ggml.c 631 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml-impl.h"
  3. #include "ggml-quants.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. #include <stdarg.h>
  21. #include <signal.h>
  22. #ifdef GGML_USE_METAL
  23. #include <unistd.h>
  24. #endif
  25. #if defined(_MSC_VER)
  26. // disable "possible loss of data" to avoid hundreds of casts
  27. // we should just be careful :)
  28. #pragma warning(disable: 4244 4267)
  29. // disable POSIX deprecation warnigns
  30. // these functions are never going away, anyway
  31. #pragma warning(disable: 4996)
  32. #endif
  33. #if defined(_WIN32)
  34. #include <windows.h>
  35. typedef volatile LONG atomic_int;
  36. typedef atomic_int atomic_bool;
  37. static void atomic_store(atomic_int * ptr, LONG val) {
  38. InterlockedExchange(ptr, val);
  39. }
  40. static LONG atomic_load(atomic_int * ptr) {
  41. return InterlockedCompareExchange(ptr, 0, 0);
  42. }
  43. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  44. return InterlockedExchangeAdd(ptr, inc);
  45. }
  46. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  47. return atomic_fetch_add(ptr, -(dec));
  48. }
  49. typedef HANDLE pthread_t;
  50. typedef DWORD thread_ret_t;
  51. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  52. (void) unused;
  53. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  54. if (handle == NULL)
  55. {
  56. return EAGAIN;
  57. }
  58. *out = handle;
  59. return 0;
  60. }
  61. static int pthread_join(pthread_t thread, void * unused) {
  62. (void) unused;
  63. int ret = (int) WaitForSingleObject(thread, INFINITE);
  64. CloseHandle(thread);
  65. return ret;
  66. }
  67. static int sched_yield (void) {
  68. Sleep (0);
  69. return 0;
  70. }
  71. #else
  72. #include <pthread.h>
  73. #include <stdatomic.h>
  74. typedef void * thread_ret_t;
  75. #include <sys/types.h>
  76. #include <sys/stat.h>
  77. #include <unistd.h>
  78. #endif
  79. #ifdef GGML_USE_CPU_HBM
  80. #include <hbwmalloc.h>
  81. #endif
  82. /*#define GGML_PERF*/
  83. #define GGML_DEBUG 0
  84. #define GGML_GELU_FP16
  85. #define GGML_GELU_QUICK_FP16
  86. #define GGML_SILU_FP16
  87. // #define GGML_CROSS_ENTROPY_EXP_FP16
  88. // #define GGML_FLASH_ATTN_EXP_FP16
  89. #define GGML_SOFT_MAX_UNROLL 4
  90. #define GGML_VEC_DOT_UNROLL 2
  91. #define GGML_VEC_MAD_UNROLL 32
  92. //
  93. // logging
  94. //
  95. #if (GGML_DEBUG >= 1)
  96. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  97. #else
  98. #define GGML_PRINT_DEBUG(...)
  99. #endif
  100. #if (GGML_DEBUG >= 5)
  101. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  102. #else
  103. #define GGML_PRINT_DEBUG_5(...)
  104. #endif
  105. #if (GGML_DEBUG >= 10)
  106. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  107. #else
  108. #define GGML_PRINT_DEBUG_10(...)
  109. #endif
  110. #define GGML_PRINT(...) printf(__VA_ARGS__)
  111. //
  112. // end of logging block
  113. //
  114. #ifdef GGML_USE_ACCELERATE
  115. // uncomment to use vDSP for soft max computation
  116. // note: not sure if it is actually faster
  117. //#define GGML_SOFT_MAX_ACCELERATE
  118. #endif
  119. #if defined(_MSC_VER) || defined(__MINGW32__)
  120. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  121. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  122. #else
  123. inline static void * ggml_aligned_malloc(size_t size) {
  124. if (size == 0) {
  125. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  126. return NULL;
  127. }
  128. void * aligned_memory = NULL;
  129. #ifdef GGML_USE_CPU_HBM
  130. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  131. #elif GGML_USE_METAL
  132. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  133. #else
  134. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  135. #endif
  136. if (result != 0) {
  137. // Handle allocation failure
  138. const char *error_desc = "unknown allocation error";
  139. switch (result) {
  140. case EINVAL:
  141. error_desc = "invalid alignment value";
  142. break;
  143. case ENOMEM:
  144. error_desc = "insufficient memory";
  145. break;
  146. }
  147. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  148. return NULL;
  149. }
  150. return aligned_memory;
  151. }
  152. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  153. #ifdef GGML_USE_CPU_HBM
  154. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  155. #else
  156. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  157. #endif
  158. #endif
  159. #define UNUSED GGML_UNUSED
  160. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  161. //
  162. // tensor access macros
  163. //
  164. #define GGML_TENSOR_UNARY_OP_LOCALS \
  165. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  166. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  167. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  168. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  169. #define GGML_TENSOR_BINARY_OP_LOCALS \
  170. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  171. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  172. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  173. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  174. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  175. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  176. #if defined(GGML_USE_ACCELERATE)
  177. #include <Accelerate/Accelerate.h>
  178. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  179. #include "ggml-opencl.h"
  180. #endif
  181. #elif defined(GGML_USE_OPENBLAS)
  182. #if defined(GGML_BLAS_USE_MKL)
  183. #include <mkl.h>
  184. #else
  185. #include <cblas.h>
  186. #endif
  187. #elif defined(GGML_USE_CUBLAS)
  188. #include "ggml-cuda.h"
  189. #elif defined(GGML_USE_CLBLAST)
  190. #include "ggml-opencl.h"
  191. #endif
  192. // floating point type used to accumulate sums
  193. typedef double ggml_float;
  194. //
  195. // global data
  196. //
  197. // precomputed gelu table for f16 (128 KB)
  198. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  199. // precomputed quick gelu table for f16 (128 KB)
  200. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  201. // precomputed silu table for f16 (128 KB)
  202. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  203. // precomputed exp table for f16 (128 KB)
  204. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  205. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  206. float ggml_table_f32_f16[1 << 16];
  207. // note: do not use these inside ggml.c
  208. // these are meant to be used via the ggml.h API
  209. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  210. return (float) GGML_FP16_TO_FP32(x);
  211. }
  212. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  213. return GGML_FP32_TO_FP16(x);
  214. }
  215. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  216. for (int i = 0; i < n; i++) {
  217. y[i] = GGML_FP16_TO_FP32(x[i]);
  218. }
  219. }
  220. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  221. int i = 0;
  222. #if defined(__F16C__)
  223. for (; i + 7 < n; i += 8) {
  224. __m256 x_vec = _mm256_loadu_ps(x + i);
  225. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  226. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  227. }
  228. for(; i + 3 < n; i += 4) {
  229. __m128 x_vec = _mm_loadu_ps(x + i);
  230. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  231. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  232. }
  233. #endif
  234. for (; i < n; i++) {
  235. y[i] = GGML_FP32_TO_FP16(x[i]);
  236. }
  237. }
  238. //
  239. // timing
  240. //
  241. #if defined(_MSC_VER) || defined(__MINGW32__)
  242. static int64_t timer_freq, timer_start;
  243. void ggml_time_init(void) {
  244. LARGE_INTEGER t;
  245. QueryPerformanceFrequency(&t);
  246. timer_freq = t.QuadPart;
  247. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  248. // and the uptime is high enough.
  249. // We subtract the program start time to reduce the likelihood of that happening.
  250. QueryPerformanceCounter(&t);
  251. timer_start = t.QuadPart;
  252. }
  253. int64_t ggml_time_ms(void) {
  254. LARGE_INTEGER t;
  255. QueryPerformanceCounter(&t);
  256. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  257. }
  258. int64_t ggml_time_us(void) {
  259. LARGE_INTEGER t;
  260. QueryPerformanceCounter(&t);
  261. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  262. }
  263. #else
  264. void ggml_time_init(void) {}
  265. int64_t ggml_time_ms(void) {
  266. struct timespec ts;
  267. clock_gettime(CLOCK_MONOTONIC, &ts);
  268. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  269. }
  270. int64_t ggml_time_us(void) {
  271. struct timespec ts;
  272. clock_gettime(CLOCK_MONOTONIC, &ts);
  273. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  274. }
  275. #endif
  276. int64_t ggml_cycles(void) {
  277. return clock();
  278. }
  279. int64_t ggml_cycles_per_ms(void) {
  280. return CLOCKS_PER_SEC/1000;
  281. }
  282. #ifdef GGML_PERF
  283. #define ggml_perf_time_ms() ggml_time_ms()
  284. #define ggml_perf_time_us() ggml_time_us()
  285. #define ggml_perf_cycles() ggml_cycles()
  286. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  287. #else
  288. #define ggml_perf_time_ms() 0
  289. #define ggml_perf_time_us() 0
  290. #define ggml_perf_cycles() 0
  291. #define ggml_perf_cycles_per_ms() 0
  292. #endif
  293. //
  294. // cache line
  295. //
  296. #if defined(__cpp_lib_hardware_interference_size)
  297. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  298. #else
  299. #if defined(__POWER9_VECTOR__)
  300. #define CACHE_LINE_SIZE 128
  301. #else
  302. #define CACHE_LINE_SIZE 64
  303. #endif
  304. #endif
  305. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  306. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  307. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  308. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  309. [GGML_TYPE_I8] = {
  310. .type_name = "i8",
  311. .blck_size = 1,
  312. .type_size = sizeof(int8_t),
  313. .is_quantized = false,
  314. },
  315. [GGML_TYPE_I16] = {
  316. .type_name = "i16",
  317. .blck_size = 1,
  318. .type_size = sizeof(int16_t),
  319. .is_quantized = false,
  320. },
  321. [GGML_TYPE_I32] = {
  322. .type_name = "i32",
  323. .blck_size = 1,
  324. .type_size = sizeof(int32_t),
  325. .is_quantized = false,
  326. },
  327. [GGML_TYPE_F32] = {
  328. .type_name = "f32",
  329. .blck_size = 1,
  330. .type_size = sizeof(float),
  331. .is_quantized = false,
  332. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  333. .vec_dot_type = GGML_TYPE_F32,
  334. },
  335. [GGML_TYPE_F16] = {
  336. .type_name = "f16",
  337. .blck_size = 1,
  338. .type_size = sizeof(ggml_fp16_t),
  339. .is_quantized = false,
  340. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  341. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  342. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  343. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  344. .vec_dot_type = GGML_TYPE_F16,
  345. },
  346. [GGML_TYPE_Q4_0] = {
  347. .type_name = "q4_0",
  348. .blck_size = QK4_0,
  349. .type_size = sizeof(block_q4_0),
  350. .is_quantized = true,
  351. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  352. .from_float = quantize_row_q4_0,
  353. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  354. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  355. .vec_dot_type = GGML_TYPE_Q8_0,
  356. },
  357. [GGML_TYPE_Q4_1] = {
  358. .type_name = "q4_1",
  359. .blck_size = QK4_1,
  360. .type_size = sizeof(block_q4_1),
  361. .is_quantized = true,
  362. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  363. .from_float = quantize_row_q4_1,
  364. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  365. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  366. .vec_dot_type = GGML_TYPE_Q8_1,
  367. },
  368. [4] = { // GGML_TYPE_Q4_2
  369. .type_name = "DEPRECATED",
  370. .blck_size = 0,
  371. .type_size = 0,
  372. .is_quantized = false,
  373. .to_float = NULL,
  374. .from_float = NULL,
  375. .from_float_reference = NULL,
  376. .vec_dot = NULL,
  377. .vec_dot_type = GGML_TYPE_COUNT,
  378. },
  379. [5] = { // GGML_TYPE_Q4_3
  380. .type_name = "DEPRECATED",
  381. .blck_size = 0,
  382. .type_size = 0,
  383. .is_quantized = false,
  384. .to_float = NULL,
  385. .from_float = NULL,
  386. .from_float_reference = NULL,
  387. .vec_dot = NULL,
  388. .vec_dot_type = GGML_TYPE_COUNT,
  389. },
  390. [GGML_TYPE_Q5_0] = {
  391. .type_name = "q5_0",
  392. .blck_size = QK5_0,
  393. .type_size = sizeof(block_q5_0),
  394. .is_quantized = true,
  395. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  396. .from_float = quantize_row_q5_0,
  397. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  398. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  399. .vec_dot_type = GGML_TYPE_Q8_0,
  400. },
  401. [GGML_TYPE_Q5_1] = {
  402. .type_name = "q5_1",
  403. .blck_size = QK5_1,
  404. .type_size = sizeof(block_q5_1),
  405. .is_quantized = true,
  406. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  407. .from_float = quantize_row_q5_1,
  408. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  409. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  410. .vec_dot_type = GGML_TYPE_Q8_1,
  411. },
  412. [GGML_TYPE_Q8_0] = {
  413. .type_name = "q8_0",
  414. .blck_size = QK8_0,
  415. .type_size = sizeof(block_q8_0),
  416. .is_quantized = true,
  417. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  418. .from_float = quantize_row_q8_0,
  419. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  420. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  421. .vec_dot_type = GGML_TYPE_Q8_0,
  422. },
  423. [GGML_TYPE_Q8_1] = {
  424. .type_name = "q8_1",
  425. .blck_size = QK8_1,
  426. .type_size = sizeof(block_q8_1),
  427. .is_quantized = true,
  428. .from_float = quantize_row_q8_1,
  429. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  430. .vec_dot_type = GGML_TYPE_Q8_1,
  431. },
  432. [GGML_TYPE_Q2_K] = {
  433. .type_name = "q2_K",
  434. .blck_size = QK_K,
  435. .type_size = sizeof(block_q2_K),
  436. .is_quantized = true,
  437. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  438. .from_float = quantize_row_q2_K,
  439. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  440. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  441. .vec_dot_type = GGML_TYPE_Q8_K,
  442. },
  443. [GGML_TYPE_Q3_K] = {
  444. .type_name = "q3_K",
  445. .blck_size = QK_K,
  446. .type_size = sizeof(block_q3_K),
  447. .is_quantized = true,
  448. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  449. .from_float = quantize_row_q3_K,
  450. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  451. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  452. .vec_dot_type = GGML_TYPE_Q8_K,
  453. },
  454. [GGML_TYPE_Q4_K] = {
  455. .type_name = "q4_K",
  456. .blck_size = QK_K,
  457. .type_size = sizeof(block_q4_K),
  458. .is_quantized = true,
  459. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  460. .from_float = quantize_row_q4_K,
  461. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  462. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  463. .vec_dot_type = GGML_TYPE_Q8_K,
  464. },
  465. [GGML_TYPE_Q5_K] = {
  466. .type_name = "q5_K",
  467. .blck_size = QK_K,
  468. .type_size = sizeof(block_q5_K),
  469. .is_quantized = true,
  470. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  471. .from_float = quantize_row_q5_K,
  472. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  473. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  474. .vec_dot_type = GGML_TYPE_Q8_K,
  475. },
  476. [GGML_TYPE_Q6_K] = {
  477. .type_name = "q6_K",
  478. .blck_size = QK_K,
  479. .type_size = sizeof(block_q6_K),
  480. .is_quantized = true,
  481. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  482. .from_float = quantize_row_q6_K,
  483. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  484. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  485. .vec_dot_type = GGML_TYPE_Q8_K,
  486. },
  487. [GGML_TYPE_Q8_K] = {
  488. .type_name = "q8_K",
  489. .blck_size = QK_K,
  490. .type_size = sizeof(block_q8_K),
  491. .is_quantized = true,
  492. .from_float = quantize_row_q8_K,
  493. }
  494. };
  495. // For internal test use
  496. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  497. GGML_ASSERT(type < GGML_TYPE_COUNT);
  498. return type_traits[type];
  499. }
  500. //
  501. // simd mappings
  502. //
  503. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  504. // we then implement the fundamental computation operations below using only these macros
  505. // adding support for new architectures requires to define the corresponding SIMD macros
  506. //
  507. // GGML_F32_STEP / GGML_F16_STEP
  508. // number of elements to process in a single step
  509. //
  510. // GGML_F32_EPR / GGML_F16_EPR
  511. // number of elements to fit in a single register
  512. //
  513. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  514. #define GGML_SIMD
  515. // F32 NEON
  516. #define GGML_F32_STEP 16
  517. #define GGML_F32_EPR 4
  518. #define GGML_F32x4 float32x4_t
  519. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  520. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  521. #define GGML_F32x4_LOAD vld1q_f32
  522. #define GGML_F32x4_STORE vst1q_f32
  523. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  524. #define GGML_F32x4_ADD vaddq_f32
  525. #define GGML_F32x4_MUL vmulq_f32
  526. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  527. #define GGML_F32x4_REDUCE(res, x) \
  528. { \
  529. int offset = GGML_F32_ARR >> 1; \
  530. for (int i = 0; i < offset; ++i) { \
  531. x[i] = vaddq_f32(x[i], x[offset+i]); \
  532. } \
  533. offset >>= 1; \
  534. for (int i = 0; i < offset; ++i) { \
  535. x[i] = vaddq_f32(x[i], x[offset+i]); \
  536. } \
  537. offset >>= 1; \
  538. for (int i = 0; i < offset; ++i) { \
  539. x[i] = vaddq_f32(x[i], x[offset+i]); \
  540. } \
  541. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  542. }
  543. #define GGML_F32_VEC GGML_F32x4
  544. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  545. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  546. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  547. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  548. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  549. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  550. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  551. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  552. // F16 NEON
  553. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  554. #define GGML_F16_STEP 32
  555. #define GGML_F16_EPR 8
  556. #define GGML_F16x8 float16x8_t
  557. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  558. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  559. #define GGML_F16x8_LOAD vld1q_f16
  560. #define GGML_F16x8_STORE vst1q_f16
  561. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  562. #define GGML_F16x8_ADD vaddq_f16
  563. #define GGML_F16x8_MUL vmulq_f16
  564. #define GGML_F16x8_REDUCE(res, x) \
  565. do { \
  566. int offset = GGML_F16_ARR >> 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f16(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f16(x[i], x[offset+i]); \
  573. } \
  574. offset >>= 1; \
  575. for (int i = 0; i < offset; ++i) { \
  576. x[i] = vaddq_f16(x[i], x[offset+i]); \
  577. } \
  578. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  579. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  580. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  581. } while (0)
  582. #define GGML_F16_VEC GGML_F16x8
  583. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  584. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  585. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  586. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  587. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  588. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  589. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  590. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  591. #else
  592. // if FP16 vector arithmetic is not supported, we use FP32 instead
  593. // and take advantage of the vcvt_ functions to convert to/from FP16
  594. #define GGML_F16_STEP 16
  595. #define GGML_F16_EPR 4
  596. #define GGML_F32Cx4 float32x4_t
  597. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  598. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  599. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  600. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  601. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  602. #define GGML_F32Cx4_ADD vaddq_f32
  603. #define GGML_F32Cx4_MUL vmulq_f32
  604. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  605. #define GGML_F16_VEC GGML_F32Cx4
  606. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  607. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  608. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  609. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  610. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  611. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  612. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  613. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  614. #endif
  615. #elif defined(__AVX__)
  616. #define GGML_SIMD
  617. // F32 AVX
  618. #define GGML_F32_STEP 32
  619. #define GGML_F32_EPR 8
  620. #define GGML_F32x8 __m256
  621. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  622. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  623. #define GGML_F32x8_LOAD _mm256_loadu_ps
  624. #define GGML_F32x8_STORE _mm256_storeu_ps
  625. #if defined(__FMA__)
  626. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  627. #else
  628. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  629. #endif
  630. #define GGML_F32x8_ADD _mm256_add_ps
  631. #define GGML_F32x8_MUL _mm256_mul_ps
  632. #define GGML_F32x8_REDUCE(res, x) \
  633. do { \
  634. int offset = GGML_F32_ARR >> 1; \
  635. for (int i = 0; i < offset; ++i) { \
  636. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  637. } \
  638. offset >>= 1; \
  639. for (int i = 0; i < offset; ++i) { \
  640. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  641. } \
  642. offset >>= 1; \
  643. for (int i = 0; i < offset; ++i) { \
  644. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  645. } \
  646. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  647. _mm256_extractf128_ps(x[0], 1)); \
  648. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  649. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  650. } while (0)
  651. // TODO: is this optimal ?
  652. #define GGML_F32_VEC GGML_F32x8
  653. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  654. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  655. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  656. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  657. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  658. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  659. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  660. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  661. // F16 AVX
  662. #define GGML_F16_STEP 32
  663. #define GGML_F16_EPR 8
  664. // F16 arithmetic is not supported by AVX, so we use F32 instead
  665. #define GGML_F32Cx8 __m256
  666. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  667. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  668. #if defined(__F16C__)
  669. // the _mm256_cvt intrinsics require F16C
  670. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  671. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  672. #else
  673. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  674. float tmp[8];
  675. for (int i = 0; i < 8; i++) {
  676. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  677. }
  678. return _mm256_loadu_ps(tmp);
  679. }
  680. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  681. float arr[8];
  682. _mm256_storeu_ps(arr, y);
  683. for (int i = 0; i < 8; i++)
  684. x[i] = GGML_FP32_TO_FP16(arr[i]);
  685. }
  686. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  687. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  688. #endif
  689. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  690. #define GGML_F32Cx8_ADD _mm256_add_ps
  691. #define GGML_F32Cx8_MUL _mm256_mul_ps
  692. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  693. #define GGML_F16_VEC GGML_F32Cx8
  694. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  695. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  696. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  697. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  698. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  699. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  700. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  701. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  702. #elif defined(__POWER9_VECTOR__)
  703. #define GGML_SIMD
  704. // F32 POWER9
  705. #define GGML_F32_STEP 32
  706. #define GGML_F32_EPR 4
  707. #define GGML_F32x4 vector float
  708. #define GGML_F32x4_ZERO 0.0f
  709. #define GGML_F32x4_SET1 vec_splats
  710. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  711. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  712. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  713. #define GGML_F32x4_ADD vec_add
  714. #define GGML_F32x4_MUL vec_mul
  715. #define GGML_F32x4_REDUCE(res, x) \
  716. { \
  717. int offset = GGML_F32_ARR >> 1; \
  718. for (int i = 0; i < offset; ++i) { \
  719. x[i] = vec_add(x[i], x[offset+i]); \
  720. } \
  721. offset >>= 1; \
  722. for (int i = 0; i < offset; ++i) { \
  723. x[i] = vec_add(x[i], x[offset+i]); \
  724. } \
  725. offset >>= 1; \
  726. for (int i = 0; i < offset; ++i) { \
  727. x[i] = vec_add(x[i], x[offset+i]); \
  728. } \
  729. res = vec_extract(x[0], 0) + \
  730. vec_extract(x[0], 1) + \
  731. vec_extract(x[0], 2) + \
  732. vec_extract(x[0], 3); \
  733. }
  734. #define GGML_F32_VEC GGML_F32x4
  735. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  736. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  737. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  738. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  739. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  740. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  741. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  742. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  743. // F16 POWER9
  744. #define GGML_F16_STEP GGML_F32_STEP
  745. #define GGML_F16_EPR GGML_F32_EPR
  746. #define GGML_F16_VEC GGML_F32x4
  747. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  748. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  749. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  750. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  751. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  752. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  753. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  754. vec_extract_fp32_from_shortl(vec_xl(0, p))
  755. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  756. #define GGML_F16_VEC_STORE(p, r, i) \
  757. if (i & 0x1) \
  758. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  759. r[i - GGML_ENDIAN_BYTE(0)]), \
  760. 0, p - GGML_F16_EPR)
  761. #elif defined(__wasm_simd128__)
  762. #define GGML_SIMD
  763. // F32 WASM
  764. #define GGML_F32_STEP 16
  765. #define GGML_F32_EPR 4
  766. #define GGML_F32x4 v128_t
  767. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  768. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  769. #define GGML_F32x4_LOAD wasm_v128_load
  770. #define GGML_F32x4_STORE wasm_v128_store
  771. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  772. #define GGML_F32x4_ADD wasm_f32x4_add
  773. #define GGML_F32x4_MUL wasm_f32x4_mul
  774. #define GGML_F32x4_REDUCE(res, x) \
  775. { \
  776. int offset = GGML_F32_ARR >> 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  787. } \
  788. res = wasm_f32x4_extract_lane(x[0], 0) + \
  789. wasm_f32x4_extract_lane(x[0], 1) + \
  790. wasm_f32x4_extract_lane(x[0], 2) + \
  791. wasm_f32x4_extract_lane(x[0], 3); \
  792. }
  793. #define GGML_F32_VEC GGML_F32x4
  794. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  795. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  796. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  797. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  798. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  799. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  800. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  801. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  802. // F16 WASM
  803. #define GGML_F16_STEP 16
  804. #define GGML_F16_EPR 4
  805. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  806. float tmp[4];
  807. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  808. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  809. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  810. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  811. return wasm_v128_load(tmp);
  812. }
  813. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  814. float tmp[4];
  815. wasm_v128_store(tmp, x);
  816. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  817. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  818. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  819. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  820. }
  821. #define GGML_F16x4 v128_t
  822. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  825. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  826. #define GGML_F16x4_FMA GGML_F32x4_FMA
  827. #define GGML_F16x4_ADD wasm_f32x4_add
  828. #define GGML_F16x4_MUL wasm_f32x4_mul
  829. #define GGML_F16x4_REDUCE(res, x) \
  830. { \
  831. int offset = GGML_F16_ARR >> 1; \
  832. for (int i = 0; i < offset; ++i) { \
  833. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  834. } \
  835. offset >>= 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. res = wasm_f32x4_extract_lane(x[0], 0) + \
  844. wasm_f32x4_extract_lane(x[0], 1) + \
  845. wasm_f32x4_extract_lane(x[0], 2) + \
  846. wasm_f32x4_extract_lane(x[0], 3); \
  847. }
  848. #define GGML_F16_VEC GGML_F16x4
  849. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  850. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  851. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  852. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  853. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  854. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  855. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  856. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  857. #elif defined(__SSE3__)
  858. #define GGML_SIMD
  859. // F32 SSE
  860. #define GGML_F32_STEP 32
  861. #define GGML_F32_EPR 4
  862. #define GGML_F32x4 __m128
  863. #define GGML_F32x4_ZERO _mm_setzero_ps()
  864. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  865. #define GGML_F32x4_LOAD _mm_loadu_ps
  866. #define GGML_F32x4_STORE _mm_storeu_ps
  867. #if defined(__FMA__)
  868. // TODO: Does this work?
  869. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  870. #else
  871. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  872. #endif
  873. #define GGML_F32x4_ADD _mm_add_ps
  874. #define GGML_F32x4_MUL _mm_mul_ps
  875. #define GGML_F32x4_REDUCE(res, x) \
  876. { \
  877. int offset = GGML_F32_ARR >> 1; \
  878. for (int i = 0; i < offset; ++i) { \
  879. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  880. } \
  881. offset >>= 1; \
  882. for (int i = 0; i < offset; ++i) { \
  883. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  884. } \
  885. offset >>= 1; \
  886. for (int i = 0; i < offset; ++i) { \
  887. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  888. } \
  889. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  890. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  891. }
  892. // TODO: is this optimal ?
  893. #define GGML_F32_VEC GGML_F32x4
  894. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  895. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  896. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  897. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  898. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  899. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  900. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  901. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  902. // F16 SSE
  903. #define GGML_F16_STEP 32
  904. #define GGML_F16_EPR 4
  905. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  906. float tmp[4];
  907. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  908. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  909. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  910. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  911. return _mm_loadu_ps(tmp);
  912. }
  913. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  914. float arr[4];
  915. _mm_storeu_ps(arr, y);
  916. x[0] = GGML_FP32_TO_FP16(arr[0]);
  917. x[1] = GGML_FP32_TO_FP16(arr[1]);
  918. x[2] = GGML_FP32_TO_FP16(arr[2]);
  919. x[3] = GGML_FP32_TO_FP16(arr[3]);
  920. }
  921. #define GGML_F32Cx4 __m128
  922. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  923. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  924. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  925. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  926. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  927. #define GGML_F32Cx4_ADD _mm_add_ps
  928. #define GGML_F32Cx4_MUL _mm_mul_ps
  929. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  930. #define GGML_F16_VEC GGML_F32Cx4
  931. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  932. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  933. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  934. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  935. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  936. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  937. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  938. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  939. #endif
  940. // GGML_F32_ARR / GGML_F16_ARR
  941. // number of registers to use per step
  942. #ifdef GGML_SIMD
  943. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  944. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  945. #endif
  946. //
  947. // fundamental operations
  948. //
  949. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  950. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  951. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  952. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  953. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  954. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  955. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  956. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  957. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  958. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  959. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  960. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  961. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  962. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  963. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  964. #ifdef GGML_SIMD
  965. float sumf = 0.0f;
  966. const int np = (n & ~(GGML_F32_STEP - 1));
  967. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  968. GGML_F32_VEC ax[GGML_F32_ARR];
  969. GGML_F32_VEC ay[GGML_F32_ARR];
  970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  971. for (int j = 0; j < GGML_F32_ARR; j++) {
  972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  974. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  975. }
  976. }
  977. // reduce sum0..sum3 to sum0
  978. GGML_F32_VEC_REDUCE(sumf, sum);
  979. // leftovers
  980. for (int i = np; i < n; ++i) {
  981. sumf += x[i]*y[i];
  982. }
  983. #else
  984. // scalar
  985. ggml_float sumf = 0.0;
  986. for (int i = 0; i < n; ++i) {
  987. sumf += (ggml_float)(x[i]*y[i]);
  988. }
  989. #endif
  990. *s = sumf;
  991. }
  992. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  993. ggml_float sumf = 0.0;
  994. #if defined(GGML_SIMD)
  995. const int np = (n & ~(GGML_F16_STEP - 1));
  996. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  997. GGML_F16_VEC ax[GGML_F16_ARR];
  998. GGML_F16_VEC ay[GGML_F16_ARR];
  999. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1000. for (int j = 0; j < GGML_F16_ARR; j++) {
  1001. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1002. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1003. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1004. }
  1005. }
  1006. // reduce sum0..sum3 to sum0
  1007. GGML_F16_VEC_REDUCE(sumf, sum);
  1008. // leftovers
  1009. for (int i = np; i < n; ++i) {
  1010. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1011. }
  1012. #else
  1013. for (int i = 0; i < n; ++i) {
  1014. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1015. }
  1016. #endif
  1017. *s = sumf;
  1018. }
  1019. // compute GGML_VEC_DOT_UNROLL dot products at once
  1020. // xs - x row stride in bytes
  1021. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1022. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1023. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1024. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1025. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1026. }
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1035. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1036. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1037. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1038. }
  1039. }
  1040. }
  1041. // reduce sum0..sum3 to sum0
  1042. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1043. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1044. }
  1045. // leftovers
  1046. for (int i = np; i < n; ++i) {
  1047. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1048. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1049. }
  1050. }
  1051. #else
  1052. for (int i = 0; i < n; ++i) {
  1053. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1054. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1055. }
  1056. }
  1057. #endif
  1058. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1059. s[i] = sumf[i];
  1060. }
  1061. }
  1062. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1063. #if defined(GGML_SIMD)
  1064. const int np = (n & ~(GGML_F32_STEP - 1));
  1065. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1066. GGML_F32_VEC ax[GGML_F32_ARR];
  1067. GGML_F32_VEC ay[GGML_F32_ARR];
  1068. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1069. for (int j = 0; j < GGML_F32_ARR; j++) {
  1070. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1071. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1073. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1074. }
  1075. }
  1076. // leftovers
  1077. for (int i = np; i < n; ++i) {
  1078. y[i] += x[i]*v;
  1079. }
  1080. #else
  1081. // scalar
  1082. for (int i = 0; i < n; ++i) {
  1083. y[i] += x[i]*v;
  1084. }
  1085. #endif
  1086. }
  1087. // xs and vs are byte strides of x and v
  1088. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1089. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1090. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1091. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1092. x[i] = (const float *) ((const char *) xv + i*xs);
  1093. v[i] = (const float *) ((const char *) vv + i*vs);
  1094. }
  1095. #if defined(GGML_SIMD)
  1096. const int np = (n & ~(GGML_F32_STEP - 1));
  1097. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1098. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1099. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1100. }
  1101. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1102. GGML_F32_VEC ay[GGML_F32_ARR];
  1103. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1104. for (int j = 0; j < GGML_F32_ARR; j++) {
  1105. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1106. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1107. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1108. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1109. }
  1110. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1111. }
  1112. }
  1113. // leftovers
  1114. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1115. for (int i = np; i < n; ++i) {
  1116. y[i] += x[k][i]*v[k][0];
  1117. }
  1118. }
  1119. #else
  1120. // scalar
  1121. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1122. for (int i = 0; i < n; ++i) {
  1123. y[i] += x[k][i]*v[k][0];
  1124. }
  1125. }
  1126. #endif
  1127. }
  1128. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1129. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1130. #if defined(GGML_USE_ACCELERATE)
  1131. vDSP_vsmul(y, 1, &v, y, 1, n);
  1132. #elif defined(GGML_SIMD)
  1133. const int np = (n & ~(GGML_F32_STEP - 1));
  1134. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1140. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1141. }
  1142. }
  1143. // leftovers
  1144. for (int i = np; i < n; ++i) {
  1145. y[i] *= v;
  1146. }
  1147. #else
  1148. // scalar
  1149. for (int i = 0; i < n; ++i) {
  1150. y[i] *= v;
  1151. }
  1152. #endif
  1153. }
  1154. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1155. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1156. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1157. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1158. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1159. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1160. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1161. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1162. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1163. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1164. static const float GELU_COEF_A = 0.044715f;
  1165. static const float GELU_QUICK_COEF = -1.702f;
  1166. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1167. inline static float ggml_gelu_f32(float x) {
  1168. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1169. }
  1170. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1171. const uint16_t * i16 = (const uint16_t *) x;
  1172. for (int i = 0; i < n; ++i) {
  1173. y[i] = ggml_table_gelu_f16[i16[i]];
  1174. }
  1175. }
  1176. #ifdef GGML_GELU_FP16
  1177. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1178. uint16_t t;
  1179. for (int i = 0; i < n; ++i) {
  1180. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1181. memcpy(&t, &fp16, sizeof(uint16_t));
  1182. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1183. }
  1184. }
  1185. #else
  1186. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1187. for (int i = 0; i < n; ++i) {
  1188. y[i] = ggml_gelu_f32(x[i]);
  1189. }
  1190. }
  1191. #endif
  1192. inline static float ggml_gelu_quick_f32(float x) {
  1193. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1194. }
  1195. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1196. // const uint16_t * i16 = (const uint16_t *) x;
  1197. // for (int i = 0; i < n; ++i) {
  1198. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1199. // }
  1200. //}
  1201. #ifdef GGML_GELU_QUICK_FP16
  1202. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1203. uint16_t t;
  1204. for (int i = 0; i < n; ++i) {
  1205. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1206. memcpy(&t, &fp16, sizeof(uint16_t));
  1207. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1208. }
  1209. }
  1210. #else
  1211. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1212. for (int i = 0; i < n; ++i) {
  1213. y[i] = ggml_gelu_quick_f32(x[i]);
  1214. }
  1215. }
  1216. #endif
  1217. // Sigmoid Linear Unit (SiLU) function
  1218. inline static float ggml_silu_f32(float x) {
  1219. return x/(1.0f + expf(-x));
  1220. }
  1221. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1222. // const uint16_t * i16 = (const uint16_t *) x;
  1223. // for (int i = 0; i < n; ++i) {
  1224. // y[i] = ggml_table_silu_f16[i16[i]];
  1225. // }
  1226. //}
  1227. #ifdef GGML_SILU_FP16
  1228. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1229. uint16_t t;
  1230. for (int i = 0; i < n; ++i) {
  1231. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1232. memcpy(&t, &fp16, sizeof(uint16_t));
  1233. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1234. }
  1235. }
  1236. #else
  1237. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1238. for (int i = 0; i < n; ++i) {
  1239. y[i] = ggml_silu_f32(x[i]);
  1240. }
  1241. }
  1242. #endif
  1243. inline static float ggml_silu_backward_f32(float x, float dy) {
  1244. const float s = 1.0f/(1.0f + expf(-x));
  1245. return dy*s*(1.0f + x*(1.0f - s));
  1246. }
  1247. #ifdef GGML_SILU_FP16
  1248. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1249. for (int i = 0; i < n; ++i) {
  1250. // we did not use x[i] to compute forward silu but its f16 equivalent
  1251. // take derivative at f16 of x[i]:
  1252. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1253. float usedx = GGML_FP16_TO_FP32(fp16);
  1254. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1255. }
  1256. }
  1257. #else
  1258. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1259. for (int i = 0; i < n; ++i) {
  1260. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1261. }
  1262. }
  1263. #endif
  1264. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1265. #ifndef GGML_USE_ACCELERATE
  1266. ggml_float sum = 0.0;
  1267. for (int i = 0; i < n; ++i) {
  1268. sum += (ggml_float)x[i];
  1269. }
  1270. *s = sum;
  1271. #else
  1272. vDSP_sve(x, 1, s, n);
  1273. #endif
  1274. }
  1275. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1276. ggml_float sum = 0.0;
  1277. for (int i = 0; i < n; ++i) {
  1278. sum += (ggml_float)x[i];
  1279. }
  1280. *s = sum;
  1281. }
  1282. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1283. float sum = 0.0f;
  1284. for (int i = 0; i < n; ++i) {
  1285. sum += GGML_FP16_TO_FP32(x[i]);
  1286. }
  1287. *s = sum;
  1288. }
  1289. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1290. #ifndef GGML_USE_ACCELERATE
  1291. float max = -INFINITY;
  1292. for (int i = 0; i < n; ++i) {
  1293. max = MAX(max, x[i]);
  1294. }
  1295. *s = max;
  1296. #else
  1297. vDSP_maxv(x, 1, s, n);
  1298. #endif
  1299. }
  1300. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1301. ggml_vec_norm_f32(n, s, x);
  1302. *s = 1.f/(*s);
  1303. }
  1304. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1305. float max = -INFINITY;
  1306. int idx = 0;
  1307. for (int i = 0; i < n; ++i) {
  1308. max = MAX(max, x[i]);
  1309. if (max == x[i]) { idx = i; }
  1310. }
  1311. *s = idx;
  1312. }
  1313. //
  1314. // data types
  1315. //
  1316. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1317. "NONE",
  1318. "DUP",
  1319. "ADD",
  1320. "ADD1",
  1321. "ACC",
  1322. "SUB",
  1323. "MUL",
  1324. "DIV",
  1325. "SQR",
  1326. "SQRT",
  1327. "LOG",
  1328. "SUM",
  1329. "SUM_ROWS",
  1330. "MEAN",
  1331. "ARGMAX",
  1332. "REPEAT",
  1333. "REPEAT_BACK",
  1334. "CONCAT",
  1335. "SILU_BACK",
  1336. "NORM",
  1337. "RMS_NORM",
  1338. "RMS_NORM_BACK",
  1339. "GROUP_NORM",
  1340. "MUL_MAT",
  1341. "OUT_PROD",
  1342. "SCALE",
  1343. "SET",
  1344. "CPY",
  1345. "CONT",
  1346. "RESHAPE",
  1347. "VIEW",
  1348. "PERMUTE",
  1349. "TRANSPOSE",
  1350. "GET_ROWS",
  1351. "GET_ROWS_BACK",
  1352. "DIAG",
  1353. "DIAG_MASK_INF",
  1354. "DIAG_MASK_ZERO",
  1355. "SOFT_MAX",
  1356. "SOFT_MAX_BACK",
  1357. "ROPE",
  1358. "ROPE_BACK",
  1359. "ALIBI",
  1360. "CLAMP",
  1361. "CONV_1D",
  1362. "CONV_1D_STAGE_0",
  1363. "CONV_1D_STAGE_1",
  1364. "CONV_TRANSPOSE_1D",
  1365. "CONV_2D",
  1366. "CONV_2D_STAGE_0",
  1367. "CONV_2D_STAGE_1",
  1368. "CONV_TRANSPOSE_2D",
  1369. "POOL_1D",
  1370. "POOL_2D",
  1371. "UPSCALE",
  1372. "FLASH_ATTN",
  1373. "FLASH_FF",
  1374. "FLASH_ATTN_BACK",
  1375. "WIN_PART",
  1376. "WIN_UNPART",
  1377. "GET_REL_POS",
  1378. "ADD_REL_POS",
  1379. "UNARY",
  1380. "MAP_UNARY",
  1381. "MAP_BINARY",
  1382. "MAP_CUSTOM1_F32",
  1383. "MAP_CUSTOM2_F32",
  1384. "MAP_CUSTOM3_F32",
  1385. "MAP_CUSTOM1",
  1386. "MAP_CUSTOM2",
  1387. "MAP_CUSTOM3",
  1388. "CROSS_ENTROPY_LOSS",
  1389. "CROSS_ENTROPY_LOSS_BACK",
  1390. };
  1391. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1392. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1393. "none",
  1394. "x",
  1395. "x+y",
  1396. "x+y",
  1397. "view(x,nb,offset)+=y->x",
  1398. "x-y",
  1399. "x*y",
  1400. "x/y",
  1401. "x^2",
  1402. "√x",
  1403. "log(x)",
  1404. "Σx",
  1405. "Σx_k",
  1406. "Σx/n",
  1407. "argmax(x)",
  1408. "repeat(x)",
  1409. "repeat_back(x)",
  1410. "concat(x, y)",
  1411. "silu_back(x)",
  1412. "norm(x)",
  1413. "rms_norm(x)",
  1414. "rms_norm_back(x)",
  1415. "group_norm(x)",
  1416. "X*Y",
  1417. "X*Y",
  1418. "x*v",
  1419. "y-\\>view(x)",
  1420. "x-\\>y",
  1421. "cont(x)",
  1422. "reshape(x)",
  1423. "view(x)",
  1424. "permute(x)",
  1425. "transpose(x)",
  1426. "get_rows(x)",
  1427. "get_rows_back(x)",
  1428. "diag(x)",
  1429. "diag_mask_inf(x)",
  1430. "diag_mask_zero(x)",
  1431. "soft_max(x)",
  1432. "soft_max_back(x)",
  1433. "rope(x)",
  1434. "rope_back(x)",
  1435. "alibi(x)",
  1436. "clamp(x)",
  1437. "conv_1d(x)",
  1438. "conv_1d_stage_0(x)",
  1439. "conv_1d_stage_1(x)",
  1440. "conv_transpose_1d(x)",
  1441. "conv_2d(x)",
  1442. "conv_2d_stage_0(x)",
  1443. "conv_2d_stage_1(x)",
  1444. "conv_transpose_2d(x)",
  1445. "pool_1d(x)",
  1446. "pool_2d(x)",
  1447. "upscale(x)",
  1448. "flash_attn(x)",
  1449. "flash_ff(x)",
  1450. "flash_attn_back(x)",
  1451. "win_part(x)",
  1452. "win_unpart(x)",
  1453. "get_rel_pos(x)",
  1454. "add_rel_pos(x)",
  1455. "unary(x)",
  1456. "f(x)",
  1457. "f(x,y)",
  1458. "custom_f32(x)",
  1459. "custom_f32(x,y)",
  1460. "custom_f32(x,y,z)",
  1461. "custom(x)",
  1462. "custom(x,y)",
  1463. "custom(x,y,z)",
  1464. "cross_entropy_loss(x,y)",
  1465. "cross_entropy_loss_back(x,y)",
  1466. };
  1467. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1468. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1469. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1470. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1471. // WARN:
  1472. // Mis-confguration can lead to problem that's hard to reason about:
  1473. // * At best it crash or talks nosense.
  1474. // * At worst it talks slightly difference but hard to perceive.
  1475. //
  1476. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1477. // Take care about compile options (e.g., GGML_USE_xxx).
  1478. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1479. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1480. static void ggml_setup_op_has_task_pass(void) {
  1481. { // INIT
  1482. bool * p = GGML_OP_HAS_INIT;
  1483. p[GGML_OP_ACC ] = true;
  1484. p[GGML_OP_MUL_MAT ] = true;
  1485. p[GGML_OP_OUT_PROD ] = true;
  1486. p[GGML_OP_SET ] = true;
  1487. p[GGML_OP_GET_ROWS_BACK ] = true;
  1488. p[GGML_OP_DIAG_MASK_INF ] = true;
  1489. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1490. p[GGML_OP_CONV_1D ] = true;
  1491. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  1492. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  1493. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1494. p[GGML_OP_CONV_2D ] = true;
  1495. p[GGML_OP_CONV_2D_STAGE_0 ] = true;
  1496. p[GGML_OP_CONV_2D_STAGE_1 ] = true;
  1497. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1498. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1499. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1500. p[GGML_OP_ADD_REL_POS ] = true;
  1501. }
  1502. { // FINALIZE
  1503. bool * p = GGML_OP_HAS_FINALIZE;
  1504. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1505. }
  1506. }
  1507. //
  1508. // ggml context
  1509. //
  1510. struct ggml_context {
  1511. size_t mem_size;
  1512. void * mem_buffer;
  1513. bool mem_buffer_owned;
  1514. bool no_alloc;
  1515. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1516. int n_objects;
  1517. struct ggml_object * objects_begin;
  1518. struct ggml_object * objects_end;
  1519. struct ggml_scratch scratch;
  1520. struct ggml_scratch scratch_save;
  1521. };
  1522. struct ggml_context_container {
  1523. bool used;
  1524. struct ggml_context context;
  1525. };
  1526. //
  1527. // NUMA support
  1528. //
  1529. #define GGML_NUMA_MAX_NODES 8
  1530. #define GGML_NUMA_MAX_CPUS 512
  1531. struct ggml_numa_node {
  1532. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1533. uint32_t n_cpus;
  1534. };
  1535. struct ggml_numa_nodes {
  1536. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1537. uint32_t n_nodes;
  1538. uint32_t total_cpus; // hardware threads on system
  1539. };
  1540. //
  1541. // ggml state
  1542. //
  1543. struct ggml_state {
  1544. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1545. struct ggml_numa_nodes numa;
  1546. };
  1547. // global state
  1548. static struct ggml_state g_state;
  1549. static atomic_int g_state_barrier = 0;
  1550. // barrier via spin lock
  1551. inline static void ggml_critical_section_start(void) {
  1552. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1553. while (processing > 0) {
  1554. // wait for other threads to finish
  1555. atomic_fetch_sub(&g_state_barrier, 1);
  1556. sched_yield(); // TODO: reconsider this
  1557. processing = atomic_fetch_add(&g_state_barrier, 1);
  1558. }
  1559. }
  1560. // TODO: make this somehow automatically executed
  1561. // some sort of "sentry" mechanism
  1562. inline static void ggml_critical_section_end(void) {
  1563. atomic_fetch_sub(&g_state_barrier, 1);
  1564. }
  1565. void ggml_numa_init(void) {
  1566. if (g_state.numa.n_nodes > 0) {
  1567. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1568. return;
  1569. }
  1570. #ifdef __linux__
  1571. struct stat st;
  1572. char path[256];
  1573. int rv;
  1574. // enumerate nodes
  1575. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1576. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1577. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1578. if (stat(path, &st) != 0) { break; }
  1579. ++g_state.numa.n_nodes;
  1580. }
  1581. // enumerate CPUs
  1582. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1583. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1584. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1585. if (stat(path, &st) != 0) { break; }
  1586. ++g_state.numa.total_cpus;
  1587. }
  1588. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1589. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1590. g_state.numa.n_nodes = 0;
  1591. return;
  1592. }
  1593. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1594. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1595. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1596. node->n_cpus = 0;
  1597. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1598. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1599. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1600. if (stat(path, &st) == 0) {
  1601. node->cpus[node->n_cpus++] = c;
  1602. GGML_PRINT_DEBUG(" %u", c);
  1603. }
  1604. }
  1605. GGML_PRINT_DEBUG("\n");
  1606. }
  1607. if (ggml_is_numa()) {
  1608. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1609. if (fptr != NULL) {
  1610. char buf[42];
  1611. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1612. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1613. }
  1614. fclose(fptr);
  1615. }
  1616. }
  1617. #else
  1618. // TODO
  1619. #endif
  1620. }
  1621. bool ggml_is_numa(void) {
  1622. return g_state.numa.n_nodes > 1;
  1623. }
  1624. ////////////////////////////////////////////////////////////////////////////////
  1625. void ggml_print_object(const struct ggml_object * obj) {
  1626. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1627. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1628. }
  1629. void ggml_print_objects(const struct ggml_context * ctx) {
  1630. struct ggml_object * obj = ctx->objects_begin;
  1631. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1632. while (obj != NULL) {
  1633. ggml_print_object(obj);
  1634. obj = obj->next;
  1635. }
  1636. GGML_PRINT("%s: --- end ---\n", __func__);
  1637. }
  1638. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1639. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1640. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1641. }
  1642. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1643. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1644. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1645. }
  1646. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1647. size_t nbytes;
  1648. size_t blck_size = ggml_blck_size(tensor->type);
  1649. if (blck_size == 1) {
  1650. nbytes = ggml_type_size(tensor->type);
  1651. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1652. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1653. }
  1654. }
  1655. else {
  1656. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1657. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1658. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1659. }
  1660. }
  1661. return nbytes;
  1662. }
  1663. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1664. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1665. }
  1666. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1667. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1668. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1669. }
  1670. int ggml_blck_size(enum ggml_type type) {
  1671. return type_traits[type].blck_size;
  1672. }
  1673. size_t ggml_type_size(enum ggml_type type) {
  1674. return type_traits[type].type_size;
  1675. }
  1676. float ggml_type_sizef(enum ggml_type type) {
  1677. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1678. }
  1679. const char * ggml_type_name(enum ggml_type type) {
  1680. return type_traits[type].type_name;
  1681. }
  1682. bool ggml_is_quantized(enum ggml_type type) {
  1683. return type_traits[type].is_quantized;
  1684. }
  1685. const char * ggml_op_name(enum ggml_op op) {
  1686. return GGML_OP_NAME[op];
  1687. }
  1688. const char * ggml_op_symbol(enum ggml_op op) {
  1689. return GGML_OP_SYMBOL[op];
  1690. }
  1691. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1692. return ggml_type_size(tensor->type);
  1693. }
  1694. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1695. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1696. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1697. }
  1698. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1699. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1700. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1701. }
  1702. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1703. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1704. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1705. }
  1706. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1708. return (t0->ne[0] == t1->ne[0]) &&
  1709. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1710. (t1->ne[3]%t0->ne[3] == 0);
  1711. }
  1712. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1713. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1714. return (t0->ne[1] == t1->ne[1]) &&
  1715. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1716. (t1->ne[3]%t0->ne[3] == 0);
  1717. }
  1718. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1719. enum ggml_type wtype = GGML_TYPE_COUNT;
  1720. switch (ftype) {
  1721. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1722. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1723. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1724. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1725. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1726. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1727. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1728. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1729. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1730. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1731. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1732. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1733. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1734. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1735. }
  1736. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1737. return wtype;
  1738. }
  1739. size_t ggml_tensor_overhead(void) {
  1740. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1741. }
  1742. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1743. return tensor->nb[0] > tensor->nb[1];
  1744. }
  1745. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1746. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1747. return
  1748. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1749. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1750. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1751. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1752. }
  1753. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1754. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1755. return
  1756. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1757. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1758. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1759. }
  1760. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1761. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1762. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1763. }
  1764. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1765. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1766. return
  1767. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1768. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1769. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1770. }
  1771. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1772. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1773. return
  1774. (t0->ne[0] == t1->ne[0] ) &&
  1775. (t0->ne[1] == t1->ne[1] ) &&
  1776. (t0->ne[2] == t1->ne[2] ) &&
  1777. (t0->ne[3] == t1->ne[3] );
  1778. }
  1779. // check if t1 can be represented as a repeatition of t0
  1780. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return
  1783. (t1->ne[0]%t0->ne[0] == 0) &&
  1784. (t1->ne[1]%t0->ne[1] == 0) &&
  1785. (t1->ne[2]%t0->ne[2] == 0) &&
  1786. (t1->ne[3]%t0->ne[3] == 0);
  1787. }
  1788. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1790. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1791. }
  1792. static inline int ggml_up32(int n) {
  1793. return (n + 31) & ~31;
  1794. }
  1795. //static inline int ggml_up64(int n) {
  1796. // return (n + 63) & ~63;
  1797. //}
  1798. static inline int ggml_up(int n, int m) {
  1799. // assert m is a power of 2
  1800. GGML_ASSERT((m & (m - 1)) == 0);
  1801. return (n + m - 1) & ~(m - 1);
  1802. }
  1803. // assert that pointer is aligned to GGML_MEM_ALIGN
  1804. #define ggml_assert_aligned(ptr) \
  1805. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1806. ////////////////////////////////////////////////////////////////////////////////
  1807. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1808. // make this function thread safe
  1809. ggml_critical_section_start();
  1810. static bool is_first_call = true;
  1811. if (is_first_call) {
  1812. // initialize time system (required on Windows)
  1813. ggml_time_init();
  1814. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1815. {
  1816. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1817. ggml_fp16_t ii;
  1818. for (int i = 0; i < (1 << 16); ++i) {
  1819. uint16_t ui = i;
  1820. memcpy(&ii, &ui, sizeof(ii));
  1821. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1822. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1823. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1824. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1825. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1826. }
  1827. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1828. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1829. }
  1830. // initialize g_state
  1831. {
  1832. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1833. g_state = (struct ggml_state) {
  1834. /*.contexts =*/ { { 0 } },
  1835. /*.numa =*/ {
  1836. .n_nodes = 0,
  1837. .total_cpus = 0,
  1838. },
  1839. };
  1840. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1841. g_state.contexts[i].used = false;
  1842. }
  1843. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1844. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1845. }
  1846. #if defined(GGML_USE_CUBLAS)
  1847. ggml_init_cublas();
  1848. #elif defined(GGML_USE_CLBLAST)
  1849. ggml_cl_init();
  1850. #endif
  1851. ggml_setup_op_has_task_pass();
  1852. is_first_call = false;
  1853. }
  1854. // find non-used context in g_state
  1855. struct ggml_context * ctx = NULL;
  1856. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1857. if (!g_state.contexts[i].used) {
  1858. g_state.contexts[i].used = true;
  1859. ctx = &g_state.contexts[i].context;
  1860. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1861. break;
  1862. }
  1863. }
  1864. if (ctx == NULL) {
  1865. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1866. ggml_critical_section_end();
  1867. return NULL;
  1868. }
  1869. // allow to call ggml_init with 0 size
  1870. if (params.mem_size == 0) {
  1871. params.mem_size = GGML_MEM_ALIGN;
  1872. }
  1873. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1874. *ctx = (struct ggml_context) {
  1875. /*.mem_size =*/ mem_size,
  1876. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1877. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1878. /*.no_alloc =*/ params.no_alloc,
  1879. /*.no_alloc_save =*/ params.no_alloc,
  1880. /*.n_objects =*/ 0,
  1881. /*.objects_begin =*/ NULL,
  1882. /*.objects_end =*/ NULL,
  1883. /*.scratch =*/ { 0, 0, NULL, },
  1884. /*.scratch_save =*/ { 0, 0, NULL, },
  1885. };
  1886. GGML_ASSERT(ctx->mem_buffer != NULL);
  1887. ggml_assert_aligned(ctx->mem_buffer);
  1888. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1889. ggml_critical_section_end();
  1890. return ctx;
  1891. }
  1892. void ggml_free(struct ggml_context * ctx) {
  1893. // make this function thread safe
  1894. ggml_critical_section_start();
  1895. bool found = false;
  1896. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1897. if (&g_state.contexts[i].context == ctx) {
  1898. g_state.contexts[i].used = false;
  1899. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1900. __func__, i, ggml_used_mem(ctx));
  1901. if (ctx->mem_buffer_owned) {
  1902. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1903. }
  1904. found = true;
  1905. break;
  1906. }
  1907. }
  1908. if (!found) {
  1909. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1910. }
  1911. ggml_critical_section_end();
  1912. }
  1913. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1914. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1915. }
  1916. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1917. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1918. ctx->scratch = scratch;
  1919. return result;
  1920. }
  1921. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1922. return ctx->no_alloc;
  1923. }
  1924. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1925. ctx->no_alloc = no_alloc;
  1926. }
  1927. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1928. return ctx->mem_buffer;
  1929. }
  1930. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1931. return ctx->mem_size;
  1932. }
  1933. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1934. size_t max_size = 0;
  1935. struct ggml_object * obj = ctx->objects_begin;
  1936. while (obj != NULL) {
  1937. if (obj->type == GGML_OBJECT_TENSOR) {
  1938. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1939. const size_t size = ggml_nbytes(tensor);
  1940. if (max_size < size) {
  1941. max_size = size;
  1942. }
  1943. }
  1944. obj = obj->next;
  1945. }
  1946. return max_size;
  1947. }
  1948. // IMPORTANT:
  1949. // when creating "opt" tensors, always save and load the scratch buffer
  1950. // this is an error prone process, but it is necessary to support inplace
  1951. // operators when using scratch buffers
  1952. // TODO: implement a better way
  1953. static void ggml_scratch_save(struct ggml_context * ctx) {
  1954. // this is needed to allow opt tensors to store their data
  1955. // TODO: again, need to find a better way
  1956. ctx->no_alloc_save = ctx->no_alloc;
  1957. ctx->no_alloc = false;
  1958. ctx->scratch_save = ctx->scratch;
  1959. ctx->scratch.data = NULL;
  1960. }
  1961. static void ggml_scratch_load(struct ggml_context * ctx) {
  1962. ctx->no_alloc = ctx->no_alloc_save;
  1963. ctx->scratch = ctx->scratch_save;
  1964. }
  1965. ////////////////////////////////////////////////////////////////////////////////
  1966. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  1967. // always insert objects at the end of the context's memory pool
  1968. struct ggml_object * obj_cur = ctx->objects_end;
  1969. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  1970. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  1971. const size_t cur_end = cur_offs + cur_size;
  1972. // align to GGML_MEM_ALIGN
  1973. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  1974. char * const mem_buffer = ctx->mem_buffer;
  1975. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  1976. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  1977. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  1978. __func__, cur_end + size_needed, ctx->mem_size);
  1979. assert(false);
  1980. return NULL;
  1981. }
  1982. *obj_new = (struct ggml_object) {
  1983. .offs = cur_end + GGML_OBJECT_SIZE,
  1984. .size = size_needed,
  1985. .next = NULL,
  1986. .type = type,
  1987. };
  1988. ggml_assert_aligned(mem_buffer + obj_new->offs);
  1989. if (obj_cur != NULL) {
  1990. obj_cur->next = obj_new;
  1991. } else {
  1992. // this is the first object in this context
  1993. ctx->objects_begin = obj_new;
  1994. }
  1995. ctx->objects_end = obj_new;
  1996. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  1997. return obj_new;
  1998. }
  1999. static struct ggml_tensor * ggml_new_tensor_impl(
  2000. struct ggml_context * ctx,
  2001. enum ggml_type type,
  2002. int n_dims,
  2003. const int64_t * ne,
  2004. struct ggml_tensor * view_src,
  2005. size_t view_offs) {
  2006. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2007. // find the base tensor and absolute offset
  2008. if (view_src != NULL && view_src->view_src != NULL) {
  2009. view_offs += view_src->view_offs;
  2010. view_src = view_src->view_src;
  2011. }
  2012. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2013. for (int i = 1; i < n_dims; i++) {
  2014. data_size *= ne[i];
  2015. }
  2016. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2017. void * data = view_src != NULL ? view_src->data : NULL;
  2018. if (data != NULL) {
  2019. data = (char *) data + view_offs;
  2020. }
  2021. size_t obj_alloc_size = 0;
  2022. if (view_src == NULL && !ctx->no_alloc) {
  2023. if (ctx->scratch.data != NULL) {
  2024. // allocate tensor data in the scratch buffer
  2025. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2026. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2027. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2028. assert(false);
  2029. return NULL;
  2030. }
  2031. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2032. ctx->scratch.offs += data_size;
  2033. } else {
  2034. // allocate tensor data in the context's memory pool
  2035. obj_alloc_size = data_size;
  2036. }
  2037. }
  2038. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2039. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2040. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2041. *result = (struct ggml_tensor) {
  2042. /*.type =*/ type,
  2043. /*.backend =*/ GGML_BACKEND_CPU,
  2044. /*.buffer =*/ NULL,
  2045. /*.n_dims =*/ n_dims,
  2046. /*.ne =*/ { 1, 1, 1, 1 },
  2047. /*.nb =*/ { 0, 0, 0, 0 },
  2048. /*.op =*/ GGML_OP_NONE,
  2049. /*.op_params =*/ { 0 },
  2050. /*.is_param =*/ false,
  2051. /*.grad =*/ NULL,
  2052. /*.src =*/ { NULL },
  2053. /*.perf_runs =*/ 0,
  2054. /*.perf_cycles =*/ 0,
  2055. /*.perf_time_us =*/ 0,
  2056. /*.view_src =*/ view_src,
  2057. /*.view_offs =*/ view_offs,
  2058. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2059. /*.name =*/ { 0 },
  2060. /*.extra =*/ NULL,
  2061. /*.padding =*/ { 0 },
  2062. };
  2063. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2064. //ggml_assert_aligned(result->data);
  2065. for (int i = 0; i < n_dims; i++) {
  2066. result->ne[i] = ne[i];
  2067. }
  2068. result->nb[0] = ggml_type_size(type);
  2069. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2070. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2071. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2072. }
  2073. ctx->n_objects++;
  2074. return result;
  2075. }
  2076. struct ggml_tensor * ggml_new_tensor(
  2077. struct ggml_context * ctx,
  2078. enum ggml_type type,
  2079. int n_dims,
  2080. const int64_t * ne) {
  2081. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2082. }
  2083. struct ggml_tensor * ggml_new_tensor_1d(
  2084. struct ggml_context * ctx,
  2085. enum ggml_type type,
  2086. int64_t ne0) {
  2087. return ggml_new_tensor(ctx, type, 1, &ne0);
  2088. }
  2089. struct ggml_tensor * ggml_new_tensor_2d(
  2090. struct ggml_context * ctx,
  2091. enum ggml_type type,
  2092. int64_t ne0,
  2093. int64_t ne1) {
  2094. const int64_t ne[2] = { ne0, ne1 };
  2095. return ggml_new_tensor(ctx, type, 2, ne);
  2096. }
  2097. struct ggml_tensor * ggml_new_tensor_3d(
  2098. struct ggml_context * ctx,
  2099. enum ggml_type type,
  2100. int64_t ne0,
  2101. int64_t ne1,
  2102. int64_t ne2) {
  2103. const int64_t ne[3] = { ne0, ne1, ne2 };
  2104. return ggml_new_tensor(ctx, type, 3, ne);
  2105. }
  2106. struct ggml_tensor * ggml_new_tensor_4d(
  2107. struct ggml_context * ctx,
  2108. enum ggml_type type,
  2109. int64_t ne0,
  2110. int64_t ne1,
  2111. int64_t ne2,
  2112. int64_t ne3) {
  2113. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2114. return ggml_new_tensor(ctx, type, 4, ne);
  2115. }
  2116. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2117. ggml_scratch_save(ctx);
