps = 1e-9;
  14440. // TODO: handle transposed/permuted matrices
  14441. const int64_t nc = src0->ne[0];
  14442. const int64_t nr = ggml_nrows(src0);
  14443. // rows per thread
  14444. const int64_t dr = (nr + nth - 1)/nth;
  14445. // row range for this thread
  14446. const int64_t ir0 = dr*ith;
  14447. const int64_t ir1 = MIN(ir0 + dr, nr);
  14448. float * d = (float *) opt0->data;
  14449. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14450. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14451. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14452. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14453. #ifndef NDEBUG
  14454. for (int i = 0; i < nc; ++i) {
  14455. //printf("p[%d] = %f\n", i, p[i]);
  14456. assert(!isnan(s0[i]));
  14457. assert(!isnan(s1[i]));
  14458. }
  14459. #endif
  14460. // soft_max
  14461. float max = -INFINITY;
  14462. ggml_vec_max_f32(nc, &max, s0);
  14463. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14464. assert(sum > 0.0);
  14465. sum = (1.0 - eps) / sum;
  14466. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14467. ggml_vec_scale_f32(nc, ds0, sum);
  14468. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14469. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14470. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14471. #ifndef NDEBUG
  14472. for (int i = 0; i < nc; ++i) {
  14473. assert(!isnan(ds0[i]));
  14474. assert(!isinf(ds0[i]));
  14475. }
  14476. #endif
  14477. }
  14478. }
  14479. static void ggml_compute_forward_cross_entropy_loss_back(
  14480. const struct ggml_compute_params * params,
  14481. struct ggml_tensor * dst) {
  14482. const struct ggml_tensor * src0 = dst->src[0];
  14483. switch (src0->type) {
  14484. case GGML_TYPE_F32:
  14485. {
  14486. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14487. } break;
  14488. default:
  14489. {
  14490. GGML_ASSERT(false);
  14491. } break;
  14492. }
  14493. }
  14494. /////////////////////////////////
  14495. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14496. GGML_ASSERT(params);
  14497. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14498. return;
  14499. }
  14500. switch (tensor->op) {
  14501. case GGML_OP_DUP:
  14502. {
  14503. ggml_compute_forward_dup(params, tensor);
  14504. } break;
  14505. case GGML_OP_ADD:
  14506. {
  14507. ggml_compute_forward_add(params, tensor);
  14508. } break;
  14509. case GGML_OP_ADD1:
  14510. {
  14511. ggml_compute_forward_add1(params, tensor);
  14512. } break;
  14513. case GGML_OP_ACC:
  14514. {
  14515. ggml_compute_forward_acc(params, tensor);
  14516. } break;
  14517. case GGML_OP_SUB:
  14518. {
  14519. ggml_compute_forward_sub(params, tensor);
  14520. } break;
  14521. case GGML_OP_MUL:
  14522. {
  14523. ggml_compute_forward_mul(params, tensor);
  14524. } break;
  14525. case GGML_OP_DIV:
  14526. {
  14527. ggml_compute_forward_div(params, tensor);
  14528. } break;
  14529. case GGML_OP_SQR:
  14530. {
  14531. ggml_compute_forward_sqr(params, tensor);
  14532. } break;
  14533. case GGML_OP_SQRT:
  14534. {
  14535. ggml_compute_forward_sqrt(params, tensor);
  14536. } break;
  14537. case GGML_OP_LOG:
  14538. {
  14539. ggml_compute_forward_log(params, tensor);
  14540. } break;
  14541. case GGML_OP_SUM:
  14542. {
  14543. ggml_compute_forward_sum(params, tensor);
  14544. } break;
  14545. case GGML_OP_SUM_ROWS:
  14546. {
  14547. ggml_compute_forward_sum_rows(params, tensor);
  14548. } break;
  14549. case GGML_OP_MEAN:
  14550. {
  14551. ggml_compute_forward_mean(params, tensor);
  14552. } break;
  14553. case GGML_OP_ARGMAX:
  14554. {
  14555. ggml_compute_forward_argmax(params, tensor);
  14556. } break;
  14557. case GGML_OP_REPEAT:
  14558. {
  14559. ggml_compute_forward_repeat(params, tensor);
  14560. } break;
  14561. case GGML_OP_REPEAT_BACK:
  14562. {
  14563. ggml_compute_forward_repeat_back(params, tensor);
  14564. } break;
  14565. case GGML_OP_CONCAT:
  14566. {
  14567. ggml_compute_forward_concat(params, tensor);
  14568. } break;
  14569. case GGML_OP_SILU_BACK:
  14570. {
  14571. ggml_compute_forward_silu_back(params, tensor);
  14572. } break;
  14573. case GGML_OP_NORM:
  14574. {
  14575. ggml_compute_forward_norm(params, tensor);
  14576. } break;
  14577. case GGML_OP_RMS_NORM:
  14578. {
  14579. ggml_compute_forward_rms_norm(params, tensor);
  14580. } break;
  14581. case GGML_OP_RMS_NORM_BACK:
  14582. {
  14583. ggml_compute_forward_rms_norm_back(params, tensor);
  14584. } break;
  14585. case GGML_OP_GROUP_NORM:
  14586. {
  14587. ggml_compute_forward_group_norm(params, tensor);
  14588. } break;
  14589. case GGML_OP_MUL_MAT:
  14590. {
  14591. ggml_compute_forward_mul_mat(params, tensor, state);
  14592. } break;
  14593. case GGML_OP_MUL_MAT_ID:
  14594. {
  14595. ggml_compute_forward_mul_mat_id(params, tensor);
  14596. } break;
  14597. case GGML_OP_OUT_PROD:
  14598. {
  14599. ggml_compute_forward_out_prod(params, tensor);
  14600. } break;
  14601. case GGML_OP_SCALE:
  14602. {
  14603. ggml_compute_forward_scale(params, tensor);
  14604. } break;
  14605. case GGML_OP_SET:
  14606. {
  14607. ggml_compute_forward_set(params, tensor);
  14608. } break;
  14609. case GGML_OP_CPY:
  14610. {
  14611. ggml_compute_forward_cpy(params, tensor);
  14612. } break;
  14613. case GGML_OP_CONT:
  14614. {
  14615. ggml_compute_forward_cont(params, tensor);
  14616. } break;
  14617. case GGML_OP_RESHAPE:
  14618. {
  14619. ggml_compute_forward_reshape(params, tensor);
  14620. } break;
  14621. case GGML_OP_VIEW:
  14622. {
  14623. ggml_compute_forward_view(params, tensor);
  14624. } break;
  14625. case GGML_OP_PERMUTE:
  14626. {
  14627. ggml_compute_forward_permute(params, tensor);
  14628. } break;
  14629. case GGML_OP_TRANSPOSE:
  14630. {
  14631. ggml_compute_forward_transpose(params, tensor);
  14632. } break;
  14633. case GGML_OP_GET_ROWS:
  14634. {
  14635. ggml_compute_forward_get_rows(params, tensor);
  14636. } break;
  14637. case GGML_OP_GET_ROWS_BACK:
  14638. {
  14639. ggml_compute_forward_get_rows_back(params, tensor);
  14640. } break;
  14641. case GGML_OP_DIAG:
  14642. {
  14643. ggml_compute_forward_diag(params, tensor);
  14644. } break;
  14645. case GGML_OP_DIAG_MASK_INF:
  14646. {
  14647. ggml_compute_forward_diag_mask_inf(params, tensor);
  14648. } break;
  14649. case GGML_OP_DIAG_MASK_ZERO:
  14650. {
  14651. ggml_compute_forward_diag_mask_zero(params, tensor);
  14652. } break;
  14653. case GGML_OP_SOFT_MAX:
  14654. {
  14655. ggml_compute_forward_soft_max(params, tensor);
  14656. } break;
  14657. case GGML_OP_SOFT_MAX_BACK:
  14658. {
  14659. ggml_compute_forward_soft_max_back(params, tensor);
  14660. } break;
  14661. case GGML_OP_ROPE:
  14662. {
  14663. ggml_compute_forward_rope(params, tensor);
  14664. } break;
  14665. case GGML_OP_ROPE_BACK:
  14666. {
  14667. ggml_compute_forward_rope_back(params, tensor);
  14668. } break;
  14669. case GGML_OP_CLAMP:
  14670. {
  14671. ggml_compute_forward_clamp(params, tensor);
  14672. } break;
  14673. case GGML_OP_CONV_TRANSPOSE_1D:
  14674. {
  14675. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14676. } break;
  14677. case GGML_OP_IM2COL:
  14678. {
  14679. ggml_compute_forward_im2col(params, tensor);
  14680. } break;
  14681. case GGML_OP_CONV_TRANSPOSE_2D:
  14682. {
  14683. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14684. } break;
  14685. case GGML_OP_POOL_1D:
  14686. {
  14687. ggml_compute_forward_pool_1d(params, tensor);
  14688. } break;
  14689. case GGML_OP_POOL_2D:
  14690. {
  14691. ggml_compute_forward_pool_2d(params, tensor);
  14692. } break;
  14693. case GGML_OP_UPSCALE:
  14694. {
  14695. ggml_compute_forward_upscale(params, tensor);
  14696. } break;
  14697. case GGML_OP_PAD:
  14698. {
  14699. ggml_compute_forward_pad(params, tensor);
  14700. } break;
  14701. case GGML_OP_ARANGE:
  14702. {
  14703. ggml_compute_forward_arange(params, tensor);
  14704. } break;
  14705. case GGML_OP_TIMESTEP_EMBEDDING:
  14706. {
  14707. ggml_compute_forward_timestep_embedding(params, tensor);
  14708. } break;
  14709. case GGML_OP_ARGSORT:
  14710. {
  14711. ggml_compute_forward_argsort(params, tensor);
  14712. } break;
  14713. case GGML_OP_LEAKY_RELU:
  14714. {
  14715. ggml_compute_forward_leaky_relu(params, tensor);
  14716. } break;
  14717. case GGML_OP_FLASH_ATTN:
  14718. {
  14719. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14720. GGML_ASSERT(t == 0 || t == 1);
  14721. const bool masked = t != 0;
  14722. ggml_compute_forward_flash_attn(params, masked, tensor);
  14723. } break;
  14724. case GGML_OP_FLASH_ATTN_EXT:
  14725. {
  14726. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14727. } break;
  14728. case GGML_OP_FLASH_FF:
  14729. {
  14730. ggml_compute_forward_flash_ff(params, tensor);
  14731. } break;
  14732. case GGML_OP_FLASH_ATTN_BACK:
  14733. {
  14734. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14735. GGML_ASSERT(t == 0 || t == 1);
  14736. bool masked = t != 0;
  14737. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14738. } break;
  14739. case GGML_OP_SSM_CONV:
  14740. {
  14741. ggml_compute_forward_ssm_conv(params, tensor);
  14742. } break;
  14743. case GGML_OP_SSM_SCAN:
  14744. {
  14745. ggml_compute_forward_ssm_scan(params, tensor);
  14746. } break;
  14747. case GGML_OP_WIN_PART:
  14748. {
  14749. ggml_compute_forward_win_part(params, tensor);
  14750. } break;
  14751. case GGML_OP_WIN_UNPART:
  14752. {
  14753. ggml_compute_forward_win_unpart(params, tensor);
  14754. } break;
  14755. case GGML_OP_UNARY:
  14756. {
  14757. ggml_compute_forward_unary(params, tensor);
  14758. } break;
  14759. case GGML_OP_GET_REL_POS:
  14760. {
  14761. ggml_compute_forward_get_rel_pos(params, tensor);
  14762. } break;
  14763. case GGML_OP_ADD_REL_POS:
  14764. {
  14765. ggml_compute_forward_add_rel_pos(params, tensor);
  14766. } break;
  14767. case GGML_OP_MAP_UNARY:
  14768. {
  14769. ggml_unary_op_f32_t fun;
  14770. memcpy(&fun, tensor->op_params, sizeof(fun));
  14771. ggml_compute_forward_map_unary(params, tensor, fun);
  14772. }
  14773. break;
  14774. case GGML_OP_MAP_BINARY:
  14775. {
  14776. ggml_binary_op_f32_t fun;
  14777. memcpy(&fun, tensor->op_params, sizeof(fun));
  14778. ggml_compute_forward_map_binary(params, tensor, fun);
  14779. }
  14780. break;
  14781. case GGML_OP_MAP_CUSTOM1_F32:
  14782. {
  14783. ggml_custom1_op_f32_t fun;
  14784. memcpy(&fun, tensor->op_params, sizeof(fun));
  14785. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14786. }
  14787. break;
  14788. case GGML_OP_MAP_CUSTOM2_F32:
  14789. {
  14790. ggml_custom2_op_f32_t fun;
  14791. memcpy(&fun, tensor->op_params, sizeof(fun));
  14792. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14793. }
  14794. break;
  14795. case GGML_OP_MAP_CUSTOM3_F32:
  14796. {
  14797. ggml_custom3_op_f32_t fun;
  14798. memcpy(&fun, tensor->op_params, sizeof(fun));
  14799. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14800. }
  14801. break;
  14802. case GGML_OP_MAP_CUSTOM1:
  14803. {
  14804. ggml_compute_forward_map_custom1(params, tensor);
  14805. }
  14806. break;
  14807. case GGML_OP_MAP_CUSTOM2:
  14808. {
  14809. ggml_compute_forward_map_custom2(params, tensor);
  14810. }
  14811. break;
  14812. case GGML_OP_MAP_CUSTOM3:
  14813. {
  14814. ggml_compute_forward_map_custom3(params, tensor);
  14815. }
  14816. break;
  14817. case GGML_OP_CROSS_ENTROPY_LOSS:
  14818. {
  14819. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14820. }
  14821. break;
  14822. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14823. {
  14824. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14825. }
  14826. break;
  14827. case GGML_OP_NONE:
  14828. {
  14829. // nop
  14830. } break;
  14831. case GGML_OP_COUNT:
  14832. {
  14833. GGML_ASSERT(false);
  14834. } break;
  14835. }
  14836. }
  14837. ////////////////////////////////////////////////////////////////////////////////
  14838. static size_t ggml_hash_size(size_t min_sz) {
  14839. // next primes after powers of two
  14840. static const size_t primes[] = {
  14841. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14842. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14843. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14844. 16777259, 33554467, 67108879, 134217757, 268435459,
  14845. 536870923, 1073741827, 2147483659
  14846. };
  14847. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14848. // find the smallest prime that is larger or equal to min_sz
  14849. size_t l = 0;
  14850. size_t r = n_primes;
  14851. while (l < r) {
  14852. size_t m = (l + r)/2;
  14853. if (primes[m] < min_sz) {
  14854. l = m + 1;
  14855. } else {
  14856. r = m;
  14857. }
  14858. }
  14859. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14860. return sz;
  14861. }
  14862. static size_t ggml_hash(const void * p) {
  14863. return (size_t)p;
  14864. }
  14865. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14866. size_t h = ggml_hash(key) % hash_set.size;
  14867. // linear probing
  14868. size_t i = h;
  14869. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14870. i = (i + 1) % hash_set.size;
  14871. if (i == h) {
  14872. // visited all hash table entries -> not found
  14873. return GGML_HASHTABLE_FULL;
  14874. }
  14875. }
  14876. return i;
  14877. }
  14878. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14879. size_t i = ggml_hash_find(hash_set, key);
  14880. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14881. }
  14882. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14883. size_t i = ggml_hash_find(hash_set, key);
  14884. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14885. if (hash_set.keys[i] == key) {
  14886. return GGML_HASHTABLE_ALREADY_EXISTS;
  14887. }
  14888. // insert
  14889. GGML_ASSERT(hash_set.keys[i] == NULL);
  14890. hash_set.keys[i] = key;
  14891. return i;
  14892. }
  14893. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14894. size_t i = ggml_hash_find(hash_set, key);
  14895. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14896. hash_set.keys[i] = key;
  14897. return i;
  14898. }
  14899. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14900. size = ggml_hash_size(size);
  14901. struct ggml_hash_set result;
  14902. result.size = size;
  14903. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14904. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14905. return result;
  14906. }
  14907. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14908. GGML_FREE(hash_set.keys);
  14909. }
  14910. struct hash_map {
  14911. struct ggml_hash_set set;
  14912. struct ggml_tensor ** vals;
  14913. };
  14914. static struct hash_map * ggml_new_hash_map(size_t size) {
  14915. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14916. result->set = ggml_hash_set_new(size);
  14917. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14918. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14919. return result;
  14920. }
  14921. static void ggml_hash_map_free(struct hash_map * map) {
  14922. ggml_hash_set_free(map->set);
  14923. GGML_FREE(map->vals);
  14924. GGML_FREE(map);
  14925. }
  14926. // gradient checkpointing
  14927. static struct ggml_tensor * ggml_recompute_graph_node(
  14928. struct ggml_context * ctx,
  14929. struct ggml_cgraph * graph,
  14930. struct hash_map * replacements,
  14931. struct ggml_tensor * node) {
  14932. if (node == NULL) {
  14933. return NULL;
  14934. }
  14935. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14936. return node;
  14937. }
  14938. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14939. return node;
  14940. }
  14941. int count_children = 0;
  14942. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14943. if (node->src[k]) {
  14944. ++count_children;
  14945. }
  14946. }
  14947. if (count_children == 0) {
  14948. return node;
  14949. }
  14950. size_t i = ggml_hash_find(replacements->set, node);
  14951. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14952. if (replacements->set.keys[i] == node) {
  14953. return replacements->vals[i];
  14954. }
  14955. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14956. // insert clone into replacements
  14957. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14958. replacements->set.keys[i] = node;
  14959. replacements->vals[i] = clone;
  14960. clone->op = node->op;
  14961. clone->grad = node->grad;
  14962. clone->flags = node->flags;
  14963. clone->extra = node->extra;
  14964. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14965. clone->nb[k] = node->nb[k];
  14966. }
  14967. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14968. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14969. }
  14970. if (node->view_src != NULL) {
  14971. clone->data = (node->view_src->data == NULL)
  14972. ? NULL // view_src not yet allocated
  14973. : (char *) node->view_src->data // view_src already allocated
  14974. + node->view_offs;
  14975. clone->view_src = node->view_src;
  14976. clone->view_offs = node->view_offs;
  14977. }
  14978. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14979. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14980. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14981. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14982. return clone;
  14983. }
  14984. void ggml_build_backward_gradient_checkpointing(
  14985. struct ggml_context * ctx,
  14986. struct ggml_cgraph * gf,
  14987. struct ggml_cgraph * gb,
  14988. struct ggml_cgraph * gb_tmp,
  14989. struct ggml_tensor * * checkpoints,
  14990. int n_checkpoints) {
  14991. ggml_graph_cpy(gf, gb_tmp);
  14992. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14993. if (n_checkpoints <= 0) {
  14994. ggml_graph_cpy(gb_tmp, gb);
  14995. return;
  14996. }
  14997. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14998. // insert checkpoints in replacements
  14999. for (int i = 0; i < n_checkpoints; ++i) {
  15000. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  15001. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  15002. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  15003. replacements->set.keys[k] = checkpoints[i];
  15004. replacements->vals[k] = checkpoints[i];
  15005. }
  15006. ggml_graph_cpy(gf, gb);
  15007. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  15008. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  15009. // by recomputing them from checkpoints
  15010. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  15011. struct ggml_tensor * node = gb_tmp->nodes[i];
