ggml.c 314 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. typedef struct {
  371. float d; // delta
  372. uint8_t qs[QK / 2]; // nibbles / quants
  373. } block_q4_0;
  374. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  375. // method 4
  376. // blocks of QK elements
  377. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  378. typedef struct {
  379. float d;
  380. float m;
  381. uint8_t qs[QK / 2]; // nibbles / quants
  382. } block_q4_1;
  383. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  384. // reference implementation for deterministic creation of model files
  385. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  386. assert(k % QK == 0);
  387. const int nb = k / QK;
  388. uint8_t pp[QK/2];
  389. for (int i = 0; i < nb; i++) {
  390. float amax = 0.0f; // absolute max
  391. for (int l = 0; l < QK; l++) {
  392. const float v = x[i*QK + l];
  393. amax = MAX(amax, fabsf(v));
  394. }
  395. const float d = amax / ((1 << 3) - 1);
  396. const float id = d ? 1.0f/d : 0.0f;
  397. y[i].d = d;
  398. for (int l = 0; l < QK; l += 2) {
  399. const float v0 = x[i*QK + l + 0]*id;
  400. const float v1 = x[i*QK + l + 1]*id;
  401. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  402. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  403. assert(vi0 >= 0 && vi0 < 16);
  404. assert(vi1 >= 0 && vi1 < 16);
  405. pp[l/2] = vi0 | (vi1 << 4);
  406. }
  407. memcpy(y[i].qs, pp, sizeof(pp));
  408. }
  409. }
  410. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  411. assert(k % QK == 0);
  412. const int nb = k / QK;
  413. block_q4_0 * restrict y = vy;
  414. #if defined(__POWER9_VECTOR__)
  415. const vector float v85 = vec_splats(8.5f);
  416. for (int i = 0; i < nb; i++) {
  417. float amax = 0.0f; // absolute max
  418. vector float srcv [8];
  419. vector float asrcv[8];
  420. vector float amaxv[8];
  421. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  422. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  423. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  424. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  425. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  426. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  427. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  428. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  429. amax = MAX(
  430. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  431. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  432. const float d = amax / ((1 << 3) - 1);
  433. const float id = d ? 1.0/d : 0.0;
  434. y[i].d = d;
  435. const vector float vid = vec_splats(id);
  436. uint8_t * restrict pb = y[i].qs;
  437. for (int l = 0; l < 8; l++) {
  438. const vector float vf = vec_madd(srcv[l], vid, v85);
  439. const vector signed int vi = vec_signed(vf);
  440. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  441. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  442. }
  443. }
  444. #elif __ARM_NEON
  445. uint8_t pp[QK/2];
  446. for (int i = 0; i < nb; i++) {
  447. float amax = 0.0f; // absolute max
  448. float32x4_t srcv [8];
  449. float32x4_t asrcv[8];
  450. float32x4_t amaxv[8];
  451. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  452. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  453. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  454. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  455. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  456. amax = MAX(
  457. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  458. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  459. const float d = amax / ((1 << 3) - 1);
  460. const float id = d ? 1.0/d : 0.0;
  461. y[i].d = d;
  462. for (int l = 0; l < 8; l++) {
  463. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  464. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  465. const int32x4_t vi = vcvtq_s32_f32(vf);
  466. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  467. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  468. }
  469. memcpy(y[i].qs, pp, sizeof(pp));
  470. }
  471. #elif defined(__AVX2__)
  472. for (int i = 0; i < nb; i++) {
  473. // Load elements into 4 AVX vectors
  474. __m256 v0 = _mm256_loadu_ps( x );
  475. __m256 v1 = _mm256_loadu_ps( x + 8 );
  476. __m256 v2 = _mm256_loadu_ps( x + 16 );
  477. __m256 v3 = _mm256_loadu_ps( x + 24 );
  478. x += 32;
  479. // Compute max(abs(e)) for the block
  480. const __m256 signBit = _mm256_set1_ps( -0.0f );
  481. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  484. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  485. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  486. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  487. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  488. const float maxScalar = _mm_cvtss_f32( max4 );
  489. // Quantize these floats
  490. const float d = maxScalar / 7.0f;
  491. y[i].d = d;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  525. }
  526. #elif defined(__wasm_simd128__)
  527. uint8_t pp[QK/2];
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. y[i].d = d;
  544. for (int l = 0; l < 8; l++) {
  545. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  546. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  547. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  548. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  549. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  550. }
  551. memcpy(y[i].qs, pp, sizeof(pp));
  552. }
  553. #else
  554. // scalar
  555. quantize_row_q4_0_reference(x, y, k);
  556. #endif
  557. }
  558. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  559. assert(k % QK == 0);
  560. const int nb = k / QK;
  561. block_q4_1 * restrict y = vy;
  562. uint8_t pp[QK/2];
  563. for (int i = 0; i < nb; i++) {
  564. float min = FLT_MAX;
  565. float max = -FLT_MAX;
  566. for (int l = 0; l < QK; l++) {
  567. const float v = x[i*QK + l];
  568. if (v < min) min = v;
  569. if (v > max) max = v;
  570. }
  571. const float d = (max - min) / ((1 << 4) - 1);
  572. const float id = d ? 1.0f/d : 0.0f;
  573. y[i].d = d;
  574. y[i].m = min;
  575. for (int l = 0; l < QK; l += 2) {
  576. const float v0 = (x[i*QK + l + 0] - min)*id;
  577. const float v1 = (x[i*QK + l + 1] - min)*id;
  578. const uint8_t vi0 = round(v0);
  579. const uint8_t vi1 = round(v1);
  580. assert(vi0 >= 0 && vi0 < 16);
  581. assert(vi1 >= 0 && vi1 < 16);
  582. pp[l/2] = vi0 | (vi1 << 4);
  583. }
  584. memcpy(y[i].qs, pp, sizeof(pp));
  585. }
  586. }
  587. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  588. assert(k % QK == 0);
  589. const int nb = k / QK;
  590. const block_q4_0 * restrict x = vx;
  591. #if defined(__AVX2__)
  592. for (int i = 0; i < nb; i++) {
  593. // scale factor
  594. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  595. const uint8_t * restrict pp = x[i].qs;
  596. for (int l = 0; l < QK; l += 32) {
  597. // Load 32x4-bit integers into 32x8-bit integers
  598. __m256i vx8 = bytesFromNibbles(pp+l/2);
  599. // Subtract 8 from the integers
  600. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  601. // Convert to 16-bit int
  602. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  603. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  604. // Convert to 32-bit int -> float 32
  605. const __m256 vf[4] = {
  606. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  607. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  608. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  609. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  610. };
  611. // Scale and store
  612. for (int j = 0; j < 4; j++) {
  613. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  614. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  615. }
  616. }
  617. }
  618. #elif defined(__ARM_NEON)
  619. for (int i = 0; i < nb; i++) {
  620. const float32x4_t vd = vdupq_n_f32(x[i].d);
  621. const uint8_t * restrict pp = x[i].qs;
  622. for (int l = 0; l < QK; l += 16) {
  623. // Load 16x4-bit integers into 8x8-bit integers
  624. const uint8x8_t v8 = vld1_u8(pp + l/2);
  625. // Expand 4-bit qs to 8-bit bytes
  626. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  627. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  628. // Convert to signed 8-bit integers
  629. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  630. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  631. // Subtract 8 from each byte
  632. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  633. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  634. // Interleave and combine
  635. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  636. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  637. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  638. // convert to 2x int16x8_t
  639. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  640. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  641. // convert to 4x float32x4_t
  642. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  643. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  644. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  645. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  646. // Multiply by d
  647. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  648. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  649. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  650. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  651. // Store
  652. vst1q_f32(y + i*QK + l + 0, r0);
  653. vst1q_f32(y + i*QK + l + 4, r1);
  654. vst1q_f32(y + i*QK + l + 8, r2);
  655. vst1q_f32(y + i*QK + l + 12, r3);
  656. }
  657. }
  658. #else
  659. // scalar
  660. for (int i = 0; i < nb; i++) {
  661. const float d = x[i].d;
  662. const uint8_t * restrict pp = x[i].qs;
  663. for (int l = 0; l < QK; l += 2) {
  664. const uint8_t vi = pp[l/2];
  665. const int8_t vi0 = vi & 0xf;
  666. const int8_t vi1 = vi >> 4;
  667. const float v0 = (vi0 - 8)*d;
  668. const float v1 = (vi1 - 8)*d;
  669. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  670. y[i*QK + l + 0] = v0;
  671. y[i*QK + l + 1] = v1;
  672. assert(!isnan(y[i*QK + l + 0]));
  673. assert(!isnan(y[i*QK + l + 1]));
  674. }
  675. }
  676. #endif
  677. }
  678. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  679. assert(k % QK == 0);
  680. const int nb = k / QK;
  681. const block_q4_1 * restrict x = vx;
  682. #if defined(__AVX2__)
  683. for (int i = 0; i < nb; i++) {
  684. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  685. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  686. const uint8_t * restrict pp = x[i].qs;
  687. for (int l = 0; l < QK; l += 32) {
  688. // Load 32x4-bit integers into 32x8-bit integers
  689. __m256i vx8 = bytesFromNibbles(pp+l/2);
  690. // Convert to 16-bit int
  691. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  692. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  693. // Convert to 32-bit int -> float 32
  694. const __m256 vf[4] = {
  695. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  696. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  697. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  698. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  699. };
  700. // Scale, add m and store
  701. for (int j = 0; j < 4; j++) {
  702. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  703. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  704. }
  705. }
  706. }
  707. #else
  708. for (int i = 0; i < nb; i++) {
  709. const float d = x[i].d;
  710. const float m = x[i].m;
  711. const uint8_t * restrict pp = x[i].qs;
  712. for (int l = 0; l < QK; l += 2) {
  713. const uint8_t vi = pp[l/2];
  714. const int8_t vi0 = vi & 0xf;
  715. const int8_t vi1 = vi >> 4;
  716. const float v0 = vi0*d + m;
  717. const float v1 = vi1*d + m;
  718. y[i*QK + l + 0] = v0;
  719. y[i*QK + l + 1] = v1;
  720. assert(!isnan(y[i*QK + l + 0]));
  721. assert(!isnan(y[i*QK + l + 1]));
  722. }
  723. }
  724. #endif
  725. }
  726. //
  727. // simd mappings
  728. //
  729. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  730. // we then implement the fundamental computation operations below using only these macros
  731. // adding support for new architectures requires to define the corresponding SIMD macros
  732. //
  733. // GGML_F32_STEP / GGML_F16_STEP
  734. // number of elements to process in a single step
  735. //
  736. // GGML_F32_EPR / GGML_F16_EPR
  737. // number of elements to fit in a single register
  738. //
  739. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  740. #define GGML_SIMD
  741. // F32 NEON
  742. #define GGML_F32_STEP 16
  743. #define GGML_F32_EPR 4
  744. #define GGML_F32x4 float32x4_t
  745. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  746. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  747. #define GGML_F32x4_LOAD vld1q_f32
  748. #define GGML_F32x4_STORE vst1q_f32
  749. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  750. #define GGML_F32x4_ADD vaddq_f32
  751. #define GGML_F32x4_MUL vmulq_f32
  752. #if defined(__ARM_FEATURE_QRDMX)
  753. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  754. #else
  755. #define GGML_F32x4_REDUCE_ONE(x) \
  756. (vgetq_lane_f32(x, 0) + \
  757. vgetq_lane_f32(x, 1) + \
  758. vgetq_lane_f32(x, 2) + \
  759. vgetq_lane_f32(x, 3))
  760. #endif
  761. #define GGML_F32x4_REDUCE(res, x) \
  762. { \
  763. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  764. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  765. } \
  766. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  767. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  768. } \
  769. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  770. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  771. } \
  772. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  773. }
  774. #define GGML_F32_VEC GGML_F32x4
  775. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  776. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  777. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  778. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  779. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  780. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  781. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  782. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  783. // F16 NEON
  784. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  785. #define GGML_F16_STEP 32
  786. #define GGML_F16_EPR 8
  787. #define GGML_F16x8 float16x8_t
  788. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  789. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  790. #define GGML_F16x8_LOAD vld1q_f16
  791. #define GGML_F16x8_STORE vst1q_f16
  792. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  793. #define GGML_F16x8_ADD vaddq_f16
  794. #define GGML_F16x8_MUL vmulq_f16
  795. #define GGML_F16x8_REDUCE(res, x) \
  796. { \
  797. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  798. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  799. } \
  800. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  801. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  802. } \
  803. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  804. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  805. } \
  806. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  807. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  808. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  809. }
  810. #define GGML_F16_VEC GGML_F16x8
  811. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  812. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  813. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  814. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  815. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  816. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  817. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  818. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  819. #else
  820. // if FP16 vector arithmetic is not supported, we use FP32 instead
  821. // and take advantage of the vcvt_ functions to convert to/from FP16
  822. #define GGML_F16_STEP 16
  823. #define GGML_F16_EPR 4
  824. #define GGML_F32Cx4 float32x4_t
  825. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  826. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  827. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  828. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  829. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  830. #define GGML_F32Cx4_ADD vaddq_f32
  831. #define GGML_F32Cx4_MUL vmulq_f32
  832. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  833. #define GGML_F16_VEC GGML_F32Cx4
  834. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  835. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  836. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  837. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  838. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  839. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  840. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  841. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  842. #endif
  843. #elif defined(__AVX__)
  844. #define GGML_SIMD
  845. // F32 AVX
  846. #define GGML_F32_STEP 32
  847. #define GGML_F32_EPR 8
  848. #define GGML_F32x8 __m256
  849. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  850. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  851. #define GGML_F32x8_LOAD _mm256_loadu_ps
  852. #define GGML_F32x8_STORE _mm256_storeu_ps
  853. #if defined(__FMA__)
  854. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  855. #else
  856. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  857. #endif
  858. #define GGML_F32x8_ADD _mm256_add_ps
  859. #define GGML_F32x8_MUL _mm256_mul_ps
  860. #define GGML_F32x8_REDUCE(res, x) \
  861. { \
  862. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  863. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  864. } \
  865. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  866. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  867. } \
  868. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  869. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  870. } \
  871. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  872. _mm256_extractf128_ps(x[0], 1)); \
  873. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  874. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  875. }
  876. // TODO: is this optimal ?
  877. #define GGML_F32_VEC GGML_F32x8
  878. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  879. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  880. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  881. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  882. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  883. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  884. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  885. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  886. // F16 AVX
  887. #define GGML_F16_STEP 32
  888. #define GGML_F16_EPR 8
  889. // F16 arithmetic is not supported by AVX, so we use F32 instead
  890. #define GGML_F32Cx8 __m256
  891. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  892. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  893. #if defined(__F16C__)
  894. // the _mm256_cvt intrinsics require F16C
  895. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  896. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  897. #else
  898. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  899. float tmp[8];
  900. for (int i = 0; i < 8; i++)
  901. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  902. return _mm256_loadu_ps(tmp);
  903. }
  904. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  905. float arr[8];
  906. _mm256_storeu_ps(arr, y);
  907. for (int i = 0; i < 8; i++)
  908. x[i] = GGML_FP16_TO_FP32(arr[i]);
  909. }
  910. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  911. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  912. #endif
  913. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  914. #define GGML_F32Cx8_ADD _mm256_add_ps
  915. #define GGML_F32Cx8_MUL _mm256_mul_ps
  916. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  917. #define GGML_F16_VEC GGML_F32Cx8
  918. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  922. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  923. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  924. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  926. #elif defined(__POWER9_VECTOR__)
  927. #define GGML_SIMD
  928. // F32 POWER9
  929. #define GGML_F32_STEP 32
  930. #define GGML_F32_EPR 4
  931. #define GGML_F32x4 vector float
  932. #define GGML_F32x4_ZERO 0.0f
  933. #define GGML_F32x4_SET1 vec_splats
  934. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  935. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  936. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  937. #define GGML_F32x4_ADD vec_add
  938. #define GGML_F32x4_MUL vec_mul
  939. #define GGML_F32x4_REDUCE(res, x) \
  940. { \
  941. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  942. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  943. } \
  944. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  945. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  946. } \
  947. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  948. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  949. } \
  950. res = vec_extract(x[0], 0) + \
  951. vec_extract(x[0], 1) + \
  952. vec_extract(x[0], 2) + \
  953. vec_extract(x[0], 3); \
  954. }
  955. #define GGML_F32_VEC GGML_F32x4
  956. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  957. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  958. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  959. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  960. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  961. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  962. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  963. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  964. // F16 POWER9
  965. #define GGML_F16_STEP GGML_F32_STEP
  966. #define GGML_F16_EPR GGML_F32_EPR
  967. #define GGML_F16_VEC GGML_F32x4
  968. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  969. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  970. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  971. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  972. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  973. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  974. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  975. vec_extract_fp32_from_shortl(vec_xl(0, p))
  976. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  977. #define GGML_F16_VEC_STORE(p, r, i) \
  978. if (i & 0x1) \
  979. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  980. r[i - GGML_ENDIAN_BYTE(0)]), \
  981. 0, p - GGML_F16_EPR)
  982. #elif defined(__wasm_simd128__)
  983. #define GGML_SIMD
  984. // F32 WASM
  985. #define GGML_F32_STEP 16
  986. #define GGML_F32_EPR 4
  987. #define GGML_F32x4 v128_t
  988. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  989. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  990. #define GGML_F32x4_LOAD wasm_v128_load
  991. #define GGML_F32x4_STORE wasm_v128_store
  992. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  993. #define GGML_F32x4_ADD wasm_f32x4_add
  994. #define GGML_F32x4_MUL wasm_f32x4_mul
  995. #define GGML_F32x4_REDUCE(res, x) \
  996. { \
  997. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  998. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  999. } \
  1000. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1001. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1002. } \
  1003. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1004. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1005. } \
  1006. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1007. wasm_f32x4_extract_lane(x[0], 1) + \
  1008. wasm_f32x4_extract_lane(x[0], 2) + \
  1009. wasm_f32x4_extract_lane(x[0], 3); \
  1010. }
  1011. #define GGML_F32_VEC GGML_F32x4
  1012. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1013. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1014. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1015. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1016. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1017. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1018. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1019. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1020. // F16 WASM
  1021. #define GGML_F16_STEP 16
  1022. #define GGML_F16_EPR 4
  1023. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1024. float tmp[4];
  1025. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1026. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1027. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1028. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1029. return wasm_v128_load(tmp);
  1030. }
  1031. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1032. float tmp[4];
  1033. wasm_v128_store(tmp, x);
  1034. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1035. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1036. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1037. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1038. }
  1039. #define GGML_F16x4 v128_t
  1040. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1041. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1042. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1043. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1044. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1045. #define GGML_F16x4_ADD wasm_f32x4_add
  1046. #define GGML_F16x4_MUL wasm_f32x4_mul
  1047. #define GGML_F16x4_REDUCE(res, x) \
  1048. { \
  1049. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1050. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1051. } \
  1052. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1053. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1054. } \
  1055. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1056. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1057. } \
  1058. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1059. wasm_f32x4_extract_lane(x[0], 1) + \
  1060. wasm_f32x4_extract_lane(x[0], 2) + \
  1061. wasm_f32x4_extract_lane(x[0], 3); \
  1062. }
  1063. #define GGML_F16_VEC GGML_F16x4
  1064. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1065. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1066. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1067. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1068. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1069. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1070. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1071. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1072. #elif defined(__SSE3__)
  1073. #define GGML_SIMD
  1074. // F32 SSE
  1075. #define GGML_F32_STEP 32
  1076. #define GGML_F32_EPR 4
  1077. #define GGML_F32x4 __m128
  1078. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1079. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1080. #define GGML_F32x4_LOAD _mm_loadu_ps
  1081. #define GGML_F32x4_STORE _mm_storeu_ps
  1082. #if defined(__FMA__)
  1083. // TODO: Does this work?