  2118. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2119. ggml_scratch_load(ctx);
  2120. ggml_set_i32(result, value);
  2121. return result;
  2122. }
  2123. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2124. ggml_scratch_save(ctx);
  2125. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2126. ggml_scratch_load(ctx);
  2127. ggml_set_f32(result, value);
  2128. return result;
  2129. }
  2130. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2131. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2132. }
  2133. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2134. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2135. assert(params_size <= GGML_MAX_OP_PARAMS);
  2136. memcpy(tensor->op_params, params, params_size);
  2137. }
  2138. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2139. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2140. return ((const int32_t *)(tensor->op_params))[i];
  2141. }
  2142. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2143. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2144. ((int32_t *)(tensor->op_params))[i] = value;
  2145. }
  2146. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2147. memset(tensor->data, 0, ggml_nbytes(tensor));
  2148. return tensor;
  2149. }
  2150. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2151. const int n = ggml_nrows(tensor);
  2152. const int nc = tensor->ne[0];
  2153. const size_t n1 = tensor->nb[1];
  2154. char * const data = tensor->data;
  2155. switch (tensor->type) {
  2156. case GGML_TYPE_I8:
  2157. {
  2158. assert(tensor->nb[0] == sizeof(int8_t));
  2159. for (int i = 0; i < n; i++) {
  2160. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2161. }
  2162. } break;
  2163. case GGML_TYPE_I16:
  2164. {
  2165. assert(tensor->nb[0] == sizeof(int16_t));
  2166. for (int i = 0; i < n; i++) {
  2167. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2168. }
  2169. } break;
  2170. case GGML_TYPE_I32:
  2171. {
  2172. assert(tensor->nb[0] == sizeof(int32_t));
  2173. for (int i = 0; i < n; i++) {
  2174. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2175. }
  2176. } break;
  2177. case GGML_TYPE_F16:
  2178. {
  2179. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2180. for (int i = 0; i < n; i++) {
  2181. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2182. }
  2183. } break;
  2184. case GGML_TYPE_F32:
  2185. {
  2186. assert(tensor->nb[0] == sizeof(float));
  2187. for (int i = 0; i < n; i++) {
  2188. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2189. }
  2190. } break;
  2191. default:
  2192. {
  2193. GGML_ASSERT(false);
  2194. } break;
  2195. }
  2196. return tensor;
  2197. }
  2198. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2199. const int n = ggml_nrows(tensor);
  2200. const int nc = tensor->ne[0];
  2201. const size_t n1 = tensor->nb[1];
  2202. char * const data = tensor->data;
  2203. switch (tensor->type) {
  2204. case GGML_TYPE_I8:
  2205. {
  2206. assert(tensor->nb[0] == sizeof(int8_t));
  2207. for (int i = 0; i < n; i++) {
  2208. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2209. }
  2210. } break;
  2211. case GGML_TYPE_I16:
  2212. {
  2213. assert(tensor->nb[0] == sizeof(int16_t));
  2214. for (int i = 0; i < n; i++) {
  2215. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2216. }
  2217. } break;
  2218. case GGML_TYPE_I32:
  2219. {
  2220. assert(tensor->nb[0] == sizeof(int32_t));
  2221. for (int i = 0; i < n; i++) {
  2222. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2223. }
  2224. } break;
  2225. case GGML_TYPE_F16:
  2226. {
  2227. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2228. for (int i = 0; i < n; i++) {
  2229. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2230. }
  2231. } break;
  2232. case GGML_TYPE_F32:
  2233. {
  2234. assert(tensor->nb[0] == sizeof(float));
  2235. for (int i = 0; i < n; i++) {
  2236. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2237. }
  2238. } break;
  2239. default:
  2240. {
  2241. GGML_ASSERT(false);
  2242. } break;
  2243. }
  2244. return tensor;
  2245. }
  2246. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2247. const int64_t ne2 = tensor->ne[2];
  2248. const int64_t ne1 = tensor->ne[1];
  2249. const int64_t ne0 = tensor->ne[0];
  2250. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2251. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2252. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2253. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2254. if (i0) {
  2255. * i0 = i0_;
  2256. }
  2257. if (i1) {
  2258. * i1 = i1_;
  2259. }
  2260. if (i2) {
  2261. * i2 = i2_;
  2262. }
  2263. if (i3) {
  2264. * i3 = i3_;
  2265. }
  2266. }
  2267. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2268. if (!ggml_is_contiguous(tensor)) {
  2269. int64_t id[4] = { 0, 0, 0, 0 };
  2270. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2271. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2272. }
  2273. switch (tensor->type) {
  2274. case GGML_TYPE_I8:
  2275. {
  2276. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2277. return ((int8_t *)(tensor->data))[i];
  2278. }
  2279. case GGML_TYPE_I16:
  2280. {
  2281. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2282. return ((int16_t *)(tensor->data))[i];
  2283. }
  2284. case GGML_TYPE_I32:
  2285. {
  2286. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2287. return ((int32_t *)(tensor->data))[i];
  2288. }
  2289. case GGML_TYPE_F16:
  2290. {
  2291. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2292. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2293. }
  2294. case GGML_TYPE_F32:
  2295. {
  2296. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2297. return ((float *)(tensor->data))[i];
  2298. }
  2299. default:
  2300. {
  2301. GGML_ASSERT(false);
  2302. }
  2303. }
  2304. return 0.0f;
  2305. }
  2306. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2307. if (!ggml_is_contiguous(tensor)) {
  2308. int64_t id[4] = { 0, 0, 0, 0 };
  2309. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2310. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2311. return;
  2312. }
  2313. switch (tensor->type) {
  2314. case GGML_TYPE_I8:
  2315. {
  2316. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2317. ((int8_t *)(tensor->data))[i] = value;
  2318. } break;
  2319. case GGML_TYPE_I16:
  2320. {
  2321. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2322. ((int16_t *)(tensor->data))[i] = value;
  2323. } break;
  2324. case GGML_TYPE_I32:
  2325. {
  2326. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2327. ((int32_t *)(tensor->data))[i] = value;
  2328. } break;
  2329. case GGML_TYPE_F16:
  2330. {
  2331. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2332. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2333. } break;
  2334. case GGML_TYPE_F32:
  2335. {
  2336. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2337. ((float *)(tensor->data))[i] = value;
  2338. } break;
  2339. default:
  2340. {
  2341. GGML_ASSERT(false);
  2342. } break;
  2343. }
  2344. }
  2345. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2346. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2347. switch (tensor->type) {
  2348. case GGML_TYPE_I8:
  2349. return ((int8_t *) data)[0];
  2350. case GGML_TYPE_I16:
  2351. return ((int16_t *) data)[0];
  2352. case GGML_TYPE_I32:
  2353. return ((int32_t *) data)[0];
  2354. case GGML_TYPE_F16:
  2355. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2356. case GGML_TYPE_F32:
  2357. return ((float *) data)[0];
  2358. default:
  2359. GGML_ASSERT(false);
  2360. }
  2361. return 0.0f;
  2362. }
  2363. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2364. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2365. switch (tensor->type) {
  2366. case GGML_TYPE_I8:
  2367. {
  2368. ((int8_t *)(data))[0] = value;
  2369. } break;
  2370. case GGML_TYPE_I16:
  2371. {
  2372. ((int16_t *)(data))[0] = value;
  2373. } break;
  2374. case GGML_TYPE_I32:
  2375. {
  2376. ((int32_t *)(data))[0] = value;
  2377. } break;
  2378. case GGML_TYPE_F16:
  2379. {
  2380. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2381. } break;
  2382. case GGML_TYPE_F32:
  2383. {
  2384. ((float *)(data))[0] = value;
  2385. } break;
  2386. default:
  2387. {
  2388. GGML_ASSERT(false);
  2389. } break;
  2390. }
  2391. }
  2392. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2393. if (!ggml_is_contiguous(tensor)) {
  2394. int64_t id[4] = { 0, 0, 0, 0 };
  2395. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2396. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2397. }
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2402. return ((int8_t *)(tensor->data))[i];
  2403. }
  2404. case GGML_TYPE_I16:
  2405. {
  2406. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2407. return ((int16_t *)(tensor->data))[i];
  2408. }
  2409. case GGML_TYPE_I32:
  2410. {
  2411. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2412. return ((int32_t *)(tensor->data))[i];
  2413. }
  2414. case GGML_TYPE_F16:
  2415. {
  2416. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2417. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2418. }
  2419. case GGML_TYPE_F32:
  2420. {
  2421. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2422. return ((float *)(tensor->data))[i];
  2423. }
  2424. default:
  2425. {
  2426. GGML_ASSERT(false);
  2427. }
  2428. }
  2429. return 0.0f;
  2430. }
  2431. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2432. if (!ggml_is_contiguous(tensor)) {
  2433. int64_t id[4] = { 0, 0, 0, 0 };
  2434. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2435. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2436. return;
  2437. }
  2438. switch (tensor->type) {
  2439. case GGML_TYPE_I8:
  2440. {
  2441. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2442. ((int8_t *)(tensor->data))[i] = value;
  2443. } break;
  2444. case GGML_TYPE_I16:
  2445. {
  2446. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2447. ((int16_t *)(tensor->data))[i] = value;
  2448. } break;
  2449. case GGML_TYPE_I32:
  2450. {
  2451. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2452. ((int32_t *)(tensor->data))[i] = value;
  2453. } break;
  2454. case GGML_TYPE_F16:
  2455. {
  2456. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2457. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2458. } break;
  2459. case GGML_TYPE_F32:
  2460. {
  2461. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2462. ((float *)(tensor->data))[i] = value;
  2463. } break;
  2464. default:
  2465. {
  2466. GGML_ASSERT(false);
  2467. } break;
  2468. }
  2469. }
  2470. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2471. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2472. switch (tensor->type) {
  2473. case GGML_TYPE_I8:
  2474. return ((int8_t *) data)[0];
  2475. case GGML_TYPE_I16:
  2476. return ((int16_t *) data)[0];
  2477. case GGML_TYPE_I32:
  2478. return ((int32_t *) data)[0];
  2479. case GGML_TYPE_F16:
  2480. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2481. case GGML_TYPE_F32:
  2482. return ((float *) data)[0];
  2483. default:
  2484. GGML_ASSERT(false);
  2485. }
  2486. return 0.0f;
  2487. }
  2488. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2489. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2490. switch (tensor->type) {
  2491. case GGML_TYPE_I8:
  2492. {
  2493. ((int8_t *)(data))[0] = value;
  2494. } break;
  2495. case GGML_TYPE_I16:
  2496. {
  2497. ((int16_t *)(data))[0] = value;
  2498. } break;
  2499. case GGML_TYPE_I32:
  2500. {
  2501. ((int32_t *)(data))[0] = value;
  2502. } break;
  2503. case GGML_TYPE_F16:
  2504. {
  2505. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2506. } break;
  2507. case GGML_TYPE_F32:
  2508. {
  2509. ((float *)(data))[0] = value;
  2510. } break;
  2511. default:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. }
  2517. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2518. return tensor->data;
  2519. }
  2520. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2521. assert(tensor->type == GGML_TYPE_F32);
  2522. return (float *)(tensor->data);
  2523. }
  2524. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2525. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2526. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2527. }
  2528. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2529. return tensor->name;
  2530. }
  2531. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2532. strncpy(tensor->name, name, sizeof(tensor->name));
  2533. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2534. return tensor;
  2535. }
  2536. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2537. va_list args;
  2538. va_start(args, fmt);
  2539. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2540. va_end(args);
  2541. return tensor;
  2542. }
  2543. struct ggml_tensor * ggml_view_tensor(
  2544. struct ggml_context * ctx,
  2545. struct ggml_tensor * src) {
  2546. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2547. ggml_format_name(result, "%s (view)", src->name);
  2548. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2549. result->nb[i] = src->nb[i];
  2550. }
  2551. return result;
  2552. }
  2553. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2554. struct ggml_object * obj = ctx->objects_begin;
  2555. char * const mem_buffer = ctx->mem_buffer;
  2556. while (obj != NULL) {
  2557. if (obj->type == GGML_OBJECT_TENSOR) {
  2558. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2559. }
  2560. obj = obj->next;
  2561. }
  2562. return NULL;
  2563. }
  2564. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2565. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2566. obj = obj->next;
  2567. char * const mem_buffer = ctx->mem_buffer;
  2568. while (obj != NULL) {
  2569. if (obj->type == GGML_OBJECT_TENSOR) {
  2570. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2571. }
  2572. obj = obj->next;
  2573. }
  2574. return NULL;
  2575. }
  2576. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2577. struct ggml_object * obj = ctx->objects_begin;
  2578. char * const mem_buffer = ctx->mem_buffer;
  2579. while (obj != NULL) {
  2580. if (obj->type == GGML_OBJECT_TENSOR) {
  2581. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2582. if (strcmp(cur->name, name) == 0) {
  2583. return cur;
  2584. }
  2585. }
  2586. obj = obj->next;
  2587. }
  2588. return NULL;
  2589. }
  2590. ////////////////////////////////////////////////////////////////////////////////
  2591. // ggml_dup
  2592. static struct ggml_tensor * ggml_dup_impl(
  2593. struct ggml_context * ctx,
  2594. struct ggml_tensor * a,
  2595. bool inplace) {
  2596. bool is_node = false;
  2597. if (!inplace && (a->grad)) {
  2598. is_node = true;
  2599. }
  2600. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2601. result->op = GGML_OP_DUP;
  2602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2603. result->src[0] = a;
  2604. return result;
  2605. }
  2606. struct ggml_tensor * ggml_dup(
  2607. struct ggml_context * ctx,
  2608. struct ggml_tensor * a) {
  2609. return ggml_dup_impl(ctx, a, false);
  2610. }
  2611. struct ggml_tensor * ggml_dup_inplace(
  2612. struct ggml_context * ctx,
  2613. struct ggml_tensor * a) {
  2614. return ggml_dup_impl(ctx, a, true);
  2615. }
  2616. // ggml_add
  2617. static struct ggml_tensor * ggml_add_impl(
  2618. struct ggml_context * ctx,
  2619. struct ggml_tensor * a,
  2620. struct ggml_tensor * b,
  2621. bool inplace) {
  2622. // TODO: support less-strict constraint
  2623. // GGML_ASSERT(ggml_can_repeat(b, a));
  2624. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2625. bool is_node = false;
  2626. if (!inplace && (a->grad || b->grad)) {
  2627. // TODO: support backward pass for broadcasting
  2628. GGML_ASSERT(ggml_are_same_shape(a, b));
  2629. is_node = true;
  2630. }
  2631. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2632. result->op = GGML_OP_ADD;
  2633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2634. result->src[0] = a;
  2635. result->src[1] = b;
  2636. return result;
  2637. }
  2638. struct ggml_tensor * ggml_add(
  2639. struct ggml_context * ctx,
  2640. struct ggml_tensor * a,
  2641. struct ggml_tensor * b) {
  2642. return ggml_add_impl(ctx, a, b, false);
  2643. }
  2644. struct ggml_tensor * ggml_add_inplace(
  2645. struct ggml_context * ctx,
  2646. struct ggml_tensor * a,
  2647. struct ggml_tensor * b) {
  2648. return ggml_add_impl(ctx, a, b, true);
  2649. }
  2650. // ggml_add_cast
  2651. static struct ggml_tensor * ggml_add_cast_impl(
  2652. struct ggml_context * ctx,
  2653. struct ggml_tensor * a,
  2654. struct ggml_tensor * b,
  2655. enum ggml_type type) {
  2656. // TODO: support less-strict constraint
  2657. // GGML_ASSERT(ggml_can_repeat(b, a));
  2658. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2659. GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input
  2660. bool is_node = false;
  2661. if (a->grad || b->grad) {
  2662. // TODO: support backward pass for broadcasting
  2663. GGML_ASSERT(ggml_are_same_shape(a, b));
  2664. is_node = true;
  2665. }
  2666. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2667. result->op = GGML_OP_ADD;
  2668. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2669. result->src[0] = a;
  2670. result->src[1] = b;
  2671. return result;
  2672. }
  2673. struct ggml_tensor * ggml_add_cast(
  2674. struct ggml_context * ctx,
  2675. struct ggml_tensor * a,
  2676. struct ggml_tensor * b,
  2677. enum ggml_type type) {
  2678. return ggml_add_cast_impl(ctx, a, b, type);
  2679. }
  2680. // ggml_add1
  2681. static struct ggml_tensor * ggml_add1_impl(
  2682. struct ggml_context * ctx,
  2683. struct ggml_tensor * a,
  2684. struct ggml_tensor * b,
  2685. bool inplace) {
  2686. GGML_ASSERT(ggml_is_scalar(b));
  2687. GGML_ASSERT(ggml_is_padded_1d(a));
  2688. bool is_node = false;
  2689. if (a->grad || b->grad) {
  2690. is_node = true;
  2691. }
  2692. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2693. result->op = GGML_OP_ADD1;
  2694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2695. result->src[0] = a;
  2696. result->src[1] = b;
  2697. return result;
  2698. }
  2699. struct ggml_tensor * ggml_add1(
  2700. struct ggml_context * ctx,
  2701. struct ggml_tensor * a,
  2702. struct ggml_tensor * b) {
  2703. return ggml_add1_impl(ctx, a, b, false);
  2704. }
  2705. struct ggml_tensor * ggml_add1_inplace(
  2706. struct ggml_context * ctx,
  2707. struct ggml_tensor * a,
  2708. struct ggml_tensor * b) {
  2709. return ggml_add1_impl(ctx, a, b, true);
  2710. }
  2711. // ggml_acc
  2712. static struct ggml_tensor * ggml_acc_impl(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a,
  2715. struct ggml_tensor * b,
  2716. size_t nb1,
  2717. size_t nb2,
  2718. size_t nb3,
  2719. size_t offset,
  2720. bool inplace) {
  2721. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2722. GGML_ASSERT(ggml_is_contiguous(a));
  2723. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2724. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2725. bool is_node = false;
  2726. if (!inplace && (a->grad || b->grad)) {
  2727. is_node = true;
  2728. }
  2729. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2730. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2731. ggml_set_op_params(result, params, sizeof(params));
  2732. result->op = GGML_OP_ACC;
  2733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2734. result->src[0] = a;
  2735. result->src[1] = b;
  2736. return result;
  2737. }
  2738. struct ggml_tensor * ggml_acc(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a,
  2741. struct ggml_tensor * b,
  2742. size_t nb1,
  2743. size_t nb2,
  2744. size_t nb3,
  2745. size_t offset) {
  2746. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2747. }
  2748. struct ggml_tensor * ggml_acc_inplace(
  2749. struct ggml_context * ctx,
  2750. struct ggml_tensor * a,
  2751. struct ggml_tensor * b,
  2752. size_t nb1,
  2753. size_t nb2,
  2754. size_t nb3,
  2755. size_t offset) {
  2756. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2757. }
  2758. // ggml_sub
  2759. static struct ggml_tensor * ggml_sub_impl(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b,
  2763. bool inplace) {
  2764. GGML_ASSERT(ggml_are_same_shape(a, b));
  2765. bool is_node = false;
  2766. if (!inplace && (a->grad || b->grad)) {
  2767. is_node = true;
  2768. }
  2769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2770. result->op = GGML_OP_SUB;
  2771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2772. result->src[0] = a;
  2773. result->src[1] = b;
  2774. return result;
  2775. }
  2776. struct ggml_tensor * ggml_sub(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b) {
  2780. return ggml_sub_impl(ctx, a, b, false);
  2781. }
  2782. struct ggml_tensor * ggml_sub_inplace(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a,
  2785. struct ggml_tensor * b) {
  2786. return ggml_sub_impl(ctx, a, b, true);
  2787. }
  2788. // ggml_mul
  2789. static struct ggml_tensor * ggml_mul_impl(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a,
  2792. struct ggml_tensor * b,
  2793. bool inplace) {
  2794. // TODO: support less-strict constraint
  2795. // GGML_ASSERT(ggml_can_repeat(b, a));
  2796. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2797. bool is_node = false;
  2798. if (!inplace && (a->grad || b->grad)) {
  2799. // TODO: support backward pass for broadcasting
  2800. GGML_ASSERT(ggml_are_same_shape(a, b));
  2801. is_node = true;
  2802. }
  2803. if (inplace) {
  2804. GGML_ASSERT(!is_node);
  2805. }
  2806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2807. result->op = GGML_OP_MUL;
  2808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2809. result->src[0] = a;
  2810. result->src[1] = b;
  2811. return result;
  2812. }
  2813. struct ggml_tensor * ggml_mul(
  2814. struct ggml_context * ctx,
  2815. struct ggml_tensor * a,
  2816. struct ggml_tensor * b) {
  2817. return ggml_mul_impl(ctx, a, b, false);
  2818. }
  2819. struct ggml_tensor * ggml_mul_inplace(
  2820. struct ggml_context * ctx,
  2821. struct ggml_tensor * a,
  2822. struct ggml_tensor * b) {
  2823. return ggml_mul_impl(ctx, a, b, true);
  2824. }
  2825. // ggml_div
  2826. static struct ggml_tensor * ggml_div_impl(
  2827. struct ggml_context * ctx,
  2828. struct ggml_tensor * a,
  2829. struct ggml_tensor * b,
  2830. bool inplace) {
  2831. GGML_ASSERT(ggml_are_same_shape(a, b));
  2832. bool is_node = false;
  2833. if (!inplace && (a->grad || b->grad)) {
  2834. is_node = true;
  2835. }
  2836. if (inplace) {
  2837. GGML_ASSERT(!is_node);
  2838. }
  2839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2840. result->op = GGML_OP_DIV;
  2841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2842. result->src[0] = a;
  2843. result->src[1] = b;
  2844. return result;
  2845. }
  2846. struct ggml_tensor * ggml_div(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_div_impl(ctx, a, b, false);
  2851. }
  2852. struct ggml_tensor * ggml_div_inplace(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b) {
  2856. return ggml_div_impl(ctx, a, b, true);
  2857. }
  2858. // ggml_sqr
  2859. static struct ggml_tensor * ggml_sqr_impl(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. bool inplace) {
  2863. bool is_node = false;
  2864. if (!inplace && (a->grad)) {
  2865. is_node = true;
  2866. }
  2867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2868. result->op = GGML_OP_SQR;
  2869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2870. result->src[0] = a;
  2871. return result;
  2872. }
  2873. struct ggml_tensor * ggml_sqr(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a) {
  2876. return ggml_sqr_impl(ctx, a, false);
  2877. }
  2878. struct ggml_tensor * ggml_sqr_inplace(
  2879. struct ggml_context * ctx,
  2880. struct ggml_tensor * a) {
  2881. return ggml_sqr_impl(ctx, a, true);
  2882. }
  2883. // ggml_sqrt
  2884. static struct ggml_tensor * ggml_sqrt_impl(
  2885. struct ggml_context * ctx,
  2886. struct ggml_tensor * a,
  2887. bool inplace) {
  2888. bool is_node = false;
  2889. if (!inplace && (a->grad)) {
  2890. is_node = true;
  2891. }
  2892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2893. result->op = GGML_OP_SQRT;
  2894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2895. result->src[0] = a;
  2896. return result;
  2897. }
  2898. struct ggml_tensor * ggml_sqrt(
  2899. struct ggml_context * ctx,
  2900. struct ggml_tensor * a) {
  2901. return ggml_sqrt_impl(ctx, a, false);
  2902. }
  2903. struct ggml_tensor * ggml_sqrt_inplace(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a) {
  2906. return ggml_sqrt_impl(ctx, a, true);
  2907. }
  2908. // ggml_log
  2909. static struct ggml_tensor * ggml_log_impl(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. bool inplace) {
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad)) {
  2915. is_node = true;
  2916. }
  2917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2918. result->op = GGML_OP_LOG;
  2919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2920. result->src[0] = a;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_log(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_log_impl(ctx, a, false);
  2927. }
  2928. struct ggml_tensor * ggml_log_inplace(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a) {
  2931. return ggml_log_impl(ctx, a, true);
  2932. }
  2933. // ggml_sum
  2934. struct ggml_tensor * ggml_sum(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a) {
  2937. bool is_node = false;
  2938. if (a->grad) {
  2939. is_node = true;
  2940. }
  2941. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2942. result->op = GGML_OP_SUM;
  2943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2944. result->src[0] = a;
  2945. return result;
  2946. }
  2947. // ggml_sum_rows
  2948. struct ggml_tensor * ggml_sum_rows(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. bool is_node = false;
  2952. if (a->grad) {
  2953. is_node = true;
  2954. }
  2955. int64_t ne[4] = {1,1,1,1};
  2956. for (int i=1; i<a->n_dims; ++i) {
  2957. ne[i] = a->ne[i];
  2958. }
  2959. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2960. result->op = GGML_OP_SUM_ROWS;
  2961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2962. result->src[0] = a;
  2963. return result;
  2964. }
  2965. // ggml_mean
  2966. struct ggml_tensor * ggml_mean(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a) {
  2969. bool is_node = false;
  2970. if (a->grad) {
  2971. GGML_ASSERT(false); // TODO: implement
  2972. is_node = true;
  2973. }
  2974. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2975. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2976. result->op = GGML_OP_MEAN;
  2977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2978. result->src[0] = a;
  2979. return result;
  2980. }
  2981. // ggml_argmax
  2982. struct ggml_tensor * ggml_argmax(
  2983. struct ggml_context * ctx,
  2984. struct ggml_tensor * a) {
  2985. GGML_ASSERT(ggml_is_matrix(a));
  2986. bool is_node = false;
  2987. if (a->grad) {
  2988. GGML_ASSERT(false);
  2989. is_node = true;
  2990. }
  2991. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  2992. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  2993. result->op = GGML_OP_ARGMAX;
  2994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2995. result->src[0] = a;
  2996. return result;
  2997. }
  2998. // ggml_repeat
  2999. struct ggml_tensor * ggml_repeat(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a,
  3002. struct ggml_tensor * b) {
  3003. GGML_ASSERT(ggml_can_repeat(a, b));
  3004. bool is_node = false;
  3005. if (a->grad) {
  3006. is_node = true;
  3007. }
  3008. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3009. result->op = GGML_OP_REPEAT;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. return result;
  3013. }
  3014. // ggml_repeat_back
  3015. struct ggml_tensor * ggml_repeat_back(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b) {
  3019. GGML_ASSERT(ggml_can_repeat(b, a));
  3020. bool is_node = false;
  3021. if (a->grad) {
  3022. is_node = true;
  3023. }
  3024. if (ggml_are_same_shape(a, b) && !is_node) {
  3025. return a;
  3026. }
  3027. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3028. result->op = GGML_OP_REPEAT_BACK;
  3029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3030. result->src[0] = a;
  3031. return result;
  3032. }
  3033. // ggml_concat
  3034. struct ggml_tensor * ggml_concat(
  3035. struct ggml_context* ctx,
  3036. struct ggml_tensor* a,
  3037. struct ggml_tensor* b) {
  3038. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3039. bool is_node = false;
  3040. if (a->grad || b->grad) {
  3041. is_node = true;
  3042. }
  3043. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3044. result->op = GGML_OP_CONCAT;
  3045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3046. result->src[0] = a;
  3047. result->src[1] = b;
  3048. return result;
  3049. }
  3050. // ggml_abs
  3051. struct ggml_tensor * ggml_abs(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a) {
  3054. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3055. }
  3056. struct ggml_tensor * ggml_abs_inplace(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a) {
  3059. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3060. }
  3061. // ggml_sgn
  3062. struct ggml_tensor * ggml_sgn(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a) {
  3065. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3066. }
  3067. struct ggml_tensor * ggml_sgn_inplace(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a) {
  3070. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3071. }
  3072. // ggml_neg
  3073. struct ggml_tensor * ggml_neg(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a) {
  3076. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3077. }
  3078. struct ggml_tensor * ggml_neg_inplace(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3082. }
  3083. // ggml_step
  3084. struct ggml_tensor * ggml_step(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a) {
  3087. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3088. }
  3089. struct ggml_tensor * ggml_step_inplace(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3093. }
  3094. // ggml_tanh
  3095. struct ggml_tensor * ggml_tanh(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3099. }
  3100. struct ggml_tensor * ggml_tanh_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3104. }
  3105. // ggml_elu
  3106. struct ggml_tensor * ggml_elu(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3110. }
  3111. struct ggml_tensor * ggml_elu_inplace(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3115. }
  3116. // ggml_relu
  3117. struct ggml_tensor * ggml_relu(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3121. }
  3122. struct ggml_tensor * ggml_relu_inplace(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3126. }
  3127. // ggml_gelu
  3128. struct ggml_tensor * ggml_gelu(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3132. }
  3133. struct ggml_tensor * ggml_gelu_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3137. }
  3138. // ggml_gelu_quick
  3139. struct ggml_tensor * ggml_gelu_quick(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3143. }
  3144. struct ggml_tensor * ggml_gelu_quick_inplace(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3148. }
  3149. // ggml_silu
  3150. struct ggml_tensor * ggml_silu(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3154. }
  3155. struct ggml_tensor * ggml_silu_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3159. }
  3160. // ggml_silu_back
  3161. struct ggml_tensor * ggml_silu_back(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a,
  3164. struct ggml_tensor * b) {
  3165. bool is_node = false;
  3166. if (a->grad || b->grad) {
  3167. // TODO: implement backward
  3168. is_node = true;
  3169. }
  3170. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3171. result->op = GGML_OP_SILU_BACK;
  3172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3173. result->src[0] = a;
  3174. result->src[1] = b;
  3175. return result;
  3176. }
  3177. // ggml_norm
  3178. static struct ggml_tensor * ggml_norm_impl(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. float eps,
  3182. bool inplace) {
  3183. bool is_node = false;
  3184. if (!inplace && (a->grad)) {
  3185. GGML_ASSERT(false); // TODO: implement backward
  3186. is_node = true;
  3187. }
  3188. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3189. ggml_set_op_params(result, &eps, sizeof(eps));
  3190. result->op = GGML_OP_NORM;
  3191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3192. result->src[0] = a;
  3193. return result;
  3194. }
  3195. struct ggml_tensor * ggml_norm(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a,
  3198. float eps) {
  3199. return ggml_norm_impl(ctx, a, eps, false);
  3200. }
  3201. struct ggml_tensor * ggml_norm_inplace(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a,
  3204. float eps) {
  3205. return ggml_norm_impl(ctx, a, eps, true);
  3206. }
  3207. // ggml_rms_norm
  3208. static struct ggml_tensor * ggml_rms_norm_impl(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a,
  3211. float eps,
  3212. bool inplace) {
  3213. bool is_node = false;
  3214. if (!inplace && (a->grad)) {
  3215. is_node = true;
  3216. }
  3217. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3218. ggml_set_op_params(result, &eps, sizeof(eps));
  3219. result->op = GGML_OP_RMS_NORM;
  3220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3221. result->src[0] = a;
  3222. return result;
  3223. }
  3224. struct ggml_tensor * ggml_rms_norm(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a,
  3227. float eps) {
  3228. return ggml_rms_norm_impl(ctx, a, eps, false);
  3229. }
  3230. struct ggml_tensor * ggml_rms_norm_inplace(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a,
  3233. float eps) {
  3234. return ggml_rms_norm_impl(ctx, a, eps, true);
  3235. }
  3236. // ggml_rms_norm_back
  3237. struct ggml_tensor * ggml_rms_norm_back(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. struct ggml_tensor * b,
  3241. float eps) {
  3242. bool is_node = false;
  3243. if (a->grad) {
  3244. // TODO: implement backward
  3245. is_node = true;
  3246. }
  3247. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3248. ggml_set_op_params(result, &eps, sizeof(eps));
  3249. result->op = GGML_OP_RMS_NORM_BACK;
  3250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3251. result->src[0] = a;
  3252. result->src[1] = b;
  3253. return result;
  3254. }
  3255. // ggml_group_norm
  3256. static struct ggml_tensor * ggml_group_norm_impl(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a,
  3259. int n_groups,
  3260. bool inplace) {
  3261. bool is_node = false;
  3262. if (!inplace && (a->grad)) {
  3263. GGML_ASSERT(false); // TODO: implement backward
  3264. is_node = true;
  3265. }
  3266. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3267. result->op = GGML_OP_GROUP_NORM;
  3268. result->op_params[0] = n_groups;
  3269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3270. result->src[0] = a;
  3271. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3272. return result;
  3273. }
  3274. struct ggml_tensor * ggml_group_norm(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a,
  3277. int n_groups) {
  3278. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3279. }
  3280. struct ggml_tensor * ggml_group_norm_inplace(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a,
  3283. int n_groups) {
  3284. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3285. }
  3286. // ggml_mul_mat
  3287. struct ggml_tensor * ggml_mul_mat(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. struct ggml_tensor * b) {
  3291. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3292. GGML_ASSERT(!ggml_is_transposed(a));
  3293. bool is_node = false;
  3294. if (a->grad || b->grad) {
  3295. is_node = true;
  3296. }
  3297. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3298. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3299. result->op = GGML_OP_MUL_MAT;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src[0] = a;
  3302. result->src[1] = b;
  3303. return result;
  3304. }
  3305. // ggml_out_prod
  3306. struct ggml_tensor * ggml_out_prod(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. struct ggml_tensor * b) {
  3310. GGML_ASSERT(ggml_can_out_prod(a, b));
  3311. GGML_ASSERT(!ggml_is_transposed(a));
  3312. bool is_node = false;
  3313. if (a->grad || b->grad) {
  3314. is_node = true;
  3315. }
  3316. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3317. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3318. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3319. result->op = GGML_OP_OUT_PROD;
  3320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3321. result->src[0] = a;
  3322. result->src[1] = b;
  3323. return result;
  3324. }
  3325. // ggml_scale
  3326. static struct ggml_tensor * ggml_scale_impl(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a,
  3329. struct ggml_tensor * b,
  3330. bool inplace) {
  3331. GGML_ASSERT(ggml_is_scalar(b));
  3332. GGML_ASSERT(ggml_is_padded_1d(a));
  3333. bool is_node = false;
  3334. if (a->grad || b->grad) {
  3335. is_node = true;
  3336. }
  3337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3338. result->op = GGML_OP_SCALE;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. result->src[1] = b;
  3342. return result;
  3343. }
  3344. struct ggml_tensor * ggml_scale(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a,
  3347. struct ggml_tensor * b) {
  3348. return ggml_scale_impl(ctx, a, b, false);
  3349. }
  3350. struct ggml_tensor * ggml_scale_inplace(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b) {
  3354. return ggml_scale_impl(ctx, a, b, true);
  3355. }
  3356. // ggml_set
  3357. static struct ggml_tensor * ggml_set_impl(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a,
  3360. struct ggml_tensor * b,
  3361. size_t nb1,
  3362. size_t nb2,
  3363. size_t nb3,
  3364. size_t offset,
  3365. bool inplace) {
  3366. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3367. bool is_node = false;
  3368. if (a->grad || b->grad) {
  3369. is_node = true;
  3370. }
  3371. // make a view of the destination
  3372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3373. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3374. ggml_set_op_params(result, params, sizeof(params));
  3375. result->op = GGML_OP_SET;
  3376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3377. result->src[0] = a;
  3378. result->src[1] = b;
  3379. return result;
  3380. }
  3381. struct ggml_tensor * ggml_set(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. struct ggml_tensor * b,
  3385. size_t nb1,
  3386. size_t nb2,
  3387. size_t nb3,
  3388. size_t offset) {
  3389. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3390. }
  3391. struct ggml_tensor * ggml_set_inplace(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a,
  3394. struct ggml_tensor * b,
  3395. size_t nb1,
  3396. size_t nb2,
  3397. size_t nb3,
  3398. size_t offset) {
  3399. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3400. }
  3401. struct ggml_tensor * ggml_set_1d(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b,
  3405. size_t offset) {
  3406. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3407. }
  3408. struct ggml_tensor * ggml_set_1d_inplace(
  3409. struct ggml_context * ctx,
  3410. struct ggml_tensor * a,
  3411. struct ggml_tensor * b,
  3412. size_t offset) {
  3413. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3414. }
  3415. struct ggml_tensor * ggml_set_2d(
  3416. struct ggml_context * ctx,
  3417. struct ggml_tensor * a,
  3418. struct ggml_tensor * b,
  3419. size_t nb1,
  3420. size_t offset) {
  3421. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3422. }
  3423. struct ggml_tensor * ggml_set_2d_inplace(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. struct ggml_tensor * b,
  3427. size_t nb1,
  3428. size_t offset) {
  3429. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3430. }
  3431. // ggml_cpy
  3432. static struct ggml_tensor * ggml_cpy_impl(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a,
  3435. struct ggml_tensor * b,
  3436. bool inplace) {
  3437. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3438. bool is_node = false;
  3439. if (!inplace && (a->grad || b->grad)) {
  3440. is_node = true;
  3441. }
  3442. // make a view of the destination
  3443. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3444. if (strlen(b->name) > 0) {
  3445. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3446. } else {
  3447. ggml_format_name(result, "%s (copy)", a->name);
  3448. }
  3449. result->op = GGML_OP_CPY;
  3450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3451. result->src[0] = a;
  3452. result->src[1] = b;
  3453. return result;
  3454. }
  3455. struct ggml_tensor * ggml_cpy(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a,
  3458. struct ggml_tensor * b) {
  3459. return ggml_cpy_impl(ctx, a, b, false);
  3460. }
  3461. struct ggml_tensor * ggml_cpy_inplace(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. return ggml_cpy_impl(ctx, a, b, true);
  3466. }
  3467. // ggml_cont
  3468. static struct ggml_tensor * ggml_cont_impl(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a,
  3471. bool inplace) {
  3472. bool is_node = false;
  3473. if (!inplace && a->grad) {
  3474. is_node = true;
  3475. }
  3476. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3477. ggml_format_name(result, "%s (cont)", a->name);
  3478. result->op = GGML_OP_CONT;
  3479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3480. result->src[0] = a;
  3481. return result;
  3482. }
  3483. struct ggml_tensor * ggml_cont(
  3484. struct ggml_context * ctx,
  3485. struct ggml_tensor * a) {
  3486. return ggml_cont_impl(ctx, a, false);
  3487. }
  3488. struct ggml_tensor * ggml_cont_inplace(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a) {
  3491. return ggml_cont_impl(ctx, a, true);
  3492. }
  3493. // make contiguous, with new shape
  3494. GGML_API struct ggml_tensor * ggml_cont_1d(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. int64_t ne0) {
  3498. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3499. }
  3500. GGML_API struct ggml_tensor * ggml_cont_2d(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. int64_t ne0,
  3504. int64_t ne1) {
  3505. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3506. }
  3507. GGML_API struct ggml_tensor * ggml_cont_3d(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. int64_t ne0,
  3511. int64_t ne1,
  3512. int64_t ne2) {
  3513. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3514. }
  3515. struct ggml_tensor * ggml_cont_4d(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. int64_t ne0,
  3519. int64_t ne1,
  3520. int64_t ne2,
  3521. int64_t ne3) {
  3522. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3523. bool is_node = false;
  3524. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3525. ggml_format_name(result, "%s (cont)", a->name);
  3526. result->op = GGML_OP_CONT;
  3527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3528. result->src[0] = a;
  3529. return result;
  3530. }
  3531. // ggml_reshape
  3532. struct ggml_tensor * ggml_reshape(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a,
  3535. struct ggml_tensor * b) {
  3536. GGML_ASSERT(ggml_is_contiguous(a));
  3537. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3538. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3539. bool is_node = false;
  3540. if (a->grad) {
  3541. is_node = true;
  3542. }
  3543. if (b->grad) {
  3544. // gradient propagation is not supported
  3545. //GGML_ASSERT(false);
  3546. }
  3547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3548. ggml_format_name(result, "%s (reshaped)", a->name);
  3549. result->op = GGML_OP_RESHAPE;
  3550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3551. result->src[0] = a;
  3552. return result;
  3553. }
  3554. struct ggml_tensor * ggml_reshape_1d(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int64_t ne0) {
  3558. GGML_ASSERT(ggml_is_contiguous(a));
  3559. GGML_ASSERT(ggml_nelements(a) == ne0);
  3560. bool is_node = false;
  3561. if (a->grad) {
  3562. is_node = true;
  3563. }
  3564. const int64_t ne[1] = { ne0 };
  3565. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3566. ggml_format_name(result, "%s (reshaped)", a->name);
  3567. result->op = GGML_OP_RESHAPE;
  3568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3569. result->src[0] = a;
  3570. return result;
  3571. }
  3572. struct ggml_tensor * ggml_reshape_2d(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a,
  3575. int64_t ne0,
  3576. int64_t ne1) {
  3577. GGML_ASSERT(ggml_is_contiguous(a));
  3578. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3579. bool is_node = false;
  3580. if (a->grad) {
  3581. is_node = true;
  3582. }
  3583. const int64_t ne[2] = { ne0, ne1 };
  3584. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3585. ggml_format_name(result, "%s (reshaped)", a->name);
  3586. result->op = GGML_OP_RESHAPE;
  3587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3588. result->src[0] = a;
  3589. return result;
  3590. }
  3591. struct ggml_tensor * ggml_reshape_3d(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. int64_t ne0,
  3595. int64_t ne1,
  3596. int64_t ne2) {
  3597. GGML_ASSERT(ggml_is_contiguous(a));
  3598. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. is_node = true;
  3602. }
  3603. const int64_t ne[3] = { ne0, ne1, ne2 };
  3604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3605. ggml_format_name(result, "%s (reshaped)", a->name);
  3606. result->op = GGML_OP_RESHAPE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_reshape_4d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. int64_t ne0,
  3615. int64_t ne1,
  3616. int64_t ne2,
  3617. int64_t ne3) {
  3618. GGML_ASSERT(ggml_is_contiguous(a));
  3619. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3620. bool is_node = false;
  3621. if (a->grad) {
  3622. is_node = true;
  3623. }
  3624. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3625. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3626. ggml_format_name(result, "%s (reshaped)", a->name);
  3627. result->op = GGML_OP_RESHAPE;
  3628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3629. result->src[0] = a;
  3630. return result;
  3631. }
  3632. static struct ggml_tensor * ggml_view_impl(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * a,
  3635. int n_dims,
  3636. const int64_t * ne,
  3637. size_t offset) {
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. is_node = true;
  3641. }
  3642. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3643. ggml_format_name(result, "%s (view)", a->name);
  3644. ggml_set_op_params(result, &offset, sizeof(offset));
  3645. result->op = GGML_OP_VIEW;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. return result;
  3649. }
  3650. // ggml_view_1d
  3651. struct ggml_tensor * ggml_view_1d(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. int64_t ne0,
  3655. size_t offset) {
  3656. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3657. return result;
  3658. }
  3659. // ggml_view_2d
  3660. struct ggml_tensor * ggml_view_2d(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a,
  3663. int64_t ne0,
  3664. int64_t ne1,
  3665. size_t nb1,
  3666. size_t offset) {
  3667. const int64_t ne[2] = { ne0, ne1 };
  3668. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3669. result->nb[1] = nb1;
  3670. result->nb[2] = result->nb[1]*ne1;
  3671. result->nb[3] = result->nb[2];
  3672. return result;
  3673. }
  3674. // ggml_view_3d
  3675. struct ggml_tensor * ggml_view_3d(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int64_t ne0,
  3679. int64_t ne1,
  3680. int64_t ne2,
  3681. size_t nb1,
  3682. size_t nb2,
  3683. size_t offset) {
  3684. const int64_t ne[3] = { ne0, ne1, ne2 };
  3685. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3686. result->nb[1] = nb1;
  3687. result->nb[2] = nb2;
  3688. result->nb[3] = result->nb[2]*ne2;
  3689. return result;
  3690. }
  3691. // ggml_view_4d
  3692. struct ggml_tensor * ggml_view_4d(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. int64_t ne0,
  3696. int64_t ne1,
  3697. int64_t ne2,
  3698. int64_t ne3,
  3699. size_t nb1,
  3700. size_t nb2,
  3701. size_t nb3,
  3702. size_t offset) {
  3703. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3704. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3705. result->nb[1] = nb1;
  3706. result->nb[2] = nb2;
  3707. result->nb[3] = nb3;
  3708. return result;
  3709. }
  3710. // ggml_permute
  3711. struct ggml_tensor * ggml_permute(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. int axis0,
  3715. int axis1,
  3716. int axis2,
  3717. int axis3) {
  3718. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3719. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3720. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3721. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3722. GGML_ASSERT(axis0 != axis1);
  3723. GGML_ASSERT(axis0 != axis2);
  3724. GGML_ASSERT(axis0 != axis3);
  3725. GGML_ASSERT(axis1 != axis2);
  3726. GGML_ASSERT(axis1 != axis3);
  3727. GGML_ASSERT(axis2 != axis3);
  3728. bool is_node = false;
  3729. if (a->grad) {
  3730. is_node = true;
  3731. }
  3732. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3733. ggml_format_name(result, "%s (permuted)", a->name);
  3734. int ne[GGML_MAX_DIMS];
  3735. int nb[GGML_MAX_DIMS];
  3736. ne[axis0] = a->ne[0];
  3737. ne[axis1] = a->ne[1];
  3738. ne[axis2] = a->ne[2];
  3739. ne[axis3] = a->ne[3];
  3740. nb[axis0] = a->nb[0];
  3741. nb[axis1] = a->nb[1];
  3742. nb[axis2] = a->nb[2];
  3743. nb[axis3] = a->nb[3];
  3744. result->ne[0] = ne[0];
  3745. result->ne[1] = ne[1];
  3746. result->ne[2] = ne[2];
  3747. result->ne[3] = ne[3];
  3748. result->nb[0] = nb[0];
  3749. result->nb[1] = nb[1];
  3750. result->nb[2] = nb[2];
  3751. result->nb[3] = nb[3];
  3752. result->op = GGML_OP_PERMUTE;
  3753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3754. result->src[0] = a;
  3755. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3756. ggml_set_op_params(result, params, sizeof(params));
  3757. return result;
  3758. }
  3759. // ggml_transpose
  3760. struct ggml_tensor * ggml_transpose(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a) {
  3763. bool is_node = false;
  3764. if (a->grad) {
  3765. is_node = true;
  3766. }
  3767. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3768. ggml_format_name(result, "%s (transposed)", a->name);
  3769. result->ne[0] = a->ne[1];
  3770. result->ne[1] = a->ne[0];
  3771. result->nb[0] = a->nb[1];
  3772. result->nb[1] = a->nb[0];
  3773. result->op = GGML_OP_TRANSPOSE;
  3774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3775. result->src[0] = a;
  3776. return result;
  3777. }
  3778. // ggml_get_rows
  3779. struct ggml_tensor * ggml_get_rows(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b) {
  3783. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3784. bool is_node = false;
  3785. if (a->grad || b->grad) {
  3786. is_node = true;
  3787. }
  3788. // TODO: implement non F32 return
  3789. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3790. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3791. result->op = GGML_OP_GET_ROWS;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src[0] = a;
  3794. result->src[1] = b;
  3795. return result;
  3796. }
  3797. // ggml_get_rows_back
  3798. struct ggml_tensor * ggml_get_rows_back(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b,
  3802. struct ggml_tensor * c) {
  3803. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3804. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3805. bool is_node = false;
  3806. if (a->grad || b->grad) {
  3807. is_node = true;
  3808. }
  3809. // TODO: implement non F32 return
  3810. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3811. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3812. result->op = GGML_OP_GET_ROWS_BACK;
  3813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3814. result->src[0] = a;
  3815. result->src[1] = b;
  3816. return result;
  3817. }
  3818. // ggml_diag
  3819. struct ggml_tensor * ggml_diag(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a) {
  3822. GGML_ASSERT(a->ne[1] == 1);
  3823. bool is_node = false;
  3824. if (a->grad) {
  3825. is_node = true;
  3826. }
  3827. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3828. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3829. result->op = GGML_OP_DIAG;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src[0] = a;
  3832. return result;
  3833. }
  3834. // ggml_diag_mask_inf
  3835. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * a,
  3838. int n_past,
  3839. bool inplace) {
  3840. bool is_node = false;
  3841. if (a->grad) {
  3842. is_node = true;
  3843. }
  3844. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3845. int32_t params[] = { n_past };
  3846. ggml_set_op_params(result, params, sizeof(params));
  3847. result->op = GGML_OP_DIAG_MASK_INF;
  3848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3849. result->src[0] = a;
  3850. return result;
  3851. }
  3852. struct ggml_tensor * ggml_diag_mask_inf(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. int n_past) {
  3856. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3857. }
  3858. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. int n_past) {
  3862. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3863. }
  3864. // ggml_diag_mask_zero
  3865. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. int n_past,
  3869. bool inplace) {
  3870. bool is_node = false;
  3871. if (a->grad) {
  3872. is_node = true;
  3873. }
  3874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3875. int32_t params[] = { n_past };
  3876. ggml_set_op_params(result, params, sizeof(params));
  3877. result->op = GGML_OP_DIAG_MASK_ZERO;
  3878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3879. result->src[0] = a;
  3880. return result;
  3881. }
  3882. struct ggml_tensor * ggml_diag_mask_zero(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. int n_past) {
  3886. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3887. }
  3888. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. int n_past) {
  3892. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3893. }
  3894. // ggml_soft_max
  3895. static struct ggml_tensor * ggml_soft_max_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. bool inplace) {
  3899. bool is_node = false;
  3900. if (a->grad) {
  3901. is_node = true;
  3902. }
  3903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3904. result->op = GGML_OP_SOFT_MAX;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. return result;
  3908. }
  3909. struct ggml_tensor * ggml_soft_max(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a) {
  3912. return ggml_soft_max_impl(ctx, a, false);
  3913. }
  3914. struct ggml_tensor * ggml_soft_max_inplace(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a) {
  3917. return ggml_soft_max_impl(ctx, a, true);
  3918. }
  3919. // ggml_soft_max_back
  3920. static struct ggml_tensor * ggml_soft_max_back_impl(
  3921. struct ggml_context * ctx,
  3922. struct ggml_tensor * a,
  3923. struct ggml_tensor * b,
  3924. bool inplace) {
  3925. bool is_node = false;
  3926. if (a->grad || b->grad) {
  3927. is_node = true; // TODO : implement backward pass
  3928. }
  3929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3930. result->op = GGML_OP_SOFT_MAX_BACK;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src[0] = a;
  3933. result->src[1] = b;
  3934. return result;
  3935. }
  3936. struct ggml_tensor * ggml_soft_max_back(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b) {
  3940. return ggml_soft_max_back_impl(ctx, a, b, false);
  3941. }
  3942. struct ggml_tensor * ggml_soft_max_back_inplace(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b) {
  3946. return ggml_soft_max_back_impl(ctx, a, b, true);
  3947. }
  3948. // ggml_rope
  3949. static struct ggml_tensor * ggml_rope_impl(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. int n_dims,
  3954. int mode,
  3955. int n_ctx,
  3956. float freq_base,
  3957. float freq_scale,
  3958. float xpos_base,
  3959. bool xpos_down,
  3960. bool inplace) {
  3961. GGML_ASSERT(ggml_is_vector(b));
  3962. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3963. GGML_ASSERT(a->ne[2] == b->ne[0]);
  3964. bool is_node = false;
  3965. if (a->grad) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  3970. memcpy(params + 4, &freq_base, sizeof(float));
  3971. memcpy(params + 5, &freq_scale, sizeof(float));
  3972. memcpy(params + 6, &xpos_base, sizeof(float));
  3973. memcpy(params + 7, &xpos_down, sizeof(bool));
  3974. ggml_set_op_params(result, params, sizeof(params));
  3975. result->op = GGML_OP_ROPE;
  3976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3977. result->src[0] = a;
  3978. result->src[1] = b;
  3979. return result;
  3980. }
  3981. struct ggml_tensor * ggml_rope(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b,
  3985. int n_dims,
  3986. int mode,
  3987. int n_ctx) {
  3988. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  3989. }
  3990. struct ggml_tensor * ggml_rope_inplace(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b,
  3994. int n_dims,
  3995. int mode,
  3996. int n_ctx) {
  3997. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  3998. }
  3999. struct ggml_tensor * ggml_rope_custom(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b,
  4003. int n_dims,
  4004. int mode,
  4005. int n_ctx,
  4006. float freq_base,
  4007. float freq_scale) {
  4008. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  4009. }
  4010. struct ggml_tensor * ggml_rope_custom_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b,
  4014. int n_dims,
  4015. int mode,
  4016. int n_ctx,
  4017. float freq_base,
  4018. float freq_scale) {
  4019. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  4020. }
  4021. struct ggml_tensor * ggml_rope_xpos_inplace(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. struct ggml_tensor * b,
  4025. int n_dims,
  4026. float base,
  4027. bool down) {
  4028. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  4029. }
  4030. // ggml_rope_back
  4031. struct ggml_tensor * ggml_rope_back(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * b,
  4035. int n_dims,
  4036. int mode,
  4037. int n_ctx,
  4038. float freq_base,
  4039. float freq_scale,
  4040. float xpos_base,
  4041. bool xpos_down) {
  4042. GGML_ASSERT(ggml_is_vector(b));
  4043. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4044. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4045. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4046. bool is_node = false;
  4047. if (a->grad) {
  4048. is_node = false; // TODO: implement backward
  4049. }
  4050. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4051. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  4052. memcpy(params + 4, &freq_base, sizeof(float));
  4053. memcpy(params + 5, &freq_scale, sizeof(float));
  4054. memcpy(params + 6, &xpos_base, sizeof(float));
  4055. memcpy(params + 7, &xpos_down, sizeof(bool));
  4056. ggml_set_op_params(result, params, sizeof(params));
  4057. result->op = GGML_OP_ROPE_BACK;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. result->src[1] = b;
  4061. return result;
  4062. }
  4063. // ggml_alibi
  4064. struct ggml_tensor * ggml_alibi(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a,
  4067. int n_past,
  4068. int n_head,
  4069. float bias_max) {
  4070. GGML_ASSERT(n_past >= 0);
  4071. bool is_node = false;
  4072. if (a->grad) {
  4073. GGML_ASSERT(false); // TODO: implement backward
  4074. is_node = true;
  4075. }
  4076. // TODO: when implement backward, fix this:
  4077. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4078. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4079. int32_t op_params[3] = { n_past, n_head };
  4080. memcpy(op_params + 2, &bias_max, sizeof(float));
  4081. ggml_set_op_params(result, op_params, sizeof(op_params));
  4082. result->op = GGML_OP_ALIBI;
  4083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4084. result->src[0] = a;
  4085. return result;
  4086. }
  4087. // ggml_clamp
  4088. struct ggml_tensor * ggml_clamp(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. float min,
  4092. float max) {
  4093. bool is_node = false;
  4094. if (a->grad) {
  4095. GGML_ASSERT(false); // TODO: implement backward
  4096. is_node = true;
  4097. }
  4098. // TODO: when implement backward, fix this:
  4099. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4100. float params[] = { min, max };
  4101. ggml_set_op_params(result, params, sizeof(params));
  4102. result->op = GGML_OP_CLAMP;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. // ggml_conv_1d
  4108. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4109. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4110. }
  4111. // im2col: [N, IC, IL] => [N, OL, IC*K]
  4112. // a: [OC,IC, K]
  4113. // b: [N, IC, IL]
  4114. // result: [N, OL, IC*K]
  4115. static struct ggml_tensor * ggml_conv_1d_stage_0(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a,
  4118. struct ggml_tensor * b,
  4119. int s0,
  4120. int p0,
  4121. int d0) {
  4122. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4123. bool is_node = false;
  4124. if (a->grad || b->grad) {
  4125. GGML_ASSERT(false); // TODO: implement backward
  4126. is_node = true;
  4127. }
  4128. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4129. const int64_t ne[4] = {
  4130. a->ne[1] * a->ne[0],
  4131. OL,
  4132. b->ne[2],
  4133. 1,
  4134. };
  4135. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4136. int32_t params[] = { s0, p0, d0 };
  4137. ggml_set_op_params(result, params, sizeof(params));
  4138. result->op = GGML_OP_CONV_1D_STAGE_0;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src[0] = a;
  4141. result->src[1] = b;
  4142. return result;
  4143. }
  4144. // ggml_conv_1d_stage_1
  4145. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  4146. // a: [OC, IC, K]
  4147. // b: [N, OL, IC * K]
  4148. // result: [N, OC, OL]
  4149. static struct ggml_tensor * ggml_conv_1d_stage_1(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. struct ggml_tensor * b) {
  4153. bool is_node = false;
  4154. if (a->grad || b->grad) {
  4155. GGML_ASSERT(false); // TODO: implement backward
  4156. is_node = true;
  4157. }
  4158. const int64_t ne[4] = {
  4159. b->ne[1],
  4160. a->ne[2],
  4161. b->ne[2],
  4162. 1,
  4163. };
  4164. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4165. result->op = GGML_OP_CONV_1D_STAGE_1;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src[0] = a;
  4168. result->src[1] = b;
  4169. return result;
  4170. }
  4171. // ggml_conv_1d
  4172. GGML_API struct ggml_tensor * ggml_conv_1d(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. struct ggml_tensor * b,
  4176. int s0,
  4177. int p0,
  4178. int d0) {
  4179. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  4180. result = ggml_conv_1d_stage_1(ctx, a, result);
  4181. return result;
  4182. }
  4183. // GGML_API struct ggml_tensor * ggml_conv_1d(
  4184. // struct ggml_context * ctx,
  4185. // struct ggml_tensor * a,
  4186. // struct ggml_tensor * b,
  4187. // int s0,
  4188. // int p0,
  4189. // int d0) {
  4190. // GGML_ASSERT(ggml_is_matrix(b));
  4191. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  4192. // bool is_node = false;
  4193. // if (a->grad || b->grad) {
  4194. // GGML_ASSERT(false); // TODO: implement backward
  4195. // is_node = true;
  4196. // }
  4197. // const int64_t ne[4] = {
  4198. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  4199. // a->ne[2], 1, 1,
  4200. // };
  4201. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4202. // int32_t params[] = { s0, p0, d0 };
  4203. // ggml_set_op_params(result, params, sizeof(params));
  4204. // result->op = GGML_OP_CONV_1D;
  4205. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. // result->src[0] = a;
  4207. // result->src[1] = b;
  4208. // return result;
  4209. // }
  4210. // ggml_conv_1d_ph
  4211. struct ggml_tensor* ggml_conv_1d_ph(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int s,
  4216. int d) {
  4217. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4218. }
  4219. // ggml_conv_transpose_1d
  4220. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4221. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4222. }
  4223. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. int s0,
  4228. int p0,
  4229. int d0) {
  4230. GGML_ASSERT(ggml_is_matrix(b));
  4231. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4232. GGML_ASSERT(a->ne[3] == 1);
  4233. GGML_ASSERT(p0 == 0);
  4234. GGML_ASSERT(d0 == 1);
  4235. bool is_node = false;
  4236. if (a->grad || b->grad) {
  4237. GGML_ASSERT(false); // TODO: implement backward
  4238. is_node = true;
  4239. }
  4240. const int64_t ne[4] = {
  4241. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4242. a->ne[1], b->ne[2], 1,
  4243. };
  4244. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4245. int32_t params[] = { s0, p0, d0 };
  4246. ggml_set_op_params(result, params, sizeof(params));
  4247. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = b;
  4251. return result;
  4252. }
  4253. // ggml_conv_2d
  4254. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4255. // a: [OC,IC, KH, KW]
  4256. // b: [N, IC, IH, IW]
  4257. // result: [N, OH, OW, IC*KH*KW]
  4258. static struct ggml_tensor * ggml_conv_2d_stage_0(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. struct ggml_tensor * b,
  4262. int s0,
  4263. int s1,
  4264. int p0,
  4265. int p1,
  4266. int d0,
  4267. int d1) {
  4268. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4269. bool is_node = false;
  4270. if (a->grad || b->grad) {
  4271. GGML_ASSERT(false); // TODO: implement backward
  4272. is_node = true;
  4273. }
  4274. const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
  4275. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4276. const int64_t ne[4] = {
  4277. a->ne[2] * a->ne[1] * a->ne[0],
  4278. OW,
  4279. OH,
  4280. b->ne[3],
  4281. };
  4282. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4283. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  4284. ggml_set_op_params(result, params, sizeof(params));
  4285. result->op = GGML_OP_CONV_2D_STAGE_0;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src[0] = a;
  4288. result->src[1] = b;
  4289. return result;
  4290. }
  4291. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  4292. // a: [OC, IC, KH, KW]
  4293. // b: [N, OH, OW, IC * KH * KW]
  4294. // result: [N, OC, OH, OW]
  4295. static struct ggml_tensor * ggml_conv_2d_stage_1(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. struct ggml_tensor * b) {
  4299. bool is_node = false;
  4300. if (a->grad || b->grad) {
  4301. GGML_ASSERT(false); // TODO: implement backward
  4302. is_node = true;
  4303. }
  4304. const int64_t ne[4] = {
  4305. b->ne[1],
  4306. b->ne[2],
  4307. a->ne[3],
  4308. b->ne[3],
  4309. };
  4310. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4311. result->op = GGML_OP_CONV_2D_STAGE_1;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src[0] = a;
  4314. result->src[1] = b;
  4315. return result;
  4316. }
  4317. // a: [OC,IC, KH, KW]
  4318. // b: [N, IC, IH, IW]
  4319. // result: [N, OC, OH, OW]
  4320. struct ggml_tensor * ggml_conv_2d(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. struct ggml_tensor * b,
  4324. int s0,
  4325. int s1,
  4326. int p0,
  4327. int p1,
  4328. int d0,
  4329. int d1) {
  4330. struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
  4331. result = ggml_conv_2d_stage_1(ctx, a, result);
  4332. return result;
  4333. }
  4334. // ggml_conv_2d_sk_p0
  4335. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b) {
  4339. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4340. }
  4341. // ggml_conv_2d_s1_ph
  4342. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b) {
  4346. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4347. }
  4348. // ggml_conv_transpose_2d_p0
  4349. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4350. return (ins - 1) * s - 2 * p + ks;
  4351. }
  4352. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. struct ggml_tensor * b,
  4356. int stride) {
  4357. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4358. bool is_node = false;
  4359. if (a->grad || b->grad) {
  4360. GGML_ASSERT(false); // TODO: implement backward
  4361. is_node = true;
  4362. }
  4363. const int64_t ne[4] = {
  4364. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4365. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4366. a->ne[2], b->ne[3],
  4367. };
  4368. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4369. ggml_set_op_params_i32(result, 0, stride);
  4370. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. result->src[1] = b;
  4374. return result;
  4375. }
  4376. // ggml_pool_*
  4377. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  4378. return (ins + 2 * p - ks) / s + 1;
  4379. }
  4380. // ggml_pool_1d
  4381. struct ggml_tensor * ggml_pool_1d(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. enum ggml_op_pool op,
  4385. int k0,
  4386. int s0,
  4387. int p0) {
  4388. bool is_node = false;
  4389. if (a->grad) {
  4390. GGML_ASSERT(false); // TODO: implement backward
  4391. is_node = true;
  4392. }
  4393. const int64_t ne[3] = {
  4394. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4395. a->ne[1],
  4396. };
  4397. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4398. int32_t params[] = { op, k0, s0, p0 };
  4399. ggml_set_op_params(result, params, sizeof(params));
  4400. result->op = GGML_OP_POOL_1D;
  4401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4402. result->src[0] = a;
  4403. return result;
  4404. }
  4405. // ggml_pool_2d
  4406. struct ggml_tensor * ggml_pool_2d(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. enum ggml_op_pool op,
  4410. int k0,
  4411. int k1,
  4412. int s0,
  4413. int s1,
  4414. int p0,
  4415. int p1) {
  4416. bool is_node = false;
  4417. if (a->grad) {
  4418. GGML_ASSERT(false); // TODO: implement backward
  4419. is_node = true;
  4420. }
  4421. const int64_t ne[3] = {
  4422. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4423. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4424. a->ne[2],
  4425. };
  4426. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4427. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4428. ggml_set_op_params(result, params, sizeof(params));
  4429. result->op = GGML_OP_POOL_2D;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src[0] = a;
  4432. return result;
  4433. }
  4434. // ggml_upscale
  4435. static struct ggml_tensor * ggml_upscale_impl(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int scale_factor) {
  4439. bool is_node = false;
  4440. if (a->grad) {
  4441. GGML_ASSERT(false); // TODO: implement backward
  4442. is_node = true;
  4443. }
  4444. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4445. a->ne[0] * scale_factor,
  4446. a->ne[1] * scale_factor,
  4447. a->ne[2], a->ne[3]);
  4448. result->op = GGML_OP_UPSCALE;
  4449. result->op_params[0] = scale_factor;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. result->src[1] = NULL;
  4453. return result;
  4454. }
  4455. struct ggml_tensor * ggml_upscale(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int scale_factor) {
  4459. return ggml_upscale_impl(ctx, a, scale_factor);
  4460. }
  4461. // ggml_flash_attn
  4462. struct ggml_tensor * ggml_flash_attn(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * q,
  4465. struct ggml_tensor * k,
  4466. struct ggml_tensor * v,
  4467. bool masked) {
  4468. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4469. // TODO: check if vT can be multiplied by (k*qT)
  4470. bool is_node = false;
  4471. if (q->grad || k->grad || v->grad) {
  4472. is_node = true;
  4473. }
  4474. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4475. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4476. int32_t t = masked ? 1 : 0;
  4477. ggml_set_op_params(result, &t, sizeof(t));
  4478. result->op = GGML_OP_FLASH_ATTN;
  4479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4480. result->src[0] = q;
  4481. result->src[1] = k;
  4482. result->src[2] = v;
  4483. return result;
  4484. }
  4485. // ggml_flash_ff
  4486. struct ggml_tensor * ggml_flash_ff(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b0,
  4490. struct ggml_tensor * b1,
  4491. struct ggml_tensor * c0,
  4492. struct ggml_tensor * c1) {
  4493. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4494. // TODO: more checks
  4495. bool is_node = false;
  4496. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4497. is_node = true;
  4498. }
  4499. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4500. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4501. result->op = GGML_OP_FLASH_FF;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b0;
  4505. result->src[2] = b1;
  4506. result->src[3] = c0;
  4507. result->src[4] = c1;
  4508. return result;
  4509. }
  4510. // ggml_flash_attn_back
  4511. struct ggml_tensor * ggml_flash_attn_back(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * q,
  4514. struct ggml_tensor * k,
  4515. struct ggml_tensor * v,
  4516. struct ggml_tensor * d,
  4517. bool masked) {
  4518. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4519. // TODO: check if vT can be multiplied by (k*qT)
  4520. // d shape [D,N,ne2,ne3]
  4521. // q shape [D,N,ne2,ne3]
  4522. // k shape [D,M,kvne2,ne3]
  4523. // v shape [M,D,kvne2,ne3]
  4524. const int64_t D = q->ne[0];
  4525. const int64_t N = q->ne[1];
  4526. const int64_t M = k->ne[1];
  4527. const int64_t ne2 = q->ne[2];
  4528. const int64_t ne3 = q->ne[3];
  4529. const int64_t kvne2 = k->ne[2];
  4530. GGML_ASSERT(k->ne[0] == D);
  4531. GGML_ASSERT(v->ne[0] == M);
  4532. GGML_ASSERT(v->ne[1] == D);
  4533. GGML_ASSERT(d->ne[0] == D);
  4534. GGML_ASSERT(d->ne[1] == N);
  4535. GGML_ASSERT(k->ne[2] == kvne2);
  4536. GGML_ASSERT(k->ne[3] == ne3);
  4537. GGML_ASSERT(v->ne[2] == kvne2);
  4538. GGML_ASSERT(v->ne[3] == ne3);
  4539. GGML_ASSERT(d->ne[2] == ne2);
  4540. GGML_ASSERT(d->ne[3] == ne3);
  4541. GGML_ASSERT(ne2 % kvne2 == 0);
  4542. bool is_node = false;
  4543. if (q->grad || k->grad || v->grad) {
  4544. // when using this operation (in backwards pass) these grads are set.