  15012. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  15013. // insert new tensors recomputing src, reusing already made replacements,
  15014. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  15015. // recurse for input tensors,
  15016. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  15017. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  15018. }
  15019. // insert rewritten backward node with replacements made into resulting backward graph gb
  15020. ggml_build_forward_expand(gb, node);
  15021. }
  15022. ggml_hash_map_free(replacements);
  15023. }
  15024. // functions to change gradients considering the case that input a might be initial gradient with zero value
  15025. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  15026. if (ggml_hash_contains(zero_table, a)) {
  15027. return b;
  15028. } else {
  15029. return ggml_add_impl(ctx, a, b, false);
  15030. }
  15031. }
  15032. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  15033. if (ggml_hash_contains(zero_table, a)) {
  15034. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  15035. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  15036. } else {
  15037. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  15038. }
  15039. }
  15040. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  15041. if (ggml_hash_contains(zero_table, a)) {
  15042. return ggml_repeat(ctx, b, a);
  15043. } else {
  15044. return ggml_add1_impl(ctx, a, b, false);
  15045. }
  15046. }
  15047. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  15048. if (ggml_hash_contains(zero_table, a)) {
  15049. return ggml_neg(ctx, b);
  15050. } else {
  15051. return ggml_sub_impl(ctx, a, b, false);
  15052. }
  15053. }
  15054. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  15055. struct ggml_tensor * src0 = tensor->src[0];
  15056. struct ggml_tensor * src1 = tensor->src[1];
  15057. struct ggml_tensor * src2 = tensor->src[2];
  15058. switch (tensor->op) {
  15059. case GGML_OP_DUP:
  15060. {
  15061. if (src0->grad) {
  15062. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15063. }
  15064. } break;
  15065. case GGML_OP_ADD:
  15066. {
  15067. if (src0->grad) {
  15068. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15069. }
  15070. if (src1->grad) {
  15071. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  15072. }
  15073. } break;
  15074. case GGML_OP_ADD1:
  15075. {
  15076. if (src0->grad) {
  15077. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15078. }
  15079. if (src1->grad) {
  15080. src1->grad = ggml_add_or_set(ctx,
  15081. src1->grad,
  15082. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  15083. zero_table);
  15084. }
  15085. } break;
  15086. case GGML_OP_ACC:
  15087. {
  15088. if (src0->grad) {
  15089. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15090. }
  15091. if (src1->grad) {
  15092. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15093. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15094. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15095. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15096. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  15097. tensor->grad,
  15098. src1->grad->ne[0],
  15099. src1->grad->ne[1],
  15100. src1->grad->ne[2],
  15101. src1->grad->ne[3],
  15102. nb1, nb2, nb3, offset);
  15103. src1->grad =
  15104. ggml_add_or_set(ctx,
  15105. src1->grad,
  15106. ggml_reshape(ctx,
  15107. ggml_cont(ctx, tensor_grad_view),
  15108. src1->grad),
  15109. zero_table);
  15110. }
  15111. } break;
  15112. case GGML_OP_SUB:
  15113. {
  15114. if (src0->grad) {
  15115. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15116. }
  15117. if (src1->grad) {
  15118. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  15119. }
  15120. } break;
  15121. case GGML_OP_MUL:
  15122. {
  15123. if (src0->grad) {
  15124. src0->grad =
  15125. ggml_add_or_set(ctx,
  15126. src0->grad,
  15127. ggml_mul(ctx, src1, tensor->grad),
  15128. zero_table);
  15129. }
  15130. if (src1->grad) {
  15131. src1->grad =
  15132. ggml_add_or_set(ctx,
  15133. src1->grad,
  15134. ggml_mul(ctx, src0, tensor->grad),
  15135. zero_table);
  15136. }
  15137. } break;
  15138. case GGML_OP_DIV:
  15139. {
  15140. if (src0->grad) {
  15141. src0->grad =
  15142. ggml_add_or_set(ctx,
  15143. src0->grad,
  15144. ggml_div(ctx, tensor->grad, src1),
  15145. zero_table);
  15146. }
  15147. if (src1->grad) {
  15148. src1->grad =
  15149. ggml_sub_or_set(ctx,
  15150. src1->grad,
  15151. ggml_mul(ctx,
  15152. tensor->grad,
  15153. ggml_div(ctx, tensor, src1)),
  15154. zero_table);
  15155. }
  15156. } break;
  15157. case GGML_OP_SQR:
  15158. {
  15159. if (src0->grad) {
  15160. src0->grad =
  15161. ggml_add_or_set(ctx,
  15162. src0->grad,
  15163. ggml_scale(ctx,
  15164. ggml_mul(ctx, src0, tensor->grad),
  15165. 2.0f),
  15166. zero_table);
  15167. }
  15168. } break;
  15169. case GGML_OP_SQRT:
  15170. {
  15171. if (src0->grad) {
  15172. src0->grad =
  15173. ggml_add_or_set(ctx,
  15174. src0->grad,
  15175. ggml_scale(ctx,
  15176. ggml_div(ctx,
  15177. tensor->grad,
  15178. tensor),
  15179. 0.5f),
  15180. zero_table);
  15181. }
  15182. } break;
  15183. case GGML_OP_LOG:
  15184. {
  15185. if (src0->grad) {
  15186. src0->grad =
  15187. ggml_add_or_set(ctx,
  15188. src0->grad,
  15189. ggml_div(ctx,
  15190. tensor->grad,
  15191. src0),
  15192. zero_table);
  15193. }
  15194. } break;
  15195. case GGML_OP_SUM:
  15196. {
  15197. if (src0->grad) {
  15198. src0->grad =
  15199. ggml_add1_or_set(ctx,
  15200. src0->grad,
  15201. tensor->grad,
  15202. zero_table);
  15203. }
  15204. } break;
  15205. case GGML_OP_SUM_ROWS:
  15206. {
  15207. if (src0->grad) {
  15208. src0->grad =
  15209. ggml_add_or_set(ctx,
  15210. src0->grad,
  15211. ggml_repeat(ctx,
  15212. tensor->grad,
  15213. src0->grad),
  15214. zero_table);
  15215. }
  15216. } break;
  15217. case GGML_OP_MEAN:
  15218. case GGML_OP_ARGMAX:
  15219. {
  15220. GGML_ASSERT(false); // TODO: implement
  15221. } break;
  15222. case GGML_OP_REPEAT:
  15223. {
  15224. // necessary for llama
  15225. if (src0->grad) {
  15226. src0->grad = ggml_add_or_set(ctx,
  15227. src0->grad,
  15228. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  15229. zero_table);
  15230. }
  15231. } break;
  15232. case GGML_OP_REPEAT_BACK:
  15233. {
  15234. if (src0->grad) {
  15235. // TODO: test this
  15236. src0->grad = ggml_add_or_set(ctx,
  15237. src0->grad,
  15238. ggml_repeat(ctx, tensor->grad, src0->grad),
  15239. zero_table);
  15240. }
  15241. } break;
  15242. case GGML_OP_CONCAT:
  15243. {
  15244. GGML_ASSERT(false); // TODO: implement
  15245. } break;
  15246. case GGML_OP_SILU_BACK:
  15247. {
  15248. GGML_ASSERT(false); // TODO: not implemented
  15249. } break;
  15250. case GGML_OP_NORM:
  15251. {
  15252. GGML_ASSERT(false); // TODO: not implemented
  15253. } break;
  15254. case GGML_OP_RMS_NORM:
  15255. {
  15256. // necessary for llama
  15257. if (src0->grad) {
  15258. float eps;
  15259. memcpy(&eps, tensor->op_params, sizeof(float));
  15260. src0->grad = ggml_add_or_set(ctx,
  15261. src0->grad,
  15262. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  15263. zero_table);
  15264. }
  15265. } break;
  15266. case GGML_OP_RMS_NORM_BACK:
  15267. {
  15268. GGML_ASSERT(false); // TODO: not implemented
  15269. } break;
  15270. case GGML_OP_GROUP_NORM:
  15271. {
  15272. GGML_ASSERT(false); // TODO: not implemented
  15273. } break;
  15274. case GGML_OP_MUL_MAT:
  15275. {
  15276. // https://cs231n.github.io/optimization-2/#staged
  15277. // # forward pass
  15278. // s0 = np.random.randn(5, 10)
  15279. // s1 = np.random.randn(10, 3)
  15280. // t = s0.dot(s1)
  15281. // # now suppose we had the gradient on t from above in the circuit
  15282. // dt = np.random.randn(*t.shape) # same shape as t
  15283. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15284. // ds1 = t.T.dot(dt)
  15285. // tensor.shape [m,p,qq,rr]
  15286. // src0.shape [n,m,q1,r1]
  15287. // src1.shape [n,p,qq,rr]
  15288. // necessary for llama
  15289. if (src0->grad) {
  15290. struct ggml_tensor * s1_tg =
  15291. ggml_out_prod(ctx, // [n,m,qq,rr]
  15292. src1, // [n,p,qq,rr]
  15293. tensor->grad); // [m,p,qq,rr]
  15294. const int64_t qq = s1_tg->ne[2];
  15295. const int64_t rr = s1_tg->ne[3];
  15296. const int64_t q1 = src0->ne[2];
  15297. const int64_t r1 = src0->ne[3];
  15298. const bool ne2_broadcasted = qq > q1;
  15299. const bool ne3_broadcasted = rr > r1;
  15300. if (ne2_broadcasted || ne3_broadcasted) {
  15301. // sum broadcast repetitions of s1_tg into shape of src0
  15302. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15303. }
  15304. src0->grad =
  15305. ggml_add_or_set(ctx,
  15306. src0->grad, // [n,m,q1,r1]
  15307. s1_tg, // [n,m,q1,r1]
  15308. zero_table);
  15309. }
  15310. if (src1->grad) {
  15311. src1->grad =
  15312. ggml_add_or_set(ctx,
  15313. src1->grad, // [n,p,qq,rr]
  15314. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15315. // ggml_cont(ctx, // [m,n,q1,r1]
  15316. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15317. // tensor->grad), // [m,p,qq,rr]
  15318. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15319. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15320. // // and then use ggml_out_prod
  15321. ggml_out_prod(ctx, // [n,p,qq,rr]
  15322. src0, // [n,m,q1,r1]
  15323. ggml_transpose(ctx, // [p,m,qq,rr]
  15324. tensor->grad)), // [m,p,qq,rr]
  15325. zero_table);
  15326. }
  15327. } break;
  15328. case GGML_OP_MUL_MAT_ID:
  15329. {
  15330. GGML_ASSERT(false); // TODO: not implemented
  15331. } break;
  15332. case GGML_OP_OUT_PROD:
  15333. {
  15334. GGML_ASSERT(false); // TODO: not implemented
  15335. } break;
  15336. case GGML_OP_SCALE:
  15337. {
  15338. // necessary for llama
  15339. if (src0->grad) {
  15340. float s;
  15341. memcpy(&s, tensor->op_params, sizeof(float));
  15342. src0->grad =
  15343. ggml_add_or_set(ctx,
  15344. src0->grad,
  15345. ggml_scale_impl(ctx, tensor->grad, s, false),
  15346. zero_table);
  15347. }
  15348. } break;
  15349. case GGML_OP_SET:
  15350. {
  15351. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15352. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15353. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15354. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15355. struct ggml_tensor * tensor_grad_view = NULL;
  15356. if (src0->grad || src1->grad) {
  15357. GGML_ASSERT(src0->type == tensor->type);
  15358. GGML_ASSERT(tensor->grad->type == tensor->type);
  15359. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15360. tensor_grad_view = ggml_view_4d(ctx,
  15361. tensor->grad,
  15362. src1->grad->ne[0],
  15363. src1->grad->ne[1],
  15364. src1->grad->ne[2],
  15365. src1->grad->ne[3],
  15366. nb1, nb2, nb3, offset);
  15367. }
  15368. if (src0->grad) {
  15369. src0->grad = ggml_add_or_set(ctx,
  15370. src0->grad,
  15371. ggml_acc_impl(ctx,
  15372. tensor->grad,
  15373. ggml_neg(ctx, tensor_grad_view),
  15374. nb1, nb2, nb3, offset, false),
  15375. zero_table);
  15376. }
  15377. if (src1->grad) {
  15378. src1->grad =
  15379. ggml_add_or_set(ctx,
  15380. src1->grad,
  15381. ggml_reshape(ctx,
  15382. ggml_cont(ctx, tensor_grad_view),
  15383. src1->grad),
  15384. zero_table);
  15385. }
  15386. } break;
  15387. case GGML_OP_CPY:
  15388. {
  15389. // necessary for llama
  15390. // cpy overwrites value of src1 by src0 and returns view(src1)
  15391. // the overwriting is mathematically equivalent to:
  15392. // tensor = src0 * 1 + src1 * 0
  15393. if (src0->grad) {
  15394. // dsrc0 = dtensor * 1
  15395. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15396. }
  15397. if (src1->grad) {
  15398. // dsrc1 = dtensor * 0 -> noop
  15399. }
  15400. } break;
  15401. case GGML_OP_CONT:
  15402. {
  15403. // same as cpy
  15404. if (src0->grad) {
  15405. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15406. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15407. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15408. }
  15409. } break;
  15410. case GGML_OP_RESHAPE:
  15411. {
  15412. // necessary for llama
  15413. if (src0->grad) {
  15414. src0->grad =
  15415. ggml_add_or_set(ctx, src0->grad,
  15416. ggml_reshape(ctx,
  15417. ggml_is_contiguous(tensor->grad)
  15418. ? tensor->grad
  15419. : ggml_cont(ctx, tensor->grad),
  15420. src0->grad),
  15421. zero_table);
  15422. }
  15423. } break;
  15424. case GGML_OP_VIEW:
  15425. {
  15426. // necessary for llama
  15427. if (src0->grad) {
  15428. size_t offset;
  15429. memcpy(&offset, tensor->op_params, sizeof(offset));
  15430. size_t nb1 = tensor->nb[1];
  15431. size_t nb2 = tensor->nb[2];
  15432. size_t nb3 = tensor->nb[3];
  15433. if (src0->type != src0->grad->type) {
  15434. // gradient is typically F32, but src0 could be other type
  15435. size_t ng = ggml_element_size(src0->grad);
  15436. size_t n0 = ggml_element_size(src0);
  15437. GGML_ASSERT(offset % n0 == 0);
  15438. GGML_ASSERT(nb1 % n0 == 0);
  15439. GGML_ASSERT(nb2 % n0 == 0);
  15440. GGML_ASSERT(nb3 % n0 == 0);
  15441. offset = (offset / n0) * ng;
  15442. nb1 = (nb1 / n0) * ng;
  15443. nb2 = (nb2 / n0) * ng;
  15444. nb3 = (nb3 / n0) * ng;
  15445. }
  15446. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15447. }
  15448. } break;
  15449. case GGML_OP_PERMUTE:
  15450. {
  15451. // necessary for llama
  15452. if (src0->grad) {
  15453. int32_t * axes = (int32_t *) tensor->op_params;
  15454. int axis0 = axes[0] & 0x3;
  15455. int axis1 = axes[1] & 0x3;
  15456. int axis2 = axes[2] & 0x3;
  15457. int axis3 = axes[3] & 0x3;
  15458. int axes_backward[4] = {0,0,0,0};
  15459. axes_backward[axis0] = 0;
  15460. axes_backward[axis1] = 1;
  15461. axes_backward[axis2] = 2;
  15462. axes_backward[axis3] = 3;
  15463. src0->grad =
  15464. ggml_add_or_set(ctx, src0->grad,
  15465. ggml_permute(ctx,
  15466. tensor->grad,
  15467. axes_backward[0],
  15468. axes_backward[1],
  15469. axes_backward[2],
  15470. axes_backward[3]),
  15471. zero_table);
  15472. }
  15473. } break;
  15474. case GGML_OP_TRANSPOSE:
  15475. {
  15476. // necessary for llama
  15477. if (src0->grad) {
  15478. src0->grad =
  15479. ggml_add_or_set(ctx, src0->grad,
  15480. ggml_transpose(ctx, tensor->grad),
  15481. zero_table);
  15482. }
  15483. } break;
  15484. case GGML_OP_GET_ROWS:
  15485. {
  15486. // necessary for llama (only for tokenizer)
  15487. if (src0->grad) {
  15488. src0->grad =
  15489. ggml_add_or_set(ctx, src0->grad,
  15490. // last ggml_get_rows_back argument src0->grad is only
  15491. // necessary to setup correct output shape
  15492. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15493. zero_table);
  15494. }
  15495. if (src1->grad) {
  15496. // noop
  15497. }
  15498. } break;
  15499. case GGML_OP_GET_ROWS_BACK:
  15500. {
  15501. GGML_ASSERT(false); // TODO: not implemented
  15502. } break;
  15503. case GGML_OP_DIAG:
  15504. {
  15505. GGML_ASSERT(false); // TODO: not implemented
  15506. } break;
  15507. case GGML_OP_DIAG_MASK_INF:
  15508. {
  15509. // necessary for llama
  15510. if (src0->grad) {
  15511. const int n_past = ((int32_t *) tensor->op_params)[0];
  15512. src0->grad =
  15513. ggml_add_or_set(ctx, src0->grad,
  15514. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15515. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15516. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15517. zero_table);
  15518. }
  15519. } break;
  15520. case GGML_OP_DIAG_MASK_ZERO:
  15521. {
  15522. // necessary for llama
  15523. if (src0->grad) {
  15524. const int n_past = ((int32_t *) tensor->op_params)[0];
  15525. src0->grad =
  15526. ggml_add_or_set(ctx, src0->grad,
  15527. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15528. zero_table);
  15529. }
  15530. } break;
  15531. case GGML_OP_SOFT_MAX:
  15532. {
  15533. // necessary for llama
  15534. if (src0->grad) {
  15535. src0->grad =
  15536. ggml_add_or_set(ctx, src0->grad,
  15537. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15538. zero_table);
  15539. }
  15540. } break;
  15541. case GGML_OP_SOFT_MAX_BACK:
  15542. {
  15543. GGML_ASSERT(false); // TODO: not implemented
  15544. } break;
  15545. case GGML_OP_ROPE:
  15546. {
  15547. // necessary for llama
  15548. if (src0->grad) {
  15549. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15550. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15551. const int mode = ((int32_t *) tensor->op_params)[2];
  15552. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15553. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15554. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15555. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15556. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15557. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15558. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15559. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15560. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15561. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15562. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15563. src0->grad = ggml_add_or_set(ctx,
  15564. src0->grad,
  15565. ggml_rope_back(ctx,
  15566. tensor->grad,
  15567. src1,
  15568. src2,
  15569. n_dims,
  15570. mode,
  15571. n_ctx,
  15572. n_orig_ctx,
  15573. freq_base,
  15574. freq_scale,
  15575. ext_factor,
  15576. attn_factor,
  15577. beta_fast,
  15578. beta_slow,
  15579. xpos_base,
  15580. xpos_down),
  15581. zero_table);
  15582. }
  15583. } break;
  15584. case GGML_OP_ROPE_BACK:
  15585. {
  15586. if (src0->grad) {
  15587. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15588. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15589. const int mode = ((int32_t *) tensor->op_params)[2];
  15590. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15591. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15592. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15593. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15594. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15595. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15596. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15597. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15598. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15599. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15600. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15601. src0->grad = ggml_add_or_set(ctx,
  15602. src0->grad,
  15603. ggml_rope_impl(ctx,
  15604. tensor->grad,
  15605. src1,
  15606. src2,