  1084. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1085. #else
  1086. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1087. #endif
  1088. #define GGML_F32x4_ADD _mm_add_ps
  1089. #define GGML_F32x4_MUL _mm_mul_ps
  1090. #define GGML_F32x4_REDUCE(res, x) \
  1091. { \
  1092. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1093. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1094. } \
  1095. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1096. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1097. } \
  1098. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1099. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1100. } \
  1101. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1102. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1103. }
  1104. // TODO: is this optimal ?
  1105. #define GGML_F32_VEC GGML_F32x4
  1106. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1107. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1108. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1109. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1110. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1111. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1112. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1113. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1114. // F16 SSE
  1115. #define GGML_F16_STEP 32
  1116. #define GGML_F16_EPR 4
  1117. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1118. float tmp[4];
  1119. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1120. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1121. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1122. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1123. return _mm_loadu_ps(tmp);
  1124. }
  1125. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1126. float arr[4];
  1127. _mm_storeu_ps(arr, y);
  1128. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1129. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1130. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1131. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1132. }
  1133. #define GGML_F32Cx4 __m128
  1134. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1135. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1136. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1137. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1138. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1139. #define GGML_F32Cx4_ADD _mm_add_ps
  1140. #define GGML_F32Cx4_MUL _mm_mul_ps
  1141. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1142. #define GGML_F16_VEC GGML_F32Cx4
  1143. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1144. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1145. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1146. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1147. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1148. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1149. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1150. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1151. #endif
  1152. // GGML_F32_ARR / GGML_F16_ARR
  1153. // number of registers to use per step
  1154. #ifdef GGML_SIMD
  1155. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1156. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1157. #endif
  1158. //
  1159. // fundamental operations
  1160. //
  1161. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1162. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1163. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1166. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1167. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1168. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1169. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1170. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1171. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1172. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1173. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1174. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1175. ggml_float sumf = 0.0;
  1176. #ifdef GGML_SIMD
  1177. const int np = (n & ~(GGML_F32_STEP - 1));
  1178. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1179. GGML_F32_VEC ax[GGML_F32_ARR];
  1180. GGML_F32_VEC ay[GGML_F32_ARR];
  1181. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1182. for (int j = 0; j < GGML_F32_ARR; j++) {
  1183. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1184. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1185. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1186. }
  1187. }
  1188. // reduce sum0..sum3 to sum0
  1189. GGML_F32_VEC_REDUCE(sumf, sum);
  1190. // leftovers
  1191. for (int i = np; i < n; ++i) {
  1192. sumf += x[i]*y[i];
  1193. }
  1194. #else
  1195. // scalar
  1196. for (int i = 0; i < n; ++i) {
  1197. sumf += x[i]*y[i];
  1198. }
  1199. #endif
  1200. *s = sumf;
  1201. }
  1202. #if __AVX512F__ && QK == 32
  1203. static inline __m512 dot_q4_0_oneblock_avx512(
  1204. __m512 acc,
  1205. const block_q4_0 * restrict x,
  1206. const block_q4_0 * restrict y,
  1207. int i
  1208. ) {
  1209. // Compute combined scale for the block
  1210. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1211. __m256i bx = bytesFromNibbles( x[i].qs );
  1212. __m256i by = bytesFromNibbles( y[i].qs );
  1213. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1214. const __m256i off = _mm256_set1_epi8( 8 );
  1215. bx = _mm256_sub_epi8( bx, off );
  1216. by = _mm256_sub_epi8( by, off );
  1217. // Sign-extend 16 signed bytes into int16_t
  1218. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1219. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1220. // Compute products of int16_t integers, add pairwise
  1221. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1222. // Convert int32_t to float
  1223. __m512 p = _mm512_cvtepi32_ps( i64 );
  1224. // Apply the scale, and accumulate
  1225. return _mm512_fmadd_ps( d, p, acc );
  1226. }
  1227. #endif
  1228. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1229. ggml_float sumf = 0.0;
  1230. #if defined(GGML_SIMD)
  1231. const int np = (n & ~(GGML_F16_STEP - 1));
  1232. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1233. GGML_F16_VEC ax[GGML_F16_ARR];
  1234. GGML_F16_VEC ay[GGML_F16_ARR];
  1235. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1236. for (int j = 0; j < GGML_F16_ARR; j++) {
  1237. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1238. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1239. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1240. }
  1241. }
  1242. // reduce sum0..sum3 to sum0
  1243. GGML_F16_VEC_REDUCE(sumf, sum);
  1244. // leftovers
  1245. for (int i = np; i < n; ++i) {
  1246. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1247. }
  1248. #else
  1249. for (int i = 0; i < n; ++i) {
  1250. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1251. }
  1252. #endif
  1253. *s = sumf;
  1254. }
  1255. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1256. const int nb = n / QK;
  1257. assert(n % QK == 0);
  1258. assert(nb % 2 == 0);
  1259. const block_q4_0 * restrict x = vx;
  1260. const block_q4_0 * restrict y = vy;
  1261. float sumf = 0.0;
  1262. #if defined(__ARM_NEON)
  1263. float sum0 = 0.0f;
  1264. float sum1 = 0.0f;
  1265. for (int i = 0; i < nb; i += 2) {
  1266. const block_q4_0 * restrict x0 = &x[i + 0];
  1267. const block_q4_0 * restrict y0 = &y[i + 0];
  1268. const block_q4_0 * restrict x1 = &x[i + 1];
  1269. const block_q4_0 * restrict y1 = &y[i + 1];
  1270. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1271. const int8x16_t s8b = vdupq_n_s8(0x8);
  1272. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1273. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1274. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1275. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1276. // 4-bit -> 8-bit
  1277. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1278. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1279. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1280. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1281. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1282. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1283. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1284. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1285. // sub 8
  1286. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1287. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1288. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1289. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1290. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1291. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1292. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1293. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1294. #if defined(__ARM_FEATURE_DOTPROD)
  1295. // dot product into int16x8_t
  1296. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1297. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1298. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1299. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1300. // scalar
  1301. #if defined(__ARM_FEATURE_QRDMX)
  1302. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1303. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1304. #else
  1305. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1306. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1307. #endif
  1308. #else
  1309. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1310. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1311. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1312. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1313. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1314. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1315. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1316. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1317. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1318. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1319. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1320. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1321. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1322. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1323. // scalar
  1324. #if defined(__ARM_FEATURE_QRDMX)
  1325. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1326. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1327. #else
  1328. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1329. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1330. #endif
  1331. #endif
  1332. }
  1333. sumf = sum0 + sum1;
  1334. #elif defined(__AVX512F__)
  1335. // Initialize accumulator with zeros
  1336. __m512 acc0 = _mm512_setzero_ps();
  1337. __m512 acc1 = _mm512_setzero_ps();
  1338. const int superblock_size = 8;
  1339. const int superblock_count = nb / superblock_size;
  1340. const int remainder = nb % superblock_size;
  1341. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1342. int i = superblock_ix * superblock_size;
  1343. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1344. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1345. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1346. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1347. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1348. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1349. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1350. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1351. }
  1352. // Remainders
  1353. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1354. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1355. }
  1356. // Horizontal sum of all lanes of the accumulator
  1357. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1358. #elif defined(__AVX2__)
  1359. // Initialize accumulator with zeros
  1360. __m256 acc = _mm256_setzero_ps();
  1361. // Main loop
  1362. for (int i = 0; i < nb; ++i) {
  1363. // Compute combined scale for the block
  1364. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1365. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1366. __m256i bx = bytesFromNibbles( x[i].qs );
  1367. __m256i by = bytesFromNibbles( y[i].qs );
  1368. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1369. const __m256i off = _mm256_set1_epi8( 8 );
  1370. bx = _mm256_sub_epi8( bx, off );
  1371. by = _mm256_sub_epi8( by, off );
  1372. // Sign-extend first 16 signed bytes into int16_t
  1373. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1374. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1375. // Compute products of int16_t integers, add pairwise
  1376. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1377. // Sign-extend last 16 signed bytes into int16_t vectors
  1378. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1379. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1380. // Accumulate products of int16_t integers
  1381. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1382. // Convert int32_t to float
  1383. __m256 p = _mm256_cvtepi32_ps( i32 );
  1384. // Apply the scale, and accumulate
  1385. acc = _mm256_fmadd_ps( d, p, acc );
  1386. }
  1387. // Return horizontal sum of the acc vector
  1388. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1389. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1390. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1391. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1392. sumf = _mm_cvtss_f32( res );
  1393. #elif defined(__wasm_simd128__)
  1394. // wasm simd
  1395. float sum0 = 0.0f;
  1396. float sum1 = 0.0f;
  1397. for (int i = 0; i < nb; i += 2) {
  1398. const block_q4_0 * restrict x0 = &px[i + 0];
  1399. const block_q4_0 * restrict y0 = &py[i + 0];
  1400. const block_q4_0 * restrict x1 = &px[i + 1];
  1401. const block_q4_0 * restrict y1 = &py[i + 1];
  1402. const v128_t m4b = wasm_u8x16_splat(0xf);
  1403. const v128_t s8b = wasm_i8x16_splat(0x8);
  1404. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1405. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1406. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1407. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1408. // 4-bit -> 8-bit
  1409. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1410. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1411. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1412. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1413. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1414. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1415. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1416. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1417. // sub 8
  1418. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1419. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1420. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1421. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1422. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1423. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1424. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1425. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1426. // dot product into int16x8_t
  1427. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1428. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1429. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1430. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1431. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1432. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1433. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1434. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1435. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1436. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1437. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1438. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1439. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1440. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1441. sum0 += x0->d * y0->d * (
  1442. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1443. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1444. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1445. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1446. sum1 += x1->d * y1->d * (
  1447. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1448. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1449. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1450. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1451. }
  1452. sumf = sum0 + sum1;
  1453. #else
  1454. // scalar
  1455. for (int i = 0; i < nb; i++) {
  1456. const float d0 = x[i].d;
  1457. const float d1 = y[i].d;
  1458. const uint8_t * restrict p0 = x[i].qs;
  1459. const uint8_t * restrict p1 = y[i].qs;
  1460. for (int j = 0; j < QK/2; j++) {
  1461. const uint8_t v0 = p0[j];
  1462. const uint8_t v1 = p1[j];
  1463. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1464. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1465. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1466. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1467. sumf += f0*f2 + f1*f3;
  1468. }
  1469. }
  1470. #endif
  1471. *s = sumf;
  1472. }
  1473. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1474. const int nb = n / QK;
  1475. const block_q4_1 * restrict x = vx;
  1476. const block_q4_1 * restrict y = vy;
  1477. float sumf = 0.0;
  1478. #if defined(__AVX2__)
  1479. // Initialize accumulator with zeros
  1480. __m256 acc = _mm256_setzero_ps();
  1481. // Accumulator for constant offsets
  1482. float acc_offset = 0.0f;
  1483. // Main loop
  1484. for (int i = 0; i < nb; ++i) {
  1485. const float * d0 = &x[i].d;
  1486. const float * d1 = &y[i].d;
  1487. const float * m0 = &x[i].m;
  1488. const float * m1 = &y[i].m;
  1489. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1490. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1491. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1492. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1493. // Compute combined scale for the block
  1494. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1495. // Compute cross scales for the block
  1496. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1497. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1498. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1499. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1500. __m256i bx = bytesFromNibbles( x[i].qs );
  1501. __m256i by = bytesFromNibbles( y[i].qs );
  1502. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1503. // Sign-extend first 16 signed bytes into int16_t
  1504. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1505. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1506. // Compute products of int16_t integers, add pairwise
  1507. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1508. // Sign-extend last 16 signed bytes into int16_t vectors
  1509. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1510. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1511. // Accumulate products of int16_t integers
  1512. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1513. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1514. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1515. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1516. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1517. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1518. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1519. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1520. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1521. // Convert int32_t to float
  1522. __m256 p = _mm256_cvtepi32_ps( i32 );
  1523. // Apply the scale, and accumulate
  1524. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1525. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1526. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1527. // acc_offset += m0*m1 (for each entry in the block)
  1528. acc_offset += (*m0)*(*m1);
  1529. }
  1530. // Return horizontal sum of the acc vector
  1531. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1532. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1533. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1534. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1535. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1536. #else
  1537. // scalar
  1538. for (int i = 0; i < nb; i++) {
  1539. const float d0 = x[i].d;
  1540. const float d1 = y[i].d;
  1541. const float m0 = x[i].m;
  1542. const float m1 = y[i].m;
  1543. const uint8_t * restrict p0 = x[i].qs;
  1544. const uint8_t * restrict p1 = y[i].qs;
  1545. for (int j = 0; j < QK/2; j++) {
  1546. const uint8_t v0 = p0[j];
  1547. const uint8_t v1 = p1[j];
  1548. const float f0 = d0*(v0 & 0xf) + m0;
  1549. const float f1 = d0*(v0 >> 4) + m0;
  1550. const float f2 = d1*(v1 & 0xf) + m1;
  1551. const float f3 = d1*(v1 >> 4) + m1;
  1552. sumf += f0*f2 + f1*f3;
  1553. }
  1554. }
  1555. #endif
  1556. *s = sumf;
  1557. }
  1558. // compute GGML_VEC_DOT_UNROLL dot products at once
  1559. // xs - x row stride in bytes
  1560. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1561. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1562. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1563. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1564. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1565. }
  1566. #if defined(GGML_SIMD)
  1567. const int np = (n & ~(GGML_F16_STEP - 1));
  1568. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1569. GGML_F16_VEC ax[GGML_F16_ARR];
  1570. GGML_F16_VEC ay[GGML_F16_ARR];
  1571. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1572. for (int j = 0; j < GGML_F16_ARR; j++) {
  1573. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1574. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1575. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1576. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1577. }
  1578. }
  1579. }
  1580. // reduce sum0..sum3 to sum0
  1581. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1582. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1583. }
  1584. // leftovers
  1585. for (int i = np; i < n; ++i) {
  1586. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1587. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1588. }
  1589. }
  1590. #else
  1591. for (int i = 0; i < n; ++i) {
  1592. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1593. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1594. }
  1595. }
  1596. #endif
  1597. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1598. s[i] = sumf[i];
  1599. }
  1600. }
  1601. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1602. #if defined(GGML_SIMD)
  1603. const int np = (n & ~(GGML_F32_STEP - 1));
  1604. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1605. GGML_F32_VEC ax[GGML_F32_ARR];
  1606. GGML_F32_VEC ay[GGML_F32_ARR];
  1607. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1608. for (int j = 0; j < GGML_F32_ARR; j++) {
  1609. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1610. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1611. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1612. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1613. }
  1614. }
  1615. // leftovers
  1616. for (int i = np; i < n; ++i) {
  1617. y[i] += x[i]*v;
  1618. }
  1619. #else
  1620. // scalar
  1621. for (int i = 0; i < n; ++i) {
  1622. y[i] += x[i]*v;
  1623. }
  1624. #endif
  1625. }
  1626. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1627. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1628. #if defined(GGML_SIMD)
  1629. const int np = (n & ~(GGML_F32_STEP - 1));
  1630. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1631. GGML_F32_VEC ay[GGML_F32_ARR];
  1632. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1633. for (int j = 0; j < GGML_F32_ARR; j++) {
  1634. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1635. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1636. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1637. }
  1638. }
  1639. // leftovers
  1640. for (int i = np; i < n; ++i) {
  1641. y[i] *= v;
  1642. }
  1643. #else
  1644. // scalar
  1645. for (int i = 0; i < n; ++i) {
  1646. y[i] *= v;
  1647. }
  1648. #endif
  1649. }
  1650. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1651. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1652. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1653. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1654. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1655. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1656. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1657. static const ggml_float GELU_COEF_A = 0.044715;
  1658. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1659. inline static float ggml_gelu_f32(float x) {
  1660. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1661. }
  1662. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1663. const uint16_t * i16 = (const uint16_t *) x;
  1664. for (int i = 0; i < n; ++i) {
  1665. y[i] = table_gelu_f16[i16[i]];
  1666. }
  1667. }
  1668. #ifdef GGML_GELU_FP16
  1669. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1670. uint16_t t;
  1671. for (int i = 0; i < n; ++i) {
  1672. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1673. memcpy(&t, &fp16, sizeof(uint16_t));
  1674. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1675. }
  1676. }
  1677. #else
  1678. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1679. for (int i = 0; i < n; ++i) {
  1680. y[i] = ggml_gelu_f32(x[i]);
  1681. }
  1682. }
  1683. #endif
  1684. // Sigmoid Linear Unit (SiLU) function
  1685. inline static float ggml_silu_f32(float x) {
  1686. return x/(1.0 + exp(-x));
  1687. }
  1688. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1689. const uint16_t * i16 = (const uint16_t *) x;
  1690. for (int i = 0; i < n; ++i) {
  1691. y[i] = table_silu_f16[i16[i]];
  1692. }
  1693. }
  1694. #ifdef GGML_SILU_FP16
  1695. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1696. uint16_t t;
  1697. for (int i = 0; i < n; ++i) {
  1698. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1699. memcpy(&t, &fp16, sizeof(uint16_t));
  1700. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1701. }
  1702. }
  1703. #else
  1704. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1705. for (int i = 0; i < n; ++i) {
  1706. y[i] = ggml_silu_f32(x[i]);
  1707. }
  1708. }
  1709. #endif
  1710. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1711. #ifndef GGML_USE_ACCELERATE
  1712. ggml_float sum = 0.0;
  1713. for (int i = 0; i < n; ++i) {
  1714. sum += x[i];
  1715. }
  1716. *s = sum;
  1717. #else
  1718. vDSP_sve(x, 1, s, n);
  1719. #endif
  1720. }
  1721. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1722. #ifndef GGML_USE_ACCELERATE
  1723. ggml_float max = -INFINITY;
  1724. for (int i = 0; i < n; ++i) {
  1725. max = MAX(max, x[i]);
  1726. }
  1727. *s = max;
  1728. #else
  1729. vDSP_maxv(x, 1, s, n);
  1730. #endif
  1731. }
  1732. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1733. //
  1734. // logging
  1735. //
  1736. #if (GGML_DEBUG >= 1)
  1737. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1738. #else
  1739. #define GGML_PRINT_DEBUG(...)
