server.cpp 179 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. auto grammar_triggers = json::array();
  113. for (const auto & trigger : sampling.grammar_triggers) {
  114. grammar_triggers.push_back(trigger.to_json<json>());
  115. }
  116. return json {
  117. {"n_predict", n_predict}, // Server configured n_predict
  118. {"seed", sampling.seed},
  119. {"temperature", sampling.temp},
  120. {"dynatemp_range", sampling.dynatemp_range},
  121. {"dynatemp_exponent", sampling.dynatemp_exponent},
  122. {"top_k", sampling.top_k},
  123. {"top_p", sampling.top_p},
  124. {"min_p", sampling.min_p},
  125. {"xtc_probability", sampling.xtc_probability},
  126. {"xtc_threshold", sampling.xtc_threshold},
  127. {"typical_p", sampling.typ_p},
  128. {"repeat_last_n", sampling.penalty_last_n},
  129. {"repeat_penalty", sampling.penalty_repeat},
  130. {"presence_penalty", sampling.penalty_present},
  131. {"frequency_penalty", sampling.penalty_freq},
  132. {"dry_multiplier", sampling.dry_multiplier},
  133. {"dry_base", sampling.dry_base},
  134. {"dry_allowed_length", sampling.dry_allowed_length},
  135. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  136. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  137. {"mirostat", sampling.mirostat},
  138. {"mirostat_tau", sampling.mirostat_tau},
  139. {"mirostat_eta", sampling.mirostat_eta},
  140. {"stop", antiprompt},
  141. {"max_tokens", n_predict}, // User configured n_predict
  142. {"n_keep", n_keep},
  143. {"n_discard", n_discard},
  144. {"ignore_eos", sampling.ignore_eos},
  145. {"stream", stream},
  146. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  147. {"n_probs", sampling.n_probs},
  148. {"min_keep", sampling.min_keep},
  149. {"grammar", sampling.grammar},
  150. {"grammar_lazy", sampling.grammar_lazy},
  151. {"grammar_triggers", grammar_triggers},
  152. {"preserved_tokens", sampling.preserved_tokens},
  153. {"chat_format", common_chat_format_name(oaicompat_chat_format)},
  154. {"samplers", samplers},
  155. {"speculative.n_max", speculative.n_max},
  156. {"speculative.n_min", speculative.n_min},
  157. {"speculative.p_min", speculative.p_min},
  158. {"timings_per_token", timings_per_token},
  159. {"post_sampling_probs", post_sampling_probs},
  160. {"lora", lora},
  161. };
  162. }
  163. };
  164. struct server_task {
  165. int id = -1; // to be filled by server_queue
  166. int index = -1; // used when there are multiple prompts (batch request)
  167. server_task_type type;
  168. // used by SERVER_TASK_TYPE_CANCEL
  169. int id_target = -1;
  170. // used by SERVER_TASK_TYPE_INFERENCE
  171. slot_params params;
  172. llama_tokens prompt_tokens;
  173. int id_selected_slot = -1;
  174. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  175. struct slot_action {
  176. int slot_id;
  177. std::string filename;
  178. std::string filepath;
  179. };
  180. slot_action slot_action;
  181. // used by SERVER_TASK_TYPE_METRICS
  182. bool metrics_reset_bucket = false;
  183. // used by SERVER_TASK_TYPE_SET_LORA
  184. std::vector<common_adapter_lora_info> set_lora;
  185. server_task(server_task_type type) : type(type) {}
  186. static slot_params params_from_json_cmpl(
  187. const llama_context * ctx,
  188. const common_params & params_base,
  189. const json & data) {
  190. const llama_model * model = llama_get_model(ctx);
  191. const llama_vocab * vocab = llama_model_get_vocab(model);
  192. slot_params params;
  193. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  194. slot_params defaults;
  195. defaults.sampling = params_base.sampling;
  196. defaults.speculative = params_base.speculative;
  197. // enabling this will output extra debug information in the HTTP responses from the server
  198. params.verbose = params_base.verbosity > 9;
  199. params.timings_per_token = json_value(data, "timings_per_token", false);
  200. params.stream = json_value(data, "stream", false);
  201. params.cache_prompt = json_value(data, "cache_prompt", true);
  202. params.return_tokens = json_value(data, "return_tokens", false);
  203. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  204. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  205. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  206. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  207. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  208. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  209. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  210. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  211. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  212. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  213. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  214. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  215. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  216. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  217. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  218. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  219. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  220. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  221. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  222. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  223. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  224. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  225. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  226. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  227. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  228. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  229. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  230. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  231. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  232. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  233. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  234. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  235. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  236. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  237. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  238. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  239. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  240. // Use OpenAI API logprobs only if n_probs wasn't provided
  241. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  242. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  243. }
  244. if (data.contains("lora")) {
  245. if (data.at("lora").is_array()) {
  246. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  247. } else {
  248. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  249. }
  250. } else {
  251. params.lora = params_base.lora_adapters;
  252. }
  253. // TODO: add more sanity checks for the input parameters
  254. if (params.sampling.penalty_last_n < -1) {
  255. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  256. }
  257. if (params.sampling.dry_penalty_last_n < -1) {
  258. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  259. }
  260. if (params.sampling.penalty_last_n == -1) {
  261. // note: should be the slot's context and not the full context, but it's ok
  262. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  263. }
  264. if (params.sampling.dry_penalty_last_n == -1) {
  265. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  266. }
  267. if (params.sampling.dry_base < 1.0f) {
  268. params.sampling.dry_base = defaults.sampling.dry_base;
  269. }
  270. // sequence breakers for DRY
  271. {
  272. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  273. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  274. if (data.contains("dry_sequence_breakers")) {
  275. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  276. if (params.sampling.dry_sequence_breakers.empty()) {
  277. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  278. }
  279. }
  280. }
  281. // process "json_schema" and "grammar"
  282. if (data.contains("json_schema") && !data.contains("grammar")) {
  283. try {
  284. auto schema = json_value(data, "json_schema", json::object());
  285. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  286. params.sampling.grammar = json_schema_to_grammar(schema);
  287. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  288. } catch (const std::exception & e) {
  289. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  290. }
  291. } else {
  292. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  293. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  294. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  295. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  296. }
  297. {
  298. auto it = data.find("chat_format");
  299. if (it != data.end()) {
  300. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  301. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  302. } else {
  303. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  304. }
  305. }
  306. {
  307. const auto preserved_tokens = data.find("preserved_tokens");
  308. if (preserved_tokens != data.end()) {
  309. for (const auto & t : *preserved_tokens) {
  310. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  311. if (ids.size() == 1) {
  312. SRV_DBG("Preserved token: %d\n", ids[0]);
  313. params.sampling.preserved_tokens.insert(ids[0]);
  314. } else {
  315. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  316. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  317. }
  318. }
  319. }
  320. const auto grammar_triggers = data.find("grammar_triggers");
  321. if (grammar_triggers != data.end()) {
  322. for (const auto & t : *grammar_triggers) {
  323. auto ct = common_grammar_trigger::from_json(t);
  324. if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  325. const auto & word = ct.value;
  326. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  327. if (ids.size() == 1) {
  328. auto token = ids[0];
  329. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  330. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  331. }
  332. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  333. common_grammar_trigger trigger;
  334. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  335. trigger.value = word;
  336. trigger.token = token;
  337. params.sampling.grammar_triggers.push_back(std::move(trigger));
  338. } else {
  339. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  340. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  341. }
  342. } else {
  343. params.sampling.grammar_triggers.push_back(ct);
  344. }
  345. }
  346. }
  347. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  348. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  349. }
  350. }
  351. {
  352. params.sampling.logit_bias.clear();
  353. params.ignore_eos = json_value(data, "ignore_eos", false);
  354. const auto & logit_bias = data.find("logit_bias");
  355. if (logit_bias != data.end() && logit_bias->is_array()) {
  356. const int n_vocab = llama_vocab_n_tokens(vocab);
  357. for (const auto & el : *logit_bias) {
  358. // TODO: we may want to throw errors here, in case "el" is incorrect
  359. if (el.is_array() && el.size() == 2) {
  360. float bias;
  361. if (el[1].is_number()) {
  362. bias = el[1].get<float>();
  363. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  364. bias = -INFINITY;
  365. } else {
  366. continue;
  367. }
  368. if (el[0].is_number_integer()) {
  369. llama_token tok = el[0].get<llama_token>();
  370. if (tok >= 0 && tok < n_vocab) {
  371. params.sampling.logit_bias.push_back({tok, bias});
  372. }
  373. } else if (el[0].is_string()) {
  374. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  375. for (auto tok : toks) {
  376. params.sampling.logit_bias.push_back({tok, bias});
  377. }
  378. }
  379. }
  380. }
  381. }
  382. }
  383. {
  384. params.antiprompt.clear();
  385. const auto & stop = data.find("stop");
  386. if (stop != data.end() && stop->is_array()) {
  387. for (const auto & word : *stop) {
  388. if (!word.empty()) {
  389. params.antiprompt.push_back(word);
  390. }
  391. }
  392. }
  393. }
  394. {
  395. const auto samplers = data.find("samplers");
  396. if (samplers != data.end()) {
  397. if (samplers->is_array()) {
  398. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  399. } else if (samplers->is_string()){
  400. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  401. }
  402. } else {
  403. params.sampling.samplers = defaults.sampling.samplers;
  404. }
  405. }
  406. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  407. params.oaicompat_model = json_value(data, "model", model_name);
  408. return params;
  409. }
  410. // utility function
  411. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  412. std::unordered_set<int> ids(tasks.size());
  413. for (size_t i = 0; i < tasks.size(); i++) {
  414. ids.insert(tasks[i].id);
  415. }
  416. return ids;
  417. }
  418. };
  419. struct result_timings {
  420. int32_t prompt_n = -1;
  421. double prompt_ms;
  422. double prompt_per_token_ms;
  423. double prompt_per_second;
  424. int32_t predicted_n = -1;
  425. double predicted_ms;
  426. double predicted_per_token_ms;
  427. double predicted_per_second;
  428. json to_json() const {
  429. return {
  430. {"prompt_n", prompt_n},
  431. {"prompt_ms", prompt_ms},
  432. {"prompt_per_token_ms", prompt_per_token_ms},
  433. {"prompt_per_second", prompt_per_second},
  434. {"predicted_n", predicted_n},
  435. {"predicted_ms", predicted_ms},
  436. {"predicted_per_token_ms", predicted_per_token_ms},
  437. {"predicted_per_second", predicted_per_second},
  438. };
  439. }
  440. };
  441. struct server_task_result {
  442. int id = -1;
  443. int id_slot = -1;
  444. virtual bool is_error() {
  445. // only used by server_task_result_error
  446. return false;
  447. }
  448. virtual bool is_stop() {
  449. // only used by server_task_result_cmpl_*
  450. return false;
  451. }
  452. virtual int get_index() {
  453. return -1;
  454. }
  455. virtual json to_json() = 0;
  456. virtual ~server_task_result() = default;
  457. };
  458. // using shared_ptr for polymorphism of server_task_result
  459. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  460. inline std::string stop_type_to_str(stop_type type) {
  461. switch (type) {
  462. case STOP_TYPE_EOS: return "eos";
  463. case STOP_TYPE_WORD: return "word";
  464. case STOP_TYPE_LIMIT: return "limit";
  465. default: return "none";
  466. }
  467. }
  468. struct completion_token_output {
  469. llama_token tok;
  470. float prob;
  471. std::string text_to_send;
  472. struct prob_info {
  473. llama_token tok;
  474. std::string txt;
  475. float prob;
  476. };
  477. std::vector<prob_info> probs;
  478. json to_json(bool post_sampling_probs) const {
  479. json probs_for_token = json::array();
  480. for (const auto & p : probs) {
  481. std::string txt(p.txt);
  482. txt.resize(validate_utf8(txt));
  483. probs_for_token.push_back(json {
  484. {"id", p.tok},
  485. {"token", txt},
  486. {"bytes", str_to_bytes(p.txt)},
  487. {
  488. post_sampling_probs ? "prob" : "logprob",
  489. post_sampling_probs ? p.prob : logarithm(p.prob)
  490. },
  491. });
  492. }
  493. return probs_for_token;
  494. }
  495. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  496. json out = json::array();
  497. for (const auto & p : probs) {
  498. std::string txt(p.text_to_send);
  499. txt.resize(validate_utf8(txt));
  500. out.push_back(json {
  501. {"id", p.tok},
  502. {"token", txt},
  503. {"bytes", str_to_bytes(p.text_to_send)},
  504. {
  505. post_sampling_probs ? "prob" : "logprob",
  506. post_sampling_probs ? p.prob : logarithm(p.prob)
  507. },
  508. {
  509. post_sampling_probs ? "top_probs" : "top_logprobs",
  510. p.to_json(post_sampling_probs)
  511. },
  512. });
  513. }
  514. return out;
  515. }
  516. static float logarithm(float x) {
  517. // nlohmann::json converts -inf to null, so we need to prevent that
  518. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  519. }
  520. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  521. std::vector<unsigned char> bytes;
  522. for (unsigned char c : str) {
  523. bytes.push_back(c);
  524. }
  525. return bytes;
  526. }
  527. };
  528. struct server_task_result_cmpl_final : server_task_result {
  529. int index = 0;
  530. std::string content;
  531. llama_tokens tokens;
  532. bool stream;
  533. result_timings timings;
  534. std::string prompt;
  535. bool truncated;
  536. int32_t n_decoded;
  537. int32_t n_prompt_tokens;
  538. int32_t n_tokens_cached;
  539. bool has_new_line;
  540. std::string stopping_word;
  541. stop_type stop = STOP_TYPE_NONE;
  542. bool post_sampling_probs;
  543. std::vector<completion_token_output> probs_output;
  544. std::vector<std::string> response_fields;
  545. slot_params generation_params;
  546. // OAI-compat fields
  547. bool verbose = false;
  548. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  549. std::string oaicompat_model;
  550. std::string oaicompat_cmpl_id;
  551. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  552. virtual int get_index() override {
  553. return index;
  554. }
  555. virtual bool is_stop() override {