  15607. n_dims,
  15608. mode,
  15609. n_ctx,
  15610. n_orig_ctx,
  15611. freq_base,
  15612. freq_scale,
  15613. ext_factor,
  15614. attn_factor,
  15615. beta_fast,
  15616. beta_slow,
  15617. xpos_base,
  15618. xpos_down,
  15619. false),
  15620. zero_table);
  15621. }
  15622. } break;
  15623. case GGML_OP_CLAMP:
  15624. {
  15625. GGML_ASSERT(false); // TODO: not implemented
  15626. } break;
  15627. case GGML_OP_CONV_TRANSPOSE_1D:
  15628. {
  15629. GGML_ASSERT(false); // TODO: not implemented
  15630. } break;
  15631. case GGML_OP_IM2COL:
  15632. {
  15633. GGML_ASSERT(false); // TODO: not implemented
  15634. } break;
  15635. case GGML_OP_CONV_TRANSPOSE_2D:
  15636. {
  15637. GGML_ASSERT(false); // TODO: not implemented
  15638. } break;
  15639. case GGML_OP_POOL_1D:
  15640. {
  15641. GGML_ASSERT(false); // TODO: not implemented
  15642. } break;
  15643. case GGML_OP_POOL_2D:
  15644. {
  15645. GGML_ASSERT(false); // TODO: not implemented
  15646. } break;
  15647. case GGML_OP_UPSCALE:
  15648. {
  15649. GGML_ASSERT(false); // TODO: not implemented
  15650. } break;
  15651. case GGML_OP_PAD:
  15652. {
  15653. GGML_ASSERT(false); // TODO: not implemented
  15654. } break;
  15655. case GGML_OP_ARANGE:
  15656. {
  15657. GGML_ASSERT(false); // TODO: not implemented
  15658. } break;
  15659. case GGML_OP_TIMESTEP_EMBEDDING:
  15660. {
  15661. GGML_ASSERT(false); // TODO: not implemented
  15662. } break;
  15663. case GGML_OP_ARGSORT:
  15664. {
  15665. GGML_ASSERT(false); // TODO: not implemented
  15666. } break;
  15667. case GGML_OP_LEAKY_RELU:
  15668. {
  15669. GGML_ASSERT(false); // TODO: not implemented
  15670. } break;
  15671. case GGML_OP_FLASH_ATTN:
  15672. case GGML_OP_FLASH_ATTN_EXT:
  15673. {
  15674. struct ggml_tensor * flash_grad = NULL;
  15675. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15676. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15677. GGML_ASSERT(t == 0 || t == 1);
  15678. bool masked = t != 0;
  15679. flash_grad =
  15680. ggml_flash_attn_back(ctx,
  15681. src0,
  15682. src1,
  15683. tensor->src[2],
  15684. tensor->grad,
  15685. masked);
  15686. }
  15687. const int64_t elem_q = ggml_nelements(src0);
  15688. const int64_t elem_k = ggml_nelements(src1);
  15689. const int64_t elem_v = ggml_nelements(src2);
  15690. enum ggml_type result_type = flash_grad->type;
  15691. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15692. const size_t tsize = ggml_type_size(result_type);
  15693. const size_t offs_q = 0;
  15694. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15695. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15696. if (src0->grad) {
  15697. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15698. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15699. src0->grad = ggml_add_or_set(ctx,
  15700. src0->grad,
  15701. grad_q,
  15702. zero_table);
  15703. }
  15704. if (src1->grad) {
  15705. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15706. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15707. src1->grad = ggml_add_or_set(ctx,
  15708. src1->grad,
  15709. grad_k,
  15710. zero_table);
  15711. }
  15712. if (src2->grad) {
  15713. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15714. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15715. src2->grad = ggml_add_or_set(ctx,
  15716. src2->grad,
  15717. grad_v,
  15718. zero_table);
  15719. }
  15720. } break;
  15721. case GGML_OP_FLASH_FF:
  15722. {
  15723. GGML_ASSERT(false); // not supported
  15724. } break;
  15725. case GGML_OP_FLASH_ATTN_BACK:
  15726. {
  15727. GGML_ASSERT(false); // not supported
  15728. } break;
  15729. case GGML_OP_SSM_CONV:
  15730. case GGML_OP_SSM_SCAN:
  15731. {
  15732. GGML_ASSERT(false); // TODO: not implemented
  15733. } break;
  15734. case GGML_OP_WIN_PART:
  15735. case GGML_OP_WIN_UNPART:
  15736. case GGML_OP_UNARY:
  15737. {
  15738. switch (ggml_get_unary_op(tensor)) {
  15739. case GGML_UNARY_OP_ABS:
  15740. {
  15741. if (src0->grad) {
  15742. src0->grad =
  15743. ggml_add_or_set(ctx,
  15744. src0->grad,
  15745. ggml_mul(ctx,
  15746. ggml_sgn(ctx, src0),
  15747. tensor->grad),
  15748. zero_table);
  15749. }
  15750. } break;
  15751. case GGML_UNARY_OP_SGN:
  15752. {
  15753. if (src0->grad) {
  15754. // noop
  15755. }
  15756. } break;
  15757. case GGML_UNARY_OP_NEG:
  15758. {
  15759. if (src0->grad) {
  15760. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15761. }
  15762. } break;
  15763. case GGML_UNARY_OP_STEP:
  15764. {
  15765. if (src0->grad) {
  15766. // noop
  15767. }
  15768. } break;
  15769. case GGML_UNARY_OP_TANH:
  15770. {
  15771. GGML_ASSERT(false); // TODO: not implemented
  15772. } break;
  15773. case GGML_UNARY_OP_ELU:
  15774. {
  15775. GGML_ASSERT(false); // TODO: not implemented
  15776. } break;
  15777. case GGML_UNARY_OP_RELU:
  15778. {
  15779. if (src0->grad) {
  15780. src0->grad = ggml_add_or_set(ctx,
  15781. src0->grad,
  15782. ggml_mul(ctx,
  15783. ggml_step(ctx, src0),
  15784. tensor->grad),
  15785. zero_table);
  15786. }
  15787. } break;
  15788. case GGML_UNARY_OP_SIGMOID:
  15789. {
  15790. GGML_ASSERT(false); // TODO: not implemented
  15791. } break;
  15792. case GGML_UNARY_OP_GELU:
  15793. {
  15794. GGML_ASSERT(false); // TODO: not implemented
  15795. } break;
  15796. case GGML_UNARY_OP_GELU_QUICK:
  15797. {
  15798. GGML_ASSERT(false); // TODO: not implemented
  15799. } break;
  15800. case GGML_UNARY_OP_SILU:
  15801. {
  15802. // necessary for llama
  15803. if (src0->grad) {
  15804. src0->grad = ggml_add_or_set(ctx,
  15805. src0->grad,
  15806. ggml_silu_back(ctx, src0, tensor->grad),
  15807. zero_table);
  15808. }
  15809. } break;
  15810. default:
  15811. GGML_ASSERT(false);
  15812. }
  15813. } break;
  15814. case GGML_OP_GET_REL_POS:
  15815. case GGML_OP_ADD_REL_POS:
  15816. case GGML_OP_MAP_UNARY:
  15817. case GGML_OP_MAP_BINARY:
  15818. case GGML_OP_MAP_CUSTOM1_F32:
  15819. case GGML_OP_MAP_CUSTOM2_F32:
  15820. case GGML_OP_MAP_CUSTOM3_F32:
  15821. case GGML_OP_MAP_CUSTOM1:
  15822. case GGML_OP_MAP_CUSTOM2:
  15823. case GGML_OP_MAP_CUSTOM3:
  15824. {
  15825. GGML_ASSERT(false); // not supported
  15826. } break;
  15827. case GGML_OP_CROSS_ENTROPY_LOSS:
  15828. {
  15829. if (src0->grad) {
  15830. src0->grad = ggml_add_or_set(ctx,
  15831. src0->grad,
  15832. ggml_cross_entropy_loss_back(ctx,
  15833. src0,
  15834. src1,
  15835. tensor->grad),
  15836. zero_table);
  15837. }
  15838. } break;
  15839. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15840. {
  15841. GGML_ASSERT(false); // not supported
  15842. } break;
  15843. case GGML_OP_NONE:
  15844. {
  15845. // nop
  15846. } break;
  15847. case GGML_OP_COUNT:
  15848. {
  15849. GGML_ASSERT(false);
  15850. } break;
  15851. }
  15852. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15853. if (tensor->src[i] && tensor->src[i]->grad) {
  15854. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15855. }
  15856. }
  15857. }
  15858. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15859. if (node->grad == NULL) {
  15860. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15861. // it can also happen during forward pass, if the user performs computations with constants
  15862. if (node->op != GGML_OP_NONE) {
  15863. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15864. }
  15865. }
  15866. // check if already visited
  15867. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15868. return;
  15869. }
  15870. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15871. const int k =
  15872. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15873. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15874. /* unknown order, just fall back to using i*/ i;
  15875. if (node->src[k]) {
  15876. ggml_visit_parents(cgraph, node->src[k]);
  15877. }
  15878. }
  15879. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15880. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15881. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15882. if (strlen(node->name) == 0) {
  15883. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15884. }
  15885. cgraph->leafs[cgraph->n_leafs] = node;
  15886. cgraph->n_leafs++;
  15887. } else {
  15888. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15889. if (strlen(node->name) == 0) {
  15890. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15891. }
  15892. cgraph->nodes[cgraph->n_nodes] = node;
  15893. if (cgraph->grads) {
  15894. cgraph->grads[cgraph->n_nodes] = node->grad;
  15895. }
  15896. cgraph->n_nodes++;
  15897. }
  15898. }
  15899. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15900. if (!expand) {
  15901. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15902. ggml_graph_clear(cgraph);
  15903. }
  15904. const int n0 = cgraph->n_nodes;
  15905. UNUSED(n0);
  15906. ggml_visit_parents(cgraph, tensor);
  15907. const int n_new = cgraph->n_nodes - n0;
  15908. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15909. if (n_new > 0) {
  15910. // the last added node should always be starting point
  15911. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15912. }
  15913. }
  15914. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15915. ggml_build_forward_impl(cgraph, tensor, true);
  15916. }
  15917. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15918. GGML_ASSERT(gf->n_nodes > 0);
  15919. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15920. if (keep) {
  15921. for (int i = 0; i < gf->n_nodes; i++) {
  15922. struct ggml_tensor * node = gf->nodes[i];
  15923. if (node->grad) {
  15924. node->grad = ggml_dup_tensor(ctx, node);
  15925. gf->grads[i] = node->grad;
  15926. }
  15927. }
  15928. }
  15929. // remember original gradients which start with zero values
  15930. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15931. for (int i = 0; i < gf->n_nodes; i++) {
  15932. if (gf->grads[i]) {
  15933. ggml_hash_insert(zero_table, gf->grads[i]);
  15934. }
  15935. }
  15936. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15937. struct ggml_tensor * node = gf->nodes[i];
  15938. // inplace operations to add gradients are not created by ggml_compute_backward
  15939. // use allocator to automatically make inplace operations
  15940. if (node->grad) {
  15941. ggml_compute_backward(ctx, node, zero_table);
  15942. }
  15943. }
  15944. for (int i = 0; i < gf->n_nodes; i++) {
  15945. struct ggml_tensor * node = gf->nodes[i];
  15946. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15947. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15948. ggml_build_forward_expand(gb, node->grad);
  15949. }
  15950. }
  15951. ggml_hash_set_free(zero_table);
  15952. }
  15953. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15954. size_t nbytes = sizeof(struct ggml_cgraph);
  15955. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15956. if (grads) {
  15957. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15958. }
  15959. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15960. return nbytes;
  15961. }
  15962. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15963. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15964. }
  15965. size_t ggml_graph_overhead(void) {
  15966. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15967. }
  15968. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15969. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15970. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15971. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15972. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15973. size_t hash_size = ggml_hash_size(size * 2);
  15974. struct ggml_tensor ** nodes_ptr = data_start;
  15975. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15976. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15977. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15978. // check that we allocated the correct amount of memory
  15979. assert(obj_size == (size_t) (
  15980. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15981. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15982. *cgraph = (struct ggml_cgraph) {
  15983. /*.size =*/ size,
  15984. /*.n_nodes =*/ 0,
  15985. /*.n_leafs =*/ 0,
  15986. /*.nodes =*/ nodes_ptr,
  15987. /*.grads =*/ grads_ptr,
  15988. /*.leafs =*/ leafs_ptr,
  15989. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15990. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15991. /*.perf_runs =*/ 0,
  15992. /*.perf_cycles =*/ 0,
  15993. /*.perf_time_us =*/ 0,
  15994. };
  15995. return cgraph;
  15996. }
  15997. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15998. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15999. }
  16000. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  16001. struct ggml_cgraph cgraph = {
  16002. /*.size =*/ 0,
  16003. /*.n_nodes =*/ i1 - i0,
  16004. /*.n_leafs =*/ 0,
  16005. /*.nodes =*/ cgraph0->nodes + i0,
  16006. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  16007. /*.leafs =*/ NULL,
  16008. /*.hash_table =*/ { 0, NULL },
  16009. /*.order =*/ cgraph0->order,
  16010. /*.perf_runs =*/ 0,
  16011. /*.perf_cycles =*/ 0,
  16012. /*.perf_time_us =*/ 0,
  16013. };
  16014. return cgraph;
  16015. }
  16016. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  16017. GGML_ASSERT(dst->size >= src->n_leafs);
  16018. GGML_ASSERT(dst->size >= src->n_nodes);
  16019. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  16020. dst->n_leafs = src->n_leafs;
  16021. dst->n_nodes = src->n_nodes;
  16022. dst->order = src->order;
  16023. for (int i = 0; i < src->n_leafs; ++i) {
  16024. dst->leafs[i] = src->leafs[i];
  16025. }
  16026. for (int i = 0; i < src->n_nodes; ++i) {
  16027. dst->nodes[i] = src->nodes[i];
  16028. }
  16029. if (src->grads) {
  16030. GGML_ASSERT(dst->grads != NULL);
  16031. for (int i = 0; i < src->n_nodes; ++i) {
  16032. dst->grads[i] = src->grads[i];
  16033. }
  16034. }
  16035. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  16036. if (src->visited_hash_table.keys[i]) {
  16037. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  16038. }
  16039. }
  16040. }
  16041. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  16042. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  16043. ggml_graph_cpy(cgraph, result);
  16044. return result;
  16045. }
  16046. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  16047. GGML_ASSERT(cgraph->grads != NULL);
  16048. for (int i = 0; i < cgraph->n_nodes; i++) {
  16049. struct ggml_tensor * grad = cgraph->grads[i];
  16050. if (grad) {
  16051. ggml_set_zero(grad);
  16052. }
  16053. }
  16054. }
  16055. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  16056. cgraph->n_leafs = 0;
  16057. cgraph->n_nodes = 0;
  16058. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  16059. }
  16060. //
  16061. // thread data
  16062. //
  16063. // synchronization is done via busy loops
  16064. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  16065. //
  16066. #ifdef __APPLE__
  16067. //#include <os/lock.h>
  16068. //
  16069. //typedef os_unfair_lock ggml_lock_t;
  16070. //
  16071. //#define ggml_lock_init(x) UNUSED(x)
  16072. //#define ggml_lock_destroy(x) UNUSED(x)
  16073. //#define ggml_lock_lock os_unfair_lock_lock
  16074. //#define ggml_lock_unlock os_unfair_lock_unlock
  16075. //
  16076. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  16077. typedef int ggml_lock_t;
  16078. #define ggml_lock_init(x) UNUSED(x)
  16079. #define ggml_lock_destroy(x) UNUSED(x)
  16080. #define ggml_lock_lock(x) UNUSED(x)
  16081. #define ggml_lock_unlock(x) UNUSED(x)
  16082. #define GGML_LOCK_INITIALIZER 0
  16083. #define ggml_thread_create pthread_create
  16084. #define ggml_thread_join pthread_join
  16085. #else
  16086. //typedef pthread_spinlock_t ggml_lock_t;
  16087. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  16088. //#define ggml_lock_destroy pthread_spin_destroy
  16089. //#define ggml_lock_lock pthread_spin_lock
  16090. //#define ggml_lock_unlock pthread_spin_unlock
  16091. typedef int ggml_lock_t;
  16092. #define ggml_lock_init(x) UNUSED(x)
  16093. #define ggml_lock_destroy(x) UNUSED(x)
  16094. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  16095. #define ggml_lock_lock(x) _mm_pause()
  16096. #else
  16097. #define ggml_lock_lock(x) UNUSED(x)
  16098. #endif
  16099. #define ggml_lock_unlock(x) UNUSED(x)
  16100. #define GGML_LOCK_INITIALIZER 0
  16101. #define ggml_thread_create pthread_create
  16102. #define ggml_thread_join pthread_join
  16103. #endif
  16104. // Android's libc implementation "bionic" does not support setting affinity
  16105. #if defined(__gnu_linux__)
  16106. static void set_numa_thread_affinity(int thread_n) {
  16107. if (!ggml_is_numa()) {
  16108. return;
  16109. }
  16110. int node_num;
  16111. int rv;
  16112. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16113. switch(g_state.numa.numa_strategy) {
  16114. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  16115. // run thread on node_num thread_n / (threads per node)
  16116. node_num = thread_n % g_state.numa.n_nodes;
  16117. break;
  16118. case GGML_NUMA_STRATEGY_ISOLATE:
  16119. // run thread on current_node
  16120. node_num = g_state.numa.current_node;
  16121. break;
  16122. case GGML_NUMA_STRATEGY_NUMACTL:
  16123. // use the cpuset that numactl gave us
  16124. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  16125. if (rv) {
  16126. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  16127. }
  16128. return;
  16129. default:
  16130. return;
  16131. }
  16132. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  16133. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16134. CPU_ZERO_S(setsize, cpus);
  16135. for (size_t i = 0; i < node->n_cpus; ++i) {
  16136. CPU_SET_S(node->cpus[i], setsize, cpus);
  16137. }
  16138. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16139. if (rv) {
  16140. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16141. }
  16142. CPU_FREE(cpus);
  16143. }
  16144. static void clear_numa_thread_affinity(void) {
  16145. if (!ggml_is_numa()) {
  16146. return;
  16147. }
  16148. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16149. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16150. CPU_ZERO_S(setsize, cpus);
  16151. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  16152. CPU_SET_S(i, setsize, cpus);
  16153. }
  16154. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16155. if (rv) {
  16156. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16157. }
  16158. CPU_FREE(cpus);
  16159. }
  16160. #else
  16161. // TODO: Windows etc.