  1740. #endif
  1741. #if (GGML_DEBUG >= 5)
  1742. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1743. #else
  1744. #define GGML_PRINT_DEBUG_5(...)
  1745. #endif
  1746. #if (GGML_DEBUG >= 10)
  1747. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1748. #else
  1749. #define GGML_PRINT_DEBUG_10(...)
  1750. #endif
  1751. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1752. //
  1753. // data types
  1754. //
  1755. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1756. QK,
  1757. QK,
  1758. 1,
  1759. 1,
  1760. 1,
  1761. 1,
  1762. 1,
  1763. };
  1764. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1765. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1766. sizeof(block_q4_0),
  1767. sizeof(block_q4_1),
  1768. sizeof(int8_t ),
  1769. sizeof(int16_t),
  1770. sizeof(int32_t),
  1771. sizeof(ggml_fp16_t),
  1772. sizeof(float ),
  1773. };
  1774. // don't forget to update the array above when adding new types
  1775. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1776. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1777. "NONE",
  1778. "DUP",
  1779. "ADD",
  1780. "SUB",
  1781. "MUL",
  1782. "DIV",
  1783. "SQR",
  1784. "SQRT",
  1785. "SUM",
  1786. "MEAN",
  1787. "REPEAT",
  1788. "ABS",
  1789. "SGN",
  1790. "NEG",
  1791. "STEP",
  1792. "RELU",
  1793. "GELU",
  1794. "SILU",
  1795. "NORM",
  1796. "RMS_NORM",
  1797. "MUL_MAT",
  1798. "SCALE",
  1799. "CPY",
  1800. "RESHAPE",
  1801. "VIEW",
  1802. "PERMUTE",
  1803. "TRANSPOSE",
  1804. "GET_ROWS",
  1805. "DIAG_MASK_INF",
  1806. "SOFT_MAX",
  1807. "ROPE",
  1808. "CONV_1D_1S",
  1809. "CONV_1D_2S",
  1810. "FLASH_ATTN",
  1811. "FLASH_FF",
  1812. };
  1813. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1814. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1815. "none",
  1816. "x",
  1817. "x+y",
  1818. "x-y",
  1819. "x*y",
  1820. "x/y",
  1821. "x^2",
  1822. "√x",
  1823. "Σx",
  1824. "Σx/n",
  1825. "repeat(x)",
  1826. "abs(x)",
  1827. "sgn(x)",
  1828. "-x",
  1829. "step(x)",
  1830. "relu(x)",
  1831. "gelu(x)",
  1832. "silu(x)",
  1833. "norm(x)",
  1834. "rms_norm(x)",
  1835. "X*Y",
  1836. "x*v",
  1837. "x-\\>y",
  1838. "reshape(x)",
  1839. "view(x)",
  1840. "permute(x)",
  1841. "transpose(x)",
  1842. "get_rows(x)",
  1843. "diag_mask_inf(x)",
  1844. "soft_max(x)",
  1845. "rope(x)",
  1846. "conv_1d_1s(x)",
  1847. "conv_1d_2s(x)",
  1848. "flash_attn(x)",
  1849. "flash_ff(x)",
  1850. };
  1851. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1852. //
  1853. // ggml object
  1854. //
  1855. struct ggml_object {
  1856. size_t offs;
  1857. size_t size;
  1858. struct ggml_object * next;
  1859. char padding[8];
  1860. };
  1861. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1862. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1863. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1864. //
  1865. // ggml context
  1866. //
  1867. struct ggml_context {
  1868. size_t mem_size;
  1869. void * mem_buffer;
  1870. bool mem_buffer_owned;
  1871. bool mem_buffer_mlocked;
  1872. int n_objects;
  1873. struct ggml_object * objects_begin;
  1874. struct ggml_object * objects_end;
  1875. struct ggml_scratch scratch;
  1876. struct ggml_scratch scratch_save;
  1877. };
  1878. struct ggml_context_container {
  1879. bool used;
  1880. struct ggml_context context;
  1881. };
  1882. //
  1883. // compute types
  1884. //
  1885. enum ggml_task_type {
  1886. GGML_TASK_INIT = 0,
  1887. GGML_TASK_COMPUTE,
  1888. GGML_TASK_FINALIZE,
  1889. };
  1890. struct ggml_compute_params {
  1891. enum ggml_task_type type;
  1892. int ith, nth;
  1893. // work buffer for all threads
  1894. size_t wsize;
  1895. void * wdata;
  1896. };
  1897. //
  1898. // ggml state
  1899. //
  1900. struct ggml_state {
  1901. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1902. };
  1903. // global state
  1904. static struct ggml_state g_state;
  1905. static atomic_int g_state_barrier = 0;
  1906. // barrier via spin lock
  1907. inline static void ggml_critical_section_start(void) {
  1908. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1909. while (processing > 0) {
  1910. // wait for other threads to finish
  1911. atomic_fetch_sub(&g_state_barrier, 1);
  1912. sched_yield(); // TODO: reconsider this
  1913. processing = atomic_fetch_add(&g_state_barrier, 1);
  1914. }
  1915. }
  1916. // TODO: make this somehow automatically executed
  1917. // some sort of "sentry" mechanism
  1918. inline static void ggml_critical_section_end(void) {
  1919. atomic_fetch_sub(&g_state_barrier, 1);
  1920. }
  1921. ////////////////////////////////////////////////////////////////////////////////
  1922. void ggml_print_object(const struct ggml_object * obj) {
  1923. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1924. obj->offs, obj->size, (const void *) obj->next);
  1925. }
  1926. void ggml_print_objects(const struct ggml_context * ctx) {
  1927. struct ggml_object * obj = ctx->objects_begin;
  1928. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1929. while (obj != NULL) {
  1930. ggml_print_object(obj);
  1931. obj = obj->next;
  1932. }
  1933. GGML_PRINT("%s: --- end ---\n", __func__);
  1934. }
  1935. int ggml_nelements(const struct ggml_tensor * tensor) {
  1936. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1937. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1938. }
  1939. int ggml_nrows(const struct ggml_tensor * tensor) {
  1940. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1941. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1942. }
  1943. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1944. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1945. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1946. }
  1947. int ggml_blck_size(enum ggml_type type) {
  1948. return GGML_BLCK_SIZE[type];
  1949. }
  1950. size_t ggml_type_size(enum ggml_type type) {
  1951. return GGML_TYPE_SIZE[type];
  1952. }
  1953. float ggml_type_sizef(enum ggml_type type) {
  1954. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1955. }
  1956. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1957. return GGML_TYPE_SIZE[tensor->type];
  1958. }
  1959. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1960. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1961. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1962. }
  1963. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1965. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1966. }
  1967. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1969. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1970. }
  1971. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1973. return
  1974. (t0->ne[0] == t1->ne[0]) &&
  1975. (t0->ne[2] == t1->ne[2]) &&
  1976. (t0->ne[3] == t1->ne[3]);
  1977. }
  1978. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1979. return tensor->nb[0] > tensor->nb[1];
  1980. }
  1981. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1982. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1983. return
  1984. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1985. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1986. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1987. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1988. }
  1989. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1990. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1991. return
  1992. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1993. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1994. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1995. }
  1996. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1997. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1998. return
  1999. (t0->ne[0] == t1->ne[0] ) &&
  2000. (t0->ne[1] == t1->ne[1] ) &&
  2001. (t0->ne[2] == t1->ne[2] ) &&
  2002. (t0->ne[3] == t1->ne[3] );
  2003. }
  2004. // check if t1 can be represented as a repeatition of t0
  2005. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2006. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2007. return
  2008. (t1->ne[0]%t0->ne[0] == 0) &&
  2009. (t1->ne[1]%t0->ne[1] == 0) &&
  2010. (t1->ne[2]%t0->ne[2] == 0) &&
  2011. (t1->ne[3]%t0->ne[3] == 0);
  2012. }
  2013. static inline int ggml_up32(int n) {
  2014. return (n + 31) & ~31;
  2015. }
  2016. static inline int ggml_up64(int n) {
  2017. return (n + 63) & ~63;
  2018. }
  2019. static inline int ggml_up(int n, int m) {
  2020. // assert m is a power of 2
  2021. GGML_ASSERT((m & (m - 1)) == 0);
  2022. return (n + m - 1) & ~(m - 1);
  2023. }
  2024. // assert that pointer is aligned to GGML_MEM_ALIGN
  2025. #define ggml_assert_aligned(ptr) \
  2026. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2027. ////////////////////////////////////////////////////////////////////////////////
  2028. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2029. // make this function thread safe
  2030. ggml_critical_section_start();
  2031. static bool is_first_call = true;
  2032. if (is_first_call) {
  2033. // initialize GELU, SILU and EXP F32 tables
  2034. {
  2035. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2036. ggml_fp16_t ii;
  2037. for (int i = 0; i < (1 << 16); ++i) {
  2038. uint16_t ui = i;
  2039. memcpy(&ii, &ui, sizeof(ii));
  2040. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2041. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2042. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2043. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2044. }
  2045. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2046. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2047. }
  2048. // initialize g_state
  2049. {
  2050. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2051. g_state = (struct ggml_state) {
  2052. /*.contexts =*/ { { 0 } },
  2053. };
  2054. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2055. g_state.contexts[i].used = false;
  2056. }
  2057. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2058. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2059. }
  2060. is_first_call = false;
  2061. }
  2062. // find non-used context in g_state
  2063. struct ggml_context * ctx = NULL;
  2064. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2065. if (!g_state.contexts[i].used) {
  2066. g_state.contexts[i].used = true;
  2067. ctx = &g_state.contexts[i].context;
  2068. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2069. break;
  2070. }
  2071. }
  2072. if (ctx == NULL) {
  2073. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2074. ggml_critical_section_end();
  2075. return NULL;
  2076. }
  2077. *ctx = (struct ggml_context) {
  2078. /*.mem_size =*/ params.mem_size,
  2079. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2080. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2081. /*.mem_buffer_mlocked =*/ false,
  2082. /*.n_objects =*/ 0,
  2083. /*.objects_begin =*/ NULL,
  2084. /*.objects_end =*/ NULL,
  2085. /*.scratch =*/ { 0, 0, NULL, },
  2086. /*.scratch_save =*/ { 0, 0, NULL, },
  2087. };
  2088. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2089. ggml_assert_aligned(ctx->mem_buffer);
  2090. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2091. ggml_critical_section_end();
  2092. return ctx;
  2093. }
  2094. void ggml_free(struct ggml_context * ctx) {
  2095. // make this function thread safe
  2096. ggml_critical_section_start();
  2097. bool found = false;
  2098. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2099. if (&g_state.contexts[i].context == ctx) {
  2100. g_state.contexts[i].used = false;
  2101. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2102. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2103. #if GGML_MLOCK_SUPPORT
  2104. if (ctx->mem_buffer_mlocked) {
  2105. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2106. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2107. }
  2108. }
  2109. #endif
  2110. if (ctx->mem_buffer_owned) {
  2111. free(ctx->mem_buffer);
  2112. }
  2113. found = true;
  2114. break;
  2115. }
  2116. }
  2117. if (!found) {
  2118. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2119. }
  2120. ggml_critical_section_end();
  2121. }
  2122. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2123. return ctx->objects_end->offs + ctx->objects_end->size;
  2124. }
  2125. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2126. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2127. ctx->scratch = scratch;
  2128. return result;
  2129. }
  2130. bool ggml_mlock_supported(void) {
  2131. return GGML_MLOCK_SUPPORT;
  2132. }
  2133. #if GGML_MLOCK_SUPPORT
  2134. #ifdef __APPLE__
  2135. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2136. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2137. #else
  2138. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2139. #endif
  2140. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2141. if (ctx->mem_buffer_mlocked) {
  2142. return true;
  2143. }
  2144. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2145. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2146. ctx->mem_size, strerror(errno));
  2147. GGML_ASSERT(ret >= 0);
  2148. return false;
  2149. }
  2150. ctx->mem_buffer_mlocked = true;
  2151. return true;
  2152. }
  2153. #else // GGML_MLOCK_SUPPORT
  2154. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2155. *err_p = strdup("can't mlock because it's not supported on this system");
  2156. return false;
  2157. }
  2158. #endif // GGML_MLOCK_SUPPORT
  2159. ////////////////////////////////////////////////////////////////////////////////
  2160. struct ggml_tensor * ggml_new_tensor_impl(
  2161. struct ggml_context * ctx,
  2162. enum ggml_type type,
  2163. int n_dims,
  2164. const int* ne,
  2165. void* data) {
  2166. // always insert objects at the end of the context's memory pool
  2167. struct ggml_object * obj_cur = ctx->objects_end;
  2168. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2169. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2170. const size_t cur_end = cur_offs + cur_size;
  2171. size_t size_needed = 0;
  2172. if (data == NULL) {
  2173. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2174. for (int i = 1; i < n_dims; i++) {
  2175. size_needed *= ne[i];
  2176. }
  2177. // align to GGML_MEM_ALIGN
  2178. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2179. }
  2180. char * const mem_buffer = ctx->mem_buffer;
  2181. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2182. if (ctx->scratch.data == NULL || data != NULL) {
  2183. size_needed += sizeof(struct ggml_tensor);
  2184. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2185. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2186. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2187. assert(false);
  2188. return NULL;
  2189. }
  2190. *obj_new = (struct ggml_object) {
  2191. .offs = cur_end + GGML_OBJECT_SIZE,
  2192. .size = size_needed,
  2193. .next = NULL,
  2194. };
  2195. } else {
  2196. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2197. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2198. assert(false);
  2199. return NULL;
  2200. }
  2201. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2202. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2203. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2204. assert(false);
  2205. return NULL;
  2206. }
  2207. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2208. *obj_new = (struct ggml_object) {
  2209. .offs = cur_end + GGML_OBJECT_SIZE,
  2210. .size = sizeof(struct ggml_tensor),
  2211. .next = NULL,
  2212. };
  2213. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2214. ctx->scratch.offs += size_needed;
  2215. }
  2216. if (obj_cur != NULL) {
  2217. obj_cur->next = obj_new;
  2218. } else {
  2219. // this is the first object in this context
  2220. ctx->objects_begin = obj_new;
  2221. }
  2222. ctx->objects_end = obj_new;
  2223. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2224. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2225. ggml_assert_aligned(result);
  2226. *result = (struct ggml_tensor) {
  2227. /*.type =*/ type,
  2228. /*.n_dims =*/ n_dims,
  2229. /*.ne =*/ { 1, 1, 1, 1 },
  2230. /*.nb =*/ { 0, 0, 0, 0 },
  2231. /*.op =*/ GGML_OP_NONE,
  2232. /*.is_param =*/ false,
  2233. /*.grad =*/ NULL,
  2234. /*.src0 =*/ NULL,
  2235. /*.src1 =*/ NULL,
  2236. /*.opt =*/ { NULL },
  2237. /*.n_tasks =*/ 0,
  2238. /*.perf_runs =*/ 0,
  2239. /*.perf_cycles =*/ 0,
  2240. /*.perf_time_us =*/ 0,
  2241. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2242. /*.pad =*/ { 0 },
  2243. };
  2244. ggml_assert_aligned(result->data);
  2245. for (int i = 0; i < n_dims; i++) {
  2246. result->ne[i] = ne[i];
  2247. }
  2248. result->nb[0] = GGML_TYPE_SIZE[type];