  556. return true; // in stream mode, final responses are considered stop
  557. }
  558. virtual json to_json() override {
  559. switch (oaicompat) {
  560. case OAICOMPAT_TYPE_NONE:
  561. return to_json_non_oaicompat();
  562. case OAICOMPAT_TYPE_COMPLETION:
  563. return to_json_oaicompat();
  564. case OAICOMPAT_TYPE_CHAT:
  565. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  566. default:
  567. GGML_ASSERT(false && "Invalid oaicompat_type");
  568. }
  569. }
  570. json to_json_non_oaicompat() {
  571. json res = json {
  572. {"index", index},
  573. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  574. {"tokens", stream ? llama_tokens {} : tokens},
  575. {"id_slot", id_slot},
  576. {"stop", true},
  577. {"model", oaicompat_model},
  578. {"tokens_predicted", n_decoded},
  579. {"tokens_evaluated", n_prompt_tokens},
  580. {"generation_settings", generation_params.to_json()},
  581. {"prompt", prompt},
  582. {"has_new_line", has_new_line},
  583. {"truncated", truncated},
  584. {"stop_type", stop_type_to_str(stop)},
  585. {"stopping_word", stopping_word},
  586. {"tokens_cached", n_tokens_cached},
  587. {"timings", timings.to_json()},
  588. };
  589. if (!stream && !probs_output.empty()) {
  590. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  591. }
  592. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  593. }
  594. json to_json_oaicompat() {
  595. std::time_t t = std::time(0);
  596. json logprobs = json(nullptr); // OAI default to null
  597. if (!stream && probs_output.size() > 0) {
  598. logprobs = json{
  599. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  600. };
  601. }
  602. json finish_reason = "length";
  603. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  604. finish_reason = "stop";
  605. }
  606. json res = json {
  607. {"choices", json::array({
  608. json{
  609. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  610. {"index", index},
  611. {"logprobs", logprobs},
  612. {"finish_reason", finish_reason},
  613. }
  614. })},
  615. {"created", t},
  616. {"model", oaicompat_model},
  617. {"system_fingerprint", build_info},
  618. {"object", "text_completion"},
  619. {"usage", json {
  620. {"completion_tokens", n_decoded},
  621. {"prompt_tokens", n_prompt_tokens},
  622. {"total_tokens", n_decoded + n_prompt_tokens}
  623. }},
  624. {"id", oaicompat_cmpl_id}
  625. };
  626. // extra fields for debugging purposes
  627. if (verbose) {
  628. res["__verbose"] = to_json_non_oaicompat();
  629. }
  630. if (timings.prompt_n >= 0) {
  631. res.push_back({"timings", timings.to_json()});
  632. }
  633. return res;
  634. }
  635. json to_json_oaicompat_chat() {
  636. std::string finish_reason = "length";
  637. common_chat_msg msg;
  638. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  639. SRV_DBG("Parsing chat message: %s\n", content.c_str());
  640. msg = common_chat_parse(content, oaicompat_chat_format);
  641. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  642. } else {
  643. msg.content = content;
  644. }
  645. json message {
  646. {"role", "assistant"},
  647. };
  648. if (!msg.reasoning_content.empty()) {
  649. message["reasoning_content"] = msg.reasoning_content;
  650. }
  651. if (msg.content.empty() && !msg.tool_calls.empty()) {
  652. message["content"] = json();
  653. } else {
  654. message["content"] = msg.content;
  655. }
  656. if (!msg.tool_calls.empty()) {
  657. auto tool_calls = json::array();
  658. for (const auto & tc : msg.tool_calls) {
  659. tool_calls.push_back({
  660. {"type", "function"},
  661. {"function", {
  662. {"name", tc.name},
  663. {"arguments", tc.arguments},
  664. }},
  665. // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
  666. // We only generate a random id for the ones that don't generate one by themselves
  667. // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
  668. {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
  669. });
  670. }
  671. message["tool_calls"] = tool_calls;
  672. }
  673. json choice {
  674. {"finish_reason", finish_reason},
  675. {"index", 0},
  676. {"message", message},
  677. };
  678. if (!stream && probs_output.size() > 0) {
  679. choice["logprobs"] = json{
  680. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  681. };
  682. }
  683. std::time_t t = std::time(0);
  684. json res = json {
  685. {"choices", json::array({choice})},
  686. {"created", t},
  687. {"model", oaicompat_model},
  688. {"system_fingerprint", build_info},
  689. {"object", "chat.completion"},
  690. {"usage", json {
  691. {"completion_tokens", n_decoded},
  692. {"prompt_tokens", n_prompt_tokens},
  693. {"total_tokens", n_decoded + n_prompt_tokens}
  694. }},
  695. {"id", oaicompat_cmpl_id}
  696. };
  697. // extra fields for debugging purposes
  698. if (verbose) {
  699. res["__verbose"] = to_json_non_oaicompat();
  700. }
  701. if (timings.prompt_n >= 0) {
  702. res.push_back({"timings", timings.to_json()});
  703. }
  704. return res;
  705. }
  706. json to_json_oaicompat_chat_stream() {
  707. std::time_t t = std::time(0);
  708. std::string finish_reason = "length";
  709. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  710. finish_reason = "stop";
  711. }
  712. json choice = json {
  713. {"finish_reason", finish_reason},
  714. {"index", 0},
  715. {"delta", json::object()}
  716. };
  717. json ret = json {
  718. {"choices", json::array({choice})},
  719. {"created", t},
  720. {"id", oaicompat_cmpl_id},
  721. {"model", oaicompat_model},
  722. {"system_fingerprint", build_info},
  723. {"object", "chat.completion.chunk"},
  724. {"usage", json {
  725. {"completion_tokens", n_decoded},
  726. {"prompt_tokens", n_prompt_tokens},
  727. {"total_tokens", n_decoded + n_prompt_tokens},
  728. }},
  729. };
  730. if (timings.prompt_n >= 0) {
  731. ret.push_back({"timings", timings.to_json()});
  732. }
  733. // extra fields for debugging purposes
  734. if (verbose) {
  735. ret["__verbose"] = to_json_non_oaicompat();
  736. }
  737. return ret;
  738. }
  739. };
  740. struct server_task_result_cmpl_partial : server_task_result {
  741. int index = 0;
  742. std::string content;
  743. llama_tokens tokens;
  744. int32_t n_decoded;
  745. int32_t n_prompt_tokens;
  746. bool post_sampling_probs;
  747. completion_token_output prob_output;
  748. result_timings timings;
  749. // OAI-compat fields
  750. bool verbose = false;
  751. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  752. std::string oaicompat_model;
  753. std::string oaicompat_cmpl_id;
  754. virtual int get_index() override {
  755. return index;
  756. }
  757. virtual bool is_stop() override {
  758. return false; // in stream mode, partial responses are not considered stop
  759. }
  760. virtual json to_json() override {
  761. switch (oaicompat) {
  762. case OAICOMPAT_TYPE_NONE:
  763. return to_json_non_oaicompat();
  764. case OAICOMPAT_TYPE_COMPLETION:
  765. return to_json_oaicompat();
  766. case OAICOMPAT_TYPE_CHAT:
  767. return to_json_oaicompat_chat();
  768. default:
  769. GGML_ASSERT(false && "Invalid oaicompat_type");
  770. }
  771. }
  772. json to_json_non_oaicompat() {
  773. // non-OAI-compat JSON
  774. json res = json {
  775. {"index", index},
  776. {"content", content},
  777. {"tokens", tokens},
  778. {"stop", false},
  779. {"id_slot", id_slot},
  780. {"tokens_predicted", n_decoded},
  781. {"tokens_evaluated", n_prompt_tokens},
  782. };
  783. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  784. if (timings.prompt_n > 0) {
  785. res.push_back({"timings", timings.to_json()});
  786. }
  787. if (!prob_output.probs.empty()) {
  788. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  789. }
  790. return res;
  791. }
  792. json to_json_oaicompat() {
  793. std::time_t t = std::time(0);
  794. json logprobs = json(nullptr); // OAI default to null
  795. if (prob_output.probs.size() > 0) {
  796. logprobs = json{
  797. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  798. };
  799. }
  800. json res = json {
  801. {"choices", json::array({
  802. json{
  803. {"text", content},
  804. {"index", index},
  805. {"logprobs", logprobs},
  806. {"finish_reason", nullptr},
  807. }
  808. })},
  809. {"created", t},
  810. {"model", oaicompat_model},
  811. {"system_fingerprint", build_info},
  812. {"object", "text_completion"},
  813. {"id", oaicompat_cmpl_id}
  814. };
  815. // extra fields for debugging purposes
  816. if (verbose) {
  817. res["__verbose"] = to_json_non_oaicompat();
  818. }
  819. if (timings.prompt_n >= 0) {
  820. res.push_back({"timings", timings.to_json()});
  821. }
  822. return res;
  823. }
  824. json to_json_oaicompat_chat() {
  825. bool first = n_decoded == 0;
  826. std::time_t t = std::time(0);
  827. json choices;
  828. if (first) {
  829. if (content.empty()) {
  830. choices = json::array({json{{"finish_reason", nullptr},
  831. {"index", 0},
  832. {"delta", json{{"role", "assistant"}}}}});
  833. } else {
  834. // We have to send this as two updates to conform to openai behavior
  835. json initial_ret = json{{"choices", json::array({json{
  836. {"finish_reason", nullptr},
  837. {"index", 0},
  838. {"delta", json{
  839. {"role", "assistant"}
  840. }}}})},
  841. {"created", t},
  842. {"id", oaicompat_cmpl_id},
  843. {"model", oaicompat_model},
  844. {"object", "chat.completion.chunk"}};
  845. json second_ret = json{
  846. {"choices", json::array({json{{"finish_reason", nullptr},
  847. {"index", 0},
  848. {"delta", json {
  849. {"content", content}}}
  850. }})},
  851. {"created", t},
  852. {"id", oaicompat_cmpl_id},
  853. {"model", oaicompat_model},
  854. {"object", "chat.completion.chunk"}};
  855. return std::vector<json>({initial_ret, second_ret});
  856. }
  857. } else {
  858. choices = json::array({json{
  859. {"finish_reason", nullptr},
  860. {"index", 0},
  861. {"delta",
  862. json {
  863. {"content", content},
  864. }},
  865. }});
  866. }
  867. GGML_ASSERT(choices.size() >= 1);
  868. if (prob_output.probs.size() > 0) {
  869. choices[0]["logprobs"] = json{
  870. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  871. };
  872. }
  873. json ret = json {
  874. {"choices", choices},
  875. {"created", t},
  876. {"id", oaicompat_cmpl_id},
  877. {"model", oaicompat_model},
  878. {"system_fingerprint", build_info},
  879. {"object", "chat.completion.chunk"}
  880. };
  881. if (timings.prompt_n >= 0) {
  882. ret.push_back({"timings", timings.to_json()});
  883. }
  884. return std::vector<json>({ret});
  885. }
  886. };
  887. struct server_task_result_embd : server_task_result {
  888. int index = 0;
  889. std::vector<std::vector<float>> embedding;
  890. int32_t n_tokens;
  891. // OAI-compat fields
  892. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  893. virtual int get_index() override {
  894. return index;
  895. }
  896. virtual json to_json() override {
  897. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  898. ? to_json_oaicompat()
  899. : to_json_non_oaicompat();
  900. }
  901. json to_json_non_oaicompat() {
  902. return json {
  903. {"index", index},
  904. {"embedding", embedding},
  905. };
  906. }
  907. json to_json_oaicompat() {
  908. return json {
  909. {"index", index},
  910. {"embedding", embedding[0]},
  911. {"tokens_evaluated", n_tokens},
  912. };
  913. }
  914. };
  915. struct server_task_result_rerank : server_task_result {
  916. int index = 0;
  917. float score = -1e6;
  918. int32_t n_tokens;
  919. virtual int get_index() override {
  920. return index;
  921. }
  922. virtual json to_json() override {
  923. return json {
  924. {"index", index},
  925. {"score", score},
  926. {"tokens_evaluated", n_tokens},
  927. };
  928. }
  929. };
  930. // this function maybe used outside of server_task_result_error
  931. static json format_error_response(const std::string & message, const enum error_type type) {
  932. std::string type_str;
  933. int code = 500;
  934. switch (type) {
  935. case ERROR_TYPE_INVALID_REQUEST:
  936. type_str = "invalid_request_error";
  937. code = 400;
  938. break;
  939. case ERROR_TYPE_AUTHENTICATION:
  940. type_str = "authentication_error";
  941. code = 401;
  942. break;
  943. case ERROR_TYPE_NOT_FOUND:
  944. type_str = "not_found_error";
  945. code = 404;
  946. break;
  947. case ERROR_TYPE_SERVER:
  948. type_str = "server_error";
  949. code = 500;
  950. break;
  951. case ERROR_TYPE_PERMISSION:
  952. type_str = "permission_error";
  953. code = 403;
  954. break;
  955. case ERROR_TYPE_NOT_SUPPORTED:
  956. type_str = "not_supported_error";
  957. code = 501;
  958. break;
  959. case ERROR_TYPE_UNAVAILABLE:
  960. type_str = "unavailable_error";
  961. code = 503;
  962. break;
  963. }
  964. return json {
  965. {"code", code},
  966. {"message", message},
  967. {"type", type_str},
  968. };
  969. }
  970. struct server_task_result_error : server_task_result {
  971. int index = 0;
  972. error_type err_type = ERROR_TYPE_SERVER;
  973. std::string err_msg;
  974. virtual bool is_error() override {
  975. return true;
  976. }
  977. virtual json to_json() override {
  978. return format_error_response(err_msg, err_type);
  979. }
  980. };
  981. struct server_task_result_metrics : server_task_result {
  982. int n_idle_slots;
  983. int n_processing_slots;
  984. int n_tasks_deferred;
  985. int64_t t_start;
  986. int32_t kv_cache_tokens_count;
  987. int32_t kv_cache_used_cells;
  988. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  989. uint64_t n_prompt_tokens_processed_total = 0;
  990. uint64_t t_prompt_processing_total = 0;
  991. uint64_t n_tokens_predicted_total = 0;
  992. uint64_t t_tokens_generation_total = 0;
  993. uint64_t n_prompt_tokens_processed = 0;
  994. uint64_t t_prompt_processing = 0;
  995. uint64_t n_tokens_predicted = 0;
  996. uint64_t t_tokens_generation = 0;
  997. uint64_t n_decode_total = 0;
  998. uint64_t n_busy_slots_total = 0;
  999. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1000. // therefore, we use json to temporarily store the slot.to_json() result
  1001. json slots_data = json::array();
  1002. virtual json to_json() override {
  1003. return json {
  1004. { "idle", n_idle_slots },
  1005. { "processing", n_processing_slots },
  1006. { "deferred", n_tasks_deferred },
  1007. { "t_start", t_start },
  1008. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1009. { "t_tokens_generation_total", t_tokens_generation_total },
  1010. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1011. { "t_prompt_processing_total", t_prompt_processing_total },
  1012. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1013. { "t_prompt_processing", t_prompt_processing },
  1014. { "n_tokens_predicted", n_tokens_predicted },
  1015. { "t_tokens_generation", t_tokens_generation },
  1016. { "n_decode_total", n_decode_total },
  1017. { "n_busy_slots_total", n_busy_slots_total },
  1018. { "kv_cache_tokens_count", kv_cache_tokens_count },
  1019. { "kv_cache_used_cells", kv_cache_used_cells },
  1020. { "slots", slots_data },
  1021. };
  1022. }
  1023. };
  1024. struct server_task_result_slot_save_load : server_task_result {
  1025. std::string filename;
  1026. bool is_save; // true = save, false = load
  1027. size_t n_tokens;
  1028. size_t n_bytes;
  1029. double t_ms;
  1030. virtual json to_json() override {
  1031. if (is_save) {
  1032. return json {
  1033. { "id_slot", id_slot },
  1034. { "filename", filename },
  1035. { "n_saved", n_tokens },
  1036. { "n_written", n_bytes },
  1037. { "timings", {
  1038. { "save_ms", t_ms }
  1039. }},
  1040. };
  1041. } else {
  1042. return json {
  1043. { "id_slot", id_slot },
  1044. { "filename", filename },
  1045. { "n_restored", n_tokens },
  1046. { "n_read", n_bytes },
  1047. { "timings", {
  1048. { "restore_ms", t_ms }
  1049. }},
  1050. };
  1051. }
  1052. }
  1053. };
  1054. struct server_task_result_slot_erase : server_task_result {
  1055. size_t n_erased;
  1056. virtual json to_json() override {
  1057. return json {
  1058. { "id_slot", id_slot },
  1059. { "n_erased", n_erased },
  1060. };
  1061. }
  1062. };
  1063. struct server_task_result_apply_lora : server_task_result {
  1064. virtual json to_json() override {
  1065. return json {{ "success", true }};
  1066. }
  1067. };
  1068. struct server_slot {
  1069. int id;
  1070. int id_task = -1;
  1071. // only used for completion/embedding/infill/rerank
  1072. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1073. llama_batch batch_spec = {};
  1074. llama_context * ctx = nullptr;
  1075. llama_context * ctx_dft = nullptr;
  1076. common_speculative * spec = nullptr;
  1077. std::vector<common_adapter_lora_info> lora;
  1078. // the index relative to completion multi-task request
  1079. size_t index = 0;
  1080. struct slot_params params;
  1081. slot_state state = SLOT_STATE_IDLE;
  1082. // used to determine the slot that has been used the longest
  1083. int64_t t_last_used = -1;
  1084. // generation props
  1085. int32_t n_ctx = 0; // context size per slot
  1086. int32_t n_past = 0;
  1087. int32_t n_decoded = 0;
  1088. int32_t n_remaining = -1;
  1089. int32_t i_batch = -1;