  16162. // (the linux implementation may also work on BSD, someone should test)
  16163. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  16164. static void clear_numa_thread_affinity(void) {}
  16165. #endif
  16166. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  16167. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  16168. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  16169. node->perf_runs++;
  16170. node->perf_cycles += cycles_cur;
  16171. node->perf_time_us += time_us_cur;
  16172. }
  16173. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  16174. int n_tasks = 0;
  16175. if (ggml_is_empty(node)) {
  16176. // no need to multi-thread a no-op
  16177. n_tasks = 1;
  16178. return n_tasks;
  16179. }
  16180. switch (node->op) {
  16181. case GGML_OP_CPY:
  16182. case GGML_OP_DUP:
  16183. case GGML_OP_ADD:
  16184. case GGML_OP_ADD1:
  16185. case GGML_OP_ACC:
  16186. {
  16187. n_tasks = n_threads;
  16188. } break;
  16189. case GGML_OP_SUB:
  16190. case GGML_OP_SQR:
  16191. case GGML_OP_SQRT:
  16192. case GGML_OP_LOG:
  16193. case GGML_OP_SUM:
  16194. case GGML_OP_SUM_ROWS:
  16195. case GGML_OP_MEAN:
  16196. case GGML_OP_ARGMAX:
  16197. case GGML_OP_REPEAT:
  16198. case GGML_OP_REPEAT_BACK:
  16199. case GGML_OP_LEAKY_RELU:
  16200. {
  16201. n_tasks = 1;
  16202. } break;
  16203. case GGML_OP_UNARY:
  16204. switch (ggml_get_unary_op(node)) {
  16205. case GGML_UNARY_OP_ABS:
  16206. case GGML_UNARY_OP_SGN:
  16207. case GGML_UNARY_OP_NEG:
  16208. case GGML_UNARY_OP_STEP:
  16209. case GGML_UNARY_OP_TANH:
  16210. case GGML_UNARY_OP_ELU:
  16211. case GGML_UNARY_OP_RELU:
  16212. case GGML_UNARY_OP_SIGMOID:
  16213. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  16214. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  16215. {
  16216. n_tasks = 1;
  16217. } break;
  16218. case GGML_UNARY_OP_GELU:
  16219. case GGML_UNARY_OP_GELU_QUICK:
  16220. case GGML_UNARY_OP_SILU:
  16221. {
  16222. n_tasks = n_threads;
  16223. } break;
  16224. default:
  16225. GGML_ASSERT(false);
  16226. }
  16227. break;
  16228. case GGML_OP_SILU_BACK:
  16229. case GGML_OP_MUL:
  16230. case GGML_OP_DIV:
  16231. case GGML_OP_NORM:
  16232. case GGML_OP_RMS_NORM:
  16233. case GGML_OP_RMS_NORM_BACK:
  16234. case GGML_OP_GROUP_NORM:
  16235. case GGML_OP_CONCAT:
  16236. {
  16237. n_tasks = n_threads;
  16238. } break;
  16239. case GGML_OP_MUL_MAT:
  16240. {
  16241. n_tasks = n_threads;
  16242. // TODO: use different scheduling for different matrix sizes
  16243. //const int nr0 = ggml_nrows(node->src[0]);
  16244. //const int nr1 = ggml_nrows(node->src[1]);
  16245. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  16246. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  16247. } break;
  16248. case GGML_OP_MUL_MAT_ID:
  16249. {
  16250. n_tasks = n_threads;
  16251. } break;
  16252. case GGML_OP_OUT_PROD:
  16253. {
  16254. n_tasks = n_threads;
  16255. } break;
  16256. case GGML_OP_GET_ROWS:
  16257. {
  16258. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  16259. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  16260. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  16261. } break;
  16262. case GGML_OP_SCALE:
  16263. case GGML_OP_SET:
  16264. case GGML_OP_CONT:
  16265. case GGML_OP_RESHAPE:
  16266. case GGML_OP_VIEW:
  16267. case GGML_OP_PERMUTE:
  16268. case GGML_OP_TRANSPOSE:
  16269. case GGML_OP_GET_ROWS_BACK:
  16270. case GGML_OP_DIAG:
  16271. {
  16272. n_tasks = 1;
  16273. } break;
  16274. case GGML_OP_DIAG_MASK_ZERO:
  16275. case GGML_OP_DIAG_MASK_INF:
  16276. case GGML_OP_SOFT_MAX_BACK:
  16277. case GGML_OP_ROPE:
  16278. case GGML_OP_ROPE_BACK:
  16279. case GGML_OP_ADD_REL_POS:
  16280. {
  16281. n_tasks = n_threads;
  16282. } break;
  16283. case GGML_OP_CLAMP:
  16284. {
  16285. n_tasks = 1; //TODO
  16286. } break;
  16287. case GGML_OP_SOFT_MAX:
  16288. {
  16289. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16290. } break;
  16291. case GGML_OP_CONV_TRANSPOSE_1D:
  16292. {
  16293. n_tasks = n_threads;
  16294. } break;
  16295. case GGML_OP_IM2COL:
  16296. {
  16297. n_tasks = n_threads;
  16298. } break;
  16299. case GGML_OP_CONV_TRANSPOSE_2D:
  16300. {
  16301. n_tasks = n_threads;
  16302. } break;
  16303. case GGML_OP_POOL_1D:
  16304. case GGML_OP_POOL_2D:
  16305. {
  16306. n_tasks = 1;
  16307. } break;
  16308. case GGML_OP_UPSCALE:
  16309. {
  16310. n_tasks = n_threads;
  16311. } break;
  16312. case GGML_OP_PAD:
  16313. {
  16314. n_tasks = n_threads;
  16315. } break;
  16316. case GGML_OP_ARANGE:
  16317. {
  16318. n_tasks = n_threads;
  16319. } break;
  16320. case GGML_OP_TIMESTEP_EMBEDDING:
  16321. {
  16322. n_tasks = n_threads;
  16323. } break;
  16324. case GGML_OP_ARGSORT:
  16325. {
  16326. n_tasks = n_threads;
  16327. } break;
  16328. case GGML_OP_FLASH_ATTN:
  16329. case GGML_OP_FLASH_ATTN_EXT:
  16330. {
  16331. n_tasks = n_threads;
  16332. } break;
  16333. case GGML_OP_FLASH_FF:
  16334. {
  16335. n_tasks = n_threads;
  16336. } break;
  16337. case GGML_OP_FLASH_ATTN_BACK:
  16338. {
  16339. n_tasks = n_threads;
  16340. } break;
  16341. case GGML_OP_SSM_CONV:
  16342. case GGML_OP_SSM_SCAN:
  16343. {
  16344. n_tasks = n_threads;
  16345. } break;
  16346. case GGML_OP_WIN_PART:
  16347. case GGML_OP_WIN_UNPART:
  16348. case GGML_OP_GET_REL_POS:
  16349. case GGML_OP_MAP_UNARY:
  16350. case GGML_OP_MAP_BINARY:
  16351. case GGML_OP_MAP_CUSTOM1_F32:
  16352. case GGML_OP_MAP_CUSTOM2_F32:
  16353. case GGML_OP_MAP_CUSTOM3_F32:
  16354. {
  16355. n_tasks = 1;
  16356. } break;
  16357. case GGML_OP_MAP_CUSTOM1:
  16358. {
  16359. struct ggml_map_custom1_op_params p;
  16360. memcpy(&p, node->op_params, sizeof(p));
  16361. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16362. n_tasks = n_threads;
  16363. } else {
  16364. n_tasks = MIN(p.n_tasks, n_threads);
  16365. }
  16366. } break;
  16367. case GGML_OP_MAP_CUSTOM2:
  16368. {
  16369. struct ggml_map_custom2_op_params p;
  16370. memcpy(&p, node->op_params, sizeof(p));
  16371. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16372. n_tasks = n_threads;
  16373. } else {
  16374. n_tasks = MIN(p.n_tasks, n_threads);
  16375. }
  16376. } break;
  16377. case GGML_OP_MAP_CUSTOM3:
  16378. {
  16379. struct ggml_map_custom3_op_params p;
  16380. memcpy(&p, node->op_params, sizeof(p));
  16381. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16382. n_tasks = n_threads;
  16383. } else {
  16384. n_tasks = MIN(p.n_tasks, n_threads);
  16385. }
  16386. } break;
  16387. case GGML_OP_CROSS_ENTROPY_LOSS:
  16388. {
  16389. n_tasks = n_threads;
  16390. } break;
  16391. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16392. {
  16393. n_tasks = n_threads;
  16394. } break;
  16395. case GGML_OP_NONE:
  16396. {
  16397. n_tasks = 1;
  16398. } break;
  16399. case GGML_OP_COUNT:
  16400. {
  16401. GGML_ASSERT(false);
  16402. } break;
  16403. default:
  16404. {
  16405. fprintf(stderr, "%s: op not implemented: ", __func__);
  16406. if (node->op < GGML_OP_COUNT) {
  16407. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16408. } else {
  16409. fprintf(stderr, "%d\n", node->op);
  16410. }
  16411. GGML_ASSERT(false);
  16412. } break;
  16413. }
  16414. assert(n_tasks > 0);
  16415. return n_tasks;
  16416. }
  16417. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16418. // wait for other threads to finish
  16419. const int last_node_n = * node_n;
  16420. while (true) {
  16421. if (do_yield) {
  16422. sched_yield();
  16423. }
  16424. * node_n = atomic_load(&state->shared->node_n);
  16425. if (* node_n != last_node_n) break;
  16426. #if defined(__SSE3__)
  16427. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16428. _mm_pause();
  16429. #endif
  16430. }
  16431. }
  16432. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16433. // wait for other threads to finish
  16434. const int last_task_phase = * task_phase;
  16435. while (true) {
  16436. if (do_yield) {
  16437. sched_yield();
  16438. }
  16439. * task_phase = atomic_load(&state->shared->node_task);
  16440. if (* task_phase != last_task_phase) break;
  16441. #if defined(__SSE3__)
  16442. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16443. _mm_pause();
  16444. #endif
  16445. }
  16446. }
  16447. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16448. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16449. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16450. const struct ggml_cplan * cplan = state->shared->cplan;
  16451. const int n_threads = state->shared->n_threads;
  16452. set_numa_thread_affinity(state->ith);
  16453. int node_n = -1;
  16454. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16455. while (true) {
  16456. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16457. state->shared->node_n += 1;
  16458. state->ec = GGML_STATUS_ABORTED;
  16459. return 0;
  16460. }
  16461. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16462. // all other threads are finished and spinning
  16463. // do finalize and init here so we don't have synchronize again
  16464. struct ggml_compute_params params = {
  16465. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16466. /*.ith =*/ 0,
  16467. /*.nth =*/ 0,
  16468. /*.wsize =*/ cplan->work_size,
  16469. /*.wdata =*/ cplan->work_data,
  16470. };
  16471. if (node_n != -1) {
  16472. /* FINALIZE */
  16473. struct ggml_tensor * node = cgraph->nodes[node_n];
  16474. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16475. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16476. ggml_compute_forward(&params, node, state);
  16477. }
  16478. ggml_graph_compute_perf_stats_node(node, state->shared);
  16479. }
  16480. // distribute new work or execute it direct if 1T
  16481. while (++node_n < cgraph->n_nodes) {
  16482. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16483. struct ggml_tensor * node = cgraph->nodes[node_n];
  16484. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16485. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16486. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16487. params.nth = n_tasks;
  16488. if (n_tasks == 1) {
  16489. /* INIT */
  16490. if (GGML_OP_HAS_INIT[node->op]) {
  16491. params.type = GGML_TASK_TYPE_INIT;
  16492. ggml_compute_forward(&params, node, state);
  16493. }
  16494. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16495. // they do something more efficient than spinning (?)
  16496. params.type = GGML_TASK_TYPE_COMPUTE;
  16497. ggml_compute_forward(&params, node, state);
  16498. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16499. params.type = GGML_TASK_TYPE_FINALIZE;
  16500. ggml_compute_forward(&params, node, state);
  16501. }
  16502. ggml_graph_compute_perf_stats_node(node, state->shared);
  16503. } else {
  16504. break;
  16505. }
  16506. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16507. break;
  16508. }
  16509. }
  16510. task_phase = GGML_TASK_TYPE_INIT;
  16511. atomic_store(&state->shared->n_active, n_threads);
  16512. atomic_store(&state->shared->node_n, node_n);
  16513. atomic_store(&state->shared->node_task, task_phase);
  16514. } else {
  16515. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16516. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16517. }
  16518. // check if we should stop
  16519. if (node_n >= cgraph->n_nodes) break;
  16520. /* INIT & COMPUTE */
  16521. struct ggml_tensor * node = cgraph->nodes[node_n];
  16522. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16523. struct ggml_compute_params params = {
  16524. /*.type =*/ GGML_TASK_TYPE_INIT,
  16525. /*.ith =*/ state->ith,
  16526. /*.nth =*/ n_tasks,
  16527. /*.wsize =*/ cplan->work_size,
  16528. /*.wdata =*/ cplan->work_data,
  16529. };
  16530. if (state->ith < n_tasks) {
  16531. if (GGML_OP_HAS_INIT[node->op]) {
  16532. ggml_compute_forward(&params, node, state);
  16533. }
  16534. }
  16535. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16536. task_phase = GGML_TASK_TYPE_COMPUTE;
  16537. atomic_store(&state->shared->n_active, n_threads);
  16538. atomic_store(&state->shared->node_task, task_phase);
  16539. }
  16540. else {
  16541. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16542. // depending on the workload and the operating system.
  16543. // since it is not clear what is the best approach, it should potentially become user-configurable
  16544. // ref: https://github.com/ggerganov/ggml/issues/291
  16545. // UPD: adding the do_yield flag seems to resolve the issue universally
  16546. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16547. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16548. }
  16549. if (state->ith < n_tasks) {
  16550. params.type = GGML_TASK_TYPE_COMPUTE;
  16551. ggml_compute_forward(&params, node, state);
  16552. }
  16553. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16554. task_phase = GGML_TASK_TYPE_FINALIZE;
  16555. atomic_store(&state->shared->n_active, n_threads);
  16556. atomic_store(&state->shared->node_task, task_phase);
  16557. }
  16558. else {
  16559. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16560. }
  16561. }
  16562. return 0;
  16563. }
  16564. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16565. if (n_threads <= 0) {
  16566. n_threads = GGML_DEFAULT_N_THREADS;
  16567. }
  16568. size_t work_size = 0;
  16569. struct ggml_cplan cplan;
  16570. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16571. int max_tasks = 1;
  16572. // thread scheduling for the different operations + work buffer size estimation
  16573. for (int i = 0; i < cgraph->n_nodes; i++) {
  16574. struct ggml_tensor * node = cgraph->nodes[i];
  16575. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16576. max_tasks = MAX(max_tasks, n_tasks);
  16577. size_t cur = 0;
  16578. switch (node->op) {
  16579. case GGML_OP_CPY:
  16580. case GGML_OP_DUP:
  16581. {
  16582. if (ggml_is_quantized(node->type) ||
  16583. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16584. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16585. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16586. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16587. }
  16588. } break;
  16589. case GGML_OP_ADD:
  16590. case GGML_OP_ADD1:
  16591. {
  16592. if (ggml_is_quantized(node->src[0]->type)) {
  16593. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16594. }
  16595. } break;
  16596. case GGML_OP_ACC:
  16597. {
  16598. if (ggml_is_quantized(node->src[0]->type)) {
  16599. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16600. }
  16601. } break;
  16602. case GGML_OP_MUL_MAT:
  16603. {
  16604. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16605. #if defined(GGML_USE_CLBLAST)
  16606. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16607. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16608. } else
  16609. #endif
  16610. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16611. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16612. if (node->src[0]->type != GGML_TYPE_F32) {
  16613. // here we need memory for fully dequantized matrix from src0
  16614. // take into account that src0 can be broadcasted into src1[2,3]
  16615. cur = ggml_type_size(GGML_TYPE_F32)
  16616. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16617. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16618. }
  16619. } else
  16620. #endif
  16621. if (node->src[1]->type != vec_dot_type) {
  16622. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16623. }
  16624. } break;
  16625. case GGML_OP_MUL_MAT_ID:
  16626. {
  16627. cur = 0;
  16628. const struct ggml_tensor * src0 = node->src[0];
  16629. const struct ggml_tensor * src1 = node->src[1];
  16630. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16631. if (src1->type != vec_dot_type) {
  16632. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16633. }
  16634. const int n_as = src0->ne[2];
  16635. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16636. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16637. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16638. } break;
  16639. case GGML_OP_OUT_PROD:
  16640. {
  16641. if (ggml_is_quantized(node->src[0]->type)) {
  16642. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16643. }
  16644. } break;
  16645. case GGML_OP_SOFT_MAX:
  16646. case GGML_OP_ROPE:
  16647. {
  16648. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16649. } break;
  16650. case GGML_OP_CONV_TRANSPOSE_1D:
  16651. {
  16652. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16653. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16654. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16655. const int64_t ne00 = node->src[0]->ne[0]; // K
  16656. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16657. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16658. const int64_t ne10 = node->src[1]->ne[0]; // L
  16659. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16660. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16661. node->src[0]->type == GGML_TYPE_BF16) &&
  16662. node->src[1]->type == GGML_TYPE_F32) {
  16663. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16664. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16665. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16666. node->src[1]->type == GGML_TYPE_F32) {
  16667. cur += sizeof(float)*ne00*ne01*ne02;
  16668. cur += sizeof(float)*ne10*ne11;
  16669. } else {
  16670. GGML_ASSERT(false);
  16671. }
  16672. } break;
  16673. case GGML_OP_CONV_TRANSPOSE_2D:
  16674. {
  16675. const int64_t ne00 = node->src[0]->ne[0]; // W
  16676. const int64_t ne01 = node->src[0]->ne[1]; // H
  16677. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16678. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16679. const int64_t ne10 = node->src[1]->ne[0]; // W
  16680. const int64_t ne11 = node->src[1]->ne[1]; // H
  16681. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16682. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16683. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16684. } break;
  16685. case GGML_OP_FLASH_ATTN:
  16686. {
  16687. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16688. if (node->src[1]->type == GGML_TYPE_F32) {
  16689. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16690. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16691. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16692. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16693. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16694. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16695. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16696. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16697. }
  16698. } break;
  16699. case GGML_OP_FLASH_ATTN_EXT:
  16700. {
  16701. const int64_t ne00 = node->src[0]->ne[0]; // D
  16702. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16703. } break;
  16704. case GGML_OP_FLASH_FF:
  16705. {
  16706. if (node->src[1]->type == GGML_TYPE_F32) {
  16707. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16708. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16709. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16710. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16711. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16712. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16713. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16714. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16715. }
  16716. } break;
  16717. case GGML_OP_FLASH_ATTN_BACK:
  16718. {
  16719. const int64_t D = node->src[0]->ne[0];
  16720. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16721. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16722. if (node->src[1]->type == GGML_TYPE_F32) {
  16723. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16724. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16725. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16726. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16727. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16728. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16729. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16730. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16731. }
  16732. } break;
  16733. case GGML_OP_CROSS_ENTROPY_LOSS:
  16734. {
  16735. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16736. } break;
  16737. case GGML_OP_COUNT:
  16738. {
  16739. GGML_ASSERT(false);
  16740. } break;
  16741. default:
  16742. break;
  16743. }
  16744. work_size = MAX(work_size, cur);
  16745. }
  16746. if (work_size > 0) {
  16747. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16748. }
  16749. cplan.n_threads = MIN(max_tasks, n_threads);
  16750. cplan.work_size = work_size;
  16751. cplan.work_data = NULL;
  16752. return cplan;
  16753. }
  16754. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16755. {
  16756. GGML_ASSERT(cplan);
  16757. GGML_ASSERT(cplan->n_threads > 0);
  16758. if (cplan->work_size > 0) {
  16759. GGML_ASSERT(cplan->work_data);
  16760. }
  16761. }
  16762. const int n_threads = cplan->n_threads;
  16763. struct ggml_compute_state_shared state_shared = {
  16764. /*.cgraph =*/ cgraph,
  16765. /*.cgraph_plan =*/ cplan,
  16766. /*.perf_node_start_cycles =*/ 0,
  16767. /*.perf_node_start_time_us =*/ 0,
  16768. /*.n_threads =*/ n_threads,
  16769. /*.n_active =*/ n_threads,
  16770. /*.node_n =*/ -1,
  16771. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16772. /*.abort_callback =*/ NULL,
  16773. /*.abort_callback_data =*/ NULL,
  16774. /*.current_chunk; =*/ 0,
  16775. };
  16776. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16777. // create thread pool
  16778. if (n_threads > 1) {
  16779. for (int j = 1; j < n_threads; ++j) {
  16780. workers[j] = (struct ggml_compute_state) {
  16781. .thrd = 0,
  16782. .ith = j,
  16783. .shared = &state_shared,
  16784. .ec = GGML_STATUS_SUCCESS,
  16785. };
  16786. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16787. GGML_ASSERT(rc == 0);
  16788. UNUSED(rc);
  16789. }
  16790. }
  16791. workers[0].ith = 0;
  16792. workers[0].shared = &state_shared;
  16793. workers[0].ec = GGML_STATUS_SUCCESS;
  16794. const int64_t perf_start_cycles = ggml_perf_cycles();
  16795. const int64_t perf_start_time_us = ggml_perf_time_us();
  16796. // this is a work thread too
  16797. ggml_graph_compute_thread(&workers[0]);
  16798. enum ggml_status compute_status = workers[0].ec;
  16799. // don't leave affinity set on the main thread
  16800. clear_numa_thread_affinity();
  16801. // join or kill thread pool
  16802. if (n_threads > 1) {
  16803. for (int j = 1; j < n_threads; j++) {
  16804. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16805. GGML_ASSERT(rc == 0);
  16806. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16807. compute_status = workers[j].ec;
  16808. }
  16809. }
  16810. // performance stats (graph)
  16811. {
  16812. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16813. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16814. cgraph->perf_runs++;
  16815. cgraph->perf_cycles += perf_cycles_cur;
  16816. cgraph->perf_time_us += perf_time_us_cur;
  16817. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16818. __func__, cgraph->perf_runs,
  16819. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16820. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16821. (double) perf_time_us_cur / 1000.0,
  16822. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16823. }
  16824. return compute_status;
  16825. }
  16826. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16827. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16828. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16829. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16830. return ggml_graph_compute(cgraph, &cplan);
  16831. }
  16832. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16833. for (int i = 0; i < cgraph->n_leafs; i++) {
  16834. struct ggml_tensor * leaf = cgraph->leafs[i];
  16835. if (strcmp(leaf->name, name) == 0) {
  16836. return leaf;
  16837. }
  16838. }
  16839. for (int i = 0; i < cgraph->n_nodes; i++) {
  16840. struct ggml_tensor * node = cgraph->nodes[i];
  16841. if (strcmp(node->name, name) == 0) {
  16842. return node;
  16843. }
  16844. }
  16845. return NULL;
  16846. }
  16847. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16848. const int64_t * ne = tensor->ne;
  16849. const size_t * nb = tensor->nb;
  16850. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16851. ggml_type_name(tensor->type),
  16852. ggml_op_name (tensor->op),
  16853. ggml_n_dims(tensor),
  16854. ne[0], ne[1], ne[2], ne[3],
  16855. nb[0], nb[1], nb[2], nb[3],
  16856. tensor->data,
  16857. tensor->name);
  16858. }
  16859. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16860. const int64_t * ne = tensor->ne;
  16861. const size_t * nb = tensor->nb;
  16862. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16863. arg,
  16864. ggml_type_name(tensor->type),
  16865. ggml_op_name (tensor->op),
  16866. ggml_n_dims(tensor),
  16867. ne[0], ne[1], ne[2], ne[3],
  16868. nb[0], nb[1], nb[2], nb[3],
  16869. tensor->data,
  16870. tensor->name);
  16871. }
  16872. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16873. uint64_t size_eval = 0;
  16874. // compute size of intermediate results
  16875. // TODO: does not take into account scratch buffers !!!!