  4545. // we don't want to create (big) grad of our result, so is_node is false.
  4546. is_node = false;
  4547. }
  4548. // store gradients of q, k and v as continuous tensors concatenated in result.
  4549. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4550. const int64_t elem_q = ggml_nelements(q);
  4551. const int64_t elem_k = ggml_nelements(k);
  4552. const int64_t elem_v = ggml_nelements(v);
  4553. enum ggml_type result_type = GGML_TYPE_F32;
  4554. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4555. const size_t tsize = ggml_type_size(result_type);
  4556. const size_t offs_q = 0;
  4557. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4558. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4559. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4560. const size_t nelements = (end + tsize - 1)/tsize;
  4561. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4562. int32_t masked_i = masked ? 1 : 0;
  4563. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4564. result->op = GGML_OP_FLASH_ATTN_BACK;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src[0] = q;
  4567. result->src[1] = k;
  4568. result->src[2] = v;
  4569. result->src[3] = d;
  4570. return result;
  4571. }
  4572. // ggml_win_part
  4573. struct ggml_tensor * ggml_win_part(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. int w) {
  4577. GGML_ASSERT(a->ne[3] == 1);
  4578. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4579. bool is_node = false;
  4580. if (a->grad) {
  4581. GGML_ASSERT(false); // TODO: implement backward
  4582. is_node = true;
  4583. }
  4584. // padding
  4585. const int px = (w - a->ne[1]%w)%w;
  4586. const int py = (w - a->ne[2]%w)%w;
  4587. const int npx = (px + a->ne[1])/w;
  4588. const int npy = (py + a->ne[2])/w;
  4589. const int np = npx*npy;
  4590. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4591. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4592. int32_t params[] = { npx, npy, w };
  4593. ggml_set_op_params(result, params, sizeof(params));
  4594. result->op = GGML_OP_WIN_PART;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src[0] = a;
  4597. return result;
  4598. }
  4599. // ggml_win_unpart
  4600. struct ggml_tensor * ggml_win_unpart(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. int w0,
  4604. int h0,
  4605. int w) {
  4606. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4607. bool is_node = false;
  4608. if (a->grad) {
  4609. GGML_ASSERT(false); // TODO: implement backward
  4610. is_node = true;
  4611. }
  4612. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4613. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4614. int32_t params[] = { w };
  4615. ggml_set_op_params(result, params, sizeof(params));
  4616. result->op = GGML_OP_WIN_UNPART;
  4617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4618. result->src[0] = a;
  4619. return result;
  4620. }
  4621. // ggml_get_rel_pos
  4622. struct ggml_tensor * ggml_get_rel_pos(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. int qh,
  4626. int kh) {
  4627. GGML_ASSERT(qh == kh);
  4628. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. GGML_ASSERT(false); // TODO: implement backward
  4632. is_node = true;
  4633. }
  4634. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4635. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4636. result->op = GGML_OP_GET_REL_POS;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = NULL;
  4640. return result;
  4641. }
  4642. // ggml_add_rel_pos
  4643. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. struct ggml_tensor * pw,
  4647. struct ggml_tensor * ph,
  4648. bool inplace) {
  4649. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4650. GGML_ASSERT(ggml_is_contiguous(a));
  4651. GGML_ASSERT(ggml_is_contiguous(pw));
  4652. GGML_ASSERT(ggml_is_contiguous(ph));
  4653. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4654. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4655. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4656. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4657. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4658. bool is_node = false;
  4659. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4660. is_node = true;
  4661. }
  4662. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4663. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4664. result->op = GGML_OP_ADD_REL_POS;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. result->src[1] = pw;
  4668. result->src[2] = ph;
  4669. return result;
  4670. }
  4671. struct ggml_tensor * ggml_add_rel_pos(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. struct ggml_tensor * pw,
  4675. struct ggml_tensor * ph) {
  4676. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4677. }
  4678. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. struct ggml_tensor * pw,
  4682. struct ggml_tensor * ph) {
  4683. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4684. }
  4685. // gmml_unary
  4686. static struct ggml_tensor * ggml_unary_impl(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. enum ggml_unary_op op,
  4690. bool inplace) {
  4691. bool is_node = false;
  4692. if (!inplace && (a->grad)) {
  4693. is_node = true;
  4694. }
  4695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4696. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4697. result->op = GGML_OP_UNARY;
  4698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4699. result->src[0] = a;
  4700. return result;
  4701. }
  4702. struct ggml_tensor * ggml_unary(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. enum ggml_unary_op op) {
  4706. return ggml_unary_impl(ctx, a, op, false);
  4707. }
  4708. struct ggml_tensor * ggml_unary_inplace(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. enum ggml_unary_op op) {
  4712. return ggml_unary_impl(ctx, a, op, true);
  4713. }
  4714. // ggml_map_unary
  4715. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. const ggml_unary_op_f32_t fun,
  4719. bool inplace) {
  4720. bool is_node = false;
  4721. if (!inplace && a->grad) {
  4722. is_node = true;
  4723. }
  4724. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4725. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4726. result->op = GGML_OP_MAP_UNARY;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src[0] = a;
  4729. return result;
  4730. }
  4731. struct ggml_tensor * ggml_map_unary_f32(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a,
  4734. const ggml_unary_op_f32_t fun) {
  4735. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4736. }
  4737. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. const ggml_unary_op_f32_t fun) {
  4741. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4742. }
  4743. // ggml_map_binary
  4744. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. const ggml_binary_op_f32_t fun,
  4749. bool inplace) {
  4750. GGML_ASSERT(ggml_are_same_shape(a, b));
  4751. bool is_node = false;
  4752. if (!inplace && (a->grad || b->grad)) {
  4753. is_node = true;
  4754. }
  4755. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4756. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4757. result->op = GGML_OP_MAP_BINARY;
  4758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4759. result->src[0] = a;
  4760. result->src[1] = b;
  4761. return result;
  4762. }
  4763. struct ggml_tensor * ggml_map_binary_f32(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a,
  4766. struct ggml_tensor * b,
  4767. const ggml_binary_op_f32_t fun) {
  4768. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4769. }
  4770. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. struct ggml_tensor * b,
  4774. const ggml_binary_op_f32_t fun) {
  4775. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4776. }
  4777. // ggml_map_custom1_f32
  4778. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. const ggml_custom1_op_f32_t fun,
  4782. bool inplace) {
  4783. bool is_node = false;
  4784. if (!inplace && a->grad) {
  4785. is_node = true;
  4786. }
  4787. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4788. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4789. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = a;
  4792. return result;
  4793. }
  4794. struct ggml_tensor * ggml_map_custom1_f32(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. const ggml_custom1_op_f32_t fun) {
  4798. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4799. }
  4800. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. const ggml_custom1_op_f32_t fun) {
  4804. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4805. }
  4806. // ggml_map_custom2_f32
  4807. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. struct ggml_tensor * b,
  4811. const ggml_custom2_op_f32_t fun,
  4812. bool inplace) {
  4813. bool is_node = false;
  4814. if (!inplace && (a->grad || b->grad)) {
  4815. is_node = true;
  4816. }
  4817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4818. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4819. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src[0] = a;
  4822. result->src[1] = b;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_map_custom2_f32(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. struct ggml_tensor * b,
  4829. const ggml_custom2_op_f32_t fun) {
  4830. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4831. }
  4832. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. struct ggml_tensor * b,
  4836. const ggml_custom2_op_f32_t fun) {
  4837. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4838. }
  4839. // ggml_map_custom3_f32
  4840. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. struct ggml_tensor * b,
  4844. struct ggml_tensor * c,
  4845. const ggml_custom3_op_f32_t fun,
  4846. bool inplace) {
  4847. bool is_node = false;
  4848. if (!inplace && (a->grad || b->grad || c->grad)) {
  4849. is_node = true;
  4850. }
  4851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4852. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4853. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4855. result->src[0] = a;
  4856. result->src[1] = b;
  4857. result->src[2] = c;
  4858. return result;
  4859. }
  4860. struct ggml_tensor * ggml_map_custom3_f32(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. struct ggml_tensor * b,
  4864. struct ggml_tensor * c,
  4865. const ggml_custom3_op_f32_t fun) {
  4866. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4867. }
  4868. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. struct ggml_tensor * b,
  4872. struct ggml_tensor * c,
  4873. const ggml_custom3_op_f32_t fun) {
  4874. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4875. }
  4876. // ggml_map_custom1
  4877. struct ggml_map_custom1_op_params {
  4878. ggml_custom1_op_t fun;
  4879. int n_tasks;
  4880. void * userdata;
  4881. };
  4882. static struct ggml_tensor * ggml_map_custom1_impl(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. const ggml_custom1_op_t fun,
  4886. int n_tasks,
  4887. void * userdata,
  4888. bool inplace) {
  4889. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4890. bool is_node = false;
  4891. if (!inplace && a->grad) {
  4892. is_node = true;
  4893. }
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. struct ggml_map_custom1_op_params params = {
  4896. /*.fun =*/ fun,
  4897. /*.n_tasks =*/ n_tasks,
  4898. /*.userdata =*/ userdata
  4899. };
  4900. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4901. result->op = GGML_OP_MAP_CUSTOM1;
  4902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4903. result->src[0] = a;
  4904. return result;
  4905. }
  4906. struct ggml_tensor * ggml_map_custom1(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. const ggml_custom1_op_t fun,
  4910. int n_tasks,
  4911. void * userdata) {
  4912. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4913. }
  4914. struct ggml_tensor * ggml_map_custom1_inplace(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. const ggml_custom1_op_t fun,
  4918. int n_tasks,
  4919. void * userdata) {
  4920. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4921. }
  4922. // ggml_map_custom2
  4923. struct ggml_map_custom2_op_params {
  4924. ggml_custom2_op_t fun;
  4925. int n_tasks;
  4926. void * userdata;
  4927. };
  4928. static struct ggml_tensor * ggml_map_custom2_impl(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. struct ggml_tensor * b,
  4932. const ggml_custom2_op_t fun,
  4933. int n_tasks,
  4934. void * userdata,
  4935. bool inplace) {
  4936. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4937. bool is_node = false;
  4938. if (!inplace && (a->grad || b->grad)) {
  4939. is_node = true;
  4940. }
  4941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4942. struct ggml_map_custom2_op_params params = {
  4943. /*.fun =*/ fun,
  4944. /*.n_tasks =*/ n_tasks,
  4945. /*.userdata =*/ userdata
  4946. };
  4947. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4948. result->op = GGML_OP_MAP_CUSTOM2;
  4949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4950. result->src[0] = a;
  4951. result->src[1] = b;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_map_custom2(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. const ggml_custom2_op_t fun,
  4959. int n_tasks,
  4960. void * userdata) {
  4961. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  4962. }
  4963. struct ggml_tensor * ggml_map_custom2_inplace(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a,
  4966. struct ggml_tensor * b,
  4967. const ggml_custom2_op_t fun,
  4968. int n_tasks,
  4969. void * userdata) {
  4970. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  4971. }
  4972. // ggml_map_custom3
  4973. struct ggml_map_custom3_op_params {
  4974. ggml_custom3_op_t fun;
  4975. int n_tasks;
  4976. void * userdata;
  4977. };
  4978. static struct ggml_tensor * ggml_map_custom3_impl(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. struct ggml_tensor * c,
  4983. const ggml_custom3_op_t fun,
  4984. int n_tasks,
  4985. void * userdata,
  4986. bool inplace) {
  4987. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4988. bool is_node = false;
  4989. if (!inplace && (a->grad || b->grad || c->grad)) {
  4990. is_node = true;
  4991. }
  4992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4993. struct ggml_map_custom3_op_params params = {
  4994. /*.fun =*/ fun,
  4995. /*.n_tasks =*/ n_tasks,
  4996. /*.userdata =*/ userdata
  4997. };
  4998. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4999. result->op = GGML_OP_MAP_CUSTOM3;
  5000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5001. result->src[0] = a;
  5002. result->src[1] = b;
  5003. result->src[2] = c;
  5004. return result;
  5005. }
  5006. struct ggml_tensor * ggml_map_custom3(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b,
  5010. struct ggml_tensor * c,
  5011. const ggml_custom3_op_t fun,
  5012. int n_tasks,
  5013. void * userdata) {
  5014. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5015. }
  5016. struct ggml_tensor * ggml_map_custom3_inplace(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. struct ggml_tensor * b,
  5020. struct ggml_tensor * c,
  5021. const ggml_custom3_op_t fun,
  5022. int n_tasks,
  5023. void * userdata) {
  5024. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5025. }
  5026. // ggml_cross_entropy_loss
  5027. struct ggml_tensor * ggml_cross_entropy_loss(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. struct ggml_tensor * b) {
  5031. GGML_ASSERT(ggml_are_same_shape(a, b));
  5032. bool is_node = false;
  5033. if (a->grad || b->grad) {
  5034. is_node = true;
  5035. }
  5036. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5037. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5039. result->src[0] = a;
  5040. result->src[1] = b;
  5041. return result;
  5042. }
  5043. // ggml_cross_entropy_loss_back
  5044. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. struct ggml_tensor * b,
  5048. struct ggml_tensor * c) {
  5049. GGML_ASSERT(ggml_are_same_shape(a, b));
  5050. GGML_ASSERT(ggml_is_scalar(c));
  5051. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5052. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5053. result->grad = NULL;
  5054. result->src[0] = a;
  5055. result->src[1] = b;
  5056. result->src[2] = c;
  5057. return result;
  5058. }
  5059. ////////////////////////////////////////////////////////////////////////////////
  5060. void ggml_set_param(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * tensor) {
  5063. tensor->is_param = true;
  5064. GGML_ASSERT(tensor->grad == NULL);
  5065. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5066. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5067. }
  5068. // ggml_compute_forward_dup
  5069. static void ggml_compute_forward_dup_same_cont(
  5070. const struct ggml_compute_params * params,
  5071. const struct ggml_tensor * src0,
  5072. struct ggml_tensor * dst) {
  5073. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5074. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5075. GGML_ASSERT(src0->type == dst->type);
  5076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5077. return;
  5078. }
  5079. const size_t nb00 = src0->nb[0];
  5080. const size_t nb0 = dst->nb[0];
  5081. const int ith = params->ith; // thread index
  5082. const int nth = params->nth; // number of threads
  5083. // parallelize by elements
  5084. const int ne = ggml_nelements(dst);
  5085. const int dr = (ne + nth - 1) / nth;
  5086. const int ie0 = dr * ith;
  5087. const int ie1 = MIN(ie0 + dr, ne);
  5088. if (ie0 < ie1) {
  5089. memcpy(
  5090. ((char *) dst->data + ie0*nb0),
  5091. ((char *) src0->data + ie0*nb00),
  5092. (ie1 - ie0) * ggml_type_size(src0->type));
  5093. }
  5094. }
  5095. static void ggml_compute_forward_dup_f16(
  5096. const struct ggml_compute_params * params,
  5097. const struct ggml_tensor * src0,
  5098. struct ggml_tensor * dst) {
  5099. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5101. return;
  5102. }
  5103. GGML_TENSOR_UNARY_OP_LOCALS
  5104. const int ith = params->ith; // thread index
  5105. const int nth = params->nth; // number of threads
  5106. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5107. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5108. return;
  5109. }
  5110. // parallelize by rows
  5111. const int nr = ne01;
  5112. // number of rows per thread
  5113. const int dr = (nr + nth - 1) / nth;
  5114. // row range for this thread
  5115. const int ir0 = dr * ith;
  5116. const int ir1 = MIN(ir0 + dr, nr);
  5117. if (src0->type == dst->type &&
  5118. ne00 == ne0 &&
  5119. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5120. // copy by rows
  5121. const size_t rs = ne00*nb00;
  5122. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5123. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5124. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5125. memcpy(
  5126. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5127. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5128. rs);
  5129. }
  5130. }
  5131. }
  5132. return;
  5133. }
  5134. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5135. if (ggml_is_contiguous(dst)) {
  5136. if (nb00 == sizeof(ggml_fp16_t)) {
  5137. if (dst->type == GGML_TYPE_F16) {
  5138. size_t id = 0;
  5139. const size_t rs = ne00 * nb00;
  5140. char * dst_ptr = (char *) dst->data;
  5141. for (int i03 = 0; i03 < ne03; i03++) {
  5142. for (int i02 = 0; i02 < ne02; i02++) {
  5143. id += rs * ir0;
  5144. for (int i01 = ir0; i01 < ir1; i01++) {
  5145. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5146. memcpy(dst_ptr + id, src0_ptr, rs);
  5147. id += rs;
  5148. }
  5149. id += rs * (ne01 - ir1);
  5150. }
  5151. }
  5152. } else if (dst->type == GGML_TYPE_F32) {
  5153. size_t id = 0;
  5154. float * dst_ptr = (float *) dst->data;
  5155. for (int i03 = 0; i03 < ne03; i03++) {
  5156. for (int i02 = 0; i02 < ne02; i02++) {
  5157. id += ne00 * ir0;
  5158. for (int i01 = ir0; i01 < ir1; i01++) {
  5159. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5160. for (int i00 = 0; i00 < ne00; i00++) {
  5161. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5162. id++;
  5163. }
  5164. }
  5165. id += ne00 * (ne01 - ir1);
  5166. }
  5167. }
  5168. } else if (type_traits[dst->type].from_float) {
  5169. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5170. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5171. size_t id = 0;
  5172. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5173. char * dst_ptr = (char *) dst->data;
  5174. for (int i03 = 0; i03 < ne03; i03++) {
  5175. for (int i02 = 0; i02 < ne02; i02++) {
  5176. id += rs * ir0;
  5177. for (int i01 = ir0; i01 < ir1; i01++) {
  5178. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5179. for (int i00 = 0; i00 < ne00; i00++) {
  5180. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5181. }
  5182. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5183. id += rs;
  5184. }
  5185. id += rs * (ne01 - ir1);
  5186. }
  5187. }
  5188. } else {
  5189. GGML_ASSERT(false); // TODO: implement
  5190. }
  5191. } else {
  5192. //printf("%s: this is not optimal - fix me\n", __func__);
  5193. if (dst->type == GGML_TYPE_F32) {
  5194. size_t id = 0;
  5195. float * dst_ptr = (float *) dst->data;
  5196. for (int i03 = 0; i03 < ne03; i03++) {
  5197. for (int i02 = 0; i02 < ne02; i02++) {
  5198. id += ne00 * ir0;
  5199. for (int i01 = ir0; i01 < ir1; i01++) {
  5200. for (int i00 = 0; i00 < ne00; i00++) {
  5201. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5202. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5203. id++;
  5204. }
  5205. }
  5206. id += ne00 * (ne01 - ir1);
  5207. }
  5208. }
  5209. } else if (dst->type == GGML_TYPE_F16) {
  5210. size_t id = 0;
  5211. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5212. for (int i03 = 0; i03 < ne03; i03++) {
  5213. for (int i02 = 0; i02 < ne02; i02++) {
  5214. id += ne00 * ir0;
  5215. for (int i01 = ir0; i01 < ir1; i01++) {
  5216. for (int i00 = 0; i00 < ne00; i00++) {
  5217. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5218. dst_ptr[id] = *src0_ptr;
  5219. id++;
  5220. }
  5221. }
  5222. id += ne00 * (ne01 - ir1);
  5223. }
  5224. }
  5225. } else {
  5226. GGML_ASSERT(false); // TODO: implement
  5227. }
  5228. }
  5229. return;
  5230. }
  5231. // dst counters
  5232. int64_t i10 = 0;
  5233. int64_t i11 = 0;
  5234. int64_t i12 = 0;
  5235. int64_t i13 = 0;
  5236. if (dst->type == GGML_TYPE_F16) {
  5237. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5238. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5239. i10 += ne00 * ir0;
  5240. while (i10 >= ne0) {
  5241. i10 -= ne0;
  5242. if (++i11 == ne1) {
  5243. i11 = 0;
  5244. if (++i12 == ne2) {
  5245. i12 = 0;
  5246. if (++i13 == ne3) {
  5247. i13 = 0;
  5248. }
  5249. }
  5250. }
  5251. }
  5252. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5253. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5254. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5255. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5256. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5257. if (++i10 == ne00) {
  5258. i10 = 0;
  5259. if (++i11 == ne01) {
  5260. i11 = 0;
  5261. if (++i12 == ne02) {
  5262. i12 = 0;
  5263. if (++i13 == ne03) {
  5264. i13 = 0;
  5265. }
  5266. }
  5267. }
  5268. }
  5269. }
  5270. }
  5271. i10 += ne00 * (ne01 - ir1);
  5272. while (i10 >= ne0) {
  5273. i10 -= ne0;
  5274. if (++i11 == ne1) {
  5275. i11 = 0;
  5276. if (++i12 == ne2) {
  5277. i12 = 0;
  5278. if (++i13 == ne3) {
  5279. i13 = 0;
  5280. }
  5281. }
  5282. }
  5283. }
  5284. }
  5285. }
  5286. } else if (dst->type == GGML_TYPE_F32) {
  5287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5289. i10 += ne00 * ir0;
  5290. while (i10 >= ne0) {
  5291. i10 -= ne0;
  5292. if (++i11 == ne1) {
  5293. i11 = 0;
  5294. if (++i12 == ne2) {
  5295. i12 = 0;
  5296. if (++i13 == ne3) {
  5297. i13 = 0;
  5298. }
  5299. }
  5300. }
  5301. }
  5302. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5303. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5304. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5305. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5306. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5307. if (++i10 == ne0) {
  5308. i10 = 0;
  5309. if (++i11 == ne1) {
  5310. i11 = 0;
  5311. if (++i12 == ne2) {
  5312. i12 = 0;
  5313. if (++i13 == ne3) {
  5314. i13 = 0;
  5315. }
  5316. }
  5317. }
  5318. }
  5319. }
  5320. }
  5321. i10 += ne00 * (ne01 - ir1);
  5322. while (i10 >= ne0) {
  5323. i10 -= ne0;
  5324. if (++i11 == ne1) {
  5325. i11 = 0;
  5326. if (++i12 == ne2) {
  5327. i12 = 0;
  5328. if (++i13 == ne3) {
  5329. i13 = 0;
  5330. }
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. } else {
  5337. GGML_ASSERT(false); // TODO: implement
  5338. }
  5339. }
  5340. static void ggml_compute_forward_dup_f32(
  5341. const struct ggml_compute_params * params,
  5342. const struct ggml_tensor * src0,
  5343. struct ggml_tensor * dst) {
  5344. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5346. return;
  5347. }
  5348. GGML_TENSOR_UNARY_OP_LOCALS
  5349. const int ith = params->ith; // thread index
  5350. const int nth = params->nth; // number of threads
  5351. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5352. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5353. return;
  5354. }
  5355. // parallelize by rows
  5356. const int nr = ne01;
  5357. // number of rows per thread
  5358. const int dr = (nr + nth - 1) / nth;
  5359. // row range for this thread
  5360. const int ir0 = dr * ith;
  5361. const int ir1 = MIN(ir0 + dr, nr);
  5362. if (src0->type == dst->type &&
  5363. ne00 == ne0 &&
  5364. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5365. // copy by rows
  5366. const size_t rs = ne00*nb00;
  5367. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5368. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5369. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5370. memcpy(
  5371. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5372. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5373. rs);
  5374. }
  5375. }
  5376. }
  5377. return;
  5378. }
  5379. if (ggml_is_contiguous(dst)) {
  5380. // TODO: simplify
  5381. if (nb00 == sizeof(float)) {
  5382. if (dst->type == GGML_TYPE_F32) {
  5383. size_t id = 0;
  5384. const size_t rs = ne00 * nb00;
  5385. char * dst_ptr = (char *) dst->data;
  5386. for (int i03 = 0; i03 < ne03; i03++) {
  5387. for (int i02 = 0; i02 < ne02; i02++) {
  5388. id += rs * ir0;
  5389. for (int i01 = ir0; i01 < ir1; i01++) {
  5390. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5391. memcpy(dst_ptr + id, src0_ptr, rs);
  5392. id += rs;
  5393. }
  5394. id += rs * (ne01 - ir1);
  5395. }
  5396. }
  5397. } else if (type_traits[dst->type].from_float) {
  5398. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5399. size_t id = 0;
  5400. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5401. char * dst_ptr = (char *) dst->data;
  5402. for (int i03 = 0; i03 < ne03; i03++) {
  5403. for (int i02 = 0; i02 < ne02; i02++) {
  5404. id += rs * ir0;
  5405. for (int i01 = ir0; i01 < ir1; i01++) {
  5406. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5407. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5408. id += rs;
  5409. }
  5410. id += rs * (ne01 - ir1);
  5411. }
  5412. }
  5413. } else {
  5414. GGML_ASSERT(false); // TODO: implement
  5415. }
  5416. } else {
  5417. //printf("%s: this is not optimal - fix me\n", __func__);
  5418. if (dst->type == GGML_TYPE_F32) {
  5419. size_t id = 0;
  5420. float * dst_ptr = (float *) dst->data;
  5421. for (int i03 = 0; i03 < ne03; i03++) {
  5422. for (int i02 = 0; i02 < ne02; i02++) {
  5423. id += ne00 * ir0;
  5424. for (int i01 = ir0; i01 < ir1; i01++) {
  5425. for (int i00 = 0; i00 < ne00; i00++) {
  5426. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5427. dst_ptr[id] = *src0_ptr;
  5428. id++;
  5429. }
  5430. }
  5431. id += ne00 * (ne01 - ir1);
  5432. }
  5433. }
  5434. } else if (dst->type == GGML_TYPE_F16) {
  5435. size_t id = 0;
  5436. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5437. for (int i03 = 0; i03 < ne03; i03++) {
  5438. for (int i02 = 0; i02 < ne02; i02++) {
  5439. id += ne00 * ir0;
  5440. for (int i01 = ir0; i01 < ir1; i01++) {
  5441. for (int i00 = 0; i00 < ne00; i00++) {
  5442. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5443. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5444. id++;
  5445. }
  5446. }
  5447. id += ne00 * (ne01 - ir1);
  5448. }
  5449. }
  5450. } else {
  5451. GGML_ASSERT(false); // TODO: implement
  5452. }
  5453. }
  5454. return;
  5455. }
  5456. // dst counters
  5457. int64_t i10 = 0;
  5458. int64_t i11 = 0;
  5459. int64_t i12 = 0;
  5460. int64_t i13 = 0;
  5461. if (dst->type == GGML_TYPE_F32) {
  5462. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5463. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5464. i10 += ne00 * ir0;
  5465. while (i10 >= ne0) {
  5466. i10 -= ne0;
  5467. if (++i11 == ne1) {
  5468. i11 = 0;
  5469. if (++i12 == ne2) {
  5470. i12 = 0;
  5471. if (++i13 == ne3) {
  5472. i13 = 0;
  5473. }
  5474. }
  5475. }
  5476. }
  5477. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5478. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5479. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5480. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5481. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5482. if (++i10 == ne0) {
  5483. i10 = 0;
  5484. if (++i11 == ne1) {
  5485. i11 = 0;
  5486. if (++i12 == ne2) {
  5487. i12 = 0;
  5488. if (++i13 == ne3) {
  5489. i13 = 0;
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. }
  5496. i10 += ne00 * (ne01 - ir1);
  5497. while (i10 >= ne0) {
  5498. i10 -= ne0;
  5499. if (++i11 == ne1) {
  5500. i11 = 0;
  5501. if (++i12 == ne2) {
  5502. i12 = 0;
  5503. if (++i13 == ne3) {
  5504. i13 = 0;
  5505. }
  5506. }
  5507. }
  5508. }
  5509. }
  5510. }
  5511. } else if (dst->type == GGML_TYPE_F16) {
  5512. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5513. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5514. i10 += ne00 * ir0;
  5515. while (i10 >= ne0) {
  5516. i10 -= ne0;
  5517. if (++i11 == ne1) {
  5518. i11 = 0;
  5519. if (++i12 == ne2) {
  5520. i12 = 0;
  5521. if (++i13 == ne3) {
  5522. i13 = 0;
  5523. }
  5524. }
  5525. }
  5526. }
  5527. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5529. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5530. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5531. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5532. if (++i10 == ne0) {
  5533. i10 = 0;
  5534. if (++i11 == ne1) {
  5535. i11 = 0;
  5536. if (++i12 == ne2) {
  5537. i12 = 0;
  5538. if (++i13 == ne3) {
  5539. i13 = 0;
  5540. }
  5541. }
  5542. }
  5543. }
  5544. }
  5545. }
  5546. i10 += ne00 * (ne01 - ir1);
  5547. while (i10 >= ne0) {
  5548. i10 -= ne0;
  5549. if (++i11 == ne1) {
  5550. i11 = 0;
  5551. if (++i12 == ne2) {
  5552. i12 = 0;
  5553. if (++i13 == ne3) {
  5554. i13 = 0;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. }
  5560. }
  5561. } else {
  5562. GGML_ASSERT(false); // TODO: implement
  5563. }
  5564. }
  5565. static void ggml_compute_forward_dup(
  5566. const struct ggml_compute_params * params,
  5567. const struct ggml_tensor * src0,
  5568. struct ggml_tensor * dst) {
  5569. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5570. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5571. return;
  5572. }
  5573. switch (src0->type) {
  5574. case GGML_TYPE_F16:
  5575. {
  5576. ggml_compute_forward_dup_f16(params, src0, dst);
  5577. } break;
  5578. case GGML_TYPE_F32:
  5579. {
  5580. ggml_compute_forward_dup_f32(params, src0, dst);
  5581. } break;
  5582. default:
  5583. {
  5584. GGML_ASSERT(false);
  5585. } break;
  5586. }
  5587. }
  5588. // ggml_compute_forward_add
  5589. static void ggml_compute_forward_add_f32(
  5590. const struct ggml_compute_params * params,
  5591. const struct ggml_tensor * src0,
  5592. const struct ggml_tensor * src1,
  5593. struct ggml_tensor * dst) {
  5594. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5596. return;
  5597. }
  5598. const int ith = params->ith;
  5599. const int nth = params->nth;
  5600. const int nr = ggml_nrows(src0);
  5601. GGML_TENSOR_BINARY_OP_LOCALS
  5602. GGML_ASSERT( nb0 == sizeof(float));
  5603. GGML_ASSERT(nb00 == sizeof(float));
  5604. // rows per thread
  5605. const int dr = (nr + nth - 1)/nth;
  5606. // row range for this thread
  5607. const int ir0 = dr*ith;
  5608. const int ir1 = MIN(ir0 + dr, nr);
  5609. if (nb10 == sizeof(float)) {
  5610. for (int ir = ir0; ir < ir1; ++ir) {
  5611. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5612. const int64_t i03 = ir/(ne02*ne01);
  5613. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5614. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5615. const int64_t i13 = i03 % ne13;
  5616. const int64_t i12 = i02 % ne12;
  5617. const int64_t i11 = i01 % ne11;
  5618. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5619. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5620. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5621. #ifdef GGML_USE_ACCELERATE
  5622. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5623. #else
  5624. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5625. #endif
  5626. }
  5627. } else {
  5628. // src1 is not contiguous
  5629. for (int ir = ir0; ir < ir1; ++ir) {
  5630. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5631. const int64_t i03 = ir/(ne02*ne01);
  5632. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5633. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5634. const int64_t i13 = i03 % ne13;
  5635. const int64_t i12 = i02 % ne12;
  5636. const int64_t i11 = i01 % ne11;
  5637. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5638. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5639. for (int i0 = 0; i0 < ne0; i0++) {
  5640. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5641. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5642. }
  5643. }
  5644. }
  5645. }
  5646. static void ggml_compute_forward_add_f16_f32(
  5647. const struct ggml_compute_params * params,
  5648. const struct ggml_tensor * src0,
  5649. const struct ggml_tensor * src1,
  5650. struct ggml_tensor * dst) {
  5651. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5653. return;
  5654. }
  5655. const int ith = params->ith;
  5656. const int nth = params->nth;
  5657. const int nr = ggml_nrows(src0);
  5658. GGML_TENSOR_BINARY_OP_LOCALS
  5659. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5660. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5661. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5662. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5663. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5664. // rows per thread
  5665. const int dr = (nr + nth - 1)/nth;
  5666. // row range for this thread
  5667. const int ir0 = dr*ith;
  5668. const int ir1 = MIN(ir0 + dr, nr);
  5669. if (nb10 == sizeof(float)) {
  5670. for (int ir = ir0; ir < ir1; ++ir) {
  5671. // src0, src1 and dst are same shape => same indices
  5672. const int i3 = ir/(ne2*ne1);
  5673. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5674. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5675. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5676. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5677. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5678. for (int i = 0; i < ne0; i++) {
  5679. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5680. }
  5681. }
  5682. }
  5683. else {
  5684. // src1 is not contiguous
  5685. GGML_ASSERT(false);
  5686. }
  5687. }
  5688. static void ggml_compute_forward_add_f16_f16(
  5689. const struct ggml_compute_params * params,
  5690. const struct ggml_tensor * src0,
  5691. const struct ggml_tensor * src1,
  5692. struct ggml_tensor * dst) {
  5693. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5695. return;
  5696. }
  5697. const int ith = params->ith;
  5698. const int nth = params->nth;
  5699. const int nr = ggml_nrows(src0);
  5700. GGML_TENSOR_BINARY_OP_LOCALS
  5701. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5702. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5703. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5704. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5705. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5706. // rows per thread
  5707. const int dr = (nr + nth - 1)/nth;
  5708. // row range for this thread
  5709. const int ir0 = dr*ith;
  5710. const int ir1 = MIN(ir0 + dr, nr);
  5711. if (nb10 == sizeof(ggml_fp16_t)) {
  5712. for (int ir = ir0; ir < ir1; ++ir) {
  5713. // src0, src1 and dst are same shape => same indices
  5714. const int i3 = ir/(ne2*ne1);
  5715. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5716. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5717. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5718. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5719. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5720. for (int i = 0; i < ne0; i++) {
  5721. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5722. }
  5723. }
  5724. }
  5725. else {
  5726. // src1 is not contiguous
  5727. GGML_ASSERT(false);
  5728. }
  5729. }
  5730. static void ggml_compute_forward_add_q_f32(
  5731. const struct ggml_compute_params * params,
  5732. const struct ggml_tensor * src0,
  5733. const struct ggml_tensor * src1,
  5734. struct ggml_tensor * dst) {
  5735. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5736. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5737. return;
  5738. }
  5739. const int nr = ggml_nrows(src0);
  5740. GGML_TENSOR_BINARY_OP_LOCALS
  5741. const int ith = params->ith;
  5742. const int nth = params->nth;
  5743. const enum ggml_type type = src0->type;
  5744. const enum ggml_type dtype = dst->type;
  5745. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5746. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5747. // we don't support permuted src0 or src1
  5748. GGML_ASSERT(nb00 == ggml_type_size(type));
  5749. GGML_ASSERT(nb10 == sizeof(float));
  5750. // dst cannot be transposed or permuted
  5751. GGML_ASSERT(nb0 <= nb1);
  5752. GGML_ASSERT(nb1 <= nb2);
  5753. GGML_ASSERT(nb2 <= nb3);
  5754. GGML_ASSERT(ggml_is_quantized(src0->type));
  5755. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5756. // rows per thread
  5757. const int dr = (nr + nth - 1)/nth;
  5758. // row range for this thread
  5759. const int ir0 = dr*ith;
  5760. const int ir1 = MIN(ir0 + dr, nr);
  5761. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5762. for (int ir = ir0; ir < ir1; ++ir) {
  5763. // src0 indices
  5764. const int i03 = ir/(ne02*ne01);
  5765. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5766. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5767. // src1 and dst are same shape as src0 => same indices
  5768. const int i13 = i03;
  5769. const int i12 = i02;
  5770. const int i11 = i01;
  5771. const int i3 = i03;
  5772. const int i2 = i02;
  5773. const int i1 = i01;
  5774. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5775. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5776. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5777. assert(ne00 % 32 == 0);
  5778. // unquantize row from src0 to temp buffer
  5779. dequantize_row_q(src0_row, wdata, ne00);
  5780. // add src1
  5781. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5782. // quantize row to dst
  5783. if (quantize_row_q != NULL) {
  5784. quantize_row_q(wdata, dst_row, ne00);
  5785. } else {
  5786. memcpy(dst_row, wdata, ne0*nb0);
  5787. }
  5788. }
  5789. }
  5790. static void ggml_compute_forward_add(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. const struct ggml_tensor * src1,
  5794. struct ggml_tensor * dst) {
  5795. switch (src0->type) {
  5796. case GGML_TYPE_F32:
  5797. {
  5798. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5799. } break;
  5800. case GGML_TYPE_F16:
  5801. {
  5802. if (src1->type == GGML_TYPE_F16) {
  5803. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5804. }
  5805. else if (src1->type == GGML_TYPE_F32) {
  5806. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5807. }
  5808. else {
  5809. GGML_ASSERT(false);
  5810. }
  5811. } break;
  5812. case GGML_TYPE_Q4_0:
  5813. case GGML_TYPE_Q4_1:
  5814. case GGML_TYPE_Q5_0:
  5815. case GGML_TYPE_Q5_1:
  5816. case GGML_TYPE_Q8_0:
  5817. case GGML_TYPE_Q2_K:
  5818. case GGML_TYPE_Q3_K:
  5819. case GGML_TYPE_Q4_K:
  5820. case GGML_TYPE_Q5_K:
  5821. case GGML_TYPE_Q6_K:
  5822. {
  5823. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5824. } break;
  5825. default:
  5826. {
  5827. GGML_ASSERT(false);
  5828. } break;
  5829. }
  5830. }
  5831. // ggml_compute_forward_add1
  5832. static void ggml_compute_forward_add1_f32(
  5833. const struct ggml_compute_params * params,
  5834. const struct ggml_tensor * src0,
  5835. const struct ggml_tensor * src1,
  5836. struct ggml_tensor * dst) {
  5837. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5838. GGML_ASSERT(ggml_is_scalar(src1));
  5839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5840. return;
  5841. }
  5842. const int ith = params->ith;
  5843. const int nth = params->nth;
  5844. const int nr = ggml_nrows(src0);
  5845. GGML_TENSOR_UNARY_OP_LOCALS
  5846. GGML_ASSERT( nb0 == sizeof(float));
  5847. GGML_ASSERT(nb00 == sizeof(float));
  5848. // rows per thread
  5849. const int dr = (nr + nth - 1)/nth;
  5850. // row range for this thread
  5851. const int ir0 = dr*ith;
  5852. const int ir1 = MIN(ir0 + dr, nr);
  5853. for (int ir = ir0; ir < ir1; ++ir) {
  5854. // src0 and dst are same shape => same indices
  5855. const int i3 = ir/(ne2*ne1);
  5856. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5857. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5858. #ifdef GGML_USE_ACCELERATE
  5859. UNUSED(ggml_vec_add1_f32);
  5860. vDSP_vadd(
  5861. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5862. (float *) ((char *) src1->data), 0,
  5863. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5864. ne0);
  5865. #else
  5866. ggml_vec_add1_f32(ne0,
  5867. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5868. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5869. *(float *) src1->data);
  5870. #endif
  5871. }
  5872. }
  5873. static void ggml_compute_forward_add1_f16_f32(
  5874. const struct ggml_compute_params * params,
  5875. const struct ggml_tensor * src0,
  5876. const struct ggml_tensor * src1,
  5877. struct ggml_tensor * dst) {
  5878. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5879. GGML_ASSERT(ggml_is_scalar(src1));
  5880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5881. return;
  5882. }
  5883. // scalar to add
  5884. const float v = *(float *) src1->data;
  5885. const int ith = params->ith;
  5886. const int nth = params->nth;
  5887. const int nr = ggml_nrows(src0);
  5888. GGML_TENSOR_UNARY_OP_LOCALS
  5889. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5890. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5891. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5892. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5893. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5894. // rows per thread
  5895. const int dr = (nr + nth - 1)/nth;
  5896. // row range for this thread
  5897. const int ir0 = dr*ith;
  5898. const int ir1 = MIN(ir0 + dr, nr);
  5899. for (int ir = ir0; ir < ir1; ++ir) {
  5900. // src0 and dst are same shape => same indices
  5901. const int i3 = ir/(ne2*ne1);
  5902. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5903. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5904. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5905. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5906. for (int i = 0; i < ne0; i++) {
  5907. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5908. }
  5909. }
  5910. }
  5911. static void ggml_compute_forward_add1_f16_f16(
  5912. const struct ggml_compute_params * params,
  5913. const struct ggml_tensor * src0,
  5914. const struct ggml_tensor * src1,
  5915. struct ggml_tensor * dst) {
  5916. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5917. GGML_ASSERT(ggml_is_scalar(src1));
  5918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5919. return;
  5920. }
  5921. // scalar to add
  5922. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5923. const int ith = params->ith;
  5924. const int nth = params->nth;
  5925. const int nr = ggml_nrows(src0);
  5926. GGML_TENSOR_UNARY_OP_LOCALS
  5927. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5928. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5929. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5930. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5931. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5932. // rows per thread
  5933. const int dr = (nr + nth - 1)/nth;
  5934. // row range for this thread
  5935. const int ir0 = dr*ith;
  5936. const int ir1 = MIN(ir0 + dr, nr);
  5937. for (int ir = ir0; ir < ir1; ++ir) {
  5938. // src0 and dst are same shape => same indices
  5939. const int i3 = ir/(ne2*ne1);
  5940. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5941. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5942. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5943. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5944. for (int i = 0; i < ne0; i++) {
  5945. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5946. }
  5947. }
  5948. }
  5949. static void ggml_compute_forward_add1_q_f32(
  5950. const struct ggml_compute_params * params,
  5951. const struct ggml_tensor * src0,
  5952. const struct ggml_tensor * src1,
  5953. struct ggml_tensor * dst) {
  5954. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5955. GGML_ASSERT(ggml_is_scalar(src1));
  5956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5957. return;
  5958. }
  5959. // scalar to add
  5960. const float v = *(float *) src1->data;
  5961. const int ith = params->ith;
  5962. const int nth = params->nth;
  5963. const int nr = ggml_nrows(src0);
  5964. GGML_TENSOR_UNARY_OP_LOCALS
  5965. const enum ggml_type type = src0->type;
  5966. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5967. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  5968. // we don't support permuted src0
  5969. GGML_ASSERT(nb00 == ggml_type_size(type));
  5970. // dst cannot be transposed or permuted
  5971. GGML_ASSERT(nb0 <= nb1);
  5972. GGML_ASSERT(nb1 <= nb2);
  5973. GGML_ASSERT(nb2 <= nb3);
  5974. GGML_ASSERT(ggml_is_quantized(src0->type));
  5975. GGML_ASSERT(dst->type == src0->type);
  5976. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5977. // rows per thread
  5978. const int dr = (nr + nth - 1)/nth;
  5979. // row range for this thread
  5980. const int ir0 = dr*ith;
  5981. const int ir1 = MIN(ir0 + dr, nr);
  5982. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  5983. for (int ir = ir0; ir < ir1; ++ir) {
  5984. // src0 and dst are same shape => same indices
  5985. const int i3 = ir/(ne2*ne1);
  5986. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5987. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5988. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  5989. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  5990. assert(ne0 % 32 == 0);
  5991. // unquantize row from src0 to temp buffer
  5992. dequantize_row_q(src0_row, wdata, ne0);
  5993. // add src1
  5994. ggml_vec_acc1_f32(ne0, wdata, v);
  5995. // quantize row to dst
  5996. quantize_row_q(wdata, dst_row, ne0);
  5997. }
  5998. }
  5999. static void ggml_compute_forward_add1(
  6000. const struct ggml_compute_params * params,
  6001. const struct ggml_tensor * src0,
  6002. const struct ggml_tensor * src1,
  6003. struct ggml_tensor * dst) {
  6004. switch (src0->type) {
  6005. case GGML_TYPE_F32:
  6006. {
  6007. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6008. } break;
  6009. case GGML_TYPE_F16:
  6010. {
  6011. if (src1->type == GGML_TYPE_F16) {
  6012. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6013. }
  6014. else if (src1->type == GGML_TYPE_F32) {
  6015. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6016. }
  6017. else {
  6018. GGML_ASSERT(false);
  6019. }
  6020. } break;
  6021. case GGML_TYPE_Q4_0:
  6022. case GGML_TYPE_Q4_1:
  6023. case GGML_TYPE_Q5_0:
  6024. case GGML_TYPE_Q5_1:
  6025. case GGML_TYPE_Q8_0:
  6026. case GGML_TYPE_Q8_1:
  6027. case GGML_TYPE_Q2_K:
  6028. case GGML_TYPE_Q3_K:
  6029. case GGML_TYPE_Q4_K:
  6030. case GGML_TYPE_Q5_K:
  6031. case GGML_TYPE_Q6_K:
  6032. {
  6033. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6034. } break;
  6035. default:
  6036. {
  6037. GGML_ASSERT(false);
  6038. } break;
  6039. }
  6040. }
  6041. // ggml_compute_forward_acc
  6042. static void ggml_compute_forward_acc_f32(
  6043. const struct ggml_compute_params * params,
  6044. const struct ggml_tensor * src0,
  6045. const struct ggml_tensor * src1,
  6046. struct ggml_tensor * dst) {
  6047. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6048. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6049. // view src0 and dst with these strides and data offset inbytes during acc
  6050. // nb0 is implicitely element_size because src0 and dst are contiguous
  6051. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6052. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6053. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6054. size_t offset = ((int32_t *) dst->op_params)[3];
  6055. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6056. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6057. // memcpy needs to be synchronized across threads to avoid race conditions.
  6058. // => do it in INIT phase
  6059. memcpy(
  6060. ((char *) dst->data),
  6061. ((char *) src0->data),
  6062. ggml_nbytes(dst));
  6063. }
  6064. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6065. return;
  6066. }
  6067. const int ith = params->ith;
  6068. const int nth = params->nth;
  6069. const int nr = ggml_nrows(src1);
  6070. const int nc = src1->ne[0];
  6071. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6072. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6073. // src0 and dst as viewed during acc
  6074. const size_t nb0 = ggml_element_size(src0);
  6075. const size_t nb00 = nb0;
  6076. const size_t nb01 = nb1;
  6077. const size_t nb02 = nb2;
  6078. const size_t nb03 = nb3;
  6079. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6080. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6081. GGML_ASSERT(nb10 == sizeof(float));
  6082. // rows per thread
  6083. const int dr = (nr + nth - 1)/nth;
  6084. // row range for this thread
  6085. const int ir0 = dr*ith;
  6086. const int ir1 = MIN(ir0 + dr, nr);
  6087. for (int ir = ir0; ir < ir1; ++ir) {
  6088. // src0 and dst are viewed with shape of src1 and offset
  6089. // => same indices
  6090. const int i3 = ir/(ne12*ne11);
  6091. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6092. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6093. #ifdef GGML_USE_ACCELERATE
  6094. vDSP_vadd(
  6095. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6096. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6097. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6098. #else
  6099. ggml_vec_add_f32(nc,
  6100. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6101. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6102. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6103. #endif
  6104. }
  6105. }
  6106. static void ggml_compute_forward_acc(
  6107. const struct ggml_compute_params * params,
  6108. const struct ggml_tensor * src0,
  6109. const struct ggml_tensor * src1,
  6110. struct ggml_tensor * dst) {
  6111. switch (src0->type) {
  6112. case GGML_TYPE_F32:
  6113. {
  6114. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6115. } break;
  6116. case GGML_TYPE_F16:
  6117. case GGML_TYPE_Q4_0:
  6118. case GGML_TYPE_Q4_1:
  6119. case GGML_TYPE_Q5_0:
  6120. case GGML_TYPE_Q5_1:
  6121. case GGML_TYPE_Q8_0:
  6122. case GGML_TYPE_Q8_1:
  6123. case GGML_TYPE_Q2_K:
  6124. case GGML_TYPE_Q3_K:
  6125. case GGML_TYPE_Q4_K:
  6126. case GGML_TYPE_Q5_K:
  6127. case GGML_TYPE_Q6_K:
  6128. default:
  6129. {
  6130. GGML_ASSERT(false);
  6131. } break;
  6132. }
  6133. }
  6134. // ggml_compute_forward_sub
  6135. static void ggml_compute_forward_sub_f32(
  6136. const struct ggml_compute_params * params,
  6137. const struct ggml_tensor * src0,
  6138. const struct ggml_tensor * src1,
  6139. struct ggml_tensor * dst) {
  6140. assert(params->ith == 0);
  6141. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6143. return;
  6144. }
  6145. const int nr = ggml_nrows(src0);
  6146. GGML_TENSOR_BINARY_OP_LOCALS
  6147. GGML_ASSERT( nb0 == sizeof(float));
  6148. GGML_ASSERT(nb00 == sizeof(float));
  6149. if (nb10 == sizeof(float)) {
  6150. for (int ir = 0; ir < nr; ++ir) {
  6151. // src0, src1 and dst are same shape => same indices
  6152. const int i3 = ir/(ne2*ne1);
  6153. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6154. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6155. #ifdef GGML_USE_ACCELERATE
  6156. vDSP_vsub(
  6157. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6158. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6159. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6160. ne0);
  6161. #else
  6162. ggml_vec_sub_f32(ne0,
  6163. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6164. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6165. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6166. #endif
  6167. // }
  6168. // }
  6169. }
  6170. } else {
  6171. // src1 is not contiguous
  6172. for (int ir = 0; ir < nr; ++ir) {
  6173. // src0, src1 and dst are same shape => same indices
  6174. const int i3 = ir/(ne2*ne1);
  6175. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6176. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6177. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6178. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6179. for (int i0 = 0; i0 < ne0; i0++) {
  6180. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6181. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6182. }
  6183. }
  6184. }
  6185. }
  6186. static void ggml_compute_forward_sub(
  6187. const struct ggml_compute_params * params,
  6188. const struct ggml_tensor * src0,
  6189. const struct ggml_tensor * src1,
  6190. struct ggml_tensor * dst) {
  6191. switch (src0->type) {
  6192. case GGML_TYPE_F32:
  6193. {
  6194. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6195. } break;
  6196. default:
  6197. {
  6198. GGML_ASSERT(false);
  6199. } break;
  6200. }
  6201. }
  6202. // ggml_compute_forward_mul
  6203. static void ggml_compute_forward_mul_f32(
  6204. const struct ggml_compute_params * params,
  6205. const struct ggml_tensor * src0,
  6206. const struct ggml_tensor * src1,
  6207. struct ggml_tensor * dst) {
  6208. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6209. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6210. return;
  6211. }
  6212. const int ith = params->ith;
  6213. const int nth = params->nth;
  6214. #ifdef GGML_USE_CLBLAST
  6215. if (src1->backend == GGML_BACKEND_GPU) {
  6216. if (ith == 0) {
  6217. ggml_cl_mul(src0, src1, dst);
  6218. }
  6219. return;
  6220. }
  6221. #endif
  6222. const int64_t nr = ggml_nrows(src0);
  6223. GGML_TENSOR_BINARY_OP_LOCALS
  6224. GGML_ASSERT( nb0 == sizeof(float));
  6225. GGML_ASSERT(nb00 == sizeof(float));
  6226. GGML_ASSERT(ne00 == ne10);
  6227. if (nb10 == sizeof(float)) {
  6228. for (int64_t ir = ith; ir < nr; ir += nth) {
  6229. // src0 and dst are same shape => same indices
  6230. const int64_t i03 = ir/(ne02*ne01);
  6231. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6232. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6233. const int64_t i13 = i03 % ne13;
  6234. const int64_t i12 = i02 % ne12;
  6235. const int64_t i11 = i01 % ne11;
  6236. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6237. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6238. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6239. #ifdef GGML_USE_ACCELERATE
  6240. UNUSED(ggml_vec_mul_f32);
  6241. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6242. #else
  6243. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6244. #endif
  6245. // }
  6246. // }
  6247. }
  6248. } else {
  6249. // src1 is not contiguous
  6250. for (int64_t ir = ith; ir < nr; ir += nth) {
  6251. // src0 and dst are same shape => same indices
  6252. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6253. const int64_t i03 = ir/(ne02*ne01);
  6254. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6255. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6256. const int64_t i13 = i03 % ne13;
  6257. const int64_t i12 = i02 % ne12;
  6258. const int64_t i11 = i01 % ne11;
  6259. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6260. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6261. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6262. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6263. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6264. }
  6265. }
  6266. }
  6267. }
  6268. static void ggml_compute_forward_mul(
  6269. const struct ggml_compute_params * params,
  6270. const struct ggml_tensor * src0,
  6271. const struct ggml_tensor * src1,
  6272. struct ggml_tensor * dst) {
  6273. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6274. switch (src0->type) {
  6275. case GGML_TYPE_F32:
  6276. {
  6277. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6278. } break;
  6279. default:
  6280. {
  6281. GGML_ASSERT(false);
  6282. } break;
  6283. }
  6284. }
  6285. // ggml_compute_forward_div
  6286. static void ggml_compute_forward_div_f32(
  6287. const struct ggml_compute_params * params,
  6288. const struct ggml_tensor * src0,
  6289. const struct ggml_tensor * src1,
  6290. struct ggml_tensor * dst) {
  6291. assert(params->ith == 0);
  6292. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6294. return;
  6295. }
  6296. const int nr = ggml_nrows(src0);
  6297. GGML_TENSOR_BINARY_OP_LOCALS
  6298. GGML_ASSERT( nb0 == sizeof(float));
  6299. GGML_ASSERT(nb00 == sizeof(float));
  6300. if (nb10 == sizeof(float)) {
  6301. for (int ir = 0; ir < nr; ++ir) {
  6302. // src0, src1 and dst are same shape => same indices
  6303. const int i3 = ir/(ne2*ne1);
  6304. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6305. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6306. #ifdef GGML_USE_ACCELERATE
  6307. UNUSED(ggml_vec_div_f32);
  6308. vDSP_vdiv(
  6309. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6310. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6311. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6312. ne0);
  6313. #else
  6314. ggml_vec_div_f32(ne0,
  6315. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6316. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6317. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6318. #endif
  6319. // }
  6320. // }
  6321. }
  6322. } else {
  6323. // src1 is not contiguous
  6324. for (int ir = 0; ir < nr; ++ir) {
  6325. // src0, src1 and dst are same shape => same indices
  6326. const int i3 = ir/(ne2*ne1);
  6327. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6328. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6329. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6330. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6331. for (int i0 = 0; i0 < ne0; i0++) {
  6332. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6333. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6334. }
  6335. }
  6336. }
  6337. }
  6338. static void ggml_compute_forward_div(
  6339. const struct ggml_compute_params * params,
  6340. const struct ggml_tensor * src0,
  6341. const struct ggml_tensor * src1,
  6342. struct ggml_tensor * dst) {
  6343. switch (src0->type) {
  6344. case GGML_TYPE_F32:
  6345. {
  6346. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6347. } break;
  6348. default:
  6349. {
  6350. GGML_ASSERT(false);
  6351. } break;
  6352. }
  6353. }
  6354. // ggml_compute_forward_sqr
  6355. static void ggml_compute_forward_sqr_f32(
  6356. const struct ggml_compute_params * params,
  6357. const struct ggml_tensor * src0,
  6358. struct ggml_tensor * dst) {
  6359. assert(params->ith == 0);
  6360. assert(ggml_are_same_shape(src0, dst));
  6361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6362. return;
  6363. }
  6364. const int n = ggml_nrows(src0);
  6365. const int nc = src0->ne[0];
  6366. assert( dst->nb[0] == sizeof(float));
  6367. assert(src0->nb[0] == sizeof(float));
  6368. for (int i = 0; i < n; i++) {
  6369. ggml_vec_sqr_f32(nc,
  6370. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6371. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6372. }
  6373. }
  6374. static void ggml_compute_forward_sqr(
  6375. const struct ggml_compute_params * params,
  6376. const struct ggml_tensor * src0,
  6377. struct ggml_tensor * dst) {
  6378. switch (src0->type) {
  6379. case GGML_TYPE_F32:
  6380. {
  6381. ggml_compute_forward_sqr_f32(params, src0, dst);
  6382. } break;
  6383. default:
  6384. {
  6385. GGML_ASSERT(false);
  6386. } break;
  6387. }
  6388. }
  6389. // ggml_compute_forward_sqrt
  6390. static void ggml_compute_forward_sqrt_f32(
  6391. const struct ggml_compute_params * params,
  6392. const struct ggml_tensor * src0,
  6393. struct ggml_tensor * dst) {
  6394. assert(params->ith == 0);
  6395. assert(ggml_are_same_shape(src0, dst));
  6396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6397. return;
  6398. }
  6399. const int n = ggml_nrows(src0);
  6400. const int nc = src0->ne[0];
  6401. assert( dst->nb[0] == sizeof(float));
  6402. assert(src0->nb[0] == sizeof(float));
  6403. for (int i = 0; i < n; i++) {
  6404. ggml_vec_sqrt_f32(nc,
  6405. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6406. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6407. }
  6408. }
  6409. static void ggml_compute_forward_sqrt(
  6410. const struct ggml_compute_params * params,
  6411. const struct ggml_tensor * src0,
  6412. struct ggml_tensor * dst) {
  6413. switch (src0->type) {
  6414. case GGML_TYPE_F32:
  6415. {
  6416. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6417. } break;
  6418. default:
  6419. {
  6420. GGML_ASSERT(false);
  6421. } break;
  6422. }
  6423. }
  6424. // ggml_compute_forward_log
  6425. static void ggml_compute_forward_log_f32(
  6426. const struct ggml_compute_params * params,
  6427. const struct ggml_tensor * src0,
  6428. struct ggml_tensor * dst) {
  6429. GGML_ASSERT(params->ith == 0);
  6430. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6432. return;
  6433. }
  6434. const int n = ggml_nrows(src0);
  6435. const int nc = src0->ne[0];
  6436. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6437. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6438. for (int i = 0; i < n; i++) {
  6439. ggml_vec_log_f32(nc,
  6440. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6441. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6442. }
  6443. }
  6444. static void ggml_compute_forward_log(
  6445. const struct ggml_compute_params * params,
  6446. const struct ggml_tensor * src0,
  6447. struct ggml_tensor * dst) {
  6448. switch (src0->type) {
  6449. case GGML_TYPE_F32:
  6450. {
  6451. ggml_compute_forward_log_f32(params, src0, dst);
  6452. } break;
  6453. default:
  6454. {
  6455. GGML_ASSERT(false);
  6456. } break;
  6457. }
  6458. }
  6459. // ggml_compute_forward_sum
  6460. static void ggml_compute_forward_sum_f32(
  6461. const struct ggml_compute_params * params,
  6462. const struct ggml_tensor * src0,
  6463. struct ggml_tensor * dst) {
  6464. assert(params->ith == 0);
  6465. assert(ggml_is_scalar(dst));
  6466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6467. return;
  6468. }
  6469. assert(ggml_is_scalar(dst));
  6470. assert(src0->nb[0] == sizeof(float));
  6471. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6472. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6473. ggml_float sum = 0;
  6474. ggml_float row_sum = 0;
  6475. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6476. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6477. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6478. ggml_vec_sum_f32_ggf(ne00,
  6479. &row_sum,
  6480. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6481. sum += row_sum;
  6482. }
  6483. }
  6484. }
  6485. ((float *) dst->data)[0] = sum;
  6486. }
  6487. static void ggml_compute_forward_sum_f16(
  6488. const struct ggml_compute_params * params,
  6489. const struct ggml_tensor * src0,
  6490. struct ggml_tensor * dst) {
  6491. assert(params->ith == 0);
  6492. assert(ggml_is_scalar(dst));
  6493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6494. return;
  6495. }
  6496. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6497. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6498. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6499. float sum = 0;
  6500. float row_sum = 0;
  6501. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6502. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6503. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6504. ggml_vec_sum_f16_ggf(ne00,
  6505. &row_sum,
  6506. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6507. sum += row_sum;
  6508. }
  6509. }
  6510. }
  6511. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6512. }
  6513. static void ggml_compute_forward_sum(
  6514. const struct ggml_compute_params * params,
  6515. const struct ggml_tensor * src0,
  6516. struct ggml_tensor * dst) {
  6517. switch (src0->type) {
  6518. case GGML_TYPE_F32:
  6519. {
  6520. ggml_compute_forward_sum_f32(params, src0, dst);
  6521. } break;
  6522. case GGML_TYPE_F16:
  6523. {
  6524. ggml_compute_forward_sum_f16(params, src0, dst);
  6525. } break;
  6526. default:
  6527. {
  6528. GGML_ASSERT(false);
  6529. } break;
  6530. }
  6531. }
  6532. // ggml_compute_forward_sum_rows
  6533. static void ggml_compute_forward_sum_rows_f32(
  6534. const struct ggml_compute_params * params,
  6535. const struct ggml_tensor * src0,
  6536. struct ggml_tensor * dst) {
  6537. GGML_ASSERT(params->ith == 0);
  6538. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6539. return;
  6540. }
  6541. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6542. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6543. GGML_TENSOR_UNARY_OP_LOCALS
  6544. GGML_ASSERT(ne0 == 1);
  6545. GGML_ASSERT(ne1 == ne01);
  6546. GGML_ASSERT(ne2 == ne02);
  6547. GGML_ASSERT(ne3 == ne03);
  6548. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6549. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6550. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6551. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6552. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6553. float row_sum = 0;
  6554. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6555. dst_row[0] = row_sum;
  6556. }
  6557. }
  6558. }
  6559. }
  6560. static void ggml_compute_forward_sum_rows(
  6561. const struct ggml_compute_params * params,
  6562. const struct ggml_tensor * src0,
  6563. struct ggml_tensor * dst) {
  6564. switch (src0->type) {
  6565. case GGML_TYPE_F32:
  6566. {
  6567. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6568. } break;
  6569. default:
  6570. {
  6571. GGML_ASSERT(false);
  6572. } break;
  6573. }
  6574. }
  6575. // ggml_compute_forward_mean
  6576. static void ggml_compute_forward_mean_f32(
  6577. const struct ggml_compute_params * params,
  6578. const struct ggml_tensor * src0,
  6579. struct ggml_tensor * dst) {
  6580. assert(params->ith == 0);
  6581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6582. return;
  6583. }
  6584. assert(src0->nb[0] == sizeof(float));
  6585. GGML_TENSOR_UNARY_OP_LOCALS
  6586. assert(ne0 == 1);
  6587. assert(ne1 == ne01);
  6588. assert(ne2 == ne02);
  6589. assert(ne3 == ne03);
  6590. UNUSED(ne0);
  6591. UNUSED(ne1);
  6592. UNUSED(ne2);
  6593. UNUSED(ne3);
  6594. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6595. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6596. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6597. ggml_vec_sum_f32(ne00,
  6598. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6599. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6600. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6601. }
  6602. }
  6603. }
  6604. }
  6605. static void ggml_compute_forward_mean(
  6606. const struct ggml_compute_params * params,
  6607. const struct ggml_tensor * src0,
  6608. struct ggml_tensor * dst) {
  6609. switch (src0->type) {
  6610. case GGML_TYPE_F32:
  6611. {
  6612. ggml_compute_forward_mean_f32(params, src0, dst);
  6613. } break;
  6614. default:
  6615. {
  6616. GGML_ASSERT(false);
  6617. } break;
  6618. }
  6619. }
  6620. // ggml_compute_forward_argmax
  6621. static void ggml_compute_forward_argmax_f32(
  6622. const struct ggml_compute_params * params,
  6623. const struct ggml_tensor * src0,
  6624. struct ggml_tensor * dst) {
  6625. assert(params->ith == 0);
  6626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6627. return;
  6628. }
  6629. assert(src0->nb[0] == sizeof(float));
  6630. assert(dst->nb[0] == sizeof(float));
  6631. const int64_t ne00 = src0->ne[0];
  6632. const int64_t ne01 = src0->ne[1];
  6633. const size_t nb01 = src0->nb[1];
  6634. const size_t nb0 = dst->nb[0];
  6635. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6636. float * src = (float *) ((char *) src0->data + i1*nb01);
  6637. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6638. int v = 0;
  6639. ggml_vec_argmax_f32(ne00, &v, src);
  6640. dst_[0] = v;
  6641. }
  6642. }
  6643. static void ggml_compute_forward_argmax(
  6644. const struct ggml_compute_params * params,
  6645. const struct ggml_tensor * src0,
  6646. struct ggml_tensor * dst) {
  6647. switch (src0->type) {
  6648. case GGML_TYPE_F32:
  6649. {
  6650. ggml_compute_forward_argmax_f32(params, src0, dst);
  6651. } break;
  6652. default:
  6653. {
  6654. GGML_ASSERT(false);
  6655. } break;
  6656. }
  6657. }
  6658. // ggml_compute_forward_repeat
  6659. static void ggml_compute_forward_repeat_f32(
  6660. const struct ggml_compute_params * params,
  6661. const struct ggml_tensor * src0,
  6662. struct ggml_tensor * dst) {
  6663. GGML_ASSERT(params->ith == 0);
  6664. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6666. return;
  6667. }
  6668. GGML_TENSOR_UNARY_OP_LOCALS
  6669. // guaranteed to be an integer due to the check in ggml_can_repeat
  6670. const int nr0 = (int)(ne0/ne00);
  6671. const int nr1 = (int)(ne1/ne01);
  6672. const int nr2 = (int)(ne2/ne02);
  6673. const int nr3 = (int)(ne3/ne03);
  6674. // TODO: support for transposed / permuted tensors
  6675. GGML_ASSERT(nb0 == sizeof(float));
  6676. GGML_ASSERT(nb00 == sizeof(float));
  6677. // TODO: maybe this is not optimal?
