simple.cpp 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. int main(int argc, char ** argv) {
  8. gpt_params params;
  9. if (argc == 1 || argv[1][0] == '-') {
  10. printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
  11. return 1 ;
  12. }
  13. if (argc >= 2) {
  14. params.model = argv[1];
  15. }
  16. if (argc >= 3) {
  17. params.prompt = argv[2];
  18. }
  19. if (params.prompt.empty()) {
  20. params.prompt = "Hello my name is";
  21. }
  22. // total length of the sequence including the prompt
  23. const int n_len = 32;
  24. // init LLM
  25. llama_backend_init(params.numa);
  26. // initialize the model
  27. llama_model_params model_params = llama_model_default_params();
  28. // model_params.n_gpu_layers = 99; // offload all layers to the GPU
  29. llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
  30. if (model == NULL) {
  31. fprintf(stderr , "%s: error: unable to load model\n" , __func__);
  32. return 1;
  33. }
  34. // initialize the context
  35. llama_context_params ctx_params = llama_context_default_params();
  36. ctx_params.seed = 1234;
  37. ctx_params.n_ctx = 2048;
  38. ctx_params.n_threads = params.n_threads;
  39. ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  40. llama_context * ctx = llama_new_context_with_model(model, ctx_params);
  41. if (ctx == NULL) {
  42. fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
  43. return 1;
  44. }
  45. // tokenize the prompt
  46. std::vector<llama_token> tokens_list;
  47. tokens_list = ::llama_tokenize(ctx, params.prompt, true);
  48. const int n_ctx = llama_n_ctx(ctx);
  49. const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
  50. LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
  51. // make sure the KV cache is big enough to hold all the prompt and generated tokens
  52. if (n_kv_req > n_ctx) {
  53. LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
  54. LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
  55. return 1;
  56. }
  57. // print the prompt token-by-token
  58. fprintf(stderr, "\n");
  59. for (auto id : tokens_list) {
  60. fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
  61. }
  62. fflush(stderr);
  63. // create a llama_batch with size 512
  64. // we use this object to submit token data for decoding
  65. llama_batch batch = llama_batch_init(512, 0, 1);
  66. // evaluate the initial prompt
  67. for (size_t i = 0; i < tokens_list.size(); i++) {
  68. llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
  69. }
  70. // llama_decode will output logits only for the last token of the prompt
  71. batch.logits[batch.n_tokens - 1] = true;
  72. if (llama_decode(ctx, batch) != 0) {
  73. LOG_TEE("%s: llama_decode() failed\n", __func__);
  74. return 1;
  75. }
  76. // main loop
  77. int n_cur = batch.n_tokens;
  78. int n_decode = 0;
  79. const auto t_main_start = ggml_time_us();
  80. while (n_cur <= n_len) {
  81. // sample the next token
  82. {
  83. auto n_vocab = llama_n_vocab(model);
  84. auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
  85. std::vector<llama_token_data> candidates;
  86. candidates.reserve(n_vocab);
  87. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  88. candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
  89. }
  90. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  91. // sample the most likely token
  92. const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
  93. // is it an end of stream?
  94. if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
  95. LOG_TEE("\n");
  96. break;
  97. }
  98. LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
  99. fflush(stdout);
  100. // prepare the next batch
  101. llama_batch_clear(batch);
  102. // push this new token for next evaluation
  103. llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
  104. n_decode += 1;
  105. }
  106. n_cur += 1;
  107. // evaluate the current batch with the transformer model
  108. if (llama_decode(ctx, batch)) {
  109. fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
  110. return 1;
  111. }
  112. }
  113. LOG_TEE("\n");
  114. const auto t_main_end = ggml_time_us();
  115. LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  116. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  117. llama_print_timings(ctx);
  118. fprintf(stderr, "\n");
  119. llama_batch_free(batch);
  120. llama_free(ctx);
  121. llama_free_model(model);
  122. llama_backend_free();
  123. return 0;
  124. }