  2249. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2250. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2251. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2252. }
  2253. ctx->n_objects++;
  2254. return result;
  2255. }
  2256. struct ggml_tensor * ggml_new_tensor(
  2257. struct ggml_context * ctx,
  2258. enum ggml_type type,
  2259. int n_dims,
  2260. const int * ne) {
  2261. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2262. }
  2263. struct ggml_tensor * ggml_new_tensor_1d(
  2264. struct ggml_context * ctx,
  2265. enum ggml_type type,
  2266. int ne0) {
  2267. return ggml_new_tensor(ctx, type, 1, &ne0);
  2268. }
  2269. struct ggml_tensor * ggml_new_tensor_2d(
  2270. struct ggml_context * ctx,
  2271. enum ggml_type type,
  2272. int ne0,
  2273. int ne1) {
  2274. const int ne[2] = { ne0, ne1 };
  2275. return ggml_new_tensor(ctx, type, 2, ne);
  2276. }
  2277. struct ggml_tensor * ggml_new_tensor_3d(
  2278. struct ggml_context * ctx,
  2279. enum ggml_type type,
  2280. int ne0,
  2281. int ne1,
  2282. int ne2) {
  2283. const int ne[3] = { ne0, ne1, ne2 };
  2284. return ggml_new_tensor(ctx, type, 3, ne);
  2285. }
  2286. struct ggml_tensor * ggml_new_tensor_4d(
  2287. struct ggml_context * ctx,
  2288. enum ggml_type type,
  2289. int ne0,
  2290. int ne1,
  2291. int ne2,
  2292. int ne3) {
  2293. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2294. return ggml_new_tensor(ctx, type, 4, ne);
  2295. }
  2296. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2297. ctx->scratch_save = ctx->scratch;
  2298. ctx->scratch.data = NULL;
  2299. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2300. ctx->scratch = ctx->scratch_save;
  2301. ggml_set_i32(result, value);
  2302. return result;
  2303. }
  2304. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2305. ctx->scratch_save = ctx->scratch;
  2306. ctx->scratch.data = NULL;
  2307. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2308. ctx->scratch = ctx->scratch_save;
  2309. ggml_set_f32(result, value);
  2310. return result;
  2311. }
  2312. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2313. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2314. }
  2315. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2316. memset(tensor->data, 0, ggml_nbytes(tensor));
  2317. return tensor;
  2318. }
  2319. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2320. const int n = ggml_nrows(tensor);
  2321. const int nc = tensor->ne[0];
  2322. const size_t n1 = tensor->nb[1];
  2323. char * const data = tensor->data;
  2324. switch (tensor->type) {
  2325. case GGML_TYPE_Q4_0:
  2326. {
  2327. GGML_ASSERT(false);
  2328. } break;
  2329. case GGML_TYPE_Q4_1:
  2330. {
  2331. GGML_ASSERT(false);
  2332. } break;
  2333. case GGML_TYPE_I8:
  2334. {
  2335. assert(tensor->nb[0] == sizeof(int8_t));
  2336. for (int i = 0; i < n; i++) {
  2337. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2338. }
  2339. } break;
  2340. case GGML_TYPE_I16:
  2341. {
  2342. assert(tensor->nb[0] == sizeof(int16_t));
  2343. for (int i = 0; i < n; i++) {
  2344. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2345. }
  2346. } break;
  2347. case GGML_TYPE_I32:
  2348. {
  2349. assert(tensor->nb[0] == sizeof(int32_t));
  2350. for (int i = 0; i < n; i++) {
  2351. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2352. }
  2353. } break;
  2354. case GGML_TYPE_F16:
  2355. {
  2356. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2357. for (int i = 0; i < n; i++) {
  2358. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2359. }
  2360. } break;
  2361. case GGML_TYPE_F32:
  2362. {
  2363. assert(tensor->nb[0] == sizeof(float));
  2364. for (int i = 0; i < n; i++) {
  2365. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2366. }
  2367. } break;
  2368. case GGML_TYPE_COUNT:
  2369. {
  2370. GGML_ASSERT(false);
  2371. } break;
  2372. }
  2373. return tensor;
  2374. }
  2375. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2376. const int n = ggml_nrows(tensor);
  2377. const int nc = tensor->ne[0];
  2378. const size_t n1 = tensor->nb[1];
  2379. char * const data = tensor->data;
  2380. switch (tensor->type) {
  2381. case GGML_TYPE_Q4_0:
  2382. {
  2383. GGML_ASSERT(false);
  2384. } break;
  2385. case GGML_TYPE_Q4_1:
  2386. {
  2387. GGML_ASSERT(false);
  2388. } break;
  2389. case GGML_TYPE_I8:
  2390. {
  2391. assert(tensor->nb[0] == sizeof(int8_t));
  2392. for (int i = 0; i < n; i++) {
  2393. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2394. }
  2395. } break;
  2396. case GGML_TYPE_I16:
  2397. {
  2398. assert(tensor->nb[0] == sizeof(int16_t));
  2399. for (int i = 0; i < n; i++) {
  2400. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2401. }
  2402. } break;
  2403. case GGML_TYPE_I32:
  2404. {
  2405. assert(tensor->nb[0] == sizeof(int32_t));
  2406. for (int i = 0; i < n; i++) {
  2407. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2408. }
  2409. } break;
  2410. case GGML_TYPE_F16:
  2411. {
  2412. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2413. for (int i = 0; i < n; i++) {
  2414. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2415. }
  2416. } break;
  2417. case GGML_TYPE_F32:
  2418. {
  2419. assert(tensor->nb[0] == sizeof(float));
  2420. for (int i = 0; i < n; i++) {
  2421. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2422. }
  2423. } break;
  2424. case GGML_TYPE_COUNT:
  2425. {
  2426. GGML_ASSERT(false);
  2427. } break;
  2428. }
  2429. return tensor;
  2430. }
  2431. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2432. switch (tensor->type) {
  2433. case GGML_TYPE_Q4_0:
  2434. {
  2435. GGML_ASSERT(false);
  2436. } break;
  2437. case GGML_TYPE_Q4_1:
  2438. {
  2439. GGML_ASSERT(false);
  2440. } break;
  2441. case GGML_TYPE_I8:
  2442. {
  2443. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2444. return ((int8_t *)(tensor->data))[i];
  2445. } break;
  2446. case GGML_TYPE_I16:
  2447. {
  2448. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2449. return ((int16_t *)(tensor->data))[i];
  2450. } break;
  2451. case GGML_TYPE_I32:
  2452. {
  2453. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2454. return ((int32_t *)(tensor->data))[i];
  2455. } break;
  2456. case GGML_TYPE_F16:
  2457. {
  2458. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2459. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2460. } break;
  2461. case GGML_TYPE_F32:
  2462. {
  2463. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2464. return ((float *)(tensor->data))[i];
  2465. } break;
  2466. case GGML_TYPE_COUNT:
  2467. {
  2468. GGML_ASSERT(false);
  2469. } break;
  2470. }
  2471. return 0.0f;
  2472. }
  2473. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2474. switch (tensor->type) {
  2475. case GGML_TYPE_Q4_0:
  2476. {
  2477. GGML_ASSERT(false);
  2478. } break;
  2479. case GGML_TYPE_Q4_1:
  2480. {
  2481. GGML_ASSERT(false);
  2482. } break;
  2483. case GGML_TYPE_I8:
  2484. {
  2485. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2486. ((int8_t *)(tensor->data))[i] = value;
  2487. } break;
  2488. case GGML_TYPE_I16:
  2489. {
  2490. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2491. ((int16_t *)(tensor->data))[i] = value;
  2492. } break;
  2493. case GGML_TYPE_I32:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2496. ((int32_t *)(tensor->data))[i] = value;
  2497. } break;
  2498. case GGML_TYPE_F16:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2501. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2502. } break;
  2503. case GGML_TYPE_F32:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2506. ((float *)(tensor->data))[i] = value;
  2507. } break;
  2508. case GGML_TYPE_COUNT:
  2509. {
  2510. GGML_ASSERT(false);
  2511. } break;
  2512. }
  2513. }
  2514. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2515. switch (tensor->type) {
  2516. case GGML_TYPE_Q4_0:
  2517. {
  2518. GGML_ASSERT(false);
  2519. } break;
  2520. case GGML_TYPE_Q4_1:
  2521. {
  2522. GGML_ASSERT(false);
  2523. } break;
  2524. case GGML_TYPE_I8:
  2525. {
  2526. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2527. return ((int8_t *)(tensor->data))[i];
  2528. } break;
  2529. case GGML_TYPE_I16:
  2530. {
  2531. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2532. return ((int16_t *)(tensor->data))[i];
  2533. } break;
  2534. case GGML_TYPE_I32:
  2535. {
  2536. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2537. return ((int32_t *)(tensor->data))[i];
  2538. } break;
  2539. case GGML_TYPE_F16:
  2540. {
  2541. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2542. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2543. } break;
  2544. case GGML_TYPE_F32:
  2545. {
  2546. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2547. return ((float *)(tensor->data))[i];
  2548. } break;
  2549. case GGML_TYPE_COUNT:
  2550. {
  2551. GGML_ASSERT(false);
  2552. } break;
  2553. }
  2554. return 0.0f;
  2555. }
  2556. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2557. switch (tensor->type) {
  2558. case GGML_TYPE_Q4_0:
  2559. {
  2560. GGML_ASSERT(false);
  2561. } break;
  2562. case GGML_TYPE_Q4_1:
  2563. {
  2564. GGML_ASSERT(false);
  2565. } break;
  2566. case GGML_TYPE_I8:
  2567. {
  2568. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2569. ((int8_t *)(tensor->data))[i] = value;
  2570. } break;
  2571. case GGML_TYPE_I16:
  2572. {
  2573. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2574. ((int16_t *)(tensor->data))[i] = value;
  2575. } break;
  2576. case GGML_TYPE_I32:
  2577. {
  2578. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2579. ((int32_t *)(tensor->data))[i] = value;
  2580. } break;
  2581. case GGML_TYPE_F16:
  2582. {
  2583. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2584. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2585. } break;
  2586. case GGML_TYPE_F32:
  2587. {
  2588. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2589. ((float *)(tensor->data))[i] = value;
  2590. } break;
  2591. case GGML_TYPE_COUNT:
  2592. {
  2593. GGML_ASSERT(false);
  2594. } break;
  2595. }
  2596. }
  2597. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2598. return tensor->data;
  2599. }
  2600. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2601. assert(tensor->type == GGML_TYPE_F32);
  2602. return (float *)(tensor->data);
  2603. }
  2604. struct ggml_tensor * ggml_view_tensor(
  2605. struct ggml_context * ctx,
  2606. const struct ggml_tensor * src) {
  2607. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2608. }
  2609. ////////////////////////////////////////////////////////////////////////////////
  2610. // ggml_dup
  2611. struct ggml_tensor * ggml_dup_impl(
  2612. struct ggml_context * ctx,
  2613. struct ggml_tensor * a,
  2614. bool inplace) {
  2615. bool is_node = false;
  2616. if (!inplace && (a->grad)) {
  2617. is_node = true;
  2618. }
  2619. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2620. result->op = GGML_OP_DUP;
  2621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2622. result->src0 = a;
  2623. result->src1 = NULL;
  2624. return result;
  2625. }
  2626. struct ggml_tensor * ggml_dup(
  2627. struct ggml_context * ctx,
  2628. struct ggml_tensor * a) {
  2629. return ggml_dup_impl(ctx, a, false);
  2630. }
  2631. struct ggml_tensor * ggml_dup_inplace(
  2632. struct ggml_context * ctx,
  2633. struct ggml_tensor * a) {
  2634. return ggml_dup_impl(ctx, a, true);
  2635. }
  2636. // ggml_add
  2637. struct ggml_tensor * ggml_add_impl(
  2638. struct ggml_context * ctx,
  2639. struct ggml_tensor * a,
  2640. struct ggml_tensor * b,
  2641. bool inplace) {
  2642. GGML_ASSERT(ggml_are_same_shape(a, b));
  2643. bool is_node = false;
  2644. if (!inplace && (a->grad || b->grad)) {
  2645. is_node = true;
  2646. }
  2647. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2648. result->op = GGML_OP_ADD;
  2649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2650. result->src0 = a;
  2651. result->src1 = b;
  2652. return result;
  2653. }
  2654. struct ggml_tensor * ggml_add(
  2655. struct ggml_context * ctx,
  2656. struct ggml_tensor * a,
  2657. struct ggml_tensor * b) {
  2658. return ggml_add_impl(ctx, a, b, false);
  2659. }
  2660. struct ggml_tensor * ggml_add_inplace(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a,
  2663. struct ggml_tensor * b) {
  2664. return ggml_add_impl(ctx, a, b, true);
  2665. }
  2666. // ggml_sub
  2667. struct ggml_tensor * ggml_sub_impl(
  2668. struct ggml_context * ctx,
  2669. struct ggml_tensor * a,
  2670. struct ggml_tensor * b,
  2671. bool inplace) {
  2672. GGML_ASSERT(ggml_are_same_shape(a, b));
  2673. bool is_node = false;
  2674. if (!inplace && (a->grad || b->grad)) {
  2675. is_node = true;
  2676. }
  2677. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2678. result->op = GGML_OP_SUB;
  2679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2680. result->src0 = a;
  2681. result->src1 = b;
  2682. return result;
  2683. }
  2684. struct ggml_tensor * ggml_sub(
  2685. struct ggml_context * ctx,
  2686. struct ggml_tensor * a,
  2687. struct ggml_tensor * b) {
  2688. return ggml_sub_impl(ctx, a, b, false);
  2689. }
  2690. struct ggml_tensor * ggml_sub_inplace(
  2691. struct ggml_context * ctx,
  2692. struct ggml_tensor * a,
  2693. struct ggml_tensor * b) {
  2694. return ggml_sub_impl(ctx, a, b, true);
  2695. }
  2696. // ggml_mul
  2697. struct ggml_tensor * ggml_mul_impl(
  2698. struct ggml_context * ctx,
  2699. struct ggml_tensor * a,
  2700. struct ggml_tensor * b,
  2701. bool inplace) {
  2702. GGML_ASSERT(ggml_are_same_shape(a, b));
  2703. bool is_node = false;
  2704. if (!inplace && (a->grad || b->grad)) {
  2705. is_node = true;
  2706. }
  2707. if (inplace) {
  2708. GGML_ASSERT(is_node == false);
  2709. }
  2710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2711. result->op = GGML_OP_MUL;
  2712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2713. result->src0 = a;
  2714. result->src1 = b;
  2715. return result;
  2716. }
  2717. struct ggml_tensor * ggml_mul(
  2718. struct ggml_context * ctx,
  2719. struct ggml_tensor * a,
  2720. struct ggml_tensor * b) {
  2721. return ggml_mul_impl(ctx, a, b, false);
  2722. }
  2723. struct ggml_tensor * ggml_mul_inplace(
  2724. struct ggml_context * ctx,
  2725. struct ggml_tensor * a,
  2726. struct ggml_tensor * b) {
  2727. return ggml_mul_impl(ctx, a, b, true);
  2728. }
  2729. // ggml_div
  2730. struct ggml_tensor * ggml_div_impl(
  2731. struct ggml_context * ctx,
  2732. struct ggml_tensor * a,
  2733. struct ggml_tensor * b,
  2734. bool inplace) {
  2735. GGML_ASSERT(ggml_are_same_shape(a, b));
  2736. bool is_node = false;
  2737. if (!inplace && (a->grad || b->grad)) {
  2738. is_node = true;
  2739. }
  2740. if (inplace) {
  2741. GGML_ASSERT(is_node == false);
  2742. }
  2743. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2744. result->op = GGML_OP_DIV;
  2745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2746. result->src0 = a;
  2747. result->src1 = b;
  2748. return result;
  2749. }
  2750. struct ggml_tensor * ggml_div(
  2751. struct ggml_context * ctx,
  2752. struct ggml_tensor * a,
  2753. struct ggml_tensor * b) {
  2754. return ggml_div_impl(ctx, a, b, false);
  2755. }
  2756. struct ggml_tensor * ggml_div_inplace(
  2757. struct ggml_context * ctx,
  2758. struct ggml_tensor * a,
  2759. struct ggml_tensor * b) {
  2760. return ggml_div_impl(ctx, a, b, true);
  2761. }
  2762. // ggml_sqr
  2763. struct ggml_tensor * ggml_sqr_impl(
  2764. struct ggml_context * ctx,
  2765. struct ggml_tensor * a,
  2766. bool inplace) {
  2767. bool is_node = false;
  2768. if (!inplace && (a->grad)) {
  2769. is_node = true;
  2770. }
  2771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2772. result->op = GGML_OP_SQR;
  2773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2774. result->src0 = a;
  2775. result->src1 = NULL;
  2776. return result;
  2777. }
  2778. struct ggml_tensor * ggml_sqr(
  2779. struct ggml_context * ctx,
  2780. struct ggml_tensor * a) {
  2781. return ggml_sqr_impl(ctx, a, false);
  2782. }
  2783. struct ggml_tensor * ggml_sqr_inplace(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a) {
  2786. return ggml_sqr_impl(ctx, a, true);
  2787. }
  2788. // ggml_sqrt
  2789. struct ggml_tensor * ggml_sqrt_impl(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a,
  2792. bool inplace) {
  2793. bool is_node = false;
  2794. if (!inplace && (a->grad)) {
  2795. is_node = true;
  2796. }
  2797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2798. result->op = GGML_OP_SQRT;
  2799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2800. result->src0 = a;
  2801. result->src1 = NULL;
  2802. return result;
  2803. }
  2804. struct ggml_tensor * ggml_sqrt(
  2805. struct ggml_context * ctx,