  6678. for (int i3 = 0; i3 < nr3; i3++) {
  6679. for (int k3 = 0; k3 < ne03; k3++) {
  6680. for (int i2 = 0; i2 < nr2; i2++) {
  6681. for (int k2 = 0; k2 < ne02; k2++) {
  6682. for (int i1 = 0; i1 < nr1; i1++) {
  6683. for (int k1 = 0; k1 < ne01; k1++) {
  6684. for (int i0 = 0; i0 < nr0; i0++) {
  6685. ggml_vec_cpy_f32(ne00,
  6686. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6687. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6688. }
  6689. }
  6690. }
  6691. }
  6692. }
  6693. }
  6694. }
  6695. }
  6696. static void ggml_compute_forward_repeat_f16(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0,
  6699. struct ggml_tensor * dst) {
  6700. GGML_ASSERT(params->ith == 0);
  6701. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6703. return;
  6704. }
  6705. GGML_TENSOR_UNARY_OP_LOCALS;
  6706. // guaranteed to be an integer due to the check in ggml_can_repeat
  6707. const int nr0 = (int)(ne0/ne00);
  6708. const int nr1 = (int)(ne1/ne01);
  6709. const int nr2 = (int)(ne2/ne02);
  6710. const int nr3 = (int)(ne3/ne03);
  6711. // TODO: support for transposed / permuted tensors
  6712. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6713. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6714. // TODO: maybe this is not optimal?
  6715. for (int i3 = 0; i3 < nr3; i3++) {
  6716. for (int k3 = 0; k3 < ne03; k3++) {
  6717. for (int i2 = 0; i2 < nr2; i2++) {
  6718. for (int k2 = 0; k2 < ne02; k2++) {
  6719. for (int i1 = 0; i1 < nr1; i1++) {
  6720. for (int k1 = 0; k1 < ne01; k1++) {
  6721. for (int i0 = 0; i0 < nr0; i0++) {
  6722. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6723. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6724. // ggml_vec_cpy_f16(ne00, y, x)
  6725. for (int i = 0; i < ne00; ++i) {
  6726. y[i] = x[i];
  6727. }
  6728. }
  6729. }
  6730. }
  6731. }
  6732. }
  6733. }
  6734. }
  6735. }
  6736. static void ggml_compute_forward_repeat(
  6737. const struct ggml_compute_params * params,
  6738. const struct ggml_tensor * src0,
  6739. struct ggml_tensor * dst) {
  6740. switch (src0->type) {
  6741. case GGML_TYPE_F16:
  6742. {
  6743. ggml_compute_forward_repeat_f16(params, src0, dst);
  6744. } break;
  6745. case GGML_TYPE_F32:
  6746. {
  6747. ggml_compute_forward_repeat_f32(params, src0, dst);
  6748. } break;
  6749. default:
  6750. {
  6751. GGML_ASSERT(false);
  6752. } break;
  6753. }
  6754. }
  6755. // ggml_compute_forward_repeat_back
  6756. static void ggml_compute_forward_repeat_back_f32(
  6757. const struct ggml_compute_params * params,
  6758. const struct ggml_tensor * src0,
  6759. struct ggml_tensor * dst) {
  6760. GGML_ASSERT(params->ith == 0);
  6761. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6763. return;
  6764. }
  6765. GGML_TENSOR_UNARY_OP_LOCALS
  6766. // guaranteed to be an integer due to the check in ggml_can_repeat
  6767. const int nr0 = (int)(ne00/ne0);
  6768. const int nr1 = (int)(ne01/ne1);
  6769. const int nr2 = (int)(ne02/ne2);
  6770. const int nr3 = (int)(ne03/ne3);
  6771. // TODO: support for transposed / permuted tensors
  6772. GGML_ASSERT(nb0 == sizeof(float));
  6773. GGML_ASSERT(nb00 == sizeof(float));
  6774. if (ggml_is_contiguous(dst)) {
  6775. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6776. } else {
  6777. for (int k3 = 0; k3 < ne3; k3++) {
  6778. for (int k2 = 0; k2 < ne2; k2++) {
  6779. for (int k1 = 0; k1 < ne1; k1++) {
  6780. ggml_vec_set_f32(ne0,
  6781. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6782. 0);
  6783. }
  6784. }
  6785. }
  6786. }
  6787. // TODO: maybe this is not optimal?
  6788. for (int i3 = 0; i3 < nr3; i3++) {
  6789. for (int k3 = 0; k3 < ne3; k3++) {
  6790. for (int i2 = 0; i2 < nr2; i2++) {
  6791. for (int k2 = 0; k2 < ne2; k2++) {
  6792. for (int i1 = 0; i1 < nr1; i1++) {
  6793. for (int k1 = 0; k1 < ne1; k1++) {
  6794. for (int i0 = 0; i0 < nr0; i0++) {
  6795. ggml_vec_acc_f32(ne0,
  6796. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6797. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6798. }
  6799. }
  6800. }
  6801. }
  6802. }
  6803. }
  6804. }
  6805. }
  6806. static void ggml_compute_forward_repeat_back(
  6807. const struct ggml_compute_params * params,
  6808. const struct ggml_tensor * src0,
  6809. struct ggml_tensor * dst) {
  6810. switch (src0->type) {
  6811. case GGML_TYPE_F32:
  6812. {
  6813. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6814. } break;
  6815. default:
  6816. {
  6817. GGML_ASSERT(false);
  6818. } break;
  6819. }
  6820. }
  6821. // ggml_compute_forward_concat
  6822. static void ggml_compute_forward_concat_f32(
  6823. const struct ggml_compute_params * params,
  6824. const struct ggml_tensor * src0,
  6825. const struct ggml_tensor * src1,
  6826. struct ggml_tensor * dst) {
  6827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6828. return;
  6829. }
  6830. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6831. const int ith = params->ith;
  6832. GGML_TENSOR_BINARY_OP_LOCALS
  6833. // TODO: support for transposed / permuted tensors
  6834. GGML_ASSERT(nb0 == sizeof(float));
  6835. GGML_ASSERT(nb00 == sizeof(float));
  6836. GGML_ASSERT(nb10 == sizeof(float));
  6837. for (int i3 = 0; i3 < ne3; i3++) {
  6838. for (int i2 = ith; i2 < ne2; i2++) {
  6839. if (i2 < ne02) { // src0
  6840. for (int i1 = 0; i1 < ne1; i1++) {
  6841. for (int i0 = 0; i0 < ne0; i0++) {
  6842. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6843. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6844. *y = *x;
  6845. }
  6846. }
  6847. } // src1
  6848. else {
  6849. for (int i1 = 0; i1 < ne1; i1++) {
  6850. for (int i0 = 0; i0 < ne0; i0++) {
  6851. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6852. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6853. *y = *x;
  6854. }
  6855. }
  6856. }
  6857. }
  6858. }
  6859. }
  6860. static void ggml_compute_forward_concat(
  6861. const struct ggml_compute_params* params,
  6862. const struct ggml_tensor* src0,
  6863. const struct ggml_tensor* src1,
  6864. struct ggml_tensor* dst) {
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. }
  6876. // ggml_compute_forward_abs
  6877. static void ggml_compute_forward_abs_f32(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. assert(params->ith == 0);
  6882. assert(ggml_are_same_shape(src0, dst));
  6883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6884. return;
  6885. }
  6886. const int n = ggml_nrows(src0);
  6887. const int nc = src0->ne[0];
  6888. assert(dst->nb[0] == sizeof(float));
  6889. assert(src0->nb[0] == sizeof(float));
  6890. for (int i = 0; i < n; i++) {
  6891. ggml_vec_abs_f32(nc,
  6892. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6893. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6894. }
  6895. }
  6896. static void ggml_compute_forward_abs(
  6897. const struct ggml_compute_params * params,
  6898. const struct ggml_tensor * src0,
  6899. struct ggml_tensor * dst) {
  6900. switch (src0->type) {
  6901. case GGML_TYPE_F32:
  6902. {
  6903. ggml_compute_forward_abs_f32(params, src0, dst);
  6904. } break;
  6905. default:
  6906. {
  6907. GGML_ASSERT(false);
  6908. } break;
  6909. }
  6910. }
  6911. // ggml_compute_forward_sgn
  6912. static void ggml_compute_forward_sgn_f32(
  6913. const struct ggml_compute_params * params,
  6914. const struct ggml_tensor * src0,
  6915. struct ggml_tensor * dst) {
  6916. assert(params->ith == 0);
  6917. assert(ggml_are_same_shape(src0, dst));
  6918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6919. return;
  6920. }
  6921. const int n = ggml_nrows(src0);
  6922. const int nc = src0->ne[0];
  6923. assert(dst->nb[0] == sizeof(float));
  6924. assert(src0->nb[0] == sizeof(float));
  6925. for (int i = 0; i < n; i++) {
  6926. ggml_vec_sgn_f32(nc,
  6927. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6928. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6929. }
  6930. }
  6931. static void ggml_compute_forward_sgn(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. switch (src0->type) {
  6936. case GGML_TYPE_F32:
  6937. {
  6938. ggml_compute_forward_sgn_f32(params, src0, dst);
  6939. } break;
  6940. default:
  6941. {
  6942. GGML_ASSERT(false);
  6943. } break;
  6944. }
  6945. }
  6946. // ggml_compute_forward_neg
  6947. static void ggml_compute_forward_neg_f32(
  6948. const struct ggml_compute_params * params,
  6949. const struct ggml_tensor * src0,
  6950. struct ggml_tensor * dst) {
  6951. assert(params->ith == 0);
  6952. assert(ggml_are_same_shape(src0, dst));
  6953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6954. return;
  6955. }
  6956. const int n = ggml_nrows(src0);
  6957. const int nc = src0->ne[0];
  6958. assert(dst->nb[0] == sizeof(float));
  6959. assert(src0->nb[0] == sizeof(float));
  6960. for (int i = 0; i < n; i++) {
  6961. ggml_vec_neg_f32(nc,
  6962. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6963. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6964. }
  6965. }
  6966. static void ggml_compute_forward_neg(
  6967. const struct ggml_compute_params * params,
  6968. const struct ggml_tensor * src0,
  6969. struct ggml_tensor * dst) {
  6970. switch (src0->type) {
  6971. case GGML_TYPE_F32:
  6972. {
  6973. ggml_compute_forward_neg_f32(params, src0, dst);
  6974. } break;
  6975. default:
  6976. {
  6977. GGML_ASSERT(false);
  6978. } break;
  6979. }
  6980. }
  6981. // ggml_compute_forward_step
  6982. static void ggml_compute_forward_step_f32(
  6983. const struct ggml_compute_params * params,
  6984. const struct ggml_tensor * src0,
  6985. struct ggml_tensor * dst) {
  6986. assert(params->ith == 0);
  6987. assert(ggml_are_same_shape(src0, dst));
  6988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6989. return;
  6990. }
  6991. const int n = ggml_nrows(src0);
  6992. const int nc = src0->ne[0];
  6993. assert(dst->nb[0] == sizeof(float));
  6994. assert(src0->nb[0] == sizeof(float));
  6995. for (int i = 0; i < n; i++) {
  6996. ggml_vec_step_f32(nc,
  6997. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6998. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6999. }
  7000. }
  7001. static void ggml_compute_forward_step(
  7002. const struct ggml_compute_params * params,
  7003. const struct ggml_tensor * src0,
  7004. struct ggml_tensor * dst) {
  7005. switch (src0->type) {
  7006. case GGML_TYPE_F32:
  7007. {
  7008. ggml_compute_forward_step_f32(params, src0, dst);
  7009. } break;
  7010. default:
  7011. {
  7012. GGML_ASSERT(false);
  7013. } break;
  7014. }
  7015. }
  7016. // ggml_compute_forward_tanh
  7017. static void ggml_compute_forward_tanh_f32(
  7018. const struct ggml_compute_params * params,
  7019. const struct ggml_tensor * src0,
  7020. struct ggml_tensor * dst) {
  7021. assert(params->ith == 0);
  7022. assert(ggml_are_same_shape(src0, dst));
  7023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7024. return;
  7025. }
  7026. const int n = ggml_nrows(src0);
  7027. const int nc = src0->ne[0];
  7028. assert(dst->nb[0] == sizeof(float));
  7029. assert(src0->nb[0] == sizeof(float));
  7030. for (int i = 0; i < n; i++) {
  7031. ggml_vec_tanh_f32(nc,
  7032. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7033. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7034. }
  7035. }
  7036. static void ggml_compute_forward_tanh(
  7037. const struct ggml_compute_params * params,
  7038. const struct ggml_tensor * src0,
  7039. struct ggml_tensor * dst) {
  7040. switch (src0->type) {
  7041. case GGML_TYPE_F32:
  7042. {
  7043. ggml_compute_forward_tanh_f32(params, src0, dst);
  7044. } break;
  7045. default:
  7046. {
  7047. GGML_ASSERT(false);
  7048. } break;
  7049. }
  7050. }
  7051. // ggml_compute_forward_elu
  7052. static void ggml_compute_forward_elu_f32(
  7053. const struct ggml_compute_params * params,
  7054. const struct ggml_tensor * src0,
  7055. struct ggml_tensor * dst) {
  7056. assert(params->ith == 0);
  7057. assert(ggml_are_same_shape(src0, dst));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. const int n = ggml_nrows(src0);
  7062. const int nc = src0->ne[0];
  7063. assert(dst->nb[0] == sizeof(float));
  7064. assert(src0->nb[0] == sizeof(float));
  7065. for (int i = 0; i < n; i++) {
  7066. ggml_vec_elu_f32(nc,
  7067. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7068. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7069. }
  7070. }
  7071. static void ggml_compute_forward_elu(
  7072. const struct ggml_compute_params * params,
  7073. const struct ggml_tensor * src0,
  7074. struct ggml_tensor * dst) {
  7075. switch (src0->type) {
  7076. case GGML_TYPE_F32:
  7077. {
  7078. ggml_compute_forward_elu_f32(params, src0, dst);
  7079. } break;
  7080. default:
  7081. {
  7082. GGML_ASSERT(false);
  7083. } break;
  7084. }
  7085. }
  7086. // ggml_compute_forward_relu
  7087. static void ggml_compute_forward_relu_f32(
  7088. const struct ggml_compute_params * params,
  7089. const struct ggml_tensor * src0,
  7090. struct ggml_tensor * dst) {
  7091. assert(params->ith == 0);
  7092. assert(ggml_are_same_shape(src0, dst));
  7093. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7094. return;
  7095. }
  7096. const int n = ggml_nrows(src0);
  7097. const int nc = src0->ne[0];
  7098. assert(dst->nb[0] == sizeof(float));
  7099. assert(src0->nb[0] == sizeof(float));
  7100. for (int i = 0; i < n; i++) {
  7101. ggml_vec_relu_f32(nc,
  7102. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7103. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7104. }
  7105. }
  7106. static void ggml_compute_forward_relu(
  7107. const struct ggml_compute_params * params,
  7108. const struct ggml_tensor * src0,
  7109. struct ggml_tensor * dst) {
  7110. switch (src0->type) {
  7111. case GGML_TYPE_F32:
  7112. {
  7113. ggml_compute_forward_relu_f32(params, src0, dst);
  7114. } break;
  7115. default:
  7116. {
  7117. GGML_ASSERT(false);
  7118. } break;
  7119. }
  7120. }
  7121. // ggml_compute_forward_gelu
  7122. static void ggml_compute_forward_gelu_f32(
  7123. const struct ggml_compute_params * params,
  7124. const struct ggml_tensor * src0,
  7125. struct ggml_tensor * dst) {
  7126. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7127. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7128. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7130. return;
  7131. }
  7132. const int ith = params->ith;
  7133. const int nth = params->nth;
  7134. const int nc = src0->ne[0];
  7135. const int nr = ggml_nrows(src0);
  7136. // rows per thread
  7137. const int dr = (nr + nth - 1)/nth;
  7138. // row range for this thread
  7139. const int ir0 = dr*ith;
  7140. const int ir1 = MIN(ir0 + dr, nr);
  7141. for (int i1 = ir0; i1 < ir1; i1++) {
  7142. ggml_vec_gelu_f32(nc,
  7143. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7144. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7145. #ifndef NDEBUG
  7146. for (int k = 0; k < nc; k++) {
  7147. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7148. UNUSED(x);
  7149. assert(!isnan(x));
  7150. assert(!isinf(x));
  7151. }
  7152. #endif
  7153. }
  7154. }
  7155. static void ggml_compute_forward_gelu(
  7156. const struct ggml_compute_params * params,
  7157. const struct ggml_tensor * src0,
  7158. struct ggml_tensor * dst) {
  7159. switch (src0->type) {
  7160. case GGML_TYPE_F32:
  7161. {
  7162. ggml_compute_forward_gelu_f32(params, src0, dst);
  7163. } break;
  7164. default:
  7165. {
  7166. GGML_ASSERT(false);
  7167. } break;
  7168. }
  7169. }
  7170. // ggml_compute_forward_gelu_quick
  7171. static void ggml_compute_forward_gelu_quick_f32(
  7172. const struct ggml_compute_params * params,
  7173. const struct ggml_tensor * src0,
  7174. struct ggml_tensor * dst) {
  7175. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7176. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7177. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7179. return;
  7180. }
  7181. const int ith = params->ith;
  7182. const int nth = params->nth;
  7183. const int nc = src0->ne[0];
  7184. const int nr = ggml_nrows(src0);
  7185. // rows per thread
  7186. const int dr = (nr + nth - 1)/nth;
  7187. // row range for this thread
  7188. const int ir0 = dr*ith;
  7189. const int ir1 = MIN(ir0 + dr, nr);
  7190. for (int i1 = ir0; i1 < ir1; i1++) {
  7191. ggml_vec_gelu_quick_f32(nc,
  7192. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7193. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7194. #ifndef NDEBUG
  7195. for (int k = 0; k < nc; k++) {
  7196. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7197. UNUSED(x);
  7198. assert(!isnan(x));
  7199. assert(!isinf(x));
  7200. }
  7201. #endif
  7202. }
  7203. }
  7204. static void ggml_compute_forward_gelu_quick(
  7205. const struct ggml_compute_params * params,
  7206. const struct ggml_tensor * src0,
  7207. struct ggml_tensor * dst) {
  7208. switch (src0->type) {
  7209. case GGML_TYPE_F32:
  7210. {
  7211. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7212. } break;
  7213. default:
  7214. {
  7215. GGML_ASSERT(false);
  7216. } break;
  7217. }
  7218. }
  7219. // ggml_compute_forward_silu
  7220. static void ggml_compute_forward_silu_f32(
  7221. const struct ggml_compute_params * params,
  7222. const struct ggml_tensor * src0,
  7223. struct ggml_tensor * dst) {
  7224. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7225. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7226. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7228. return;
  7229. }
  7230. const int ith = params->ith;
  7231. const int nth = params->nth;
  7232. const int nc = src0->ne[0];
  7233. const int nr = ggml_nrows(src0);
  7234. // rows per thread
  7235. const int dr = (nr + nth - 1)/nth;
  7236. // row range for this thread
  7237. const int ir0 = dr*ith;
  7238. const int ir1 = MIN(ir0 + dr, nr);
  7239. for (int i1 = ir0; i1 < ir1; i1++) {
  7240. ggml_vec_silu_f32(nc,
  7241. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7242. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7243. #ifndef NDEBUG
  7244. for (int k = 0; k < nc; k++) {
  7245. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7246. UNUSED(x);
  7247. assert(!isnan(x));
  7248. assert(!isinf(x));
  7249. }
  7250. #endif
  7251. }
  7252. }
  7253. static void ggml_compute_forward_silu(
  7254. const struct ggml_compute_params * params,
  7255. const struct ggml_tensor * src0,
  7256. struct ggml_tensor * dst) {
  7257. switch (src0->type) {
  7258. case GGML_TYPE_F32:
  7259. {
  7260. ggml_compute_forward_silu_f32(params, src0, dst);
  7261. } break;
  7262. default:
  7263. {
  7264. GGML_ASSERT(false);
  7265. } break;
  7266. }
  7267. }
  7268. // ggml_compute_forward_silu_back
  7269. static void ggml_compute_forward_silu_back_f32(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. const struct ggml_tensor * grad,
  7273. struct ggml_tensor * dst) {
  7274. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7275. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7276. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7278. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7280. return;
  7281. }
  7282. const int ith = params->ith;
  7283. const int nth = params->nth;
  7284. const int nc = src0->ne[0];
  7285. const int nr = ggml_nrows(src0);
  7286. // rows per thread
  7287. const int dr = (nr + nth - 1)/nth;
  7288. // row range for this thread
  7289. const int ir0 = dr*ith;
  7290. const int ir1 = MIN(ir0 + dr, nr);
  7291. for (int i1 = ir0; i1 < ir1; i1++) {
  7292. ggml_vec_silu_backward_f32(nc,
  7293. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7294. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7295. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7296. #ifndef NDEBUG
  7297. for (int k = 0; k < nc; k++) {
  7298. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7299. UNUSED(x);
  7300. assert(!isnan(x));
  7301. assert(!isinf(x));
  7302. }
  7303. #endif
  7304. }
  7305. }
  7306. static void ggml_compute_forward_silu_back(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. const struct ggml_tensor * grad,
  7310. struct ggml_tensor * dst) {
  7311. switch (src0->type) {
  7312. case GGML_TYPE_F32:
  7313. {
  7314. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7315. } break;
  7316. default:
  7317. {
  7318. GGML_ASSERT(false);
  7319. } break;
  7320. }
  7321. }
  7322. // ggml_compute_forward_norm
  7323. static void ggml_compute_forward_norm_f32(
  7324. const struct ggml_compute_params * params,
  7325. const struct ggml_tensor * src0,
  7326. struct ggml_tensor * dst) {
  7327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7332. const int ith = params->ith;
  7333. const int nth = params->nth;
  7334. GGML_TENSOR_UNARY_OP_LOCALS
  7335. float eps;
  7336. memcpy(&eps, dst->op_params, sizeof(float));
  7337. // TODO: optimize
  7338. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7339. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7340. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7341. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7342. ggml_float sum = 0.0;
  7343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7344. sum += (ggml_float)x[i00];
  7345. }
  7346. float mean = sum/ne00;
  7347. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7348. ggml_float sum2 = 0.0;
  7349. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7350. float v = x[i00] - mean;
  7351. y[i00] = v;
  7352. sum2 += (ggml_float)(v*v);
  7353. }
  7354. float variance = sum2/ne00;
  7355. const float scale = 1.0f/sqrtf(variance + eps);
  7356. ggml_vec_scale_f32(ne00, y, scale);
  7357. }
  7358. }
  7359. }
  7360. }
  7361. static void ggml_compute_forward_norm(
  7362. const struct ggml_compute_params * params,
  7363. const struct ggml_tensor * src0,
  7364. struct ggml_tensor * dst) {
  7365. switch (src0->type) {
  7366. case GGML_TYPE_F32:
  7367. {
  7368. ggml_compute_forward_norm_f32(params, src0, dst);
  7369. } break;
  7370. default:
  7371. {
  7372. GGML_ASSERT(false);
  7373. } break;
  7374. }
  7375. }
  7376. // ggml_compute_forward_group_rms_norm
  7377. static void ggml_compute_forward_rms_norm_f32(
  7378. const struct ggml_compute_params * params,
  7379. const struct ggml_tensor * src0,
  7380. struct ggml_tensor * dst) {
  7381. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7383. return;
  7384. }
  7385. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7386. const int ith = params->ith;
  7387. const int nth = params->nth;
  7388. GGML_TENSOR_UNARY_OP_LOCALS
  7389. float eps;
  7390. memcpy(&eps, dst->op_params, sizeof(float));
  7391. // TODO: optimize
  7392. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7394. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7395. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7396. ggml_float sum = 0.0;
  7397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7398. sum += (ggml_float)(x[i00] * x[i00]);
  7399. }
  7400. const float mean = sum/ne00;
  7401. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7402. memcpy(y, x, ne00 * sizeof(float));
  7403. // for (int i00 = 0; i00 < ne00; i00++) {
  7404. // y[i00] = x[i00];
  7405. // }
  7406. const float scale = 1.0f/sqrtf(mean + eps);
  7407. ggml_vec_scale_f32(ne00, y, scale);
  7408. }
  7409. }
  7410. }
  7411. }
  7412. static void ggml_compute_forward_rms_norm(
  7413. const struct ggml_compute_params * params,
  7414. const struct ggml_tensor * src0,
  7415. struct ggml_tensor * dst) {
  7416. switch (src0->type) {
  7417. case GGML_TYPE_F32:
  7418. {
  7419. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7420. } break;
  7421. default:
  7422. {
  7423. GGML_ASSERT(false);
  7424. } break;
  7425. }
  7426. }
  7427. static void ggml_compute_forward_rms_norm_back_f32(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. const struct ggml_tensor * src1,
  7431. struct ggml_tensor * dst) {
  7432. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7434. return;
  7435. }
  7436. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7437. const int ith = params->ith;
  7438. const int nth = params->nth;
  7439. GGML_TENSOR_BINARY_OP_LOCALS
  7440. float eps;
  7441. memcpy(&eps, dst->op_params, sizeof(float));
  7442. // TODO: optimize
  7443. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7444. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7445. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7446. // src1 is same shape as src0 => same indices
  7447. const int64_t i11 = i01;
  7448. const int64_t i12 = i02;
  7449. const int64_t i13 = i03;
  7450. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7451. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7452. ggml_float sum_xx = 0.0;
  7453. ggml_float sum_xdz = 0.0;
  7454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7455. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7456. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7457. }
  7458. //const float mean = (float)(sum_xx)/ne00;
  7459. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7460. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7461. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7462. // we could cache rms from forward pass to improve performance.
  7463. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7464. //const float rms = sqrtf(mean_eps);
  7465. const float rrms = 1.0f / sqrtf(mean_eps);
  7466. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7467. {
  7468. // z = rms_norm(x)
  7469. //
  7470. // rms_norm(src0) =
  7471. // scale(
  7472. // src0,
  7473. // div(
  7474. // 1,
  7475. // sqrt(
  7476. // add(
  7477. // scale(
  7478. // sum(
  7479. // sqr(
  7480. // src0)),
  7481. // (1.0/N)),
  7482. // eps))));
  7483. // postorder:
  7484. // ## op args grad
  7485. // 00 param src0 grad[#00]
  7486. // 01 const 1
  7487. // 02 sqr (#00) grad[#02]
  7488. // 03 sum (#02) grad[#03]
  7489. // 04 const 1/N
  7490. // 05 scale (#03, #04) grad[#05]
  7491. // 06 const eps
  7492. // 07 add (#05, #06) grad[#07]
  7493. // 08 sqrt (#07) grad[#08]
  7494. // 09 div (#01,#08) grad[#09]
  7495. // 10 scale (#00,#09) grad[#10]
  7496. //
  7497. // backward pass, given grad[#10]
  7498. // #10: scale
  7499. // grad[#00] += scale(grad[#10],#09)
  7500. // grad[#09] += sum(mul(grad[#10],#00))
  7501. // #09: div
  7502. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7503. // #08: sqrt
  7504. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7505. // #07: add
  7506. // grad[#05] += grad[#07]
  7507. // #05: scale
  7508. // grad[#03] += scale(grad[#05],#04)
  7509. // #03: sum
  7510. // grad[#02] += repeat(grad[#03], #02)
  7511. // #02:
  7512. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7513. //
  7514. // substitute and simplify:
  7515. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7516. // grad[#02] = repeat(grad[#03], #02)
  7517. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7518. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7519. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7520. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7521. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7522. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7523. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7524. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7525. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7526. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7527. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7528. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7529. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7530. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7531. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7532. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7533. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7534. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7535. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7536. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7537. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7538. // a = b*c + d*e
  7539. // a = b*c*f/f + d*e*f/f
  7540. // a = (b*c*f + d*e*f)*(1/f)
  7541. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7542. // a = (b + d*e/c)*c
  7543. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7544. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7545. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7546. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7547. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7548. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7549. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7550. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7551. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7552. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7553. }
  7554. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7555. // post-order:
  7556. // dx := x
  7557. // dx := scale(dx,-mean_xdz/mean_eps)
  7558. // dx := add(dx, dz)
  7559. // dx := scale(dx, rrms)
  7560. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7561. ggml_vec_cpy_f32 (ne00, dx, x);
  7562. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7563. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7564. ggml_vec_acc_f32 (ne00, dx, dz);
  7565. ggml_vec_scale_f32(ne00, dx, rrms);
  7566. }
  7567. }
  7568. }
  7569. }
  7570. static void ggml_compute_forward_rms_norm_back(
  7571. const struct ggml_compute_params * params,
  7572. const struct ggml_tensor * src0,
  7573. const struct ggml_tensor * src1,
  7574. struct ggml_tensor * dst) {
  7575. switch (src0->type) {
  7576. case GGML_TYPE_F32:
  7577. {
  7578. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7579. } break;
  7580. default:
  7581. {
  7582. GGML_ASSERT(false);
  7583. } break;
  7584. }
  7585. }
  7586. // ggml_compute_forward_group_norm
  7587. static void ggml_compute_forward_group_norm_f32(
  7588. const struct ggml_compute_params * params,
  7589. const struct ggml_tensor * src0,
  7590. struct ggml_tensor * dst) {
  7591. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7593. return;
  7594. }
  7595. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7596. const int ith = params->ith;
  7597. const int nth = params->nth;
  7598. GGML_TENSOR_UNARY_OP_LOCALS
  7599. const float eps = 1e-6f; // TODO: make this a parameter
  7600. // TODO: optimize
  7601. int n_channels = src0->ne[2];
  7602. int n_groups = dst->op_params[0];
  7603. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7604. for (int i = ith; i < n_groups; i+=nth) {
  7605. int start = i * n_channels_per_group;
  7606. int end = start + n_channels_per_group;
  7607. if (end > n_channels) {
  7608. end = n_channels;
  7609. }
  7610. int step = end - start;
  7611. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7612. ggml_float sum = 0.0;
  7613. for (int64_t i02 = start; i02 < end; i02++) {
  7614. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7615. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7617. sum += (ggml_float)x[i00];
  7618. }
  7619. }
  7620. }
  7621. float mean = sum / (ne00 * ne01 * step);
  7622. ggml_float sum2 = 0.0;
  7623. for (int64_t i02 = start; i02 < end; i02++) {
  7624. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7625. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7626. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7627. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7628. float v = x[i00] - mean;
  7629. y[i00] = v;
  7630. sum2 += (ggml_float)(v * v);
  7631. }
  7632. }
  7633. }
  7634. float variance = sum2 / (ne00 * ne01 * step);
  7635. const float scale = 1.0f / sqrtf(variance + eps);
  7636. for (int64_t i02 = start; i02 < end; i02++) {
  7637. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7638. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7639. ggml_vec_scale_f32(ne00, y, scale);
  7640. }
  7641. }
  7642. }
  7643. }
  7644. }
  7645. static void ggml_compute_forward_group_norm(
  7646. const struct ggml_compute_params * params,
  7647. const struct ggml_tensor * src0,
  7648. struct ggml_tensor * dst) {
  7649. switch (src0->type) {
  7650. case GGML_TYPE_F32:
  7651. {
  7652. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7653. } break;
  7654. default:
  7655. {
  7656. GGML_ASSERT(false);
  7657. } break;
  7658. }
  7659. }
  7660. // ggml_compute_forward_mul_mat
  7661. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7662. // helper function to determine if it is better to use BLAS or not
  7663. // for large matrices, BLAS is faster
  7664. static bool ggml_compute_forward_mul_mat_use_blas(
  7665. const struct ggml_tensor * src0,
  7666. const struct ggml_tensor * src1,
  7667. struct ggml_tensor * dst) {
  7668. //const int64_t ne00 = src0->ne[0];
  7669. //const int64_t ne01 = src0->ne[1];
  7670. const int64_t ne10 = src1->ne[0];
  7671. const int64_t ne0 = dst->ne[0];
  7672. const int64_t ne1 = dst->ne[1];
  7673. // TODO: find the optimal values for these
  7674. if (ggml_is_contiguous(src0) &&
  7675. ggml_is_contiguous(src1) &&
  7676. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7677. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7678. return true;
  7679. }
  7680. return false;
  7681. }
  7682. #endif
  7683. static void ggml_compute_forward_mul_mat(
  7684. const struct ggml_compute_params * params,
  7685. const struct ggml_tensor * src0,
  7686. const struct ggml_tensor * src1,
  7687. struct ggml_tensor * dst) {
  7688. int64_t t0 = ggml_perf_time_us();
  7689. UNUSED(t0);
  7690. GGML_TENSOR_BINARY_OP_LOCALS
  7691. const int ith = params->ith;
  7692. const int nth = params->nth;
  7693. const enum ggml_type type = src0->type;
  7694. const bool src1_cont = ggml_is_contiguous(src1);
  7695. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7696. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7697. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7698. GGML_ASSERT(ne0 == ne01);
  7699. GGML_ASSERT(ne1 == ne11);
  7700. GGML_ASSERT(ne2 == ne12);
  7701. GGML_ASSERT(ne3 == ne13);
  7702. // we don't support permuted src0 or src1
  7703. GGML_ASSERT(nb00 == ggml_type_size(type));
  7704. GGML_ASSERT(nb10 == sizeof(float));
  7705. // dst cannot be transposed or permuted
  7706. GGML_ASSERT(nb0 == sizeof(float));
  7707. GGML_ASSERT(nb0 <= nb1);
  7708. GGML_ASSERT(nb1 <= nb2);
  7709. GGML_ASSERT(nb2 <= nb3);
  7710. // broadcast factors
  7711. const int64_t r2 = ne12/ne02;
  7712. const int64_t r3 = ne13/ne03;
  7713. // nb01 >= nb00 - src0 is not transposed
  7714. // compute by src0 rows
  7715. #if defined(GGML_USE_CLBLAST)
  7716. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7717. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7718. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7719. }
  7720. return;
  7721. }
  7722. #endif
  7723. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7724. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7725. if (params->ith != 0) {
  7726. return;
  7727. }
  7728. if (params->type == GGML_TASK_INIT) {
  7729. return;
  7730. }
  7731. if (params->type == GGML_TASK_FINALIZE) {
  7732. return;
  7733. }
  7734. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7735. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7736. // broadcast src0 into src1 across 2nd,3rd dimension
  7737. const int64_t i03 = i13/r3;
  7738. const int64_t i02 = i12/r2;
  7739. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7740. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7741. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7742. if (type != GGML_TYPE_F32) {
  7743. float * const wdata = params->wdata;
  7744. ggml_to_float_t const to_float = type_traits[type].to_float;
  7745. size_t id = 0;
  7746. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7747. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7748. id += ne00;
  7749. }
  7750. assert(id*sizeof(float) <= params->wsize);
  7751. x = wdata;
  7752. }
  7753. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7754. ne11, ne01, ne10,
  7755. 1.0f, y, ne10,
  7756. x, ne00,
  7757. 0.0f, d, ne01);
  7758. }
  7759. }
  7760. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7761. return;
  7762. }
  7763. #endif
  7764. if (params->type == GGML_TASK_INIT) {
  7765. if (src1->type != vec_dot_type) {
  7766. char * wdata = params->wdata;
  7767. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7768. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7769. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7770. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7771. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7772. wdata += row_size;
  7773. }
  7774. }
  7775. }
  7776. }
  7777. return;
  7778. }
  7779. if (params->type == GGML_TASK_FINALIZE) {
  7780. return;
  7781. }
  7782. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7783. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7784. const int64_t nr0 = ne01; // src0 rows
  7785. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7786. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7787. // distribute the thread work across the inner or outer loop based on which one is larger
  7788. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7789. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7790. const int64_t ith0 = ith % nth0;
  7791. const int64_t ith1 = ith / nth0;
  7792. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7793. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7794. const int64_t ir010 = dr0*ith0;
  7795. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7796. const int64_t ir110 = dr1*ith1;
  7797. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7798. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7799. // threads with no work simply yield (not sure if it helps)
  7800. if (ir010 >= ir011 || ir110 >= ir111) {
  7801. sched_yield();
  7802. return;
  7803. }
  7804. assert(ne12 % ne02 == 0);
  7805. assert(ne13 % ne03 == 0);
  7806. // block-tiling attempt
  7807. const int64_t blck_0 = 16;
  7808. const int64_t blck_1 = 16;
  7809. // attempt to reduce false-sharing (does not seem to make a difference)
  7810. float tmp[16];
  7811. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7812. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7813. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7814. const int64_t i13 = (ir1/(ne12*ne11));
  7815. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7816. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7817. // broadcast src0 into src1
  7818. const int64_t i03 = i13/r3;
  7819. const int64_t i02 = i12/r2;
  7820. const int64_t i1 = i11;
  7821. const int64_t i2 = i12;
  7822. const int64_t i3 = i13;
  7823. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7824. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7825. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7826. // the original src1 data pointer, so we should index using the indices directly
  7827. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7828. const char * src1_col = (const char *) wdata +
  7829. (src1_cont || src1->type != vec_dot_type
  7830. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7831. : (i11*nb11 + i12*nb12 + i13*nb13));
  7832. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7833. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7834. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7835. //}
  7836. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7837. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7838. }
  7839. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7840. }
  7841. }
  7842. }
  7843. }
  7844. // ggml_compute_forward_out_prod
  7845. static void ggml_compute_forward_out_prod_f32(
  7846. const struct ggml_compute_params * params,
  7847. const struct ggml_tensor * src0,
  7848. const struct ggml_tensor * src1,
  7849. struct ggml_tensor * dst) {
  7850. // int64_t t0 = ggml_perf_time_us();
  7851. // UNUSED(t0);
  7852. GGML_TENSOR_BINARY_OP_LOCALS
  7853. const int ith = params->ith;
  7854. const int nth = params->nth;
  7855. GGML_ASSERT(ne02 == ne12);
  7856. GGML_ASSERT(ne03 == ne13);
  7857. GGML_ASSERT(ne2 == ne12);
  7858. GGML_ASSERT(ne3 == ne13);
  7859. // we don't support permuted src0 or src1
  7860. GGML_ASSERT(nb00 == sizeof(float));
  7861. // dst cannot be transposed or permuted
  7862. GGML_ASSERT(nb0 == sizeof(float));
  7863. // GGML_ASSERT(nb0 <= nb1);
  7864. // GGML_ASSERT(nb1 <= nb2);
  7865. // GGML_ASSERT(nb2 <= nb3);
  7866. GGML_ASSERT(ne0 == ne00);
  7867. GGML_ASSERT(ne1 == ne10);
  7868. GGML_ASSERT(ne2 == ne02);
  7869. GGML_ASSERT(ne3 == ne03);
  7870. // nb01 >= nb00 - src0 is not transposed
  7871. // compute by src0 rows
  7872. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7873. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7874. if (params->type == GGML_TASK_INIT) {
  7875. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7876. return;
  7877. }
  7878. if (params->type == GGML_TASK_FINALIZE) {
  7879. return;
  7880. }
  7881. // dst[:,:,:,:] = 0
  7882. // for i2,i3:
  7883. // for i1:
  7884. // for i01:
  7885. // for i0:
  7886. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7887. // parallelize by last three dimensions
  7888. // total rows in dst
  7889. const int64_t nr = ne1*ne2*ne3;
  7890. // rows per thread
  7891. const int64_t dr = (nr + nth - 1)/nth;
  7892. // row range for this thread
  7893. const int64_t ir0 = dr*ith;
  7894. const int64_t ir1 = MIN(ir0 + dr, nr);
  7895. // block-tiling attempt
  7896. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7897. const int64_t blck_1 = 16;
  7898. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7899. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7900. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7901. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  7902. for (int64_t ir = bir; ir < bir1; ++ir) {
  7903. // dst indices
  7904. const int64_t i3 = ir/(ne2*ne1);
  7905. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  7906. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7907. const int64_t i02 = i2;
  7908. const int64_t i03 = i3;
  7909. //const int64_t i10 = i1;
  7910. const int64_t i12 = i2;
  7911. const int64_t i13 = i3;
  7912. #if GGML_VEC_MAD_UNROLL > 2
  7913. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  7914. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  7915. const int64_t i11 = i01;
  7916. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7917. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7918. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7919. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  7920. }
  7921. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  7922. const int64_t i11 = i01;
  7923. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7924. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7925. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7926. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7927. }
  7928. #else
  7929. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  7930. const int64_t i11 = i01;
  7931. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7932. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7933. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7934. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7935. }
  7936. #endif
  7937. }
  7938. }
  7939. }
  7940. //int64_t t1 = ggml_perf_time_us();
  7941. //static int64_t acc = 0;
  7942. //acc += t1 - t0;
  7943. //if (t1 - t0 > 10) {
  7944. // printf("\n");
  7945. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7946. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7947. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7948. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7949. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7950. //}
  7951. }
  7952. static void ggml_compute_forward_out_prod_q_f32(
  7953. const struct ggml_compute_params * params,
  7954. const struct ggml_tensor * src0,
  7955. const struct ggml_tensor * src1,
  7956. struct ggml_tensor * dst) {
  7957. // int64_t t0 = ggml_perf_time_us();
  7958. // UNUSED(t0);
  7959. GGML_TENSOR_BINARY_OP_LOCALS;
  7960. const int ith = params->ith;
  7961. const int nth = params->nth;
  7962. const enum ggml_type type = src0->type;
  7963. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7964. GGML_ASSERT(ne02 == ne12);
  7965. GGML_ASSERT(ne03 == ne13);
  7966. GGML_ASSERT(ne2 == ne12);
  7967. GGML_ASSERT(ne3 == ne13);
  7968. // we don't support permuted src0 dim0
  7969. GGML_ASSERT(nb00 == ggml_type_size(type));
  7970. // dst dim0 cannot be transposed or permuted
  7971. GGML_ASSERT(nb0 == sizeof(float));
  7972. // GGML_ASSERT(nb0 <= nb1);
  7973. // GGML_ASSERT(nb1 <= nb2);
  7974. // GGML_ASSERT(nb2 <= nb3);
  7975. GGML_ASSERT(ne0 == ne00);
  7976. GGML_ASSERT(ne1 == ne10);
  7977. GGML_ASSERT(ne2 == ne02);
  7978. GGML_ASSERT(ne3 == ne03);
  7979. // nb01 >= nb00 - src0 is not transposed
  7980. // compute by src0 rows
  7981. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7982. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7983. if (params->type == GGML_TASK_INIT) {
  7984. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7985. return;
  7986. }
  7987. if (params->type == GGML_TASK_FINALIZE) {
  7988. return;
  7989. }
  7990. // parallelize by last three dimensions
  7991. // total rows in dst
  7992. const int64_t nr = ne1*ne2*ne3;
  7993. // rows per thread
  7994. const int64_t dr = (nr + nth - 1)/nth;
  7995. // row range for this thread
  7996. const int64_t ir0 = dr*ith;
  7997. const int64_t ir1 = MIN(ir0 + dr, nr);
  7998. // dst[:,:,:,:] = 0
  7999. // for i2,i3:
  8000. // for i1:
  8001. // for i01:
  8002. // for i0:
  8003. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8004. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8005. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8006. // dst indices
  8007. const int64_t i3 = ir/(ne2*ne1);
  8008. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8009. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8010. const int64_t i02 = i2;
  8011. const int64_t i03 = i3;
  8012. //const int64_t i10 = i1;
  8013. const int64_t i12 = i2;
  8014. const int64_t i13 = i3;
  8015. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8016. const int64_t i11 = i01;
  8017. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8018. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8019. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8020. dequantize_row_q(s0, wdata, ne0);
  8021. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8022. }
  8023. }
  8024. //int64_t t1 = ggml_perf_time_us();
  8025. //static int64_t acc = 0;
  8026. //acc += t1 - t0;
  8027. //if (t1 - t0 > 10) {
  8028. // printf("\n");
  8029. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8030. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8031. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8032. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8033. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8034. //}
  8035. }
  8036. static void ggml_compute_forward_out_prod(
  8037. const struct ggml_compute_params * params,
  8038. const struct ggml_tensor * src0,
  8039. const struct ggml_tensor * src1,
  8040. struct ggml_tensor * dst) {
  8041. switch (src0->type) {
  8042. case GGML_TYPE_Q4_0:
  8043. case GGML_TYPE_Q4_1:
  8044. case GGML_TYPE_Q5_0:
  8045. case GGML_TYPE_Q5_1:
  8046. case GGML_TYPE_Q8_0:
  8047. case GGML_TYPE_Q2_K:
  8048. case GGML_TYPE_Q3_K:
  8049. case GGML_TYPE_Q4_K:
  8050. case GGML_TYPE_Q5_K:
  8051. case GGML_TYPE_Q6_K:
  8052. {
  8053. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8054. } break;
  8055. case GGML_TYPE_F16:
  8056. {
  8057. GGML_ASSERT(false); // todo
  8058. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8059. } break;
  8060. case GGML_TYPE_F32:
  8061. {
  8062. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8063. } break;
  8064. default:
  8065. {
  8066. GGML_ASSERT(false);
  8067. } break;
  8068. }
  8069. }
  8070. // ggml_compute_forward_scale
  8071. static void ggml_compute_forward_scale_f32(
  8072. const struct ggml_compute_params * params,
  8073. const struct ggml_tensor * src0,
  8074. const struct ggml_tensor * src1,
  8075. struct ggml_tensor * dst) {
  8076. GGML_ASSERT(ggml_is_contiguous(src0));
  8077. GGML_ASSERT(ggml_is_contiguous(dst));
  8078. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8079. GGML_ASSERT(ggml_is_scalar(src1));
  8080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8081. return;
  8082. }
  8083. // scale factor
  8084. const float v = *(float *) src1->data;
  8085. const int ith = params->ith;
  8086. const int nth = params->nth;
  8087. const int nc = src0->ne[0];
  8088. const int nr = ggml_nrows(src0);
  8089. // rows per thread
  8090. const int dr = (nr + nth - 1)/nth;
  8091. // row range for this thread
  8092. const int ir0 = dr*ith;
  8093. const int ir1 = MIN(ir0 + dr, nr);
  8094. const size_t nb01 = src0->nb[1];
  8095. const size_t nb1 = dst->nb[1];
  8096. for (int i1 = ir0; i1 < ir1; i1++) {
  8097. if (dst->data != src0->data) {
  8098. // src0 is same shape as dst => same indices
  8099. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8100. }
  8101. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8102. }
  8103. }
  8104. static void ggml_compute_forward_scale(
  8105. const struct ggml_compute_params * params,
  8106. const struct ggml_tensor * src0,
  8107. const struct ggml_tensor * src1,
  8108. struct ggml_tensor * dst) {
  8109. switch (src0->type) {
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_set
  8121. static void ggml_compute_forward_set_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. const struct ggml_tensor * src1,
  8125. struct ggml_tensor * dst) {
  8126. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8127. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8128. // view src0 and dst with these strides and data offset inbytes during set
  8129. // nb0 is implicitely element_size because src0 and dst are contiguous
  8130. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8131. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8132. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8133. size_t offset = ((int32_t *) dst->op_params)[3];
  8134. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8135. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8136. // memcpy needs to be synchronized across threads to avoid race conditions.
  8137. // => do it in INIT phase
  8138. memcpy(
  8139. ((char *) dst->data),
  8140. ((char *) src0->data),
  8141. ggml_nbytes(dst));
  8142. }
  8143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8144. return;
  8145. }
  8146. const int ith = params->ith;
  8147. const int nth = params->nth;
  8148. const int nr = ggml_nrows(src1);
  8149. const int nc = src1->ne[0];
  8150. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8151. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8152. // src0 and dst as viewed during set
  8153. const size_t nb0 = ggml_element_size(src0);
  8154. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8155. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8156. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8157. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8158. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8159. GGML_ASSERT(nb10 == sizeof(float));
  8160. // rows per thread
  8161. const int dr = (nr + nth - 1)/nth;
  8162. // row range for this thread
  8163. const int ir0 = dr*ith;
  8164. const int ir1 = MIN(ir0 + dr, nr);
  8165. for (int ir = ir0; ir < ir1; ++ir) {
  8166. // src0 and dst are viewed with shape of src1 and offset
  8167. // => same indices
  8168. const int i3 = ir/(ne12*ne11);
  8169. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8170. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8171. ggml_vec_cpy_f32(nc,
  8172. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8173. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8174. }
  8175. }
  8176. static void ggml_compute_forward_set(
  8177. const struct ggml_compute_params * params,
  8178. const struct ggml_tensor * src0,
  8179. const struct ggml_tensor * src1,
  8180. struct ggml_tensor * dst) {
  8181. switch (src0->type) {
  8182. case GGML_TYPE_F32:
  8183. {
  8184. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8185. } break;
  8186. case GGML_TYPE_F16:
  8187. case GGML_TYPE_Q4_0:
  8188. case GGML_TYPE_Q4_1:
  8189. case GGML_TYPE_Q5_0:
  8190. case GGML_TYPE_Q5_1:
  8191. case GGML_TYPE_Q8_0:
  8192. case GGML_TYPE_Q8_1:
  8193. case GGML_TYPE_Q2_K:
  8194. case GGML_TYPE_Q3_K:
  8195. case GGML_TYPE_Q4_K:
  8196. case GGML_TYPE_Q5_K:
  8197. case GGML_TYPE_Q6_K:
  8198. default:
  8199. {
  8200. GGML_ASSERT(false);
  8201. } break;
  8202. }
  8203. }
  8204. // ggml_compute_forward_cpy
  8205. static void ggml_compute_forward_cpy(
  8206. const struct ggml_compute_params * params,
  8207. const struct ggml_tensor * src0,
  8208. struct ggml_tensor * dst) {
  8209. ggml_compute_forward_dup(params, src0, dst);
  8210. }
  8211. // ggml_compute_forward_cont
  8212. static void ggml_compute_forward_cont(
  8213. const struct ggml_compute_params * params,
  8214. const struct ggml_tensor * src0,
  8215. struct ggml_tensor * dst) {
  8216. ggml_compute_forward_dup(params, src0, dst);
  8217. }
  8218. // ggml_compute_forward_reshape
  8219. static void ggml_compute_forward_reshape(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. struct ggml_tensor * dst) {
  8223. // NOP
  8224. UNUSED(params);
  8225. UNUSED(src0);
  8226. UNUSED(dst);
  8227. }
  8228. // ggml_compute_forward_view
  8229. static void ggml_compute_forward_view(
  8230. const struct ggml_compute_params * params,
  8231. const struct ggml_tensor * src0) {
  8232. // NOP
  8233. UNUSED(params);
  8234. UNUSED(src0);
  8235. }
  8236. // ggml_compute_forward_permute
  8237. static void ggml_compute_forward_permute(
  8238. const struct ggml_compute_params * params,
  8239. const struct ggml_tensor * src0) {
  8240. // NOP
  8241. UNUSED(params);
  8242. UNUSED(src0);
  8243. }
  8244. // ggml_compute_forward_transpose
  8245. static void ggml_compute_forward_transpose(
  8246. const struct ggml_compute_params * params,
  8247. const struct ggml_tensor * src0) {
  8248. // NOP
  8249. UNUSED(params);
  8250. UNUSED(src0);
  8251. }
  8252. // ggml_compute_forward_get_rows
  8253. static void ggml_compute_forward_get_rows_q(
  8254. const struct ggml_compute_params * params,
  8255. const struct ggml_tensor * src0,
  8256. const struct ggml_tensor * src1,
  8257. struct ggml_tensor * dst) {
  8258. assert(params->ith == 0);
  8259. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8260. return;
  8261. }
  8262. const int nc = src0->ne[0];
  8263. const int nr = ggml_nelements(src1);
  8264. const enum ggml_type type = src0->type;
  8265. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8266. assert( dst->ne[0] == nc);
  8267. assert( dst->ne[1] == nr);
  8268. assert(src0->nb[0] == ggml_type_size(type));
  8269. for (int i = 0; i < nr; ++i) {
  8270. const int r = ((int32_t *) src1->data)[i];
  8271. dequantize_row_q(
  8272. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8273. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8274. }
  8275. }
  8276. static void ggml_compute_forward_get_rows_f16(
  8277. const struct ggml_compute_params * params,
  8278. const struct ggml_tensor * src0,
  8279. const struct ggml_tensor * src1,
  8280. struct ggml_tensor * dst) {
  8281. assert(params->ith == 0);
  8282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8283. return;
  8284. }
  8285. const int nc = src0->ne[0];
  8286. const int nr = ggml_nelements(src1);
  8287. assert( dst->ne[0] == nc);
  8288. assert( dst->ne[1] == nr);
  8289. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8290. for (int i = 0; i < nr; ++i) {
  8291. const int r = ((int32_t *) src1->data)[i];
  8292. for (int j = 0; j < nc; ++j) {
  8293. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8294. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8295. }
  8296. }
  8297. }
  8298. static void ggml_compute_forward_get_rows_f32(
  8299. const struct ggml_compute_params * params,
  8300. const struct ggml_tensor * src0,
  8301. const struct ggml_tensor * src1,
  8302. struct ggml_tensor * dst) {
  8303. assert(params->ith == 0);
  8304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8305. return;
  8306. }
  8307. const int nc = src0->ne[0];
  8308. const int nr = ggml_nelements(src1);
  8309. assert( dst->ne[0] == nc);
  8310. assert( dst->ne[1] == nr);
  8311. assert(src0->nb[0] == sizeof(float));
  8312. for (int i = 0; i < nr; ++i) {
  8313. const int r = ((int32_t *) src1->data)[i];
  8314. ggml_vec_cpy_f32(nc,
  8315. (float *) ((char *) dst->data + i*dst->nb[1]),
  8316. (float *) ((char *) src0->data + r*src0->nb[1]));
  8317. }
  8318. }
  8319. static void ggml_compute_forward_get_rows(
  8320. const struct ggml_compute_params * params,
  8321. const struct ggml_tensor * src0,
  8322. const struct ggml_tensor * src1,
  8323. struct ggml_tensor * dst) {
  8324. switch (src0->type) {
  8325. case GGML_TYPE_Q4_0:
  8326. case GGML_TYPE_Q4_1:
  8327. case GGML_TYPE_Q5_0:
  8328. case GGML_TYPE_Q5_1:
  8329. case GGML_TYPE_Q8_0:
  8330. case GGML_TYPE_Q8_1:
  8331. case GGML_TYPE_Q2_K:
  8332. case GGML_TYPE_Q3_K:
  8333. case GGML_TYPE_Q4_K:
  8334. case GGML_TYPE_Q5_K:
  8335. case GGML_TYPE_Q6_K:
  8336. {
  8337. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8338. } break;
  8339. case GGML_TYPE_F16:
  8340. {
  8341. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8342. } break;
  8343. case GGML_TYPE_F32:
  8344. {
  8345. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8346. } break;
  8347. default:
  8348. {
  8349. GGML_ASSERT(false);
  8350. } break;
  8351. }
  8352. //static bool first = true;
  8353. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8354. //if (first) {
  8355. // first = false;
  8356. //} else {
  8357. // for (int k = 0; k < dst->ne[1]; ++k) {
  8358. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8359. // for (int i = 0; i < 16; ++i) {
  8360. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8361. // }
  8362. // printf("\n");
  8363. // }
  8364. // printf("\n");
  8365. // }
  8366. // printf("\n");
  8367. // exit(0);
  8368. //}
  8369. }
  8370. // ggml_compute_forward_get_rows_back
  8371. static void ggml_compute_forward_get_rows_back_f32_f16(
  8372. const struct ggml_compute_params * params,
  8373. const struct ggml_tensor * src0,
  8374. const struct ggml_tensor * src1,
  8375. struct ggml_tensor * dst) {
  8376. GGML_ASSERT(params->ith == 0);
  8377. GGML_ASSERT(ggml_is_contiguous(dst));
  8378. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8379. if (params->type == GGML_TASK_INIT) {
  8380. memset(dst->data, 0, ggml_nbytes(dst));
  8381. }
  8382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8383. return;
  8384. }
  8385. const int nc = src0->ne[0];
  8386. const int nr = ggml_nelements(src1);
  8387. GGML_ASSERT( dst->ne[0] == nc);
  8388. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8389. for (int i = 0; i < nr; ++i) {
  8390. const int r = ((int32_t *) src1->data)[i];
  8391. for (int j = 0; j < nc; ++j) {
  8392. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8393. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8394. }
  8395. }
  8396. }
  8397. static void ggml_compute_forward_get_rows_back_f32(
  8398. const struct ggml_compute_params * params,
  8399. const struct ggml_tensor * src0,
  8400. const struct ggml_tensor * src1,
  8401. struct ggml_tensor * dst) {
  8402. GGML_ASSERT(params->ith == 0);
  8403. GGML_ASSERT(ggml_is_contiguous(dst));
  8404. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8405. if (params->type == GGML_TASK_INIT) {
  8406. memset(dst->data, 0, ggml_nbytes(dst));
  8407. }
  8408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8409. return;
  8410. }
  8411. const int nc = src0->ne[0];
  8412. const int nr = ggml_nelements(src1);
  8413. GGML_ASSERT( dst->ne[0] == nc);
  8414. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8415. for (int i = 0; i < nr; ++i) {
  8416. const int r = ((int32_t *) src1->data)[i];
  8417. ggml_vec_add_f32(nc,
  8418. (float *) ((char *) dst->data + r*dst->nb[1]),
  8419. (float *) ((char *) dst->data + r*dst->nb[1]),
  8420. (float *) ((char *) src0->data + i*src0->nb[1]));
  8421. }
  8422. }
  8423. static void ggml_compute_forward_get_rows_back(
  8424. const struct ggml_compute_params * params,
  8425. const struct ggml_tensor * src0,
  8426. const struct ggml_tensor * src1,
  8427. struct ggml_tensor * dst) {
  8428. switch (src0->type) {
  8429. case GGML_TYPE_F16:
  8430. {
  8431. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8432. } break;
  8433. case GGML_TYPE_F32:
  8434. {
  8435. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8436. } break;
  8437. default:
  8438. {
  8439. GGML_ASSERT(false);
  8440. } break;
  8441. }
  8442. //static bool first = true;
  8443. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8444. //if (first) {
  8445. // first = false;
  8446. //} else {
  8447. // for (int k = 0; k < dst->ne[1]; ++k) {
  8448. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8449. // for (int i = 0; i < 16; ++i) {
  8450. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8451. // }
  8452. // printf("\n");
  8453. // }
  8454. // printf("\n");
  8455. // }
  8456. // printf("\n");
  8457. // exit(0);
  8458. //}
  8459. }
  8460. // ggml_compute_forward_diag
  8461. static void ggml_compute_forward_diag_f32(
  8462. const struct ggml_compute_params * params,
  8463. const struct ggml_tensor * src0,
  8464. struct ggml_tensor * dst) {
  8465. GGML_ASSERT(params->ith == 0);
  8466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8467. return;
  8468. }
  8469. // TODO: handle transposed/permuted matrices
  8470. GGML_TENSOR_UNARY_OP_LOCALS
  8471. GGML_ASSERT(ne00 == ne0);
  8472. GGML_ASSERT(ne00 == ne1);
  8473. GGML_ASSERT(ne01 == 1);
  8474. GGML_ASSERT(ne02 == ne2);
  8475. GGML_ASSERT(ne03 == ne3);
  8476. GGML_ASSERT(nb00 == sizeof(float));
  8477. GGML_ASSERT(nb0 == sizeof(float));
  8478. for (int i3 = 0; i3 < ne3; i3++) {
  8479. for (int i2 = 0; i2 < ne2; i2++) {
  8480. for (int i1 = 0; i1 < ne1; i1++) {
  8481. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8482. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8483. for (int i0 = 0; i0 < i1; i0++) {
  8484. d[i0] = 0;
  8485. }
  8486. d[i1] = s[i1];
  8487. for (int i0 = i1+1; i0 < ne0; i0++) {
  8488. d[i0] = 0;
  8489. }
  8490. }
  8491. }
  8492. }
  8493. }
  8494. static void ggml_compute_forward_diag(
  8495. const struct ggml_compute_params * params,
  8496. const struct ggml_tensor * src0,
  8497. struct ggml_tensor * dst) {
  8498. switch (src0->type) {
  8499. case GGML_TYPE_F32:
  8500. {
  8501. ggml_compute_forward_diag_f32(params, src0, dst);
  8502. } break;
  8503. default:
  8504. {
  8505. GGML_ASSERT(false);
  8506. } break;
  8507. }
  8508. }
  8509. // ggml_compute_forward_diag_mask_inf
  8510. static void ggml_compute_forward_diag_mask_f32(
  8511. const struct ggml_compute_params * params,
  8512. const struct ggml_tensor * src0,
  8513. struct ggml_tensor * dst,
  8514. const float value) {
  8515. const int ith = params->ith;
  8516. const int nth = params->nth;
  8517. const int n_past = ((int32_t *) dst->op_params)[0];
  8518. const bool inplace = src0->data == dst->data;
  8519. GGML_ASSERT(n_past >= 0);
  8520. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8521. // memcpy needs to be synchronized across threads to avoid race conditions.