  16876. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16877. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16878. }
  16879. // print
  16880. {
  16881. FILE * fout = stdout;
  16882. fprintf(fout, "\n");
  16883. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16884. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16885. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16886. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16887. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16888. // header
  16889. fprintf(fout, "\n");
  16890. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16891. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16892. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16893. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16894. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16895. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16896. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16897. }
  16898. // header
  16899. fprintf(fout, "\n");
  16900. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16901. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16902. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16903. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16904. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16905. if (cgraph->nodes[i]->src[j]) {
  16906. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16907. }
  16908. }
  16909. fprintf(fout, "\n");
  16910. }
  16911. fprintf(fout, "\n");
  16912. }
  16913. // write binary data
  16914. {
  16915. FILE * fout = ggml_fopen(fname, "wb");
  16916. if (!fout) {
  16917. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16918. return;
  16919. }
  16920. // header
  16921. {
  16922. const uint32_t magic = GGML_FILE_MAGIC;
  16923. const uint32_t version = GGML_FILE_VERSION;
  16924. const uint32_t n_leafs = cgraph->n_leafs;
  16925. const uint32_t n_nodes = cgraph->n_nodes;
  16926. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16927. fwrite(&version, sizeof(uint32_t), 1, fout);
  16928. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16929. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16930. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16931. }
  16932. // leafs
  16933. {
  16934. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16935. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16936. const uint32_t type = tensor->type;
  16937. const uint32_t op = tensor->op;
  16938. fwrite(&type, sizeof(uint32_t), 1, fout);
  16939. fwrite(&op, sizeof(uint32_t), 1, fout);
  16940. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16941. const uint64_t ne = tensor->ne[j];
  16942. const uint64_t nb = tensor->nb[j];
  16943. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16944. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16945. }
  16946. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16947. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16948. // dump the data
  16949. // TODO: pad this to 32 byte boundary
  16950. {
  16951. const size_t size = ggml_nbytes(tensor);
  16952. fwrite(tensor->data, sizeof(char), size, fout);
  16953. }
  16954. }
  16955. }
  16956. // nodes
  16957. {
  16958. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16959. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16960. const uint32_t type = tensor->type;
  16961. const uint32_t op = tensor->op;
  16962. fwrite(&type, sizeof(uint32_t), 1, fout);
  16963. fwrite(&op, sizeof(uint32_t), 1, fout);
  16964. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16965. const uint64_t ne = tensor->ne[j];
  16966. const uint64_t nb = tensor->nb[j];
  16967. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16968. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16969. }
  16970. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16971. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16972. // output the op arguments
  16973. {
  16974. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16975. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16976. args[j] = tensor->src[j];
  16977. }
  16978. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16979. if (args[j]) {
  16980. int32_t idx = -1;
  16981. // check if leaf
  16982. {
  16983. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16984. if (args[j] == cgraph->leafs[k]) {
  16985. idx = k;
  16986. break;
  16987. }
  16988. }
  16989. }
  16990. // check if node
  16991. if (idx == -1) {
  16992. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16993. if (args[j] == cgraph->nodes[k]) {
  16994. idx = cgraph->n_leafs + k;
  16995. break;
  16996. }
  16997. }
  16998. }
  16999. if (idx == -1) {
  17000. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  17001. fclose(fout);
  17002. return;
  17003. }
  17004. fwrite(&idx, sizeof(int32_t), 1, fout);
  17005. } else {
  17006. const int32_t nul = -1;
  17007. fwrite(&nul, sizeof(int32_t), 1, fout);
  17008. }
  17009. }
  17010. }
  17011. }
  17012. }
  17013. fclose(fout);
  17014. }
  17015. }
  17016. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  17017. assert(*ctx_data == NULL);
  17018. assert(*ctx_eval == NULL);
  17019. struct ggml_cgraph * result = NULL;
  17020. struct ggml_tensor * data = NULL;
  17021. // read file into data
  17022. {
  17023. FILE * fin = ggml_fopen(fname, "rb");
  17024. if (!fin) {
  17025. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  17026. return result;
  17027. }
  17028. size_t fsize = 0;
  17029. fseek(fin, 0, SEEK_END);
  17030. fsize = ftell(fin);
  17031. fseek(fin, 0, SEEK_SET);
  17032. // create the data context
  17033. {
  17034. const size_t overhead = 1*ggml_tensor_overhead();
  17035. struct ggml_init_params params = {
  17036. .mem_size = fsize + overhead,
  17037. .mem_buffer = NULL,
  17038. .no_alloc = false,
  17039. };
  17040. *ctx_data = ggml_init(params);
  17041. if (!*ctx_data) {
  17042. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17043. fclose(fin);
  17044. return result;
  17045. }
  17046. }
  17047. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  17048. {
  17049. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  17050. if (ret != fsize) {
  17051. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  17052. fclose(fin);
  17053. return result;
  17054. }
  17055. }
  17056. fclose(fin);
  17057. }
  17058. // populate result
  17059. {
  17060. char * ptr = (char *) data->data;
  17061. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17062. if (magic != GGML_FILE_MAGIC) {
  17063. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17064. return result;
  17065. }
  17066. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17067. if (version != GGML_FILE_VERSION) {
  17068. fprintf(stderr, "%s: invalid version number\n", __func__);
  17069. return result;
  17070. }
  17071. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17072. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17073. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17074. const int graph_size = MAX(n_leafs, n_nodes);
  17075. // create the data context
  17076. {
  17077. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17078. struct ggml_init_params params = {
  17079. .mem_size = size_eval + overhead,
  17080. .mem_buffer = NULL,
  17081. .no_alloc = true,
  17082. };
  17083. *ctx_eval = ggml_init(params);
  17084. if (!*ctx_eval) {
  17085. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17086. return result;
  17087. }
  17088. }
  17089. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17090. result->n_leafs = n_leafs;
  17091. result->n_nodes = n_nodes;
  17092. // leafs
  17093. {
  17094. uint32_t type;
  17095. uint32_t op;
  17096. for (uint32_t i = 0; i < n_leafs; ++i) {
  17097. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17098. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17099. int64_t ne[GGML_MAX_DIMS];
  17100. size_t nb[GGML_MAX_DIMS];
  17101. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17102. uint64_t ne_cur;
  17103. uint64_t nb_cur;
  17104. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17105. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17106. ne[j] = ne_cur;
  17107. nb[j] = nb_cur;
  17108. }
  17109. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17110. tensor->op = (enum ggml_op) op;
  17111. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17112. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17113. tensor->data = (void *) ptr;
  17114. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17115. tensor->nb[j] = nb[j];
  17116. }
  17117. result->leafs[i] = tensor;
  17118. ptr += ggml_nbytes(tensor);
  17119. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17120. }
  17121. }
  17122. ggml_set_no_alloc(*ctx_eval, false);
  17123. // nodes
  17124. {
  17125. uint32_t type;
  17126. uint32_t op;
  17127. for (uint32_t i = 0; i < n_nodes; ++i) {
  17128. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17129. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17130. enum ggml_op eop = (enum ggml_op) op;
  17131. int64_t ne[GGML_MAX_DIMS];
  17132. size_t nb[GGML_MAX_DIMS];
  17133. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17134. uint64_t ne_cur;
  17135. uint64_t nb_cur;
  17136. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17137. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17138. ne[j] = ne_cur;
  17139. nb[j] = nb_cur;
  17140. }
  17141. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17142. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17143. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17144. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17145. // parse args
  17146. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17147. const int32_t arg_idx = ptr_arg_idx[j];
  17148. if (arg_idx == -1) {
  17149. continue;
  17150. }
  17151. if (arg_idx < result->n_leafs) {
  17152. args[j] = result->leafs[arg_idx];
  17153. } else {
  17154. args[j] = result->nodes[arg_idx - result->n_leafs];
  17155. }
  17156. }
  17157. // create the tensor
  17158. // "view" operations are handled differently
  17159. // TODO: handle inplace ops - currently a copy is always made
  17160. struct ggml_tensor * tensor = NULL;
  17161. switch (eop) {
  17162. // TODO: implement other view ops
  17163. case GGML_OP_RESHAPE:
  17164. {
  17165. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17166. } break;
  17167. case GGML_OP_VIEW:
  17168. {
  17169. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17170. size_t offs;
  17171. memcpy(&offs, ptr_op_params, sizeof(offs));
  17172. tensor->data = ((char *) tensor->data) + offs;
  17173. } break;
  17174. case GGML_OP_TRANSPOSE:
  17175. {
  17176. tensor = ggml_transpose(*ctx_eval, args[0]);
  17177. } break;
  17178. case GGML_OP_PERMUTE:
  17179. {
  17180. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17181. } break;
  17182. default:
  17183. {
  17184. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17185. tensor->op = eop;
  17186. } break;
  17187. }
  17188. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17189. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17190. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17191. tensor->nb[j] = nb[j];
  17192. }
  17193. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17194. tensor->src[j] = args[j];
  17195. }
  17196. result->nodes[i] = tensor;
  17197. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17198. }
  17199. }
  17200. }
  17201. return result;
  17202. }
  17203. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17204. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  17205. GGML_PRINT("=== GRAPH ===\n");
  17206. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  17207. for (int i = 0; i < cgraph->n_nodes; i++) {
  17208. struct ggml_tensor * node = cgraph->nodes[i];
  17209. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  17210. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  17211. i,
  17212. node->ne[0], node->ne[1], node->ne[2],
  17213. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  17214. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  17215. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  17216. (double) node->perf_time_us / 1000.0,
  17217. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  17218. }
  17219. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17220. for (int i = 0; i < cgraph->n_leafs; i++) {
  17221. struct ggml_tensor * node = cgraph->leafs[i];
  17222. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17223. i,
  17224. node->ne[0], node->ne[1],
  17225. ggml_op_name(node->op),
  17226. ggml_get_name(node));
  17227. }
  17228. for (int i = 0; i < GGML_OP_COUNT; i++) {
  17229. if (perf_total_per_op_us[i] == 0) {
  17230. continue;
  17231. }
  17232. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  17233. }
  17234. GGML_PRINT("========================================\n");
  17235. }
  17236. // check if node is part of the graph
  17237. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17238. if (cgraph == NULL) {
  17239. return true;
  17240. }
  17241. for (int i = 0; i < cgraph->n_nodes; i++) {
  17242. if (cgraph->nodes[i] == node) {
  17243. return true;
  17244. }
  17245. }
  17246. return false;
  17247. }
  17248. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17249. for (int i = 0; i < cgraph->n_nodes; i++) {
  17250. struct ggml_tensor * parent = cgraph->nodes[i];
  17251. if (parent->grad == node) {
  17252. return parent;
  17253. }
  17254. }
  17255. return NULL;
  17256. }
  17257. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17258. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17259. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17260. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17261. gparent0 ? (void *) gparent0 : (void *) parent,
  17262. gparent0 ? "g" : "x",
  17263. gparent ? (void *) gparent : (void *) node,
  17264. gparent ? "g" : "x",
  17265. gparent ? "empty" : "vee",
  17266. gparent ? "dashed" : "solid",
  17267. label);
  17268. }
  17269. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17270. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17271. (void *) parent, "x",
  17272. (void *) node, "x",
  17273. label);
  17274. }
  17275. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17276. char color[16];
  17277. FILE * fp = ggml_fopen(filename, "w");
  17278. GGML_ASSERT(fp);
  17279. fprintf(fp, "digraph G {\n");
  17280. fprintf(fp, " newrank = true;\n");
  17281. fprintf(fp, " rankdir = LR;\n");
  17282. for (int i = 0; i < gb->n_nodes; i++) {
  17283. struct ggml_tensor * node = gb->nodes[i];
  17284. if (ggml_graph_get_parent(gb, node) != NULL) {
  17285. continue;
  17286. }
  17287. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17288. snprintf(color, sizeof(color), "yellow");
  17289. } else if (node->grad) {
  17290. if (ggml_graph_find(gf, node)) {
  17291. snprintf(color, sizeof(color), "green");
  17292. } else {
  17293. snprintf(color, sizeof(color), "lightblue");
  17294. }
  17295. } else {
  17296. snprintf(color, sizeof(color), "white");
  17297. }
  17298. fprintf(fp, " \"%p\" [ "
  17299. "style = filled; fillcolor = %s; shape = record; "
  17300. "label=\"",
  17301. (void *) node, color);
  17302. if (strlen(node->name) > 0) {
  17303. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17304. } else {
  17305. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17306. }
  17307. if (ggml_is_matrix(node)) {
  17308. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17309. } else {
  17310. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17311. }
  17312. if (node->grad) {
  17313. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17314. } else {
  17315. fprintf(fp, "\"; ]\n");
  17316. }
  17317. }
  17318. for (int i = 0; i < gb->n_leafs; i++) {
  17319. struct ggml_tensor * node = gb->leafs[i];
  17320. snprintf(color, sizeof(color), "pink");
  17321. fprintf(fp, " \"%p\" [ "
  17322. "style = filled; fillcolor = %s; shape = record; "
  17323. "label=\"<x>",
  17324. (void *) node, color);
  17325. if (strlen(node->name) > 0) {
  17326. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17327. } else {
  17328. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17329. }
  17330. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17331. if (ggml_nelements(node) < 5) {
  17332. fprintf(fp, " | (");
  17333. for (int j = 0; j < ggml_nelements(node); j++) {
  17334. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17335. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17336. }
  17337. else if (node->type == GGML_TYPE_F32 ||
  17338. node->type == GGML_TYPE_F16 ||
  17339. node->type == GGML_TYPE_BF16) {
  17340. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17341. }
  17342. else {
  17343. fprintf(fp, "#");
  17344. }
  17345. if (j < ggml_nelements(node) - 1) {
  17346. fprintf(fp, ", ");
  17347. }
  17348. }
  17349. fprintf(fp, ")");
  17350. }
  17351. fprintf(fp, "\"; ]\n");
  17352. }
  17353. for (int i = 0; i < gb->n_nodes; i++) {
  17354. struct ggml_tensor * node = gb->nodes[i];
  17355. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17356. if (node->src[j]) {
  17357. char label[16];
  17358. snprintf(label, sizeof(label), "src %d", j);
  17359. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17360. }
  17361. }
  17362. }
  17363. for (int i = 0; i < gb->n_leafs; i++) {
  17364. struct ggml_tensor * node = gb->leafs[i];
  17365. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17366. if (node->src[j]) {
  17367. char label[16];
  17368. snprintf(label, sizeof(label), "src %d", j);
  17369. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17370. }
  17371. }
  17372. }
  17373. fprintf(fp, "}\n");
  17374. fclose(fp);
  17375. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17376. }
  17377. ////////////////////////////////////////////////////////////////////////////////
  17378. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17379. int i = 0;
  17380. for (int p = 0; p < np; ++p) {
  17381. const int64_t ne = ggml_nelements(ps[p]) ;
  17382. // TODO: add function to set tensor from array
  17383. for (int64_t j = 0; j < ne; ++j) {
  17384. ggml_set_f32_1d(ps[p], j, x[i++]);
  17385. }
  17386. }
  17387. }
  17388. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17389. int i = 0;
  17390. for (int p = 0; p < np; ++p) {
  17391. const int64_t ne = ggml_nelements(ps[p]) ;