  2806. struct ggml_tensor * a) {
  2807. return ggml_sqrt_impl(ctx, a, false);
  2808. }
  2809. struct ggml_tensor * ggml_sqrt_inplace(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a) {
  2812. return ggml_sqrt_impl(ctx, a, true);
  2813. }
  2814. // ggml_sum
  2815. struct ggml_tensor * ggml_sum(
  2816. struct ggml_context * ctx,
  2817. struct ggml_tensor * a) {
  2818. bool is_node = false;
  2819. if (a->grad) {
  2820. is_node = true;
  2821. }
  2822. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2823. result->op = GGML_OP_SUM;
  2824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2825. result->src0 = a;
  2826. result->src1 = NULL;
  2827. return result;
  2828. }
  2829. // ggml_mean
  2830. struct ggml_tensor * ggml_mean(
  2831. struct ggml_context * ctx,
  2832. struct ggml_tensor * a) {
  2833. bool is_node = false;
  2834. if (a->grad) {
  2835. GGML_ASSERT(false); // TODO: implement
  2836. is_node = true;
  2837. }
  2838. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2839. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2840. result->op = GGML_OP_MEAN;
  2841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2842. result->src0 = a;
  2843. result->src1 = NULL;
  2844. return result;
  2845. }
  2846. // ggml_repeat
  2847. struct ggml_tensor * ggml_repeat(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a,
  2850. struct ggml_tensor * b) {
  2851. GGML_ASSERT(ggml_can_repeat(a, b));
  2852. bool is_node = false;
  2853. if (a->grad) {
  2854. is_node = true;
  2855. }
  2856. if (ggml_are_same_shape(a, b) && !is_node) {
  2857. return a;
  2858. }
  2859. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2860. result->op = GGML_OP_REPEAT;
  2861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2862. result->src0 = a;
  2863. result->src1 = b;
  2864. return result;
  2865. }
  2866. // ggml_abs
  2867. struct ggml_tensor * ggml_abs_impl(
  2868. struct ggml_context * ctx,
  2869. struct ggml_tensor * a,
  2870. bool inplace) {
  2871. bool is_node = false;
  2872. if (!inplace && (a->grad)) {
  2873. is_node = true;
  2874. }
  2875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2876. result->op = GGML_OP_ABS;
  2877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2878. result->src0 = a;
  2879. result->src1 = NULL;
  2880. return result;
  2881. }
  2882. struct ggml_tensor * ggml_abs(
  2883. struct ggml_context * ctx,
  2884. struct ggml_tensor * a) {
  2885. return ggml_abs_impl(ctx, a, false);
  2886. }
  2887. struct ggml_tensor * ggml_abs_inplace(
  2888. struct ggml_context * ctx,
  2889. struct ggml_tensor * a) {
  2890. return ggml_abs_impl(ctx, a, true);
  2891. }
  2892. // ggml_sgn
  2893. struct ggml_tensor * ggml_sgn_impl(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a,
  2896. bool inplace) {
  2897. bool is_node = false;
  2898. if (!inplace && (a->grad)) {
  2899. is_node = true;
  2900. }
  2901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2902. result->op = GGML_OP_SGN;
  2903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2904. result->src0 = a;
  2905. result->src1 = NULL;
  2906. return result;
  2907. }
  2908. struct ggml_tensor * ggml_sgn(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a) {
  2911. return ggml_sgn_impl(ctx, a, false);
  2912. }
  2913. struct ggml_tensor * ggml_sgn_inplace(
  2914. struct ggml_context * ctx,
  2915. struct ggml_tensor * a) {
  2916. return ggml_sgn_impl(ctx, a, true);
  2917. }
  2918. // ggml_neg
  2919. struct ggml_tensor * ggml_neg_impl(
  2920. struct ggml_context * ctx,
  2921. struct ggml_tensor * a,
  2922. bool inplace) {
  2923. bool is_node = false;
  2924. if (!inplace && (a->grad)) {
  2925. is_node = true;
  2926. }
  2927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2928. result->op = GGML_OP_NEG;
  2929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2930. result->src0 = a;
  2931. result->src1 = NULL;
  2932. return result;
  2933. }
  2934. struct ggml_tensor * ggml_neg(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a) {
  2937. return ggml_neg_impl(ctx, a, false);
  2938. }
  2939. struct ggml_tensor * ggml_neg_inplace(
  2940. struct ggml_context * ctx,
  2941. struct ggml_tensor * a) {
  2942. return ggml_neg_impl(ctx, a, true);
  2943. }
  2944. // ggml_step
  2945. struct ggml_tensor * ggml_step_impl(
  2946. struct ggml_context * ctx,
  2947. struct ggml_tensor * a,
  2948. bool inplace) {
  2949. bool is_node = false;
  2950. if (!inplace && (a->grad)) {
  2951. is_node = true;
  2952. }
  2953. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2954. result->op = GGML_OP_STEP;
  2955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2956. result->src0 = a;
  2957. result->src1 = NULL;
  2958. return result;
  2959. }
  2960. struct ggml_tensor * ggml_step(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_step_impl(ctx, a, false);
  2964. }
  2965. struct ggml_tensor * ggml_step_inplace(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a) {
  2968. return ggml_step_impl(ctx, a, true);
  2969. }
  2970. // ggml_relu
  2971. struct ggml_tensor * ggml_relu_impl(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. bool inplace) {
  2975. bool is_node = false;
  2976. if (!inplace && (a->grad)) {
  2977. is_node = true;
  2978. }
  2979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2980. result->op = GGML_OP_RELU;
  2981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2982. result->src0 = a;
  2983. result->src1 = NULL;
  2984. return result;
  2985. }
  2986. struct ggml_tensor * ggml_relu(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a) {
  2989. return ggml_relu_impl(ctx, a, false);
  2990. }
  2991. struct ggml_tensor * ggml_relu_inplace(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a) {
  2994. return ggml_relu_impl(ctx, a, true);
  2995. }
  2996. // ggml_gelu
  2997. struct ggml_tensor * ggml_gelu_impl(
  2998. struct ggml_context * ctx,
  2999. struct ggml_tensor * a,
  3000. bool inplace) {
  3001. bool is_node = false;
  3002. if (!inplace && (a->grad)) {
  3003. is_node = true;
  3004. }
  3005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3006. result->op = GGML_OP_GELU;
  3007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3008. result->src0 = a;
  3009. result->src1 = NULL;
  3010. return result;
  3011. }
  3012. struct ggml_tensor * ggml_gelu(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a) {
  3015. return ggml_gelu_impl(ctx, a, false);
  3016. }
  3017. struct ggml_tensor * ggml_gelu_inplace(
  3018. struct ggml_context * ctx,
  3019. struct ggml_tensor * a) {
  3020. return ggml_gelu_impl(ctx, a, true);
  3021. }
  3022. // ggml_silu
  3023. struct ggml_tensor * ggml_silu_impl(
  3024. struct ggml_context * ctx,
  3025. struct ggml_tensor * a,
  3026. bool inplace) {
  3027. bool is_node = false;
  3028. if (!inplace && (a->grad)) {
  3029. is_node = true;
  3030. }
  3031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3032. result->op = GGML_OP_SILU;
  3033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3034. result->src0 = a;
  3035. result->src1 = NULL;
  3036. return result;
  3037. }
  3038. struct ggml_tensor * ggml_silu(
  3039. struct ggml_context * ctx,
  3040. struct ggml_tensor * a) {
  3041. return ggml_silu_impl(ctx, a, false);
  3042. }
  3043. struct ggml_tensor * ggml_silu_inplace(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a) {
  3046. return ggml_silu_impl(ctx, a, true);
  3047. }
  3048. // ggml_norm
  3049. struct ggml_tensor * ggml_norm_impl(
  3050. struct ggml_context * ctx,
  3051. struct ggml_tensor * a,
  3052. bool inplace) {
  3053. bool is_node = false;
  3054. if (!inplace && (a->grad)) {
  3055. GGML_ASSERT(false); // TODO: implement backward
  3056. is_node = true;
  3057. }
  3058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3059. result->op = GGML_OP_NORM;
  3060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3061. result->src0 = a;
  3062. result->src1 = NULL; // TODO: maybe store epsilon here?
  3063. return result;
  3064. }
  3065. struct ggml_tensor * ggml_norm(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a) {
  3068. return ggml_norm_impl(ctx, a, false);
  3069. }
  3070. struct ggml_tensor * ggml_norm_inplace(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a) {
  3073. return ggml_norm_impl(ctx, a, true);
  3074. }
  3075. struct ggml_tensor * ggml_rms_norm_impl(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a,
  3078. bool inplace) {
  3079. bool is_node = false;
  3080. if (!inplace && (a->grad)) {
  3081. GGML_ASSERT(false); // TODO: implement backward
  3082. is_node = true;
  3083. }
  3084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3085. result->op = GGML_OP_RMS_NORM;
  3086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3087. result->src0 = a;
  3088. result->src1 = NULL; // TODO: maybe store epsilon here?
  3089. return result;
  3090. }
  3091. struct ggml_tensor * ggml_rms_norm(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a) {
  3094. return ggml_rms_norm_impl(ctx, a, false);
  3095. }
  3096. struct ggml_tensor * ggml_rms_norm_inplace(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a) {
  3099. return ggml_rms_norm_impl(ctx, a, true);
  3100. }
  3101. // ggml_mul_mat
  3102. struct ggml_tensor * ggml_mul_mat(
  3103. struct ggml_context * ctx,
  3104. struct ggml_tensor * a,
  3105. struct ggml_tensor * b) {
  3106. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3107. GGML_ASSERT(!ggml_is_transposed(a));
  3108. bool is_node = false;
  3109. if (a->grad || b->grad) {
  3110. is_node = true;
  3111. }
  3112. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3113. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3114. result->op = GGML_OP_MUL_MAT;
  3115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3116. result->src0 = a;
  3117. result->src1 = b;
  3118. return result;
  3119. }
  3120. // ggml_scale
  3121. struct ggml_tensor * ggml_scale_impl(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b,
  3125. bool inplace) {
  3126. GGML_ASSERT(ggml_is_scalar(b));
  3127. GGML_ASSERT(ggml_is_padded_1d(a));
  3128. bool is_node = false;
  3129. if (!inplace && (a->grad || b->grad)) {
  3130. GGML_ASSERT(false); // TODO: implement backward
  3131. is_node = true;
  3132. }
  3133. // TODO: when implement backward, fix this:
  3134. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3135. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3136. result->op = GGML_OP_SCALE;
  3137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3138. result->src0 = a;
  3139. result->src1 = b;
  3140. return result;
  3141. }
  3142. struct ggml_tensor * ggml_scale(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b) {
  3146. return ggml_scale_impl(ctx, a, b, false);
  3147. }
  3148. struct ggml_tensor * ggml_scale_inplace(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a,
  3151. struct ggml_tensor * b) {
  3152. return ggml_scale_impl(ctx, a, b, true);
  3153. }
  3154. // ggml_cpy
  3155. struct ggml_tensor * ggml_cpy_impl(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a,
  3158. struct ggml_tensor * b,
  3159. bool inplace) {
  3160. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3161. bool is_node = false;
  3162. if (!inplace && (a->grad || b->grad)) {
  3163. GGML_ASSERT(false); // TODO: implement backward
  3164. is_node = true;
  3165. }
  3166. // make a view of the destination
  3167. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3168. result->op = GGML_OP_CPY;
  3169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3170. result->src0 = a;
  3171. result->src1 = b;
  3172. return result;
  3173. }
  3174. struct ggml_tensor * ggml_cpy(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a,
  3177. struct ggml_tensor * b) {
  3178. return ggml_cpy_impl(ctx, a, b, false);
  3179. }
  3180. struct ggml_tensor * ggml_cpy_inplace(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a,
  3183. struct ggml_tensor * b) {
  3184. return ggml_cpy_impl(ctx, a, b, true);
  3185. }
  3186. // ggml_reshape
  3187. struct ggml_tensor * ggml_reshape(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a,
  3190. struct ggml_tensor * b) {
  3191. GGML_ASSERT(ggml_is_contiguous(a));
  3192. GGML_ASSERT(ggml_is_contiguous(b));
  3193. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3194. bool is_node = false;
  3195. if (a->grad || b->grad) {
  3196. GGML_ASSERT(false); // TODO: implement backward
  3197. is_node = true;
  3198. }
  3199. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3200. result->op = GGML_OP_RESHAPE;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src0 = a;
  3203. result->src1 = NULL;
  3204. return result;
  3205. }
  3206. struct ggml_tensor * ggml_reshape_2d(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a,
  3209. int ne0,
  3210. int ne1) {
  3211. GGML_ASSERT(ggml_is_contiguous(a));
  3212. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3213. bool is_node = false;
  3214. if (a->grad) {
  3215. GGML_ASSERT(false); // TODO: implement backward
  3216. is_node = true;
  3217. }
  3218. const int ne[2] = { ne0, ne1 };
  3219. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3220. result->op = GGML_OP_RESHAPE;
  3221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3222. result->src0 = a;
  3223. result->src1 = NULL;
  3224. return result;
  3225. }
  3226. struct ggml_tensor * ggml_reshape_3d(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a,
  3229. int ne0,
  3230. int ne1,
  3231. int ne2) {
  3232. GGML_ASSERT(ggml_is_contiguous(a));
  3233. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3234. bool is_node = false;
  3235. if (a->grad) {
  3236. GGML_ASSERT(false); // TODO: implement backward
  3237. is_node = true;
  3238. }
  3239. const int ne[3] = { ne0, ne1, ne2 };
  3240. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3241. result->op = GGML_OP_RESHAPE;
  3242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3243. result->src0 = a;
  3244. result->src1 = NULL;
  3245. return result;
  3246. }
  3247. // ggml_view_1d
  3248. struct ggml_tensor * ggml_view_1d(
  3249. struct ggml_context * ctx,
  3250. struct ggml_tensor * a,
  3251. int ne0,
  3252. size_t offset) {
  3253. if (a->grad) {
  3254. GGML_ASSERT(false); // gradient propagation is not supported
  3255. }
  3256. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3257. result->op = GGML_OP_VIEW;
  3258. result->grad = NULL;
  3259. result->src0 = a;
  3260. result->src1 = NULL; // TODO: maybe store the offset here?
  3261. return result;
  3262. }
  3263. // ggml_view_2d
  3264. struct ggml_tensor * ggml_view_2d(
  3265. struct ggml_context * ctx,
  3266. struct ggml_tensor * a,
  3267. int ne0,
  3268. int ne1,
  3269. size_t nb1,
  3270. size_t offset) {
  3271. if (a->grad) {
  3272. GGML_ASSERT(false); // gradient propagation is not supported
  3273. }
  3274. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3275. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3276. result->nb[1] = nb1;
  3277. result->nb[2] = result->nb[1]*ne1;
  3278. result->nb[3] = result->nb[2];
  3279. result->op = GGML_OP_VIEW;
  3280. result->grad = NULL;
  3281. result->src0 = a;
  3282. result->src1 = NULL; // TODO: maybe store the offset here?
  3283. return result;
  3284. }
  3285. // ggml_permute
  3286. struct ggml_tensor * ggml_permute(
  3287. struct ggml_context * ctx,
  3288. struct ggml_tensor * a,
  3289. int axis0,
  3290. int axis1,
  3291. int axis2,
  3292. int axis3) {
  3293. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3294. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3295. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3296. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3297. GGML_ASSERT(axis0 != axis1);
  3298. GGML_ASSERT(axis0 != axis2);
  3299. GGML_ASSERT(axis0 != axis3);
  3300. GGML_ASSERT(axis1 != axis2);
  3301. GGML_ASSERT(axis1 != axis3);
  3302. GGML_ASSERT(axis2 != axis3);
  3303. bool is_node = false;
  3304. if (a->grad) {
  3305. GGML_ASSERT(false); // TODO: implement backward
  3306. is_node = true;
  3307. }
  3308. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3309. int ne[GGML_MAX_DIMS];
  3310. int nb[GGML_MAX_DIMS];
  3311. ne[axis0] = a->ne[0];
  3312. ne[axis1] = a->ne[1];
  3313. ne[axis2] = a->ne[2];
  3314. ne[axis3] = a->ne[3];
  3315. nb[axis0] = a->nb[0];
  3316. nb[axis1] = a->nb[1];
  3317. nb[axis2] = a->nb[2];
  3318. nb[axis3] = a->nb[3];
  3319. result->ne[0] = ne[0];
  3320. result->ne[1] = ne[1];
  3321. result->ne[2] = ne[2];
  3322. result->ne[3] = ne[3];
  3323. result->nb[0] = nb[0];
  3324. result->nb[1] = nb[1];
  3325. result->nb[2] = nb[2];
  3326. result->nb[3] = nb[3];
  3327. result->op = GGML_OP_PERMUTE;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src0 = a;
  3330. result->src1 = NULL; // TODO: maybe store the permutation here?