  8522. // => do it in INIT phase
  8523. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8524. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8525. memcpy(
  8526. ((char *) dst->data),
  8527. ((char *) src0->data),
  8528. ggml_nbytes(dst));
  8529. }
  8530. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8531. return;
  8532. }
  8533. // TODO: handle transposed/permuted matrices
  8534. const int n = ggml_nrows(src0);
  8535. const int nc = src0->ne[0];
  8536. const int nr = src0->ne[1];
  8537. const int nz = n/nr;
  8538. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8539. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8540. for (int k = 0; k < nz; k++) {
  8541. for (int j = ith; j < nr; j += nth) {
  8542. for (int i = n_past; i < nc; i++) {
  8543. if (i > n_past + j) {
  8544. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8545. }
  8546. }
  8547. }
  8548. }
  8549. }
  8550. static void ggml_compute_forward_diag_mask_inf(
  8551. const struct ggml_compute_params * params,
  8552. const struct ggml_tensor * src0,
  8553. struct ggml_tensor * dst) {
  8554. switch (src0->type) {
  8555. case GGML_TYPE_F32:
  8556. {
  8557. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8558. } break;
  8559. default:
  8560. {
  8561. GGML_ASSERT(false);
  8562. } break;
  8563. }
  8564. }
  8565. static void ggml_compute_forward_diag_mask_zero(
  8566. const struct ggml_compute_params * params,
  8567. const struct ggml_tensor * src0,
  8568. struct ggml_tensor * dst) {
  8569. switch (src0->type) {
  8570. case GGML_TYPE_F32:
  8571. {
  8572. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8573. } break;
  8574. default:
  8575. {
  8576. GGML_ASSERT(false);
  8577. } break;
  8578. }
  8579. }
  8580. // ggml_compute_forward_soft_max
  8581. static void ggml_compute_forward_soft_max_f32(
  8582. const struct ggml_compute_params * params,
  8583. const struct ggml_tensor * src0,
  8584. struct ggml_tensor * dst) {
  8585. GGML_ASSERT(ggml_is_contiguous(src0));
  8586. GGML_ASSERT(ggml_is_contiguous(dst));
  8587. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8589. return;
  8590. }
  8591. // TODO: handle transposed/permuted matrices
  8592. const int ith = params->ith;
  8593. const int nth = params->nth;
  8594. const int nc = src0->ne[0];
  8595. const int nr = ggml_nrows(src0);
  8596. // rows per thread
  8597. const int dr = (nr + nth - 1)/nth;
  8598. // row range for this thread
  8599. const int ir0 = dr*ith;
  8600. const int ir1 = MIN(ir0 + dr, nr);
  8601. for (int i1 = ir0; i1 < ir1; i1++) {
  8602. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8603. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8604. #ifndef NDEBUG
  8605. for (int i = 0; i < nc; ++i) {
  8606. //printf("p[%d] = %f\n", i, p[i]);
  8607. assert(!isnan(sp[i]));
  8608. }
  8609. #endif
  8610. float max = -INFINITY;
  8611. ggml_vec_max_f32(nc, &max, sp);
  8612. ggml_float sum = 0.0;
  8613. uint16_t scvt;
  8614. for (int i = 0; i < nc; i++) {
  8615. if (sp[i] == -INFINITY) {
  8616. dp[i] = 0.0f;
  8617. } else {
  8618. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8619. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8620. memcpy(&scvt, &s, sizeof(scvt));
  8621. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8622. sum += (ggml_float)val;
  8623. dp[i] = val;
  8624. }
  8625. }
  8626. assert(sum > 0.0);
  8627. sum = 1.0/sum;
  8628. ggml_vec_scale_f32(nc, dp, sum);
  8629. #ifndef NDEBUG
  8630. for (int i = 0; i < nc; ++i) {
  8631. assert(!isnan(dp[i]));
  8632. assert(!isinf(dp[i]));
  8633. }
  8634. #endif
  8635. }
  8636. }
  8637. static void ggml_compute_forward_soft_max(
  8638. const struct ggml_compute_params * params,
  8639. const struct ggml_tensor * src0,
  8640. struct ggml_tensor * dst) {
  8641. switch (src0->type) {
  8642. case GGML_TYPE_F32:
  8643. {
  8644. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8645. } break;
  8646. default:
  8647. {
  8648. GGML_ASSERT(false);
  8649. } break;
  8650. }
  8651. }
  8652. // ggml_compute_forward_soft_max_back
  8653. static void ggml_compute_forward_soft_max_back_f32(
  8654. const struct ggml_compute_params * params,
  8655. const struct ggml_tensor * src0,
  8656. const struct ggml_tensor * src1,
  8657. struct ggml_tensor * dst) {
  8658. GGML_ASSERT(ggml_is_contiguous(src0));
  8659. GGML_ASSERT(ggml_is_contiguous(src1));
  8660. GGML_ASSERT(ggml_is_contiguous(dst));
  8661. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8662. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8664. return;
  8665. }
  8666. // TODO: handle transposed/permuted matrices
  8667. const int ith = params->ith;
  8668. const int nth = params->nth;
  8669. const int nc = src0->ne[0];
  8670. const int nr = ggml_nrows(src0);
  8671. // rows per thread
  8672. const int dr = (nr + nth - 1)/nth;
  8673. // row range for this thread
  8674. const int ir0 = dr*ith;
  8675. const int ir1 = MIN(ir0 + dr, nr);
  8676. for (int i1 = ir0; i1 < ir1; i1++) {
  8677. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8678. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8679. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8680. #ifndef NDEBUG
  8681. for (int i = 0; i < nc; ++i) {
  8682. //printf("p[%d] = %f\n", i, p[i]);
  8683. assert(!isnan(dy[i]));
  8684. assert(!isnan(y[i]));
  8685. }
  8686. #endif
  8687. // Jii = yi - yi*yi
  8688. // Jij = -yi*yj
  8689. // J = diag(y)-y.T*y
  8690. // dx = J * dy
  8691. // dxk = sum_i(Jki * dyi)
  8692. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8693. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8694. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8695. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8696. // dxk = -yk * dot(y, dy) + yk*dyk
  8697. // dxk = yk * (- dot(y, dy) + dyk)
  8698. // dxk = yk * (dyk - dot(y, dy))
  8699. //
  8700. // post-order:
  8701. // dot_y_dy := dot(y, dy)
  8702. // dx := dy
  8703. // dx := dx - dot_y_dy
  8704. // dx := dx * y
  8705. // linear runtime, no additional memory
  8706. float dot_y_dy = 0;
  8707. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8708. ggml_vec_cpy_f32 (nc, dx, dy);
  8709. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8710. ggml_vec_mul_f32 (nc, dx, dx, y);
  8711. #ifndef NDEBUG
  8712. for (int i = 0; i < nc; ++i) {
  8713. assert(!isnan(dx[i]));
  8714. assert(!isinf(dx[i]));
  8715. }
  8716. #endif
  8717. }
  8718. }
  8719. static void ggml_compute_forward_soft_max_back(
  8720. const struct ggml_compute_params * params,
  8721. const struct ggml_tensor * src0,
  8722. const struct ggml_tensor * src1,
  8723. struct ggml_tensor * dst) {
  8724. switch (src0->type) {
  8725. case GGML_TYPE_F32:
  8726. {
  8727. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8728. } break;
  8729. default:
  8730. {
  8731. GGML_ASSERT(false);
  8732. } break;
  8733. }
  8734. }
  8735. // ggml_compute_forward_alibi
  8736. static void ggml_compute_forward_alibi_f32(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * src0,
  8739. struct ggml_tensor * dst) {
  8740. assert(params->ith == 0);
  8741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8742. return;
  8743. }
  8744. //const int n_past = ((int32_t *) dst->op_params)[0];
  8745. const int n_head = ((int32_t *) dst->op_params)[1];
  8746. float max_bias;
  8747. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8748. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8749. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8750. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8751. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8752. const int64_t n = ggml_nrows(src0);
  8753. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8754. const size_t nb0 = src0->nb[0];
  8755. const size_t nb1 = src0->nb[1];
  8756. const size_t nb2 = src0->nb[2];
  8757. //const int nb3 = src0->nb[3];
  8758. GGML_ASSERT(nb0 == sizeof(float));
  8759. GGML_ASSERT(n_head == ne2);
  8760. // add alibi to src0 (KQ_scaled)
  8761. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8762. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8763. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8764. for (int64_t i = 0; i < ne0; i++) {
  8765. for (int64_t j = 0; j < ne1; j++) {
  8766. for (int64_t k = 0; k < ne2_ne3; k++) {
  8767. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8768. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8769. // TODO: k*nb2 or k*nb3
  8770. float m_k;
  8771. if (k < n_heads_log2_floor) {
  8772. m_k = powf(m0, k + 1);
  8773. } else {
  8774. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8775. }
  8776. pdst[0] = i * m_k + src[0];
  8777. }
  8778. }
  8779. }
  8780. }
  8781. static void ggml_compute_forward_alibi_f16(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0,
  8784. struct ggml_tensor * dst) {
  8785. assert(params->ith == 0);
  8786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8787. return;
  8788. }
  8789. //const int n_past = ((int32_t *) dst->op_params)[0];
  8790. const int n_head = ((int32_t *) dst->op_params)[1];
  8791. float max_bias;
  8792. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8793. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8794. const int ne1 = src0->ne[1]; // seq_len_without_past
  8795. const int ne2 = src0->ne[2]; // n_head -> this is k
  8796. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8797. const int n = ggml_nrows(src0);
  8798. const int ne2_ne3 = n/ne1; // ne2*ne3
  8799. const int nb0 = src0->nb[0];
  8800. const int nb1 = src0->nb[1];
  8801. const int nb2 = src0->nb[2];
  8802. //const int nb3 = src0->nb[3];
  8803. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8804. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8805. GGML_ASSERT(n_head == ne2);
  8806. // add alibi to src0 (KQ_scaled)
  8807. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8808. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8809. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8810. for (int i = 0; i < ne0; i++) {
  8811. for (int j = 0; j < ne1; j++) {
  8812. for (int k = 0; k < ne2_ne3; k++) {
  8813. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8814. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8815. // TODO: k*nb2 or k*nb3
  8816. float m_k;
  8817. if (k < n_heads_log2_floor) {
  8818. m_k = powf(m0, k + 1);
  8819. } else {
  8820. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8821. }
  8822. // we return F32
  8823. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8824. }
  8825. }
  8826. }
  8827. }
  8828. static void ggml_compute_forward_alibi(
  8829. const struct ggml_compute_params * params,
  8830. const struct ggml_tensor * src0,
  8831. struct ggml_tensor * dst) {
  8832. switch (src0->type) {
  8833. case GGML_TYPE_F16:
  8834. {
  8835. ggml_compute_forward_alibi_f16(params, src0, dst);
  8836. } break;
  8837. case GGML_TYPE_F32:
  8838. {
  8839. ggml_compute_forward_alibi_f32(params, src0, dst);
  8840. } break;
  8841. case GGML_TYPE_Q4_0:
  8842. case GGML_TYPE_Q4_1:
  8843. case GGML_TYPE_Q5_0:
  8844. case GGML_TYPE_Q5_1:
  8845. case GGML_TYPE_Q8_0:
  8846. case GGML_TYPE_Q8_1:
  8847. case GGML_TYPE_Q2_K:
  8848. case GGML_TYPE_Q3_K:
  8849. case GGML_TYPE_Q4_K:
  8850. case GGML_TYPE_Q5_K:
  8851. case GGML_TYPE_Q6_K:
  8852. case GGML_TYPE_Q8_K:
  8853. case GGML_TYPE_I8:
  8854. case GGML_TYPE_I16:
  8855. case GGML_TYPE_I32:
  8856. case GGML_TYPE_COUNT:
  8857. {
  8858. GGML_ASSERT(false);
  8859. } break;
  8860. }
  8861. }
  8862. // ggml_compute_forward_clamp
  8863. static void ggml_compute_forward_clamp_f32(
  8864. const struct ggml_compute_params * params,
  8865. const struct ggml_tensor * src0,
  8866. struct ggml_tensor * dst) {
  8867. assert(params->ith == 0);
  8868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8869. return;
  8870. }
  8871. float min;
  8872. float max;
  8873. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8874. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8875. const int ith = params->ith;
  8876. const int nth = params->nth;
  8877. const int n = ggml_nrows(src0);
  8878. const int nc = src0->ne[0];
  8879. const size_t nb00 = src0->nb[0];
  8880. const size_t nb01 = src0->nb[1];
  8881. const size_t nb0 = dst->nb[0];
  8882. const size_t nb1 = dst->nb[1];
  8883. GGML_ASSERT( nb0 == sizeof(float));
  8884. GGML_ASSERT(nb00 == sizeof(float));
  8885. for (int j = ith; j < n; j += nth) {
  8886. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8887. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8888. for (int i = 0; i < nc; i++) {
  8889. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8890. }
  8891. }
  8892. }
  8893. static void ggml_compute_forward_clamp(
  8894. const struct ggml_compute_params * params,
  8895. const struct ggml_tensor * src0,
  8896. struct ggml_tensor * dst) {
  8897. switch (src0->type) {
  8898. case GGML_TYPE_F32:
  8899. {
  8900. ggml_compute_forward_clamp_f32(params, src0, dst);
  8901. } break;
  8902. case GGML_TYPE_F16:
  8903. case GGML_TYPE_Q4_0:
  8904. case GGML_TYPE_Q4_1:
  8905. case GGML_TYPE_Q5_0:
  8906. case GGML_TYPE_Q5_1:
  8907. case GGML_TYPE_Q8_0:
  8908. case GGML_TYPE_Q8_1:
  8909. case GGML_TYPE_Q2_K:
  8910. case GGML_TYPE_Q3_K:
  8911. case GGML_TYPE_Q4_K:
  8912. case GGML_TYPE_Q5_K:
  8913. case GGML_TYPE_Q6_K:
  8914. case GGML_TYPE_Q8_K:
  8915. case GGML_TYPE_I8:
  8916. case GGML_TYPE_I16:
  8917. case GGML_TYPE_I32:
  8918. case GGML_TYPE_COUNT:
  8919. {
  8920. GGML_ASSERT(false);
  8921. } break;
  8922. }
  8923. }
  8924. // ggml_compute_forward_rope
  8925. static void ggml_compute_forward_rope_f32(
  8926. const struct ggml_compute_params * params,
  8927. const struct ggml_tensor * src0,
  8928. const struct ggml_tensor * src1,
  8929. struct ggml_tensor * dst) {
  8930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8931. return;
  8932. }
  8933. float freq_base;
  8934. float freq_scale;
  8935. // these two only relevant for xPos RoPE:
  8936. float xpos_base;
  8937. bool xpos_down;
  8938. //const int n_past = ((int32_t *) dst->op_params)[0];
  8939. const int n_dims = ((int32_t *) dst->op_params)[1];
  8940. const int mode = ((int32_t *) dst->op_params)[2];
  8941. const int n_ctx = ((int32_t *) dst->op_params)[3];
  8942. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  8943. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  8944. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  8945. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  8946. GGML_TENSOR_UNARY_OP_LOCALS
  8947. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8948. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8949. GGML_ASSERT(nb00 == sizeof(float));
  8950. const int ith = params->ith;
  8951. const int nth = params->nth;
  8952. const int nr = ggml_nrows(dst);
  8953. GGML_ASSERT(n_dims <= ne0);
  8954. GGML_ASSERT(n_dims % 2 == 0);
  8955. // rows per thread
  8956. const int dr = (nr + nth - 1)/nth;
  8957. // row range for this thread
  8958. const int ir0 = dr*ith;
  8959. const int ir1 = MIN(ir0 + dr, nr);
  8960. // row index used to determine which thread to use
  8961. int ir = 0;
  8962. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  8963. const bool is_neox = mode & 2;
  8964. const bool is_glm = mode & 4;
  8965. const int32_t * pos = (const int32_t *) src1->data;
  8966. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8967. for (int64_t i2 = 0; i2 < ne2; i2++) {
  8968. const int64_t p = pos[i2];
  8969. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8970. if (ir++ < ir0) continue;
  8971. if (ir > ir1) break;
  8972. float theta = freq_scale * (float)p;
  8973. if (is_glm) {
  8974. theta = MIN(p, n_ctx - 2);
  8975. float block_theta = MAX(p - (n_ctx - 2), 0);
  8976. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  8977. const float cos_theta = cosf(theta);
  8978. const float sin_theta = sinf(theta);
  8979. const float cos_block_theta = cosf(block_theta);
  8980. const float sin_block_theta = sinf(block_theta);
  8981. theta *= theta_scale;
  8982. block_theta *= theta_scale;
  8983. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8984. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8985. const float x0 = src[0];
  8986. const float x1 = src[n_dims/2];
  8987. const float x2 = src[n_dims];
  8988. const float x3 = src[n_dims/2*3];
  8989. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8990. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8991. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  8992. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  8993. }
  8994. } else if (!is_neox) {
  8995. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8996. const float cos_theta = cosf(theta);
  8997. const float sin_theta = sinf(theta);
  8998. // zeta scaling for xPos only:
  8999. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9000. if (xpos_down) zeta = 1.0f / zeta;
  9001. theta *= theta_scale;
  9002. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9003. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9004. const float x0 = src[0];
  9005. const float x1 = src[1];
  9006. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9007. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9008. }
  9009. } else {
  9010. // TODO: this might be wrong for ne0 != n_dims - need double check
  9011. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9012. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9013. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9014. const float cos_theta = cosf(theta);
  9015. const float sin_theta = sinf(theta);
  9016. theta *= theta_scale;
  9017. const int64_t i0 = ib*n_dims + ic/2;
  9018. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9019. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9020. const float x0 = src[0];
  9021. const float x1 = src[n_dims/2];
  9022. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9023. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9024. }
  9025. }
  9026. }
  9027. }
  9028. }
  9029. }
  9030. }
  9031. static void ggml_compute_forward_rope_f16(
  9032. const struct ggml_compute_params * params,
  9033. const struct ggml_tensor * src0,
  9034. const struct ggml_tensor * src1,
  9035. struct ggml_tensor * dst) {
  9036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9037. return;
  9038. }
  9039. float freq_base;
  9040. float freq_scale;
  9041. //const int n_past = ((int32_t *) dst->op_params)[0];
  9042. const int n_dims = ((int32_t *) dst->op_params)[1];
  9043. const int mode = ((int32_t *) dst->op_params)[2];
  9044. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9045. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9046. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9047. GGML_TENSOR_UNARY_OP_LOCALS
  9048. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9049. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9050. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9051. const int ith = params->ith;
  9052. const int nth = params->nth;
  9053. const int nr = ggml_nrows(dst);
  9054. GGML_ASSERT(n_dims <= ne0);
  9055. GGML_ASSERT(n_dims % 2 == 0);
  9056. // rows per thread
  9057. const int dr = (nr + nth - 1)/nth;
  9058. // row range for this thread
  9059. const int ir0 = dr*ith;
  9060. const int ir1 = MIN(ir0 + dr, nr);
  9061. // row index used to determine which thread to use
  9062. int ir = 0;
  9063. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9064. const bool is_neox = mode & 2;
  9065. const bool is_glm = mode & 4;
  9066. const int32_t * pos = (const int32_t *) src1->data;
  9067. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9068. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9069. const int64_t p = pos[i2];
  9070. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9071. if (ir++ < ir0) continue;
  9072. if (ir > ir1) break;
  9073. float theta = freq_scale * (float)p;
  9074. if (is_glm) {
  9075. theta = MIN(p, n_ctx - 2);
  9076. float block_theta = MAX(p - (n_ctx - 2), 0);
  9077. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9078. const float cos_theta = cosf(theta);
  9079. const float sin_theta = sinf(theta);
  9080. const float cos_block_theta = cosf(block_theta);
  9081. const float sin_block_theta = sinf(block_theta);
  9082. theta *= theta_scale;
  9083. block_theta *= theta_scale;
  9084. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9085. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9086. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9087. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9088. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9089. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9090. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9091. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9092. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9093. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9094. }
  9095. } else if (!is_neox) {
  9096. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9097. const float cos_theta = cosf(theta);
  9098. const float sin_theta = sinf(theta);
  9099. theta *= theta_scale;
  9100. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9101. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9102. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9103. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9104. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9105. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9106. }
  9107. } else {
  9108. // TODO: this might be wrong for ne0 != n_dims - need double check
  9109. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9110. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9111. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9112. const float cos_theta = cosf(theta);
  9113. const float sin_theta = sinf(theta);
  9114. theta *= theta_scale;
  9115. const int64_t i0 = ib*n_dims + ic/2;
  9116. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9117. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9118. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9119. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9120. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9121. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9122. }
  9123. }
  9124. }
  9125. }
  9126. }
  9127. }
  9128. }
  9129. static void ggml_compute_forward_rope(
  9130. const struct ggml_compute_params * params,
  9131. const struct ggml_tensor * src0,
  9132. const struct ggml_tensor * src1,
  9133. struct ggml_tensor * dst) {
  9134. switch (src0->type) {
  9135. case GGML_TYPE_F16:
  9136. {
  9137. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9138. } break;
  9139. case GGML_TYPE_F32:
  9140. {
  9141. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9142. } break;
  9143. default:
  9144. {
  9145. GGML_ASSERT(false);
  9146. } break;
  9147. }
  9148. }
  9149. // ggml_compute_forward_rope_back
  9150. static void ggml_compute_forward_rope_back_f32(
  9151. const struct ggml_compute_params * params,
  9152. const struct ggml_tensor * src0,
  9153. const struct ggml_tensor * src1,
  9154. struct ggml_tensor * dst) {
  9155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9156. return;
  9157. }
  9158. // y = rope(x, src1)
  9159. // dx = rope_back(dy, src1)
  9160. // src0 is dy, src1 contains options
  9161. float freq_base;
  9162. float freq_scale;
  9163. // these two only relevant for xPos RoPE:
  9164. float xpos_base;
  9165. bool xpos_down;
  9166. //const int n_past = ((int32_t *) dst->op_params)[0];
  9167. const int n_dims = ((int32_t *) dst->op_params)[1];
  9168. const int mode = ((int32_t *) dst->op_params)[2];
  9169. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  9170. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9171. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9172. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  9173. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  9174. GGML_TENSOR_UNARY_OP_LOCALS
  9175. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9176. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9177. assert(nb0 == sizeof(float));
  9178. const int ith = params->ith;
  9179. const int nth = params->nth;
  9180. const int nr = ggml_nrows(dst);
  9181. // rows per thread
  9182. const int dr = (nr + nth - 1)/nth;
  9183. // row range for this thread
  9184. const int ir0 = dr*ith;
  9185. const int ir1 = MIN(ir0 + dr, nr);
  9186. // row index used to determine which thread to use
  9187. int ir = 0;
  9188. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9189. const bool is_neox = mode & 2;
  9190. const int32_t * pos = (const int32_t *) src1->data;
  9191. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9192. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9193. const int64_t p = pos[i2];
  9194. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9195. if (ir++ < ir0) continue;
  9196. if (ir > ir1) break;
  9197. float theta = freq_scale * (float)p;
  9198. if (!is_neox) {
  9199. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9200. const float cos_theta = cosf(theta);
  9201. const float sin_theta = sinf(theta);
  9202. // zeta scaling for xPos only:
  9203. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9204. if (xpos_down) zeta = 1.0f / zeta;
  9205. theta *= theta_scale;
  9206. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9207. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9208. const float dy0 = dy[0];
  9209. const float dy1 = dy[1];
  9210. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  9211. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  9212. }
  9213. } else {
  9214. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9215. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9216. const float cos_theta = cosf(theta);
  9217. const float sin_theta = sinf(theta);
  9218. theta *= theta_scale;
  9219. const int64_t i0 = ib*n_dims + ic/2;
  9220. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9221. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9222. const float dy0 = dy[0];
  9223. const float dy1 = dy[n_dims/2];
  9224. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9225. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9226. }
  9227. }
  9228. }
  9229. }
  9230. }
  9231. }
  9232. }
  9233. static void ggml_compute_forward_rope_back_f16(
  9234. const struct ggml_compute_params * params,
  9235. const struct ggml_tensor * src0,
  9236. const struct ggml_tensor * src1,
  9237. struct ggml_tensor * dst) {
  9238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9239. return;
  9240. }
  9241. // y = rope(x, src1)
  9242. // dx = rope_back(dy, src1)
  9243. // src0 is dy, src1 contains options
  9244. //const int n_past = ((int32_t *) dst->op_params)[0];
  9245. const int n_dims = ((int32_t *) dst->op_params)[1];
  9246. const int mode = ((int32_t *) dst->op_params)[2];
  9247. GGML_TENSOR_UNARY_OP_LOCALS
  9248. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9249. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9250. assert(nb0 == sizeof(ggml_fp16_t));
  9251. const int ith = params->ith;
  9252. const int nth = params->nth;
  9253. const int nr = ggml_nrows(dst);
  9254. // rows per thread
  9255. const int dr = (nr + nth - 1)/nth;
  9256. // row range for this thread
  9257. const int ir0 = dr*ith;
  9258. const int ir1 = MIN(ir0 + dr, nr);
  9259. // row index used to determine which thread to use
  9260. int ir = 0;
  9261. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9262. const bool is_neox = mode & 2;
  9263. const int32_t * pos = (const int32_t *) src1->data;
  9264. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9265. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9266. const int64_t p = pos[i2];
  9267. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9268. if (ir++ < ir0) continue;
  9269. if (ir > ir1) break;
  9270. float theta = (float)p;
  9271. if (!is_neox) {
  9272. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9273. const float cos_theta = cosf(theta);
  9274. const float sin_theta = sinf(theta);
  9275. theta *= theta_scale;
  9276. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9277. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9278. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9279. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9280. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9281. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9282. }
  9283. } else {
  9284. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9285. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9286. const float cos_theta = cosf(theta);
  9287. const float sin_theta = sinf(theta);
  9288. theta *= theta_scale;
  9289. const int64_t i0 = ib*n_dims + ic/2;
  9290. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9291. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9292. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9293. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9294. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9295. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9296. }
  9297. }
  9298. }
  9299. }
  9300. }
  9301. }
  9302. }
  9303. static void ggml_compute_forward_rope_back(
  9304. const struct ggml_compute_params * params,
  9305. const struct ggml_tensor * src0,
  9306. const struct ggml_tensor * src1,
  9307. struct ggml_tensor * dst) {
  9308. switch (src0->type) {
  9309. case GGML_TYPE_F16:
  9310. {
  9311. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9312. } break;
  9313. case GGML_TYPE_F32:
  9314. {
  9315. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9316. } break;
  9317. default:
  9318. {
  9319. GGML_ASSERT(false);
  9320. } break;
  9321. }
  9322. }
  9323. // ggml_compute_forward_conv_1d
  9324. static void ggml_compute_forward_conv_1d_f16_f32(
  9325. const struct ggml_compute_params * params,
  9326. const struct ggml_tensor * src0,
  9327. const struct ggml_tensor * src1,
  9328. struct ggml_tensor * dst) {
  9329. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9330. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9331. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9332. int64_t t0 = ggml_perf_time_us();
  9333. UNUSED(t0);
  9334. GGML_TENSOR_BINARY_OP_LOCALS
  9335. const int ith = params->ith;
  9336. const int nth = params->nth;
  9337. const int nk = ne00;
  9338. // size of the convolution row - the kernel size unrolled across all input channels
  9339. const int ew0 = nk*ne01;
  9340. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9341. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9342. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9343. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9344. GGML_ASSERT(nb10 == sizeof(float));
  9345. if (params->type == GGML_TASK_INIT) {
  9346. memset(params->wdata, 0, params->wsize);
  9347. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9348. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9349. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9350. ggml_fp16_t * dst_data = wdata;
  9351. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9352. for (int64_t ik = 0; ik < nk; ik++) {
  9353. const int idx0 = i0*s0 + ik*d0 - p0;
  9354. if(!(idx0 < 0 || idx0 >= ne10)) {
  9355. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  9356. }
  9357. }
  9358. }
  9359. }
  9360. return;
  9361. }
  9362. if (params->type == GGML_TASK_FINALIZE) {
  9363. return;
  9364. }
  9365. // total rows in dst
  9366. const int nr = ne2;
  9367. // rows per thread
  9368. const int dr = (nr + nth - 1)/nth;
  9369. // row range for this thread
  9370. const int ir0 = dr*ith;
  9371. const int ir1 = MIN(ir0 + dr, nr);
  9372. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9373. for (int i2 = 0; i2 < ne2; i2++) {
  9374. for (int i1 = ir0; i1 < ir1; i1++) {
  9375. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9376. for (int i0 = 0; i0 < ne0; i0++) {
  9377. ggml_vec_dot_f16(ew0, dst_data + i0,
  9378. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  9379. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  9380. }
  9381. }
  9382. }
  9383. }
  9384. static void ggml_compute_forward_conv_1d_f32(
  9385. const struct ggml_compute_params * params,
  9386. const struct ggml_tensor * src0,
  9387. const struct ggml_tensor * src1,
  9388. struct ggml_tensor * dst) {
  9389. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9390. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9391. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9392. int64_t t0 = ggml_perf_time_us();
  9393. UNUSED(t0);
  9394. GGML_TENSOR_BINARY_OP_LOCALS
  9395. const int ith = params->ith;
  9396. const int nth = params->nth;
  9397. const int nk = ne00;
  9398. const int ew0 = nk*ne01;
  9399. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9400. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9401. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9402. GGML_ASSERT(nb00 == sizeof(float));
  9403. GGML_ASSERT(nb10 == sizeof(float));
  9404. if (params->type == GGML_TASK_INIT) {
  9405. memset(params->wdata, 0, params->wsize);
  9406. float * const wdata = (float *) params->wdata + 0;
  9407. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9408. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9409. float * dst_data = wdata;
  9410. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9411. for (int64_t ik = 0; ik < nk; ik++) {
  9412. const int idx0 = i0*s0 + ik*d0 - p0;
  9413. if(!(idx0 < 0 || idx0 >= ne10)) {
  9414. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  9415. }
  9416. }
  9417. }
  9418. }
  9419. return;
  9420. }
  9421. if (params->type == GGML_TASK_FINALIZE) {
  9422. return;
  9423. }
  9424. // total rows in dst
  9425. const int nr = ne02;
  9426. // rows per thread
  9427. const int dr = (nr + nth - 1)/nth;
  9428. // row range for this thread
  9429. const int ir0 = dr*ith;
  9430. const int ir1 = MIN(ir0 + dr, nr);
  9431. float * const wdata = (float *) params->wdata + 0;
  9432. for (int i2 = 0; i2 < ne2; i2++) {
  9433. for (int i1 = ir0; i1 < ir1; i1++) {
  9434. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9435. for (int i0 = 0; i0 < ne0; i0++) {
  9436. ggml_vec_dot_f32(ew0, dst_data + i0,
  9437. (float *) ((char *) src0->data + i1*nb02),
  9438. (float *) wdata + i2*nb2 + i0*ew0);
  9439. }
  9440. }
  9441. }
  9442. }
  9443. // TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
  9444. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  9445. ggml_fp16_t * A,
  9446. ggml_fp16_t * B,
  9447. float * C,
  9448. const int ith, const int nth) {
  9449. // does not seem to make a difference
  9450. int64_t m0, m1, n0, n1;
  9451. // patches per thread
  9452. if (m > n) {
  9453. n0 = 0;
  9454. n1 = n;
  9455. // total patches in dst
  9456. const int np = m;
  9457. // patches per thread
  9458. const int dp = (np + nth - 1)/nth;
  9459. // patch range for this thread
  9460. m0 = dp*ith;
  9461. m1 = MIN(m0 + dp, np);
  9462. } else {
  9463. m0 = 0;
  9464. m1 = m;
  9465. // total patches in dst
  9466. const int np = n;
  9467. // patches per thread
  9468. const int dp = (np + nth - 1)/nth;
  9469. // patch range for this thread
  9470. n0 = dp*ith;
  9471. n1 = MIN(n0 + dp, np);
  9472. }
  9473. // block-tiling attempt
  9474. int64_t blck_n = 16;
  9475. int64_t blck_m = 16;
  9476. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  9477. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  9478. // if (blck_size > 0) {
  9479. // blck_0 = 4;
  9480. // blck_1 = blck_size / blck_0;
  9481. // if (blck_1 < 0) {
  9482. // blck_1 = 1;
  9483. // }
  9484. // // blck_0 = (int64_t)sqrt(blck_size);
  9485. // // blck_1 = blck_0;
  9486. // }
  9487. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  9488. for (int j = n0; j < n1; j+=blck_n) {
  9489. for (int i = m0; i < m1; i+=blck_m) {
  9490. // printf("i j k => %d %d %d\n", i, j, K);
  9491. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  9492. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  9493. ggml_vec_dot_f16(k,
  9494. C + ii*n + jj,
  9495. A + ii * k,
  9496. B + jj * k);
  9497. }
  9498. }
  9499. }
  9500. }
  9501. }
  9502. // src0: kernel [OC, IC, K]
  9503. // src1: signal [N, IC, IL]
  9504. // dst: result [N, OL, IC*K]
  9505. static void ggml_compute_forward_conv_1d_stage_0_f32(
  9506. const struct ggml_compute_params * params,
  9507. const struct ggml_tensor * src0,
  9508. const struct ggml_tensor * src1,
  9509. struct ggml_tensor * dst) {
  9510. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9511. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9512. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9513. int64_t t0 = ggml_perf_time_us();
  9514. UNUSED(t0);
  9515. GGML_TENSOR_BINARY_OP_LOCALS;
  9516. const int64_t N = ne12;
  9517. const int64_t IC = ne11;
  9518. const int64_t IL = ne10;
  9519. const int64_t K = ne00;
  9520. const int64_t OL = ne1;
  9521. const int ith = params->ith;
  9522. const int nth = params->nth;
  9523. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9524. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9525. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9526. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9527. GGML_ASSERT(nb10 == sizeof(float));
  9528. if (params->type == GGML_TASK_INIT) {
  9529. memset(dst->data, 0, ggml_nbytes(dst));
  9530. return;
  9531. }
  9532. if (params->type == GGML_TASK_FINALIZE) {
  9533. return;
  9534. }
  9535. // im2col: [N, IC, IL] => [N, OL, IC*K]
  9536. {
  9537. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9538. for (int64_t in = 0; in < N; in++) {
  9539. for (int64_t iol = 0; iol < OL; iol++) {
  9540. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9541. // micro kernel
  9542. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  9543. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  9544. for (int64_t ik = 0; ik < K; ik++) {
  9545. const int64_t iil = iol*s0 + ik*d0 - p0;
  9546. if (!(iil < 0 || iil >= IL)) {
  9547. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  9548. }
  9549. }
  9550. }
  9551. }
  9552. }
  9553. }
  9554. }
  9555. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9556. // src0: [OC, IC, K]
  9557. // src1: [N, OL, IC * K]
  9558. // result: [N, OC, OL]
  9559. static void ggml_compute_forward_conv_1d_stage_1_f16(
  9560. const struct ggml_compute_params * params,
  9561. const struct ggml_tensor * src0,
  9562. const struct ggml_tensor * src1,
  9563. struct ggml_tensor * dst) {
  9564. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9565. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9566. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9567. int64_t t0 = ggml_perf_time_us();
  9568. UNUSED(t0);
  9569. if (params->type == GGML_TASK_INIT) {
  9570. return;
  9571. }
  9572. if (params->type == GGML_TASK_FINALIZE) {
  9573. return;
  9574. }
  9575. GGML_TENSOR_BINARY_OP_LOCALS;
  9576. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9577. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9578. GGML_ASSERT(nb0 == sizeof(float));
  9579. const int N = ne12;
  9580. const int OL = ne11;
  9581. const int OC = ne02;
  9582. const int IC = ne01;
  9583. const int K = ne00;
  9584. const int ith = params->ith;
  9585. const int nth = params->nth;
  9586. int64_t m = OC;
  9587. int64_t n = OL;
  9588. int64_t k = IC * K;
  9589. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9590. for (int i = 0; i < N; i++) {
  9591. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9592. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9593. float * C = (float *)dst->data + i * m * n; // [m, n]
  9594. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9595. }
  9596. }
  9597. static void ggml_compute_forward_conv_1d(
  9598. const struct ggml_compute_params * params,
  9599. const struct ggml_tensor * src0,
  9600. const struct ggml_tensor * src1,
  9601. struct ggml_tensor * dst) {
  9602. switch(src0->type) {
  9603. case GGML_TYPE_F16:
  9604. {
  9605. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  9606. } break;
  9607. case GGML_TYPE_F32:
  9608. {
  9609. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  9610. } break;
  9611. default:
  9612. {
  9613. GGML_ASSERT(false);
  9614. } break;
  9615. }
  9616. }
  9617. static void ggml_compute_forward_conv_1d_stage_0(
  9618. const struct ggml_compute_params * params,
  9619. const struct ggml_tensor * src0,
  9620. const struct ggml_tensor * src1,
  9621. struct ggml_tensor * dst) {
  9622. switch(src0->type) {
  9623. case GGML_TYPE_F16:
  9624. {
  9625. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  9626. } break;
  9627. default:
  9628. {
  9629. GGML_ASSERT(false);
  9630. } break;
  9631. }
  9632. }
  9633. static void ggml_compute_forward_conv_1d_stage_1(
  9634. const struct ggml_compute_params * params,
  9635. const struct ggml_tensor * src0,
  9636. const struct ggml_tensor * src1,
  9637. struct ggml_tensor * dst) {
  9638. switch(src0->type) {
  9639. case GGML_TYPE_F16:
  9640. {
  9641. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  9642. } break;
  9643. default:
  9644. {
  9645. GGML_ASSERT(false);
  9646. } break;
  9647. }
  9648. }
  9649. // ggml_compute_forward_conv_transpose_1d
  9650. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9651. const struct ggml_compute_params * params,
  9652. const struct ggml_tensor * src0,
  9653. const struct ggml_tensor * src1,
  9654. struct ggml_tensor * dst) {
  9655. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9656. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9657. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9658. int64_t t0 = ggml_perf_time_us();
  9659. UNUSED(t0);
  9660. GGML_TENSOR_BINARY_OP_LOCALS
  9661. const int ith = params->ith;
  9662. const int nth = params->nth;
  9663. const int nk = ne00*ne01*ne02;
  9664. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9665. GGML_ASSERT(nb10 == sizeof(float));
  9666. if (params->type == GGML_TASK_INIT) {
  9667. memset(params->wdata, 0, params->wsize);
  9668. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9669. {
  9670. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9672. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9673. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9674. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9676. dst_data[i00*ne02 + i02] = src[i00];
  9677. }
  9678. }
  9679. }
  9680. }
  9681. // permute source data (src1) from (L x Cin) to (Cin x L)
  9682. {
  9683. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9684. ggml_fp16_t * dst_data = wdata;
  9685. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9686. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9687. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9688. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9689. }
  9690. }
  9691. }
  9692. // need to zero dst since we are accumulating into it
  9693. memset(dst->data, 0, ggml_nbytes(dst));
  9694. return;
  9695. }
  9696. if (params->type == GGML_TASK_FINALIZE) {
  9697. return;
  9698. }
  9699. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9700. // total rows in dst
  9701. const int nr = ne1;
  9702. // rows per thread
  9703. const int dr = (nr + nth - 1)/nth;
  9704. // row range for this thread
  9705. const int ir0 = dr*ith;
  9706. const int ir1 = MIN(ir0 + dr, nr);
  9707. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9708. ggml_fp16_t * const wdata_src = wdata + nk;
  9709. for (int i1 = ir0; i1 < ir1; i1++) {
  9710. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9711. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9712. for (int i10 = 0; i10 < ne10; i10++) {
  9713. const int i1n = i10*ne11;
  9714. for (int i00 = 0; i00 < ne00; i00++) {
  9715. float v = 0;
  9716. ggml_vec_dot_f16(ne02, &v,
  9717. (ggml_fp16_t *) wdata_src + i1n,
  9718. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9719. dst_data[i10*s0 + i00] += v;
  9720. }
  9721. }
  9722. }
  9723. }
  9724. static void ggml_compute_forward_conv_transpose_1d_f32(
  9725. const struct ggml_compute_params * params,
  9726. const struct ggml_tensor * src0,
  9727. const struct ggml_tensor * src1,
  9728. struct ggml_tensor * dst) {
  9729. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9730. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9731. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9732. int64_t t0 = ggml_perf_time_us();
  9733. UNUSED(t0);
  9734. GGML_TENSOR_BINARY_OP_LOCALS
  9735. const int ith = params->ith;
  9736. const int nth = params->nth;
  9737. const int nk = ne00*ne01*ne02;
  9738. GGML_ASSERT(nb00 == sizeof(float));
  9739. GGML_ASSERT(nb10 == sizeof(float));
  9740. if (params->type == GGML_TASK_INIT) {
  9741. memset(params->wdata, 0, params->wsize);
  9742. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9743. {
  9744. float * const wdata = (float *) params->wdata + 0;
  9745. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9746. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9747. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9748. float * dst_data = wdata + i01*ne00*ne02;
  9749. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9750. dst_data[i00*ne02 + i02] = src[i00];
  9751. }
  9752. }
  9753. }
  9754. }
  9755. // prepare source data (src1)
  9756. {
  9757. float * const wdata = (float *) params->wdata + nk;
  9758. float * dst_data = wdata;
  9759. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9760. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9761. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9762. dst_data[i10*ne11 + i11] = src[i10];
  9763. }
  9764. }
  9765. }
  9766. // need to zero dst since we are accumulating into it
  9767. memset(dst->data, 0, ggml_nbytes(dst));
  9768. return;
  9769. }
  9770. if (params->type == GGML_TASK_FINALIZE) {
  9771. return;
  9772. }
  9773. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9774. // total rows in dst
  9775. const int nr = ne1;
  9776. // rows per thread
  9777. const int dr = (nr + nth - 1)/nth;
  9778. // row range for this thread
  9779. const int ir0 = dr*ith;
  9780. const int ir1 = MIN(ir0 + dr, nr);
  9781. float * const wdata = (float *) params->wdata + 0;
  9782. float * const wdata_src = wdata + nk;
  9783. for (int i1 = ir0; i1 < ir1; i1++) {
  9784. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9785. float * wdata_kernel = wdata + i1*ne02*ne00;
  9786. for (int i10 = 0; i10 < ne10; i10++) {
  9787. const int i1n = i10*ne11;
  9788. for (int i00 = 0; i00 < ne00; i00++) {
  9789. float v = 0;
  9790. ggml_vec_dot_f32(ne02, &v,
  9791. wdata_src + i1n,
  9792. wdata_kernel + i00*ne02);
  9793. dst_data[i10*s0 + i00] += v;
  9794. }
  9795. }
  9796. }
  9797. }
  9798. static void ggml_compute_forward_conv_transpose_1d(
  9799. const struct ggml_compute_params * params,
  9800. const struct ggml_tensor * src0,
  9801. const struct ggml_tensor * src1,
  9802. struct ggml_tensor * dst) {
  9803. switch (src0->type) {
  9804. case GGML_TYPE_F16:
  9805. {
  9806. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9807. } break;
  9808. case GGML_TYPE_F32:
  9809. {
  9810. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9811. } break;
  9812. default:
  9813. {
  9814. GGML_ASSERT(false);
  9815. } break;
  9816. }
  9817. }
  9818. // ggml_compute_forward_conv_2d
  9819. // src0: kernel [OC, IC, KH, KW]
  9820. // src1: image [N, IC, IH, IW]
  9821. // dst: result [N, OH, OW, IC*KH*KW]
  9822. static void ggml_compute_forward_conv_2d_stage_0_f32(
  9823. const struct ggml_compute_params * params,
  9824. const struct ggml_tensor * src0,
  9825. const struct ggml_tensor * src1,
  9826. struct ggml_tensor * dst) {
  9827. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9828. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9829. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9830. int64_t t0 = ggml_perf_time_us();
  9831. UNUSED(t0);
  9832. GGML_TENSOR_BINARY_OP_LOCALS;
  9833. const int64_t N = ne13;
  9834. const int64_t IC = ne12;
  9835. const int64_t IH = ne11;
  9836. const int64_t IW = ne10;
  9837. // const int64_t OC = ne03;
  9838. // const int64_t IC = ne02;
  9839. const int64_t KH = ne01;
  9840. const int64_t KW = ne00;
  9841. const int64_t OH = ne2;
  9842. const int64_t OW = ne1;
  9843. const int ith = params->ith;
  9844. const int nth = params->nth;
  9845. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9846. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9847. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9848. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9849. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9850. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9851. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9852. GGML_ASSERT(nb10 == sizeof(float));
  9853. if (params->type == GGML_TASK_INIT) {
  9854. memset(dst->data, 0, ggml_nbytes(dst));
  9855. return;
  9856. }
  9857. if (params->type == GGML_TASK_FINALIZE) {
  9858. return;
  9859. }
  9860. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9861. {
  9862. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9863. for (int64_t in = 0; in < N; in++) {
  9864. for (int64_t ioh = 0; ioh < OH; ioh++) {
  9865. for (int64_t iow = 0; iow < OW; iow++) {
  9866. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9867. // micro kernel
  9868. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9869. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9870. for (int64_t ikh = 0; ikh < KH; ikh++) {
  9871. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9872. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9873. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9874. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9875. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9876. }
  9877. }
  9878. }
  9879. }
  9880. }
  9881. }
  9882. }
  9883. }
  9884. }
  9885. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9886. // src0: [OC, IC, KH, KW]
  9887. // src1: [N, OH, OW, IC * KH * KW]
  9888. // result: [N, OC, OH, OW]
  9889. static void ggml_compute_forward_conv_2d_stage_1_f16(
  9890. const struct ggml_compute_params * params,
  9891. const struct ggml_tensor * src0,
  9892. const struct ggml_tensor * src1,
  9893. struct ggml_tensor * dst) {
  9894. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9895. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9896. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9897. int64_t t0 = ggml_perf_time_us();
  9898. UNUSED(t0);
  9899. if (params->type == GGML_TASK_INIT) {
  9900. return;
  9901. }
  9902. if (params->type == GGML_TASK_FINALIZE) {
  9903. return;
  9904. }
  9905. GGML_TENSOR_BINARY_OP_LOCALS;
  9906. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9907. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9908. GGML_ASSERT(nb0 == sizeof(float));
  9909. const int N = ne13;
  9910. const int OH = ne12;
  9911. const int OW = ne11;
  9912. const int OC = ne03;
  9913. const int IC = ne02;
  9914. const int KH = ne01;
  9915. const int KW = ne00;
  9916. const int ith = params->ith;
  9917. const int nth = params->nth;
  9918. int64_t m = OC;
  9919. int64_t n = OH * OW;
  9920. int64_t k = IC * KH * KW;
  9921. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9922. for (int i = 0; i < N; i++) {
  9923. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9924. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9925. float * C = (float *)dst->data + i * m * n; // [m, n]
  9926. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9927. }
  9928. }
  9929. static void ggml_compute_forward_conv_2d_f16_f32(
  9930. const struct ggml_compute_params * params,
  9931. const struct ggml_tensor * src0,
  9932. const struct ggml_tensor * src1,
  9933. struct ggml_tensor * dst) {
  9934. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9935. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9936. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9937. int64_t t0 = ggml_perf_time_us();
  9938. UNUSED(t0);
  9939. GGML_TENSOR_BINARY_OP_LOCALS
  9940. // src1: image [N, IC, IH, IW]
  9941. // src0: kernel [OC, IC, KH, KW]
  9942. // dst: result [N, OC, OH, OW]
  9943. // ne12: IC
  9944. // ne0: OW
  9945. // ne1: OH
  9946. // nk0: KW
  9947. // nk1: KH
  9948. // ne13: N
  9949. const int N = ne13;
  9950. const int IC = ne12;
  9951. const int IH = ne11;
  9952. const int IW = ne10;
  9953. const int OC = ne03;
  9954. // const int IC = ne02;
  9955. const int KH = ne01;
  9956. const int KW = ne00;
  9957. const int OH = ne1;
  9958. const int OW = ne0;
  9959. const int ith = params->ith;
  9960. const int nth = params->nth;
  9961. // const int nk0 = ne00;
  9962. // const int nk1 = ne01;
  9963. // size of the convolution row - the kernel size unrolled across all channels
  9964. // const int ew0 = nk0*nk1*ne02;
  9965. // ew0: IC*KH*KW
  9966. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9967. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9968. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9969. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9970. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9971. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9972. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9973. GGML_ASSERT(nb10 == sizeof(float));
  9974. if (params->type == GGML_TASK_INIT) {
  9975. memset(params->wdata, 0, params->wsize);
  9976. // prepare source data (src1)
  9977. // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
  9978. {
  9979. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9980. for (int in = 0; in < N; in++) {
  9981. for (int iic = 0; iic < IC; iic++) {
  9982. for (int ioh = 0; ioh < OH; ioh++) {
  9983. for (int iow = 0; iow < OW; iow++) {
  9984. // micro kernel
  9985. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9986. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9987. for (int ikh = 0; ikh < KH; ikh++) {
  9988. for (int ikw = 0; ikw < KW; ikw++) {
  9989. const int iiw = iow*s0 + ikw*d0 - p0;
  9990. const int iih = ioh*s1 + ikh*d1 - p1;
  9991. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9992. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9993. }
  9994. }
  9995. }
  9996. }
  9997. }
  9998. }
  9999. }
  10000. }
  10001. return;
  10002. }
  10003. if (params->type == GGML_TASK_FINALIZE) {
  10004. return;
  10005. }
  10006. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10007. // wdata: [N*OH*OW, IC*KH*KW]
  10008. // dst: result [N, OC, OH, OW]
  10009. // src0: kernel [OC, IC, KH, KW]
  10010. int64_t m = OC;
  10011. int64_t n = OH * OW;
  10012. int64_t k = IC * KH * KW;
  10013. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10014. for (int i = 0; i < N; i++) {
  10015. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10016. ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
  10017. float * C = (float *)dst->data + i * m * n; // [m * k]
  10018. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10019. }
  10020. }
  10021. static void ggml_compute_forward_conv_2d(
  10022. const struct ggml_compute_params * params,
  10023. const struct ggml_tensor * src0,
  10024. const struct ggml_tensor * src1,
  10025. struct ggml_tensor * dst) {
  10026. switch (src0->type) {
  10027. case GGML_TYPE_F16:
  10028. {
  10029. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10030. } break;
  10031. case GGML_TYPE_F32:
  10032. {
  10033. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10034. GGML_ASSERT(false);
  10035. } break;
  10036. default:
  10037. {
  10038. GGML_ASSERT(false);
  10039. } break;
  10040. }
  10041. }
  10042. static void ggml_compute_forward_conv_2d_stage_0(
  10043. const struct ggml_compute_params * params,
  10044. const struct ggml_tensor * src0,
  10045. const struct ggml_tensor * src1,
  10046. struct ggml_tensor * dst) {
  10047. switch (src0->type) {
  10048. case GGML_TYPE_F16:
  10049. {
  10050. ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
  10051. } break;
  10052. case GGML_TYPE_F32:
  10053. {
  10054. GGML_ASSERT(false);
  10055. } break;
  10056. default:
  10057. {
  10058. GGML_ASSERT(false);
  10059. } break;
  10060. }
  10061. }
  10062. static void ggml_compute_forward_conv_2d_stage_1(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src0,
  10065. const struct ggml_tensor * src1,
  10066. struct ggml_tensor * dst) {
  10067. switch (src0->type) {
  10068. case GGML_TYPE_F16:
  10069. {
  10070. ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
  10071. } break;
  10072. case GGML_TYPE_F32:
  10073. {
  10074. GGML_ASSERT(false);
  10075. } break;
  10076. default:
  10077. {
  10078. GGML_ASSERT(false);
  10079. } break;
  10080. }
  10081. }
  10082. // ggml_compute_forward_conv_transpose_2d
  10083. static void ggml_compute_forward_conv_transpose_2d(
  10084. const struct ggml_compute_params * params,
  10085. const struct ggml_tensor * src0,
  10086. const struct ggml_tensor * src1,
  10087. struct ggml_tensor * dst) {
  10088. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10089. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10090. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10091. int64_t t0 = ggml_perf_time_us();
  10092. UNUSED(t0);
  10093. GGML_TENSOR_BINARY_OP_LOCALS
  10094. const int ith = params->ith;
  10095. const int nth = params->nth;
  10096. const int nk = ne00*ne01*ne02*ne03;
  10097. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10098. GGML_ASSERT(nb10 == sizeof(float));
  10099. if (params->type == GGML_TASK_INIT) {
  10100. memset(params->wdata, 0, params->wsize);
  10101. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10102. {
  10103. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10104. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10105. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10106. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10107. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10108. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10110. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10111. }
  10112. }
  10113. }
  10114. }
  10115. }
  10116. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10117. {
  10118. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10119. for (int i12 = 0; i12 < ne12; i12++) {
  10120. for (int i11 = 0; i11 < ne11; i11++) {
  10121. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10122. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10123. for (int i10 = 0; i10 < ne10; i10++) {
  10124. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10125. }
  10126. }
  10127. }
  10128. }
  10129. memset(dst->data, 0, ggml_nbytes(dst));
  10130. return;
  10131. }
  10132. if (params->type == GGML_TASK_FINALIZE) {
  10133. return;
  10134. }
  10135. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10136. // total patches in dst
  10137. const int np = ne2;
  10138. // patches per thread
  10139. const int dp = (np + nth - 1)/nth;
  10140. // patch range for this thread
  10141. const int ip0 = dp*ith;
  10142. const int ip1 = MIN(ip0 + dp, np);
  10143. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10144. ggml_fp16_t * const wdata_src = wdata + nk;
  10145. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10146. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10147. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10148. for (int i11 = 0; i11 < ne11; i11++) {
  10149. for (int i10 = 0; i10 < ne10; i10++) {
  10150. const int i1n = i11*ne10*ne12 + i10*ne12;
  10151. for (int i01 = 0; i01 < ne01; i01++) {
  10152. for (int i00 = 0; i00 < ne00; i00++) {
  10153. float v = 0;
  10154. ggml_vec_dot_f16(ne03, &v,
  10155. wdata_src + i1n,
  10156. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10157. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10158. }
  10159. }
  10160. }
  10161. }
  10162. }
  10163. }
  10164. // ggml_compute_forward_pool_1d_sk_p0
  10165. static void ggml_compute_forward_pool_1d_sk_p0(
  10166. const struct ggml_compute_params * params,
  10167. const enum ggml_op_pool op,
  10168. const struct ggml_tensor * src,
  10169. const int k,
  10170. struct ggml_tensor * dst) {
  10171. assert(src->type == GGML_TYPE_F32);
  10172. assert(params->ith == 0);
  10173. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10174. return;
  10175. }
  10176. const char * cdata = (const char *)src->data;
  10177. const char * const data_end = cdata + ggml_nbytes(src);
  10178. float * drow = (float *)dst->data;
  10179. const int64_t rs = dst->ne[0];
  10180. while (cdata < data_end) {
  10181. const float * const srow = (const float *)cdata;
  10182. int j = 0;
  10183. for (int64_t i = 0; i < rs; ++i) {
  10184. switch (op) {
  10185. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10186. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10187. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10188. }
  10189. for (int ki = 0; ki < k; ++ki) {
  10190. switch (op) {
  10191. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10192. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10193. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10194. }
  10195. ++j;
  10196. }
  10197. switch (op) {
  10198. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10199. case GGML_OP_POOL_MAX: break;
  10200. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10201. }
  10202. }
  10203. cdata += src->nb[1];
  10204. drow += rs;
  10205. }
  10206. }
  10207. // ggml_compute_forward_pool_1d
  10208. static void ggml_compute_forward_pool_1d(
  10209. const struct ggml_compute_params * params,
  10210. const struct ggml_tensor * src0,
  10211. struct ggml_tensor * dst) {
  10212. const int32_t * opts = (const int32_t *)dst->op_params;
  10213. enum ggml_op_pool op = opts[0];
  10214. const int k0 = opts[1];
  10215. const int s0 = opts[2];
  10216. const int p0 = opts[3];
  10217. GGML_ASSERT(p0 == 0); // padding not supported
  10218. GGML_ASSERT(k0 == s0); // only s = k supported
  10219. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10220. }
  10221. // ggml_compute_forward_pool_2d_sk_p0
  10222. static void ggml_compute_forward_pool_2d_sk_p0(
  10223. const struct ggml_compute_params * params,
  10224. const enum ggml_op_pool op,
  10225. const struct ggml_tensor * src,
  10226. const int k0,
  10227. const int k1,
  10228. struct ggml_tensor * dst) {
  10229. assert(src->type == GGML_TYPE_F32);
  10230. assert(params->ith == 0);
  10231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10232. return;
  10233. }
  10234. const char * cdata = (const char*)src->data;
  10235. const char * const data_end = cdata + ggml_nbytes(src);
  10236. const int64_t px = dst->ne[0];
  10237. const int64_t py = dst->ne[1];
  10238. const int64_t pa = px * py;
  10239. float * dplane = (float *)dst->data;
  10240. const int ka = k0 * k1;
  10241. while (cdata < data_end) {
  10242. for (int oy = 0; oy < py; ++oy) {
  10243. float * const drow = dplane + oy * px;
  10244. for (int ox = 0; ox < px; ++ox) {
  10245. float * const out = drow + ox;
  10246. switch (op) {
  10247. case GGML_OP_POOL_AVG: *out = 0; break;
  10248. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10249. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10250. }
  10251. const int ix = ox * k0;
  10252. const int iy = oy * k1;
  10253. for (int ky = 0; ky < k1; ++ky) {
  10254. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10255. for (int kx = 0; kx < k0; ++kx) {
  10256. int j = ix + kx;
  10257. switch (op) {
  10258. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10259. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10260. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10261. }
  10262. }
  10263. }
  10264. switch (op) {
  10265. case GGML_OP_POOL_AVG: *out /= ka; break;
  10266. case GGML_OP_POOL_MAX: break;
  10267. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10268. }
  10269. }
  10270. }
  10271. cdata += src->nb[2];
  10272. dplane += pa;
  10273. }
  10274. }
  10275. // ggml_compute_forward_pool_2d
  10276. static void ggml_compute_forward_pool_2d(
  10277. const struct ggml_compute_params * params,
  10278. const struct ggml_tensor * src0,
  10279. struct ggml_tensor * dst) {
  10280. const int32_t * opts = (const int32_t *)dst->op_params;
  10281. enum ggml_op_pool op = opts[0];
  10282. const int k0 = opts[1];
  10283. const int k1 = opts[2];
  10284. const int s0 = opts[3];
  10285. const int s1 = opts[4];
  10286. const int p0 = opts[5];
  10287. const int p1 = opts[6];
  10288. GGML_ASSERT(p0 == 0);
  10289. GGML_ASSERT(p1 == 0); // padding not supported
  10290. GGML_ASSERT(k0 == s0);
  10291. GGML_ASSERT(k1 == s1); // only s = k supported
  10292. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10293. }
  10294. // ggml_compute_forward_upscale
  10295. static void ggml_compute_forward_upscale_f32(
  10296. const struct ggml_compute_params * params,
  10297. const struct ggml_tensor * src0,
  10298. struct ggml_tensor * dst) {
  10299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10300. return;
  10301. }
  10302. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10303. const int ith = params->ith;
  10304. GGML_TENSOR_UNARY_OP_LOCALS
  10305. const int scale_factor = dst->op_params[0];
  10306. // TODO: optimize
  10307. for (int i03 = 0; i03 < ne03; i03++) {
  10308. for (int i02 = ith; i02 < ne02; i02++) {
  10309. for (int m = 0; m < dst->ne[1]; m++) {
  10310. int i01 = m / scale_factor;
  10311. for (int n = 0; n < dst->ne[0]; n++) {
  10312. int i00 = n / scale_factor;
  10313. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  10314. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  10315. *y = *x;
  10316. }
  10317. }
  10318. }
  10319. }
  10320. }
  10321. static void ggml_compute_forward_upscale(
  10322. const struct ggml_compute_params * params,
  10323. const struct ggml_tensor * src0,
  10324. struct ggml_tensor * dst) {
  10325. switch (src0->type) {
  10326. case GGML_TYPE_F32:
  10327. {
  10328. ggml_compute_forward_upscale_f32(params, src0, dst);
  10329. } break;
  10330. default:
  10331. {
  10332. GGML_ASSERT(false);
  10333. } break;
  10334. }
  10335. }
  10336. // ggml_compute_forward_flash_attn
  10337. static void ggml_compute_forward_flash_attn_f32(
  10338. const struct ggml_compute_params * params,
  10339. const struct ggml_tensor * q,
  10340. const struct ggml_tensor * k,
  10341. const struct ggml_tensor * v,
  10342. const bool masked,
  10343. struct ggml_tensor * dst) {
  10344. int64_t t0 = ggml_perf_time_us();
  10345. UNUSED(t0);
  10346. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10347. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10348. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10349. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10350. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10351. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10352. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10353. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10354. const int ith = params->ith;
  10355. const int nth = params->nth;
  10356. const int64_t D = neq0;
  10357. const int64_t N = neq1;
  10358. const int64_t P = nek1 - N;
  10359. const int64_t M = P + N;
  10360. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10361. GGML_ASSERT(ne0 == D);
  10362. GGML_ASSERT(ne1 == N);
  10363. GGML_ASSERT(P >= 0);
  10364. GGML_ASSERT(nbq0 == sizeof(float));
  10365. GGML_ASSERT(nbk0 == sizeof(float));
  10366. GGML_ASSERT(nbv0 == sizeof(float));
  10367. GGML_ASSERT(neq0 == D);
  10368. GGML_ASSERT(nek0 == D);
  10369. GGML_ASSERT(nev1 == D);
  10370. GGML_ASSERT(neq1 == N);
  10371. GGML_ASSERT(nek1 == N + P);
  10372. GGML_ASSERT(nev1 == D);
  10373. // dst cannot be transposed or permuted
  10374. GGML_ASSERT(nb0 == sizeof(float));
  10375. GGML_ASSERT(nb0 <= nb1);
  10376. GGML_ASSERT(nb1 <= nb2);
  10377. GGML_ASSERT(nb2 <= nb3);
  10378. if (params->type == GGML_TASK_INIT) {
  10379. return;
  10380. }
  10381. if (params->type == GGML_TASK_FINALIZE) {
  10382. return;
  10383. }
  10384. // parallelize by q rows using ggml_vec_dot_f32
  10385. // total rows in q
  10386. const int nr = neq1*neq2*neq3;
  10387. // rows per thread
  10388. const int dr = (nr + nth - 1)/nth;
  10389. // row range for this thread
  10390. const int ir0 = dr*ith;
  10391. const int ir1 = MIN(ir0 + dr, nr);
  10392. const float scale = 1.0f/sqrtf(D);
  10393. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10394. for (int ir = ir0; ir < ir1; ++ir) {
  10395. // q indices
  10396. const int iq3 = ir/(neq2*neq1);
  10397. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10398. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10399. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10400. for (int i = M; i < Mup; ++i) {
  10401. S[i] = -INFINITY;
  10402. }
  10403. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10404. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10405. // k indices
  10406. const int ik3 = iq3;
  10407. const int ik2 = iq2 % nek2;
  10408. const int ik1 = ic;
  10409. // S indices
  10410. const int i1 = ik1;
  10411. ggml_vec_dot_f32(neq0,
  10412. S + i1,
  10413. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10414. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10415. }
  10416. // scale
  10417. ggml_vec_scale_f32(masked_begin, S, scale);
  10418. for (int64_t i = masked_begin; i < M; i++) {
  10419. S[i] = -INFINITY;
  10420. }
  10421. // softmax
  10422. // exclude known -INF S[..] values from max and loop
  10423. // dont forget to set their SW values to zero
  10424. {
  10425. float max = -INFINITY;
  10426. ggml_vec_max_f32(masked_begin, &max, S);
  10427. ggml_float sum = 0.0;
  10428. {
  10429. #ifdef GGML_SOFT_MAX_ACCELERATE
  10430. max = -max;
  10431. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10432. vvexpf(S, S, &Mup);
  10433. ggml_vec_sum_f32(Mup, &sum, S);
  10434. #else
  10435. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10436. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10437. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10438. if (i >= masked_begin) {
  10439. break;
  10440. }
  10441. float * SS = S + i;
  10442. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10443. if (i + j >= masked_begin) {
  10444. break;
  10445. } else if (SS[j] == -INFINITY) {
  10446. SS[j] = 0.0f;
  10447. } else {
  10448. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10449. const float val = expf(SS[j] - max);
  10450. #else
  10451. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10452. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10453. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10454. #endif
  10455. sump[j] += (ggml_float)val;
  10456. SS[j] = val;
  10457. }
  10458. }
  10459. }
  10460. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10461. sum += sump[i];
  10462. }
  10463. #endif
  10464. }
  10465. assert(sum > 0.0);
  10466. sum = 1.0/sum;
  10467. ggml_vec_scale_f32(masked_begin, S, sum);
  10468. #ifndef NDEBUG
  10469. for (int i = 0; i < masked_begin; ++i) {
  10470. assert(!isnan(S[i]));
  10471. assert(!isinf(S[i]));
  10472. }
  10473. #endif
  10474. }
  10475. for (int64_t ic = 0; ic < nev1; ++ic) {
  10476. // dst indices
  10477. const int i1 = iq1;
  10478. const int i2 = iq2;
  10479. const int i3 = iq3;
  10480. // v indices
  10481. const int iv2 = iq2 % nev2;
  10482. const int iv3 = iq3;
  10483. ggml_vec_dot_f32(masked_begin,
  10484. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10485. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10486. S);
  10487. }
  10488. }
  10489. }
  10490. static void ggml_compute_forward_flash_attn_f16(
  10491. const struct ggml_compute_params * params,
  10492. const struct ggml_tensor * q,
  10493. const struct ggml_tensor * k,
  10494. const struct ggml_tensor * v,
  10495. const bool masked,
  10496. struct ggml_tensor * dst) {
  10497. int64_t t0 = ggml_perf_time_us();
  10498. UNUSED(t0);
  10499. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10500. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10501. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10502. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10503. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10504. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10505. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10506. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10507. const int ith = params->ith;
  10508. const int nth = params->nth;
  10509. const int64_t D = neq0;
  10510. const int64_t N = neq1;
  10511. const int64_t P = nek1 - N;
  10512. const int64_t M = P + N;
  10513. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10514. GGML_ASSERT(ne0 == D);
  10515. GGML_ASSERT(ne1 == N);
  10516. GGML_ASSERT(P >= 0);
  10517. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10518. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10519. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10520. GGML_ASSERT(neq0 == D);
  10521. GGML_ASSERT(nek0 == D);
  10522. GGML_ASSERT(nev1 == D);
  10523. GGML_ASSERT(neq1 == N);
  10524. GGML_ASSERT(nek1 == N + P);
  10525. GGML_ASSERT(nev1 == D);
  10526. // dst cannot be transposed or permuted
  10527. GGML_ASSERT(nb0 == sizeof(float));
  10528. GGML_ASSERT(nb0 <= nb1);
  10529. GGML_ASSERT(nb1 <= nb2);
  10530. GGML_ASSERT(nb2 <= nb3);
  10531. if (params->type == GGML_TASK_INIT) {
  10532. return;
  10533. }
  10534. if (params->type == GGML_TASK_FINALIZE) {
  10535. return;
  10536. }
  10537. // parallelize by q rows using ggml_vec_dot_f32
  10538. // total rows in q
  10539. const int nr = neq1*neq2*neq3;
  10540. // rows per thread
  10541. const int dr = (nr + nth - 1)/nth;
  10542. // row range for this thread
  10543. const int ir0 = dr*ith;
  10544. const int ir1 = MIN(ir0 + dr, nr);
  10545. const float scale = 1.0f/sqrtf(D);
  10546. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10547. for (int ir = ir0; ir < ir1; ++ir) {
  10548. // q indices
  10549. const int iq3 = ir/(neq2*neq1);
  10550. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10551. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10552. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10553. for (int i = M; i < Mup; ++i) {
  10554. S[i] = -INFINITY;
  10555. }
  10556. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10557. for (int64_t ic = 0; ic < nek1; ++ic) {
  10558. // k indices
  10559. const int ik3 = iq3;
  10560. const int ik2 = iq2 % nek2;
  10561. const int ik1 = ic;
  10562. // S indices
  10563. const int i1 = ik1;
  10564. ggml_vec_dot_f16(neq0,
  10565. S + i1,
  10566. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10567. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10568. }
  10569. } else {
  10570. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10571. // k indices
  10572. const int ik3 = iq3;
  10573. const int ik2 = iq2 % nek2;
  10574. const int ik1 = ic;
  10575. // S indices
  10576. const int i1 = ik1;
  10577. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10578. S + i1,
  10579. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10580. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10581. }
  10582. }
  10583. // scale
  10584. ggml_vec_scale_f32(nek1, S, scale);
  10585. if (masked) {
  10586. for (int64_t i = P; i < M; i++) {
  10587. if (i > P + iq1) {
  10588. S[i] = -INFINITY;
  10589. }
  10590. }
  10591. }
  10592. // softmax
  10593. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10594. // dont forget to set their S values to zero
  10595. {
  10596. float max = -INFINITY;
  10597. ggml_vec_max_f32(M, &max, S);
  10598. ggml_float sum = 0.0;
  10599. {
  10600. #ifdef GGML_SOFT_MAX_ACCELERATE
  10601. max = -max;
  10602. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10603. vvexpf(S, S, &Mup);
  10604. ggml_vec_sum_f32(Mup, &sum, S);
  10605. #else
  10606. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10607. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10608. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10609. float * SS = S + i;
  10610. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10611. if (SS[j] == -INFINITY) {
  10612. SS[j] = 0.0f;
  10613. } else {
  10614. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10615. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10616. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10617. sump[j] += (ggml_float)val;
  10618. SS[j] = val;
  10619. }
  10620. }
  10621. }
  10622. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10623. sum += sump[i];
  10624. }
  10625. #endif
  10626. }
  10627. assert(sum > 0.0);
  10628. sum = 1.0/sum;
  10629. ggml_vec_scale_f32(M, S, sum);
  10630. #ifndef NDEBUG
  10631. for (int i = 0; i < M; ++i) {
  10632. assert(!isnan(S[i]));
  10633. assert(!isinf(S[i]));
  10634. }
  10635. #endif
  10636. }
  10637. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10638. for (int64_t i = 0; i < M; i++) {
  10639. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10640. }
  10641. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10642. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10643. for (int64_t ic = 0; ic < nev1; ++ic) {
  10644. // dst indices
  10645. const int i1 = iq1;
  10646. const int i2 = iq2;
  10647. const int i3 = iq3;
  10648. // v indices
  10649. const int iv2 = iq2 % nev2;
  10650. const int iv3 = iq3;
  10651. ggml_vec_dot_f16(nev0,
  10652. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10653. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10654. S16);
  10655. }
  10656. } else {
  10657. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10658. // dst indices
  10659. const int i1 = iq1;
  10660. const int i2 = iq2;
  10661. const int i3 = iq3;
  10662. // v indices
  10663. const int iv2 = iq2 % nev2;
  10664. const int iv3 = iq3;
  10665. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10666. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10667. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10668. S16);
  10669. }
  10670. }
  10671. }
  10672. }
  10673. static void ggml_compute_forward_flash_attn(
  10674. const struct ggml_compute_params * params,
  10675. const struct ggml_tensor * q,
  10676. const struct ggml_tensor * k,
  10677. const struct ggml_tensor * v,
  10678. const bool masked,
  10679. struct ggml_tensor * dst) {
  10680. switch (q->type) {
  10681. case GGML_TYPE_F16:
  10682. {
  10683. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10684. } break;
  10685. case GGML_TYPE_F32:
  10686. {
  10687. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10688. } break;
  10689. default:
  10690. {
  10691. GGML_ASSERT(false);
  10692. } break;
  10693. }
  10694. }
  10695. // ggml_compute_forward_flash_ff
  10696. static void ggml_compute_forward_flash_ff_f16(
  10697. const struct ggml_compute_params * params,
  10698. const struct ggml_tensor * a, // F16
  10699. const struct ggml_tensor * b0, // F16 fc_w
  10700. const struct ggml_tensor * b1, // F32 fc_b
  10701. const struct ggml_tensor * c0, // F16 proj_w
  10702. const struct ggml_tensor * c1, // F32 proj_b
  10703. struct ggml_tensor * dst) {
  10704. int64_t t0 = ggml_perf_time_us();
  10705. UNUSED(t0);
  10706. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10707. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10708. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10709. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10710. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10711. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10712. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10713. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10714. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10715. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10716. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10717. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10718. const int ith = params->ith;
  10719. const int nth = params->nth;
  10720. const int64_t D = nea0;
  10721. //const int64_t N = nea1;
  10722. const int64_t M = neb01;
  10723. GGML_ASSERT(ne0 == nea0);
  10724. GGML_ASSERT(ne1 == nea1);
  10725. GGML_ASSERT(ne2 == nea2);
  10726. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10727. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10728. GGML_ASSERT(nbb10 == sizeof(float));
  10729. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10730. GGML_ASSERT(nbc10 == sizeof(float));
  10731. GGML_ASSERT(neb00 == D);
  10732. GGML_ASSERT(neb01 == M);
  10733. GGML_ASSERT(neb10 == M);
  10734. GGML_ASSERT(neb11 == 1);
  10735. GGML_ASSERT(nec00 == M);
  10736. GGML_ASSERT(nec01 == D);
  10737. GGML_ASSERT(nec10 == D);
  10738. GGML_ASSERT(nec11 == 1);
  10739. // dst cannot be transposed or permuted
  10740. GGML_ASSERT(nb0 == sizeof(float));
  10741. GGML_ASSERT(nb0 <= nb1);
  10742. GGML_ASSERT(nb1 <= nb2);
  10743. GGML_ASSERT(nb2 <= nb3);
  10744. if (params->type == GGML_TASK_INIT) {
  10745. return;
  10746. }
  10747. if (params->type == GGML_TASK_FINALIZE) {
  10748. return;
  10749. }
  10750. // parallelize by a rows using ggml_vec_dot_f32
  10751. // total rows in a
  10752. const int nr = nea1*nea2*nea3;
  10753. // rows per thread
  10754. const int dr = (nr + nth - 1)/nth;
  10755. // row range for this thread
  10756. const int ir0 = dr*ith;
  10757. const int ir1 = MIN(ir0 + dr, nr);
  10758. for (int ir = ir0; ir < ir1; ++ir) {
  10759. // a indices
  10760. const int ia3 = ir/(nea2*nea1);
  10761. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10762. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10763. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10764. for (int64_t ic = 0; ic < neb01; ++ic) {
  10765. // b0 indices
  10766. const int ib03 = ia3;
  10767. const int ib02 = ia2;
  10768. const int ib01 = ic;
  10769. // S indices
  10770. const int i1 = ib01;
  10771. ggml_vec_dot_f16(nea0,
  10772. S + i1,
  10773. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10774. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10775. }
  10776. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10777. //ggml_vec_gelu_f32(neb01, S, S);
  10778. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10779. for (int64_t i = 0; i < M; i++) {
  10780. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10781. }
  10782. ggml_vec_gelu_f16(neb01, S16, S16);
  10783. {
  10784. // dst indices
  10785. const int i1 = ia1;
  10786. const int i2 = ia2;
  10787. const int i3 = ia3;
  10788. for (int64_t ic = 0; ic < nec01; ++ic) {
  10789. ggml_vec_dot_f16(neb01,
  10790. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10791. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10792. S16);
  10793. }
  10794. ggml_vec_add_f32(nec01,
  10795. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10796. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10797. (float *) c1->data);
  10798. }
  10799. }
  10800. }
  10801. static void ggml_compute_forward_flash_ff(
  10802. const struct ggml_compute_params * params,
  10803. const struct ggml_tensor * a,
  10804. const struct ggml_tensor * b0,
  10805. const struct ggml_tensor * b1,
  10806. const struct ggml_tensor * c0,
  10807. const struct ggml_tensor * c1,
  10808. struct ggml_tensor * dst) {
  10809. switch (b0->type) {
  10810. case GGML_TYPE_F16:
  10811. {
  10812. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10813. } break;
  10814. case GGML_TYPE_F32:
  10815. {
  10816. GGML_ASSERT(false); // TODO
  10817. } break;
  10818. default:
  10819. {
  10820. GGML_ASSERT(false);
  10821. } break;
  10822. }
  10823. }
  10824. // ggml_compute_forward_flash_attn_back
  10825. static void ggml_compute_forward_flash_attn_back_f32(
  10826. const struct ggml_compute_params * params,
  10827. const struct ggml_tensor * q,
  10828. const struct ggml_tensor * k,
  10829. const struct ggml_tensor * v,
  10830. const struct ggml_tensor * d,
  10831. const bool masked,
  10832. struct ggml_tensor * dst) {
  10833. int64_t t0 = ggml_perf_time_us();
  10834. UNUSED(t0);
  10835. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10836. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10837. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10838. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10839. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10840. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10841. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10842. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10843. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10844. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10845. const int ith = params->ith;
  10846. const int nth = params->nth;
  10847. const int64_t D = neq0;
  10848. const int64_t N = neq1;
  10849. const int64_t P = nek1 - N;
  10850. const int64_t M = P + N;
  10851. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10852. const int mxDM = MAX(D, Mup);
  10853. // GGML_ASSERT(ne0 == D);
  10854. // GGML_ASSERT(ne1 == N);
  10855. GGML_ASSERT(P >= 0);
  10856. GGML_ASSERT(nbq0 == sizeof(float));
  10857. GGML_ASSERT(nbk0 == sizeof(float));
  10858. GGML_ASSERT(nbv0 == sizeof(float));
  10859. GGML_ASSERT(neq0 == D);
  10860. GGML_ASSERT(nek0 == D);
  10861. GGML_ASSERT(nev1 == D);
  10862. GGML_ASSERT(ned0 == D);
  10863. GGML_ASSERT(neq1 == N);
  10864. GGML_ASSERT(nek1 == N + P);
  10865. GGML_ASSERT(nev1 == D);
  10866. GGML_ASSERT(ned1 == N);
  10867. // dst cannot be transposed or permuted
  10868. GGML_ASSERT(nb0 == sizeof(float));
  10869. GGML_ASSERT(nb0 <= nb1);
  10870. GGML_ASSERT(nb1 <= nb2);
  10871. GGML_ASSERT(nb2 <= nb3);
  10872. if (params->type == GGML_TASK_INIT) {
  10873. if (ith == 0) {
  10874. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10875. }
  10876. return;
  10877. }
  10878. if (params->type == GGML_TASK_FINALIZE) {
  10879. return;
  10880. }
  10881. const int64_t elem_q = ggml_nelements(q);
  10882. const int64_t elem_k = ggml_nelements(k);
  10883. enum ggml_type result_type = dst->type;
  10884. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10885. const size_t tsize = ggml_type_size(result_type);
  10886. const size_t offs_q = 0;
  10887. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10888. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10889. void * grad_q = (char *) dst->data;
  10890. void * grad_k = (char *) dst->data + offs_k;
  10891. void * grad_v = (char *) dst->data + offs_v;
  10892. const size_t nbgq1 = nb0*neq0;
  10893. const size_t nbgq2 = nb0*neq0*neq1;
  10894. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10895. const size_t nbgk1 = nb0*nek0;
  10896. const size_t nbgk2 = nb0*nek0*nek1;
  10897. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10898. const size_t nbgv1 = nb0*nev0;
  10899. const size_t nbgv2 = nb0*nev0*nev1;
  10900. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10901. // parallelize by k rows using ggml_vec_dot_f32
  10902. // total rows in k
  10903. const int nr = nek2*nek3;
  10904. // rows per thread
  10905. const int dr = (nr + nth - 1)/nth;
  10906. // row range for this thread
  10907. const int ir0 = dr*ith;
  10908. const int ir1 = MIN(ir0 + dr, nr);
  10909. const float scale = 1.0f/sqrtf(D);
  10910. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10911. // how often k2 (and v2) is repeated in q2
  10912. int nrep = neq2/nek2;
  10913. for (int ir = ir0; ir < ir1; ++ir) {
  10914. // q indices
  10915. const int ik3 = ir/(nek2);
  10916. const int ik2 = ir - ik3*nek2;
  10917. const int iq3 = ik3;
  10918. const int id3 = ik3;
  10919. const int iv3 = ik3;
  10920. const int iv2 = ik2;
  10921. for (int irep = 0; irep < nrep; ++irep) {
  10922. const int iq2 = ik2 + irep*nek2;
  10923. const int id2 = iq2;
  10924. // (ik2 + irep*nek2) % nek2 == ik2
  10925. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10926. const int id1 = iq1;
  10927. // not sure about CACHE_LINE_SIZE_F32..