  17392. // TODO: add function to get all elements at once
  17393. for (int64_t j = 0; j < ne; ++j) {
  17394. x[i++] = ggml_get_f32_1d(ps[p], j);
  17395. }
  17396. }
  17397. }
  17398. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17399. int64_t i = 0;
  17400. for (int p = 0; p < np; ++p) {
  17401. const int64_t ne = ggml_nelements(ps[p]) ;
  17402. // TODO: add function to get all elements at once
  17403. for (int64_t j = 0; j < ne; ++j) {
  17404. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17405. }
  17406. }
  17407. }
  17408. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17409. int64_t i = 0;
  17410. for (int p = 0; p < np; ++p) {
  17411. const int64_t ne = ggml_nelements(ps[p]) ;
  17412. // TODO: add function to get all elements at once
  17413. for (int64_t j = 0; j < ne; ++j) {
  17414. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17415. }
  17416. }
  17417. }
  17418. //
  17419. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17420. //
  17421. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17422. //
  17423. static enum ggml_opt_result ggml_opt_adam(
  17424. struct ggml_context * ctx,
  17425. struct ggml_opt_context * opt,
  17426. struct ggml_opt_params params,
  17427. struct ggml_tensor * f,
  17428. struct ggml_cgraph * gf,
  17429. struct ggml_cgraph * gb,
  17430. ggml_opt_callback callback,
  17431. void * callback_data) {
  17432. GGML_ASSERT(ggml_is_scalar(f));
  17433. // these will store the parameters we want to optimize
  17434. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17435. int np = 0;
  17436. int64_t nx = 0;
  17437. for (int i = 0; i < gf->n_nodes; ++i) {
  17438. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17439. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17440. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17441. ps[np++] = gf->nodes[i];
  17442. nx += ggml_nelements(gf->nodes[i]);
  17443. }
  17444. }
  17445. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17446. int iter = opt->iter;
  17447. ggml_opt_init(opt->ctx, opt, params, nx);
  17448. opt->iter = iter;
  17449. }
  17450. // constants
  17451. float sched = params.adam.sched;
  17452. const float alpha = params.adam.alpha;
  17453. const float decay = params.adam.decay * alpha;
  17454. const float beta1 = params.adam.beta1;
  17455. const float beta2 = params.adam.beta2;
  17456. const float eps = params.adam.eps;
  17457. const float gclip = params.adam.gclip;
  17458. const int decay_min_ndim = params.adam.decay_min_ndim;
  17459. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17460. const float accum_norm = 1.0f / (float) n_accum;
  17461. float * g = opt->adam.g->data; // gradients
  17462. float * m = opt->adam.m->data; // first moment
  17463. float * v = opt->adam.v->data; // second moment
  17464. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17465. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17466. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17467. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17468. bool cancel = false;
  17469. // compute the function value
  17470. float fx = 0;
  17471. ggml_set_zero(opt->adam.g);
  17472. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17473. if (callback) {
  17474. callback(callback_data, accum_step, &sched, &cancel);
  17475. if (cancel) {
  17476. return GGML_OPT_RESULT_CANCEL;
  17477. }
  17478. }
  17479. // ggml_graph_reset (gf);
  17480. ggml_set_f32 (f->grad, 1.0f);
  17481. ggml_graph_compute(gb, &cplan);
  17482. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17483. fx += ggml_get_f32_1d(f, 0);
  17484. }
  17485. fx *= accum_norm;
  17486. opt->adam.fx_prev = fx;
  17487. opt->adam.fx_best = opt->adam.fx_prev;
  17488. if (pf) {
  17489. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17490. }
  17491. opt->loss_before = opt->adam.fx_prev;
  17492. opt->loss_after = opt->adam.fx_prev;
  17493. // initialize
  17494. if (opt->just_initialized) {
  17495. opt->adam.n_no_improvement = 0;
  17496. opt->just_initialized = false;
  17497. }
  17498. float * fx_best = &opt->adam.fx_best;
  17499. float * fx_prev = &opt->adam.fx_prev;
  17500. int * n_no_improvement = &opt->adam.n_no_improvement;
  17501. int iter0 = opt->iter;
  17502. // run the optimizer
  17503. for (int t = 0; t < params.adam.n_iter; ++t) {
  17504. opt->iter = iter0 + t + 1;
  17505. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17506. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17507. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17508. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17509. for (int i = 0; i < np; ++i) {
  17510. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17511. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17512. }
  17513. const int64_t t_start_wall = ggml_time_us();
  17514. const int64_t t_start_cpu = ggml_cycles();
  17515. UNUSED(t_start_wall);
  17516. UNUSED(t_start_cpu);
  17517. {
  17518. float gnorm = 1.0f;
  17519. if (gclip > 0.0f) {
  17520. // gradient clipping
  17521. ggml_float sum = 0.0;
  17522. for (int64_t i = 0; i < nx; ++i) {
  17523. sum += (ggml_float)(g[i]*g[i]);
  17524. }
  17525. ggml_float norm = sqrt(sum);
  17526. if (norm > (ggml_float) gclip) {
  17527. gnorm = (float) ((ggml_float) gclip / norm);
  17528. }
  17529. }
  17530. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17531. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17532. int64_t i = 0;
  17533. for (int p = 0; p < np; ++p) {
  17534. const int64_t ne = ggml_nelements(ps[p]);
  17535. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17536. for (int64_t j = 0; j < ne; ++j) {
  17537. float x = ggml_get_f32_1d(ps[p], j);
  17538. float g_ = g[i]*gnorm;
  17539. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17540. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17541. float mh = m[i]*beta1h;
  17542. float vh = v[i]*beta2h;
  17543. vh = sqrtf(vh) + eps;
  17544. x = x*(1.0f - p_decay) - mh/vh;
  17545. ggml_set_f32_1d(ps[p], j, x);
  17546. ++i;
  17547. }
  17548. }
  17549. }
  17550. fx = 0;
  17551. ggml_set_zero(opt->adam.g);
  17552. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17553. if (callback) {
  17554. callback(callback_data, accum_step, &sched, &cancel);
  17555. if (cancel) {
  17556. return GGML_OPT_RESULT_CANCEL;;
  17557. }
  17558. }
  17559. // ggml_graph_reset (gf);
  17560. ggml_set_f32 (f->grad, 1.0f);
  17561. ggml_graph_compute(gb, &cplan);
  17562. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17563. fx += ggml_get_f32_1d(f, 0);
  17564. }
  17565. fx *= accum_norm;
  17566. opt->loss_after = fx;
  17567. // check convergence
  17568. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17569. GGML_PRINT_DEBUG("converged\n");
  17570. return GGML_OPT_RESULT_OK;
  17571. }
  17572. // delta-based convergence test
  17573. if (pf != NULL) {
  17574. // need at least params.past iterations to start checking for convergence
  17575. if (params.past <= iter0 + t) {
  17576. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17577. if (fabsf(rate) < params.delta) {
  17578. return GGML_OPT_RESULT_OK;
  17579. }
  17580. }
  17581. pf[(iter0 + t)%params.past] = fx;
  17582. }
  17583. // check for improvement
  17584. if (params.max_no_improvement > 0) {
  17585. if (fx_best[0] > fx) {
  17586. fx_best[0] = fx;
  17587. n_no_improvement[0] = 0;
  17588. } else {
  17589. ++n_no_improvement[0];
  17590. if (n_no_improvement[0] >= params.max_no_improvement) {
  17591. return GGML_OPT_RESULT_OK;
  17592. }
  17593. }
  17594. }
  17595. fx_prev[0] = fx;
  17596. {
  17597. const int64_t t_end_cpu = ggml_cycles();
  17598. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17599. UNUSED(t_end_cpu);
  17600. const int64_t t_end_wall = ggml_time_us();
  17601. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17602. UNUSED(t_end_wall);
  17603. }
  17604. }
  17605. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17606. }
  17607. //
  17608. // L-BFGS
  17609. //
  17610. // the L-BFGS implementation below is based on the following implementation:
  17611. //
  17612. // https://github.com/chokkan/liblbfgs
  17613. //
  17614. struct ggml_lbfgs_iteration_data {
  17615. float alpha;
  17616. float ys;
  17617. float * s;
  17618. float * y;
  17619. };
  17620. static enum ggml_opt_result linesearch_backtracking(
  17621. const struct ggml_opt_params * params,
  17622. int nx,
  17623. float * x,
  17624. float * fx,
  17625. float * g,
  17626. float * d,
  17627. float * step,
  17628. const float * xp,
  17629. struct ggml_tensor * f,
  17630. struct ggml_cgraph * gb,
  17631. struct ggml_cplan * cplan,
  17632. const int np,
  17633. struct ggml_tensor * ps[],
  17634. bool * cancel,
  17635. ggml_opt_callback callback,
  17636. void * callback_data) {
  17637. int count = 0;
  17638. float width = 0.0f;
  17639. float dg = 0.0f;
  17640. float finit = 0.0f;
  17641. float dginit = 0.0f;
  17642. float dgtest = 0.0f;
  17643. const float dec = 0.5f;
  17644. const float inc = 2.1f;
  17645. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17646. const float accum_norm = 1.0f / (float) n_accum;
  17647. if (*step <= 0.f) {
  17648. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17649. }
  17650. // compute the initial gradient in the search direction
  17651. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17652. // make sure that d points to a descent direction
  17653. if (0 < dginit) {
  17654. return GGML_LINESEARCH_FAIL;
  17655. }
  17656. // initialize local variables
  17657. finit = *fx;
  17658. dgtest = params->lbfgs.ftol*dginit;
  17659. while (true) {
  17660. ggml_vec_cpy_f32(nx, x, xp);
  17661. ggml_vec_mad_f32(nx, x, d, *step);
  17662. // evaluate the function and gradient values
  17663. {
  17664. ggml_opt_set_params(np, ps, x);
  17665. *fx = 0;
  17666. memset(g, 0, sizeof(float)*nx);
  17667. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17668. if (callback) {
  17669. // LBFG-S does not support learning rate -> ignore learning schedule
  17670. float sched = 0;
  17671. callback(callback_data, accum_step, &sched, cancel);
  17672. if (*cancel) {
  17673. return GGML_OPT_RESULT_CANCEL;
  17674. }
  17675. }
  17676. // ggml_graph_reset (gf);
  17677. ggml_set_f32 (f->grad, 1.0f);
  17678. ggml_graph_compute(gb, cplan);
  17679. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17680. *fx += ggml_get_f32_1d(f, 0);
  17681. }
  17682. *fx *= accum_norm;
  17683. }
  17684. ++count;
  17685. if (*fx > finit + (*step)*dgtest) {
  17686. width = dec;
  17687. } else {
  17688. // Armijo condition is satisfied
  17689. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17690. return count;
  17691. }
  17692. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17693. // check the Wolfe condition
  17694. if (dg < params->lbfgs.wolfe * dginit) {
  17695. width = inc;
  17696. } else {
  17697. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17698. // regular Wolfe conditions
  17699. return count;
  17700. }
  17701. if(dg > -params->lbfgs.wolfe*dginit) {
  17702. width = dec;
  17703. } else {
  17704. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17705. return count;
  17706. }
  17707. }
  17708. }
  17709. if (*step < params->lbfgs.min_step) {
  17710. return GGML_LINESEARCH_MINIMUM_STEP;
  17711. }
  17712. if (*step > params->lbfgs.max_step) {
  17713. return GGML_LINESEARCH_MAXIMUM_STEP;
  17714. }
  17715. if (params->lbfgs.max_linesearch <= count) {
  17716. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17717. }
  17718. (*step) *= width;
  17719. }
  17720. GGML_ASSERT(false && "line search failed");
  17721. return GGML_LINESEARCH_FAIL;
  17722. }
  17723. static enum ggml_opt_result ggml_opt_lbfgs(
  17724. struct ggml_context * ctx,
  17725. struct ggml_opt_context * opt,
  17726. struct ggml_opt_params params,
  17727. struct ggml_tensor * f,
  17728. struct ggml_cgraph * gf,
  17729. struct ggml_cgraph * gb,
  17730. ggml_opt_callback callback,
  17731. void * callback_data) {
  17732. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17733. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17734. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17735. return GGML_OPT_RESULT_INVALID_WOLFE;
  17736. }
  17737. }
  17738. const int m = params.lbfgs.m;
  17739. // these will store the parameters we want to optimize
  17740. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17741. int np = 0;
  17742. int nx = 0;
  17743. for (int i = 0; i < gf->n_nodes; ++i) {
  17744. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17745. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17746. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17747. ps[np++] = gf->nodes[i];
  17748. nx += ggml_nelements(gf->nodes[i]);
  17749. }
  17750. }
  17751. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17752. int iter = opt->iter;
  17753. ggml_opt_init(ctx, opt, params, nx);
  17754. opt->iter = iter;
  17755. }
  17756. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17757. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17758. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17759. float * x = opt->lbfgs.x->data; // current parameters
  17760. float * xp = opt->lbfgs.xp->data; // previous parameters
  17761. float * g = opt->lbfgs.g->data; // current gradient
  17762. float * gp = opt->lbfgs.gp->data; // previous gradient
  17763. float * d = opt->lbfgs.d->data; // search direction
  17764. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17765. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17766. const float accum_norm = 1.0f / (float) n_accum;
  17767. float fx = 0.0f; // cost function value
  17768. float xnorm = 0.0f; // ||x||
  17769. float gnorm = 0.0f; // ||g||
  17770. // initialize x from the graph nodes
  17771. ggml_opt_get_params(np, ps, x);
  17772. // the L-BFGS memory
  17773. float * lm_alpha = opt->lbfgs.lmal->data;
  17774. float * lm_ys = opt->lbfgs.lmys->data;
  17775. float * lm_s = opt->lbfgs.lms->data;
  17776. float * lm_y = opt->lbfgs.lmy->data;
  17777. bool cancel = false;
  17778. // evaluate the function value and its gradient
  17779. {
  17780. ggml_opt_set_params(np, ps, x);
  17781. fx = 0;
  17782. memset(g, 0, sizeof(float)*nx);
  17783. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17784. if (callback) {
  17785. // LBFG-S does not support learning rate -> ignore learning schedule
  17786. float sched = 0;
  17787. callback(callback_data, accum_step, &sched, &cancel);
  17788. if (cancel) {
  17789. return GGML_OPT_RESULT_CANCEL;
  17790. }
  17791. }
  17792. // ggml_graph_reset (gf);
  17793. ggml_set_f32 (f->grad, 1.0f);
  17794. ggml_graph_compute(gb, &cplan);
  17795. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17796. fx += ggml_get_f32_1d(f, 0);
  17797. }
  17798. fx *= accum_norm;
  17799. opt->loss_before = fx;
  17800. opt->loss_after = fx;
  17801. }
  17802. // search direction = -gradient
  17803. ggml_vec_neg_f32(nx, d, g);
  17804. // ||x||, ||g||
  17805. ggml_vec_norm_f32(nx, &xnorm, x);
  17806. ggml_vec_norm_f32(nx, &gnorm, g);
  17807. if (xnorm < 1.0f) {
  17808. xnorm = 1.0f;
  17809. }
  17810. // already optimized
  17811. if (gnorm/xnorm <= params.lbfgs.eps) {
  17812. return GGML_OPT_RESULT_OK;
  17813. }
  17814. if (opt->just_initialized) {
  17815. if (pf) {
  17816. pf[0] = fx;
  17817. }
  17818. opt->lbfgs.fx_best = fx;
  17819. // initial step
  17820. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17821. opt->lbfgs.j = 0;
  17822. opt->lbfgs.k = 1;
  17823. opt->lbfgs.end = 0;
  17824. opt->lbfgs.n_no_improvement = 0;
  17825. opt->just_initialized = false;
  17826. }
  17827. float * fx_best = &opt->lbfgs.fx_best;
  17828. float * step = &opt->lbfgs.step;
  17829. int * j = &opt->lbfgs.j;
  17830. int * k = &opt->lbfgs.k;
  17831. int * end = &opt->lbfgs.end;
  17832. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17833. int ls = 0;
  17834. int bound = 0;
  17835. float ys = 0.0f;
  17836. float yy = 0.0f;
  17837. float beta = 0.0f;
  17838. int it = 0;
  17839. while (true) {
  17840. // store the current position and gradient vectors
  17841. ggml_vec_cpy_f32(nx, xp, x);
  17842. ggml_vec_cpy_f32(nx, gp, g);
  17843. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17844. // to determine if the optimization should be cancelled
  17845. // this is a simple change, but not doing this atm, since I don't have a nice
  17846. // way to test and don't want to break something with so many changes lined up
  17847. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17848. if (cancel) {
  17849. return GGML_OPT_RESULT_CANCEL;
  17850. }
  17851. if (ls < 0) {
  17852. // linesearch failed - go back to the previous point and return
  17853. ggml_vec_cpy_f32(nx, x, xp);
  17854. ggml_vec_cpy_f32(nx, g, gp);
  17855. return ls;
  17856. }
  17857. opt->loss_after = fx;
  17858. ggml_vec_norm_f32(nx, &xnorm, x);
  17859. ggml_vec_norm_f32(nx, &gnorm, g);
  17860. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17861. if (xnorm < 1.0f) {
  17862. xnorm = 1.0f;
  17863. }
  17864. if (gnorm/xnorm <= params.lbfgs.eps) {
  17865. // converged
  17866. return GGML_OPT_RESULT_OK;
  17867. }
  17868. // delta-based convergence test
  17869. if (pf != NULL) {
  17870. // need at least params.past iterations to start checking for convergence
  17871. if (params.past <= k[0]) {
  17872. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17873. if (fabsf(rate) < params.delta) {
  17874. return GGML_OPT_RESULT_OK;
  17875. }
  17876. }
  17877. pf[k[0]%params.past] = fx;
  17878. }
  17879. // check for improvement
  17880. if (params.max_no_improvement > 0) {
  17881. if (fx < fx_best[0]) {
  17882. fx_best[0] = fx;
  17883. n_no_improvement[0] = 0;
  17884. } else {
  17885. n_no_improvement[0]++;
  17886. if (n_no_improvement[0] >= params.max_no_improvement) {
  17887. return GGML_OPT_RESULT_OK;
  17888. }
  17889. }
  17890. }
  17891. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17892. // reached the maximum number of iterations
  17893. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17894. }
  17895. // update vectors s and y:
  17896. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17897. // y_{k+1} = g_{k+1} - g_{k}.
  17898. //
  17899. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17900. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17901. // compute scalars ys and yy:
  17902. // ys = y^t \cdot s -> 1 / \rho.
  17903. // yy = y^t \cdot y.