  1090. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1091. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1092. int32_t n_prompt_tokens = 0;
  1093. int32_t n_prompt_tokens_processed = 0;
  1094. // input prompt tokens
  1095. llama_tokens prompt_tokens;
  1096. size_t last_nl_pos = 0;
  1097. std::string generated_text;
  1098. llama_tokens generated_tokens;
  1099. llama_tokens cache_tokens;
  1100. std::vector<completion_token_output> generated_token_probs;
  1101. bool has_next_token = true;
  1102. bool has_new_line = false;
  1103. bool truncated = false;
  1104. stop_type stop;
  1105. std::string stopping_word;
  1106. // sampling
  1107. json json_schema;
  1108. struct common_sampler * smpl = nullptr;
  1109. llama_token sampled;
  1110. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1111. // stats
  1112. size_t n_sent_text = 0; // number of sent text character
  1113. int64_t t_start_process_prompt;
  1114. int64_t t_start_generation;
  1115. double t_prompt_processing; // ms
  1116. double t_token_generation; // ms
  1117. std::function<void(int)> callback_on_release;
  1118. void reset() {
  1119. SLT_DBG(*this, "%s", "\n");
  1120. n_prompt_tokens = 0;
  1121. last_nl_pos = 0;
  1122. generated_text = "";
  1123. has_new_line = false;
  1124. truncated = false;
  1125. stop = STOP_TYPE_NONE;
  1126. stopping_word = "";
  1127. n_past = 0;
  1128. n_sent_text = 0;
  1129. task_type = SERVER_TASK_TYPE_COMPLETION;
  1130. generated_tokens.clear();
  1131. generated_token_probs.clear();
  1132. }
  1133. bool is_non_causal() const {
  1134. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1135. }
  1136. bool can_batch_with(server_slot & other_slot) const {
  1137. return is_non_causal() == other_slot.is_non_causal()
  1138. && are_lora_equal(lora, other_slot.lora);
  1139. }
  1140. bool has_budget(const common_params & global_params) {
  1141. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1142. return true; // limitless
  1143. }
  1144. n_remaining = -1;
  1145. if (params.n_predict != -1) {
  1146. n_remaining = params.n_predict - n_decoded;
  1147. } else if (global_params.n_predict != -1) {
  1148. n_remaining = global_params.n_predict - n_decoded;
  1149. }
  1150. return n_remaining > 0; // no budget
  1151. }
  1152. bool is_processing() const {
  1153. return state != SLOT_STATE_IDLE;
  1154. }
  1155. bool can_speculate() const {
  1156. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1157. }
  1158. void add_token(const completion_token_output & token) {
  1159. if (!is_processing()) {
  1160. SLT_WRN(*this, "%s", "slot is not processing\n");
  1161. return;
  1162. }
  1163. generated_token_probs.push_back(token);
  1164. }
  1165. void release() {
  1166. if (is_processing()) {
  1167. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1168. t_last_used = ggml_time_us();
  1169. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1170. state = SLOT_STATE_IDLE;
  1171. callback_on_release(id);
  1172. }
  1173. }
  1174. result_timings get_timings() const {
  1175. result_timings timings;
  1176. timings.prompt_n = n_prompt_tokens_processed;
  1177. timings.prompt_ms = t_prompt_processing;
  1178. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1179. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1180. timings.predicted_n = n_decoded;
  1181. timings.predicted_ms = t_token_generation;
  1182. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1183. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1184. return timings;
  1185. }
  1186. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1187. size_t stop_pos = std::string::npos;
  1188. for (const std::string & word : params.antiprompt) {
  1189. size_t pos;
  1190. if (is_full_stop) {
  1191. const size_t tmp = word.size() + last_token_size;
  1192. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1193. pos = text.find(word, from_pos);
  1194. } else {
  1195. // otherwise, partial stop
  1196. pos = find_partial_stop_string(word, text);
  1197. }
  1198. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1199. if (is_full_stop) {
  1200. stop = STOP_TYPE_WORD;
  1201. stopping_word = word;
  1202. has_next_token = false;
  1203. }
  1204. stop_pos = pos;
  1205. }
  1206. }
  1207. return stop_pos;
  1208. }
  1209. void print_timings() const {
  1210. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1211. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1212. const double t_gen = t_token_generation / n_decoded;
  1213. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1214. SLT_INF(*this,
  1215. "\n"
  1216. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1217. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1218. " total time = %10.2f ms / %5d tokens\n",
  1219. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1220. t_token_generation, n_decoded, t_gen, n_gen_second,
  1221. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1222. }
  1223. json to_json() const {
  1224. return json {
  1225. {"id", id},
  1226. {"id_task", id_task},
  1227. {"n_ctx", n_ctx},
  1228. {"speculative", can_speculate()},
  1229. {"is_processing", is_processing()},
  1230. {"non_causal", is_non_causal()},
  1231. {"params", params.to_json()},
  1232. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1233. {"next_token",
  1234. {
  1235. {"has_next_token", has_next_token},
  1236. {"has_new_line", has_new_line},
  1237. {"n_remain", n_remaining},
  1238. {"n_decoded", n_decoded},
  1239. {"stopping_word", stopping_word},
  1240. }
  1241. },
  1242. };
  1243. }
  1244. };
  1245. struct server_metrics {
  1246. int64_t t_start = 0;
  1247. uint64_t n_prompt_tokens_processed_total = 0;
  1248. uint64_t t_prompt_processing_total = 0;
  1249. uint64_t n_tokens_predicted_total = 0;
  1250. uint64_t t_tokens_generation_total = 0;
  1251. uint64_t n_prompt_tokens_processed = 0;
  1252. uint64_t t_prompt_processing = 0;
  1253. uint64_t n_tokens_predicted = 0;
  1254. uint64_t t_tokens_generation = 0;
  1255. uint64_t n_decode_total = 0;
  1256. uint64_t n_busy_slots_total = 0;
  1257. void init() {
  1258. t_start = ggml_time_us();
  1259. }
  1260. void on_prompt_eval(const server_slot & slot) {
  1261. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1262. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1263. t_prompt_processing += slot.t_prompt_processing;
  1264. t_prompt_processing_total += slot.t_prompt_processing;
  1265. }
  1266. void on_prediction(const server_slot & slot) {
  1267. n_tokens_predicted_total += slot.n_decoded;
  1268. n_tokens_predicted += slot.n_decoded;
  1269. t_tokens_generation += slot.t_token_generation;
  1270. t_tokens_generation_total += slot.t_token_generation;
  1271. }
  1272. void on_decoded(const std::vector<server_slot> & slots) {
  1273. n_decode_total++;
  1274. for (const auto & slot : slots) {
  1275. if (slot.is_processing()) {
  1276. n_busy_slots_total++;
  1277. }
  1278. }
  1279. }
  1280. void reset_bucket() {
  1281. n_prompt_tokens_processed = 0;
  1282. t_prompt_processing = 0;
  1283. n_tokens_predicted = 0;
  1284. t_tokens_generation = 0;
  1285. }
  1286. };
  1287. struct server_queue {
  1288. int id = 0;
  1289. bool running;
  1290. // queues
  1291. std::deque<server_task> queue_tasks;
  1292. std::deque<server_task> queue_tasks_deferred;
  1293. std::mutex mutex_tasks;
  1294. std::condition_variable condition_tasks;
  1295. // callback functions
  1296. std::function<void(server_task)> callback_new_task;
  1297. std::function<void(void)> callback_update_slots;
  1298. // Add a new task to the end of the queue
  1299. int post(server_task task, bool front = false) {
  1300. std::unique_lock<std::mutex> lock(mutex_tasks);
  1301. GGML_ASSERT(task.id != -1);
  1302. // if this is cancel task make sure to clean up pending tasks
  1303. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1304. cleanup_pending_task(task.id_target);
  1305. }
  1306. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1307. if (front) {
  1308. queue_tasks.push_front(std::move(task));
  1309. } else {
  1310. queue_tasks.push_back(std::move(task));
  1311. }
  1312. condition_tasks.notify_one();
  1313. return task.id;
  1314. }
  1315. // multi-task version of post()
  1316. int post(std::vector<server_task> & tasks, bool front = false) {
  1317. std::unique_lock<std::mutex> lock(mutex_tasks);
  1318. for (auto & task : tasks) {
  1319. if (task.id == -1) {
  1320. task.id = id++;
  1321. }
  1322. // if this is cancel task make sure to clean up pending tasks
  1323. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1324. cleanup_pending_task(task.id_target);
  1325. }
  1326. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1327. if (front) {
  1328. queue_tasks.push_front(std::move(task));
  1329. } else {
  1330. queue_tasks.push_back(std::move(task));
  1331. }
  1332. }
  1333. condition_tasks.notify_one();
  1334. return 0;
  1335. }
  1336. // Add a new task, but defer until one slot is available
  1337. void defer(server_task task) {
  1338. std::unique_lock<std::mutex> lock(mutex_tasks);
  1339. QUE_DBG("defer task, id = %d\n", task.id);
  1340. queue_tasks_deferred.push_back(std::move(task));
  1341. condition_tasks.notify_one();
  1342. }
  1343. // Get the next id for creating a new task
  1344. int get_new_id() {
  1345. std::unique_lock<std::mutex> lock(mutex_tasks);
  1346. int new_id = id++;
  1347. return new_id;
  1348. }
  1349. // Register function to process a new task
  1350. void on_new_task(std::function<void(server_task)> callback) {
  1351. callback_new_task = std::move(callback);
  1352. }
  1353. // Register the function to be called when all slots data is ready to be processed
  1354. void on_update_slots(std::function<void(void)> callback) {
  1355. callback_update_slots = std::move(callback);
  1356. }
  1357. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1358. void pop_deferred_task() {
  1359. std::unique_lock<std::mutex> lock(mutex_tasks);
  1360. if (!queue_tasks_deferred.empty()) {
  1361. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1362. queue_tasks_deferred.pop_front();
  1363. }
  1364. condition_tasks.notify_one();
  1365. }
  1366. // end the start_loop routine
  1367. void terminate() {
  1368. std::unique_lock<std::mutex> lock(mutex_tasks);
  1369. running = false;
  1370. condition_tasks.notify_all();
  1371. }
  1372. /**
  1373. * Main loop consists of these steps:
  1374. * - Wait until a new task arrives
  1375. * - Process the task (i.e. maybe copy data into slot)
  1376. * - Check if multitask is finished
  1377. * - Update all slots
  1378. */
  1379. void start_loop() {
  1380. running = true;
  1381. while (true) {
  1382. QUE_DBG("%s", "processing new tasks\n");
  1383. while (true) {
  1384. std::unique_lock<std::mutex> lock(mutex_tasks);
  1385. if (!running) {
  1386. QUE_DBG("%s", "terminate\n");
  1387. return;
  1388. }
  1389. if (queue_tasks.empty()) {
  1390. lock.unlock();
  1391. break;
  1392. }
  1393. server_task task = queue_tasks.front();
  1394. queue_tasks.pop_front();
  1395. lock.unlock();
  1396. QUE_DBG("processing task, id = %d\n", task.id);
  1397. callback_new_task(std::move(task));
  1398. }
  1399. // all tasks in the current loop is processed, slots data is now ready
  1400. QUE_DBG("%s", "update slots\n");
  1401. callback_update_slots();
  1402. QUE_DBG("%s", "waiting for new tasks\n");
  1403. {
  1404. std::unique_lock<std::mutex> lock(mutex_tasks);
  1405. if (!running) {
  1406. QUE_DBG("%s", "terminate\n");
  1407. return;
  1408. }
  1409. if (queue_tasks.empty()) {
  1410. condition_tasks.wait(lock, [&]{
  1411. return (!queue_tasks.empty() || !running);
  1412. });
  1413. }
  1414. }
  1415. }
  1416. }
  1417. private:
  1418. void cleanup_pending_task(int id_target) {
  1419. // no need lock because this is called exclusively by post()
  1420. auto rm_func = [id_target](const server_task & task) {
  1421. return task.id_target == id_target;
  1422. };
  1423. queue_tasks.erase(
  1424. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1425. queue_tasks.end());
  1426. queue_tasks_deferred.erase(
  1427. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1428. queue_tasks_deferred.end());
  1429. }
  1430. };
  1431. struct server_response {
  1432. // for keeping track of all tasks waiting for the result
  1433. std::unordered_set<int> waiting_task_ids;
  1434. // the main result queue (using ptr for polymorphism)
  1435. std::vector<server_task_result_ptr> queue_results;
  1436. std::mutex mutex_results;
  1437. std::condition_variable condition_results;
  1438. // add the id_task to the list of tasks waiting for response
  1439. void add_waiting_task_id(int id_task) {
  1440. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1441. std::unique_lock<std::mutex> lock(mutex_results);
  1442. waiting_task_ids.insert(id_task);
  1443. }
  1444. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1445. std::unique_lock<std::mutex> lock(mutex_results);
  1446. for (const auto & task : tasks) {
  1447. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1448. waiting_task_ids.insert(task.id);
  1449. }
  1450. }
  1451. // when the request is finished, we can remove task associated with it
  1452. void remove_waiting_task_id(int id_task) {
  1453. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1454. std::unique_lock<std::mutex> lock(mutex_results);
  1455. waiting_task_ids.erase(id_task);
  1456. // make sure to clean up all pending results
  1457. queue_results.erase(
  1458. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1459. return res->id == id_task;
  1460. }),
  1461. queue_results.end());
  1462. }
  1463. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1464. std::unique_lock<std::mutex> lock(mutex_results);
  1465. for (const auto & id_task : id_tasks) {
  1466. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1467. waiting_task_ids.erase(id_task);
  1468. }
  1469. }
  1470. // This function blocks the thread until there is a response for one of the id_tasks
  1471. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1472. while (true) {
  1473. std::unique_lock<std::mutex> lock(mutex_results);
  1474. condition_results.wait(lock, [&]{
  1475. return !queue_results.empty();
  1476. });
  1477. for (size_t i = 0; i < queue_results.size(); i++) {
  1478. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1479. server_task_result_ptr res = std::move(queue_results[i]);
  1480. queue_results.erase(queue_results.begin() + i);
  1481. return res;
  1482. }
  1483. }
  1484. }
  1485. // should never reach here
  1486. }
  1487. // same as recv(), but have timeout in seconds
  1488. // if timeout is reached, nullptr is returned
  1489. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1490. while (true) {
  1491. std::unique_lock<std::mutex> lock(mutex_results);
  1492. for (int i = 0; i < (int) queue_results.size(); i++) {
  1493. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1494. server_task_result_ptr res = std::move(queue_results[i]);
  1495. queue_results.erase(queue_results.begin() + i);
  1496. return res;
  1497. }
  1498. }
  1499. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1500. if (cr_res == std::cv_status::timeout) {
  1501. return nullptr;
  1502. }
  1503. }
  1504. // should never reach here
  1505. }
  1506. // single-task version of recv()
  1507. server_task_result_ptr recv(int id_task) {
  1508. std::unordered_set<int> id_tasks = {id_task};
  1509. return recv(id_tasks);
  1510. }
  1511. // Send a new result to a waiting id_task
  1512. void send(server_task_result_ptr && result) {
  1513. SRV_DBG("sending result for task id = %d\n", result->id);
  1514. std::unique_lock<std::mutex> lock(mutex_results);
  1515. for (const auto & id_task : waiting_task_ids) {
  1516. if (result->id == id_task) {
  1517. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1518. queue_results.emplace_back(std::move(result));
  1519. condition_results.notify_all();
  1520. return;
  1521. }
  1522. }
  1523. }
  1524. };
  1525. struct server_context {
  1526. common_params params_base;
  1527. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1528. common_init_result llama_init;
  1529. common_init_result llama_init_dft;
  1530. llama_model * model = nullptr;
  1531. llama_context * ctx = nullptr;
  1532. const llama_vocab * vocab = nullptr;
  1533. llama_model * model_dft = nullptr;
  1534. llama_context_params cparams_dft;
  1535. llama_batch batch = {};
  1536. bool clean_kv_cache = true;
  1537. bool add_bos_token = true;
  1538. bool has_eos_token = false;
  1539. int32_t n_ctx; // total context for all clients / slots
  1540. // slots / clients
  1541. std::vector<server_slot> slots;
  1542. json default_generation_settings_for_props;
  1543. server_queue queue_tasks;
  1544. server_response queue_results;
  1545. server_metrics metrics;
  1546. // Necessary similarity of prompt for slot selection
  1547. float slot_prompt_similarity = 0.0f;
  1548. common_chat_templates_ptr chat_templates;
  1549. ~server_context() {
  1550. // Clear any sampling context
  1551. for (server_slot & slot : slots) {
  1552. common_sampler_free(slot.smpl);