  10928. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10929. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10930. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10931. for (int i = M; i < Mup; ++i) {
  10932. S[i] = -INFINITY;
  10933. }
  10934. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10935. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10936. // k indices
  10937. const int ik1 = ic;
  10938. // S indices
  10939. const int i1 = ik1;
  10940. ggml_vec_dot_f32(neq0,
  10941. S + i1,
  10942. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10943. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10944. }
  10945. // scale
  10946. ggml_vec_scale_f32(masked_begin, S, scale);
  10947. for (int64_t i = masked_begin; i < M; i++) {
  10948. S[i] = -INFINITY;
  10949. }
  10950. // softmax
  10951. // exclude known -INF S[..] values from max and loop
  10952. // dont forget to set their SM values to zero
  10953. {
  10954. float max = -INFINITY;
  10955. ggml_vec_max_f32(masked_begin, &max, S);
  10956. ggml_float sum = 0.0;
  10957. {
  10958. #ifdef GGML_SOFT_MAX_ACCELERATE
  10959. max = -max;
  10960. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10961. vvexpf(SM, SM, &Mup);
  10962. ggml_vec_sum_f32(Mup, &sum, SM);
  10963. #else
  10964. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10965. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10966. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10967. if (i >= masked_begin) {
  10968. break;
  10969. }
  10970. float * SR = S + i;
  10971. float * SW = SM + i;
  10972. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10973. if (i + j >= masked_begin) {
  10974. break;
  10975. } else if (SR[j] == -INFINITY) {
  10976. SW[j] = 0.0f;
  10977. } else {
  10978. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10979. const float val = expf(SR[j] - max);
  10980. #else
  10981. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10982. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10983. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10984. #endif
  10985. sump[j] += (ggml_float)val;
  10986. SW[j] = val;
  10987. }
  10988. }
  10989. }
  10990. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10991. sum += sump[i];
  10992. }
  10993. #endif
  10994. }
  10995. assert(sum > 0.0);
  10996. sum = 1.0/sum;
  10997. ggml_vec_scale_f32(masked_begin, SM, sum);
  10998. }
  10999. // step-by-step explanation
  11000. {
  11001. // forward-process shape grads from backward process
  11002. // parallel_for ik2,ik3:
  11003. // for irep:
  11004. // iq2 = ik2 + irep*nek2
  11005. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11006. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11007. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11008. // for iq1:
  11009. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11010. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11011. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11012. // S0 = -Inf [D,1,1,1]
  11013. // ~S1[i] = dot(kcur[:D,i], qcur)
  11014. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11015. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11016. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11017. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11018. // ~S5[i] = dot(vcur[:,i], S4)
  11019. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11020. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11021. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11022. // dst backward-/ grad[dst] = d
  11023. //
  11024. // output gradients with their dependencies:
  11025. //
  11026. // grad[kcur] = grad[S1].T @ qcur
  11027. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11028. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11029. // grad[S4] = grad[S5] @ vcur
  11030. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11031. // grad[qcur] = grad[S1] @ kcur
  11032. // grad[vcur] = grad[S5].T @ S4
  11033. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11034. //
  11035. // in post-order:
  11036. //
  11037. // S1 = qcur @ kcur.T
  11038. // S2 = S1 * scale
  11039. // S3 = diag_mask_inf(S2, P)
  11040. // S4 = softmax(S3)
  11041. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11042. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11043. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11044. // grad[qcur] = grad[S1] @ kcur
  11045. // grad[kcur] = grad[S1].T @ qcur
  11046. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11047. //
  11048. // using less variables (SM=S4):
  11049. //
  11050. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11051. // SM = softmax(S)
  11052. // S = d[:D,iq1,iq2,iq3] @ vcur
  11053. // dot_SM_gradSM = dot(SM, S)
  11054. // S = SM * (S - dot(SM, S))
  11055. // S = diag_mask_zero(S, P) * scale
  11056. //
  11057. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11058. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11059. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11060. }
  11061. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11062. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11063. // for ic:
  11064. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11065. // exclude known future zero S[..] values from operation
  11066. ggml_vec_set_f32(masked_begin, S, 0);
  11067. for (int64_t ic = 0; ic < D; ++ic) {
  11068. ggml_vec_mad_f32(masked_begin,
  11069. S,
  11070. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11071. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11072. }
  11073. // S = SM * (S - dot(SM, S))
  11074. float dot_SM_gradSM = 0;
  11075. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11076. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11077. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11078. // S = diag_mask_zero(S, P) * scale
  11079. // already done by above ggml_vec_set_f32
  11080. // exclude known zero S[..] values from operation
  11081. ggml_vec_scale_f32(masked_begin, S, scale);
  11082. // S shape [M,1]
  11083. // SM shape [M,1]
  11084. // kcur shape [D,M]
  11085. // qcur shape [D,1]
  11086. // vcur shape [M,D]
  11087. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11088. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11089. // for ic:
  11090. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11091. // exclude known zero S[..] values from loop
  11092. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11093. ggml_vec_mad_f32(D,
  11094. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11095. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11096. S[ic]);
  11097. }
  11098. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11099. // for ic:
  11100. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11101. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11102. // exclude known zero S[..] values from loop
  11103. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11104. ggml_vec_mad_f32(D,
  11105. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11106. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11107. S[ic]);
  11108. }
  11109. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11110. // for ic:
  11111. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11112. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11113. // exclude known zero SM[..] values from mad
  11114. for (int64_t ic = 0; ic < D; ++ic) {
  11115. ggml_vec_mad_f32(masked_begin,
  11116. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11117. SM,
  11118. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11119. }
  11120. }
  11121. }
  11122. }
  11123. }
  11124. static void ggml_compute_forward_flash_attn_back(
  11125. const struct ggml_compute_params * params,
  11126. const struct ggml_tensor * q,
  11127. const struct ggml_tensor * k,
  11128. const struct ggml_tensor * v,
  11129. const struct ggml_tensor * d,
  11130. const bool masked,
  11131. struct ggml_tensor * dst) {
  11132. switch (q->type) {
  11133. case GGML_TYPE_F32:
  11134. {
  11135. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11136. } break;
  11137. default:
  11138. {
  11139. GGML_ASSERT(false);
  11140. } break;
  11141. }
  11142. }
  11143. // ggml_compute_forward_win_part
  11144. static void ggml_compute_forward_win_part_f32(
  11145. const struct ggml_compute_params * params,
  11146. const struct ggml_tensor * src0,
  11147. struct ggml_tensor * dst) {
  11148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11149. return;
  11150. }
  11151. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11152. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11153. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11154. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11155. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11156. assert(ne00 == ne0);
  11157. assert(ne3 == nep0*nep1);
  11158. // TODO: optimize / multi-thread
  11159. for (int py = 0; py < nep1; ++py) {
  11160. for (int px = 0; px < nep0; ++px) {
  11161. const int64_t i3 = py*nep0 + px;
  11162. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11163. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11164. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11165. const int64_t i02 = py*w + i2;
  11166. const int64_t i01 = px*w + i1;
  11167. const int64_t i00 = i0;
  11168. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11169. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11170. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11171. ((float *) dst->data)[i] = 0.0f;
  11172. } else {
  11173. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11174. }
  11175. }
  11176. }
  11177. }
  11178. }
  11179. }
  11180. }
  11181. static void ggml_compute_forward_win_part(
  11182. const struct ggml_compute_params * params,
  11183. const struct ggml_tensor * src0,
  11184. struct ggml_tensor * dst) {
  11185. switch (src0->type) {
  11186. case GGML_TYPE_F32:
  11187. {
  11188. ggml_compute_forward_win_part_f32(params, src0, dst);
  11189. } break;
  11190. default:
  11191. {
  11192. GGML_ASSERT(false);
  11193. } break;
  11194. }
  11195. }
  11196. // ggml_compute_forward_win_unpart
  11197. static void ggml_compute_forward_win_unpart_f32(
  11198. const struct ggml_compute_params * params,
  11199. const struct ggml_tensor * src0,
  11200. struct ggml_tensor * dst) {
  11201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11202. return;
  11203. }
  11204. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11205. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11206. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11207. // padding
  11208. const int px = (w - ne1%w)%w;
  11209. //const int py = (w - ne2%w)%w;
  11210. const int npx = (px + ne1)/w;
  11211. //const int npy = (py + ne2)/w;
  11212. assert(ne0 == ne00);
  11213. // TODO: optimize / multi-thread
  11214. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11215. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11216. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11217. const int ip2 = i2/w;
  11218. const int ip1 = i1/w;
  11219. const int64_t i02 = i2%w;
  11220. const int64_t i01 = i1%w;
  11221. const int64_t i00 = i0;
  11222. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11223. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11224. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11225. }
  11226. }
  11227. }
  11228. }
  11229. static void ggml_compute_forward_win_unpart(
  11230. const struct ggml_compute_params * params,
  11231. const struct ggml_tensor * src0,
  11232. struct ggml_tensor * dst) {
  11233. switch (src0->type) {
  11234. case GGML_TYPE_F32:
  11235. {
  11236. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11237. } break;
  11238. default:
  11239. {
  11240. GGML_ASSERT(false);
  11241. } break;
  11242. }
  11243. }
  11244. //gmml_compute_forward_unary
  11245. static void ggml_compute_forward_unary(
  11246. const struct ggml_compute_params * params,
  11247. const struct ggml_tensor * src0,
  11248. struct ggml_tensor * dst) {
  11249. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11250. switch (op) {
  11251. case GGML_UNARY_OP_ABS:
  11252. {
  11253. ggml_compute_forward_abs(params, src0, dst);
  11254. } break;
  11255. case GGML_UNARY_OP_SGN:
  11256. {
  11257. ggml_compute_forward_sgn(params, src0, dst);
  11258. } break;
  11259. case GGML_UNARY_OP_NEG:
  11260. {
  11261. ggml_compute_forward_neg(params, src0, dst);
  11262. } break;
  11263. case GGML_UNARY_OP_STEP:
  11264. {
  11265. ggml_compute_forward_step(params, src0, dst);
  11266. } break;
  11267. case GGML_UNARY_OP_TANH:
  11268. {
  11269. ggml_compute_forward_tanh(params, src0, dst);
  11270. } break;
  11271. case GGML_UNARY_OP_ELU:
  11272. {
  11273. ggml_compute_forward_elu(params, src0, dst);
  11274. } break;
  11275. case GGML_UNARY_OP_RELU:
  11276. {
  11277. ggml_compute_forward_relu(params, src0, dst);
  11278. } break;
  11279. case GGML_UNARY_OP_GELU:
  11280. {
  11281. ggml_compute_forward_gelu(params, src0, dst);
  11282. } break;
  11283. case GGML_UNARY_OP_GELU_QUICK:
  11284. {
  11285. ggml_compute_forward_gelu_quick(params, src0, dst);
  11286. } break;
  11287. case GGML_UNARY_OP_SILU:
  11288. {
  11289. ggml_compute_forward_silu(params, src0, dst);
  11290. } break;
  11291. default:
  11292. {
  11293. GGML_ASSERT(false);
  11294. } break;
  11295. }
  11296. }
  11297. // ggml_compute_forward_get_rel_pos
  11298. static void ggml_compute_forward_get_rel_pos_f16(
  11299. const struct ggml_compute_params * params,
  11300. const struct ggml_tensor * src0,
  11301. struct ggml_tensor * dst) {
  11302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11303. return;
  11304. }
  11305. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11306. GGML_TENSOR_UNARY_OP_LOCALS
  11307. const int64_t w = ne1;
  11308. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11309. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11310. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11311. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11312. const int64_t pos = (w - i1 - 1) + i2;
  11313. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11314. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11315. }
  11316. }
  11317. }
  11318. }
  11319. static void ggml_compute_forward_get_rel_pos(
  11320. const struct ggml_compute_params * params,
  11321. const struct ggml_tensor * src0,
  11322. struct ggml_tensor * dst) {
  11323. switch (src0->type) {
  11324. case GGML_TYPE_F16:
  11325. {
  11326. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11327. } break;
  11328. default:
  11329. {
  11330. GGML_ASSERT(false);
  11331. } break;
  11332. }
  11333. }
  11334. // ggml_compute_forward_add_rel_pos
  11335. static void ggml_compute_forward_add_rel_pos_f32(
  11336. const struct ggml_compute_params * params,
  11337. const struct ggml_tensor * src0,
  11338. const struct ggml_tensor * src1,
  11339. const struct ggml_tensor * src2,
  11340. struct ggml_tensor * dst) {
  11341. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11342. if (!inplace && params->type == GGML_TASK_INIT) {
  11343. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11344. return;
  11345. }
  11346. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11347. return;
  11348. }
  11349. int64_t t0 = ggml_perf_time_us();
  11350. UNUSED(t0);
  11351. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11352. float * src1_data = (float *) src1->data;
  11353. float * src2_data = (float *) src2->data;
  11354. float * dst_data = (float *) dst->data;
  11355. const int64_t ne10 = src1->ne[0];
  11356. const int64_t ne11 = src1->ne[1];
  11357. const int64_t ne12 = src1->ne[2];
  11358. const int64_t ne13 = src1->ne[3];
  11359. const int ith = params->ith;
  11360. const int nth = params->nth;
  11361. // total patches in dst
  11362. const int np = ne13;
  11363. // patches per thread
  11364. const int dp = (np + nth - 1)/nth;
  11365. // patch range for this thread
  11366. const int ip0 = dp*ith;
  11367. const int ip1 = MIN(ip0 + dp, np);
  11368. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11369. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11370. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11371. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11372. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11373. const int64_t jp0 = jp1 + i10;
  11374. const float src1_e = src1_data[jp0];
  11375. const float src2_e = src2_data[jp0];
  11376. const int64_t jdh = jp0 * ne10;
  11377. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11378. for (int64_t j = 0; j < ne10; ++j) {
  11379. dst_data[jdh + j ] += src2_e;
  11380. dst_data[jdw + j*ne10] += src1_e;
  11381. }
  11382. }
  11383. }
  11384. }
  11385. }
  11386. }
  11387. static void ggml_compute_forward_add_rel_pos(
  11388. const struct ggml_compute_params * params,
  11389. const struct ggml_tensor * src0,
  11390. const struct ggml_tensor * src1,
  11391. const struct ggml_tensor * src2,
  11392. struct ggml_tensor * dst) {
  11393. switch (src0->type) {
  11394. case GGML_TYPE_F32:
  11395. {
  11396. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11397. } break;
  11398. default:
  11399. {
  11400. GGML_ASSERT(false);
  11401. } break;
  11402. }
  11403. }
  11404. // ggml_compute_forward_map_unary
  11405. static void ggml_compute_forward_map_unary_f32(
  11406. const struct ggml_compute_params * params,
  11407. const struct ggml_tensor * src0,
  11408. struct ggml_tensor * dst,
  11409. const ggml_unary_op_f32_t fun) {
  11410. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11412. return;
  11413. }
  11414. const int n = ggml_nrows(src0);
  11415. const int nc = src0->ne[0];
  11416. assert( dst->nb[0] == sizeof(float));
  11417. assert(src0->nb[0] == sizeof(float));
  11418. for (int i = 0; i < n; i++) {
  11419. fun(nc,
  11420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11421. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11422. }
  11423. }
  11424. static void ggml_compute_forward_map_unary(
  11425. const struct ggml_compute_params * params,
  11426. const struct ggml_tensor * src0,
  11427. struct ggml_tensor * dst,
  11428. const ggml_unary_op_f32_t fun) {
  11429. switch (src0->type) {
  11430. case GGML_TYPE_F32:
  11431. {
  11432. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11433. } break;
  11434. default:
  11435. {
  11436. GGML_ASSERT(false);
  11437. } break;
  11438. }
  11439. }
  11440. // ggml_compute_forward_map_binary
  11441. static void ggml_compute_forward_map_binary_f32(
  11442. const struct ggml_compute_params * params,
  11443. const struct ggml_tensor * src0,
  11444. const struct ggml_tensor * src1,
  11445. struct ggml_tensor * dst,
  11446. const ggml_binary_op_f32_t fun) {
  11447. assert(params->ith == 0);
  11448. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11450. return;
  11451. }
  11452. const int n = ggml_nrows(src0);
  11453. const int nc = src0->ne[0];
  11454. assert( dst->nb[0] == sizeof(float));
  11455. assert(src0->nb[0] == sizeof(float));
  11456. assert(src1->nb[0] == sizeof(float));
  11457. for (int i = 0; i < n; i++) {
  11458. fun(nc,
  11459. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11460. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11461. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11462. }
  11463. }
  11464. static void ggml_compute_forward_map_binary(
  11465. const struct ggml_compute_params * params,
  11466. const struct ggml_tensor * src0,
  11467. const struct ggml_tensor * src1,
  11468. struct ggml_tensor * dst,
  11469. const ggml_binary_op_f32_t fun) {
  11470. switch (src0->type) {
  11471. case GGML_TYPE_F32:
  11472. {
  11473. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11474. } break;
  11475. default:
  11476. {
  11477. GGML_ASSERT(false);
  11478. } break;
  11479. }
  11480. }
  11481. // ggml_compute_forward_map_custom1
  11482. static void ggml_compute_forward_map_custom1_f32(
  11483. const struct ggml_compute_params * params,
  11484. const struct ggml_tensor * a,
  11485. struct ggml_tensor * dst,
  11486. const ggml_custom1_op_f32_t fun) {
  11487. assert(params->ith == 0);
  11488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11489. return;
  11490. }
  11491. fun(dst, a);
  11492. }
  11493. // ggml_compute_forward_map_custom2
  11494. static void ggml_compute_forward_map_custom2_f32(
  11495. const struct ggml_compute_params * params,
  11496. const struct ggml_tensor * a,
  11497. const struct ggml_tensor * b,
  11498. struct ggml_tensor * dst,
  11499. const ggml_custom2_op_f32_t fun) {
  11500. assert(params->ith == 0);
  11501. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11502. return;
  11503. }
  11504. fun(dst, a, b);
  11505. }
  11506. // ggml_compute_forward_map_custom3
  11507. static void ggml_compute_forward_map_custom3_f32(
  11508. const struct ggml_compute_params * params,
  11509. const struct ggml_tensor * a,
  11510. const struct ggml_tensor * b,
  11511. const struct ggml_tensor * c,
  11512. struct ggml_tensor * dst,
  11513. const ggml_custom3_op_f32_t fun) {
  11514. assert(params->ith == 0);
  11515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11516. return;
  11517. }
  11518. fun(dst, a, b, c);
  11519. }
  11520. // ggml_compute_forward_map_custom1
  11521. static void ggml_compute_forward_map_custom1(
  11522. const struct ggml_compute_params * params,
  11523. const struct ggml_tensor * a,
  11524. struct ggml_tensor * dst) {
  11525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11526. return;
  11527. }
  11528. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11529. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11530. }
  11531. // ggml_compute_forward_map_custom2
  11532. static void ggml_compute_forward_map_custom2(
  11533. const struct ggml_compute_params * params,
  11534. const struct ggml_tensor * a,
  11535. const struct ggml_tensor * b,
  11536. struct ggml_tensor * dst) {
  11537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11538. return;
  11539. }
  11540. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11541. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11542. }
  11543. // ggml_compute_forward_map_custom3
  11544. static void ggml_compute_forward_map_custom3(
  11545. const struct ggml_compute_params * params,
  11546. const struct ggml_tensor * a,
  11547. const struct ggml_tensor * b,
  11548. const struct ggml_tensor * c,
  11549. struct ggml_tensor * dst) {
  11550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11551. return;
  11552. }
  11553. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11554. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11555. }
  11556. // ggml_compute_forward_cross_entropy_loss
  11557. static void ggml_compute_forward_cross_entropy_loss_f32(
  11558. const struct ggml_compute_params * params,
  11559. const struct ggml_tensor * src0,
  11560. const struct ggml_tensor * src1,
  11561. struct ggml_tensor * dst) {
  11562. GGML_ASSERT(ggml_is_contiguous(src0));
  11563. GGML_ASSERT(ggml_is_contiguous(src1));
  11564. GGML_ASSERT(ggml_is_scalar(dst));
  11565. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11566. const int ith = params->ith;
  11567. const int nth = params->nth;
  11568. float * sums = (float *) params->wdata;
  11569. // TODO: handle transposed/permuted matrices
  11570. const int nc = src0->ne[0];
  11571. const int nr = ggml_nrows(src0);
  11572. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11573. if (params->type == GGML_TASK_INIT) {
  11574. if (ith == 0) {
  11575. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11576. }
  11577. return;
  11578. }
  11579. if (params->type == GGML_TASK_FINALIZE) {
  11580. if (ith == 0) {
  11581. float * dp = (float *) dst->data;
  11582. ggml_vec_sum_f32(nth, dp, sums);
  11583. dp[0] *= -1.0f / (float) nr;
  11584. }
  11585. return;
  11586. }
  11587. const double eps = 1e-9;
  11588. // rows per thread
  11589. const int dr = (nr + nth - 1)/nth;
  11590. // row range for this thread
  11591. const int ir0 = dr*ith;
  11592. const int ir1 = MIN(ir0 + dr, nr);
  11593. for (int i1 = ir0; i1 < ir1; i1++) {
  11594. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11595. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11596. float * st = ((float *) params->wdata) + nth + ith*nc;
  11597. #ifndef NDEBUG
  11598. for (int i = 0; i < nc; ++i) {
  11599. //printf("p[%d] = %f\n", i, p[i]);
  11600. assert(!isnan(s0[i]));
  11601. assert(!isnan(s1[i]));
  11602. }
  11603. #endif
  11604. // soft_max
  11605. ggml_float sum = 0.0;
  11606. {
  11607. float max = -INFINITY;
  11608. ggml_vec_max_f32(nc, &max, s0);
  11609. uint16_t scvt; UNUSED(scvt);
  11610. for (int i = 0; i < nc; i++) {
  11611. if (s0[i] == -INFINITY) {
  11612. st[i] = 0.0f;
  11613. } else {
  11614. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11615. const float s = s0[i] - max;
  11616. const float val = expf(s);
  11617. #else
  11618. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11619. memcpy(&scvt, &s, sizeof(scvt));
  11620. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11621. #endif
  11622. sum += (ggml_float)val;
  11623. st[i] = val;
  11624. }
  11625. }
  11626. assert(sum > 0.0);
  11627. // sum = 1.0/sum;
  11628. }
  11629. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11630. sum = (1.0 - eps) / sum;
  11631. ggml_vec_scale_f32(nc, st, sum);
  11632. ggml_vec_add1_f32(nc, st, st, eps);
  11633. ggml_vec_log_f32(nc, st, st);
  11634. ggml_vec_mul_f32(nc, st, st, s1);
  11635. float st_sum = 0;
  11636. ggml_vec_sum_f32(nc, &st_sum, st);
  11637. sums[ith] += st_sum;
  11638. #ifndef NDEBUG
  11639. for (int i = 0; i < nc; ++i) {
  11640. assert(!isnan(st[i]));
  11641. assert(!isinf(st[i]));
  11642. }
  11643. #endif
  11644. }
  11645. }
  11646. static void ggml_compute_forward_cross_entropy_loss(
  11647. const struct ggml_compute_params * params,
  11648. const struct ggml_tensor * src0,
  11649. const struct ggml_tensor * src1,
  11650. struct ggml_tensor * dst) {
  11651. switch (src0->type) {
  11652. case GGML_TYPE_F32:
  11653. {
  11654. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11655. } break;
  11656. default:
  11657. {
  11658. GGML_ASSERT(false);
  11659. } break;
  11660. }
  11661. }
  11662. // ggml_compute_forward_cross_entropy_loss_back
  11663. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11664. const struct ggml_compute_params * params,
  11665. const struct ggml_tensor * src0,
  11666. const struct ggml_tensor * src1,
  11667. const struct ggml_tensor * opt0,
  11668. struct ggml_tensor * dst) {
  11669. GGML_ASSERT(ggml_is_contiguous(dst));
  11670. GGML_ASSERT(ggml_is_contiguous(src0));
  11671. GGML_ASSERT(ggml_is_contiguous(src1));
  11672. GGML_ASSERT(ggml_is_contiguous(opt0));
  11673. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11674. const int64_t ith = params->ith;
  11675. const int64_t nth = params->nth;
  11676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11677. return;
  11678. }
  11679. const double eps = 1e-9;
  11680. // TODO: handle transposed/permuted matrices
  11681. const int64_t nc = src0->ne[0];
  11682. const int64_t nr = ggml_nrows(src0);
  11683. // rows per thread
  11684. const int64_t dr = (nr + nth - 1)/nth;
  11685. // row range for this thread
  11686. const int64_t ir0 = dr*ith;
  11687. const int64_t ir1 = MIN(ir0 + dr, nr);
  11688. float * d = (float *) opt0->data;
  11689. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11690. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11691. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11692. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11693. #ifndef NDEBUG
  11694. for (int i = 0; i < nc; ++i) {
  11695. //printf("p[%d] = %f\n", i, p[i]);
  11696. assert(!isnan(s0[i]));
  11697. assert(!isnan(s1[i]));
  11698. }
  11699. #endif
  11700. // soft_max
  11701. ggml_float sum = 0.0;
  11702. {
  11703. float max = -INFINITY;
  11704. ggml_vec_max_f32(nc, &max, s0);
  11705. uint16_t scvt; UNUSED(scvt);
  11706. for (int i = 0; i < nc; i++) {
  11707. if (s0[i] == -INFINITY) {
  11708. ds0[i] = 0.0f;
  11709. } else {
  11710. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11711. const float s = s0[i] - max;
  11712. const float val = expf(s);
  11713. #else
  11714. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11715. memcpy(&scvt, &s, sizeof(scvt));
  11716. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11717. #endif
  11718. sum += (ggml_float)val;
  11719. ds0[i] = val;
  11720. }
  11721. }
  11722. assert(sum > 0.0);
  11723. sum = (1.0 - eps)/sum;
  11724. }
  11725. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11726. ggml_vec_scale_f32(nc, ds0, sum);
  11727. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11728. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11729. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11730. #ifndef NDEBUG
  11731. for (int i = 0; i < nc; ++i) {
  11732. assert(!isnan(ds0[i]));
  11733. assert(!isinf(ds0[i]));
  11734. }
  11735. #endif
  11736. }
  11737. }
  11738. static void ggml_compute_forward_cross_entropy_loss_back(
  11739. const struct ggml_compute_params * params,
  11740. const struct ggml_tensor * src0,
  11741. const struct ggml_tensor * src1,
  11742. const struct ggml_tensor * opt0,
  11743. struct ggml_tensor * dst) {
  11744. switch (src0->type) {
  11745. case GGML_TYPE_F32:
  11746. {
  11747. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11748. } break;
  11749. default:
  11750. {
  11751. GGML_ASSERT(false);
  11752. } break;
  11753. }
  11754. }
  11755. /////////////////////////////////
  11756. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11757. GGML_ASSERT(params);
  11758. if (tensor->op == GGML_OP_NONE) {
  11759. return;
  11760. }
  11761. #ifdef GGML_USE_CUBLAS
  11762. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11763. if (skip_cpu) {
  11764. return;
  11765. }
  11766. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11767. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11768. #endif // GGML_USE_CUBLAS
  11769. switch (tensor->op) {
  11770. case GGML_OP_DUP:
  11771. {
  11772. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11773. } break;
  11774. case GGML_OP_ADD:
  11775. {
  11776. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11777. } break;
  11778. case GGML_OP_ADD1:
  11779. {
  11780. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11781. } break;
  11782. case GGML_OP_ACC:
  11783. {
  11784. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11785. } break;
  11786. case GGML_OP_SUB:
  11787. {
  11788. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11789. } break;
  11790. case GGML_OP_MUL:
  11791. {
  11792. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11793. } break;
  11794. case GGML_OP_DIV:
  11795. {
  11796. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11797. } break;
  11798. case GGML_OP_SQR:
  11799. {
  11800. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11801. } break;
  11802. case GGML_OP_SQRT:
  11803. {
  11804. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11805. } break;
  11806. case GGML_OP_LOG:
  11807. {
  11808. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11809. } break;
  11810. case GGML_OP_SUM:
  11811. {
  11812. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11813. } break;
  11814. case GGML_OP_SUM_ROWS:
  11815. {
  11816. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11817. } break;
  11818. case GGML_OP_MEAN:
  11819. {
  11820. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11821. } break;
  11822. case GGML_OP_ARGMAX:
  11823. {
  11824. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11825. } break;
  11826. case GGML_OP_REPEAT:
  11827. {
  11828. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11829. } break;
  11830. case GGML_OP_REPEAT_BACK:
  11831. {
  11832. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11833. } break;
  11834. case GGML_OP_CONCAT:
  11835. {
  11836. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11837. } break;
  11838. case GGML_OP_SILU_BACK:
  11839. {
  11840. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11841. } break;
  11842. case GGML_OP_NORM:
  11843. {
  11844. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11845. } break;
  11846. case GGML_OP_RMS_NORM:
  11847. {
  11848. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11849. } break;
  11850. case GGML_OP_RMS_NORM_BACK:
  11851. {
  11852. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11853. } break;
  11854. case GGML_OP_GROUP_NORM:
  11855. {
  11856. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11857. } break;
  11858. case GGML_OP_MUL_MAT:
  11859. {
  11860. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11861. } break;
  11862. case GGML_OP_OUT_PROD:
  11863. {
  11864. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11865. } break;
  11866. case GGML_OP_SCALE:
  11867. {
  11868. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11869. } break;
  11870. case GGML_OP_SET:
  11871. {
  11872. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11873. } break;
  11874. case GGML_OP_CPY:
  11875. {
  11876. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11877. } break;
  11878. case GGML_OP_CONT:
  11879. {
  11880. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11881. } break;
  11882. case GGML_OP_RESHAPE:
  11883. {
  11884. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11885. } break;
  11886. case GGML_OP_VIEW:
  11887. {
  11888. ggml_compute_forward_view(params, tensor->src[0]);
  11889. } break;
  11890. case GGML_OP_PERMUTE:
  11891. {
  11892. ggml_compute_forward_permute(params, tensor->src[0]);
  11893. } break;
  11894. case GGML_OP_TRANSPOSE:
  11895. {
  11896. ggml_compute_forward_transpose(params, tensor->src[0]);
  11897. } break;
  11898. case GGML_OP_GET_ROWS:
  11899. {
  11900. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11901. } break;
  11902. case GGML_OP_GET_ROWS_BACK:
  11903. {
  11904. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11905. } break;
  11906. case GGML_OP_DIAG:
  11907. {
  11908. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11909. } break;
  11910. case GGML_OP_DIAG_MASK_INF:
  11911. {
  11912. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11913. } break;
  11914. case GGML_OP_DIAG_MASK_ZERO:
  11915. {
  11916. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11917. } break;
  11918. case GGML_OP_SOFT_MAX:
  11919. {
  11920. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  11921. } break;
  11922. case GGML_OP_SOFT_MAX_BACK:
  11923. {
  11924. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11925. } break;
  11926. case GGML_OP_ROPE:
  11927. {
  11928. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11929. } break;
  11930. case GGML_OP_ROPE_BACK:
  11931. {
  11932. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11933. } break;
  11934. case GGML_OP_ALIBI:
  11935. {
  11936. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11937. } break;
  11938. case GGML_OP_CLAMP:
  11939. {
  11940. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11941. } break;
  11942. case GGML_OP_CONV_1D:
  11943. {
  11944. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  11945. } break;
  11946. case GGML_OP_CONV_1D_STAGE_0:
  11947. {
  11948. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  11949. } break;
  11950. case GGML_OP_CONV_1D_STAGE_1:
  11951. {
  11952. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  11953. } break;
  11954. case GGML_OP_CONV_TRANSPOSE_1D:
  11955. {
  11956. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11957. } break;
  11958. case GGML_OP_CONV_2D:
  11959. {
  11960. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  11961. } break;
  11962. case GGML_OP_CONV_2D_STAGE_0:
  11963. {
  11964. ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  11965. } break;
  11966. case GGML_OP_CONV_2D_STAGE_1:
  11967. {
  11968. ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  11969. } break;
  11970. case GGML_OP_CONV_TRANSPOSE_2D:
  11971. {
  11972. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11973. } break;
  11974. case GGML_OP_POOL_1D:
  11975. {
  11976. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11977. } break;
  11978. case GGML_OP_POOL_2D:
  11979. {
  11980. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11981. } break;
  11982. case GGML_OP_UPSCALE:
  11983. {
  11984. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11985. } break;
  11986. case GGML_OP_FLASH_ATTN:
  11987. {
  11988. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11989. GGML_ASSERT(t == 0 || t == 1);
  11990. const bool masked = t != 0;
  11991. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11992. } break;
  11993. case GGML_OP_FLASH_FF:
  11994. {
  11995. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11996. } break;
  11997. case GGML_OP_FLASH_ATTN_BACK:
  11998. {
  11999. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12000. GGML_ASSERT(t == 0 || t == 1);
  12001. bool masked = t != 0;
  12002. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12003. } break;
  12004. case GGML_OP_WIN_PART:
  12005. {
  12006. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12007. } break;
  12008. case GGML_OP_WIN_UNPART:
  12009. {
  12010. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12011. } break;
  12012. case GGML_OP_UNARY:
  12013. {
  12014. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12015. } break;
  12016. case GGML_OP_GET_REL_POS:
  12017. {
  12018. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12019. } break;
  12020. case GGML_OP_ADD_REL_POS:
  12021. {
  12022. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12023. } break;
  12024. case GGML_OP_MAP_UNARY:
  12025. {
  12026. ggml_unary_op_f32_t fun;
  12027. memcpy(&fun, tensor->op_params, sizeof(fun));
  12028. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12029. }
  12030. break;
  12031. case GGML_OP_MAP_BINARY:
  12032. {
  12033. ggml_binary_op_f32_t fun;
  12034. memcpy(&fun, tensor->op_params, sizeof(fun));
  12035. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12036. }
  12037. break;
  12038. case GGML_OP_MAP_CUSTOM1_F32:
  12039. {
  12040. ggml_custom1_op_f32_t fun;
  12041. memcpy(&fun, tensor->op_params, sizeof(fun));
  12042. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12043. }
  12044. break;
  12045. case GGML_OP_MAP_CUSTOM2_F32:
  12046. {
  12047. ggml_custom2_op_f32_t fun;
  12048. memcpy(&fun, tensor->op_params, sizeof(fun));
  12049. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12050. }
  12051. break;
  12052. case GGML_OP_MAP_CUSTOM3_F32:
  12053. {
  12054. ggml_custom3_op_f32_t fun;
  12055. memcpy(&fun, tensor->op_params, sizeof(fun));
  12056. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12057. }
  12058. break;
  12059. case GGML_OP_MAP_CUSTOM1:
  12060. {
  12061. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12062. }
  12063. break;
  12064. case GGML_OP_MAP_CUSTOM2:
  12065. {
  12066. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12067. }
  12068. break;
  12069. case GGML_OP_MAP_CUSTOM3:
  12070. {
  12071. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12072. }
  12073. break;
  12074. case GGML_OP_CROSS_ENTROPY_LOSS:
  12075. {
  12076. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12077. }
  12078. break;
  12079. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12080. {
  12081. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12082. }
  12083. break;
  12084. case GGML_OP_NONE:
  12085. {
  12086. // nop
  12087. } break;
  12088. case GGML_OP_COUNT:
  12089. {
  12090. GGML_ASSERT(false);
  12091. } break;
  12092. }
  12093. }
  12094. ////////////////////////////////////////////////////////////////////////////////
  12095. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12096. static size_t hash(void * p) {
  12097. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12098. }
  12099. static size_t hash_find(void * hash_table[], void * p) {
  12100. size_t h = hash(p);
  12101. // linear probing
  12102. size_t i = h;
  12103. while (hash_table[i] != NULL && hash_table[i] != p) {
  12104. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12105. if (i == h) {
  12106. // visited all hash table entries -> not found
  12107. return GGML_GRAPH_HASHTABLE_SIZE;
  12108. }
  12109. }
  12110. return i;
  12111. }
  12112. static bool hash_insert(void * hash_table[], void * p) {
  12113. size_t i = hash_find(hash_table, p);
  12114. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12115. if (hash_table[i] == p) {
  12116. return true;
  12117. }
  12118. // insert
  12119. GGML_ASSERT(hash_table[i] == NULL);
  12120. hash_table[i] = p;
  12121. return false;
  12122. }
  12123. static bool hash_contains(void * hash_table[], void * p) {
  12124. size_t i = hash_find(hash_table, p);
  12125. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  12126. }
  12127. struct hash_map {
  12128. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  12129. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  12130. };
  12131. static struct hash_map * new_hash_map(void) {
  12132. struct hash_map * result = malloc(sizeof(struct hash_map));
  12133. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  12134. result->keys[i] = NULL;
  12135. result->vals[i] = NULL;
  12136. }
  12137. return result;
  12138. }
  12139. static void free_hash_map(struct hash_map * map) {
  12140. free(map);
  12141. }
  12142. // gradient checkpointing
  12143. static struct ggml_tensor * ggml_recompute_graph_node(
  12144. struct ggml_context * ctx,
  12145. struct ggml_cgraph * graph,
  12146. struct hash_map * replacements,
  12147. struct ggml_tensor * node) {
  12148. if (node == NULL) {
  12149. return NULL;
  12150. }
  12151. if (node->is_param) {
  12152. return node;
  12153. }
  12154. if (!hash_contains(graph->visited_hash_table, node)) {
  12155. return node;
  12156. }
  12157. int count_children = 0;
  12158. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12159. if (node->src[k]) {
  12160. ++count_children;
  12161. }
  12162. }
  12163. if (count_children == 0) {
  12164. return node;
  12165. }
  12166. size_t i = hash_find(replacements->keys, node);
  12167. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12168. if (replacements->keys[i] == node) {
  12169. return (struct ggml_tensor *) replacements->vals[i];
  12170. }
  12171. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  12172. // insert clone into replacements
  12173. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  12174. replacements->keys[i] = node;
  12175. replacements->vals[i] = clone;
  12176. clone->op = node->op;
  12177. clone->grad = node->grad;
  12178. clone->is_param = node->is_param;
  12179. clone->extra = node->extra;
  12180. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12181. clone->nb[k] = node->nb[k];
  12182. }
  12183. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12184. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12185. }
  12186. if (node->view_src != NULL) {
  12187. clone->data = (node->view_src->data == NULL)
  12188. ? NULL // view_src not yet allocated
  12189. : (char *) node->view_src->data // view_src already allocated
  12190. + node->view_offs;
  12191. clone->view_src = node->view_src;
  12192. clone->view_offs = node->view_offs;
  12193. }
  12194. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12195. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12196. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12197. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12198. return clone;
  12199. }
  12200. void ggml_build_backward_gradient_checkpointing(
  12201. struct ggml_context * ctx,
  12202. struct ggml_cgraph * gf,
  12203. struct ggml_cgraph * gb,
  12204. struct ggml_cgraph * gb_tmp,
  12205. struct ggml_tensor * * checkpoints,
  12206. int n_checkpoints) {
  12207. *gb_tmp = *gf;
  12208. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12209. if (n_checkpoints <= 0) {
  12210. *gb = *gb_tmp;
  12211. return;
  12212. }
  12213. struct hash_map * replacements = new_hash_map();
  12214. // insert checkpoints in replacements
  12215. for (int i = 0; i < n_checkpoints; ++i) {
  12216. size_t k = hash_find(replacements->keys, checkpoints[i]);
  12217. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12218. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  12219. replacements->keys[k] = checkpoints[i];
  12220. replacements->vals[k] = checkpoints[i];
  12221. }
  12222. *gb = *gf;
  12223. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12224. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12225. // by recomputing them from checkpoints
  12226. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12227. struct ggml_tensor * node = gb_tmp->nodes[i];
  12228. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12229. // insert new tensors recomputing src, reusing already made replacements,
  12230. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12231. // recurse for input tensors,
  12232. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  12233. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12234. }
  12235. // insert rewritten backward node with replacements made into resulting backward graph gb
  12236. ggml_build_forward_expand(gb, node);
  12237. }
  12238. free_hash_map(replacements);
  12239. }
  12240. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12241. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12242. if (hash_contains(zero_table, a)) {
  12243. return b;
  12244. } else {
  12245. return ggml_add_impl(ctx, a, b, false);
  12246. }
  12247. }
  12248. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  12249. if (hash_contains(zero_table, a)) {
  12250. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12251. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12252. } else {
  12253. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12254. }
  12255. }
  12256. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12257. if (hash_contains(zero_table, a)) {
  12258. return ggml_repeat(ctx, b, a);
  12259. } else {
  12260. return ggml_add1_impl(ctx, a, b, false);
  12261. }
  12262. }
  12263. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12264. if (hash_contains(zero_table, a)) {
  12265. return ggml_neg(ctx, b);
  12266. } else {
  12267. return ggml_sub_impl(ctx, a, b, false);
  12268. }
  12269. }
  12270. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  12271. struct ggml_tensor * src0 = tensor->src[0];
  12272. struct ggml_tensor * src1 = tensor->src[1];
  12273. switch (tensor->op) {
  12274. case GGML_OP_DUP:
  12275. {
  12276. if (src0->grad) {
  12277. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12278. }
  12279. } break;
  12280. case GGML_OP_ADD:
  12281. {
  12282. if (src0->grad) {
  12283. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12284. }
  12285. if (src1->grad) {
  12286. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12287. }
  12288. } break;
  12289. case GGML_OP_ADD1:
  12290. {
  12291. if (src0->grad) {
  12292. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12293. }
  12294. if (src1->grad) {
  12295. src1->grad = ggml_add_or_set(ctx,
  12296. src1->grad,
  12297. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12298. zero_table);
  12299. }
  12300. } break;
  12301. case GGML_OP_ACC:
  12302. {
  12303. if (src0->grad) {
  12304. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12305. }
  12306. if (src1->grad) {
  12307. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12308. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12309. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12310. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12311. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12312. tensor->grad,
  12313. src1->grad->ne[0],
  12314. src1->grad->ne[1],
  12315. src1->grad->ne[2],
  12316. src1->grad->ne[3],
  12317. nb1, nb2, nb3, offset);
  12318. src1->grad =
  12319. ggml_add_or_set(ctx,
  12320. src1->grad,
  12321. ggml_reshape(ctx,
  12322. ggml_cont(ctx, tensor_grad_view),
  12323. src1->grad),
  12324. zero_table);
  12325. }
  12326. } break;
  12327. case GGML_OP_SUB:
  12328. {
  12329. if (src0->grad) {
  12330. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12331. }
  12332. if (src1->grad) {
  12333. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12334. }
  12335. } break;
  12336. case GGML_OP_MUL:
  12337. {
  12338. if (src0->grad) {
  12339. src0->grad =
  12340. ggml_add_or_set(ctx,
  12341. src0->grad,
  12342. ggml_mul(ctx, src1, tensor->grad),
  12343. zero_table);
  12344. }
  12345. if (src1->grad) {
  12346. src1->grad =
  12347. ggml_add_or_set(ctx,
  12348. src1->grad,
  12349. ggml_mul(ctx, src0, tensor->grad),
  12350. zero_table);
  12351. }
  12352. } break;
  12353. case GGML_OP_DIV:
  12354. {
  12355. if (src0->grad) {
  12356. src0->grad =
  12357. ggml_add_or_set(ctx,
  12358. src0->grad,
  12359. ggml_div(ctx, tensor->grad, src1),
  12360. zero_table);
  12361. }
  12362. if (src1->grad) {
  12363. src1->grad =
  12364. ggml_sub_or_set(ctx,
  12365. src1->grad,
  12366. ggml_mul(ctx,
  12367. tensor->grad,
  12368. ggml_div(ctx, tensor, src1)),
  12369. zero_table);
  12370. }
  12371. } break;
  12372. case GGML_OP_SQR:
  12373. {
  12374. if (src0->grad) {
  12375. src0->grad =
  12376. ggml_add_or_set(ctx,
  12377. src0->grad,
  12378. ggml_scale(ctx,
  12379. ggml_mul(ctx, src0, tensor->grad),
  12380. ggml_new_f32(ctx, 2.0f)),
  12381. zero_table);
  12382. }
  12383. } break;
  12384. case GGML_OP_SQRT:
  12385. {
  12386. if (src0->grad) {
  12387. src0->grad =
  12388. ggml_add_or_set(ctx,
  12389. src0->grad,
  12390. ggml_scale(ctx,
  12391. ggml_div(ctx,
  12392. tensor->grad,
  12393. tensor),
  12394. ggml_new_f32(ctx, 0.5f)),
  12395. zero_table);
  12396. }
  12397. } break;
  12398. case GGML_OP_LOG:
  12399. {
  12400. if (src0->grad) {
  12401. src0->grad =
  12402. ggml_add_or_set(ctx,
  12403. src0->grad,
  12404. ggml_div(ctx,
  12405. tensor->grad,
  12406. src0),
  12407. zero_table);
  12408. }
  12409. } break;
  12410. case GGML_OP_SUM:
  12411. {
  12412. if (src0->grad) {
  12413. src0->grad =
  12414. ggml_add1_or_set(ctx,
  12415. src0->grad,
  12416. tensor->grad,
  12417. zero_table);
  12418. }
  12419. } break;
  12420. case GGML_OP_SUM_ROWS:
  12421. {
  12422. if (src0->grad) {
  12423. src0->grad =
  12424. ggml_add_or_set(ctx,
  12425. src0->grad,
  12426. ggml_repeat(ctx,
  12427. tensor->grad,
  12428. src0->grad),
  12429. zero_table);
  12430. }
  12431. } break;
  12432. case GGML_OP_MEAN:
  12433. case GGML_OP_ARGMAX:
  12434. {
  12435. GGML_ASSERT(false); // TODO: implement
  12436. } break;