  17904. //
  17905. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17906. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17907. lm_ys[end[0]] = ys;
  17908. // find new search direction
  17909. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17910. bound = (m <= k[0]) ? m : k[0];
  17911. k[0]++;
  17912. it++;
  17913. end[0] = (end[0] + 1)%m;
  17914. // initialize search direction with -g
  17915. ggml_vec_neg_f32(nx, d, g);
  17916. j[0] = end[0];
  17917. for (int i = 0; i < bound; ++i) {
  17918. j[0] = (j[0] + m - 1) % m;
  17919. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17920. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17921. lm_alpha[j[0]] /= lm_ys[j[0]];
  17922. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17923. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17924. }
  17925. ggml_vec_scale_f32(nx, d, ys/yy);
  17926. for (int i = 0; i < bound; ++i) {
  17927. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17928. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17929. beta /= lm_ys[j[0]];
  17930. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17931. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17932. j[0] = (j[0] + 1)%m;
  17933. }
  17934. step[0] = 1.0;
  17935. }
  17936. GGML_ASSERT(false && "lbfgs failed");
  17937. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17938. }
  17939. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17940. struct ggml_opt_params result;
  17941. switch (type) {
  17942. case GGML_OPT_TYPE_ADAM:
  17943. {
  17944. result = (struct ggml_opt_params) {
  17945. .type = GGML_OPT_TYPE_ADAM,
  17946. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17947. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17948. .past = 0,
  17949. .delta = 1e-5f,
  17950. .max_no_improvement = 100,
  17951. .print_forward_graph = true,
  17952. .print_backward_graph = true,
  17953. .n_gradient_accumulation = 1,
  17954. .adam = {
  17955. .n_iter = 10000,
  17956. .sched = 1.000f,
  17957. .decay = 0.0f,
  17958. .decay_min_ndim = 2,
  17959. .alpha = 0.001f,
  17960. .beta1 = 0.9f,
  17961. .beta2 = 0.999f,
  17962. .eps = 1e-8f,
  17963. .eps_f = 1e-5f,
  17964. .eps_g = 1e-3f,
  17965. .gclip = 0.0f,
  17966. },
  17967. };
  17968. } break;
  17969. case GGML_OPT_TYPE_LBFGS:
  17970. {
  17971. result = (struct ggml_opt_params) {
  17972. .type = GGML_OPT_TYPE_LBFGS,
  17973. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17974. .n_threads = 1,
  17975. .past = 0,
  17976. .delta = 1e-5f,
  17977. .max_no_improvement = 0,
  17978. .print_forward_graph = true,
  17979. .print_backward_graph = true,
  17980. .n_gradient_accumulation = 1,
  17981. .lbfgs = {
  17982. .m = 6,
  17983. .n_iter = 100,
  17984. .max_linesearch = 20,
  17985. .eps = 1e-5f,
  17986. .ftol = 1e-4f,
  17987. .wolfe = 0.9f,
  17988. .min_step = 1e-20f,
  17989. .max_step = 1e+20f,
  17990. .linesearch = GGML_LINESEARCH_DEFAULT,
  17991. },
  17992. };
  17993. } break;
  17994. }
  17995. return result;
  17996. }
  17997. GGML_API void ggml_opt_init(
  17998. struct ggml_context * ctx,
  17999. struct ggml_opt_context * opt,
  18000. struct ggml_opt_params params,
  18001. int64_t nx) {
  18002. opt->ctx = ctx;
  18003. opt->params = params;
  18004. opt->iter = 0;
  18005. opt->nx = nx;
  18006. opt->just_initialized = true;
  18007. if (opt->ctx == NULL) {
  18008. struct ggml_init_params ctx_opt_params;
  18009. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  18010. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  18011. if (opt->params.past > 0) {
  18012. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  18013. }
  18014. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  18015. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  18016. if (opt->params.past > 0) {
  18017. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  18018. }
  18019. }
  18020. ctx_opt_params.mem_buffer = NULL;
  18021. ctx_opt_params.no_alloc = false;
  18022. opt->ctx = ggml_init(ctx_opt_params);
  18023. }
  18024. switch (opt->params.type) {
  18025. case GGML_OPT_TYPE_ADAM:
  18026. {
  18027. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18028. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18029. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18030. opt->adam.pf = params.past > 0
  18031. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18032. : NULL;
  18033. ggml_set_zero(opt->adam.m);
  18034. ggml_set_zero(opt->adam.v);
  18035. if (opt->adam.pf) {
  18036. ggml_set_zero(opt->adam.pf);
  18037. }
  18038. } break;
  18039. case GGML_OPT_TYPE_LBFGS:
  18040. {
  18041. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18042. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18043. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18044. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18045. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18046. opt->lbfgs.pf = params.past > 0
  18047. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18048. : NULL;
  18049. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18050. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18051. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18052. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18053. ggml_set_zero(opt->lbfgs.x);
  18054. ggml_set_zero(opt->lbfgs.xp);
  18055. ggml_set_zero(opt->lbfgs.g);
  18056. ggml_set_zero(opt->lbfgs.gp);
  18057. ggml_set_zero(opt->lbfgs.d);
  18058. if (opt->lbfgs.pf) {
  18059. ggml_set_zero(opt->lbfgs.pf);
  18060. }
  18061. ggml_set_zero(opt->lbfgs.lmal);
  18062. ggml_set_zero(opt->lbfgs.lmys);
  18063. ggml_set_zero(opt->lbfgs.lms);
  18064. ggml_set_zero(opt->lbfgs.lmy);
  18065. } break;
  18066. }
  18067. }
  18068. enum ggml_opt_result ggml_opt(
  18069. struct ggml_context * ctx,
  18070. struct ggml_opt_params params,
  18071. struct ggml_tensor * f) {
  18072. bool free_ctx = false;
  18073. if (ctx == NULL) {
  18074. struct ggml_init_params params_ctx = {
  18075. .mem_size = 16*1024*1024,
  18076. .mem_buffer = NULL,
  18077. .no_alloc = false,
  18078. };
  18079. ctx = ggml_init(params_ctx);
  18080. if (ctx == NULL) {
  18081. return GGML_OPT_RESULT_NO_CONTEXT;
  18082. }
  18083. free_ctx = true;
  18084. }
  18085. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18086. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18087. ggml_opt_init(ctx, opt, params, 0);
  18088. result = ggml_opt_resume(ctx, opt, f);
  18089. if (free_ctx) {
  18090. ggml_free(ctx);
  18091. }
  18092. return result;
  18093. }
  18094. enum ggml_opt_result ggml_opt_resume(
  18095. struct ggml_context * ctx,
  18096. struct ggml_opt_context * opt,
  18097. struct ggml_tensor * f) {
  18098. // build forward + backward compute graphs
  18099. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18100. ggml_build_forward_expand(gf, f);
  18101. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18102. ggml_build_backward_expand(ctx, gf, gb, true);
  18103. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18104. }
  18105. enum ggml_opt_result ggml_opt_resume_g(
  18106. struct ggml_context * ctx,
  18107. struct ggml_opt_context * opt,
  18108. struct ggml_tensor * f,
  18109. struct ggml_cgraph * gf,
  18110. struct ggml_cgraph * gb,
  18111. ggml_opt_callback callback,
  18112. void * callback_data) {
  18113. // build forward + backward compute graphs
  18114. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18115. switch (opt->params.type) {
  18116. case GGML_OPT_TYPE_ADAM:
  18117. {
  18118. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18119. } break;
  18120. case GGML_OPT_TYPE_LBFGS:
  18121. {
  18122. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18123. } break;
  18124. }
  18125. if (opt->params.print_forward_graph) {
  18126. ggml_graph_print (gf);
  18127. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18128. }
  18129. if (opt->params.print_backward_graph) {
  18130. ggml_graph_print (gb);
  18131. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18132. }
  18133. return result;
  18134. }
  18135. ////////////////////////////////////////////////////////////////////////////////
  18136. void ggml_set_input(struct ggml_tensor * tensor) {
  18137. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18138. }
  18139. void ggml_set_output(struct ggml_tensor * tensor) {
  18140. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18141. }
  18142. ////////////////////////////////////////////////////////////////////////////////
  18143. void ggml_quantize_init(enum ggml_type type) {
  18144. ggml_critical_section_start();
  18145. switch (type) {
  18146. case GGML_TYPE_IQ2_XXS:
  18147. case GGML_TYPE_IQ2_XS:
  18148. case GGML_TYPE_IQ2_S:
  18149. case GGML_TYPE_IQ1_S:
  18150. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18151. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18152. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18153. default: // nothing
  18154. break;
  18155. }
  18156. ggml_critical_section_end();
  18157. }
  18158. void ggml_quantize_free(void) {
  18159. ggml_critical_section_start();
  18160. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18161. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18162. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18163. iq3xs_free_impl(256);
  18164. ggml_critical_section_end();
  18165. }
  18166. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18167. return
  18168. type == GGML_TYPE_IQ2_XXS ||
  18169. type == GGML_TYPE_IQ2_XS ||
  18170. type == GGML_TYPE_IQ1_S;// ||
  18171. //type == GGML_TYPE_IQ1_M;
  18172. }
  18173. size_t ggml_quantize_chunk(
  18174. enum ggml_type type,
  18175. const float * src,
  18176. void * dst,
  18177. int64_t start,
  18178. int64_t nrows,
  18179. int64_t n_per_row,
  18180. const float * imatrix) {
  18181. const int64_t n = (int64_t) nrows * n_per_row;
  18182. if (ggml_quantize_requires_imatrix(type)) {
  18183. GGML_ASSERT(imatrix != NULL);
  18184. }
  18185. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18186. GGML_ASSERT(start % n_per_row == 0);
  18187. ggml_quantize_init(type); // this is noop if already initialized
  18188. const size_t start_row = start / n_per_row;
  18189. const size_t row_size = ggml_row_size(type, n_per_row);
  18190. size_t result = 0;
  18191. switch (type) {
  18192. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18193. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18194. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18195. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18196. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18197. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18198. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18199. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18200. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18201. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18202. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18203. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18204. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18205. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18206. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18207. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18208. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18209. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18210. #if QK_K == 64
  18211. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18212. #else
  18213. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18214. #endif
  18215. case GGML_TYPE_F16:
  18216. {
  18217. size_t elemsize = sizeof(ggml_fp16_t);
  18218. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18219. result = n * elemsize;
  18220. } break;
  18221. case GGML_TYPE_BF16:
  18222. {
  18223. size_t elemsize = sizeof(ggml_bf16_t);
  18224. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  18225. result = n * elemsize;
  18226. } break;
  18227. case GGML_TYPE_F32:
  18228. {
  18229. size_t elemsize = sizeof(float);
  18230. result = n * elemsize;
  18231. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18232. } break;
  18233. default:
  18234. assert(false);
  18235. }
  18236. GGML_ASSERT(result == nrows * row_size);
  18237. return result;
  18238. }
  18239. ////////////////////////////////////////////////////////////////////////////////
  18240. struct gguf_str {
  18241. uint64_t n; // GGUFv2
  18242. char * data;
  18243. };
  18244. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18245. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18246. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18247. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18248. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18249. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18250. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18251. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18252. [GGUF_TYPE_BOOL] = sizeof(bool),
  18253. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18254. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18255. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18256. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18257. [GGUF_TYPE_ARRAY] = 0, // undefined
  18258. };
  18259. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18260. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18261. [GGUF_TYPE_UINT8] = "u8",
  18262. [GGUF_TYPE_INT8] = "i8",
  18263. [GGUF_TYPE_UINT16] = "u16",
  18264. [GGUF_TYPE_INT16] = "i16",
  18265. [GGUF_TYPE_UINT32] = "u32",
  18266. [GGUF_TYPE_INT32] = "i32",
  18267. [GGUF_TYPE_FLOAT32] = "f32",
  18268. [GGUF_TYPE_BOOL] = "bool",
  18269. [GGUF_TYPE_STRING] = "str",
  18270. [GGUF_TYPE_ARRAY] = "arr",
  18271. [GGUF_TYPE_UINT64] = "u64",
  18272. [GGUF_TYPE_INT64] = "i64",
  18273. [GGUF_TYPE_FLOAT64] = "f64",
  18274. };
  18275. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18276. union gguf_value {
  18277. uint8_t uint8;
  18278. int8_t int8;
  18279. uint16_t uint16;
  18280. int16_t int16;
  18281. uint32_t uint32;
  18282. int32_t int32;
  18283. float float32;
  18284. uint64_t uint64;
  18285. int64_t int64;
  18286. double float64;
  18287. bool bool_;
  18288. struct gguf_str str;
  18289. struct {
  18290. enum gguf_type type;
  18291. uint64_t n; // GGUFv2
  18292. void * data;
  18293. } arr;
  18294. };
  18295. struct gguf_kv {
  18296. struct gguf_str key;
  18297. enum gguf_type type;
  18298. union gguf_value value;
  18299. };
  18300. struct gguf_header {
  18301. char magic[4];
  18302. uint32_t version;
  18303. uint64_t n_tensors; // GGUFv2
  18304. uint64_t n_kv; // GGUFv2
  18305. };
  18306. struct gguf_tensor_info {
  18307. struct gguf_str name;
  18308. uint32_t n_dims;
  18309. uint64_t ne[GGML_MAX_DIMS];
  18310. enum ggml_type type;
  18311. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18312. // for writing API
  18313. const void * data;
  18314. size_t size;
  18315. };
  18316. struct gguf_context {
  18317. struct gguf_header header;
  18318. struct gguf_kv * kv;
  18319. struct gguf_tensor_info * infos;
  18320. size_t alignment;
  18321. size_t offset; // offset of `data` from beginning of file
  18322. size_t size; // size of `data` in bytes
  18323. //uint8_t * padding;
  18324. void * data;
  18325. };
  18326. static size_t gguf_type_size(enum gguf_type type) {
  18327. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18328. return GGUF_TYPE_SIZE[type];
  18329. }
  18330. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18331. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18332. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18333. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18334. GGML_ASSERT(info->ne[i] > 0);
  18335. }
  18336. // prevent overflow for total number of elements
  18337. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18338. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18339. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18340. }
  18341. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18342. const size_t n = fread(dst, 1, size, file);
  18343. *offset += n;
  18344. return n == size;
  18345. }
  18346. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18347. p->n = 0;
  18348. p->data = NULL;
  18349. bool ok = true;
  18350. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18351. // early exit if string length is invalid, prevents from integer overflow
  18352. if (p->n == SIZE_MAX) {
  18353. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18354. return false;
  18355. }
  18356. p->data = GGML_CALLOC(p->n + 1, 1);
  18357. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18358. return ok;
  18359. }
  18360. static void gguf_free_kv(struct gguf_kv * kv) {
  18361. if (kv->key.data) {
  18362. GGML_FREE(kv->key.data);
  18363. }
  18364. if (kv->type == GGUF_TYPE_STRING) {
  18365. if (kv->value.str.data) {
  18366. GGML_FREE(kv->value.str.data);
  18367. }
  18368. }
  18369. if (kv->type == GGUF_TYPE_ARRAY) {
  18370. if (kv->value.arr.data) {
  18371. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18372. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18373. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18374. if (str->data) {
  18375. GGML_FREE(str->data);
  18376. }
  18377. }
  18378. }
  18379. GGML_FREE(kv->value.arr.data);
  18380. }
  18381. }
  18382. }
  18383. struct gguf_context * gguf_init_empty(void) {
  18384. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18385. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18386. ctx->header.version = GGUF_VERSION;
  18387. ctx->header.n_tensors = 0;
  18388. ctx->header.n_kv = 0;
  18389. ctx->kv = NULL;
  18390. ctx->infos = NULL;
  18391. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18392. ctx->offset = 0;
  18393. ctx->size = 0;
  18394. ctx->data = NULL;
  18395. return ctx;
  18396. }
  18397. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18398. FILE * file = ggml_fopen(fname, "rb");
  18399. if (!file) {
  18400. return NULL;
  18401. }
  18402. // offset from start of file
  18403. size_t offset = 0;
  18404. char magic[4];
  18405. // check the magic before making allocations
  18406. {
  18407. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18408. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18409. if (magic[i] != GGUF_MAGIC[i]) {
  18410. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18411. fclose(file);
  18412. return NULL;
  18413. }
  18414. }
  18415. }
  18416. bool ok = true;
  18417. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18418. // read the header
  18419. {
  18420. strncpy(ctx->header.magic, magic, 4);
  18421. ctx->kv = NULL;
  18422. ctx->infos = NULL;
  18423. ctx->data = NULL;
  18424. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18425. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18426. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18427. if (ctx->header.version == 1) {
  18428. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18429. fclose(file);
  18430. gguf_free(ctx);
  18431. return NULL;
  18432. }
  18433. // sanity-checks to prevent from integer/buffer overflows
  18434. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18435. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18436. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18437. if (!ok) {
  18438. fprintf(stderr, "%s: failed to read header\n", __func__);
  18439. fclose(file);
  18440. gguf_free(ctx);
  18441. return NULL;
  18442. }
  18443. }
  18444. // read the kv pairs
  18445. {
  18446. const uint64_t n_kv = ctx->header.n_kv;
  18447. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18448. ctx->header.n_kv = 0;
  18449. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18450. for (uint64_t i = 0; i < n_kv; ++i) {
  18451. struct gguf_kv * kv = &ctx->kv[i];
  18452. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18453. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18454. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18455. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18456. switch (kv->type) {
  18457. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18458. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18459. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18460. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18461. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18462. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18463. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18464. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18465. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18466. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18467. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18468. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18469. case GGUF_TYPE_ARRAY:
  18470. {
  18471. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18472. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18473. switch (kv->value.arr.type) {
  18474. case GGUF_TYPE_UINT8:
  18475. case GGUF_TYPE_INT8:
  18476. case GGUF_TYPE_UINT16:
  18477. case GGUF_TYPE_INT16:
  18478. case GGUF_TYPE_UINT32:
  18479. case GGUF_TYPE_INT32:
  18480. case GGUF_TYPE_FLOAT32:
  18481. case GGUF_TYPE_UINT64:
  18482. case GGUF_TYPE_INT64:
  18483. case GGUF_TYPE_FLOAT64:
  18484. case GGUF_TYPE_BOOL:
  18485. {
  18486. // prevent from integer overflow in the malloc below
  18487. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18488. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18489. fclose(file);
  18490. gguf_free(ctx);
  18491. return NULL;
  18492. }
  18493. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18494. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18495. } break;
  18496. case GGUF_TYPE_STRING:
  18497. {
  18498. // prevent from integer overflow in the malloc below
  18499. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18500. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18501. fclose(file);
  18502. gguf_free(ctx);
  18503. return NULL;
  18504. }
  18505. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18506. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18507. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18508. }
  18509. } break;
  18510. case GGUF_TYPE_ARRAY:
  18511. default: GGML_ASSERT(false && "invalid type"); break;
  18512. }
  18513. } break;
  18514. default: GGML_ASSERT(false && "invalid type");
  18515. }
  18516. if (!ok) {
  18517. break;
  18518. }
  18519. ctx->header.n_kv++;
  18520. }
  18521. if (!ok) {
  18522. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18523. fclose(file);
  18524. gguf_free(ctx);
  18525. return NULL;
  18526. }
  18527. }
  18528. // read the tensor infos
  18529. if (ctx->header.n_tensors > 0) {
  18530. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18531. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18532. struct gguf_tensor_info * info = &ctx->infos[i];
  18533. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18534. info->ne[j] = 1;
  18535. }
  18536. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18537. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18538. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18539. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18540. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18541. }
  18542. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18543. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18544. // TODO: return an error instead of crashing with GGML_ASSERT
  18545. gguf_tensor_info_sanitize(info);
  18546. // make sure there is no duplicated tensor names
  18547. for (uint64_t j = 0; j < i; ++j) {
  18548. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18549. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18550. ok = false;
  18551. }
  18552. }
  18553. if (!ok) {
  18554. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18555. fclose(file);
  18556. gguf_free(ctx);
  18557. return NULL;
  18558. }
  18559. }
  18560. }
  18561. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18562. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18563. if (alignment_idx != -1) {
  18564. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18565. }
  18566. // we require the data section to be aligned, so take into account any padding
  18567. {
  18568. const size_t offset_pad = offset % ctx->alignment;
  18569. if (offset_pad != 0) {
  18570. offset += ctx->alignment - offset_pad;
  18571. fseek(file, offset, SEEK_SET);
  18572. }
  18573. }
  18574. // store the current file offset - this is where the data section starts
  18575. ctx->offset = offset;
  18576. // compute the total size of the data section, taking into account the alignment
  18577. {
  18578. ctx->size = 0;
  18579. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18580. struct gguf_tensor_info * info = &ctx->infos[i];
  18581. const int64_t ne =
  18582. (int64_t) info->ne[0] *
  18583. (int64_t) info->ne[1] *
  18584. (int64_t) info->ne[2] *
  18585. (int64_t) info->ne[3];
  18586. if (ne % ggml_blck_size(info->type) != 0) {
  18587. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18588. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18589. fclose(file);
  18590. gguf_free(ctx);
  18591. return NULL;
  18592. }
  18593. const size_t size_cur = ggml_row_size(info->type, ne);
  18594. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18595. }
  18596. }
  18597. // load the tensor data only if requested
  18598. if (params.ctx != NULL) {
  18599. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18600. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18601. // the ggml_tensor structs to the appropriate locations in the binary blob
  18602. // compute the exact size needed for the new ggml_context
  18603. const size_t mem_size =
  18604. params.no_alloc ?
  18605. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18606. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18607. struct ggml_init_params pdata = {
  18608. .mem_size = mem_size,
  18609. .mem_buffer = NULL,
  18610. .no_alloc = params.no_alloc,
  18611. };
  18612. *params.ctx = ggml_init(pdata);
  18613. struct ggml_context * ctx_data = *params.ctx;
  18614. struct ggml_tensor * data = NULL;
  18615. if (!params.no_alloc) {
  18616. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18617. ok = ok && data != NULL;
  18618. // read the binary blob with the tensor data
  18619. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18620. if (!ok) {
  18621. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18622. fclose(file);
  18623. ggml_free(ctx_data);
  18624. gguf_free(ctx);
  18625. return NULL;
  18626. }
  18627. ctx->data = data->data;
  18628. }
  18629. ggml_set_no_alloc(ctx_data, true);
  18630. // create the tensors
  18631. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18632. const int64_t ne[GGML_MAX_DIMS] = {
  18633. ctx->infos[i].ne[0],
  18634. ctx->infos[i].ne[1],
  18635. ctx->infos[i].ne[2],
  18636. ctx->infos[i].ne[3],
  18637. };
  18638. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18639. ok = ok && cur != NULL;
  18640. if (!ok) {
  18641. break;
  18642. }
  18643. ggml_set_name(cur, ctx->infos[i].name.data);
  18644. // point the data member to the appropriate location in the binary blob using the tensor infos
  18645. if (!params.no_alloc) {
  18646. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18647. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18648. }
  18649. }
  18650. if (!ok) {
  18651. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18652. fclose(file);
  18653. ggml_free(ctx_data);
  18654. gguf_free(ctx);
  18655. return NULL;
  18656. }
  18657. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18658. }
  18659. fclose(file);
  18660. return ctx;
  18661. }
  18662. void gguf_free(struct gguf_context * ctx) {
  18663. if (ctx == NULL) {
  18664. return;
  18665. }
  18666. if (ctx->kv) {
  18667. // free string memory - not great..