  1553. slot.smpl = nullptr;
  1554. llama_free(slot.ctx_dft);
  1555. slot.ctx_dft = nullptr;
  1556. common_speculative_free(slot.spec);
  1557. slot.spec = nullptr;
  1558. llama_batch_free(slot.batch_spec);
  1559. }
  1560. llama_batch_free(batch);
  1561. }
  1562. bool load_model(const common_params & params) {
  1563. SRV_INF("loading model '%s'\n", params.model.c_str());
  1564. params_base = params;
  1565. llama_init = common_init_from_params(params_base);
  1566. model = llama_init.model.get();
  1567. ctx = llama_init.context.get();
  1568. if (model == nullptr) {
  1569. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1570. return false;
  1571. }
  1572. vocab = llama_model_get_vocab(model);
  1573. n_ctx = llama_n_ctx(ctx);
  1574. add_bos_token = llama_vocab_get_add_bos(vocab);
  1575. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1576. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1577. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1578. auto params_dft = params_base;
  1579. params_dft.devices = params_base.speculative.devices;
  1580. params_dft.hf_file = params_base.speculative.hf_file;
  1581. params_dft.hf_repo = params_base.speculative.hf_repo;
  1582. params_dft.model = params_base.speculative.model;
  1583. params_dft.model_url = params_base.speculative.model_url;
  1584. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1585. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1586. params_dft.n_parallel = 1;
  1587. // force F16 KV cache for the draft model for extra performance
  1588. params_dft.cache_type_k = GGML_TYPE_F16;
  1589. params_dft.cache_type_v = GGML_TYPE_F16;
  1590. llama_init_dft = common_init_from_params(params_dft);
  1591. model_dft = llama_init_dft.model.get();
  1592. if (model_dft == nullptr) {
  1593. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1594. return false;
  1595. }
  1596. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1597. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1598. return false;
  1599. }
  1600. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1601. cparams_dft = common_context_params_to_llama(params_dft);
  1602. cparams_dft.n_batch = n_ctx_dft;
  1603. // the context is not needed - we will create one for each slot
  1604. llama_init_dft.context.reset();
  1605. }
  1606. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1607. try {
  1608. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1609. } catch (const std::exception & e) {
  1610. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1611. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1612. chat_templates = common_chat_templates_init(model, "chatml");
  1613. }
  1614. return true;
  1615. }
  1616. void init() {
  1617. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1618. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1619. for (int i = 0; i < params_base.n_parallel; i++) {
  1620. server_slot slot;
  1621. slot.id = i;
  1622. slot.ctx = ctx;
  1623. slot.n_ctx = n_ctx_slot;
  1624. slot.n_predict = params_base.n_predict;
  1625. if (model_dft) {
  1626. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1627. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1628. if (slot.ctx_dft == nullptr) {
  1629. SRV_ERR("%s", "failed to create draft context\n");
  1630. return;
  1631. }
  1632. slot.spec = common_speculative_init(slot.ctx_dft);
  1633. if (slot.spec == nullptr) {
  1634. SRV_ERR("%s", "failed to create speculator\n");
  1635. return;
  1636. }
  1637. }
  1638. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1639. slot.params.sampling = params_base.sampling;
  1640. slot.callback_on_release = [this](int) {
  1641. queue_tasks.pop_deferred_task();
  1642. };
  1643. slot.reset();
  1644. slots.push_back(slot);
  1645. }
  1646. default_generation_settings_for_props = slots[0].to_json();
  1647. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1648. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1649. {
  1650. const int32_t n_batch = llama_n_batch(ctx);
  1651. // only a single seq_id per token is needed
  1652. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1653. }
  1654. metrics.init();
  1655. }
  1656. server_slot * get_slot_by_id(int id) {
  1657. for (server_slot & slot : slots) {
  1658. if (slot.id == id) {
  1659. return &slot;
  1660. }
  1661. }
  1662. return nullptr;
  1663. }
  1664. server_slot * get_available_slot(const server_task & task) {
  1665. server_slot * ret = nullptr;
  1666. // find the slot that has at least n% prompt similarity
  1667. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1668. int lcs_len = 0;
  1669. float similarity = 0;
  1670. for (server_slot & slot : slots) {
  1671. // skip the slot if it is not available
  1672. if (slot.is_processing()) {
  1673. continue;
  1674. }
  1675. // skip the slot if it does not contains cached tokens
  1676. if (slot.cache_tokens.empty()) {
  1677. continue;
  1678. }
  1679. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1680. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1681. // fraction of the common subsequence length compared to the current slot's prompt length
  1682. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1683. // select the current slot if the criteria match
  1684. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1685. lcs_len = cur_lcs_len;
  1686. similarity = cur_similarity;
  1687. ret = &slot;
  1688. }
  1689. }
  1690. if (ret != nullptr) {
  1691. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1692. }
  1693. }
  1694. // find the slot that has been least recently used
  1695. if (ret == nullptr) {
  1696. int64_t t_last = ggml_time_us();
  1697. for (server_slot & slot : slots) {
  1698. // skip the slot if it is not available
  1699. if (slot.is_processing()) {
  1700. continue;
  1701. }
  1702. // select the current slot if the criteria match
  1703. if (slot.t_last_used < t_last) {
  1704. t_last = slot.t_last_used;
  1705. ret = &slot;
  1706. }
  1707. }
  1708. if (ret != nullptr) {
  1709. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1710. }
  1711. }
  1712. return ret;
  1713. }
  1714. bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
  1715. const llama_model * model = llama_get_model(ctx);
  1716. const llama_vocab * vocab = llama_model_get_vocab(model);
  1717. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1718. for (const auto & token : tokens) {
  1719. if (token < 0 || token >= n_vocab) {
  1720. return false;
  1721. }
  1722. }
  1723. return true;
  1724. }
  1725. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1726. slot.reset();
  1727. slot.id_task = task.id;
  1728. slot.index = task.index;
  1729. slot.task_type = task.type;
  1730. slot.params = std::move(task.params);
  1731. slot.prompt_tokens = std::move(task.prompt_tokens);
  1732. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1733. // if lora is changed, we cannot reuse cached tokens
  1734. slot.cache_tokens.clear();
  1735. slot.lora = task.params.lora;
  1736. }
  1737. bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
  1738. if (!can_detokenize) {
  1739. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1740. return false;
  1741. }
  1742. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1743. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1744. // Might be better to reject the request with a 400 ?
  1745. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1746. slot.params.n_predict = slot.n_predict;
  1747. }
  1748. if (slot.params.ignore_eos && has_eos_token) {
  1749. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1750. }
  1751. {
  1752. if (slot.smpl != nullptr) {
  1753. common_sampler_free(slot.smpl);
  1754. }
  1755. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1756. if (slot.smpl == nullptr) {
  1757. // for now, the only error that may happen here is invalid grammar
  1758. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1759. return false;
  1760. }
  1761. }
  1762. if (slot.ctx_dft) {
  1763. llama_batch_free(slot.batch_spec);
  1764. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1765. }
  1766. slot.state = SLOT_STATE_STARTED;
  1767. SLT_INF(slot, "%s", "processing task\n");
  1768. return true;
  1769. }
  1770. void kv_cache_clear() {
  1771. SRV_DBG("%s", "clearing KV cache\n");
  1772. // clear the entire KV cache
  1773. llama_kv_self_clear(ctx);
  1774. clean_kv_cache = false;
  1775. }
  1776. bool process_token(completion_token_output & result, server_slot & slot) {
  1777. // remember which tokens were sampled - used for repetition penalties during sampling
  1778. const std::string token_str = result.text_to_send;
  1779. slot.sampled = result.tok;
  1780. slot.generated_text += token_str;
  1781. if (slot.params.return_tokens) {
  1782. slot.generated_tokens.push_back(result.tok);
  1783. }
  1784. slot.has_next_token = true;
  1785. // check if there is incomplete UTF-8 character at the end
  1786. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1787. // search stop word and delete it
  1788. if (!incomplete) {
  1789. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1790. const std::string str_test = slot.generated_text.substr(pos);
  1791. bool send_text = true;
  1792. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1793. if (stop_pos != std::string::npos) {
  1794. slot.generated_text.erase(
  1795. slot.generated_text.begin() + pos + stop_pos,
  1796. slot.generated_text.end());
  1797. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1798. } else if (slot.has_next_token) {
  1799. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1800. send_text = stop_pos == std::string::npos;
  1801. }
  1802. // check if there is any token to predict
  1803. if (send_text) {
  1804. // no send the stop word in the response
  1805. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1806. slot.n_sent_text += result.text_to_send.size();
  1807. // add the token to slot queue and cache
  1808. } else {
  1809. result.text_to_send = "";
  1810. }
  1811. slot.add_token(result);
  1812. if (slot.params.stream) {
  1813. send_partial_response(slot, result);
  1814. }
  1815. }
  1816. if (incomplete) {
  1817. slot.has_next_token = true;
  1818. }
  1819. // check the limits
  1820. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1821. slot.stop = STOP_TYPE_LIMIT;
  1822. slot.has_next_token = false;
  1823. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1824. }
  1825. if (slot.has_new_line) {
  1826. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1827. if (slot.params.n_indent > 0) {
  1828. // check the current indentation
  1829. // TODO: improve by not doing it more than once for each new line
  1830. if (slot.last_nl_pos > 0) {
  1831. size_t pos = slot.last_nl_pos;
  1832. int n_indent = 0;
  1833. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1834. n_indent++;
  1835. pos++;
  1836. }
  1837. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1838. slot.stop = STOP_TYPE_LIMIT;
  1839. slot.has_next_token = false;
  1840. // cut the last line
  1841. slot.generated_text.erase(pos, std::string::npos);
  1842. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1843. }
  1844. }
  1845. // find the next new line
  1846. {
  1847. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1848. if (pos != std::string::npos) {
  1849. slot.last_nl_pos = pos + 1;
  1850. }
  1851. }
  1852. }
  1853. }
  1854. // check if there is a new line in the generated text
  1855. if (result.text_to_send.find('\n') != std::string::npos) {
  1856. slot.has_new_line = true;
  1857. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1858. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1859. slot.stop = STOP_TYPE_LIMIT;
  1860. slot.has_next_token = false;
  1861. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1862. }
  1863. }
  1864. // if context shift is disabled, we stop when it reaches the context limit
  1865. if (slot.n_past >= slot.n_ctx) {
  1866. slot.truncated = true;
  1867. slot.stop = STOP_TYPE_LIMIT;
  1868. slot.has_next_token = false;
  1869. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1870. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1871. }
  1872. if (llama_vocab_is_eog(vocab, result.tok)) {
  1873. slot.stop = STOP_TYPE_EOS;
  1874. slot.has_next_token = false;
  1875. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1876. }
  1877. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1878. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1879. slot.truncated = true;
  1880. slot.stop = STOP_TYPE_LIMIT;
  1881. slot.has_next_token = false; // stop prediction
  1882. SLT_WRN(slot,
  1883. "n_predict (%d) is set for infinite generation. "
  1884. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1885. slot.params.n_predict, n_ctx_train);
  1886. }
  1887. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1888. return slot.has_next_token; // continue
  1889. }
  1890. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1891. size_t n_probs = slot.params.sampling.n_probs;
  1892. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1893. if (post_sampling) {
  1894. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1895. const size_t max_probs = cur_p->size;
  1896. // set probability for sampled token
  1897. for (size_t i = 0; i < max_probs; i++) {
  1898. if (cur_p->data[i].id == result.tok) {
  1899. result.prob = cur_p->data[i].p;
  1900. break;
  1901. }
  1902. }
  1903. // set probability for top n_probs tokens
  1904. result.probs.reserve(max_probs);
  1905. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1906. result.probs.push_back({
  1907. cur_p->data[i].id,
  1908. common_token_to_piece(ctx, cur_p->data[i].id, special),
  1909. cur_p->data[i].p
  1910. });
  1911. }
  1912. } else {
  1913. // TODO: optimize this with min-p optimization
  1914. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1915. // set probability for sampled token
  1916. for (size_t i = 0; i < n_vocab; i++) {
  1917. // set probability for sampled token
  1918. if (cur[i].id == result.tok) {
  1919. result.prob = cur[i].p;
  1920. break;
  1921. }
  1922. }
  1923. // set probability for top n_probs tokens
  1924. result.probs.reserve(n_probs);
  1925. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1926. result.probs.push_back({
  1927. cur[i].id,
  1928. common_token_to_piece(ctx, cur[i].id, special),
  1929. cur[i].p
  1930. });
  1931. }
  1932. }
  1933. }
  1934. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1935. send_error(task.id, error, type);
  1936. }
  1937. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1938. send_error(slot.id_task, error, type);
  1939. }
  1940. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1941. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1942. auto res = std::make_unique<server_task_result_error>();
  1943. res->id = id_task;
  1944. res->err_type = type;
  1945. res->err_msg = error;
  1946. queue_results.send(std::move(res));
  1947. }
  1948. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1949. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1950. res->id = slot.id_task;
  1951. res->index = slot.index;
  1952. res->content = tkn.text_to_send;
  1953. res->tokens = { tkn.tok };
  1954. res->n_decoded = slot.n_decoded;
  1955. res->n_prompt_tokens = slot.n_prompt_tokens;
  1956. res->post_sampling_probs = slot.params.post_sampling_probs;
  1957. res->verbose = slot.params.verbose;
  1958. res->oaicompat = slot.params.oaicompat;
  1959. res->oaicompat_model = slot.params.oaicompat_model;
  1960. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1961. // populate res.probs_output
  1962. if (slot.params.sampling.n_probs > 0) {
  1963. res->prob_output = tkn; // copy the token probs
  1964. }
  1965. // populate timings if this is final response or timings_per_token is enabled
  1966. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1967. res->timings = slot.get_timings();
  1968. }
  1969. queue_results.send(std::move(res));
  1970. }
  1971. void send_final_response(server_slot & slot) {
  1972. auto res = std::make_unique<server_task_result_cmpl_final>();
  1973. res->id = slot.id_task;
  1974. res->id_slot = slot.id;
  1975. res->index = slot.index;
  1976. res->content = std::move(slot.generated_text);
  1977. res->tokens = std::move(slot.generated_tokens);
  1978. res->timings = slot.get_timings();
  1979. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1980. res->response_fields = std::move(slot.params.response_fields);
  1981. res->truncated = slot.truncated;
  1982. res->n_decoded = slot.n_decoded;
  1983. res->n_prompt_tokens = slot.n_prompt_tokens;
  1984. res->n_tokens_cached = slot.n_past;
  1985. res->has_new_line = slot.has_new_line;
  1986. res->stopping_word = slot.stopping_word;
  1987. res->stop = slot.stop;
  1988. res->post_sampling_probs = slot.params.post_sampling_probs;
  1989. res->verbose = slot.params.verbose;
  1990. res->stream = slot.params.stream;
  1991. res->oaicompat = slot.params.oaicompat;
  1992. res->oaicompat_model = slot.params.oaicompat_model;
  1993. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1994. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  1995. // populate res.probs_output