  12437. case GGML_OP_REPEAT:
  12438. {
  12439. // necessary for llama
  12440. if (src0->grad) {
  12441. src0->grad = ggml_add_or_set(ctx,
  12442. src0->grad,
  12443. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12444. zero_table);
  12445. }
  12446. } break;
  12447. case GGML_OP_REPEAT_BACK:
  12448. {
  12449. if (src0->grad) {
  12450. // TODO: test this
  12451. src0->grad = ggml_add_or_set(ctx,
  12452. src0->grad,
  12453. ggml_repeat(ctx, tensor->grad, src0->grad),
  12454. zero_table);
  12455. }
  12456. } break;
  12457. case GGML_OP_CONCAT:
  12458. {
  12459. GGML_ASSERT(false); // TODO: implement
  12460. } break;
  12461. case GGML_OP_SILU_BACK:
  12462. {
  12463. GGML_ASSERT(false); // TODO: not implemented
  12464. } break;
  12465. case GGML_OP_NORM:
  12466. {
  12467. GGML_ASSERT(false); // TODO: not implemented
  12468. } break;
  12469. case GGML_OP_RMS_NORM:
  12470. {
  12471. // necessary for llama
  12472. if (src0->grad) {
  12473. float eps;
  12474. memcpy(&eps, tensor->op_params, sizeof(float));
  12475. src0->grad = ggml_add_or_set(ctx,
  12476. src0->grad,
  12477. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12478. zero_table);
  12479. }
  12480. } break;
  12481. case GGML_OP_RMS_NORM_BACK:
  12482. {
  12483. GGML_ASSERT(false); // TODO: not implemented
  12484. } break;
  12485. case GGML_OP_GROUP_NORM:
  12486. {
  12487. GGML_ASSERT(false); // TODO: not implemented
  12488. } break;
  12489. case GGML_OP_MUL_MAT:
  12490. {
  12491. // https://cs231n.github.io/optimization-2/#staged
  12492. // # forward pass
  12493. // s0 = np.random.randn(5, 10)
  12494. // s1 = np.random.randn(10, 3)
  12495. // t = s0.dot(s1)
  12496. // # now suppose we had the gradient on t from above in the circuit
  12497. // dt = np.random.randn(*t.shape) # same shape as t
  12498. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12499. // ds1 = t.T.dot(dt)
  12500. // tensor.shape [m,p,qq,rr]
  12501. // src0.shape [n,m,q1,r1]
  12502. // src1.shape [n,p,qq,rr]
  12503. // necessary for llama
  12504. if (src0->grad) {
  12505. struct ggml_tensor * s1_tg =
  12506. ggml_out_prod(ctx, // [n,m,qq,rr]
  12507. src1, // [n,p,qq,rr]
  12508. tensor->grad); // [m,p,qq,rr]
  12509. const int64_t qq = s1_tg->ne[2];
  12510. const int64_t rr = s1_tg->ne[3];
  12511. const int64_t q1 = src0->ne[2];
  12512. const int64_t r1 = src0->ne[3];
  12513. const bool ne2_broadcasted = qq > q1;
  12514. const bool ne3_broadcasted = rr > r1;
  12515. if (ne2_broadcasted || ne3_broadcasted) {
  12516. // sum broadcast repetitions of s1_tg into shape of src0
  12517. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12518. }
  12519. src0->grad =
  12520. ggml_add_or_set(ctx,
  12521. src0->grad, // [n,m,q1,r1]
  12522. s1_tg, // [n,m,q1,r1]
  12523. zero_table);
  12524. }
  12525. if (src1->grad) {
  12526. src1->grad =
  12527. ggml_add_or_set(ctx,
  12528. src1->grad, // [n,p,qq,rr]
  12529. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12530. // ggml_cont(ctx, // [m,n,q1,r1]
  12531. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12532. // tensor->grad), // [m,p,qq,rr]
  12533. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12534. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12535. // // and then use ggml_out_prod
  12536. ggml_out_prod(ctx, // [n,p,qq,rr]
  12537. src0, // [n,m,q1,r1]
  12538. ggml_transpose(ctx, // [p,m,qq,rr]
  12539. tensor->grad)), // [m,p,qq,rr]
  12540. zero_table);
  12541. }
  12542. } break;
  12543. case GGML_OP_OUT_PROD:
  12544. {
  12545. GGML_ASSERT(false); // TODO: not implemented
  12546. } break;
  12547. case GGML_OP_SCALE:
  12548. {
  12549. // necessary for llama
  12550. if (src0->grad) {
  12551. src0->grad =
  12552. ggml_add_or_set(ctx,
  12553. src0->grad,
  12554. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12555. zero_table);
  12556. }
  12557. if (src1->grad) {
  12558. src1->grad =
  12559. ggml_add_or_set(ctx,
  12560. src1->grad,
  12561. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12562. zero_table);
  12563. }
  12564. } break;
  12565. case GGML_OP_SET:
  12566. {
  12567. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12568. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12569. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12570. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12571. struct ggml_tensor * tensor_grad_view = NULL;
  12572. if (src0->grad || src1->grad) {
  12573. GGML_ASSERT(src0->type == tensor->type);
  12574. GGML_ASSERT(tensor->grad->type == tensor->type);
  12575. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12576. tensor_grad_view = ggml_view_4d(ctx,
  12577. tensor->grad,
  12578. src1->grad->ne[0],
  12579. src1->grad->ne[1],
  12580. src1->grad->ne[2],
  12581. src1->grad->ne[3],
  12582. nb1, nb2, nb3, offset);
  12583. }
  12584. if (src0->grad) {
  12585. src0->grad = ggml_add_or_set(ctx,
  12586. src0->grad,
  12587. ggml_acc_impl(ctx,
  12588. tensor->grad,
  12589. ggml_neg(ctx, tensor_grad_view),
  12590. nb1, nb2, nb3, offset, false),
  12591. zero_table);
  12592. }
  12593. if (src1->grad) {
  12594. src1->grad =
  12595. ggml_add_or_set(ctx,
  12596. src1->grad,
  12597. ggml_reshape(ctx,
  12598. ggml_cont(ctx, tensor_grad_view),
  12599. src1->grad),
  12600. zero_table);
  12601. }
  12602. } break;
  12603. case GGML_OP_CPY:
  12604. {
  12605. // necessary for llama
  12606. // cpy overwrites value of src1 by src0 and returns view(src1)
  12607. // the overwriting is mathematically equivalent to:
  12608. // tensor = src0 * 1 + src1 * 0
  12609. if (src0->grad) {
  12610. // dsrc0 = dtensor * 1
  12611. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12612. }
  12613. if (src1->grad) {
  12614. // dsrc1 = dtensor * 0 -> noop
  12615. }
  12616. } break;
  12617. case GGML_OP_CONT:
  12618. {
  12619. // same as cpy
  12620. if (src0->grad) {
  12621. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12622. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12623. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12624. }
  12625. } break;
  12626. case GGML_OP_RESHAPE:
  12627. {
  12628. // necessary for llama
  12629. if (src0->grad) {
  12630. src0->grad =
  12631. ggml_add_or_set(ctx, src0->grad,
  12632. ggml_reshape(ctx,
  12633. ggml_is_contiguous(tensor->grad)
  12634. ? tensor->grad
  12635. : ggml_cont(ctx, tensor->grad),
  12636. src0->grad),
  12637. zero_table);
  12638. }
  12639. } break;
  12640. case GGML_OP_VIEW:
  12641. {
  12642. // necessary for llama
  12643. if (src0->grad) {
  12644. size_t offset;
  12645. memcpy(&offset, tensor->op_params, sizeof(offset));
  12646. size_t nb1 = tensor->nb[1];
  12647. size_t nb2 = tensor->nb[2];
  12648. size_t nb3 = tensor->nb[3];
  12649. if (src0->type != src0->grad->type) {
  12650. // gradient is typically F32, but src0 could be other type
  12651. size_t ng = ggml_element_size(src0->grad);
  12652. size_t n0 = ggml_element_size(src0);
  12653. GGML_ASSERT(offset % n0 == 0);
  12654. GGML_ASSERT(nb1 % n0 == 0);
  12655. GGML_ASSERT(nb2 % n0 == 0);
  12656. GGML_ASSERT(nb3 % n0 == 0);
  12657. offset = (offset / n0) * ng;
  12658. nb1 = (nb1 / n0) * ng;
  12659. nb2 = (nb2 / n0) * ng;
  12660. nb3 = (nb3 / n0) * ng;
  12661. }
  12662. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12663. }
  12664. } break;
  12665. case GGML_OP_PERMUTE:
  12666. {
  12667. // necessary for llama
  12668. if (src0->grad) {
  12669. int32_t * axes = (int32_t *) tensor->op_params;
  12670. int axis0 = axes[0] & 0x3;
  12671. int axis1 = axes[1] & 0x3;
  12672. int axis2 = axes[2] & 0x3;
  12673. int axis3 = axes[3] & 0x3;
  12674. int axes_backward[4] = {0,0,0,0};
  12675. axes_backward[axis0] = 0;
  12676. axes_backward[axis1] = 1;
  12677. axes_backward[axis2] = 2;
  12678. axes_backward[axis3] = 3;
  12679. src0->grad =
  12680. ggml_add_or_set(ctx, src0->grad,
  12681. ggml_permute(ctx,
  12682. tensor->grad,
  12683. axes_backward[0],
  12684. axes_backward[1],
  12685. axes_backward[2],
  12686. axes_backward[3]),
  12687. zero_table);
  12688. }
  12689. } break;
  12690. case GGML_OP_TRANSPOSE:
  12691. {
  12692. // necessary for llama
  12693. if (src0->grad) {
  12694. src0->grad =
  12695. ggml_add_or_set(ctx, src0->grad,
  12696. ggml_transpose(ctx, tensor->grad),
  12697. zero_table);
  12698. }
  12699. } break;
  12700. case GGML_OP_GET_ROWS:
  12701. {
  12702. // necessary for llama (only for tokenizer)
  12703. if (src0->grad) {
  12704. src0->grad =
  12705. ggml_add_or_set(ctx, src0->grad,
  12706. // last ggml_get_rows_back argument src0->grad is only
  12707. // necessary to setup correct output shape
  12708. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12709. zero_table);
  12710. }
  12711. if (src1->grad) {
  12712. // noop
  12713. }
  12714. } break;
  12715. case GGML_OP_GET_ROWS_BACK:
  12716. {
  12717. GGML_ASSERT(false); // TODO: not implemented
  12718. } break;
  12719. case GGML_OP_DIAG:
  12720. {
  12721. GGML_ASSERT(false); // TODO: not implemented
  12722. } break;
  12723. case GGML_OP_DIAG_MASK_INF:
  12724. {
  12725. // necessary for llama
  12726. if (src0->grad) {
  12727. const int n_past = ((int32_t *) tensor->op_params)[0];
  12728. src0->grad =
  12729. ggml_add_or_set(ctx, src0->grad,
  12730. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12731. zero_table);
  12732. }
  12733. } break;
  12734. case GGML_OP_DIAG_MASK_ZERO:
  12735. {
  12736. // necessary for llama
  12737. if (src0->grad) {
  12738. const int n_past = ((int32_t *) tensor->op_params)[0];
  12739. src0->grad =
  12740. ggml_add_or_set(ctx, src0->grad,
  12741. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12742. zero_table);
  12743. }
  12744. } break;
  12745. case GGML_OP_SOFT_MAX:
  12746. {
  12747. // necessary for llama
  12748. if (src0->grad) {
  12749. src0->grad =
  12750. ggml_add_or_set(ctx, src0->grad,
  12751. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12752. zero_table);
  12753. }
  12754. } break;
  12755. case GGML_OP_SOFT_MAX_BACK:
  12756. {
  12757. GGML_ASSERT(false); // TODO: not implemented
  12758. } break;
  12759. case GGML_OP_ROPE:
  12760. {
  12761. // necessary for llama
  12762. if (src0->grad) {
  12763. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12764. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12765. const int mode = ((int32_t *) tensor->op_params)[2];
  12766. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12767. float freq_base;
  12768. float freq_scale;
  12769. float xpos_base;
  12770. bool xpos_down;
  12771. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12772. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12773. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12774. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12775. src0->grad = ggml_add_or_set(ctx,
  12776. src0->grad,
  12777. ggml_rope_back(ctx,
  12778. tensor->grad,
  12779. src1,
  12780. n_dims,
  12781. mode,
  12782. n_ctx,
  12783. freq_base,
  12784. freq_scale,
  12785. xpos_base,
  12786. xpos_down),
  12787. zero_table);
  12788. }
  12789. } break;
  12790. case GGML_OP_ROPE_BACK:
  12791. {
  12792. if (src0->grad) {
  12793. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12794. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12795. const int mode = ((int32_t *) tensor->op_params)[2];
  12796. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12797. float freq_base;
  12798. float freq_scale;
  12799. float xpos_base;
  12800. bool xpos_down;
  12801. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12802. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12803. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12804. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12805. src0->grad = ggml_add_or_set(ctx,
  12806. src0->grad,
  12807. ggml_rope_impl(ctx,
  12808. tensor->grad,
  12809. src1,
  12810. n_dims,
  12811. mode,
  12812. n_ctx,
  12813. freq_base,
  12814. freq_scale,
  12815. xpos_base,
  12816. xpos_down,
  12817. false),
  12818. zero_table);
  12819. }
  12820. } break;
  12821. case GGML_OP_ALIBI:
  12822. {
  12823. GGML_ASSERT(false); // TODO: not implemented
  12824. } break;
  12825. case GGML_OP_CLAMP:
  12826. {
  12827. GGML_ASSERT(false); // TODO: not implemented
  12828. } break;
  12829. case GGML_OP_CONV_1D:
  12830. {
  12831. GGML_ASSERT(false); // TODO: not implemented
  12832. } break;
  12833. case GGML_OP_CONV_1D_STAGE_0:
  12834. {
  12835. GGML_ASSERT(false); // TODO: not implemented
  12836. } break;
  12837. case GGML_OP_CONV_1D_STAGE_1:
  12838. {
  12839. GGML_ASSERT(false); // TODO: not implemented
  12840. } break;
  12841. case GGML_OP_CONV_TRANSPOSE_1D:
  12842. {
  12843. GGML_ASSERT(false); // TODO: not implemented
  12844. } break;
  12845. case GGML_OP_CONV_2D:
  12846. {
  12847. GGML_ASSERT(false); // TODO: not implemented
  12848. } break;
  12849. case GGML_OP_CONV_2D_STAGE_0:
  12850. {
  12851. GGML_ASSERT(false); // TODO: not implemented
  12852. } break;
  12853. case GGML_OP_CONV_2D_STAGE_1:
  12854. {
  12855. GGML_ASSERT(false); // TODO: not implemented
  12856. } break;
  12857. case GGML_OP_CONV_TRANSPOSE_2D:
  12858. {
  12859. GGML_ASSERT(false); // TODO: not implemented
  12860. } break;
  12861. case GGML_OP_POOL_1D:
  12862. {
  12863. GGML_ASSERT(false); // TODO: not implemented
  12864. } break;
  12865. case GGML_OP_POOL_2D:
  12866. {
  12867. GGML_ASSERT(false); // TODO: not implemented
  12868. } break;
  12869. case GGML_OP_UPSCALE:
  12870. {
  12871. GGML_ASSERT(false); // TODO: not implemented
  12872. } break;
  12873. case GGML_OP_FLASH_ATTN:
  12874. {
  12875. struct ggml_tensor * flash_grad = NULL;
  12876. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12877. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12878. GGML_ASSERT(t == 0 || t == 1);
  12879. bool masked = t != 0;
  12880. flash_grad =
  12881. ggml_flash_attn_back(ctx,
  12882. src0,
  12883. src1,
  12884. tensor->src[2],
  12885. tensor->grad,
  12886. masked);
  12887. }
  12888. struct ggml_tensor * src2 = tensor->src[2];
  12889. const int64_t elem_q = ggml_nelements(src0);
  12890. const int64_t elem_k = ggml_nelements(src1);
  12891. const int64_t elem_v = ggml_nelements(src2);
  12892. enum ggml_type result_type = flash_grad->type;
  12893. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12894. const size_t tsize = ggml_type_size(result_type);
  12895. const size_t offs_q = 0;
  12896. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12897. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12898. if (src0->grad) {
  12899. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12900. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12901. src0->grad = ggml_add_or_set(ctx,
  12902. src0->grad,
  12903. grad_q,
  12904. zero_table);
  12905. }
  12906. if (src1->grad) {
  12907. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12908. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12909. src1->grad = ggml_add_or_set(ctx,
  12910. src1->grad,
  12911. grad_k,
  12912. zero_table);
  12913. }
  12914. if (src2->grad) {
  12915. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12916. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12917. src2->grad = ggml_add_or_set(ctx,
  12918. src2->grad,
  12919. grad_v,
  12920. zero_table);
  12921. }
  12922. } break;
  12923. case GGML_OP_FLASH_FF:
  12924. {
  12925. GGML_ASSERT(false); // not supported
  12926. } break;
  12927. case GGML_OP_FLASH_ATTN_BACK:
  12928. {
  12929. GGML_ASSERT(false); // not supported
  12930. } break;
  12931. case GGML_OP_WIN_PART:
  12932. case GGML_OP_WIN_UNPART:
  12933. case GGML_OP_UNARY:
  12934. {
  12935. switch (ggml_get_unary_op(tensor)) {
  12936. case GGML_UNARY_OP_ABS:
  12937. {
  12938. if (src0->grad) {
  12939. src0->grad =
  12940. ggml_add_or_set(ctx,
  12941. src0->grad,
  12942. ggml_mul(ctx,
  12943. ggml_sgn(ctx, src0),
  12944. tensor->grad),
  12945. zero_table);
  12946. }
  12947. } break;
  12948. case GGML_UNARY_OP_SGN:
  12949. {
  12950. if (src0->grad) {
  12951. // noop
  12952. }
  12953. } break;
  12954. case GGML_UNARY_OP_NEG:
  12955. {
  12956. if (src0->grad) {
  12957. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12958. }
  12959. } break;
  12960. case GGML_UNARY_OP_STEP:
  12961. {
  12962. if (src0->grad) {
  12963. // noop
  12964. }
  12965. } break;
  12966. case GGML_UNARY_OP_TANH:
  12967. {
  12968. GGML_ASSERT(false); // TODO: not implemented
  12969. } break;
  12970. case GGML_UNARY_OP_ELU:
  12971. {
  12972. GGML_ASSERT(false); // TODO: not implemented
  12973. } break;
  12974. case GGML_UNARY_OP_RELU:
  12975. {
  12976. if (src0->grad) {
  12977. src0->grad = ggml_add_or_set(ctx,
  12978. src0->grad,
  12979. ggml_mul(ctx,
  12980. ggml_step(ctx, src0),
  12981. tensor->grad),
  12982. zero_table);
  12983. }
  12984. } break;
  12985. case GGML_UNARY_OP_GELU:
  12986. {
  12987. GGML_ASSERT(false); // TODO: not implemented
  12988. } break;
  12989. case GGML_UNARY_OP_GELU_QUICK:
  12990. {
  12991. GGML_ASSERT(false); // TODO: not implemented
  12992. } break;
  12993. case GGML_UNARY_OP_SILU:
  12994. {
  12995. // necessary for llama
  12996. if (src0->grad) {
  12997. src0->grad = ggml_add_or_set(ctx,
  12998. src0->grad,
  12999. ggml_silu_back(ctx, src0, tensor->grad),
  13000. zero_table);
  13001. }
  13002. } break;
  13003. default:
  13004. GGML_ASSERT(false);
  13005. }
  13006. } break;
  13007. case GGML_OP_GET_REL_POS:
  13008. case GGML_OP_ADD_REL_POS:
  13009. case GGML_OP_MAP_UNARY:
  13010. case GGML_OP_MAP_BINARY:
  13011. case GGML_OP_MAP_CUSTOM1_F32:
  13012. case GGML_OP_MAP_CUSTOM2_F32:
  13013. case GGML_OP_MAP_CUSTOM3_F32:
  13014. case GGML_OP_MAP_CUSTOM1:
  13015. case GGML_OP_MAP_CUSTOM2:
  13016. case GGML_OP_MAP_CUSTOM3:
  13017. {
  13018. GGML_ASSERT(false); // not supported
  13019. } break;
  13020. case GGML_OP_CROSS_ENTROPY_LOSS:
  13021. {
  13022. if (src0->grad) {
  13023. src0->grad = ggml_add_or_set(ctx,
  13024. src0->grad,
  13025. ggml_cross_entropy_loss_back(ctx,
  13026. src0,
  13027. src1,
  13028. tensor->grad),
  13029. zero_table);
  13030. }
  13031. } break;
  13032. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13033. {
  13034. GGML_ASSERT(false); // not supported
  13035. } break;
  13036. case GGML_OP_NONE:
  13037. {
  13038. // nop
  13039. } break;
  13040. case GGML_OP_COUNT:
  13041. {
  13042. GGML_ASSERT(false);
  13043. } break;
  13044. }
  13045. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13046. if (tensor->src[i] && tensor->src[i]->grad) {
  13047. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13048. }
  13049. }
  13050. }
  13051. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13052. if (node->grad == NULL) {
  13053. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13054. // it can also happen during forward pass, if the user performs computations with constants
  13055. if (node->op != GGML_OP_NONE) {
  13056. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13057. }
  13058. }
  13059. // check if already visited
  13060. if (hash_insert(cgraph->visited_hash_table, node)) {
  13061. return;
  13062. }
  13063. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13064. const int k =
  13065. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13066. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13067. /* unknown order, just fall back to using i*/ i;
  13068. if (node->src[k]) {
  13069. ggml_visit_parents(cgraph, node->src[k]);
  13070. }
  13071. }
  13072. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13073. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13074. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13075. if (strlen(node->name) == 0) {
  13076. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13077. }
  13078. cgraph->leafs[cgraph->n_leafs] = node;
  13079. cgraph->n_leafs++;
  13080. } else {
  13081. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13082. if (strlen(node->name) == 0) {
  13083. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13084. }
  13085. cgraph->nodes[cgraph->n_nodes] = node;
  13086. cgraph->grads[cgraph->n_nodes] = node->grad;
  13087. cgraph->n_nodes++;
  13088. }
  13089. }
  13090. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13091. if (!expand) {
  13092. cgraph->n_nodes = 0;
  13093. cgraph->n_leafs = 0;
  13094. }
  13095. const int n0 = cgraph->n_nodes;
  13096. UNUSED(n0);
  13097. ggml_visit_parents(cgraph, tensor);
  13098. const int n_new = cgraph->n_nodes - n0;
  13099. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13100. if (n_new > 0) {
  13101. // the last added node should always be starting point
  13102. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13103. }
  13104. }
  13105. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13106. ggml_build_forward_impl(cgraph, tensor, true);
  13107. }
  13108. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13109. struct ggml_cgraph result = {
  13110. /*.n_nodes =*/ 0,
  13111. /*.n_leafs =*/ 0,
  13112. /*.nodes =*/ { NULL },
  13113. /*.grads =*/ { NULL },
  13114. /*.leafs =*/ { NULL },
  13115. /*.hash_table =*/ { NULL },
  13116. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13117. /*.perf_runs =*/ 0,
  13118. /*.perf_cycles =*/ 0,
  13119. /*.perf_time_us =*/ 0,
  13120. };
  13121. ggml_build_forward_impl(&result, tensor, false);
  13122. return result;
  13123. }
  13124. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13125. GGML_ASSERT(gf->n_nodes > 0);
  13126. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13127. if (keep) {
  13128. for (int i = 0; i < gf->n_nodes; i++) {
  13129. struct ggml_tensor * node = gf->nodes[i];
  13130. if (node->grad) {
  13131. node->grad = ggml_dup_tensor(ctx, node);
  13132. gf->grads[i] = node->grad;
  13133. }
  13134. }
  13135. }
  13136. // remember original gradients which start with zero values
  13137. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  13138. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  13139. for (int i = 0; i < gf->n_nodes; i++) {
  13140. if (gf->grads[i]) {
  13141. hash_insert(zero_table, gf->grads[i]);
  13142. }
  13143. }
  13144. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13145. struct ggml_tensor * node = gf->nodes[i];
  13146. // inplace operations to add gradients are not created by ggml_compute_backward
  13147. // use allocator to automatically make inplace operations
  13148. if (node->grad) {
  13149. ggml_compute_backward(ctx, node, zero_table);
  13150. }
  13151. }
  13152. for (int i = 0; i < gf->n_nodes; i++) {
  13153. struct ggml_tensor * node = gf->nodes[i];
  13154. if (node->is_param) {
  13155. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13156. ggml_build_forward_expand(gb, node->grad);
  13157. }
  13158. }
  13159. free(zero_table);
  13160. }
  13161. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13162. struct ggml_cgraph result = *gf;
  13163. ggml_build_backward_expand(ctx, gf, &result, keep);
  13164. return result;
  13165. }
  13166. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13167. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13168. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13169. *cgraph = (struct ggml_cgraph) {
  13170. /*.n_nodes =*/ 0,
  13171. /*.n_leafs =*/ 0,
  13172. /*.nodes =*/ { NULL },
  13173. /*.grads =*/ { NULL },
  13174. /*.leafs =*/ { NULL },
  13175. /*.hash_table =*/ { NULL },
  13176. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13177. /*.perf_runs =*/ 0,
  13178. /*.perf_cycles =*/ 0,
  13179. /*.perf_time_us =*/ 0,
  13180. };
  13181. return cgraph;
  13182. }
  13183. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13184. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13185. ggml_build_forward_impl(cgraph, tensor, false);
  13186. return cgraph;
  13187. }
  13188. size_t ggml_graph_overhead(void) {
  13189. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13190. }
  13191. //
  13192. // thread data
  13193. //
  13194. // synchronization is done via busy loops
  13195. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13196. //
  13197. #ifdef __APPLE__
  13198. //#include <os/lock.h>
  13199. //
  13200. //typedef os_unfair_lock ggml_lock_t;
  13201. //
  13202. //#define ggml_lock_init(x) UNUSED(x)
  13203. //#define ggml_lock_destroy(x) UNUSED(x)
  13204. //#define ggml_lock_lock os_unfair_lock_lock
  13205. //#define ggml_lock_unlock os_unfair_lock_unlock
  13206. //
  13207. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13208. typedef int ggml_lock_t;
  13209. #define ggml_lock_init(x) UNUSED(x)
  13210. #define ggml_lock_destroy(x) UNUSED(x)
  13211. #define ggml_lock_lock(x) UNUSED(x)
  13212. #define ggml_lock_unlock(x) UNUSED(x)
  13213. #define GGML_LOCK_INITIALIZER 0
  13214. typedef pthread_t ggml_thread_t;
  13215. #define ggml_thread_create pthread_create
  13216. #define ggml_thread_join pthread_join
  13217. #else
  13218. //typedef pthread_spinlock_t ggml_lock_t;
  13219. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13220. //#define ggml_lock_destroy pthread_spin_destroy
  13221. //#define ggml_lock_lock pthread_spin_lock
  13222. //#define ggml_lock_unlock pthread_spin_unlock
  13223. typedef int ggml_lock_t;
  13224. #define ggml_lock_init(x) UNUSED(x)
  13225. #define ggml_lock_destroy(x) UNUSED(x)
  13226. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13227. #define ggml_lock_lock(x) _mm_pause()
  13228. #else
  13229. #define ggml_lock_lock(x) UNUSED(x)
  13230. #endif
  13231. #define ggml_lock_unlock(x) UNUSED(x)
  13232. #define GGML_LOCK_INITIALIZER 0
  13233. typedef pthread_t ggml_thread_t;
  13234. #define ggml_thread_create pthread_create
  13235. #define ggml_thread_join pthread_join
  13236. #endif
  13237. // Android's libc implementation "bionic" does not support setting affinity
  13238. #if defined(__linux__) && !defined(__BIONIC__)
  13239. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13240. if (!ggml_is_numa()) {
  13241. return;
  13242. }
  13243. // run thread on node_num thread_n / (threads per node)
  13244. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13245. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13246. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13247. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13248. CPU_ZERO_S(setsize, cpus);
  13249. for (size_t i = 0; i < node->n_cpus; ++i) {
  13250. CPU_SET_S(node->cpus[i], setsize, cpus);
  13251. }
  13252. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13253. if (rv) {
  13254. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13255. strerror(rv));
  13256. }
  13257. CPU_FREE(cpus);
  13258. }
  13259. static void clear_numa_thread_affinity(void) {
  13260. if (!ggml_is_numa()) {
  13261. return;
  13262. }
  13263. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13264. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13265. CPU_ZERO_S(setsize, cpus);
  13266. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13267. CPU_SET_S(i, setsize, cpus);
  13268. }
  13269. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13270. if (rv) {
  13271. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13272. strerror(rv));
  13273. }
  13274. CPU_FREE(cpus);
  13275. }
  13276. #else
  13277. // TODO: Windows etc.
  13278. // (the linux implementation may also work on BSD, someone should test)
  13279. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13280. static void clear_numa_thread_affinity(void) {}
  13281. #endif
  13282. struct ggml_compute_state_shared {
  13283. const struct ggml_cgraph * cgraph;
  13284. const struct ggml_cplan * cplan;
  13285. int64_t perf_node_start_cycles;
  13286. int64_t perf_node_start_time_us;
  13287. const int n_threads;
  13288. // synchronization primitives
  13289. atomic_int n_active; // num active threads
  13290. atomic_int node_n; // active graph node
  13291. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13292. void * abort_callback_data;
  13293. };
  13294. struct ggml_compute_state {
  13295. ggml_thread_t thrd;
  13296. int ith;
  13297. struct ggml_compute_state_shared * shared;
  13298. };
  13299. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13300. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13301. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13302. node->perf_runs++;
  13303. node->perf_cycles += cycles_cur;
  13304. node->perf_time_us += time_us_cur;
  13305. }
  13306. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13307. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13308. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13309. const struct ggml_cplan * cplan = state->shared->cplan;
  13310. const int * n_tasks_arr = cplan->n_tasks;
  13311. const int n_threads = state->shared->n_threads;
  13312. set_numa_thread_affinity(state->ith, n_threads);
  13313. int node_n = -1;
  13314. while (true) {
  13315. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13316. state->shared->node_n += 1;
  13317. return (thread_ret_t) GGML_EXIT_ABORTED;
  13318. }
  13319. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13320. // all other threads are finished and spinning
  13321. // do finalize and init here so we don't have synchronize again
  13322. struct ggml_compute_params params = {
  13323. /*.type =*/ GGML_TASK_FINALIZE,
  13324. /*.ith =*/ 0,
  13325. /*.nth =*/ 0,
  13326. /*.wsize =*/ cplan->work_size,
  13327. /*.wdata =*/ cplan->work_data,
  13328. };
  13329. if (node_n != -1) {
  13330. /* FINALIZE */
  13331. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13332. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13333. params.nth = n_tasks_arr[node_n];
  13334. ggml_compute_forward(&params, node);
  13335. }
  13336. ggml_graph_compute_perf_stats_node(node, state->shared);
  13337. }
  13338. // distribute new work or execute it direct if 1T
  13339. while (++node_n < cgraph->n_nodes) {
  13340. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13341. struct ggml_tensor * node = cgraph->nodes[node_n];
  13342. const int n_tasks = n_tasks_arr[node_n];
  13343. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13344. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13345. params.nth = n_tasks;
  13346. /* INIT */
  13347. if (GGML_OP_HAS_INIT[node->op]) {
  13348. params.type = GGML_TASK_INIT;
  13349. ggml_compute_forward(&params, node);
  13350. }
  13351. if (n_tasks == 1) {
  13352. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13353. // they do something more efficient than spinning (?)
  13354. params.type = GGML_TASK_COMPUTE;
  13355. ggml_compute_forward(&params, node);
  13356. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13357. params.type = GGML_TASK_FINALIZE;
  13358. ggml_compute_forward(&params, node);
  13359. }
  13360. ggml_graph_compute_perf_stats_node(node, state->shared);
  13361. } else {
  13362. break;
  13363. }
  13364. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13365. break;
  13366. }
  13367. }
  13368. atomic_store(&state->shared->n_active, n_threads);
  13369. atomic_store(&state->shared->node_n, node_n);
  13370. } else {
  13371. // wait for other threads to finish
  13372. const int last = node_n;
  13373. while (true) {
  13374. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13375. // depending on the workload and the operating system.
  13376. // since it is not clear what is the best approach, it should potentially become user-configurable
  13377. // ref: https://github.com/ggerganov/ggml/issues/291
  13378. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13379. sched_yield();
  13380. #endif
  13381. node_n = atomic_load(&state->shared->node_n);
  13382. if (node_n != last) break;
  13383. };
  13384. }
  13385. // check if we should stop
  13386. if (node_n >= cgraph->n_nodes) break;
  13387. /* COMPUTE */
  13388. struct ggml_tensor * node = cgraph->nodes[node_n];
  13389. const int n_tasks = n_tasks_arr[node_n];
  13390. struct ggml_compute_params params = {
  13391. /*.type =*/ GGML_TASK_COMPUTE,
  13392. /*.ith =*/ state->ith,
  13393. /*.nth =*/ n_tasks,
  13394. /*.wsize =*/ cplan->work_size,
  13395. /*.wdata =*/ cplan->work_data,
  13396. };
  13397. if (state->ith < n_tasks) {
  13398. ggml_compute_forward(&params, node);
  13399. }
  13400. }
  13401. return GGML_EXIT_SUCCESS;
  13402. }
  13403. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13404. if (n_threads <= 0) {
  13405. n_threads = GGML_DEFAULT_N_THREADS;
  13406. }
  13407. size_t work_size = 0;
  13408. struct ggml_cplan cplan;
  13409. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13410. // thread scheduling for the different operations + work buffer size estimation
  13411. for (int i = 0; i < cgraph->n_nodes; i++) {
  13412. int n_tasks = 1;
  13413. struct ggml_tensor * node = cgraph->nodes[i];
  13414. switch (node->op) {
  13415. case GGML_OP_CPY:
  13416. case GGML_OP_DUP:
  13417. {
  13418. n_tasks = n_threads;
  13419. size_t cur = 0;
  13420. if (ggml_is_quantized(node->type)) {
  13421. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13422. }
  13423. work_size = MAX(work_size, cur);
  13424. } break;
  13425. case GGML_OP_ADD:
  13426. case GGML_OP_ADD1:
  13427. {
  13428. n_tasks = n_threads;
  13429. size_t cur = 0;
  13430. if (ggml_is_quantized(node->src[0]->type)) {
  13431. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13432. }
  13433. work_size = MAX(work_size, cur);
  13434. } break;
  13435. case GGML_OP_ACC:
  13436. {
  13437. n_tasks = n_threads;
  13438. size_t cur = 0;
  13439. if (ggml_is_quantized(node->src[0]->type)) {
  13440. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13441. }
  13442. work_size = MAX(work_size, cur);
  13443. } break;
  13444. case GGML_OP_SUB:
  13445. case GGML_OP_DIV:
  13446. case GGML_OP_SQR:
  13447. case GGML_OP_SQRT:
  13448. case GGML_OP_LOG:
  13449. case GGML_OP_SUM:
  13450. case GGML_OP_SUM_ROWS:
  13451. case GGML_OP_MEAN:
  13452. case GGML_OP_ARGMAX:
  13453. case GGML_OP_REPEAT:
  13454. case GGML_OP_REPEAT_BACK:
  13455. {
  13456. n_tasks = 1;
  13457. } break;
  13458. case GGML_OP_UNARY:
  13459. {
  13460. switch (ggml_get_unary_op(node)) {
  13461. case GGML_UNARY_OP_ABS:
  13462. case GGML_UNARY_OP_SGN:
  13463. case GGML_UNARY_OP_NEG:
  13464. case GGML_UNARY_OP_STEP:
  13465. case GGML_UNARY_OP_TANH:
  13466. case GGML_UNARY_OP_ELU:
  13467. case GGML_UNARY_OP_RELU:
  13468. {
  13469. n_tasks = 1;
  13470. } break;
  13471. case GGML_UNARY_OP_GELU:
  13472. case GGML_UNARY_OP_GELU_QUICK:
  13473. case GGML_UNARY_OP_SILU:
  13474. {
  13475. n_tasks = n_threads;
  13476. } break;
  13477. }
  13478. } break;
  13479. case GGML_OP_SILU_BACK:
  13480. case GGML_OP_MUL:
  13481. case GGML_OP_NORM:
  13482. case GGML_OP_RMS_NORM:
  13483. case GGML_OP_RMS_NORM_BACK:
  13484. case GGML_OP_GROUP_NORM:
  13485. {
  13486. n_tasks = n_threads;
  13487. } break;
  13488. case GGML_OP_CONCAT:
  13489. case GGML_OP_MUL_MAT:
  13490. {
  13491. n_tasks = n_threads;
  13492. // TODO: use different scheduling for different matrix sizes
  13493. //const int nr0 = ggml_nrows(node->src[0]);
  13494. //const int nr1 = ggml_nrows(node->src[1]);
  13495. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13496. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13497. size_t cur = 0;
  13498. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13499. #if defined(GGML_USE_CUBLAS)
  13500. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13501. n_tasks = 1; // TODO: this actually is doing nothing
  13502. // the threads are still spinning
  13503. } else
  13504. #elif defined(GGML_USE_CLBLAST)
  13505. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13506. n_tasks = 1; // TODO: this actually is doing nothing
  13507. // the threads are still spinning
  13508. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13509. } else
  13510. #endif
  13511. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13512. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13513. n_tasks = 1; // TODO: this actually is doing nothing
  13514. // the threads are still spinning
  13515. if (node->src[0]->type != GGML_TYPE_F32) {
  13516. // here we need memory just for single 2D matrix from src0
  13517. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13518. }
  13519. } else
  13520. #endif
  13521. if (node->src[1]->type != vec_dot_type) {
  13522. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13523. } else {
  13524. cur = 0;
  13525. }
  13526. work_size = MAX(work_size, cur);
  13527. } break;
  13528. case GGML_OP_OUT_PROD:
  13529. {
  13530. n_tasks = n_threads;
  13531. size_t cur = 0;
  13532. if (ggml_is_quantized(node->src[0]->type)) {
  13533. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13534. }
  13535. work_size = MAX(work_size, cur);
  13536. } break;
  13537. case GGML_OP_SCALE:
  13538. {
  13539. n_tasks = 1;
  13540. } break;
  13541. case GGML_OP_SET:
  13542. case GGML_OP_CONT:
  13543. case GGML_OP_RESHAPE:
  13544. case GGML_OP_VIEW:
  13545. case GGML_OP_PERMUTE:
  13546. case GGML_OP_TRANSPOSE:
  13547. case GGML_OP_GET_ROWS:
  13548. case GGML_OP_GET_ROWS_BACK:
  13549. case GGML_OP_DIAG:
  13550. {
  13551. n_tasks = 1;
  13552. } break;
  13553. case GGML_OP_DIAG_MASK_ZERO:
  13554. case GGML_OP_DIAG_MASK_INF:
  13555. case GGML_OP_SOFT_MAX:
  13556. case GGML_OP_SOFT_MAX_BACK:
  13557. case GGML_OP_ROPE:
  13558. case GGML_OP_ROPE_BACK:
  13559. case GGML_OP_ADD_REL_POS:
  13560. {
  13561. n_tasks = n_threads;
  13562. } break;
  13563. case GGML_OP_ALIBI:
  13564. {
  13565. n_tasks = 1; //TODO
  13566. } break;
  13567. case GGML_OP_CLAMP:
  13568. {
  13569. n_tasks = 1; //TODO
  13570. } break;
  13571. case GGML_OP_CONV_1D:
  13572. {
  13573. n_tasks = n_threads;
  13574. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13575. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13576. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13577. const int64_t ne00 = node->src[0]->ne[0];
  13578. const int64_t ne01 = node->src[0]->ne[1];
  13579. const int64_t ne02 = node->src[0]->ne[2];
  13580. const int64_t ne10 = node->src[1]->ne[0];
  13581. const int64_t ne11 = node->src[1]->ne[1];
  13582. const int64_t ne0 = node->ne[0];
  13583. const int64_t ne1 = node->ne[1];
  13584. const int64_t nk = ne00;
  13585. const int64_t ew0 = nk * ne01;
  13586. UNUSED(ne02);
  13587. UNUSED(ne10);
  13588. UNUSED(ne11);
  13589. size_t cur = 0;
  13590. if (node->src[0]->type == GGML_TYPE_F16 &&
  13591. node->src[1]->type == GGML_TYPE_F32) {
  13592. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13593. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13594. node->src[1]->type == GGML_TYPE_F32) {
  13595. cur = sizeof(float)*(ne0*ne1*ew0);
  13596. } else {
  13597. GGML_ASSERT(false);
  13598. }
  13599. work_size = MAX(work_size, cur);
  13600. } break;
  13601. case GGML_OP_CONV_1D_STAGE_0:
  13602. {
  13603. n_tasks = n_threads;
  13604. } break;
  13605. case GGML_OP_CONV_1D_STAGE_1:
  13606. {
  13607. n_tasks = n_threads;
  13608. } break;
  13609. case GGML_OP_CONV_TRANSPOSE_1D:
  13610. {
  13611. n_tasks = n_threads;
  13612. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13613. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13614. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13615. const int64_t ne00 = node->src[0]->ne[0]; // K
  13616. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13617. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13618. const int64_t ne10 = node->src[1]->ne[0]; // L
  13619. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13620. size_t cur = 0;
  13621. if (node->src[0]->type == GGML_TYPE_F16 &&
  13622. node->src[1]->type == GGML_TYPE_F32) {
  13623. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13624. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13625. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13626. node->src[1]->type == GGML_TYPE_F32) {
  13627. cur += sizeof(float)*ne00*ne01*ne02;
  13628. cur += sizeof(float)*ne10*ne11;
  13629. } else {
  13630. GGML_ASSERT(false);
  13631. }
  13632. work_size = MAX(work_size, cur);
  13633. } break;
  13634. case GGML_OP_CONV_2D:
  13635. {
  13636. n_tasks = n_threads;
  13637. const int64_t ne00 = node->src[0]->ne[0]; // W
  13638. const int64_t ne01 = node->src[0]->ne[1]; // H
  13639. const int64_t ne02 = node->src[0]->ne[2]; // C
  13640. const int64_t ne03 = node->src[0]->ne[3]; // N
  13641. const int64_t ne10 = node->src[1]->ne[0]; // W
  13642. const int64_t ne11 = node->src[1]->ne[1]; // H
  13643. const int64_t ne12 = node->src[1]->ne[2]; // C
  13644. const int64_t ne0 = node->ne[0];
  13645. const int64_t ne1 = node->ne[1];
  13646. const int64_t ne2 = node->ne[2];
  13647. const int64_t ne3 = node->ne[3];
  13648. const int64_t nk = ne00*ne01;
  13649. const int64_t ew0 = nk * ne02;
  13650. UNUSED(ne03);
  13651. UNUSED(ne2);
  13652. size_t cur = 0;
  13653. if (node->src[0]->type == GGML_TYPE_F16 &&
  13654. node->src[1]->type == GGML_TYPE_F32) {
  13655. // im2col: [N*OH*OW, IC*KH*KW]
  13656. cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
  13657. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13658. node->src[1]->type == GGML_TYPE_F32) {
  13659. cur = sizeof(float)* (ne10*ne11*ne12);
  13660. } else {
  13661. GGML_ASSERT(false);
  13662. }
  13663. work_size = MAX(work_size, cur);
  13664. } break;
  13665. case GGML_OP_CONV_2D_STAGE_0:
  13666. {
  13667. n_tasks = n_threads;
  13668. } break;
  13669. case GGML_OP_CONV_2D_STAGE_1:
  13670. {
  13671. n_tasks = n_threads;
  13672. } break;
  13673. case GGML_OP_CONV_TRANSPOSE_2D:
  13674. {
  13675. n_tasks = n_threads;
  13676. const int64_t ne00 = node->src[0]->ne[0]; // W
  13677. const int64_t ne01 = node->src[0]->ne[1]; // H
  13678. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13679. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13680. const int64_t ne10 = node->src[1]->ne[0]; // W
  13681. const int64_t ne11 = node->src[1]->ne[1]; // H
  13682. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13683. size_t cur = 0;
  13684. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13685. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13686. work_size = MAX(work_size, cur);
  13687. } break;
  13688. case GGML_OP_POOL_1D:
  13689. case GGML_OP_POOL_2D:
  13690. {
  13691. n_tasks = 1;
  13692. } break;
  13693. case GGML_OP_UPSCALE:
  13694. {
  13695. n_tasks = n_threads;
  13696. } break;
  13697. case GGML_OP_FLASH_ATTN:
  13698. {
  13699. n_tasks = n_threads;
  13700. size_t cur = 0;
  13701. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13702. if (node->src[1]->type == GGML_TYPE_F32) {
  13703. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13704. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13705. }
  13706. if (node->src[1]->type == GGML_TYPE_F16) {
  13707. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13708. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13709. }
  13710. work_size = MAX(work_size, cur);
  13711. } break;
  13712. case GGML_OP_FLASH_FF:
  13713. {
  13714. n_tasks = n_threads;
  13715. size_t cur = 0;
  13716. if (node->src[1]->type == GGML_TYPE_F32) {
  13717. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13718. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13719. }
  13720. if (node->src[1]->type == GGML_TYPE_F16) {
  13721. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13722. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13723. }
  13724. work_size = MAX(work_size, cur);
  13725. } break;
  13726. case GGML_OP_FLASH_ATTN_BACK:
  13727. {
  13728. n_tasks = n_threads;
  13729. size_t cur = 0;
  13730. const int64_t D = node->src[0]->ne[0];
  13731. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13732. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13733. if (node->src[1]->type == GGML_TYPE_F32) {
  13734. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13735. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13736. }
  13737. if (node->src[1]->type == GGML_TYPE_F16) {
  13738. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13739. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13740. }
  13741. work_size = MAX(work_size, cur);
  13742. } break;
  13743. case GGML_OP_WIN_PART:
  13744. case GGML_OP_WIN_UNPART:
  13745. case GGML_OP_GET_REL_POS:
  13746. case GGML_OP_MAP_UNARY:
  13747. case GGML_OP_MAP_BINARY:
  13748. case GGML_OP_MAP_CUSTOM1_F32:
  13749. case GGML_OP_MAP_CUSTOM2_F32:
  13750. case GGML_OP_MAP_CUSTOM3_F32:
  13751. {
  13752. n_tasks = 1;
  13753. } break;
  13754. case GGML_OP_MAP_CUSTOM1:
  13755. {
  13756. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13757. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13758. n_tasks = n_threads;
  13759. } else {
  13760. n_tasks = MIN(p->n_tasks, n_threads);
  13761. }
  13762. } break;
  13763. case GGML_OP_MAP_CUSTOM2:
  13764. {
  13765. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13766. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13767. n_tasks = n_threads;
  13768. } else {
  13769. n_tasks = MIN(p->n_tasks, n_threads);
  13770. }
  13771. } break;
  13772. case GGML_OP_MAP_CUSTOM3:
  13773. {
  13774. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13775. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13776. n_tasks = n_threads;
  13777. } else {
  13778. n_tasks = MIN(p->n_tasks, n_threads);
  13779. }
  13780. } break;
  13781. case GGML_OP_CROSS_ENTROPY_LOSS:
  13782. {
  13783. n_tasks = n_threads;
  13784. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13785. work_size = MAX(work_size, cur);
  13786. } break;
  13787. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13788. {
  13789. n_tasks = n_threads;
  13790. } break;
  13791. case GGML_OP_NONE:
  13792. {
  13793. n_tasks = 1;
  13794. } break;
  13795. case GGML_OP_COUNT:
  13796. {
  13797. GGML_ASSERT(false);
  13798. } break;
  13799. }
  13800. cplan.n_tasks[i] = n_tasks;
  13801. }
  13802. if (work_size > 0) {
  13803. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13804. }
  13805. cplan.n_threads = n_threads;
  13806. cplan.work_size = work_size;
  13807. cplan.work_data = NULL;
  13808. return cplan;
  13809. }
  13810. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13811. {
  13812. GGML_ASSERT(cplan);
  13813. GGML_ASSERT(cplan->n_threads > 0);
  13814. if (cplan->work_size > 0) {
  13815. GGML_ASSERT(cplan->work_data);
  13816. }
  13817. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13818. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13819. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13820. }
  13821. }
  13822. }
  13823. const int n_threads = cplan->n_threads;
  13824. struct ggml_compute_state_shared state_shared = {
  13825. /*.cgraph =*/ cgraph,
  13826. /*.cgraph_plan =*/ cplan,
  13827. /*.perf_node_start_cycles =*/ 0,
  13828. /*.perf_node_start_time_us =*/ 0,
  13829. /*.n_threads =*/ n_threads,
  13830. /*.n_active =*/ n_threads,
  13831. /*.node_n =*/ -1,
  13832. /*.abort_callback =*/ NULL,
  13833. /*.abort_callback_data =*/ NULL,
  13834. };
  13835. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13836. // create thread pool
  13837. if (n_threads > 1) {
  13838. for (int j = 1; j < n_threads; ++j) {
  13839. workers[j] = (struct ggml_compute_state) {
  13840. .thrd = 0,
  13841. .ith = j,
  13842. .shared = &state_shared,
  13843. };
  13844. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13845. GGML_ASSERT(rc == 0);
  13846. UNUSED(rc);
  13847. }
  13848. }
  13849. workers[0].ith = 0;
  13850. workers[0].shared = &state_shared;
  13851. const int64_t perf_start_cycles = ggml_perf_cycles();
  13852. const int64_t perf_start_time_us = ggml_perf_time_us();
  13853. // this is a work thread too
  13854. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13855. // don't leave affinity set on the main thread
  13856. clear_numa_thread_affinity();
  13857. // join or kill thread pool
  13858. if (n_threads > 1) {
  13859. for (int j = 1; j < n_threads; j++) {
  13860. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13861. GGML_ASSERT(rc == 0);
  13862. }
  13863. }
  13864. // performance stats (graph)
  13865. {
  13866. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13867. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13868. cgraph->perf_runs++;
  13869. cgraph->perf_cycles += perf_cycles_cur;
  13870. cgraph->perf_time_us += perf_time_us_cur;
  13871. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13872. __func__, cgraph->perf_runs,
  13873. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13874. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13875. (double) perf_time_us_cur / 1000.0,
  13876. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13877. }
  13878. return compute_status;
  13879. }
  13880. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13881. for (int i = 0; i < cgraph->n_nodes; i++) {
  13882. struct ggml_tensor * grad = cgraph->grads[i];
  13883. if (grad) {
  13884. ggml_set_zero(grad);
  13885. }
  13886. }
  13887. }
  13888. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13889. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13890. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13891. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13892. ggml_graph_compute(cgraph, &cplan);
  13893. }
  13894. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13895. for (int i = 0; i < cgraph->n_leafs; i++) {
  13896. struct ggml_tensor * leaf = cgraph->leafs[i];
  13897. if (strcmp(leaf->name, name) == 0) {
  13898. return leaf;
  13899. }
  13900. }
  13901. for (int i = 0; i < cgraph->n_nodes; i++) {
  13902. struct ggml_tensor * node = cgraph->nodes[i];
  13903. if (strcmp(node->name, name) == 0) {
  13904. return node;
  13905. }
  13906. }
  13907. return NULL;
  13908. }
  13909. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13910. const int64_t * ne = tensor->ne;
  13911. const size_t * nb = tensor->nb;
  13912. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13913. ggml_type_name(tensor->type),
  13914. ggml_op_name (tensor->op),
  13915. tensor->n_dims,
  13916. ne[0], ne[1], ne[2], ne[3],
  13917. nb[0], nb[1], nb[2], nb[3],
  13918. tensor->data,
  13919. tensor->name);
  13920. }
  13921. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13922. const int64_t * ne = tensor->ne;
  13923. const size_t * nb = tensor->nb;
  13924. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13925. arg,
  13926. ggml_type_name(tensor->type),
  13927. ggml_op_name (tensor->op),
  13928. tensor->n_dims,
  13929. ne[0], ne[1], ne[2], ne[3],
  13930. nb[0], nb[1], nb[2], nb[3],
  13931. tensor->data,
  13932. tensor->name);
  13933. }
  13934. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13935. uint64_t size_eval = 0;
  13936. // compute size of intermediate results
  13937. // TODO: does not take into account scratch buffers !!!!