  3331. return result;
  3332. }
  3333. // ggml_transpose
  3334. struct ggml_tensor * ggml_transpose(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a) {
  3337. bool is_node = false;
  3338. if (a->grad) {
  3339. GGML_ASSERT(false); // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3343. result->ne[0] = a->ne[1];
  3344. result->ne[1] = a->ne[0];
  3345. result->nb[0] = a->nb[1];
  3346. result->nb[1] = a->nb[0];
  3347. result->op = GGML_OP_TRANSPOSE;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src0 = a;
  3350. result->src1 = NULL;
  3351. return result;
  3352. }
  3353. // ggml_get_rows
  3354. struct ggml_tensor * ggml_get_rows(
  3355. struct ggml_context * ctx,
  3356. struct ggml_tensor * a,
  3357. struct ggml_tensor * b) {
  3358. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3359. bool is_node = false;
  3360. if (a->grad || b->grad) {
  3361. GGML_ASSERT(false); // TODO: implement backward
  3362. is_node = true;
  3363. }
  3364. // TODO: implement non F32 return
  3365. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3366. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3367. result->op = GGML_OP_GET_ROWS;
  3368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3369. result->src0 = a;
  3370. result->src1 = b;
  3371. return result;
  3372. }
  3373. // ggml_diag_mask_inf
  3374. struct ggml_tensor * ggml_diag_mask_inf(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a,
  3377. int n_past) {
  3378. bool is_node = false;
  3379. if (a->grad) {
  3380. GGML_ASSERT(false); // TODO: implement backward
  3381. is_node = true;
  3382. }
  3383. // TODO: when implement backward, fix this:
  3384. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3385. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3386. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3387. result->op = GGML_OP_DIAG_MASK_INF;
  3388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3389. result->src0 = a;
  3390. result->src1 = b;
  3391. return result;
  3392. }
  3393. // ggml_soft_max
  3394. struct ggml_tensor * ggml_soft_max(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. bool is_node = false;
  3398. if (a->grad) {
  3399. GGML_ASSERT(false); // TODO: implement backward
  3400. is_node = true;
  3401. }
  3402. // TODO: when implement backward, fix this:
  3403. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3404. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3405. result->op = GGML_OP_SOFT_MAX;
  3406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3407. result->src0 = a;
  3408. result->src1 = NULL;
  3409. return result;
  3410. }
  3411. // ggml_rope
  3412. struct ggml_tensor * ggml_rope(
  3413. struct ggml_context * ctx,
  3414. struct ggml_tensor * a,
  3415. int n_past,
  3416. int n_dims,
  3417. int mode) {
  3418. GGML_ASSERT(n_past >= 0);
  3419. bool is_node = false;
  3420. if (a->grad) {
  3421. GGML_ASSERT(false); // TODO: implement backward
  3422. is_node = true;
  3423. }
  3424. // TODO: when implement backward, fix this:
  3425. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3426. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3427. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3428. ((int32_t *) b->data)[0] = n_past;
  3429. ((int32_t *) b->data)[1] = n_dims;
  3430. ((int32_t *) b->data)[2] = mode;
  3431. result->op = GGML_OP_ROPE;
  3432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3433. result->src0 = a;
  3434. result->src1 = b;
  3435. return result;
  3436. }
  3437. // ggml_conv_1d_1s
  3438. struct ggml_tensor * ggml_conv_1d_1s(
  3439. struct ggml_context * ctx,
  3440. struct ggml_tensor * a,
  3441. struct ggml_tensor * b) {
  3442. GGML_ASSERT(ggml_is_matrix(b));
  3443. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3444. GGML_ASSERT(a->ne[3] == 1);
  3445. bool is_node = false;
  3446. if (a->grad || b->grad) {
  3447. GGML_ASSERT(false); // TODO: implement backward
  3448. is_node = true;
  3449. }
  3450. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3451. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3452. result->op = GGML_OP_CONV_1D_1S;
  3453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3454. result->src0 = a;
  3455. result->src1 = b;
  3456. return result;
  3457. }
  3458. // ggml_conv_1d_2s
  3459. struct ggml_tensor * ggml_conv_1d_2s(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a,
  3462. struct ggml_tensor * b) {
  3463. GGML_ASSERT(ggml_is_matrix(b));
  3464. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3465. GGML_ASSERT(a->ne[3] == 1);
  3466. bool is_node = false;
  3467. if (a->grad || b->grad) {
  3468. GGML_ASSERT(false); // TODO: implement backward
  3469. is_node = true;
  3470. }
  3471. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3472. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3473. result->op = GGML_OP_CONV_1D_2S;
  3474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3475. result->src0 = a;
  3476. result->src1 = b;
  3477. return result;
  3478. }
  3479. // ggml_flash_attn
  3480. struct ggml_tensor * ggml_flash_attn(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * q,
  3483. struct ggml_tensor * k,
  3484. struct ggml_tensor * v,
  3485. bool masked) {
  3486. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3487. // TODO: check if vT can be multiplied by (k*qT)
  3488. bool is_node = false;
  3489. if (q->grad || k->grad || v->grad) {
  3490. GGML_ASSERT(false); // TODO: implement backward
  3491. is_node = true;
  3492. }
  3493. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3494. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3495. result->op = GGML_OP_FLASH_ATTN;
  3496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3497. result->src0 = q;
  3498. result->src1 = k;
  3499. result->opt[0] = v;
  3500. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3501. return result;
  3502. }
  3503. // ggml_flash_ff
  3504. struct ggml_tensor * ggml_flash_ff(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b0,
  3508. struct ggml_tensor * b1,
  3509. struct ggml_tensor * c0,
  3510. struct ggml_tensor * c1) {
  3511. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3512. // TODO: more checks
  3513. bool is_node = false;
  3514. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3515. GGML_ASSERT(false); // TODO: implement backward
  3516. is_node = true;
  3517. }
  3518. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3519. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3520. result->op = GGML_OP_FLASH_FF;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src0 = a;
  3523. result->src1 = b0;
  3524. result->opt[0] = b1;
  3525. result->opt[1] = c0;
  3526. result->opt[2] = c1;
  3527. return result;
  3528. }
  3529. ////////////////////////////////////////////////////////////////////////////////
  3530. void ggml_set_param(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * tensor) {
  3533. tensor->is_param = true;
  3534. GGML_ASSERT(tensor->grad == NULL);
  3535. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3536. }
  3537. // ggml_compute_forward_dup
  3538. static void ggml_compute_forward_dup_f16(
  3539. const struct ggml_compute_params * params,
  3540. const struct ggml_tensor * src0,
  3541. struct ggml_tensor * dst) {
  3542. GGML_ASSERT(params->ith == 0);
  3543. GGML_ASSERT(ggml_is_contiguous(dst));
  3544. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3546. return;
  3547. }
  3548. const int ne00 = src0->ne[0];
  3549. const int ne01 = src0->ne[1];
  3550. const int ne02 = src0->ne[2];
  3551. const int ne03 = src0->ne[3];
  3552. const size_t nb00 = src0->nb[0];
  3553. const size_t nb01 = src0->nb[1];
  3554. const size_t nb02 = src0->nb[2];
  3555. const size_t nb03 = src0->nb[3];
  3556. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3557. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3558. return;
  3559. }
  3560. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3561. if (dst->type == GGML_TYPE_F16) {
  3562. size_t id = 0;
  3563. const size_t rs = ne00*nb00;
  3564. for (int i03 = 0; i03 < ne03; i03++) {
  3565. for (int i02 = 0; i02 < ne02; i02++) {
  3566. for (int i01 = 0; i01 < ne01; i01++) {
  3567. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3568. char * dst_ptr = (char *) dst->data + id*rs;
  3569. memcpy(dst_ptr, src0_ptr, rs);
  3570. id++;
  3571. }
  3572. }
  3573. }
  3574. } else if (dst->type == GGML_TYPE_F32) {
  3575. size_t id = 0;
  3576. float * dst_ptr = (float *) dst->data;
  3577. for (int i03 = 0; i03 < ne03; i03++) {
  3578. for (int i02 = 0; i02 < ne02; i02++) {
  3579. for (int i01 = 0; i01 < ne01; i01++) {
  3580. for (int i00 = 0; i00 < ne00; i00++) {
  3581. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3582. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3583. id++;
  3584. }
  3585. }
  3586. }
  3587. }
  3588. } else {
  3589. GGML_ASSERT(false); // TODO: implement
  3590. }
  3591. } else {
  3592. //printf("%s: this is not optimal - fix me\n", __func__);
  3593. if (dst->type == GGML_TYPE_F32) {
  3594. size_t id = 0;
  3595. float * dst_ptr = (float *) dst->data;
  3596. for (int i03 = 0; i03 < ne03; i03++) {
  3597. for (int i02 = 0; i02 < ne02; i02++) {
  3598. for (int i01 = 0; i01 < ne01; i01++) {
  3599. for (int i00 = 0; i00 < ne00; i00++) {
  3600. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3601. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3602. id++;
  3603. }
  3604. }
  3605. }
  3606. }
  3607. } else if (dst->type == GGML_TYPE_F16) {
  3608. size_t id = 0;
  3609. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3610. for (int i03 = 0; i03 < ne03; i03++) {
  3611. for (int i02 = 0; i02 < ne02; i02++) {
  3612. for (int i01 = 0; i01 < ne01; i01++) {
  3613. for (int i00 = 0; i00 < ne00; i00++) {
  3614. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3615. dst_ptr[id] = *src0_ptr;
  3616. id++;
  3617. }
  3618. }
  3619. }
  3620. }
  3621. } else {
  3622. GGML_ASSERT(false); // TODO: implement
  3623. }
  3624. }
  3625. }
  3626. static void ggml_compute_forward_dup_f32(
  3627. const struct ggml_compute_params * params,
  3628. const struct ggml_tensor * src0,
  3629. struct ggml_tensor * dst) {
  3630. GGML_ASSERT(params->ith == 0);
  3631. GGML_ASSERT(ggml_is_contiguous(dst));
  3632. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3634. return;
  3635. }
  3636. const int ne00 = src0->ne[0];
  3637. const int ne01 = src0->ne[1];
  3638. const int ne02 = src0->ne[2];
  3639. const int ne03 = src0->ne[3];
  3640. const size_t nb00 = src0->nb[0];
  3641. const size_t nb01 = src0->nb[1];
  3642. const size_t nb02 = src0->nb[2];
  3643. const size_t nb03 = src0->nb[3];
  3644. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3645. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3646. return;
  3647. }
  3648. if (src0->nb[0] == sizeof(float)) {
  3649. if (dst->type == GGML_TYPE_F32) {
  3650. size_t id = 0;
  3651. const size_t rs = ne00*nb00;
  3652. for (int i03 = 0; i03 < ne03; i03++) {
  3653. for (int i02 = 0; i02 < ne02; i02++) {
  3654. for (int i01 = 0; i01 < ne01; i01++) {
  3655. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3656. char * dst_ptr = (char *) dst->data + id*rs;
  3657. memcpy(dst_ptr, src0_ptr, rs);
  3658. id++;
  3659. }
  3660. }
  3661. }
  3662. } else if (dst->type == GGML_TYPE_F16) {
  3663. size_t id = 0;
  3664. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3665. for (int i03 = 0; i03 < ne03; i03++) {
  3666. for (int i02 = 0; i02 < ne02; i02++) {
  3667. for (int i01 = 0; i01 < ne01; i01++) {
  3668. for (int i00 = 0; i00 < ne00; i00++) {
  3669. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3670. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3671. id++;
  3672. }
  3673. }
  3674. }
  3675. }
  3676. } else {
  3677. GGML_ASSERT(false); // TODO: implement
  3678. }
  3679. } else {
  3680. //printf("%s: this is not optimal - fix me\n", __func__);
  3681. if (dst->type == GGML_TYPE_F32) {
  3682. size_t id = 0;
  3683. float * dst_ptr = (float *) dst->data;
  3684. for (int i03 = 0; i03 < ne03; i03++) {
  3685. for (int i02 = 0; i02 < ne02; i02++) {
  3686. for (int i01 = 0; i01 < ne01; i01++) {
  3687. for (int i00 = 0; i00 < ne00; i00++) {
  3688. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3689. dst_ptr[id] = *src0_ptr;
  3690. id++;
  3691. }
  3692. }
  3693. }
  3694. }
  3695. } else if (dst->type == GGML_TYPE_F16) {
  3696. size_t id = 0;
  3697. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3698. for (int i03 = 0; i03 < ne03; i03++) {
  3699. for (int i02 = 0; i02 < ne02; i02++) {
  3700. for (int i01 = 0; i01 < ne01; i01++) {
  3701. for (int i00 = 0; i00 < ne00; i00++) {
  3702. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3703. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3704. id++;
  3705. }
  3706. }
  3707. }
  3708. }
  3709. } else {
  3710. GGML_ASSERT(false); // TODO: implement
  3711. }
  3712. }
  3713. }
  3714. static void ggml_compute_forward_dup(
  3715. const struct ggml_compute_params * params,
  3716. const struct ggml_tensor * src0,
  3717. struct ggml_tensor * dst) {
  3718. switch (src0->type) {
  3719. case GGML_TYPE_F16:
  3720. {
  3721. ggml_compute_forward_dup_f16(params, src0, dst);
  3722. } break;
  3723. case GGML_TYPE_F32:
  3724. {
  3725. ggml_compute_forward_dup_f32(params, src0, dst);
  3726. } break;
  3727. case GGML_TYPE_Q4_0:
  3728. case GGML_TYPE_Q4_1:
  3729. case GGML_TYPE_I8:
  3730. case GGML_TYPE_I16:
  3731. case GGML_TYPE_I32:
  3732. case GGML_TYPE_COUNT:
  3733. {
  3734. GGML_ASSERT(false);
  3735. } break;
  3736. }
  3737. }
  3738. // ggml_compute_forward_add
  3739. static void ggml_compute_forward_add_f32(
  3740. const struct ggml_compute_params * params,
  3741. const struct ggml_tensor * src0,
  3742. const struct ggml_tensor * src1,
  3743. struct ggml_tensor * dst) {
  3744. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3746. return;
  3747. }
  3748. const int ith = params->ith;
  3749. const int nth = params->nth;
  3750. const int n = ggml_nrows(src0);
  3751. const int nc = src0->ne[0];
  3752. const size_t nb00 = src0->nb[0];
  3753. const size_t nb01 = src0->nb[1];
  3754. const size_t nb10 = src1->nb[0];
  3755. const size_t nb11 = src1->nb[1];
  3756. const size_t nb0 = dst->nb[0];
  3757. const size_t nb1 = dst->nb[1];
  3758. GGML_ASSERT( nb0 == sizeof(float));
  3759. GGML_ASSERT(nb00 == sizeof(float));
  3760. if (nb10 == sizeof(float)) {
  3761. const int j0 = (n/nth)*ith;
  3762. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3763. for (int j = j0; j < j1; j++) {
  3764. ggml_vec_add_f32(nc,
  3765. (float *) ((char *) dst->data + j*nb1),
  3766. (float *) ((char *) src0->data + j*nb01),
  3767. (float *) ((char *) src1->data + j*nb11));
  3768. }
  3769. } else {
  3770. // src1 is not contiguous
  3771. for (int j = ith; j < n; j += nth) {
  3772. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3773. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3774. for (int i = 0; i < nc; i++) {
  3775. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3776. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3777. }
  3778. }
  3779. }
  3780. }
  3781. static void ggml_compute_forward_add(
  3782. const struct ggml_compute_params * params,
  3783. const struct ggml_tensor * src0,
  3784. const struct ggml_tensor * src1,
  3785. struct ggml_tensor * dst) {
  3786. switch (src0->type) {
  3787. case GGML_TYPE_F32:
  3788. {
  3789. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3790. } break;
  3791. case GGML_TYPE_Q4_0:
  3792. case GGML_TYPE_Q4_1:
  3793. case GGML_TYPE_I8:
  3794. case GGML_TYPE_I16:
  3795. case GGML_TYPE_I32:
  3796. case GGML_TYPE_F16:
  3797. case GGML_TYPE_COUNT:
  3798. {
  3799. GGML_ASSERT(false);
  3800. } break;
  3801. }
  3802. }
  3803. // ggml_compute_forward_sub
  3804. static void ggml_compute_forward_sub_f32(
  3805. const struct ggml_compute_params * params,
  3806. const struct ggml_tensor * src0,
  3807. const struct ggml_tensor * src1,
  3808. struct ggml_tensor * dst) {
  3809. assert(params->ith == 0);
  3810. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3812. return;
  3813. }
  3814. const int n = ggml_nrows(src0);
  3815. const int nc = src0->ne[0];
  3816. assert( dst->nb[0] == sizeof(float));
  3817. assert(src0->nb[0] == sizeof(float));
  3818. assert(src1->nb[0] == sizeof(float));
  3819. for (int i = 0; i < n; i++) {
  3820. ggml_vec_sub_f32(nc,
  3821. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3822. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3823. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3824. }
  3825. }
  3826. static void ggml_compute_forward_sub(
  3827. const struct ggml_compute_params * params,
  3828. const struct ggml_tensor * src0,
  3829. const struct ggml_tensor * src1,
  3830. struct ggml_tensor * dst) {
  3831. switch (src0->type) {
  3832. case GGML_TYPE_F32:
  3833. {
  3834. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3835. } break;
  3836. case GGML_TYPE_Q4_0:
  3837. case GGML_TYPE_Q4_1:
  3838. case GGML_TYPE_I8:
  3839. case GGML_TYPE_I16:
  3840. case GGML_TYPE_I32:
  3841. case GGML_TYPE_F16:
  3842. case GGML_TYPE_COUNT:
  3843. {
  3844. GGML_ASSERT(false);
  3845. } break;
  3846. }
  3847. }
  3848. // ggml_compute_forward_mul
  3849. static void ggml_compute_forward_mul_f32(
  3850. const struct ggml_compute_params * params,
  3851. const struct ggml_tensor * src0,
  3852. const struct ggml_tensor * src1,
  3853. struct ggml_tensor * dst) {