  1996. if (slot.params.sampling.n_probs > 0) {
  1997. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1998. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1999. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2000. res->probs_output = std::vector<completion_token_output>(
  2001. slot.generated_token_probs.begin(),
  2002. slot.generated_token_probs.end() - safe_offset);
  2003. } else {
  2004. res->probs_output = std::vector<completion_token_output>(
  2005. slot.generated_token_probs.begin(),
  2006. slot.generated_token_probs.end());
  2007. }
  2008. }
  2009. res->generation_params = slot.params; // copy the parameters
  2010. queue_results.send(std::move(res));
  2011. }
  2012. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2013. auto res = std::make_unique<server_task_result_embd>();
  2014. res->id = slot.id_task;
  2015. res->index = slot.index;
  2016. res->n_tokens = slot.n_prompt_tokens;
  2017. res->oaicompat = slot.params.oaicompat;
  2018. const int n_embd = llama_model_n_embd(model);
  2019. std::vector<float> embd_res(n_embd, 0.0f);
  2020. for (int i = 0; i < batch.n_tokens; ++i) {
  2021. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2022. continue;
  2023. }
  2024. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2025. if (embd == NULL) {
  2026. embd = llama_get_embeddings_ith(ctx, i);
  2027. }
  2028. if (embd == NULL) {
  2029. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2030. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2031. continue;
  2032. }
  2033. // normalize only when there is pooling
  2034. // TODO: configurable
  2035. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2036. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2037. res->embedding.push_back(embd_res);
  2038. } else {
  2039. res->embedding.push_back({ embd, embd + n_embd });
  2040. }
  2041. }
  2042. SLT_DBG(slot, "%s", "sending embeddings\n");
  2043. queue_results.send(std::move(res));
  2044. }
  2045. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2046. auto res = std::make_unique<server_task_result_rerank>();
  2047. res->id = slot.id_task;
  2048. res->index = slot.index;
  2049. res->n_tokens = slot.n_prompt_tokens;
  2050. for (int i = 0; i < batch.n_tokens; ++i) {
  2051. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2052. continue;
  2053. }
  2054. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2055. if (embd == NULL) {
  2056. embd = llama_get_embeddings_ith(ctx, i);
  2057. }
  2058. if (embd == NULL) {
  2059. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2060. res->score = -1e6;
  2061. continue;
  2062. }
  2063. res->score = embd[0];
  2064. }
  2065. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2066. queue_results.send(std::move(res));
  2067. }
  2068. //
  2069. // Functions to create new task(s) and receive result(s)
  2070. //
  2071. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2072. std::vector<server_task> cancel_tasks;
  2073. cancel_tasks.reserve(id_tasks.size());
  2074. for (const auto & id_task : id_tasks) {
  2075. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2076. server_task task(SERVER_TASK_TYPE_CANCEL);
  2077. task.id_target = id_task;
  2078. queue_results.remove_waiting_task_id(id_task);
  2079. cancel_tasks.push_back(task);
  2080. }
  2081. // push to beginning of the queue, so it has highest priority
  2082. queue_tasks.post(cancel_tasks, true);
  2083. }
  2084. // receive the results from task(s)
  2085. void receive_multi_results(
  2086. const std::unordered_set<int> & id_tasks,
  2087. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2088. const std::function<void(json)> & error_handler,
  2089. const std::function<bool()> & is_connection_closed) {
  2090. std::vector<server_task_result_ptr> results(id_tasks.size());
  2091. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2092. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2093. if (is_connection_closed()) {
  2094. cancel_tasks(id_tasks);
  2095. return;
  2096. }
  2097. if (result == nullptr) {
  2098. i--; // retry
  2099. continue;
  2100. }
  2101. if (result->is_error()) {
  2102. error_handler(result->to_json());
  2103. cancel_tasks(id_tasks);
  2104. return;
  2105. }
  2106. GGML_ASSERT(
  2107. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2108. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2109. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2110. );
  2111. const size_t idx = result->get_index();
  2112. GGML_ASSERT(idx < results.size() && "index out of range");
  2113. results[idx] = std::move(result);
  2114. }
  2115. result_handler(results);
  2116. }
  2117. // receive the results from task(s), in stream mode
  2118. void receive_cmpl_results_stream(
  2119. const std::unordered_set<int> & id_tasks,
  2120. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2121. const std::function<void(json)> & error_handler,
  2122. const std::function<bool()> & is_connection_closed) {
  2123. size_t n_finished = 0;
  2124. while (true) {
  2125. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2126. if (is_connection_closed()) {
  2127. cancel_tasks(id_tasks);
  2128. return;
  2129. }
  2130. if (result == nullptr) {
  2131. continue; // retry
  2132. }
  2133. if (result->is_error()) {
  2134. error_handler(result->to_json());
  2135. cancel_tasks(id_tasks);
  2136. return;
  2137. }
  2138. GGML_ASSERT(
  2139. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2140. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2141. );
  2142. if (!result_handler(result)) {
  2143. cancel_tasks(id_tasks);
  2144. break;
  2145. }
  2146. if (result->is_stop()) {
  2147. if (++n_finished == id_tasks.size()) {
  2148. break;
  2149. }
  2150. }
  2151. }
  2152. }
  2153. //
  2154. // Functions to process the task
  2155. //
  2156. void process_single_task(server_task task) {
  2157. switch (task.type) {
  2158. case SERVER_TASK_TYPE_COMPLETION:
  2159. case SERVER_TASK_TYPE_INFILL:
  2160. case SERVER_TASK_TYPE_EMBEDDING:
  2161. case SERVER_TASK_TYPE_RERANK:
  2162. {
  2163. const int id_slot = task.id_selected_slot;
  2164. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2165. if (slot == nullptr) {
  2166. // if no slot is available, we defer this task for processing later
  2167. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2168. queue_tasks.defer(task);
  2169. break;
  2170. }
  2171. if (slot->is_processing()) {
  2172. // if requested slot is unavailable, we defer this task for processing later
  2173. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2174. queue_tasks.defer(task);
  2175. break;
  2176. }
  2177. if (!launch_slot_with_task(*slot, task)) {
  2178. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2179. break;
  2180. }
  2181. } break;
  2182. case SERVER_TASK_TYPE_CANCEL:
  2183. {
  2184. // release slot linked with the task id
  2185. for (auto & slot : slots) {
  2186. if (slot.id_task == task.id_target) {
  2187. slot.release();
  2188. break;
  2189. }
  2190. }
  2191. } break;
  2192. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2193. {
  2194. // do nothing
  2195. } break;
  2196. case SERVER_TASK_TYPE_METRICS:
  2197. {
  2198. json slots_data = json::array();
  2199. int n_idle_slots = 0;
  2200. int n_processing_slots = 0;
  2201. for (server_slot & slot : slots) {
  2202. json slot_data = slot.to_json();
  2203. if (slot.is_processing()) {
  2204. n_processing_slots++;
  2205. } else {
  2206. n_idle_slots++;
  2207. }
  2208. slots_data.push_back(slot_data);
  2209. }
  2210. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2211. auto res = std::make_unique<server_task_result_metrics>();
  2212. res->id = task.id;
  2213. res->slots_data = std::move(slots_data);
  2214. res->n_idle_slots = n_idle_slots;
  2215. res->n_processing_slots = n_processing_slots;
  2216. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2217. res->t_start = metrics.t_start;
  2218. res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
  2219. res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
  2220. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2221. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2222. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2223. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2224. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2225. res->t_prompt_processing = metrics.t_prompt_processing;
  2226. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2227. res->t_tokens_generation = metrics.t_tokens_generation;
  2228. res->n_decode_total = metrics.n_decode_total;
  2229. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2230. if (task.metrics_reset_bucket) {
  2231. metrics.reset_bucket();
  2232. }
  2233. queue_results.send(std::move(res));
  2234. } break;
  2235. case SERVER_TASK_TYPE_SLOT_SAVE:
  2236. {
  2237. int id_slot = task.slot_action.slot_id;
  2238. server_slot * slot = get_slot_by_id(id_slot);
  2239. if (slot == nullptr) {
  2240. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2241. break;
  2242. }
  2243. if (slot->is_processing()) {
  2244. // if requested slot is unavailable, we defer this task for processing later
  2245. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2246. queue_tasks.defer(task);
  2247. break;
  2248. }
  2249. const size_t token_count = slot->cache_tokens.size();
  2250. const int64_t t_start = ggml_time_us();
  2251. std::string filename = task.slot_action.filename;
  2252. std::string filepath = task.slot_action.filepath;
  2253. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2254. const int64_t t_end = ggml_time_us();
  2255. const double t_save_ms = (t_end - t_start) / 1000.0;
  2256. auto res = std::make_unique<server_task_result_slot_save_load>();
  2257. res->id = task.id;
  2258. res->id_slot = id_slot;
  2259. res->filename = filename;
  2260. res->is_save = true;
  2261. res->n_tokens = token_count;
  2262. res->n_bytes = nwrite;
  2263. res->t_ms = t_save_ms;
  2264. queue_results.send(std::move(res));
  2265. } break;
  2266. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2267. {
  2268. int id_slot = task.slot_action.slot_id;
  2269. server_slot * slot = get_slot_by_id(id_slot);
  2270. if (slot == nullptr) {
  2271. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2272. break;
  2273. }
  2274. if (slot->is_processing()) {
  2275. // if requested slot is unavailable, we defer this task for processing later
  2276. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2277. queue_tasks.defer(task);
  2278. break;
  2279. }
  2280. const int64_t t_start = ggml_time_us();
  2281. std::string filename = task.slot_action.filename;
  2282. std::string filepath = task.slot_action.filepath;
  2283. slot->cache_tokens.resize(slot->n_ctx);
  2284. size_t token_count = 0;
  2285. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2286. if (nread == 0) {
  2287. slot->cache_tokens.resize(0);
  2288. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2289. break;
  2290. }
  2291. slot->cache_tokens.resize(token_count);
  2292. const int64_t t_end = ggml_time_us();
  2293. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2294. auto res = std::make_unique<server_task_result_slot_save_load>();
  2295. res->id = task.id;
  2296. res->id_slot = id_slot;
  2297. res->filename = filename;
  2298. res->is_save = false;
  2299. res->n_tokens = token_count;
  2300. res->n_bytes = nread;
  2301. res->t_ms = t_restore_ms;
  2302. queue_results.send(std::move(res));
  2303. } break;
  2304. case SERVER_TASK_TYPE_SLOT_ERASE:
  2305. {
  2306. int id_slot = task.slot_action.slot_id;
  2307. server_slot * slot = get_slot_by_id(id_slot);
  2308. if (slot == nullptr) {
  2309. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2310. break;
  2311. }
  2312. if (slot->is_processing()) {
  2313. // if requested slot is unavailable, we defer this task for processing later
  2314. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2315. queue_tasks.defer(task);
  2316. break;
  2317. }
  2318. // Erase token cache
  2319. const size_t n_erased = slot->cache_tokens.size();
  2320. llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
  2321. slot->cache_tokens.clear();
  2322. auto res = std::make_unique<server_task_result_slot_erase>();
  2323. res->id = task.id;
  2324. res->id_slot = id_slot;
  2325. res->n_erased = n_erased;
  2326. queue_results.send(std::move(res));
  2327. } break;
  2328. case SERVER_TASK_TYPE_SET_LORA:
  2329. {
  2330. params_base.lora_adapters = std::move(task.set_lora);
  2331. auto res = std::make_unique<server_task_result_apply_lora>();
  2332. res->id = task.id;
  2333. queue_results.send(std::move(res));
  2334. } break;
  2335. }
  2336. }
  2337. void update_slots() {
  2338. // check if all slots are idle
  2339. {
  2340. bool all_idle = true;
  2341. for (auto & slot : slots) {
  2342. if (slot.is_processing()) {
  2343. all_idle = false;
  2344. break;
  2345. }
  2346. }
  2347. if (all_idle) {
  2348. SRV_INF("%s", "all slots are idle\n");
  2349. if (clean_kv_cache) {
  2350. kv_cache_clear();
  2351. }
  2352. return;
  2353. }
  2354. }
  2355. {
  2356. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2357. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2358. task.id = queue_tasks.get_new_id();
  2359. queue_tasks.post(task);
  2360. }
  2361. // apply context-shift if needed
  2362. // TODO: simplify and improve
  2363. for (server_slot & slot : slots) {
  2364. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2365. if (!params_base.ctx_shift) {
  2366. // this check is redundant (for good)
  2367. // we should never get here, because generation should already stopped in process_token()
  2368. slot.release();
  2369. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2370. continue;
  2371. }
  2372. // Shift context
  2373. const int n_keep = slot.params.n_keep + add_bos_token;
  2374. const int n_left = slot.n_past - n_keep;
  2375. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2376. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2377. llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2378. llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2379. if (slot.params.cache_prompt) {
  2380. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2381. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2382. }
  2383. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2384. }
  2385. slot.n_past -= n_discard;
  2386. slot.truncated = true;
  2387. }
  2388. }
  2389. // start populating the batch for this iteration
  2390. common_batch_clear(batch);
  2391. // track if given slot can be batched with slots already in the batch
  2392. server_slot * slot_batched = nullptr;
  2393. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2394. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2395. };
  2396. // frist, add sampled tokens from any ongoing sequences
  2397. for (auto & slot : slots) {
  2398. if (slot.state != SLOT_STATE_GENERATING) {
  2399. continue;
  2400. }
  2401. // check if we can batch this slot with the previous one
  2402. if (!slot_batched) {
  2403. slot_batched = &slot;
  2404. } else if (!slot_batched->can_batch_with(slot)) {
  2405. continue;
  2406. }
  2407. slot.i_batch = batch.n_tokens;
  2408. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2409. slot.n_past += 1;
  2410. if (slot.params.cache_prompt) {
  2411. slot.cache_tokens.push_back(slot.sampled);
  2412. }
  2413. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2414. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2415. }
  2416. // process in chunks of params.n_batch
  2417. int32_t n_batch = llama_n_batch(ctx);
  2418. int32_t n_ubatch = llama_n_ubatch(ctx);
  2419. // next, batch any pending prompts without exceeding n_batch
  2420. if (params_base.cont_batching || batch.n_tokens == 0) {
  2421. for (auto & slot : slots) {
  2422. // check if we can batch this slot with the previous one
  2423. if (slot.is_processing()) {
  2424. if (!slot_batched) {
  2425. slot_batched = &slot;
  2426. } else if (!slot_batched->can_batch_with(slot)) {
  2427. continue;
  2428. }
  2429. }
  2430. // this slot still has a prompt to be processed
  2431. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2432. auto & prompt_tokens = slot.prompt_tokens;
  2433. // TODO: maybe move branch to outside of this loop in the future
  2434. if (slot.state == SLOT_STATE_STARTED) {
  2435. slot.t_start_process_prompt = ggml_time_us();
  2436. slot.t_start_generation = 0;
  2437. slot.n_past = 0;
  2438. slot.n_prompt_tokens = prompt_tokens.size();
  2439. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2440. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2441. // print prompt tokens (for debugging)
  2442. if (1) {
  2443. // first 16 tokens (avoid flooding logs)
  2444. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2445. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2446. }
  2447. } else {
  2448. // all
  2449. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2450. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2451. }
  2452. }
  2453. // empty prompt passed -> release the slot and send empty response