  18668. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18669. gguf_free_kv(&ctx->kv[i]);
  18670. }
  18671. GGML_FREE(ctx->kv);
  18672. }
  18673. if (ctx->infos) {
  18674. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18675. struct gguf_tensor_info * info = &ctx->infos[i];
  18676. if (info->name.data) {
  18677. GGML_FREE(info->name.data);
  18678. }
  18679. }
  18680. GGML_FREE(ctx->infos);
  18681. }
  18682. GGML_FREE(ctx);
  18683. }
  18684. const char * gguf_type_name(enum gguf_type type) {
  18685. return GGUF_TYPE_NAME[type];
  18686. }
  18687. int gguf_get_version(const struct gguf_context * ctx) {
  18688. return ctx->header.version;
  18689. }
  18690. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18691. return ctx->alignment;
  18692. }
  18693. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18694. return ctx->offset;
  18695. }
  18696. void * gguf_get_data(const struct gguf_context * ctx) {
  18697. return ctx->data;
  18698. }
  18699. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18700. return ctx->header.n_kv;
  18701. }
  18702. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18703. // return -1 if key not found
  18704. int keyfound = -1;
  18705. const int n_kv = gguf_get_n_kv(ctx);
  18706. for (int i = 0; i < n_kv; ++i) {
  18707. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18708. keyfound = i;
  18709. break;
  18710. }
  18711. }
  18712. return keyfound;
  18713. }
  18714. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18715. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18716. return ctx->kv[key_id].key.data;
  18717. }
  18718. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18719. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18720. return ctx->kv[key_id].type;
  18721. }
  18722. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18723. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18724. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18725. return ctx->kv[key_id].value.arr.type;
  18726. }
  18727. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18728. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18729. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18730. return ctx->kv[key_id].value.arr.data;
  18731. }
  18732. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18733. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18734. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18735. struct gguf_kv * kv = &ctx->kv[key_id];
  18736. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18737. return str->data;
  18738. }
  18739. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18740. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18741. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18742. return ctx->kv[key_id].value.arr.n;
  18743. }
  18744. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18745. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18746. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18747. return ctx->kv[key_id].value.uint8;
  18748. }
  18749. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18750. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18751. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18752. return ctx->kv[key_id].value.int8;
  18753. }
  18754. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18755. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18756. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18757. return ctx->kv[key_id].value.uint16;
  18758. }
  18759. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18760. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18761. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18762. return ctx->kv[key_id].value.int16;
  18763. }
  18764. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18765. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18766. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18767. return ctx->kv[key_id].value.uint32;
  18768. }
  18769. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18770. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18771. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18772. return ctx->kv[key_id].value.int32;
  18773. }
  18774. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18775. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18776. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18777. return ctx->kv[key_id].value.float32;
  18778. }
  18779. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18780. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18781. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18782. return ctx->kv[key_id].value.uint64;
  18783. }
  18784. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18785. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18786. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18787. return ctx->kv[key_id].value.int64;
  18788. }
  18789. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18790. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18791. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18792. return ctx->kv[key_id].value.float64;
  18793. }
  18794. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18795. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18796. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18797. return ctx->kv[key_id].value.bool_;
  18798. }
  18799. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18800. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18801. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18802. return ctx->kv[key_id].value.str.data;
  18803. }
  18804. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18805. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18806. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18807. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18808. return &ctx->kv[key_id].value;
  18809. }
  18810. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18811. return ctx->header.n_tensors;
  18812. }
  18813. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18814. // return -1 if tensor not found
  18815. int tensorfound = -1;
  18816. const int n_tensors = gguf_get_n_tensors(ctx);
  18817. for (int i = 0; i < n_tensors; ++i) {
  18818. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18819. tensorfound = i;
  18820. break;
  18821. }
  18822. }
  18823. return tensorfound;
  18824. }
  18825. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18826. return ctx->infos[i].offset;
  18827. }
  18828. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18829. return ctx->infos[i].name.data;
  18830. }
  18831. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18832. return ctx->infos[i].type;
  18833. }
  18834. // returns the index
  18835. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18836. const int idx = gguf_find_key(ctx, key);
  18837. if (idx >= 0) {
  18838. return idx;
  18839. }
  18840. const int n_kv = gguf_get_n_kv(ctx);
  18841. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18842. ctx->kv[n_kv].key.n = strlen(key);
  18843. ctx->kv[n_kv].key.data = strdup(key);
  18844. ctx->header.n_kv++;
  18845. return n_kv;
  18846. }
  18847. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18848. const int idx = gguf_find_key(ctx, key);
  18849. if (idx >= 0) {
  18850. const int n_kv = gguf_get_n_kv(ctx);
  18851. gguf_free_kv(&ctx->kv[idx]);
  18852. for (int i = idx; i < n_kv-1; ++i) {
  18853. ctx->kv[i] = ctx->kv[i+1];
  18854. }
  18855. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18856. ctx->header.n_kv--;
  18857. }
  18858. }
  18859. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18860. const int idx = gguf_get_or_add_key(ctx, key);
  18861. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18862. ctx->kv[idx].value.uint8 = val;
  18863. }
  18864. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18865. const int idx = gguf_get_or_add_key(ctx, key);
  18866. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18867. ctx->kv[idx].value.int8 = val;
  18868. }
  18869. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18870. const int idx = gguf_get_or_add_key(ctx, key);
  18871. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18872. ctx->kv[idx].value.uint16 = val;
  18873. }
  18874. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18875. const int idx = gguf_get_or_add_key(ctx, key);
  18876. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18877. ctx->kv[idx].value.int16 = val;
  18878. }
  18879. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18880. const int idx = gguf_get_or_add_key(ctx, key);
  18881. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18882. ctx->kv[idx].value.uint32 = val;
  18883. }
  18884. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18885. const int idx = gguf_get_or_add_key(ctx, key);
  18886. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18887. ctx->kv[idx].value.int32 = val;
  18888. }
  18889. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18890. const int idx = gguf_get_or_add_key(ctx, key);
  18891. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18892. ctx->kv[idx].value.float32 = val;
  18893. }
  18894. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18895. const int idx = gguf_get_or_add_key(ctx, key);
  18896. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18897. ctx->kv[idx].value.uint64 = val;
  18898. }
  18899. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18900. const int idx = gguf_get_or_add_key(ctx, key);
  18901. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18902. ctx->kv[idx].value.int64 = val;
  18903. }
  18904. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18905. const int idx = gguf_get_or_add_key(ctx, key);
  18906. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18907. ctx->kv[idx].value.float64 = val;
  18908. }
  18909. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18910. const int idx = gguf_get_or_add_key(ctx, key);
  18911. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18912. ctx->kv[idx].value.bool_ = val;
  18913. }
  18914. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18915. const int idx = gguf_get_or_add_key(ctx, key);
  18916. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18917. ctx->kv[idx].value.str.n = strlen(val);
  18918. ctx->kv[idx].value.str.data = strdup(val);
  18919. }
  18920. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18921. const int idx = gguf_get_or_add_key(ctx, key);
  18922. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18923. ctx->kv[idx].value.arr.type = type;
  18924. ctx->kv[idx].value.arr.n = n;
  18925. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18926. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18927. }
  18928. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18929. const int idx = gguf_get_or_add_key(ctx, key);
  18930. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18931. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18932. ctx->kv[idx].value.arr.n = n;
  18933. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18934. for (int i = 0; i < n; i++) {
  18935. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18936. str->n = strlen(data[i]);
  18937. str->data = strdup(data[i]);
  18938. }
  18939. }
  18940. // set or add KV pairs from another context
  18941. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18942. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18943. switch (src->kv[i].type) {
  18944. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18945. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18946. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18947. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18948. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18949. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18950. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18951. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18952. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18953. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18954. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18955. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18956. case GGUF_TYPE_ARRAY:
  18957. {
  18958. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18959. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18960. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18961. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18962. }
  18963. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18964. GGML_FREE((void *)data);
  18965. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18966. GGML_ASSERT(false && "nested arrays not supported");
  18967. } else {
  18968. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18969. }
  18970. } break;
  18971. default: GGML_ASSERT(false && "invalid type"); break;
  18972. }
  18973. }
  18974. }
  18975. void gguf_add_tensor(
  18976. struct gguf_context * ctx,
  18977. const struct ggml_tensor * tensor) {
  18978. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18979. GGML_ASSERT(false && "duplicated tensor name");
  18980. }
  18981. const int idx = ctx->header.n_tensors;
  18982. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18983. ctx->infos[idx].name.n = strlen(tensor->name);
  18984. ctx->infos[idx].name.data = strdup(tensor->name);
  18985. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18986. ctx->infos[idx].ne[i] = 1;
  18987. }
  18988. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18989. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18990. ctx->infos[idx].ne[i] = tensor->ne[i];
  18991. }
  18992. ctx->infos[idx].type = tensor->type;
  18993. ctx->infos[idx].offset = 0;
  18994. ctx->infos[idx].data = tensor->data;
  18995. ctx->infos[idx].size = ggml_nbytes(tensor);
  18996. if (ctx->header.n_tensors > 0) {
  18997. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18998. }
  18999. ctx->header.n_tensors++;
  19000. }
  19001. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  19002. const int idx = gguf_find_tensor(ctx, name);
  19003. if (idx < 0) {
  19004. GGML_ASSERT(false && "tensor not found");
  19005. }
  19006. ctx->infos[idx].type = type;
  19007. }
  19008. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  19009. const int idx = gguf_find_tensor(ctx, name);
  19010. if (idx < 0) {
  19011. GGML_ASSERT(false && "tensor not found");
  19012. }
  19013. ctx->infos[idx].data = data;
  19014. ctx->infos[idx].size = size;
  19015. // update offsets
  19016. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  19017. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  19018. }
  19019. }
  19020. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  19021. // fwrite(&val->n, sizeof(val->n), 1, file);
  19022. // fwrite(val->data, sizeof(char), val->n, file);
  19023. //}
  19024. //
  19025. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  19026. // fwrite(val, sizeof(char), size, file);
  19027. //}
  19028. struct gguf_buf {
  19029. void * data;
  19030. size_t size;
  19031. size_t offset;
  19032. };
  19033. static struct gguf_buf gguf_buf_init(size_t size) {
  19034. struct gguf_buf buf = {
  19035. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  19036. /*buf.size =*/ size,
  19037. /*buf.offset =*/ 0,
  19038. };
  19039. return buf;
  19040. }
  19041. static void gguf_buf_free(struct gguf_buf buf) {
  19042. if (buf.data) {
  19043. GGML_FREE(buf.data);
  19044. }
  19045. }
  19046. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  19047. if (buf->offset + size > buf->size) {
  19048. buf->size = 1.5*(buf->offset + size);
  19049. if (buf->data) {
  19050. buf->data = realloc(buf->data, buf->size);
  19051. }
  19052. }
  19053. }
  19054. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19055. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19056. if (buf->data) {
  19057. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19058. }
  19059. buf->offset += sizeof(val->n);
  19060. if (buf->data) {
  19061. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19062. }
  19063. buf->offset += val->n;
  19064. }
  19065. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19066. gguf_buf_grow(buf, el_size);
  19067. if (buf->data) {
  19068. memcpy((char *) buf->data + buf->offset, val, el_size);
  19069. }
  19070. buf->offset += el_size;
  19071. }
  19072. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19073. // write header
  19074. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19075. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19076. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19077. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19078. // write key-value pairs
  19079. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19080. struct gguf_kv * kv = &ctx->kv[i];
  19081. gguf_bwrite_str(buf, &kv->key);
  19082. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19083. switch (kv->type) {
  19084. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19085. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19086. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19087. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19088. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19089. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19090. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19091. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19092. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19093. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19094. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19095. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19096. case GGUF_TYPE_ARRAY:
  19097. {
  19098. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19099. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19100. switch (kv->value.arr.type) {
  19101. case GGUF_TYPE_UINT8:
  19102. case GGUF_TYPE_INT8:
  19103. case GGUF_TYPE_UINT16:
  19104. case GGUF_TYPE_INT16:
  19105. case GGUF_TYPE_UINT32:
  19106. case GGUF_TYPE_INT32:
  19107. case GGUF_TYPE_FLOAT32:
  19108. case GGUF_TYPE_UINT64:
  19109. case GGUF_TYPE_INT64:
  19110. case GGUF_TYPE_FLOAT64:
  19111. case GGUF_TYPE_BOOL:
  19112. {
  19113. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19114. } break;
  19115. case GGUF_TYPE_STRING:
  19116. {
  19117. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19118. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19119. }
  19120. } break;
  19121. case GGUF_TYPE_ARRAY:
  19122. default: GGML_ASSERT(false && "invalid type"); break;
  19123. }
  19124. } break;
  19125. default: GGML_ASSERT(false && "invalid type");
  19126. }
  19127. }
  19128. // write tensor infos
  19129. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19130. struct gguf_tensor_info * info = &ctx->infos[i];
  19131. gguf_bwrite_str(buf, &info->name);
  19132. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19133. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19134. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19135. }
  19136. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19137. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19138. }
  19139. // we require the data section to be aligned, so take into account any padding
  19140. {
  19141. const size_t offset = buf->offset;
  19142. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19143. if (offset_pad != offset) {
  19144. uint8_t pad = 0;
  19145. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19146. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19147. }
  19148. }
  19149. }
  19150. if (only_meta) {
  19151. return;
  19152. }
  19153. size_t offset = 0;
  19154. // write tensor data
  19155. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19156. struct gguf_tensor_info * info = &ctx->infos[i];
  19157. const size_t size = info->size;
  19158. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19159. gguf_bwrite_el(buf, info->data, size);
  19160. if (size_pad != size) {
  19161. uint8_t pad = 0;
  19162. for (size_t j = 0; j < size_pad - size; ++j) {
  19163. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19164. }
  19165. }
  19166. GGML_ASSERT(offset == info->offset);
  19167. offset += size_pad;
  19168. }
  19169. }
  19170. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19171. FILE * file = ggml_fopen(fname, "wb");
  19172. if (!file) {
  19173. GGML_ASSERT(false && "failed to open file for writing");
  19174. }
  19175. struct gguf_buf buf = gguf_buf_init(16*1024);
  19176. gguf_write_to_buf(ctx, &buf, only_meta);
  19177. fwrite(buf.data, 1, buf.offset, file);
  19178. gguf_buf_free(buf);
  19179. fclose(file);
  19180. }
  19181. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19182. // no allocs - only compute size
  19183. struct gguf_buf buf = gguf_buf_init(0);
  19184. gguf_write_to_buf(ctx, &buf, true);
  19185. return buf.offset;
  19186. }
  19187. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19188. struct gguf_buf buf = gguf_buf_init(16*1024);
  19189. gguf_write_to_buf(ctx, &buf, true);
  19190. memcpy(data, buf.data, buf.offset);
  19191. gguf_buf_free(buf);
  19192. }
  19193. ////////////////////////////////////////////////////////////////////////////////
  19194. int ggml_cpu_has_avx(void) {
  19195. #if defined(__AVX__)
  19196. return 1;
  19197. #else
  19198. return 0;
  19199. #endif
  19200. }
  19201. int ggml_cpu_has_avx_vnni(void) {
  19202. #if defined(__AVXVNNI__)
  19203. return 1;
  19204. #else
  19205. return 0;
  19206. #endif
  19207. }
  19208. int ggml_cpu_has_avx2(void) {
  19209. #if defined(__AVX2__)
  19210. return 1;
  19211. #else
  19212. return 0;
  19213. #endif
  19214. }
  19215. int ggml_cpu_has_avx512(void) {
  19216. #if defined(__AVX512F__)
  19217. return 1;
  19218. #else
  19219. return 0;
  19220. #endif
  19221. }
  19222. int ggml_cpu_has_avx512_vbmi(void) {
  19223. #if defined(__AVX512VBMI__)
  19224. return 1;
  19225. #else
  19226. return 0;
  19227. #endif
  19228. }
  19229. int ggml_cpu_has_avx512_vnni(void) {
  19230. #if defined(__AVX512VNNI__)
  19231. return 1;
  19232. #else
  19233. return 0;
  19234. #endif
  19235. }
  19236. int ggml_cpu_has_avx512_bf16(void) {
  19237. #if defined(__AVX512BF16__)
  19238. return 1;
  19239. #else
  19240. return 0;
  19241. #endif
  19242. }
  19243. int ggml_cpu_has_fma(void) {
  19244. #if defined(__FMA__)
  19245. return 1;
  19246. #else
  19247. return 0;
  19248. #endif
  19249. }
  19250. int ggml_cpu_has_neon(void) {
  19251. #if defined(__ARM_NEON)
  19252. return 1;
  19253. #else
  19254. return 0;
  19255. #endif
  19256. }
  19257. int ggml_cpu_has_arm_fma(void) {
  19258. #if defined(__ARM_FEATURE_FMA)
  19259. return 1;
  19260. #else
  19261. return 0;
  19262. #endif
  19263. }
  19264. int ggml_cpu_has_metal(void) {
  19265. #if defined(GGML_USE_METAL)
  19266. return 1;
  19267. #else
  19268. return 0;
  19269. #endif
  19270. }
  19271. int ggml_cpu_has_f16c(void) {
  19272. #if defined(__F16C__)
  19273. return 1;
  19274. #else
  19275. return 0;
  19276. #endif
  19277. }
  19278. int ggml_cpu_has_fp16_va(void) {
  19279. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19280. return 1;
  19281. #else
  19282. return 0;
  19283. #endif
  19284. }
  19285. int ggml_cpu_has_wasm_simd(void) {
  19286. #if defined(__wasm_simd128__)
  19287. return 1;
  19288. #else
  19289. return 0;
  19290. #endif
  19291. }
  19292. int ggml_cpu_has_blas(void) {
  19293. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  19294. return 1;
  19295. #else
  19296. return 0;
  19297. #endif
  19298. }
  19299. int ggml_cpu_has_cuda(void) {
  19300. #if defined(GGML_USE_CUDA)
  19301. return 1;
  19302. #else
  19303. return 0;
  19304. #endif
  19305. }
  19306. int ggml_cpu_has_clblast(void) {
  19307. #if defined(GGML_USE_CLBLAST)
  19308. return 1;
  19309. #else
  19310. return 0;
  19311. #endif
  19312. }
  19313. int ggml_cpu_has_vulkan(void) {
  19314. #if defined(GGML_USE_VULKAN)
  19315. return 1;
  19316. #else
  19317. return 0;
  19318. #endif
  19319. }
  19320. int ggml_cpu_has_kompute(void) {
  19321. #if defined(GGML_USE_KOMPUTE)
  19322. return 1;
  19323. #else
  19324. return 0;
  19325. #endif
  19326. }
  19327. int ggml_cpu_has_sycl(void) {
  19328. #if defined(GGML_USE_SYCL)
  19329. return 1;
  19330. #else
  19331. return 0;
  19332. #endif
  19333. }
  19334. int ggml_cpu_has_gpublas(void) {
  19335. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19336. ggml_cpu_has_sycl();
  19337. }
  19338. int ggml_cpu_has_sse3(void) {
  19339. #if defined(__SSE3__)
  19340. return 1;
  19341. #else
  19342. return 0;
  19343. #endif
  19344. }
  19345. int ggml_cpu_has_ssse3(void) {
  19346. #if defined(__SSSE3__)
  19347. return 1;
  19348. #else
  19349. return 0;
  19350. #endif
  19351. }
  19352. int ggml_cpu_has_vsx(void) {
  19353. #if defined(__POWER9_VECTOR__)
  19354. return 1;
  19355. #else
  19356. return 0;
  19357. #endif
  19358. }
  19359. int ggml_cpu_has_matmul_int8(void) {
  19360. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19361. return 1;
  19362. #else
  19363. return 0;
  19364. #endif
  19365. }
  19366. ////////////////////////////////////////////////////////////////////////////////