  3854. assert(params->ith == 0);
  3855. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3857. return;
  3858. }
  3859. const int n = ggml_nrows(src0);
  3860. const int nc = src0->ne[0];
  3861. assert( dst->nb[0] == sizeof(float));
  3862. assert(src0->nb[0] == sizeof(float));
  3863. assert(src1->nb[0] == sizeof(float));
  3864. for (int i = 0; i < n; i++) {
  3865. ggml_vec_mul_f32(nc,
  3866. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3867. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3868. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3869. }
  3870. }
  3871. static void ggml_compute_forward_mul(
  3872. const struct ggml_compute_params * params,
  3873. const struct ggml_tensor * src0,
  3874. const struct ggml_tensor * src1,
  3875. struct ggml_tensor * dst) {
  3876. switch (src0->type) {
  3877. case GGML_TYPE_F32:
  3878. {
  3879. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3880. } break;
  3881. case GGML_TYPE_Q4_0:
  3882. case GGML_TYPE_Q4_1:
  3883. case GGML_TYPE_I8:
  3884. case GGML_TYPE_I16:
  3885. case GGML_TYPE_I32:
  3886. case GGML_TYPE_F16:
  3887. case GGML_TYPE_COUNT:
  3888. {
  3889. GGML_ASSERT(false);
  3890. } break;
  3891. }
  3892. }
  3893. // ggml_compute_forward_div
  3894. static void ggml_compute_forward_div_f32(
  3895. const struct ggml_compute_params * params,
  3896. const struct ggml_tensor * src0,
  3897. const struct ggml_tensor * src1,
  3898. struct ggml_tensor * dst) {
  3899. assert(params->ith == 0);
  3900. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3902. return;
  3903. }
  3904. const int n = ggml_nrows(src0);
  3905. const int nc = src0->ne[0];
  3906. assert( dst->nb[0] == sizeof(float));
  3907. assert(src0->nb[0] == sizeof(float));
  3908. assert(src1->nb[0] == sizeof(float));
  3909. for (int i = 0; i < n; i++) {
  3910. ggml_vec_div_f32(nc,
  3911. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3912. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3913. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3914. }
  3915. }
  3916. static void ggml_compute_forward_div(
  3917. const struct ggml_compute_params * params,
  3918. const struct ggml_tensor * src0,
  3919. const struct ggml_tensor * src1,
  3920. struct ggml_tensor * dst) {
  3921. switch (src0->type) {
  3922. case GGML_TYPE_F32:
  3923. {
  3924. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3925. } break;
  3926. case GGML_TYPE_Q4_0:
  3927. case GGML_TYPE_Q4_1:
  3928. case GGML_TYPE_I8:
  3929. case GGML_TYPE_I16:
  3930. case GGML_TYPE_I32:
  3931. case GGML_TYPE_F16:
  3932. case GGML_TYPE_COUNT:
  3933. {
  3934. GGML_ASSERT(false);
  3935. } break;
  3936. }
  3937. }
  3938. // ggml_compute_forward_sqr
  3939. static void ggml_compute_forward_sqr_f32(
  3940. const struct ggml_compute_params * params,
  3941. const struct ggml_tensor * src0,
  3942. struct ggml_tensor * dst) {
  3943. assert(params->ith == 0);
  3944. assert(ggml_are_same_shape(src0, dst));
  3945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3946. return;
  3947. }
  3948. const int n = ggml_nrows(src0);
  3949. const int nc = src0->ne[0];
  3950. assert( dst->nb[0] == sizeof(float));
  3951. assert(src0->nb[0] == sizeof(float));
  3952. for (int i = 0; i < n; i++) {
  3953. ggml_vec_sqr_f32(nc,
  3954. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3955. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3956. }
  3957. }
  3958. static void ggml_compute_forward_sqr(
  3959. const struct ggml_compute_params * params,
  3960. const struct ggml_tensor * src0,
  3961. struct ggml_tensor * dst) {
  3962. switch (src0->type) {
  3963. case GGML_TYPE_F32:
  3964. {
  3965. ggml_compute_forward_sqr_f32(params, src0, dst);
  3966. } break;
  3967. case GGML_TYPE_Q4_0:
  3968. case GGML_TYPE_Q4_1:
  3969. case GGML_TYPE_I8:
  3970. case GGML_TYPE_I16:
  3971. case GGML_TYPE_I32:
  3972. case GGML_TYPE_F16:
  3973. case GGML_TYPE_COUNT:
  3974. {
  3975. GGML_ASSERT(false);
  3976. } break;
  3977. }
  3978. }
  3979. // ggml_compute_forward_sqrt
  3980. static void ggml_compute_forward_sqrt_f32(
  3981. const struct ggml_compute_params * params,
  3982. const struct ggml_tensor * src0,
  3983. struct ggml_tensor * dst) {
  3984. assert(params->ith == 0);
  3985. assert(ggml_are_same_shape(src0, dst));
  3986. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3987. return;
  3988. }
  3989. const int n = ggml_nrows(src0);
  3990. const int nc = src0->ne[0];
  3991. assert( dst->nb[0] == sizeof(float));
  3992. assert(src0->nb[0] == sizeof(float));
  3993. for (int i = 0; i < n; i++) {
  3994. ggml_vec_sqrt_f32(nc,
  3995. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3996. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3997. }
  3998. }
  3999. static void ggml_compute_forward_sqrt(
  4000. const struct ggml_compute_params * params,
  4001. const struct ggml_tensor * src0,
  4002. struct ggml_tensor * dst) {
  4003. switch (src0->type) {
  4004. case GGML_TYPE_F32:
  4005. {
  4006. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4007. } break;
  4008. case GGML_TYPE_Q4_0:
  4009. case GGML_TYPE_Q4_1:
  4010. case GGML_TYPE_I8:
  4011. case GGML_TYPE_I16:
  4012. case GGML_TYPE_I32:
  4013. case GGML_TYPE_F16:
  4014. case GGML_TYPE_COUNT:
  4015. {
  4016. GGML_ASSERT(false);
  4017. } break;
  4018. }
  4019. }
  4020. // ggml_compute_forward_sum
  4021. static void ggml_compute_forward_sum_f32(
  4022. const struct ggml_compute_params * params,
  4023. const struct ggml_tensor * src0,
  4024. struct ggml_tensor * dst) {
  4025. assert(params->ith == 0);
  4026. assert(ggml_is_scalar(dst));
  4027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4028. return;
  4029. }
  4030. assert(ggml_is_scalar(dst));
  4031. assert(src0->nb[0] == sizeof(float));
  4032. const int ne00 = src0->ne[0];
  4033. const int ne01 = src0->ne[1];
  4034. const int ne02 = src0->ne[2];
  4035. const int ne03 = src0->ne[3];
  4036. const size_t nb01 = src0->nb[1];
  4037. const size_t nb02 = src0->nb[2];
  4038. const size_t nb03 = src0->nb[3];
  4039. for (int i03 = 0; i03 < ne03; i03++) {
  4040. for (int i02 = 0; i02 < ne02; i02++) {
  4041. for (int i01 = 0; i01 < ne01; i01++) {
  4042. ggml_vec_sum_f32(ne00,
  4043. (float *) (dst->data),
  4044. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4045. }
  4046. }
  4047. }
  4048. }
  4049. static void ggml_compute_forward_sum(
  4050. const struct ggml_compute_params * params,
  4051. const struct ggml_tensor * src0,
  4052. struct ggml_tensor * dst) {
  4053. switch (src0->type) {
  4054. case GGML_TYPE_F32:
  4055. {
  4056. ggml_compute_forward_sum_f32(params, src0, dst);
  4057. } break;
  4058. case GGML_TYPE_Q4_0:
  4059. case GGML_TYPE_Q4_1:
  4060. case GGML_TYPE_I8:
  4061. case GGML_TYPE_I16:
  4062. case GGML_TYPE_I32:
  4063. case GGML_TYPE_F16:
  4064. case GGML_TYPE_COUNT:
  4065. {
  4066. GGML_ASSERT(false);
  4067. } break;
  4068. }
  4069. }
  4070. // ggml_compute_forward_mean
  4071. static void ggml_compute_forward_mean_f32(
  4072. const struct ggml_compute_params * params,
  4073. const struct ggml_tensor * src0,
  4074. struct ggml_tensor * dst) {
  4075. assert(params->ith == 0);
  4076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4077. return;
  4078. }
  4079. assert(src0->nb[0] == sizeof(float));
  4080. const int ne00 = src0->ne[0];
  4081. const int ne01 = src0->ne[1];
  4082. const int ne02 = src0->ne[2];
  4083. const int ne03 = src0->ne[3];
  4084. const size_t nb01 = src0->nb[1];
  4085. const size_t nb02 = src0->nb[2];
  4086. const size_t nb03 = src0->nb[3];
  4087. const int ne0 = dst->ne[0];
  4088. const int ne1 = dst->ne[1];
  4089. const int ne2 = dst->ne[2];
  4090. const int ne3 = dst->ne[3];
  4091. assert(ne0 == 1);
  4092. assert(ne1 == ne01);
  4093. assert(ne2 == ne02);
  4094. assert(ne3 == ne03);
  4095. UNUSED(ne0);
  4096. UNUSED(ne1);
  4097. UNUSED(ne2);
  4098. UNUSED(ne3);
  4099. const size_t nb1 = dst->nb[1];
  4100. const size_t nb2 = dst->nb[2];
  4101. const size_t nb3 = dst->nb[3];
  4102. for (int i03 = 0; i03 < ne03; i03++) {
  4103. for (int i02 = 0; i02 < ne02; i02++) {
  4104. for (int i01 = 0; i01 < ne01; i01++) {
  4105. ggml_vec_sum_f32(ne00,
  4106. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4107. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4108. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4109. }
  4110. }
  4111. }
  4112. }
  4113. static void ggml_compute_forward_mean(
  4114. const struct ggml_compute_params * params,
  4115. const struct ggml_tensor * src0,
  4116. struct ggml_tensor * dst) {
  4117. switch (src0->type) {
  4118. case GGML_TYPE_F32:
  4119. {
  4120. ggml_compute_forward_mean_f32(params, src0, dst);
  4121. } break;
  4122. case GGML_TYPE_Q4_0:
  4123. case GGML_TYPE_Q4_1:
  4124. case GGML_TYPE_I8:
  4125. case GGML_TYPE_I16:
  4126. case GGML_TYPE_I32:
  4127. case GGML_TYPE_F16:
  4128. case GGML_TYPE_COUNT:
  4129. {
  4130. GGML_ASSERT(false);
  4131. } break;
  4132. }
  4133. }
  4134. // ggml_compute_forward_repeat
  4135. static void ggml_compute_forward_repeat_f32(
  4136. const struct ggml_compute_params * params,
  4137. const struct ggml_tensor * src0,
  4138. struct ggml_tensor * dst) {
  4139. assert(params->ith == 0);
  4140. assert(ggml_can_repeat(src0, dst));
  4141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4142. return;
  4143. }
  4144. // TODO: implement support for rank > 2 tensors
  4145. assert(src0->ne[2] == 1);
  4146. assert(src0->ne[3] == 1);
  4147. assert( dst->ne[2] == 1);
  4148. assert( dst->ne[3] == 1);
  4149. const int nc = dst->ne[0];
  4150. const int nr = dst->ne[1];
  4151. const int nc0 = src0->ne[0];
  4152. const int nr0 = src0->ne[1];
  4153. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4154. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4155. // TODO: support for transposed / permuted tensors
  4156. assert( dst->nb[0] == sizeof(float));
  4157. assert(src0->nb[0] == sizeof(float));
  4158. // TODO: maybe this is not optimal?
  4159. for (int i = 0; i < nrr; i++) {
  4160. for (int j = 0; j < ncr; j++) {
  4161. for (int k = 0; k < nr0; k++) {
  4162. ggml_vec_cpy_f32(nc0,
  4163. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4164. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4165. }
  4166. }
  4167. }
  4168. }
  4169. static void ggml_compute_forward_repeat(
  4170. const struct ggml_compute_params * params,
  4171. const struct ggml_tensor * src0,
  4172. struct ggml_tensor * dst) {
  4173. switch (src0->type) {
  4174. case GGML_TYPE_F32:
  4175. {
  4176. ggml_compute_forward_repeat_f32(params, src0, dst);
  4177. } break;
  4178. case GGML_TYPE_Q4_0:
  4179. case GGML_TYPE_Q4_1:
  4180. case GGML_TYPE_I8:
  4181. case GGML_TYPE_I16:
  4182. case GGML_TYPE_I32:
  4183. case GGML_TYPE_F16:
  4184. case GGML_TYPE_COUNT:
  4185. {
  4186. GGML_ASSERT(false);
  4187. } break;
  4188. }
  4189. }
  4190. // ggml_compute_forward_abs
  4191. static void ggml_compute_forward_abs_f32(
  4192. const struct ggml_compute_params * params,
  4193. const struct ggml_tensor * src0,
  4194. struct ggml_tensor * dst) {
  4195. assert(params->ith == 0);
  4196. assert(ggml_are_same_shape(src0, dst));
  4197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4198. return;
  4199. }
  4200. const int n = ggml_nrows(src0);
  4201. const int nc = src0->ne[0];
  4202. assert(dst->nb[0] == sizeof(float));
  4203. assert(src0->nb[0] == sizeof(float));
  4204. for (int i = 0; i < n; i++) {
  4205. ggml_vec_abs_f32(nc,
  4206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4208. }
  4209. }
  4210. static void ggml_compute_forward_abs(
  4211. const struct ggml_compute_params * params,
  4212. const struct ggml_tensor * src0,
  4213. struct ggml_tensor * dst) {
  4214. switch (src0->type) {
  4215. case GGML_TYPE_F32:
  4216. {
  4217. ggml_compute_forward_abs_f32(params, src0, dst);
  4218. } break;
  4219. case GGML_TYPE_Q4_0:
  4220. case GGML_TYPE_Q4_1:
  4221. case GGML_TYPE_I8:
  4222. case GGML_TYPE_I16:
  4223. case GGML_TYPE_I32:
  4224. case GGML_TYPE_F16:
  4225. case GGML_TYPE_COUNT:
  4226. {
  4227. GGML_ASSERT(false);
  4228. } break;
  4229. }
  4230. }
  4231. // ggml_compute_forward_sgn
  4232. static void ggml_compute_forward_sgn_f32(
  4233. const struct ggml_compute_params * params,
  4234. const struct ggml_tensor * src0,
  4235. struct ggml_tensor * dst) {
  4236. assert(params->ith == 0);
  4237. assert(ggml_are_same_shape(src0, dst));
  4238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4239. return;
  4240. }
  4241. const int n = ggml_nrows(src0);
  4242. const int nc = src0->ne[0];
  4243. assert(dst->nb[0] == sizeof(float));
  4244. assert(src0->nb[0] == sizeof(float));
  4245. for (int i = 0; i < n; i++) {
  4246. ggml_vec_sgn_f32(nc,
  4247. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4248. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4249. }
  4250. }
  4251. static void ggml_compute_forward_sgn(
  4252. const struct ggml_compute_params * params,
  4253. const struct ggml_tensor * src0,
  4254. struct ggml_tensor * dst) {
  4255. switch (src0->type) {
  4256. case GGML_TYPE_F32:
  4257. {
  4258. ggml_compute_forward_sgn_f32(params, src0, dst);
  4259. } break;
  4260. case GGML_TYPE_Q4_0:
  4261. case GGML_TYPE_Q4_1:
  4262. case GGML_TYPE_I8:
  4263. case GGML_TYPE_I16:
  4264. case GGML_TYPE_I32:
  4265. case GGML_TYPE_F16:
  4266. case GGML_TYPE_COUNT:
  4267. {
  4268. GGML_ASSERT(false);
  4269. } break;
  4270. }
  4271. }
  4272. // ggml_compute_forward_neg
  4273. static void ggml_compute_forward_neg_f32(
  4274. const struct ggml_compute_params * params,
  4275. const struct ggml_tensor * src0,
  4276. struct ggml_tensor * dst) {
  4277. assert(params->ith == 0);
  4278. assert(ggml_are_same_shape(src0, dst));
  4279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4280. return;
  4281. }
  4282. const int n = ggml_nrows(src0);
  4283. const int nc = src0->ne[0];
  4284. assert(dst->nb[0] == sizeof(float));
  4285. assert(src0->nb[0] == sizeof(float));
  4286. for (int i = 0; i < n; i++) {
  4287. ggml_vec_neg_f32(nc,
  4288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4289. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4290. }
  4291. }
  4292. static void ggml_compute_forward_neg(
  4293. const struct ggml_compute_params * params,
  4294. const struct ggml_tensor * src0,
  4295. struct ggml_tensor * dst) {
  4296. switch (src0->type) {
  4297. case GGML_TYPE_F32:
  4298. {
  4299. ggml_compute_forward_neg_f32(params, src0, dst);
  4300. } break;
  4301. case GGML_TYPE_Q4_0:
  4302. case GGML_TYPE_Q4_1:
  4303. case GGML_TYPE_I8:
  4304. case GGML_TYPE_I16:
  4305. case GGML_TYPE_I32:
  4306. case GGML_TYPE_F16:
  4307. case GGML_TYPE_COUNT:
  4308. {
  4309. GGML_ASSERT(false);
  4310. } break;
  4311. }
  4312. }
  4313. // ggml_compute_forward_step
  4314. static void ggml_compute_forward_step_f32(
  4315. const struct ggml_compute_params * params,
  4316. const struct ggml_tensor * src0,
  4317. struct ggml_tensor * dst) {
  4318. assert(params->ith == 0);
  4319. assert(ggml_are_same_shape(src0, dst));
  4320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4321. return;
  4322. }
  4323. const int n = ggml_nrows(src0);
  4324. const int nc = src0->ne[0];
  4325. assert(dst->nb[0] == sizeof(float));
  4326. assert(src0->nb[0] == sizeof(float));
  4327. for (int i = 0; i < n; i++) {
  4328. ggml_vec_step_f32(nc,
  4329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4330. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4331. }
  4332. }
  4333. static void ggml_compute_forward_step(
  4334. const struct ggml_compute_params * params,
  4335. const struct ggml_tensor * src0,
  4336. struct ggml_tensor * dst) {
  4337. switch (src0->type) {
  4338. case GGML_TYPE_F32:
  4339. {
  4340. ggml_compute_forward_step_f32(params, src0, dst);
  4341. } break;
  4342. case GGML_TYPE_Q4_0:
  4343. case GGML_TYPE_Q4_1:
  4344. case GGML_TYPE_I8:
  4345. case GGML_TYPE_I16:
  4346. case GGML_TYPE_I32:
  4347. case GGML_TYPE_F16:
  4348. case GGML_TYPE_COUNT:
  4349. {
  4350. GGML_ASSERT(false);
  4351. } break;
  4352. }
  4353. }
  4354. // ggml_compute_forward_relu
  4355. static void ggml_compute_forward_relu_f32(
  4356. const struct ggml_compute_params * params,
  4357. const struct ggml_tensor * src0,
  4358. struct ggml_tensor * dst) {
  4359. assert(params->ith == 0);
  4360. assert(ggml_are_same_shape(src0, dst));
  4361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4362. return;
  4363. }
  4364. const int n = ggml_nrows(src0);
  4365. const int nc = src0->ne[0];
  4366. assert(dst->nb[0] == sizeof(float));
  4367. assert(src0->nb[0] == sizeof(float));
  4368. for (int i = 0; i < n; i++) {
  4369. ggml_vec_relu_f32(nc,
  4370. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4371. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4372. }
  4373. }
  4374. static void ggml_compute_forward_relu(
  4375. const struct ggml_compute_params * params,
  4376. const struct ggml_tensor * src0,
  4377. struct ggml_tensor * dst) {
  4378. switch (src0->type) {
  4379. case GGML_TYPE_F32:
  4380. {
  4381. ggml_compute_forward_relu_f32(params, src0, dst);
  4382. } break;
  4383. case GGML_TYPE_Q4_0:
  4384. case GGML_TYPE_Q4_1:
  4385. case GGML_TYPE_I8:
  4386. case GGML_TYPE_I16:
  4387. case GGML_TYPE_I32:
  4388. case GGML_TYPE_F16:
  4389. case GGML_TYPE_COUNT:
  4390. {
  4391. GGML_ASSERT(false);
  4392. } break;
  4393. }
  4394. }
  4395. // ggml_compute_forward_gelu