  2454. if (prompt_tokens.empty()) {
  2455. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2456. slot.release();
  2457. slot.print_timings();
  2458. send_final_response(slot);
  2459. continue;
  2460. }
  2461. if (slot.is_non_causal()) {
  2462. if (slot.n_prompt_tokens > n_ubatch) {
  2463. slot.release();
  2464. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2465. continue;
  2466. }
  2467. if (slot.n_prompt_tokens > slot.n_ctx) {
  2468. slot.release();
  2469. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2470. continue;
  2471. }
  2472. } else {
  2473. if (!params_base.ctx_shift) {
  2474. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2475. // TODO: there should be a separate parameter that control prompt truncation
  2476. // context shift should be applied only during the generation phase
  2477. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2478. slot.release();
  2479. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2480. continue;
  2481. }
  2482. }
  2483. if (slot.params.n_keep < 0) {
  2484. slot.params.n_keep = slot.n_prompt_tokens;
  2485. }
  2486. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2487. // if input prompt is too big, truncate it
  2488. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2489. const int n_left = slot.n_ctx - slot.params.n_keep;
  2490. const int n_block_size = n_left / 2;
  2491. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2492. llama_tokens new_tokens(
  2493. prompt_tokens.begin(),
  2494. prompt_tokens.begin() + slot.params.n_keep);
  2495. new_tokens.insert(
  2496. new_tokens.end(),
  2497. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2498. prompt_tokens.end());
  2499. prompt_tokens = std::move(new_tokens);
  2500. slot.truncated = true;
  2501. slot.n_prompt_tokens = prompt_tokens.size();
  2502. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2503. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2504. }
  2505. if (slot.params.cache_prompt) {
  2506. // reuse any previously computed tokens that are common with the new prompt
  2507. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2508. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2509. if (params_base.n_cache_reuse > 0) {
  2510. size_t head_c = slot.n_past; // cache
  2511. size_t head_p = slot.n_past; // current prompt
  2512. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2513. while (head_c < slot.cache_tokens.size() &&
  2514. head_p < prompt_tokens.size()) {
  2515. size_t n_match = 0;
  2516. while (head_c + n_match < slot.cache_tokens.size() &&
  2517. head_p + n_match < prompt_tokens.size() &&
  2518. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2519. n_match++;
  2520. }
  2521. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2522. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2523. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2524. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2525. //}
  2526. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2527. llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
  2528. llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
  2529. for (size_t i = 0; i < n_match; i++) {
  2530. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2531. slot.n_past++;
  2532. }
  2533. head_c += n_match;
  2534. head_p += n_match;
  2535. } else {
  2536. head_c += 1;
  2537. }
  2538. }
  2539. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2540. }
  2541. }
  2542. }
  2543. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2544. // we have to evaluate at least 1 token to generate logits.
  2545. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2546. slot.n_past--;
  2547. }
  2548. slot.n_prompt_tokens_processed = 0;
  2549. }
  2550. // non-causal tasks require to fit the entire prompt in the physical batch
  2551. if (slot.is_non_causal()) {
  2552. // cannot fit the prompt in the current batch - will try next iter
  2553. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2554. continue;
  2555. }
  2556. }
  2557. // keep only the common part
  2558. if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2559. // could not partially delete (likely using a non-Transformer model)
  2560. llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
  2561. // there is no common part left
  2562. slot.n_past = 0;
  2563. }
  2564. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2565. // remove the non-common part from the cache
  2566. slot.cache_tokens.resize(slot.n_past);
  2567. // add prompt tokens for processing in the current batch
  2568. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2569. // without pooling, we want to output the embeddings for all the tokens in the batch
  2570. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2571. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2572. if (slot.params.cache_prompt) {
  2573. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2574. }
  2575. slot.n_prompt_tokens_processed++;
  2576. slot.n_past++;
  2577. }
  2578. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2579. // entire prompt has been processed
  2580. if (slot.n_past == slot.n_prompt_tokens) {
  2581. slot.state = SLOT_STATE_DONE_PROMPT;
  2582. GGML_ASSERT(batch.n_tokens > 0);
  2583. common_sampler_reset(slot.smpl);
  2584. // Process all prompt tokens through sampler system
  2585. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2586. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2587. }
  2588. // extract the logits only for the last token
  2589. batch.logits[batch.n_tokens - 1] = true;
  2590. slot.n_decoded = 0;
  2591. slot.i_batch = batch.n_tokens - 1;
  2592. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2593. }
  2594. }
  2595. if (batch.n_tokens >= n_batch) {
  2596. break;
  2597. }
  2598. }
  2599. }
  2600. if (batch.n_tokens == 0) {
  2601. SRV_WRN("%s", "no tokens to decode\n");
  2602. return;
  2603. }
  2604. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2605. if (slot_batched) {
  2606. // make sure we're in the right embedding mode
  2607. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2608. // apply lora, only need to do it once per batch
  2609. common_set_adapter_lora(ctx, slot_batched->lora);
  2610. }
  2611. // process the created batch of tokens
  2612. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2613. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2614. llama_batch batch_view = {
  2615. n_tokens,
  2616. batch.token + i,
  2617. nullptr,
  2618. batch.pos + i,
  2619. batch.n_seq_id + i,
  2620. batch.seq_id + i,
  2621. batch.logits + i,
  2622. };
  2623. const int ret = llama_decode(ctx, batch_view);
  2624. metrics.on_decoded(slots);
  2625. if (ret != 0) {
  2626. if (n_batch == 1 || ret < 0) {
  2627. // if you get here, it means the KV cache is full - try increasing it via the context size
  2628. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2629. for (auto & slot : slots) {
  2630. slot.release();
  2631. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2632. }
  2633. break; // break loop of n_batch
  2634. }
  2635. // retry with half the batch size to try to find a free slot in the KV cache
  2636. n_batch /= 2;
  2637. i -= n_batch;
  2638. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2639. continue; // continue loop of n_batch
  2640. }
  2641. for (auto & slot : slots) {
  2642. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2643. continue; // continue loop of slots
  2644. }
  2645. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2646. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2647. // prompt evaluated for embedding
  2648. send_embedding(slot, batch_view);
  2649. slot.release();
  2650. slot.i_batch = -1;
  2651. continue; // continue loop of slots
  2652. }
  2653. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2654. send_rerank(slot, batch_view);
  2655. slot.release();
  2656. slot.i_batch = -1;
  2657. continue; // continue loop of slots
  2658. }
  2659. // prompt evaluated for next-token prediction
  2660. slot.state = SLOT_STATE_GENERATING;
  2661. } else if (slot.state != SLOT_STATE_GENERATING) {
  2662. continue; // continue loop of slots
  2663. }
  2664. const int tok_idx = slot.i_batch - i;
  2665. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2666. slot.i_batch = -1;
  2667. common_sampler_accept(slot.smpl, id, true);
  2668. slot.n_decoded += 1;
  2669. const int64_t t_current = ggml_time_us();
  2670. if (slot.n_decoded == 1) {
  2671. slot.t_start_generation = t_current;
  2672. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2673. metrics.on_prompt_eval(slot);
  2674. }
  2675. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2676. completion_token_output result;
  2677. result.tok = id;
  2678. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2679. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2680. if (slot.params.sampling.n_probs > 0) {
  2681. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2682. }
  2683. if (!process_token(result, slot)) {
  2684. // release slot because of stop condition
  2685. slot.release();
  2686. slot.print_timings();
  2687. send_final_response(slot);
  2688. metrics.on_prediction(slot);
  2689. continue;
  2690. }
  2691. }
  2692. // do speculative decoding
  2693. for (auto & slot : slots) {
  2694. if (!slot.is_processing() || !slot.can_speculate()) {
  2695. continue;
  2696. }
  2697. if (slot.state != SLOT_STATE_GENERATING) {
  2698. continue;
  2699. }
  2700. // determine the max draft that fits the current slot state
  2701. int n_draft_max = slot.params.speculative.n_max;
  2702. // note: n_past is not yet increased for the `id` token sampled above
  2703. // also, need to leave space for 1 extra token to allow context shifts
  2704. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2705. if (slot.n_remaining > 0) {
  2706. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2707. }
  2708. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2709. if (n_draft_max < slot.params.speculative.n_min) {
  2710. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2711. continue;
  2712. }
  2713. llama_token id = slot.sampled;
  2714. struct common_speculative_params params_spec;
  2715. params_spec.n_draft = n_draft_max;
  2716. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2717. params_spec.p_min = slot.params.speculative.p_min;
  2718. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2719. // ignore small drafts
  2720. if (slot.params.speculative.n_min > (int) draft.size()) {
  2721. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2722. continue;
  2723. }
  2724. // construct the speculation batch
  2725. common_batch_clear(slot.batch_spec);
  2726. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2727. for (size_t i = 0; i < draft.size(); ++i) {
  2728. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2729. }
  2730. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2731. llama_decode(ctx, slot.batch_spec);
  2732. // the accepted tokens from the speculation
  2733. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2734. slot.n_past += ids.size();
  2735. slot.n_decoded += ids.size();
  2736. slot.cache_tokens.push_back(id);
  2737. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2738. llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
  2739. for (size_t i = 0; i < ids.size(); ++i) {
  2740. completion_token_output result;
  2741. result.tok = ids[i];
  2742. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2743. result.prob = 1.0f; // set later
  2744. // TODO: set result.probs
  2745. if (!process_token(result, slot)) {
  2746. // release slot because of stop condition
  2747. slot.release();
  2748. slot.print_timings();
  2749. send_final_response(slot);
  2750. metrics.on_prediction(slot);
  2751. break;
  2752. }
  2753. }
  2754. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2755. }
  2756. }
  2757. SRV_DBG("%s", "run slots completed\n");
  2758. }
  2759. json model_meta() const {
  2760. return json {
  2761. {"vocab_type", llama_vocab_type (vocab)},
  2762. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2763. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2764. {"n_embd", llama_model_n_embd (model)},
  2765. {"n_params", llama_model_n_params (model)},
  2766. {"size", llama_model_size (model)},
  2767. };
  2768. }
  2769. };
  2770. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2771. // skip GH copilot requests when using default port
  2772. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2773. return;
  2774. }
  2775. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2776. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2777. SRV_DBG("request: %s\n", req.body.c_str());
  2778. SRV_DBG("response: %s\n", res.body.c_str());
  2779. }
  2780. std::function<void(int)> shutdown_handler;
  2781. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2782. inline void signal_handler(int signal) {
  2783. if (is_terminating.test_and_set()) {
  2784. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2785. // this is for better developer experience, we can remove when the server is stable enough
  2786. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2787. exit(1);
  2788. }
  2789. shutdown_handler(signal);
  2790. }
  2791. int main(int argc, char ** argv) {
  2792. // own arguments required by this example
  2793. common_params params;
  2794. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2795. return 1;
  2796. }
  2797. common_init();
  2798. // struct that contains llama context and inference
  2799. server_context ctx_server;
  2800. llama_backend_init();
  2801. llama_numa_init(params.numa);
  2802. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2803. LOG_INF("\n");
  2804. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2805. LOG_INF("\n");
  2806. std::unique_ptr<httplib::Server> svr;
  2807. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2808. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2809. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2810. svr.reset(
  2811. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2812. );
  2813. } else {
  2814. LOG_INF("Running without SSL\n");
  2815. svr.reset(new httplib::Server());
  2816. }
  2817. #else
  2818. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2819. LOG_ERR("Server is built without SSL support\n");
  2820. return 1;
  2821. }
  2822. svr.reset(new httplib::Server());
  2823. #endif
  2824. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2825. svr->set_default_headers({{"Server", "llama.cpp"}});
  2826. svr->set_logger(log_server_request);
  2827. auto res_error = [](httplib::Response & res, const json & error_data) {
  2828. json final_response {{"error", error_data}};
  2829. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2830. res.status = json_value(error_data, "code", 500);
  2831. };
  2832. auto res_ok = [](httplib::Response & res, const json & data) {
  2833. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2834. res.status = 200;
  2835. };
  2836. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2837. std::string message;
  2838. try {
  2839. std::rethrow_exception(ep);
  2840. } catch (const std::exception & e) {
  2841. message = e.what();
  2842. } catch (...) {
  2843. message = "Unknown Exception";
  2844. }
  2845. try {
  2846. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2847. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2848. res_error(res, formatted_error);
  2849. } catch (const std::exception & e) {
  2850. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  2851. }
  2852. });
  2853. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2854. if (res.status == 404) {
  2855. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2856. }
  2857. // for other error codes, we skip processing here because it's already done by res_error()
  2858. });
  2859. // set timeouts and change hostname and port
  2860. svr->set_read_timeout (params.timeout_read);
  2861. svr->set_write_timeout(params.timeout_write);
  2862. std::unordered_map<std::string, std::string> log_data;
  2863. log_data["hostname"] = params.hostname;
  2864. log_data["port"] = std::to_string(params.port);
  2865. if (params.api_keys.size() == 1) {
  2866. auto key = params.api_keys[0];
  2867. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2868. } else if (params.api_keys.size() > 1) {
  2869. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2870. }
  2871. // Necessary similarity of prompt for slot selection
  2872. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2873. //
  2874. // Middlewares
  2875. //
  2876. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2877. static const std::unordered_set<std::string> public_endpoints = {
  2878. "/health",
  2879. "/models",
  2880. "/v1/models",
  2881. };
  2882. // If API key is not set, skip validation
  2883. if (params.api_keys.empty()) {
  2884. return true;
  2885. }
  2886. // If path is public or is static file, skip validation
  2887. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2888. return true;
  2889. }
  2890. // Check for API key in the header