  13938. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13939. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13940. }
  13941. // print
  13942. {
  13943. FILE * fout = stdout;
  13944. fprintf(fout, "\n");
  13945. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13946. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13947. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13948. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13949. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13950. // header
  13951. fprintf(fout, "\n");
  13952. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13953. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13954. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13955. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13956. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13957. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13958. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13959. }
  13960. // header
  13961. fprintf(fout, "\n");
  13962. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13963. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13964. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13965. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13966. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13967. if (cgraph->nodes[i]->src[j]) {
  13968. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13969. }
  13970. }
  13971. fprintf(fout, "\n");
  13972. }
  13973. fprintf(fout, "\n");
  13974. }
  13975. // write binary data
  13976. {
  13977. FILE * fout = fopen(fname, "wb");
  13978. if (!fout) {
  13979. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13980. return;
  13981. }
  13982. // header
  13983. {
  13984. const uint32_t magic = GGML_FILE_MAGIC;
  13985. const uint32_t version = GGML_FILE_VERSION;
  13986. const uint32_t n_leafs = cgraph->n_leafs;
  13987. const uint32_t nodes = cgraph->n_nodes;
  13988. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13989. fwrite(&version, sizeof(uint32_t), 1, fout);
  13990. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13991. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13992. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13993. }
  13994. // leafs
  13995. {
  13996. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13997. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13998. const uint32_t type = tensor->type;
  13999. const uint32_t op = tensor->op;
  14000. const uint32_t n_dims = tensor->n_dims;
  14001. fwrite(&type, sizeof(uint32_t), 1, fout);
  14002. fwrite(&op, sizeof(uint32_t), 1, fout);
  14003. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14004. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14005. const uint64_t ne = tensor->ne[j];
  14006. const uint64_t nb = tensor->nb[j];
  14007. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14008. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14009. }
  14010. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14011. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14012. // dump the data
  14013. // TODO: pad this to 32 byte boundary
  14014. {
  14015. const size_t size = ggml_nbytes(tensor);
  14016. fwrite(tensor->data, sizeof(char), size, fout);
  14017. }
  14018. }
  14019. }
  14020. // nodes
  14021. {
  14022. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14023. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14024. const uint32_t type = tensor->type;
  14025. const uint32_t op = tensor->op;
  14026. const uint32_t n_dims = tensor->n_dims;
  14027. fwrite(&type, sizeof(uint32_t), 1, fout);
  14028. fwrite(&op, sizeof(uint32_t), 1, fout);
  14029. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14030. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14031. const uint64_t ne = tensor->ne[j];
  14032. const uint64_t nb = tensor->nb[j];
  14033. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14034. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14035. }
  14036. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14037. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14038. // output the op arguments
  14039. {
  14040. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14041. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14042. args[j] = tensor->src[j];
  14043. }
  14044. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14045. if (args[j]) {
  14046. int32_t idx = -1;
  14047. // check if leaf
  14048. {
  14049. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14050. if (args[j] == cgraph->leafs[k]) {
  14051. idx = k;
  14052. break;
  14053. }
  14054. }
  14055. }
  14056. // check if node
  14057. if (idx == -1) {
  14058. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14059. if (args[j] == cgraph->nodes[k]) {
  14060. idx = GGML_MAX_NODES + k;
  14061. break;
  14062. }
  14063. }
  14064. }
  14065. if (idx == -1) {
  14066. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14067. fclose(fout);
  14068. return;
  14069. }
  14070. fwrite(&idx, sizeof(int32_t), 1, fout);
  14071. } else {
  14072. const int32_t nul = -1;
  14073. fwrite(&nul, sizeof(int32_t), 1, fout);
  14074. }
  14075. }
  14076. }
  14077. }
  14078. }
  14079. fclose(fout);
  14080. }
  14081. }
  14082. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14083. assert(*ctx_data == NULL);
  14084. assert(*ctx_eval == NULL);
  14085. struct ggml_cgraph result = { 0 };
  14086. struct ggml_tensor * data = NULL;
  14087. // read file into data
  14088. {
  14089. FILE * fin = fopen(fname, "rb");
  14090. if (!fin) {
  14091. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14092. return result;
  14093. }
  14094. size_t fsize = 0;
  14095. fseek(fin, 0, SEEK_END);
  14096. fsize = ftell(fin);
  14097. fseek(fin, 0, SEEK_SET);
  14098. // create the data context
  14099. {
  14100. const size_t overhead = 1*ggml_tensor_overhead();
  14101. struct ggml_init_params params = {
  14102. .mem_size = fsize + overhead,
  14103. .mem_buffer = NULL,
  14104. .no_alloc = false,
  14105. };
  14106. *ctx_data = ggml_init(params);
  14107. if (!*ctx_data) {
  14108. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14109. fclose(fin);
  14110. return result;
  14111. }
  14112. }
  14113. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14114. {
  14115. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14116. if (ret != fsize) {
  14117. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14118. fclose(fin);
  14119. return result;
  14120. }
  14121. }
  14122. fclose(fin);
  14123. }
  14124. // populate result
  14125. {
  14126. char * ptr = (char *) data->data;
  14127. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14128. if (magic != GGML_FILE_MAGIC) {
  14129. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14130. return result;
  14131. }
  14132. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14133. if (version != GGML_FILE_VERSION) {
  14134. fprintf(stderr, "%s: invalid version number\n", __func__);
  14135. return result;
  14136. }
  14137. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14138. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14139. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14140. result.n_leafs = n_leafs;
  14141. result.n_nodes = n_nodes;
  14142. // create the data context
  14143. {
  14144. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14145. struct ggml_init_params params = {
  14146. .mem_size = size_eval + overhead,
  14147. .mem_buffer = NULL,
  14148. .no_alloc = true,
  14149. };
  14150. *ctx_eval = ggml_init(params);
  14151. if (!*ctx_eval) {
  14152. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14153. return result;
  14154. }
  14155. }
  14156. // leafs
  14157. {
  14158. uint32_t type;
  14159. uint32_t op;
  14160. uint32_t n_dims;
  14161. for (uint32_t i = 0; i < n_leafs; ++i) {
  14162. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14163. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14164. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14165. int64_t ne[GGML_MAX_DIMS];
  14166. size_t nb[GGML_MAX_DIMS];
  14167. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14168. uint64_t ne_cur;
  14169. uint64_t nb_cur;
  14170. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14171. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14172. ne[j] = ne_cur;
  14173. nb[j] = nb_cur;
  14174. }
  14175. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14176. tensor->op = (enum ggml_op) op;
  14177. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14178. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14179. tensor->data = (void *) ptr;
  14180. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14181. tensor->nb[j] = nb[j];
  14182. }
  14183. result.leafs[i] = tensor;
  14184. ptr += ggml_nbytes(tensor);
  14185. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14186. }
  14187. }
  14188. ggml_set_no_alloc(*ctx_eval, false);
  14189. // nodes
  14190. {
  14191. uint32_t type;
  14192. uint32_t op;
  14193. uint32_t n_dims;
  14194. for (uint32_t i = 0; i < n_nodes; ++i) {
  14195. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14196. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14197. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14198. enum ggml_op eop = (enum ggml_op) op;
  14199. int64_t ne[GGML_MAX_DIMS];
  14200. size_t nb[GGML_MAX_DIMS];
  14201. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14202. uint64_t ne_cur;
  14203. uint64_t nb_cur;
  14204. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14205. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14206. ne[j] = ne_cur;
  14207. nb[j] = nb_cur;
  14208. }
  14209. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14210. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14211. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14212. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14213. // parse args
  14214. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14215. const int32_t arg_idx = ptr_arg_idx[j];
  14216. if (arg_idx == -1) {
  14217. continue;
  14218. }
  14219. if (arg_idx < GGML_MAX_NODES) {
  14220. args[j] = result.leafs[arg_idx];
  14221. } else {
  14222. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14223. }
  14224. }
  14225. // create the tensor
  14226. // "view" operations are handled differently
  14227. // TODO: handle inplace ops - currently a copy is always made
  14228. struct ggml_tensor * tensor = NULL;
  14229. switch (eop) {
  14230. // TODO: implement other view ops
  14231. case GGML_OP_RESHAPE:
  14232. {
  14233. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14234. } break;
  14235. case GGML_OP_VIEW:
  14236. {
  14237. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14238. size_t offs;
  14239. memcpy(&offs, ptr_op_params, sizeof(offs));
  14240. tensor->data = ((char *) tensor->data) + offs;
  14241. } break;
  14242. case GGML_OP_TRANSPOSE:
  14243. {
  14244. tensor = ggml_transpose(*ctx_eval, args[0]);
  14245. } break;
  14246. case GGML_OP_PERMUTE:
  14247. {
  14248. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14249. } break;
  14250. default:
  14251. {
  14252. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14253. tensor->op = eop;
  14254. } break;
  14255. }
  14256. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14257. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14258. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14259. tensor->nb[j] = nb[j];
  14260. }
  14261. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14262. tensor->src[j] = args[j];
  14263. }
  14264. result.nodes[i] = tensor;
  14265. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14266. }
  14267. }
  14268. }
  14269. return result;
  14270. }
  14271. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14272. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14273. GGML_PRINT("=== GRAPH ===\n");
  14274. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14275. for (int i = 0; i < cgraph->n_nodes; i++) {
  14276. struct ggml_tensor * node = cgraph->nodes[i];
  14277. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14278. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14279. i,
  14280. node->ne[0], node->ne[1], node->ne[2],
  14281. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14282. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14283. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14284. (double) node->perf_time_us / 1000.0,
  14285. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14286. }
  14287. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14288. for (int i = 0; i < cgraph->n_leafs; i++) {
  14289. struct ggml_tensor * node = cgraph->leafs[i];
  14290. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14291. i,
  14292. node->ne[0], node->ne[1],
  14293. ggml_op_name(node->op),
  14294. ggml_get_name(node));
  14295. }
  14296. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14297. if (perf_total_per_op_us[i] == 0) {
  14298. continue;
  14299. }
  14300. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14301. }
  14302. GGML_PRINT("========================================\n");
  14303. }
  14304. // check if node is part of the graph
  14305. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14306. if (cgraph == NULL) {
  14307. return true;
  14308. }
  14309. for (int i = 0; i < cgraph->n_nodes; i++) {
  14310. if (cgraph->nodes[i] == node) {
  14311. return true;
  14312. }
  14313. }
  14314. return false;
  14315. }
  14316. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14317. for (int i = 0; i < cgraph->n_nodes; i++) {
  14318. struct ggml_tensor * parent = cgraph->nodes[i];
  14319. if (parent->grad == node) {
  14320. return parent;
  14321. }
  14322. }
  14323. return NULL;
  14324. }
  14325. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14326. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14327. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14328. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14329. gparent0 ? (void *) gparent0 : (void *) parent,
  14330. gparent0 ? "g" : "x",
  14331. gparent ? (void *) gparent : (void *) node,
  14332. gparent ? "g" : "x",
  14333. gparent ? "empty" : "vee",
  14334. gparent ? "dashed" : "solid",
  14335. label);
  14336. }
  14337. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14338. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14339. (void *) parent, "x",
  14340. (void *) node, "x",
  14341. label);
  14342. }
  14343. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14344. char color[16];
  14345. FILE * fp = fopen(filename, "w");
  14346. GGML_ASSERT(fp);
  14347. fprintf(fp, "digraph G {\n");
  14348. fprintf(fp, " newrank = true;\n");
  14349. fprintf(fp, " rankdir = LR;\n");
  14350. for (int i = 0; i < gb->n_nodes; i++) {
  14351. struct ggml_tensor * node = gb->nodes[i];
  14352. if (ggml_graph_get_parent(gb, node) != NULL) {
  14353. continue;
  14354. }
  14355. if (node->is_param) {
  14356. snprintf(color, sizeof(color), "yellow");
  14357. } else if (node->grad) {
  14358. if (ggml_graph_find(gf, node)) {
  14359. snprintf(color, sizeof(color), "green");
  14360. } else {
  14361. snprintf(color, sizeof(color), "lightblue");
  14362. }
  14363. } else {
  14364. snprintf(color, sizeof(color), "white");
  14365. }
  14366. fprintf(fp, " \"%p\" [ "
  14367. "style = filled; fillcolor = %s; shape = record; "
  14368. "label=\"",
  14369. (void *) node, color);
  14370. if (strlen(node->name) > 0) {
  14371. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14372. } else {
  14373. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14374. }
  14375. if (node->n_dims == 2) {
  14376. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14377. } else {
  14378. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14379. }
  14380. if (node->grad) {
  14381. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14382. } else {
  14383. fprintf(fp, "\"; ]\n");
  14384. }
  14385. }
  14386. for (int i = 0; i < gb->n_leafs; i++) {
  14387. struct ggml_tensor * node = gb->leafs[i];
  14388. snprintf(color, sizeof(color), "pink");
  14389. fprintf(fp, " \"%p\" [ "
  14390. "style = filled; fillcolor = %s; shape = record; "
  14391. "label=\"<x>",
  14392. (void *) node, color);
  14393. if (strlen(node->name) > 0) {
  14394. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14395. } else {
  14396. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14397. }
  14398. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14399. if (ggml_nelements(node) < 5) {
  14400. fprintf(fp, " | (");
  14401. for (int j = 0; j < ggml_nelements(node); j++) {
  14402. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14403. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14404. }
  14405. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14406. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14407. }
  14408. else {
  14409. fprintf(fp, "#");
  14410. }
  14411. if (j < ggml_nelements(node) - 1) {
  14412. fprintf(fp, ", ");
  14413. }
  14414. }
  14415. fprintf(fp, ")");
  14416. }
  14417. fprintf(fp, "\"; ]\n");
  14418. }
  14419. for (int i = 0; i < gb->n_nodes; i++) {
  14420. struct ggml_tensor * node = gb->nodes[i];
  14421. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14422. if (node->src[j]) {
  14423. char label[16];
  14424. snprintf(label, sizeof(label), "src %d", j);
  14425. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14426. }
  14427. }
  14428. }
  14429. for (int i = 0; i < gb->n_leafs; i++) {
  14430. struct ggml_tensor * node = gb->leafs[i];
  14431. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14432. if (node->src[j]) {
  14433. char label[16];
  14434. snprintf(label, sizeof(label), "src %d", j);
  14435. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14436. }
  14437. }
  14438. }
  14439. fprintf(fp, "}\n");
  14440. fclose(fp);
  14441. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14442. }
  14443. ////////////////////////////////////////////////////////////////////////////////
  14444. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14445. int i = 0;
  14446. for (int p = 0; p < np; ++p) {
  14447. const int64_t ne = ggml_nelements(ps[p]) ;
  14448. // TODO: add function to set tensor from array
  14449. for (int64_t j = 0; j < ne; ++j) {
  14450. ggml_set_f32_1d(ps[p], j, x[i++]);
  14451. }
  14452. }
  14453. }
  14454. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14455. int i = 0;
  14456. for (int p = 0; p < np; ++p) {
  14457. const int64_t ne = ggml_nelements(ps[p]) ;
  14458. // TODO: add function to get all elements at once
  14459. for (int64_t j = 0; j < ne; ++j) {
  14460. x[i++] = ggml_get_f32_1d(ps[p], j);
  14461. }
  14462. }
  14463. }
  14464. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14465. int64_t i = 0;
  14466. for (int p = 0; p < np; ++p) {
  14467. const int64_t ne = ggml_nelements(ps[p]) ;
  14468. // TODO: add function to get all elements at once
  14469. for (int64_t j = 0; j < ne; ++j) {
  14470. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14471. }
  14472. }
  14473. }
  14474. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14475. int64_t i = 0;
  14476. for (int p = 0; p < np; ++p) {
  14477. const int64_t ne = ggml_nelements(ps[p]) ;
  14478. // TODO: add function to get all elements at once
  14479. for (int64_t j = 0; j < ne; ++j) {
  14480. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14481. }
  14482. }
  14483. }
  14484. //
  14485. // ADAM
  14486. //
  14487. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14488. //
  14489. static enum ggml_opt_result ggml_opt_adam(
  14490. struct ggml_context * ctx,
  14491. struct ggml_opt_context * opt,
  14492. struct ggml_opt_params params,
  14493. struct ggml_tensor * f,
  14494. struct ggml_cgraph * gf,
  14495. struct ggml_cgraph * gb,
  14496. ggml_opt_callback callback,
  14497. void * callback_data) {
  14498. GGML_ASSERT(ggml_is_scalar(f));
  14499. // these will store the parameters we want to optimize
  14500. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14501. int np = 0;
  14502. int64_t nx = 0;
  14503. for (int i = 0; i < gf->n_nodes; ++i) {
  14504. if (gf->nodes[i]->is_param) {
  14505. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14506. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14507. ps[np++] = gf->nodes[i];
  14508. nx += ggml_nelements(gf->nodes[i]);
  14509. }
  14510. }
  14511. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14512. int iter = opt->iter;
  14513. ggml_opt_init(opt->ctx, opt, params, nx);
  14514. opt->iter = iter;
  14515. }
  14516. // constants
  14517. float sched = params.adam.sched;
  14518. const float alpha = params.adam.alpha;
  14519. const float decay = params.adam.decay * alpha;
  14520. const float beta1 = params.adam.beta1;
  14521. const float beta2 = params.adam.beta2;
  14522. const float eps = params.adam.eps;
  14523. const float gclip = params.adam.gclip;
  14524. const int decay_min_ndim = params.adam.decay_min_ndim;
  14525. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14526. const float accum_norm = 1.0f / (float) n_accum;
  14527. float * g = opt->adam.g->data; // gradients
  14528. float * m = opt->adam.m->data; // first moment
  14529. float * v = opt->adam.v->data; // second moment
  14530. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14531. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14532. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14533. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14534. bool cancel = false;
  14535. // compute the function value
  14536. float fx = 0;
  14537. ggml_set_zero(opt->adam.g);
  14538. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14539. if (callback) {
  14540. callback(callback_data, accum_step, &sched, &cancel);
  14541. if (cancel) {
  14542. return GGML_OPT_CANCEL;
  14543. }
  14544. }
  14545. // ggml_graph_reset (gf);
  14546. ggml_set_f32 (f->grad, 1.0f);
  14547. ggml_graph_compute(gb, &cplan);
  14548. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14549. fx += ggml_get_f32_1d(f, 0);
  14550. }
  14551. fx *= accum_norm;
  14552. opt->adam.fx_prev = fx;
  14553. opt->adam.fx_best = opt->adam.fx_prev;
  14554. if (pf) {
  14555. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14556. }
  14557. opt->loss_before = opt->adam.fx_prev;
  14558. opt->loss_after = opt->adam.fx_prev;
  14559. // initialize
  14560. if (opt->just_initialized) {
  14561. opt->adam.n_no_improvement = 0;
  14562. opt->just_initialized = false;
  14563. }
  14564. float * fx_best = &opt->adam.fx_best;
  14565. float * fx_prev = &opt->adam.fx_prev;
  14566. int * n_no_improvement = &opt->adam.n_no_improvement;
  14567. int iter0 = opt->iter;
  14568. // run the optimizer
  14569. for (int t = 0; t < params.adam.n_iter; ++t) {
  14570. opt->iter = iter0 + t + 1;
  14571. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14572. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14573. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14574. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14575. for (int i = 0; i < np; ++i) {
  14576. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14577. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14578. }
  14579. const int64_t t_start_wall = ggml_time_us();
  14580. const int64_t t_start_cpu = ggml_cycles();
  14581. UNUSED(t_start_wall);
  14582. UNUSED(t_start_cpu);
  14583. {
  14584. float gnorm = 1.0f;
  14585. if (gclip > 0.0f) {
  14586. // gradient clipping
  14587. ggml_float sum = 0.0;
  14588. for (int64_t i = 0; i < nx; ++i) {
  14589. sum += (ggml_float)(g[i]*g[i]);
  14590. }
  14591. ggml_float norm = sqrt(sum);
  14592. if (norm > (ggml_float) gclip) {
  14593. gnorm = (float) ((ggml_float) gclip / norm);
  14594. }
  14595. }
  14596. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14597. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14598. int64_t i = 0;
  14599. for (int p = 0; p < np; ++p) {
  14600. const int64_t ne = ggml_nelements(ps[p]);
  14601. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14602. for (int64_t j = 0; j < ne; ++j) {
  14603. float x = ggml_get_f32_1d(ps[p], j);
  14604. float g_ = g[i]*gnorm;
  14605. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14606. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14607. float mh = m[i]*beta1h;
  14608. float vh = v[i]*beta2h;
  14609. vh = sqrtf(vh) + eps;
  14610. x = x*(1.0f - p_decay) - mh/vh;
  14611. ggml_set_f32_1d(ps[p], j, x);
  14612. ++i;
  14613. }
  14614. }
  14615. }
  14616. fx = 0;
  14617. ggml_set_zero(opt->adam.g);
  14618. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14619. if (callback) {
  14620. callback(callback_data, accum_step, &sched, &cancel);
  14621. if (cancel) {
  14622. return GGML_OPT_CANCEL;;
  14623. }
  14624. }
  14625. // ggml_graph_reset (gf);
  14626. ggml_set_f32 (f->grad, 1.0f);
  14627. ggml_graph_compute(gb, &cplan);
  14628. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14629. fx += ggml_get_f32_1d(f, 0);
  14630. }
  14631. fx *= accum_norm;
  14632. opt->loss_after = fx;
  14633. // check convergence
  14634. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14635. GGML_PRINT_DEBUG("converged\n");
  14636. return GGML_OPT_OK;
  14637. }
  14638. // delta-based convergence test
  14639. if (pf != NULL) {
  14640. // need at least params.past iterations to start checking for convergence
  14641. if (params.past <= iter0 + t) {
  14642. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14643. if (fabsf(rate) < params.delta) {
  14644. return GGML_OPT_OK;
  14645. }
  14646. }
  14647. pf[(iter0 + t)%params.past] = fx;
  14648. }
  14649. // check for improvement
  14650. if (params.max_no_improvement > 0) {
  14651. if (fx_best[0] > fx) {
  14652. fx_best[0] = fx;
  14653. n_no_improvement[0] = 0;
  14654. } else {
  14655. ++n_no_improvement[0];
  14656. if (n_no_improvement[0] >= params.max_no_improvement) {
  14657. return GGML_OPT_OK;
  14658. }
  14659. }
  14660. }
  14661. fx_prev[0] = fx;
  14662. {
  14663. const int64_t t_end_cpu = ggml_cycles();
  14664. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14665. UNUSED(t_end_cpu);
  14666. const int64_t t_end_wall = ggml_time_us();
  14667. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14668. UNUSED(t_end_wall);
  14669. }
  14670. }
  14671. return GGML_OPT_DID_NOT_CONVERGE;
  14672. }
  14673. //
  14674. // L-BFGS
  14675. //
  14676. // the L-BFGS implementation below is based on the following implementation:
  14677. //
  14678. // https://github.com/chokkan/liblbfgs
  14679. //
  14680. struct ggml_lbfgs_iteration_data {
  14681. float alpha;
  14682. float ys;
  14683. float * s;
  14684. float * y;
  14685. };
  14686. static enum ggml_opt_result linesearch_backtracking(
  14687. const struct ggml_opt_params * params,
  14688. int nx,
  14689. float * x,
  14690. float * fx,
  14691. float * g,
  14692. float * d,
  14693. float * step,
  14694. const float * xp,
  14695. struct ggml_tensor * f,
  14696. struct ggml_cgraph * gb,
  14697. struct ggml_cplan * cplan,
  14698. const int np,
  14699. struct ggml_tensor * ps[],
  14700. bool * cancel,
  14701. ggml_opt_callback callback,
  14702. void * callback_data) {
  14703. int count = 0;
  14704. float width = 0.0f;
  14705. float dg = 0.0f;
  14706. float finit = 0.0f;
  14707. float dginit = 0.0f;
  14708. float dgtest = 0.0f;
  14709. const float dec = 0.5f;
  14710. const float inc = 2.1f;
  14711. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14712. const float accum_norm = 1.0f / (float) n_accum;
  14713. if (*step <= 0.f) {
  14714. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14715. }
  14716. // compute the initial gradient in the search direction
  14717. ggml_vec_dot_f32(nx, &dginit, g, d);
  14718. // make sure that d points to a descent direction
  14719. if (0 < dginit) {
  14720. return GGML_LINESEARCH_FAIL;
  14721. }
  14722. // initialize local variables
  14723. finit = *fx;
  14724. dgtest = params->lbfgs.ftol*dginit;
  14725. while (true) {
  14726. ggml_vec_cpy_f32(nx, x, xp);
  14727. ggml_vec_mad_f32(nx, x, d, *step);
  14728. // evaluate the function and gradient values
  14729. {
  14730. ggml_opt_set_params(np, ps, x);
  14731. *fx = 0;
  14732. memset(g, 0, sizeof(float)*nx);
  14733. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14734. if (callback) {
  14735. // LBFG-S does not support learning rate -> ignore learning schedule
  14736. float sched = 0;
  14737. callback(callback_data, accum_step, &sched, cancel);
  14738. if (*cancel) {
  14739. return GGML_OPT_CANCEL;
  14740. }
  14741. }
  14742. // ggml_graph_reset (gf);
  14743. ggml_set_f32 (f->grad, 1.0f);
  14744. ggml_graph_compute(gb, cplan);
  14745. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14746. *fx += ggml_get_f32_1d(f, 0);
  14747. }
  14748. *fx *= accum_norm;
  14749. }
  14750. ++count;
  14751. if (*fx > finit + (*step)*dgtest) {
  14752. width = dec;
  14753. } else {
  14754. // Armijo condition is satisfied
  14755. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14756. return count;
  14757. }
  14758. ggml_vec_dot_f32(nx, &dg, g, d);
  14759. // check the Wolfe condition
  14760. if (dg < params->lbfgs.wolfe * dginit) {
  14761. width = inc;
  14762. } else {
  14763. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14764. // regular Wolfe conditions
  14765. return count;
  14766. }
  14767. if(dg > -params->lbfgs.wolfe*dginit) {
  14768. width = dec;
  14769. } else {
  14770. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14771. return count;
  14772. }
  14773. }
  14774. }
  14775. if (*step < params->lbfgs.min_step) {
  14776. return GGML_LINESEARCH_MINIMUM_STEP;
  14777. }
  14778. if (*step > params->lbfgs.max_step) {
  14779. return GGML_LINESEARCH_MAXIMUM_STEP;
  14780. }
  14781. if (params->lbfgs.max_linesearch <= count) {
  14782. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14783. }
  14784. (*step) *= width;
  14785. }
  14786. GGML_UNREACHABLE();
  14787. }
  14788. static enum ggml_opt_result ggml_opt_lbfgs(
  14789. struct ggml_context * ctx,
  14790. struct ggml_opt_context * opt,
  14791. struct ggml_opt_params params,
  14792. struct ggml_tensor * f,
  14793. struct ggml_cgraph * gf,
  14794. struct ggml_cgraph * gb,
  14795. ggml_opt_callback callback,
  14796. void * callback_data) {
  14797. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14798. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14799. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14800. return GGML_OPT_INVALID_WOLFE;
  14801. }
  14802. }
  14803. const int m = params.lbfgs.m;
  14804. // these will store the parameters we want to optimize
  14805. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14806. int np = 0;
  14807. int nx = 0;
  14808. for (int i = 0; i < gf->n_nodes; ++i) {
  14809. if (gf->nodes[i]->is_param) {
  14810. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14811. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14812. ps[np++] = gf->nodes[i];
  14813. nx += ggml_nelements(gf->nodes[i]);
  14814. }
  14815. }
  14816. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14817. int iter = opt->iter;
  14818. ggml_opt_init(ctx, opt, params, nx);
  14819. opt->iter = iter;
  14820. }
  14821. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14822. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14823. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14824. float * x = opt->lbfgs.x->data; // current parameters
  14825. float * xp = opt->lbfgs.xp->data; // previous parameters
  14826. float * g = opt->lbfgs.g->data; // current gradient
  14827. float * gp = opt->lbfgs.gp->data; // previous gradient
  14828. float * d = opt->lbfgs.d->data; // search direction
  14829. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14830. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14831. const float accum_norm = 1.0f / (float) n_accum;
  14832. float fx = 0.0f; // cost function value
  14833. float xnorm = 0.0f; // ||x||
  14834. float gnorm = 0.0f; // ||g||
  14835. // initialize x from the graph nodes
  14836. ggml_opt_get_params(np, ps, x);
  14837. // the L-BFGS memory
  14838. float * lm_alpha = opt->lbfgs.lmal->data;
  14839. float * lm_ys = opt->lbfgs.lmys->data;
  14840. float * lm_s = opt->lbfgs.lms->data;
  14841. float * lm_y = opt->lbfgs.lmy->data;
  14842. bool cancel = false;
  14843. // evaluate the function value and its gradient
  14844. {
  14845. ggml_opt_set_params(np, ps, x);
  14846. fx = 0;
  14847. memset(g, 0, sizeof(float)*nx);
  14848. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14849. if (callback) {
  14850. // LBFG-S does not support learning rate -> ignore learning schedule
  14851. float sched = 0;
  14852. callback(callback_data, accum_step, &sched, &cancel);
  14853. if (cancel) {
  14854. return GGML_OPT_CANCEL;
  14855. }
  14856. }
  14857. // ggml_graph_reset (gf);
  14858. ggml_set_f32 (f->grad, 1.0f);
  14859. ggml_graph_compute(gb, &cplan);
  14860. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14861. fx += ggml_get_f32_1d(f, 0);
  14862. }
  14863. fx *= accum_norm;
  14864. opt->loss_before = fx;
  14865. opt->loss_after = fx;
  14866. }
  14867. // search direction = -gradient
  14868. ggml_vec_neg_f32(nx, d, g);
  14869. // ||x||, ||g||
  14870. ggml_vec_norm_f32(nx, &xnorm, x);
  14871. ggml_vec_norm_f32(nx, &gnorm, g);
  14872. if (xnorm < 1.0f) {
  14873. xnorm = 1.0f;
  14874. }
  14875. // already optimized
  14876. if (gnorm/xnorm <= params.lbfgs.eps) {
  14877. return GGML_OPT_OK;
  14878. }
  14879. if (opt->just_initialized) {
  14880. if (pf) {
  14881. pf[0] = fx;
  14882. }
  14883. opt->lbfgs.fx_best = fx;
  14884. // initial step
  14885. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14886. opt->lbfgs.j = 0;
  14887. opt->lbfgs.k = 1;
  14888. opt->lbfgs.end = 0;
  14889. opt->lbfgs.n_no_improvement = 0;
  14890. opt->just_initialized = false;
  14891. }
  14892. float * fx_best = &opt->lbfgs.fx_best;
  14893. float * step = &opt->lbfgs.step;
  14894. int * j = &opt->lbfgs.j;
  14895. int * k = &opt->lbfgs.k;
  14896. int * end = &opt->lbfgs.end;
  14897. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14898. int ls = 0;
  14899. int bound = 0;
  14900. float ys = 0.0f;
  14901. float yy = 0.0f;
  14902. float beta = 0.0f;
  14903. int it = 0;
  14904. while (true) {
  14905. // store the current position and gradient vectors
  14906. ggml_vec_cpy_f32(nx, xp, x);
  14907. ggml_vec_cpy_f32(nx, gp, g);
  14908. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14909. // to determine if the optimization should be cancelled
  14910. // this is a simple change, but not doing this atm, since I don't have a nice
  14911. // way to test and don't want to break something with so many changes lined up
  14912. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14913. if (cancel) {
  14914. return GGML_OPT_CANCEL;
  14915. }
  14916. if (ls < 0) {
  14917. // linesearch failed - go back to the previous point and return
  14918. ggml_vec_cpy_f32(nx, x, xp);
  14919. ggml_vec_cpy_f32(nx, g, gp);
  14920. return ls;
  14921. }
  14922. opt->loss_after = fx;
  14923. ggml_vec_norm_f32(nx, &xnorm, x);
  14924. ggml_vec_norm_f32(nx, &gnorm, g);
  14925. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14926. if (xnorm < 1.0f) {
  14927. xnorm = 1.0f;
  14928. }
  14929. if (gnorm/xnorm <= params.lbfgs.eps) {
  14930. // converged
  14931. return GGML_OPT_OK;
  14932. }
  14933. // delta-based convergence test
  14934. if (pf != NULL) {
  14935. // need at least params.past iterations to start checking for convergence
  14936. if (params.past <= k[0]) {
  14937. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14938. if (fabsf(rate) < params.delta) {
  14939. return GGML_OPT_OK;
  14940. }
  14941. }
  14942. pf[k[0]%params.past] = fx;
  14943. }
  14944. // check for improvement
  14945. if (params.max_no_improvement > 0) {
  14946. if (fx < fx_best[0]) {
  14947. fx_best[0] = fx;
  14948. n_no_improvement[0] = 0;
  14949. } else {
  14950. n_no_improvement[0]++;
  14951. if (n_no_improvement[0] >= params.max_no_improvement) {
  14952. return GGML_OPT_OK;
  14953. }
  14954. }
  14955. }
  14956. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14957. // reached the maximum number of iterations
  14958. return GGML_OPT_DID_NOT_CONVERGE;
  14959. }
  14960. // update vectors s and y:
  14961. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14962. // y_{k+1} = g_{k+1} - g_{k}.
  14963. //
  14964. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14965. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14966. // compute scalars ys and yy:
  14967. // ys = y^t \cdot s -> 1 / \rho.
  14968. // yy = y^t \cdot y.
  14969. //
  14970. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14971. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14972. lm_ys[end[0]] = ys;
  14973. // find new search direction
  14974. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14975. bound = (m <= k[0]) ? m : k[0];
  14976. k[0]++;
  14977. it++;
  14978. end[0] = (end[0] + 1)%m;
  14979. // initialize search direction with -g
  14980. ggml_vec_neg_f32(nx, d, g);
  14981. j[0] = end[0];
  14982. for (int i = 0; i < bound; ++i) {
  14983. j[0] = (j[0] + m - 1) % m;
  14984. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14985. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14986. lm_alpha[j[0]] /= lm_ys[j[0]];
  14987. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14988. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14989. }
  14990. ggml_vec_scale_f32(nx, d, ys/yy);
  14991. for (int i = 0; i < bound; ++i) {
  14992. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14993. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14994. beta /= lm_ys[j[0]];
  14995. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14996. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14997. j[0] = (j[0] + 1)%m;
  14998. }
  14999. step[0] = 1.0;
  15000. }
  15001. GGML_UNREACHABLE();
  15002. }
  15003. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15004. struct ggml_opt_params result;
  15005. switch (type) {
  15006. case GGML_OPT_ADAM:
  15007. {
  15008. result = (struct ggml_opt_params) {
  15009. .type = GGML_OPT_ADAM,
  15010. .n_threads = 1,
  15011. .past = 0,
  15012. .delta = 1e-5f,
  15013. .max_no_improvement = 100,
  15014. .print_forward_graph = true,
  15015. .print_backward_graph = true,
  15016. .n_gradient_accumulation = 1,
  15017. .adam = {
  15018. .n_iter = 10000,
  15019. .sched = 1.000f,
  15020. .decay = 0.0f,
  15021. .decay_min_ndim = 2,
  15022. .alpha = 0.001f,
  15023. .beta1 = 0.9f,
  15024. .beta2 = 0.999f,
  15025. .eps = 1e-8f,
  15026. .eps_f = 1e-5f,
  15027. .eps_g = 1e-3f,
  15028. .gclip = 0.0f,
  15029. },
  15030. };
  15031. } break;
  15032. case GGML_OPT_LBFGS:
  15033. {
  15034. result = (struct ggml_opt_params) {
  15035. .type = GGML_OPT_LBFGS,
  15036. .n_threads = 1,
  15037. .past = 0,
  15038. .delta = 1e-5f,
  15039. .max_no_improvement = 0,
  15040. .print_forward_graph = true,
  15041. .print_backward_graph = true,
  15042. .n_gradient_accumulation = 1,
  15043. .lbfgs = {
  15044. .m = 6,
  15045. .n_iter = 100,
  15046. .max_linesearch = 20,
  15047. .eps = 1e-5f,
  15048. .ftol = 1e-4f,
  15049. .wolfe = 0.9f,
  15050. .min_step = 1e-20f,
  15051. .max_step = 1e+20f,
  15052. .linesearch = GGML_LINESEARCH_DEFAULT,
  15053. },
  15054. };
  15055. } break;
  15056. }
  15057. return result;
  15058. }
  15059. GGML_API void ggml_opt_init(
  15060. struct ggml_context * ctx,
  15061. struct ggml_opt_context * opt,
  15062. struct ggml_opt_params params,
  15063. int64_t nx) {
  15064. opt->ctx = ctx;
  15065. opt->params = params;
  15066. opt->iter = 0;
  15067. opt->nx = nx;
  15068. opt->just_initialized = true;
  15069. if (opt->ctx == NULL) {
  15070. struct ggml_init_params ctx_opt_params;
  15071. if (opt->params.type == GGML_OPT_ADAM) {
  15072. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15073. if (opt->params.past > 0) {
  15074. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15075. }
  15076. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15077. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15078. if (opt->params.past > 0) {
  15079. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15080. }
  15081. }
  15082. ctx_opt_params.mem_buffer = NULL;
  15083. ctx_opt_params.no_alloc = false;
  15084. opt->ctx = ggml_init(ctx_opt_params);
  15085. }
  15086. switch (opt->params.type) {
  15087. case GGML_OPT_ADAM:
  15088. {
  15089. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15090. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15091. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15092. opt->adam.pf = params.past > 0
  15093. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15094. : NULL;
  15095. ggml_set_zero(opt->adam.m);
  15096. ggml_set_zero(opt->adam.v);
  15097. if (opt->adam.pf) {
  15098. ggml_set_zero(opt->adam.pf);
  15099. }
  15100. } break;
  15101. case GGML_OPT_LBFGS:
  15102. {
  15103. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15104. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15105. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15106. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15107. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15108. opt->lbfgs.pf = params.past > 0
  15109. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15110. : NULL;
  15111. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15112. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15113. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15114. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15115. ggml_set_zero(opt->lbfgs.x);
  15116. ggml_set_zero(opt->lbfgs.xp);
  15117. ggml_set_zero(opt->lbfgs.g);
  15118. ggml_set_zero(opt->lbfgs.gp);
  15119. ggml_set_zero(opt->lbfgs.d);
  15120. if (opt->lbfgs.pf) {
  15121. ggml_set_zero(opt->lbfgs.pf);
  15122. }
  15123. ggml_set_zero(opt->lbfgs.lmal);
  15124. ggml_set_zero(opt->lbfgs.lmys);
  15125. ggml_set_zero(opt->lbfgs.lms);
  15126. ggml_set_zero(opt->lbfgs.lmy);
  15127. } break;
  15128. }
  15129. }
  15130. enum ggml_opt_result ggml_opt(
  15131. struct ggml_context * ctx,
  15132. struct ggml_opt_params params,
  15133. struct ggml_tensor * f) {
  15134. bool free_ctx = false;
  15135. if (ctx == NULL) {
  15136. struct ggml_init_params params_ctx = {
  15137. .mem_size = 16*1024*1024,
  15138. .mem_buffer = NULL,
  15139. .no_alloc = false,
  15140. };
  15141. ctx = ggml_init(params_ctx);
  15142. if (ctx == NULL) {
  15143. return GGML_OPT_NO_CONTEXT;
  15144. }
  15145. free_ctx = true;
  15146. }
  15147. enum ggml_opt_result result = GGML_OPT_OK;
  15148. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15149. ggml_opt_init(ctx, opt, params, 0);
  15150. result = ggml_opt_resume(ctx, opt, f);
  15151. if (free_ctx) {
  15152. ggml_free(ctx);
  15153. }
  15154. return result;
  15155. }
  15156. enum ggml_opt_result ggml_opt_resume(
  15157. struct ggml_context * ctx,
  15158. struct ggml_opt_context * opt,
  15159. struct ggml_tensor * f) {
  15160. // build forward + backward compute graphs
  15161. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15162. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15163. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15164. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15165. *gf = ggml_build_forward (f);
  15166. *gb = ggml_build_backward(ctx, gf, true);
  15167. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15168. }
  15169. enum ggml_opt_result ggml_opt_resume_g(
  15170. struct ggml_context * ctx,
  15171. struct ggml_opt_context * opt,
  15172. struct ggml_tensor * f,
  15173. struct ggml_cgraph * gf,
  15174. struct ggml_cgraph * gb,
  15175. ggml_opt_callback callback,
  15176. void * callback_data) {
  15177. // build forward + backward compute graphs
  15178. enum ggml_opt_result result = GGML_OPT_OK;
  15179. switch (opt->params.type) {
  15180. case GGML_OPT_ADAM:
  15181. {
  15182. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15183. } break;
  15184. case GGML_OPT_LBFGS:
  15185. {
  15186. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15187. } break;
  15188. }
  15189. if (opt->params.print_forward_graph) {
  15190. ggml_graph_print (gf);
  15191. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15192. }
  15193. if (opt->params.print_backward_graph) {
  15194. ggml_graph_print (gb);
  15195. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15196. }
  15197. return result;
  15198. }
  15199. ////////////////////////////////////////////////////////////////////////////////
  15200. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15201. assert(k % QK4_0 == 0);
  15202. const int nb = k / QK4_0;
  15203. for (int b = 0; b < n; b += k) {
  15204. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15205. quantize_row_q4_0_reference(src + b, y, k);
  15206. for (int i = 0; i < nb; i++) {
  15207. for (int j = 0; j < QK4_0; j += 2) {
  15208. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15209. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15210. hist[vi0]++;
  15211. hist[vi1]++;
  15212. }
  15213. }
  15214. }
  15215. return (n/QK4_0*sizeof(block_q4_0));
  15216. }
  15217. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15218. assert(k % QK4_1 == 0);
  15219. const int nb = k / QK4_1;
  15220. for (int b = 0; b < n; b += k) {
  15221. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15222. quantize_row_q4_1_reference(src + b, y, k);
  15223. for (int i = 0; i < nb; i++) {
  15224. for (int j = 0; j < QK4_1; j += 2) {
  15225. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15226. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15227. hist[vi0]++;
  15228. hist[vi1]++;
  15229. }
  15230. }
  15231. }
  15232. return (n/QK4_1*sizeof(block_q4_1));
  15233. }
  15234. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15235. assert(k % QK5_0 == 0);
  15236. const int nb = k / QK5_0;
  15237. for (int b = 0; b < n; b += k) {
  15238. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15239. quantize_row_q5_0_reference(src + b, y, k);
  15240. for (int i = 0; i < nb; i++) {
  15241. uint32_t qh;
  15242. memcpy(&qh, &y[i].qh, sizeof(qh));
  15243. for (int j = 0; j < QK5_0; j += 2) {
  15244. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15245. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15246. // cast to 16 bins
  15247. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15248. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15249. hist[vi0]++;
  15250. hist[vi1]++;
  15251. }
  15252. }
  15253. }
  15254. return (n/QK5_0*sizeof(block_q5_0));
  15255. }
  15256. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15257. assert(k % QK5_1 == 0);
  15258. const int nb = k / QK5_1;
  15259. for (int b = 0; b < n; b += k) {
  15260. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15261. quantize_row_q5_1_reference(src + b, y, k);
  15262. for (int i = 0; i < nb; i++) {
  15263. uint32_t qh;
  15264. memcpy(&qh, &y[i].qh, sizeof(qh));
  15265. for (int j = 0; j < QK5_1; j += 2) {
  15266. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15267. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15268. // cast to 16 bins
  15269. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15270. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15271. hist[vi0]++;
  15272. hist[vi1]++;
  15273. }
  15274. }
  15275. }
  15276. return (n/QK5_1*sizeof(block_q5_1));
  15277. }
  15278. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15279. assert(k % QK8_0 == 0);
  15280. const int nb = k / QK8_0;
  15281. for (int b = 0; b < n; b += k) {
  15282. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15283. quantize_row_q8_0_reference(src + b, y, k);
  15284. for (int i = 0; i < nb; i++) {
  15285. for (int j = 0; j < QK8_0; ++j) {
  15286. const int8_t vi = y[i].qs[j];
  15287. hist[vi/16 + 8]++;
  15288. }
  15289. }
  15290. }
  15291. return (n/QK8_0*sizeof(block_q8_0));
  15292. }
  15293. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15294. size_t result = 0;
  15295. switch (type) {
  15296. case GGML_TYPE_Q4_0:
  15297. {
  15298. GGML_ASSERT(start % QK4_0 == 0);
  15299. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15300. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15301. } break;
  15302. case GGML_TYPE_Q4_1:
  15303. {
  15304. GGML_ASSERT(start % QK4_1 == 0);
  15305. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15306. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15307. } break;
  15308. case GGML_TYPE_Q5_0:
  15309. {
  15310. GGML_ASSERT(start % QK5_0 == 0);
  15311. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15312. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15313. } break;
  15314. case GGML_TYPE_Q5_1:
  15315. {
  15316. GGML_ASSERT(start % QK5_1 == 0);
  15317. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15318. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15319. } break;
  15320. case GGML_TYPE_Q8_0:
  15321. {
  15322. GGML_ASSERT(start % QK8_0 == 0);
  15323. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15324. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15325. } break;
  15326. case GGML_TYPE_Q2_K:
  15327. {
  15328. GGML_ASSERT(start % QK_K == 0);
  15329. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15330. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15331. } break;
  15332. case GGML_TYPE_Q3_K:
  15333. {
  15334. GGML_ASSERT(start % QK_K == 0);
  15335. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15336. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15337. } break;
  15338. case GGML_TYPE_Q4_K:
  15339. {
  15340. GGML_ASSERT(start % QK_K == 0);
  15341. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15342. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15343. } break;
  15344. case GGML_TYPE_Q5_K:
  15345. {
  15346. GGML_ASSERT(start % QK_K == 0);
  15347. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15348. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15349. } break;
  15350. case GGML_TYPE_Q6_K:
  15351. {
  15352. GGML_ASSERT(start % QK_K == 0);
  15353. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15354. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15355. } break;
  15356. case GGML_TYPE_F16:
  15357. {
  15358. int elemsize = sizeof(ggml_fp16_t);
  15359. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15360. result = n * elemsize;
  15361. } break;
  15362. case GGML_TYPE_F32:
  15363. {
  15364. int elemsize = sizeof(float);
  15365. result = n * elemsize;
  15366. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15367. } break;
  15368. default:
  15369. assert(false);
  15370. }
  15371. return result;
  15372. }
  15373. ////////////////////////////////////////////////////////////////////////////////
  15374. struct gguf_str {
  15375. uint64_t n; // GGUFv2
  15376. char * data;
  15377. };
  15378. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15379. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15380. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15381. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15382. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15383. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15384. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15385. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15386. [GGUF_TYPE_BOOL] = sizeof(bool),
  15387. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15388. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15389. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15390. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15391. [GGUF_TYPE_ARRAY] = 0, // undefined
  15392. };
  15393. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15394. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15395. [GGUF_TYPE_UINT8] = "u8",
  15396. [GGUF_TYPE_INT8] = "i8",
  15397. [GGUF_TYPE_UINT16] = "u16",
  15398. [GGUF_TYPE_INT16] = "i16",
  15399. [GGUF_TYPE_UINT32] = "u32",
  15400. [GGUF_TYPE_INT32] = "i32",
  15401. [GGUF_TYPE_FLOAT32] = "f32",
  15402. [GGUF_TYPE_BOOL] = "bool",
  15403. [GGUF_TYPE_STRING] = "str",
  15404. [GGUF_TYPE_ARRAY] = "arr",
  15405. [GGUF_TYPE_UINT64] = "u64",
  15406. [GGUF_TYPE_INT64] = "i64",
  15407. [GGUF_TYPE_FLOAT64] = "f64",
  15408. };
  15409. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15410. union gguf_value {
  15411. uint8_t uint8;
  15412. int8_t int8;
  15413. uint16_t uint16;
  15414. int16_t int16;
  15415. uint32_t uint32;
  15416. int32_t int32;
  15417. float float32;
  15418. uint64_t uint64;
  15419. int64_t int64;
  15420. double float64;
  15421. bool bool_;
  15422. struct gguf_str str;
  15423. struct {
  15424. enum gguf_type type;
  15425. uint64_t n; // GGUFv2
  15426. void * data;
  15427. } arr;
  15428. };
  15429. struct gguf_kv {
  15430. struct gguf_str key;
  15431. enum gguf_type type;
  15432. union gguf_value value;
  15433. };
  15434. struct gguf_header {
  15435. char magic[4];
  15436. uint32_t version;
  15437. uint64_t n_tensors; // GGUFv2
  15438. uint64_t n_kv; // GGUFv2
  15439. };
  15440. struct gguf_tensor_info {
  15441. struct gguf_str name;
  15442. uint32_t n_dims;
  15443. uint64_t ne[GGML_MAX_DIMS];
  15444. enum ggml_type type;
  15445. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15446. // for writing API
  15447. const void * data;
  15448. size_t size;
  15449. };
  15450. struct gguf_context {
  15451. struct gguf_header header;
  15452. struct gguf_kv * kv;
  15453. struct gguf_tensor_info * infos;
  15454. size_t alignment;
  15455. size_t offset; // offset of `data` from beginning of file
  15456. size_t size; // size of `data` in bytes
  15457. //uint8_t * padding;
  15458. void * data;
  15459. };
  15460. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15461. const size_t n = fread(dst, 1, size, file);
  15462. *offset += n;
  15463. return n == size;
  15464. }
  15465. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15466. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  15467. p->n = 0;
  15468. p->data = NULL;
  15469. bool ok = true;
  15470. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15471. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15472. return ok;
  15473. }
  15474. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  15475. p->n = 0;
  15476. p->data = NULL;
  15477. bool ok = true;
  15478. uint32_t n = 0;
  15479. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  15480. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15481. return ok;
  15482. }
  15483. struct gguf_context * gguf_init_empty(void) {
  15484. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15485. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15486. ctx->header.version = GGUF_VERSION;
  15487. ctx->header.n_tensors = 0;
  15488. ctx->header.n_kv = 0;
  15489. ctx->kv = NULL;
  15490. ctx->infos = NULL;
  15491. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15492. ctx->offset = 0;
  15493. ctx->size = 0;
  15494. ctx->data = NULL;
  15495. return ctx;
  15496. }
  15497. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15498. FILE * file = fopen(fname, "rb");
  15499. if (!file) {
  15500. return NULL;
  15501. }
  15502. // offset from start of file
  15503. size_t offset = 0;
  15504. char magic[4];
  15505. // check the magic before making allocations
  15506. {
  15507. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15508. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15509. if (magic[i] != GGUF_MAGIC[i]) {
  15510. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15511. fclose(file);
  15512. return NULL;
  15513. }
  15514. }
  15515. }
  15516. bool ok = true;
  15517. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15518. // read the header
  15519. {
  15520. strncpy(ctx->header.magic, magic, 4);
  15521. ctx->kv = NULL;
  15522. ctx->infos = NULL;
  15523. ctx->data = NULL;
  15524. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15525. if (ctx->header.version == 1) {
  15526. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15527. uint32_t n_tensors = 0;
  15528. uint32_t n_kv = 0;
  15529. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  15530. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  15531. ctx->header.n_tensors = n_tensors;
  15532. ctx->header.n_kv = n_kv;
  15533. } else {
  15534. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15535. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15536. }
  15537. if (!ok) {
  15538. fprintf(stderr, "%s: failed to read header\n", __func__);
  15539. fclose(file);
  15540. gguf_free(ctx);
  15541. return NULL;
  15542. }
  15543. }
  15544. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15545. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  15546. if (ctx->header.version == 1) {
  15547. gguf_fread_str = gguf_fread_str_v1;
  15548. }
  15549. // read the kv pairs
  15550. {
  15551. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15552. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15553. struct gguf_kv * kv = &ctx->kv[i];
  15554. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15555. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15556. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15557. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15558. switch (kv->type) {
  15559. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15560. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15561. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15562. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15563. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15564. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15565. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15566. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15567. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15568. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15569. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15570. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15571. case GGUF_TYPE_ARRAY:
  15572. {
  15573. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15574. if (ctx->header.version == 1) {
  15575. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15576. uint32_t n = 0;
  15577. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  15578. kv->value.arr.n = n;
  15579. } else {
  15580. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15581. }
  15582. switch (kv->value.arr.type) {
  15583. case GGUF_TYPE_UINT8:
  15584. case GGUF_TYPE_INT8:
  15585. case GGUF_TYPE_UINT16:
  15586. case GGUF_TYPE_INT16:
  15587. case GGUF_TYPE_UINT32:
  15588. case GGUF_TYPE_INT32:
  15589. case GGUF_TYPE_FLOAT32:
  15590. case GGUF_TYPE_UINT64:
  15591. case GGUF_TYPE_INT64:
  15592. case GGUF_TYPE_FLOAT64:
  15593. case GGUF_TYPE_BOOL:
  15594. {
  15595. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15596. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15597. } break;
  15598. case GGUF_TYPE_STRING:
  15599. {
  15600. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15601. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15602. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15603. }
  15604. } break;
  15605. case GGUF_TYPE_ARRAY:
  15606. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15607. }
  15608. } break;
  15609. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15610. }
  15611. if (!ok) {
  15612. break;
  15613. }
  15614. }
  15615. if (!ok) {
  15616. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15617. fclose(file);
  15618. gguf_free(ctx);
  15619. return NULL;
  15620. }
  15621. }
  15622. // read the tensor infos
  15623. {
  15624. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15625. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15626. struct gguf_tensor_info * info = &ctx->infos[i];
  15627. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15628. info->ne[j] = 1;
  15629. }
  15630. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15631. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15632. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15633. if (ctx->header.version == 1) {
  15634. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  15635. uint32_t t = 0;
  15636. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  15637. info->ne[j] = t;
  15638. } else {
  15639. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15640. }
  15641. }
  15642. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15643. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15644. if (!ok) {
  15645. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15646. fclose(file);
  15647. gguf_free(ctx);
  15648. return NULL;
  15649. }
  15650. }
  15651. }
  15652. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15653. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15654. if (alignment_idx != -1) {
  15655. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15656. }
  15657. // we require the data section to be aligned, so take into account any padding
  15658. {
  15659. const size_t offset_pad = offset % ctx->alignment;
  15660. if (offset_pad != 0) {
  15661. offset += ctx->alignment - offset_pad;
  15662. fseek(file, offset, SEEK_SET);
  15663. }
  15664. }
  15665. // store the current file offset - this is where the data section starts
  15666. ctx->offset = offset;
  15667. // compute the total size of the data section, taking into account the alignment
  15668. {
  15669. ctx->size = 0;
  15670. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15671. struct gguf_tensor_info * info = &ctx->infos[i];
  15672. const int64_t ne =
  15673. (int64_t) info->ne[0] *
  15674. (int64_t) info->ne[1] *
  15675. (int64_t) info->ne[2] *
  15676. (int64_t) info->ne[3];
  15677. if (ne % ggml_blck_size(info->type) != 0) {
  15678. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15679. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15680. fclose(file);
  15681. gguf_free(ctx);
  15682. return NULL;
  15683. }
  15684. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15685. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15686. }
  15687. }
  15688. // load the tensor data only if requested
  15689. if (params.ctx != NULL) {
  15690. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15691. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15692. // the ggml_tensor structs to the appropriate locations in the binary blob
  15693. // compute the exact size needed for the new ggml_context
  15694. const size_t mem_size =
  15695. params.no_alloc ?
  15696. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15697. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15698. struct ggml_init_params pdata = {
  15699. .mem_size = mem_size,
  15700. .mem_buffer = NULL,
  15701. .no_alloc = params.no_alloc,
  15702. };
  15703. *params.ctx = ggml_init(pdata);
  15704. struct ggml_context * ctx_data = *params.ctx;
  15705. struct ggml_tensor * data = NULL;
  15706. if (!params.no_alloc) {
  15707. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15708. ok = ok && data != NULL;
  15709. // read the binary blob with the tensor data
  15710. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15711. if (!ok) {
  15712. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15713. fclose(file);
  15714. ggml_free(ctx_data);
  15715. gguf_free(ctx);
  15716. return NULL;
  15717. }
  15718. ctx->data = data->data;
  15719. }
  15720. ggml_set_no_alloc(ctx_data, true);
  15721. // create the tensors
  15722. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15723. const int64_t ne[GGML_MAX_DIMS] = {
  15724. ctx->infos[i].ne[0],
  15725. ctx->infos[i].ne[1],
  15726. ctx->infos[i].ne[2],
  15727. ctx->infos[i].ne[3],
  15728. };
  15729. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15730. ok = ok && cur != NULL;
  15731. ggml_set_name(cur, ctx->infos[i].name.data);
  15732. if (!ok) {
  15733. break;
  15734. }
  15735. // point the data member to the appropriate location in the binary blob using the tensor infos
  15736. if (!params.no_alloc) {
  15737. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15738. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15739. }
  15740. }
  15741. if (!ok) {
  15742. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15743. fclose(file);
  15744. ggml_free(ctx_data);
  15745. gguf_free(ctx);
  15746. return NULL;
  15747. }
  15748. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15749. }
  15750. fclose(file);
  15751. return ctx;
  15752. }
  15753. void gguf_free(struct gguf_context * ctx) {
  15754. if (ctx == NULL) {
  15755. return;
  15756. }
  15757. if (ctx->kv) {
  15758. // free string memory - not great..
  15759. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15760. struct gguf_kv * kv = &ctx->kv[i];
  15761. if (kv->key.data) {
  15762. free(kv->key.data);
  15763. }
  15764. if (kv->type == GGUF_TYPE_STRING) {
  15765. if (kv->value.str.data) {
  15766. free(kv->value.str.data);
  15767. }
  15768. }
  15769. if (kv->type == GGUF_TYPE_ARRAY) {
  15770. if (kv->value.arr.data) {
  15771. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15772. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15773. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15774. if (str->data) {
  15775. free(str->data);
  15776. }
  15777. }
  15778. }
  15779. free(kv->value.arr.data);
  15780. }
  15781. }
  15782. }
  15783. free(ctx->kv);
  15784. }
  15785. if (ctx->infos) {
  15786. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15787. struct gguf_tensor_info * info = &ctx->infos[i];
  15788. if (info->name.data) {
  15789. free(info->name.data);
  15790. }
  15791. }
  15792. free(ctx->infos);
  15793. }
  15794. GGML_ALIGNED_FREE(ctx);
  15795. }
  15796. const char * gguf_type_name(enum gguf_type type) {
  15797. return GGUF_TYPE_NAME[type];
  15798. }
  15799. int gguf_get_version(const struct gguf_context * ctx) {
  15800. return ctx->header.version;
  15801. }
  15802. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15803. return ctx->alignment;
  15804. }
  15805. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15806. return ctx->offset;
  15807. }
  15808. void * gguf_get_data(const struct gguf_context * ctx) {
  15809. return ctx->data;
  15810. }
  15811. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15812. return ctx->header.n_kv;
  15813. }
  15814. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15815. // return -1 if key not found
  15816. int keyfound = -1;
  15817. const int n_kv = gguf_get_n_kv(ctx);
  15818. for (int i = 0; i < n_kv; ++i) {
  15819. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15820. keyfound = i;
  15821. break;
  15822. }
  15823. }
  15824. return keyfound;
  15825. }
  15826. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15827. return ctx->kv[key_id].key.data;
  15828. }
  15829. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15830. return ctx->kv[key_id].type;
  15831. }
  15832. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15833. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15834. return ctx->kv[key_id].value.arr.type;
  15835. }
  15836. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15837. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15838. return ctx->kv[key_id].value.arr.data;
  15839. }
  15840. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15841. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15842. struct gguf_kv * kv = &ctx->kv[key_id];
  15843. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15844. return str->data;
  15845. }
  15846. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15847. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15848. return ctx->kv[key_id].value.arr.n;
  15849. }
  15850. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15851. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15852. return ctx->kv[key_id].value.uint8;
  15853. }
  15854. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15855. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15856. return ctx->kv[key_id].value.int8;
  15857. }
  15858. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15859. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15860. return ctx->kv[key_id].value.uint16;
  15861. }
  15862. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15863. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15864. return ctx->kv[key_id].value.int16;
  15865. }
  15866. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15867. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15868. return ctx->kv[key_id].value.uint32;
  15869. }
  15870. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15871. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15872. return ctx->kv[key_id].value.int32;
  15873. }
  15874. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15875. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15876. return ctx->kv[key_id].value.float32;
  15877. }
  15878. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15879. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15880. return ctx->kv[key_id].value.uint64;
  15881. }
  15882. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15883. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15884. return ctx->kv[key_id].value.int64;
  15885. }
  15886. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15887. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15888. return ctx->kv[key_id].value.float64;
  15889. }
  15890. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15891. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15892. return ctx->kv[key_id].value.bool_;
  15893. }
  15894. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15895. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15896. return ctx->kv[key_id].value.str.data;
  15897. }
  15898. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15899. return ctx->header.n_tensors;
  15900. }
  15901. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15902. // return -1 if tensor not found
  15903. int tensorfound = -1;
  15904. const int n_tensors = gguf_get_n_tensors(ctx);
  15905. for (int i = 0; i < n_tensors; ++i) {
  15906. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15907. tensorfound = i;
  15908. break;
  15909. }
  15910. }
  15911. return tensorfound;
  15912. }
  15913. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15914. return ctx->infos[i].offset;
  15915. }
  15916. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15917. return ctx->infos[i].name.data;
  15918. }
  15919. // returns the index
  15920. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15921. const int idx = gguf_find_key(ctx, key);
  15922. if (idx >= 0) {
  15923. return idx;
  15924. }
  15925. const int n_kv = gguf_get_n_kv(ctx);
  15926. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15927. ctx->kv[n_kv].key.n = strlen(key);
  15928. ctx->kv[n_kv].key.data = strdup(key);
  15929. ctx->header.n_kv++;
  15930. return n_kv;
  15931. }
  15932. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15933. const int idx = gguf_get_or_add_key(ctx, key);
  15934. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15935. ctx->kv[idx].value.uint8 = val;
  15936. }
  15937. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15938. const int idx = gguf_get_or_add_key(ctx, key);
  15939. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15940. ctx->kv[idx].value.int8 = val;
  15941. }
  15942. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15943. const int idx = gguf_get_or_add_key(ctx, key);
  15944. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15945. ctx->kv[idx].value.uint16 = val;
  15946. }
  15947. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15948. const int idx = gguf_get_or_add_key(ctx, key);
  15949. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15950. ctx->kv[idx].value.int16 = val;
  15951. }
  15952. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15953. const int idx = gguf_get_or_add_key(ctx, key);
  15954. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15955. ctx->kv[idx].value.uint32 = val;
  15956. }
  15957. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15958. const int idx = gguf_get_or_add_key(ctx, key);
  15959. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15960. ctx->kv[idx].value.int32 = val;
  15961. }
  15962. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15963. const int idx = gguf_get_or_add_key(ctx, key);
  15964. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15965. ctx->kv[idx].value.float32 = val;
  15966. }
  15967. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15968. const int idx = gguf_get_or_add_key(ctx, key);
  15969. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15970. ctx->kv[idx].value.uint64 = val;
  15971. }
  15972. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15973. const int idx = gguf_get_or_add_key(ctx, key);
  15974. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15975. ctx->kv[idx].value.int64 = val;
  15976. }
  15977. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15978. const int idx = gguf_get_or_add_key(ctx, key);
  15979. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15980. ctx->kv[idx].value.float64 = val;
  15981. }
  15982. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15983. const int idx = gguf_get_or_add_key(ctx, key);
  15984. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15985. ctx->kv[idx].value.bool_ = val;
  15986. }
  15987. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15988. const int idx = gguf_get_or_add_key(ctx, key);
  15989. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15990. ctx->kv[idx].value.str.n = strlen(val);
  15991. ctx->kv[idx].value.str.data = strdup(val);
  15992. }
  15993. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15994. const int idx = gguf_get_or_add_key(ctx, key);
  15995. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15996. ctx->kv[idx].value.arr.type = type;
  15997. ctx->kv[idx].value.arr.n = n;
  15998. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15999. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16000. }
  16001. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16002. const int idx = gguf_get_or_add_key(ctx, key);
  16003. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16004. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16005. ctx->kv[idx].value.arr.n = n;
  16006. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16007. for (int i = 0; i < n; i++) {
  16008. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16009. str->n = strlen(data[i]);
  16010. str->data = strdup(data[i]);
  16011. }
  16012. }
  16013. // set or add KV pairs from another context
  16014. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16015. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16016. switch (src->kv[i].type) {
  16017. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16018. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16019. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16020. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16021. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16022. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16023. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16024. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16025. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16026. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16027. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16028. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16029. case GGUF_TYPE_ARRAY:
  16030. {
  16031. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16032. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16033. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16034. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16035. }
  16036. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16037. free(data);
  16038. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16039. GGML_ASSERT(false && "nested arrays not supported");
  16040. } else {
  16041. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16042. }
  16043. } break;
  16044. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16045. }
  16046. }
  16047. }
  16048. void gguf_add_tensor(
  16049. struct gguf_context * ctx,
  16050. const struct ggml_tensor * tensor) {
  16051. const int idx = ctx->header.n_tensors;
  16052. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16053. ctx->infos[idx].name.n = strlen(tensor->name);
  16054. ctx->infos[idx].name.data = strdup(tensor->name);
  16055. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16056. ctx->infos[idx].ne[i] = 1;
  16057. }
  16058. ctx->infos[idx].n_dims = tensor->n_dims;
  16059. for (int i = 0; i < tensor->n_dims; i++) {
  16060. ctx->infos[idx].ne[i] = tensor->ne[i];
  16061. }
  16062. ctx->infos[idx].type = tensor->type;
  16063. ctx->infos[idx].offset = 0;
  16064. ctx->infos[idx].data = tensor->data;
  16065. ctx->infos[idx].size = ggml_nbytes(tensor);
  16066. if (ctx->header.n_tensors > 0) {
  16067. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16068. }
  16069. ctx->header.n_tensors++;
  16070. }
  16071. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16072. const int idx = gguf_find_tensor(ctx, name);
  16073. if (idx < 0) {
  16074. GGML_ASSERT(false && "tensor not found");
  16075. }
  16076. ctx->infos[idx].type = type;
  16077. }
  16078. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16079. const int idx = gguf_find_tensor(ctx, name);
  16080. if (idx < 0) {
  16081. GGML_ASSERT(false && "tensor not found");
  16082. }
  16083. ctx->infos[idx].data = data;
  16084. ctx->infos[idx].size = size;
  16085. // update offsets
  16086. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16087. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16088. }
  16089. }
  16090. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16091. // fwrite(&val->n, sizeof(val->n), 1, file);
  16092. // fwrite(val->data, sizeof(char), val->n, file);
  16093. //}
  16094. //
  16095. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16096. // fwrite(val, sizeof(char), size, file);
  16097. //}
  16098. struct gguf_buf {
  16099. void * data;
  16100. size_t size;
  16101. size_t offset;
  16102. };
  16103. static struct gguf_buf gguf_buf_init(size_t size) {
  16104. struct gguf_buf buf = {
  16105. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16106. /*buf.size =*/ size,
  16107. /*buf.offset =*/ 0,
  16108. };
  16109. return buf;
  16110. }
  16111. static void gguf_buf_free(struct gguf_buf buf) {
  16112. if (buf.data) {
  16113. free(buf.data);
  16114. }
  16115. }
  16116. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16117. if (buf->offset + size > buf->size) {
  16118. buf->size = 1.5*(buf->offset + size);
  16119. if (buf->data) {
  16120. buf->data = realloc(buf->data, buf->size);
  16121. }
  16122. }
  16123. }
  16124. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16125. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16126. if (buf->data) {
  16127. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16128. }
  16129. buf->offset += sizeof(val->n);
  16130. if (buf->data) {
  16131. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16132. }
  16133. buf->offset += val->n;
  16134. }
  16135. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16136. gguf_buf_grow(buf, el_size);
  16137. if (buf->data) {
  16138. memcpy((char *) buf->data + buf->offset, val, el_size);
  16139. }
  16140. buf->offset += el_size;
  16141. }
  16142. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16143. // write header
  16144. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16145. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16146. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16147. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16148. // write key-value pairs
  16149. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16150. struct gguf_kv * kv = &ctx->kv[i];
  16151. gguf_bwrite_str(buf, &kv->key);
  16152. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16153. switch (kv->type) {
  16154. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16155. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16156. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16157. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16158. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16159. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16160. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16161. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16162. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16163. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16164. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16165. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16166. case GGUF_TYPE_ARRAY:
  16167. {
  16168. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16169. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16170. switch (kv->value.arr.type) {
  16171. case GGUF_TYPE_UINT8:
  16172. case GGUF_TYPE_INT8:
  16173. case GGUF_TYPE_UINT16:
  16174. case GGUF_TYPE_INT16:
  16175. case GGUF_TYPE_UINT32:
  16176. case GGUF_TYPE_INT32:
  16177. case GGUF_TYPE_FLOAT32:
  16178. case GGUF_TYPE_UINT64:
  16179. case GGUF_TYPE_INT64:
  16180. case GGUF_TYPE_FLOAT64:
  16181. case GGUF_TYPE_BOOL:
  16182. {
  16183. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16184. } break;
  16185. case GGUF_TYPE_STRING:
  16186. {
  16187. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16188. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16189. }
  16190. } break;
  16191. case GGUF_TYPE_ARRAY:
  16192. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16193. }
  16194. } break;
  16195. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16196. }
  16197. }
  16198. // write tensor infos
  16199. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16200. struct gguf_tensor_info * info = &ctx->infos[i];
  16201. gguf_bwrite_str(buf, &info->name);
  16202. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16203. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16204. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16205. }
  16206. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16207. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16208. }
  16209. // we require the data section to be aligned, so take into account any padding
  16210. {
  16211. const size_t offset = buf->offset;
  16212. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16213. if (offset_pad != offset) {
  16214. uint8_t pad = 0;
  16215. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16216. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16217. }
  16218. }
  16219. }
  16220. if (only_meta) {
  16221. return;
  16222. }
  16223. size_t offset = 0;
  16224. // write tensor data
  16225. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16226. struct gguf_tensor_info * info = &ctx->infos[i];
  16227. const size_t size = info->size;
  16228. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16229. gguf_bwrite_el(buf, info->data, size);
  16230. if (size_pad != size) {
  16231. uint8_t pad = 0;
  16232. for (size_t j = 0; j < size_pad - size; ++j) {
  16233. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16234. }
  16235. }
  16236. GGML_ASSERT(offset == info->offset);
  16237. offset += size_pad;
  16238. }
  16239. }
  16240. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16241. FILE * file = fopen(fname, "wb");
  16242. if (!file) {
  16243. GGML_ASSERT(false && "failed to open file for writing");
  16244. }
  16245. struct gguf_buf buf = gguf_buf_init(16*1024);
  16246. gguf_write_to_buf(ctx, &buf, only_meta);
  16247. fwrite(buf.data, 1, buf.offset, file);
  16248. gguf_buf_free(buf);
  16249. fclose(file);
  16250. }
  16251. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16252. // no allocs - only compute size
  16253. struct gguf_buf buf = gguf_buf_init(0);
  16254. gguf_write_to_buf(ctx, &buf, true);
  16255. return buf.offset;
  16256. }
  16257. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16258. struct gguf_buf buf = gguf_buf_init(16*1024);
  16259. gguf_write_to_buf(ctx, &buf, true);
  16260. memcpy(data, buf.data, buf.offset);
  16261. gguf_buf_free(buf);
  16262. }
  16263. ////////////////////////////////////////////////////////////////////////////////
  16264. int ggml_cpu_has_avx(void) {
  16265. #if defined(__AVX__)
  16266. return 1;
  16267. #else
  16268. return 0;
  16269. #endif
  16270. }
  16271. int ggml_cpu_has_avx2(void) {
  16272. #if defined(__AVX2__)
  16273. return 1;
  16274. #else
  16275. return 0;
  16276. #endif
  16277. }
  16278. int ggml_cpu_has_avx512(void) {
  16279. #if defined(__AVX512F__)
  16280. return 1;
  16281. #else
  16282. return 0;
  16283. #endif
  16284. }
  16285. int ggml_cpu_has_avx512_vbmi(void) {
  16286. #if defined(__AVX512VBMI__)
  16287. return 1;
  16288. #else
  16289. return 0;
  16290. #endif
  16291. }
  16292. int ggml_cpu_has_avx512_vnni(void) {
  16293. #if defined(__AVX512VNNI__)
  16294. return 1;
  16295. #else
  16296. return 0;
  16297. #endif
  16298. }
  16299. int ggml_cpu_has_fma(void) {
  16300. #if defined(__FMA__)
  16301. return 1;
  16302. #else
  16303. return 0;
  16304. #endif
  16305. }
  16306. int ggml_cpu_has_neon(void) {
  16307. #if defined(__ARM_NEON)
  16308. return 1;
  16309. #else
  16310. return 0;
  16311. #endif
  16312. }
  16313. int ggml_cpu_has_arm_fma(void) {
  16314. #if defined(__ARM_FEATURE_FMA)
  16315. return 1;
  16316. #else
  16317. return 0;
  16318. #endif
  16319. }
  16320. int ggml_cpu_has_metal(void) {
  16321. #if defined(GGML_USE_METAL)
  16322. return 1;
  16323. #else
  16324. return 0;
  16325. #endif
  16326. }
  16327. int ggml_cpu_has_f16c(void) {
  16328. #if defined(__F16C__)
  16329. return 1;
  16330. #else
  16331. return 0;
  16332. #endif
  16333. }
  16334. int ggml_cpu_has_fp16_va(void) {
  16335. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16336. return 1;
  16337. #else
  16338. return 0;
  16339. #endif
  16340. }
  16341. int ggml_cpu_has_wasm_simd(void) {
  16342. #if defined(__wasm_simd128__)
  16343. return 1;
  16344. #else
  16345. return 0;
  16346. #endif
  16347. }
  16348. int ggml_cpu_has_blas(void) {
  16349. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16350. return 1;
  16351. #else
  16352. return 0;
  16353. #endif
  16354. }
  16355. int ggml_cpu_has_cublas(void) {
  16356. #if defined(GGML_USE_CUBLAS)
  16357. return 1;
  16358. #else
  16359. return 0;
  16360. #endif
  16361. }
  16362. int ggml_cpu_has_clblast(void) {
  16363. #if defined(GGML_USE_CLBLAST)
  16364. return 1;
  16365. #else
  16366. return 0;
  16367. #endif
  16368. }
  16369. int ggml_cpu_has_gpublas(void) {
  16370. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16371. }
  16372. int ggml_cpu_has_sse3(void) {
  16373. #if defined(__SSE3__)
  16374. return 1;
  16375. #else
  16376. return 0;
  16377. #endif
  16378. }
  16379. int ggml_cpu_has_ssse3(void) {
  16380. #if defined(__SSSE3__)
  16381. return 1;
  16382. #else
  16383. return 0;
  16384. #endif
  16385. }
  16386. int ggml_cpu_has_vsx(void) {
  16387. #if defined(__POWER9_VECTOR__)
  16388. return 1;
  16389. #else
  16390. return 0;
  16391. #endif
  16392. }
  16393. ////////////////////////////////////////////////////////////////////////////////