  2891. auto auth_header = req.get_header_value("Authorization");
  2892. std::string prefix = "Bearer ";
  2893. if (auth_header.substr(0, prefix.size()) == prefix) {
  2894. std::string received_api_key = auth_header.substr(prefix.size());
  2895. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2896. return true; // API key is valid
  2897. }
  2898. }
  2899. // API key is invalid or not provided
  2900. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2901. LOG_WRN("Unauthorized: Invalid API Key\n");
  2902. return false;
  2903. };
  2904. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2905. server_state current_state = state.load();
  2906. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2907. auto tmp = string_split<std::string>(req.path, '.');
  2908. if (req.path == "/" || tmp.back() == "html") {
  2909. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2910. res.status = 503;
  2911. } else {
  2912. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2913. }
  2914. return false;
  2915. }
  2916. return true;
  2917. };
  2918. // register server middlewares
  2919. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2920. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2921. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2922. if (req.method == "OPTIONS") {
  2923. res.set_header("Access-Control-Allow-Credentials", "true");
  2924. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2925. res.set_header("Access-Control-Allow-Headers", "*");
  2926. res.set_content("", "text/html"); // blank response, no data
  2927. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2928. }
  2929. if (!middleware_server_state(req, res)) {
  2930. return httplib::Server::HandlerResponse::Handled;
  2931. }
  2932. if (!middleware_validate_api_key(req, res)) {
  2933. return httplib::Server::HandlerResponse::Handled;
  2934. }
  2935. return httplib::Server::HandlerResponse::Unhandled;
  2936. });
  2937. //
  2938. // Route handlers (or controllers)
  2939. //
  2940. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2941. // error and loading states are handled by middleware
  2942. json health = {{"status", "ok"}};
  2943. res_ok(res, health);
  2944. };
  2945. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2946. if (!params.endpoint_slots) {
  2947. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2948. return;
  2949. }
  2950. // request slots data using task queue
  2951. server_task task(SERVER_TASK_TYPE_METRICS);
  2952. task.id = ctx_server.queue_tasks.get_new_id();
  2953. ctx_server.queue_results.add_waiting_task_id(task.id);
  2954. ctx_server.queue_tasks.post(task, true); // high-priority task
  2955. // get the result
  2956. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2957. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2958. if (result->is_error()) {
  2959. res_error(res, result->to_json());
  2960. return;
  2961. }
  2962. // TODO: get rid of this dynamic_cast
  2963. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2964. GGML_ASSERT(res_metrics != nullptr);
  2965. // optionally return "fail_on_no_slot" error
  2966. if (req.has_param("fail_on_no_slot")) {
  2967. if (res_metrics->n_idle_slots == 0) {
  2968. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2969. return;
  2970. }
  2971. }
  2972. res_ok(res, res_metrics->slots_data);
  2973. };
  2974. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2975. if (!params.endpoint_metrics) {
  2976. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2977. return;
  2978. }
  2979. // request slots data using task queue
  2980. server_task task(SERVER_TASK_TYPE_METRICS);
  2981. task.id = ctx_server.queue_tasks.get_new_id();
  2982. task.metrics_reset_bucket = true;
  2983. ctx_server.queue_results.add_waiting_task_id(task.id);
  2984. ctx_server.queue_tasks.post(task, true); // high-priority task
  2985. // get the result
  2986. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2987. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2988. if (result->is_error()) {
  2989. res_error(res, result->to_json());
  2990. return;
  2991. }
  2992. // TODO: get rid of this dynamic_cast
  2993. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2994. GGML_ASSERT(res_metrics != nullptr);
  2995. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2996. json all_metrics_def = json {
  2997. {"counter", {{
  2998. {"name", "prompt_tokens_total"},
  2999. {"help", "Number of prompt tokens processed."},
  3000. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3001. }, {
  3002. {"name", "prompt_seconds_total"},
  3003. {"help", "Prompt process time"},
  3004. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3005. }, {
  3006. {"name", "tokens_predicted_total"},
  3007. {"help", "Number of generation tokens processed."},
  3008. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3009. }, {
  3010. {"name", "tokens_predicted_seconds_total"},
  3011. {"help", "Predict process time"},
  3012. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3013. }, {
  3014. {"name", "n_decode_total"},
  3015. {"help", "Total number of llama_decode() calls"},
  3016. {"value", res_metrics->n_decode_total}
  3017. }, {
  3018. {"name", "n_busy_slots_per_decode"},
  3019. {"help", "Average number of busy slots per llama_decode() call"},
  3020. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3021. }}},
  3022. {"gauge", {{
  3023. {"name", "prompt_tokens_seconds"},
  3024. {"help", "Average prompt throughput in tokens/s."},
  3025. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3026. },{
  3027. {"name", "predicted_tokens_seconds"},
  3028. {"help", "Average generation throughput in tokens/s."},
  3029. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3030. },{
  3031. {"name", "kv_cache_usage_ratio"},
  3032. {"help", "KV-cache usage. 1 means 100 percent usage."},
  3033. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  3034. },{
  3035. {"name", "kv_cache_tokens"},
  3036. {"help", "KV-cache tokens."},
  3037. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  3038. },{
  3039. {"name", "requests_processing"},
  3040. {"help", "Number of requests processing."},
  3041. {"value", (uint64_t) res_metrics->n_processing_slots}
  3042. },{
  3043. {"name", "requests_deferred"},
  3044. {"help", "Number of requests deferred."},
  3045. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3046. }}}
  3047. };
  3048. std::stringstream prometheus;
  3049. for (const auto & el : all_metrics_def.items()) {
  3050. const auto & type = el.key();
  3051. const auto & metrics_def = el.value();
  3052. for (const auto & metric_def : metrics_def) {
  3053. const std::string name = metric_def.at("name");
  3054. const std::string help = metric_def.at("help");
  3055. auto value = json_value(metric_def, "value", 0.);
  3056. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3057. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3058. << "llamacpp:" << name << " " << value << "\n";
  3059. }
  3060. }
  3061. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3062. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3063. res.status = 200; // HTTP OK
  3064. };
  3065. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3066. json request_data = json::parse(req.body);
  3067. std::string filename = request_data.at("filename");
  3068. if (!fs_validate_filename(filename)) {
  3069. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3070. return;
  3071. }
  3072. std::string filepath = params.slot_save_path + filename;
  3073. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3074. task.id = ctx_server.queue_tasks.get_new_id();
  3075. task.slot_action.slot_id = id_slot;
  3076. task.slot_action.filename = filename;
  3077. task.slot_action.filepath = filepath;
  3078. ctx_server.queue_results.add_waiting_task_id(task.id);
  3079. ctx_server.queue_tasks.post(task);
  3080. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3081. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3082. if (result->is_error()) {
  3083. res_error(res, result->to_json());
  3084. return;
  3085. }
  3086. res_ok(res, result->to_json());
  3087. };
  3088. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3089. json request_data = json::parse(req.body);
  3090. std::string filename = request_data.at("filename");
  3091. if (!fs_validate_filename(filename)) {
  3092. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3093. return;
  3094. }
  3095. std::string filepath = params.slot_save_path + filename;
  3096. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3097. task.id = ctx_server.queue_tasks.get_new_id();
  3098. task.slot_action.slot_id = id_slot;
  3099. task.slot_action.filename = filename;
  3100. task.slot_action.filepath = filepath;
  3101. ctx_server.queue_results.add_waiting_task_id(task.id);
  3102. ctx_server.queue_tasks.post(task);
  3103. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3104. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3105. if (result->is_error()) {
  3106. res_error(res, result->to_json());
  3107. return;
  3108. }
  3109. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3110. res_ok(res, result->to_json());
  3111. };
  3112. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3113. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3114. task.id = ctx_server.queue_tasks.get_new_id();
  3115. task.slot_action.slot_id = id_slot;
  3116. ctx_server.queue_results.add_waiting_task_id(task.id);
  3117. ctx_server.queue_tasks.post(task);
  3118. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3119. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3120. if (result->is_error()) {
  3121. res_error(res, result->to_json());
  3122. return;
  3123. }
  3124. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3125. res_ok(res, result->to_json());
  3126. };
  3127. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3128. if (params.slot_save_path.empty()) {
  3129. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3130. return;
  3131. }
  3132. std::string id_slot_str = req.path_params.at("id_slot");
  3133. int id_slot;
  3134. try {
  3135. id_slot = std::stoi(id_slot_str);
  3136. } catch (const std::exception &) {
  3137. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3138. return;
  3139. }
  3140. std::string action = req.get_param_value("action");
  3141. if (action == "save") {
  3142. handle_slots_save(req, res, id_slot);
  3143. } else if (action == "restore") {
  3144. handle_slots_restore(req, res, id_slot);
  3145. } else if (action == "erase") {
  3146. handle_slots_erase(req, res, id_slot);
  3147. } else {
  3148. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3149. }
  3150. };
  3151. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3152. // this endpoint is publicly available, please only return what is safe to be exposed
  3153. json data = {
  3154. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3155. { "total_slots", ctx_server.params_base.n_parallel },
  3156. { "model_path", ctx_server.params_base.model },
  3157. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3158. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3159. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3160. { "build_info", build_info },
  3161. };
  3162. if (ctx_server.params_base.use_jinja) {
  3163. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3164. data["chat_template_tool_use"] = tool_use_src;
  3165. }
  3166. }
  3167. res_ok(res, data);
  3168. };
  3169. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3170. if (!ctx_server.params_base.endpoint_props) {
  3171. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3172. return;
  3173. }
  3174. json data = json::parse(req.body);
  3175. // update any props here
  3176. res_ok(res, {{ "success", true }});
  3177. };
  3178. // handle completion-like requests (completion, chat, infill)
  3179. // we can optionally provide a custom format for partial results and final results
  3180. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3181. server_task_type type,
  3182. json & data,
  3183. std::function<bool()> is_connection_closed,
  3184. httplib::Response & res,
  3185. oaicompat_type oaicompat) {
  3186. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3187. if (ctx_server.params_base.embedding) {
  3188. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3189. return;
  3190. }
  3191. auto completion_id = gen_chatcmplid();
  3192. std::vector<server_task> tasks;
  3193. try {
  3194. const auto & prompt = data.at("prompt");
  3195. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3196. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3197. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3198. tasks.reserve(tokenized_prompts.size());
  3199. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3200. server_task task = server_task(type);
  3201. task.id = ctx_server.queue_tasks.get_new_id();
  3202. task.index = i;
  3203. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3204. task.params = server_task::params_from_json_cmpl(
  3205. ctx_server.ctx,
  3206. ctx_server.params_base,
  3207. data);
  3208. task.id_selected_slot = json_value(data, "id_slot", -1);
  3209. // OAI-compat
  3210. task.params.oaicompat = oaicompat;
  3211. task.params.oaicompat_cmpl_id = completion_id;
  3212. // oaicompat_model is already populated by params_from_json_cmpl
  3213. tasks.push_back(task);
  3214. }
  3215. } catch (const std::exception & e) {
  3216. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3217. return;
  3218. }
  3219. ctx_server.queue_results.add_waiting_tasks(tasks);
  3220. ctx_server.queue_tasks.post(tasks);
  3221. bool stream = json_value(data, "stream", false);
  3222. const auto task_ids = server_task::get_list_id(tasks);
  3223. if (!stream) {
  3224. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3225. if (results.size() == 1) {
  3226. // single result
  3227. res_ok(res, results[0]->to_json());
  3228. } else {
  3229. // multiple results (multitask)
  3230. json arr = json::array();
  3231. for (auto & res : results) {
  3232. arr.push_back(res->to_json());
  3233. }
  3234. res_ok(res, arr);
  3235. }
  3236. }, [&](const json & error_data) {
  3237. res_error(res, error_data);
  3238. }, is_connection_closed);
  3239. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3240. } else {
  3241. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3242. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3243. json res_json = result->to_json();
  3244. if (res_json.is_array()) {
  3245. for (const auto & res : res_json) {
  3246. if (!server_sent_event(sink, "data", res)) {
  3247. // sending failed (HTTP connection closed), cancel the generation
  3248. return false;
  3249. }
  3250. }
  3251. return true;
  3252. } else {
  3253. return server_sent_event(sink, "data", res_json);
  3254. }
  3255. }, [&](const json & error_data) {
  3256. server_sent_event(sink, "error", error_data);
  3257. }, [&sink]() {
  3258. // note: do not use req.is_connection_closed here because req is already destroyed
  3259. return !sink.is_writable();
  3260. });
  3261. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3262. static const std::string ev_done = "data: [DONE]\n\n";
  3263. sink.write(ev_done.data(), ev_done.size());
  3264. }
  3265. sink.done();
  3266. return false;
  3267. };
  3268. auto on_complete = [task_ids, &ctx_server] (bool) {
  3269. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3270. };
  3271. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3272. }
  3273. };
  3274. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3275. json data = json::parse(req.body);
  3276. return handle_completions_impl(
  3277. SERVER_TASK_TYPE_COMPLETION,
  3278. data,
  3279. req.is_connection_closed,
  3280. res,
  3281. OAICOMPAT_TYPE_NONE);
  3282. };
  3283. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3284. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3285. return handle_completions_impl(
  3286. SERVER_TASK_TYPE_COMPLETION,
  3287. data,
  3288. req.is_connection_closed,
  3289. res,
  3290. OAICOMPAT_TYPE_COMPLETION);
  3291. };
  3292. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3293. // check model compatibility
  3294. std::string err;
  3295. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3296. err += "prefix token is missing. ";
  3297. }
  3298. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3299. err += "suffix token is missing. ";
  3300. }
  3301. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3302. err += "middle token is missing. ";
  3303. }
  3304. if (!err.empty()) {
  3305. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3306. return;
  3307. }
  3308. json data = json::parse(req.body);
  3309. // validate input
  3310. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3311. // prompt is optional
  3312. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3313. }
  3314. if (!data.contains("input_prefix")) {
  3315. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3316. }
  3317. if (!data.contains("input_suffix")) {
  3318. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3319. }
  3320. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3321. // input_extra is optional
  3322. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3323. return;
  3324. }
  3325. json input_extra = json_value(data, "input_extra", json::array());
  3326. for (const auto & chunk : input_extra) {
  3327. // { "text": string, "filename": string }
  3328. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3329. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3330. return;
  3331. }
  3332. // filename is optional
  3333. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3334. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3335. return;
  3336. }
  3337. }
  3338. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3339. std::string prompt = json_value(data, "prompt", std::string());
  3340. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3341. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3342. data["prompt"] = format_infill(
  3343. ctx_server.vocab,
  3344. data.at("input_prefix"),
  3345. data.at("input_suffix"),
  3346. data.at("input_extra"),
  3347. ctx_server.params_base.n_batch,
  3348. ctx_server.params_base.n_predict,
  3349. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3350. ctx_server.params_base.spm_infill,
  3351. tokenized_prompts[0]
  3352. );
  3353. return handle_completions_impl(
  3354. SERVER_TASK_TYPE_INFILL,
  3355. data,
  3356. req.is_connection_closed,
  3357. res,
  3358. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3359. };
  3360. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3361. LOG_DBG("request: %s\n", req.body.c_str());
  3362. if (ctx_server.params_base.embedding) {
  3363. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3364. return;
  3365. }
  3366. auto body = json::parse(req.body);
  3367. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3368. return handle_completions_impl(
  3369. SERVER_TASK_TYPE_COMPLETION,
  3370. data,
  3371. req.is_connection_closed,
  3372. res,
  3373. OAICOMPAT_TYPE_CHAT);
  3374. };
  3375. // same with handle_chat_completions, but without inference part
  3376. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3377. auto body = json::parse(req.body);
  3378. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3379. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3380. };
  3381. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3382. json models = {
  3383. {"object", "list"},
  3384. {"data", {
  3385. {
  3386. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3387. {"object", "model"},
  3388. {"created", std::time(0)},
  3389. {"owned_by", "llamacpp"},
  3390. {"meta", ctx_server.model_meta()}
  3391. },
  3392. }}
  3393. };
  3394. res_ok(res, models);
  3395. };
  3396. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3397. const json body = json::parse(req.body);
  3398. json tokens_response = json::array();
  3399. if (body.count("content") != 0) {
  3400. const bool add_special = json_value(body, "add_special", false);
  3401. const bool with_pieces = json_value(body, "with_pieces", false);
  3402. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3403. if (with_pieces) {
  3404. for (const auto& token : tokens) {
  3405. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3406. json piece_json;
  3407. // Check if the piece is valid UTF-8
  3408. if (is_valid_utf8(piece)) {
  3409. piece_json = piece;
  3410. } else {
  3411. // If not valid UTF-8, store as array of byte values
  3412. piece_json = json::array();
  3413. for (unsigned char c : piece) {
  3414. piece_json.push_back(static_cast<int>(c));
  3415. }
  3416. }
  3417. tokens_response.push_back({
  3418. {"id", token},
  3419. {"piece", piece_json}
  3420. });
  3421. }
  3422. } else {
  3423. tokens_response = tokens;
  3424. }
  3425. }
  3426. const json data = format_tokenizer_response(tokens_response);
  3427. res_ok(res, data);
  3428. };
  3429. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3430. const json body = json::parse(req.body);
  3431. std::string content;
  3432. if (body.count("tokens") != 0) {
  3433. const llama_tokens tokens = body.at("tokens");
  3434. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3435. }
  3436. const json data = format_detokenized_response(content);
  3437. res_ok(res, data);
  3438. };
  3439. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3440. const json body = json::parse(req.body);
  3441. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3442. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3443. return;
  3444. }
  3445. // for the shape of input/content, see tokenize_input_prompts()
  3446. json prompt;
  3447. if (body.count("input") != 0) {
  3448. prompt = body.at("input");
  3449. } else if (body.contains("content")) {
  3450. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3451. prompt = body.at("content");
  3452. } else {
  3453. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3454. return;
  3455. }
  3456. bool use_base64 = false;
  3457. if (body.count("encoding_format") != 0) {
  3458. const std::string& format = body.at("encoding_format");
  3459. if (format == "base64") {
  3460. use_base64 = true;
  3461. } else if (format != "float") {
  3462. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3463. return;
  3464. }
  3465. }
  3466. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3467. for (const auto & tokens : tokenized_prompts) {
  3468. // this check is necessary for models that do not add BOS token to the input
  3469. if (tokens.empty()) {
  3470. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3471. return;
  3472. }
  3473. }
  3474. // create and queue the task
  3475. json responses = json::array();
  3476. bool error = false;
  3477. {
  3478. std::vector<server_task> tasks;
  3479. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3480. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3481. task.id = ctx_server.queue_tasks.get_new_id();
  3482. task.index = i;
  3483. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3484. // OAI-compat
  3485. task.params.oaicompat = oaicompat;
  3486. tasks.push_back(task);
  3487. }
  3488. ctx_server.queue_results.add_waiting_tasks(tasks);
  3489. ctx_server.queue_tasks.post(tasks);
  3490. // get the result
  3491. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3492. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3493. for (auto & res : results) {
  3494. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3495. responses.push_back(res->to_json());
  3496. }
  3497. }, [&](const json & error_data) {
  3498. res_error(res, error_data);
  3499. error = true;
  3500. }, req.is_connection_closed);
  3501. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3502. }
  3503. if (error) {
  3504. return;
  3505. }
  3506. // write JSON response
  3507. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3508. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3509. : json(responses);
  3510. res_ok(res, root);
  3511. };
  3512. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3513. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3514. };
  3515. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3516. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3517. };
  3518. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3519. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3520. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3521. return;
  3522. }
  3523. const json body = json::parse(req.body);
  3524. // TODO: implement
  3525. //int top_n = 1;
  3526. //if (body.count("top_n") != 1) {
  3527. // top_n = body.at("top_n");
  3528. //} else {
  3529. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3530. // return;
  3531. //}
  3532. // if true, use TEI API format, otherwise use Jina API format
  3533. // Jina: https://jina.ai/reranker/
  3534. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3535. bool is_tei_format = body.contains("texts");
  3536. json query;
  3537. if (body.count("query") == 1) {
  3538. query = body.at("query");
  3539. if (!query.is_string()) {
  3540. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3541. return;
  3542. }
  3543. } else {
  3544. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3545. return;
  3546. }
  3547. std::vector<std::string> documents = json_value(body, "documents",
  3548. json_value(body, "texts", std::vector<std::string>()));
  3549. if (documents.empty()) {
  3550. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3551. return;
  3552. }
  3553. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3554. // create and queue the task
  3555. json responses = json::array();
  3556. bool error = false;
  3557. {
  3558. std::vector<server_task> tasks;
  3559. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3560. tasks.reserve(tokenized_docs.size());
  3561. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3562. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3563. task.id = ctx_server.queue_tasks.get_new_id();
  3564. task.index = i;
  3565. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3566. tasks.push_back(task);
  3567. }
  3568. ctx_server.queue_results.add_waiting_tasks(tasks);
  3569. ctx_server.queue_tasks.post(tasks);
  3570. // get the result
  3571. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3572. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3573. for (auto & res : results) {
  3574. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3575. responses.push_back(res->to_json());
  3576. }
  3577. }, [&](const json & error_data) {
  3578. res_error(res, error_data);
  3579. error = true;
  3580. }, req.is_connection_closed);
  3581. }
  3582. if (error) {
  3583. return;
  3584. }
  3585. // write JSON response
  3586. json root = format_response_rerank(
  3587. body,
  3588. responses,
  3589. is_tei_format,
  3590. documents);
  3591. res_ok(res, root);
  3592. };
  3593. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3594. json result = json::array();
  3595. const auto & loras = ctx_server.params_base.lora_adapters;
  3596. for (size_t i = 0; i < loras.size(); ++i) {
  3597. auto & lora = loras[i];
  3598. result.push_back({
  3599. {"id", i},
  3600. {"path", lora.path},
  3601. {"scale", lora.scale},
  3602. });
  3603. }
  3604. res_ok(res, result);
  3605. res.status = 200; // HTTP OK
  3606. };
  3607. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3608. const json body = json::parse(req.body);
  3609. if (!body.is_array()) {
  3610. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3611. return;
  3612. }
  3613. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3614. task.id = ctx_server.queue_tasks.get_new_id();
  3615. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3616. ctx_server.queue_results.add_waiting_task_id(task.id);
  3617. ctx_server.queue_tasks.post(task);
  3618. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3619. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3620. if (result->is_error()) {
  3621. res_error(res, result->to_json());
  3622. return;
  3623. }
  3624. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3625. res_ok(res, result->to_json());
  3626. };
  3627. //
  3628. // Router
  3629. //
  3630. if (!params.webui) {
  3631. LOG_INF("Web UI is disabled\n");
  3632. } else {
  3633. // register static assets routes
  3634. if (!params.public_path.empty()) {
  3635. // Set the base directory for serving static files
  3636. bool is_found = svr->set_mount_point("/", params.public_path);
  3637. if (!is_found) {
  3638. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3639. return 1;
  3640. }
  3641. } else {
  3642. // using embedded static index.html
  3643. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3644. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3645. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3646. } else {
  3647. res.set_header("Content-Encoding", "gzip");
  3648. // COEP and COOP headers, required by pyodide (python interpreter)
  3649. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  3650. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  3651. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3652. }
  3653. return false;
  3654. });
  3655. }
  3656. }
  3657. // register API routes
  3658. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3659. svr->Get ("/metrics", handle_metrics);
  3660. svr->Get ("/props", handle_props);
  3661. svr->Post("/props", handle_props_change);
  3662. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3663. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3664. svr->Post("/completion", handle_completions); // legacy
  3665. svr->Post("/completions", handle_completions);
  3666. svr->Post("/v1/completions", handle_completions_oai);
  3667. svr->Post("/chat/completions", handle_chat_completions);
  3668. svr->Post("/v1/chat/completions", handle_chat_completions);
  3669. svr->Post("/infill", handle_infill);
  3670. svr->Post("/embedding", handle_embeddings); // legacy
  3671. svr->Post("/embeddings", handle_embeddings);
  3672. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3673. svr->Post("/rerank", handle_rerank);
  3674. svr->Post("/reranking", handle_rerank);
  3675. svr->Post("/v1/rerank", handle_rerank);
  3676. svr->Post("/v1/reranking", handle_rerank);
  3677. svr->Post("/tokenize", handle_tokenize);
  3678. svr->Post("/detokenize", handle_detokenize);
  3679. svr->Post("/apply-template", handle_apply_template);
  3680. // LoRA adapters hotswap
  3681. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3682. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3683. // Save & load slots
  3684. svr->Get ("/slots", handle_slots);
  3685. svr->Post("/slots/:id_slot", handle_slots_action);
  3686. //
  3687. // Start the server
  3688. //
  3689. if (params.n_threads_http < 1) {
  3690. // +2 threads for monitoring endpoints
  3691. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3692. }
  3693. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3694. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3695. // clean up function, to be called before exit
  3696. auto clean_up = [&svr]() {
  3697. SRV_INF("%s: cleaning up before exit...\n", __func__);
  3698. svr->stop();
  3699. llama_backend_free();
  3700. };
  3701. bool was_bound = false;
  3702. if (string_ends_with(std::string(params.hostname), ".sock")) {
  3703. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  3704. svr->set_address_family(AF_UNIX);
  3705. // bind_to_port requires a second arg, any value other than 0 should
  3706. // simply get ignored
  3707. was_bound = svr->bind_to_port(params.hostname, 8080);
  3708. } else {
  3709. LOG_INF("%s: binding port with default address family\n", __func__);
  3710. // bind HTTP listen port
  3711. if (params.port == 0) {
  3712. int bound_port = svr->bind_to_any_port(params.hostname);
  3713. if ((was_bound = (bound_port >= 0))) {
  3714. params.port = bound_port;
  3715. }
  3716. } else {
  3717. was_bound = svr->bind_to_port(params.hostname, params.port);
  3718. }
  3719. }
  3720. if (!was_bound) {
  3721. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3722. clean_up();
  3723. return 1;
  3724. }
  3725. // run the HTTP server in a thread
  3726. std::thread t([&]() { svr->listen_after_bind(); });
  3727. svr->wait_until_ready();
  3728. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3729. // load the model
  3730. LOG_INF("%s: loading model\n", __func__);
  3731. if (!ctx_server.load_model(params)) {
  3732. clean_up();
  3733. // t.join(); // FIXME: see below
  3734. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3735. return 1;
  3736. }
  3737. ctx_server.init();
  3738. state.store(SERVER_STATE_READY);
  3739. LOG_INF("%s: model loaded\n", __func__);
  3740. // print sample chat example to make it clear which template is used
  3741. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3742. common_chat_templates_source(ctx_server.chat_templates.get()),
  3743. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  3744. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3745. ctx_server.process_single_task(task);
  3746. });
  3747. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3748. ctx_server.update_slots();
  3749. });
  3750. shutdown_handler = [&](int) {
  3751. // this will unblock start_loop()
  3752. ctx_server.queue_tasks.terminate();
  3753. };
  3754. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3755. struct sigaction sigint_action;
  3756. sigint_action.sa_handler = signal_handler;
  3757. sigemptyset (&sigint_action.sa_mask);
  3758. sigint_action.sa_flags = 0;
  3759. sigaction(SIGINT, &sigint_action, NULL);
  3760. sigaction(SIGTERM, &sigint_action, NULL);
  3761. #elif defined (_WIN32)
  3762. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3763. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3764. };
  3765. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3766. #endif
  3767. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3768. // this call blocks the main thread until queue_tasks.terminate() is called
  3769. ctx_server.queue_tasks.start_loop();
  3770. clean_up();
  3771. // t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
  3772. return 0;
  3773. }