  4396. static void ggml_compute_forward_gelu_f32(
  4397. const struct ggml_compute_params * params,
  4398. const struct ggml_tensor * src0,
  4399. struct ggml_tensor * dst) {
  4400. GGML_ASSERT(ggml_is_contiguous(src0));
  4401. GGML_ASSERT(ggml_is_contiguous(dst));
  4402. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4404. return;
  4405. }
  4406. const int ith = params->ith;
  4407. const int nth = params->nth;
  4408. const int nc = src0->ne[0];
  4409. const int nr = ggml_nrows(src0);
  4410. // rows per thread
  4411. const int dr = (nr + nth - 1)/nth;
  4412. // row range for this thread
  4413. const int ir0 = dr*ith;
  4414. const int ir1 = MIN(ir0 + dr, nr);
  4415. for (int i1 = ir0; i1 < ir1; i1++) {
  4416. ggml_vec_gelu_f32(nc,
  4417. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4418. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4419. #ifndef NDEBUG
  4420. for (int k = 0; k < nc; k++) {
  4421. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4422. UNUSED(x);
  4423. assert(!isnan(x));
  4424. assert(!isinf(x));
  4425. }
  4426. #endif
  4427. }
  4428. }
  4429. static void ggml_compute_forward_gelu(
  4430. const struct ggml_compute_params * params,
  4431. const struct ggml_tensor * src0,
  4432. struct ggml_tensor * dst) {
  4433. switch (src0->type) {
  4434. case GGML_TYPE_F32:
  4435. {
  4436. ggml_compute_forward_gelu_f32(params, src0, dst);
  4437. } break;
  4438. case GGML_TYPE_Q4_0:
  4439. case GGML_TYPE_Q4_1:
  4440. case GGML_TYPE_I8:
  4441. case GGML_TYPE_I16:
  4442. case GGML_TYPE_I32:
  4443. case GGML_TYPE_F16:
  4444. case GGML_TYPE_COUNT:
  4445. {
  4446. GGML_ASSERT(false);
  4447. } break;
  4448. }
  4449. //printf("XXXXXXXX gelu\n");
  4450. }
  4451. // ggml_compute_forward_silu
  4452. static void ggml_compute_forward_silu_f32(
  4453. const struct ggml_compute_params * params,
  4454. const struct ggml_tensor * src0,
  4455. struct ggml_tensor * dst) {
  4456. GGML_ASSERT(ggml_is_contiguous(src0));
  4457. GGML_ASSERT(ggml_is_contiguous(dst));
  4458. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4460. return;
  4461. }
  4462. const int ith = params->ith;
  4463. const int nth = params->nth;
  4464. const int nc = src0->ne[0];
  4465. const int nr = ggml_nrows(src0);
  4466. // rows per thread
  4467. const int dr = (nr + nth - 1)/nth;
  4468. // row range for this thread
  4469. const int ir0 = dr*ith;
  4470. const int ir1 = MIN(ir0 + dr, nr);
  4471. for (int i1 = ir0; i1 < ir1; i1++) {
  4472. ggml_vec_silu_f32(nc,
  4473. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4474. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4475. #ifndef NDEBUG
  4476. for (int k = 0; k < nc; k++) {
  4477. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4478. UNUSED(x);
  4479. assert(!isnan(x));
  4480. assert(!isinf(x));
  4481. }
  4482. #endif
  4483. }
  4484. }
  4485. static void ggml_compute_forward_silu(
  4486. const struct ggml_compute_params * params,
  4487. const struct ggml_tensor * src0,
  4488. struct ggml_tensor * dst) {
  4489. switch (src0->type) {
  4490. case GGML_TYPE_F32:
  4491. {
  4492. ggml_compute_forward_silu_f32(params, src0, dst);
  4493. } break;
  4494. case GGML_TYPE_Q4_0:
  4495. case GGML_TYPE_Q4_1:
  4496. case GGML_TYPE_I8:
  4497. case GGML_TYPE_I16:
  4498. case GGML_TYPE_I32:
  4499. case GGML_TYPE_F16:
  4500. case GGML_TYPE_COUNT:
  4501. {
  4502. GGML_ASSERT(false);
  4503. } break;
  4504. }
  4505. }
  4506. // ggml_compute_forward_norm
  4507. static void ggml_compute_forward_norm_f32(
  4508. const struct ggml_compute_params * params,
  4509. const struct ggml_tensor * src0,
  4510. struct ggml_tensor * dst) {
  4511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4513. return;
  4514. }
  4515. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4516. const int ith = params->ith;
  4517. const int nth = params->nth;
  4518. const int ne00 = src0->ne[0];
  4519. const int ne01 = src0->ne[1];
  4520. const int ne02 = src0->ne[2];
  4521. const int ne03 = src0->ne[3];
  4522. const size_t nb01 = src0->nb[1];
  4523. const size_t nb02 = src0->nb[2];
  4524. const size_t nb03 = src0->nb[3];
  4525. const size_t nb1 = dst->nb[1];
  4526. const size_t nb2 = dst->nb[2];
  4527. const size_t nb3 = dst->nb[3];
  4528. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4529. // TODO: optimize
  4530. for (int i03 = 0; i03 < ne03; i03++) {
  4531. for (int i02 = 0; i02 < ne02; i02++) {
  4532. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4533. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4534. ggml_float mean = 0.0;
  4535. for (int i00 = 0; i00 < ne00; i00++) {
  4536. mean += x[i00];
  4537. }
  4538. mean /= ne00;
  4539. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4540. ggml_float sum2 = 0.0;
  4541. for (int i00 = 0; i00 < ne00; i00++) {
  4542. ggml_float v = x[i00] - mean;
  4543. y[i00] = v;
  4544. sum2 += v*v;
  4545. }
  4546. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4547. ggml_vec_scale_f32(ne00, y, scale);
  4548. }
  4549. }
  4550. }
  4551. }
  4552. static void ggml_compute_forward_norm(
  4553. const struct ggml_compute_params * params,
  4554. const struct ggml_tensor * src0,
  4555. struct ggml_tensor * dst) {
  4556. switch (src0->type) {
  4557. case GGML_TYPE_F32:
  4558. {
  4559. ggml_compute_forward_norm_f32(params, src0, dst);
  4560. } break;
  4561. case GGML_TYPE_Q4_0:
  4562. case GGML_TYPE_Q4_1:
  4563. case GGML_TYPE_I8:
  4564. case GGML_TYPE_I16:
  4565. case GGML_TYPE_I32:
  4566. case GGML_TYPE_F16:
  4567. case GGML_TYPE_COUNT:
  4568. {
  4569. GGML_ASSERT(false);
  4570. } break;
  4571. }
  4572. }
  4573. static void ggml_compute_forward_rms_norm_f32(
  4574. const struct ggml_compute_params * params,
  4575. const struct ggml_tensor * src0,
  4576. struct ggml_tensor * dst) {
  4577. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4579. return;
  4580. }
  4581. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4582. const int ith = params->ith;
  4583. const int nth = params->nth;
  4584. const int ne00 = src0->ne[0];
  4585. const int ne01 = src0->ne[1];
  4586. const int ne02 = src0->ne[2];
  4587. const int ne03 = src0->ne[3];
  4588. const size_t nb01 = src0->nb[1];
  4589. const size_t nb02 = src0->nb[2];
  4590. const size_t nb03 = src0->nb[3];
  4591. const size_t nb1 = dst->nb[1];
  4592. const size_t nb2 = dst->nb[2];
  4593. const size_t nb3 = dst->nb[3];
  4594. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4595. // TODO: optimize
  4596. for (int i03 = 0; i03 < ne03; i03++) {
  4597. for (int i02 = 0; i02 < ne02; i02++) {
  4598. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4599. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4600. ggml_float mean = 0.0;
  4601. for (int i00 = 0; i00 < ne00; i00++) {
  4602. mean += x[i00] * x[i00];
  4603. }
  4604. mean /= ne00;
  4605. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4606. memcpy(y, x, ne00 * sizeof(float));
  4607. // for (int i00 = 0; i00 < ne00; i00++) {
  4608. // y[i00] = x[i00];
  4609. // }
  4610. const float scale = 1.0/sqrt(mean + eps);
  4611. ggml_vec_scale_f32(ne00, y, scale);
  4612. }
  4613. }
  4614. }
  4615. }
  4616. static void ggml_compute_forward_rms_norm(
  4617. const struct ggml_compute_params * params,
  4618. const struct ggml_tensor * src0,
  4619. struct ggml_tensor * dst) {
  4620. switch (src0->type) {
  4621. case GGML_TYPE_F32:
  4622. {
  4623. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4624. } break;
  4625. case GGML_TYPE_Q4_0:
  4626. case GGML_TYPE_Q4_1:
  4627. case GGML_TYPE_I8:
  4628. case GGML_TYPE_I16:
  4629. case GGML_TYPE_I32:
  4630. case GGML_TYPE_F16:
  4631. case GGML_TYPE_COUNT:
  4632. {
  4633. GGML_ASSERT(false);
  4634. } break;
  4635. }
  4636. }
  4637. // ggml_compute_forward_mul_mat
  4638. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4639. // helper function to determine if it is better to use BLAS or not
  4640. // for large matrices, BLAS is faster
  4641. static bool ggml_compute_forward_mul_mat_use_blas(
  4642. const struct ggml_tensor * src0,
  4643. const struct ggml_tensor * src1,
  4644. struct ggml_tensor * dst) {
  4645. //const int ne00 = src0->ne[0];
  4646. //const int ne01 = src0->ne[1];
  4647. const int ne10 = src1->ne[0];
  4648. const int ne0 = dst->ne[0];
  4649. const int ne1 = dst->ne[1];
  4650. // TODO: find the optimal values for these
  4651. if (ggml_is_contiguous(src0) &&
  4652. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4653. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4654. return true;
  4655. }
  4656. return false;
  4657. }
  4658. #endif
  4659. static void ggml_compute_forward_mul_mat_f32(
  4660. const struct ggml_compute_params * params,
  4661. const struct ggml_tensor * src0,
  4662. const struct ggml_tensor * src1,
  4663. struct ggml_tensor * dst) {
  4664. int64_t t0 = ggml_perf_time_us();
  4665. UNUSED(t0);
  4666. const int ne00 = src0->ne[0];
  4667. const int ne01 = src0->ne[1];
  4668. const int ne02 = src0->ne[2];
  4669. const int ne03 = src0->ne[3];
  4670. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4671. const int ne10 = src1->ne[0];
  4672. #endif
  4673. const int ne11 = src1->ne[1];
  4674. #ifndef NDEBUG
  4675. const int ne12 = src1->ne[2];
  4676. const int ne13 = src1->ne[3];
  4677. const int ne0 = dst->ne[0];
  4678. const int ne1 = dst->ne[1];
  4679. const int ne2 = dst->ne[2];
  4680. const int ne3 = dst->ne[3];
  4681. const int nb00 = src0->nb[0];
  4682. #endif
  4683. const int nb01 = src0->nb[1];
  4684. const int nb02 = src0->nb[2];
  4685. const int nb03 = src0->nb[3];
  4686. #ifndef NDEBUG
  4687. const int nb10 = src1->nb[0];
  4688. #endif
  4689. const int nb11 = src1->nb[1];
  4690. const int nb12 = src1->nb[2];
  4691. const int nb13 = src1->nb[3];
  4692. const int nb0 = dst->nb[0];
  4693. const int nb1 = dst->nb[1];
  4694. const int nb2 = dst->nb[2];
  4695. const int nb3 = dst->nb[3];
  4696. const int ith = params->ith;
  4697. const int nth = params->nth;
  4698. assert(ne02 == ne12);
  4699. assert(ne03 == ne13);
  4700. assert(ne2 == ne12);
  4701. assert(ne3 == ne13);
  4702. // we don't support permuted src0 or src1
  4703. assert(nb00 == sizeof(float));
  4704. assert(nb10 == sizeof(float));
  4705. // dst cannot be transposed or permuted
  4706. assert(nb0 == sizeof(float));
  4707. assert(nb0 <= nb1);
  4708. assert(nb1 <= nb2);
  4709. assert(nb2 <= nb3);
  4710. assert(ne0 == ne01);
  4711. assert(ne1 == ne11);
  4712. assert(ne2 == ne02);
  4713. assert(ne3 == ne03);
  4714. // nb01 >= nb00 - src0 is not transposed
  4715. // compute by src0 rows
  4716. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4717. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4718. if (params->ith != 0) {
  4719. return;
  4720. }
  4721. if (params->type == GGML_TASK_INIT) {
  4722. return;
  4723. }
  4724. if (params->type == GGML_TASK_FINALIZE) {
  4725. return;
  4726. }
  4727. for (int i03 = 0; i03 < ne03; i03++) {
  4728. for (int i02 = 0; i02 < ne02; i02++) {
  4729. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4730. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4731. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4732. // zT = y * xT
  4733. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4734. ne11, ne01, ne10,
  4735. 1.0f, y, ne10,
  4736. x, ne10,
  4737. 0.0f, d, ne01);
  4738. }
  4739. }
  4740. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4741. return;
  4742. }
  4743. #endif
  4744. if (params->type == GGML_TASK_INIT) {
  4745. return;
  4746. }
  4747. if (params->type == GGML_TASK_FINALIZE) {
  4748. return;
  4749. }
  4750. // parallelize by src0 rows using ggml_vec_dot_f32
  4751. // total rows in src0
  4752. const int nr = ne01*ne02*ne03;
  4753. // rows per thread
  4754. const int dr = (nr + nth - 1)/nth;
  4755. // row range for this thread
  4756. const int ir0 = dr*ith;
  4757. const int ir1 = MIN(ir0 + dr, nr);
  4758. for (int ir = ir0; ir < ir1; ++ir) {
  4759. // src0 indices
  4760. const int i03 = ir/(ne02*ne01);
  4761. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4762. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4763. for (int ic = 0; ic < ne11; ++ic) {
  4764. // src1 indices
  4765. const int i13 = i03;
  4766. const int i12 = i02;
  4767. const int i11 = ic;
  4768. // dst indices
  4769. const int i0 = i01;
  4770. const int i1 = i11;
  4771. const int i2 = i02;
  4772. const int i3 = i03;
  4773. ggml_vec_dot_f32(ne00,
  4774. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4775. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4776. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4777. }
  4778. }
  4779. //int64_t t1 = ggml_perf_time_us();
  4780. //static int64_t acc = 0;
  4781. //acc += t1 - t0;
  4782. //if (t1 - t0 > 10) {
  4783. // printf("\n");
  4784. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4785. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4786. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4787. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4788. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4789. //}
  4790. }
  4791. static void ggml_compute_forward_mul_mat_f16_f32(
  4792. const struct ggml_compute_params * params,
  4793. const struct ggml_tensor * src0,
  4794. const struct ggml_tensor * src1,
  4795. struct ggml_tensor * dst) {
  4796. int64_t t0 = ggml_perf_time_us();
  4797. UNUSED(t0);
  4798. const int ne00 = src0->ne[0];
  4799. const int ne01 = src0->ne[1];
  4800. const int ne02 = src0->ne[2];
  4801. const int ne03 = src0->ne[3];
  4802. const int ne10 = src1->ne[0];
  4803. const int ne11 = src1->ne[1];
  4804. const int ne12 = src1->ne[2];
  4805. const int ne13 = src1->ne[3];
  4806. const int ne0 = dst->ne[0];
  4807. const int ne1 = dst->ne[1];
  4808. const int ne2 = dst->ne[2];
  4809. const int ne3 = dst->ne[3];
  4810. //const int ne = ne0*ne1*ne2*ne3;
  4811. const int nb00 = src0->nb[0];
  4812. const int nb01 = src0->nb[1];
  4813. const int nb02 = src0->nb[2];
  4814. const int nb03 = src0->nb[3];
  4815. const int nb10 = src1->nb[0];
  4816. const int nb11 = src1->nb[1];
  4817. const int nb12 = src1->nb[2];
  4818. const int nb13 = src1->nb[3];
  4819. const int nb0 = dst->nb[0];
  4820. const int nb1 = dst->nb[1];
  4821. const int nb2 = dst->nb[2];
  4822. const int nb3 = dst->nb[3];
  4823. const int ith = params->ith;
  4824. const int nth = params->nth;
  4825. GGML_ASSERT(ne02 == ne12);
  4826. GGML_ASSERT(ne03 == ne13);
  4827. GGML_ASSERT(ne2 == ne12);
  4828. GGML_ASSERT(ne3 == ne13);
  4829. // TODO: we don't support permuted src0
  4830. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4831. // dst cannot be transposed or permuted
  4832. GGML_ASSERT(nb0 == sizeof(float));
  4833. GGML_ASSERT(nb0 <= nb1);
  4834. GGML_ASSERT(nb1 <= nb2);
  4835. GGML_ASSERT(nb2 <= nb3);
  4836. GGML_ASSERT(ne0 == ne01);
  4837. GGML_ASSERT(ne1 == ne11);
  4838. GGML_ASSERT(ne2 == ne02);
  4839. GGML_ASSERT(ne3 == ne03);
  4840. // nb01 >= nb00 - src0 is not transposed
  4841. // compute by src0 rows
  4842. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4843. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4844. GGML_ASSERT(nb10 == sizeof(float));
  4845. if (params->ith != 0) {
  4846. return;
  4847. }
  4848. if (params->type == GGML_TASK_INIT) {
  4849. return;
  4850. }
  4851. if (params->type == GGML_TASK_FINALIZE) {
  4852. return;
  4853. }
  4854. float * const wdata = params->wdata;
  4855. for (int i03 = 0; i03 < ne03; i03++) {
  4856. for (int i02 = 0; i02 < ne02; i02++) {
  4857. {
  4858. size_t id = 0;
  4859. for (int i01 = 0; i01 < ne01; ++i01) {
  4860. for (int i00 = 0; i00 < ne00; ++i00) {
  4861. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4862. }
  4863. }
  4864. }
  4865. const float * x = wdata;
  4866. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4867. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4868. // zT = y * xT
  4869. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4870. ne11, ne01, ne10,
  4871. 1.0f, y, ne10,
  4872. x, ne10,
  4873. 0.0f, d, ne01);
  4874. }
  4875. }
  4876. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4877. return;
  4878. }
  4879. #endif
  4880. if (params->type == GGML_TASK_INIT) {
  4881. ggml_fp16_t * const wdata = params->wdata;
  4882. size_t id = 0;
  4883. for (int i13 = 0; i13 < ne13; ++i13) {
  4884. for (int i12 = 0; i12 < ne12; ++i12) {
  4885. for (int i11 = 0; i11 < ne11; ++i11) {
  4886. for (int i10 = 0; i10 < ne10; ++i10) {
  4887. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4888. }
  4889. }
  4890. }
  4891. }
  4892. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4893. return;
  4894. }
  4895. if (params->type == GGML_TASK_FINALIZE) {
  4896. return;
  4897. }
  4898. // fp16 -> half the size, so divide by 2
  4899. // TODO: do not support transposed src1
  4900. assert(nb10/2 == sizeof(ggml_fp16_t));
  4901. // parallelize by src0 rows using ggml_vec_dot_f16
  4902. // total rows in src0
  4903. const int nr = ne01*ne02*ne03;
  4904. // rows per thread
  4905. const int dr = (nr + nth - 1)/nth;
  4906. // row range for this thread
  4907. const int ir0 = dr*ith;
  4908. const int ir1 = MIN(ir0 + dr, nr);
  4909. ggml_fp16_t * wdata = params->wdata;
  4910. for (int ir = ir0; ir < ir1; ++ir) {
  4911. // src0 indices
  4912. const int i03 = ir/(ne02*ne01);
  4913. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4914. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4915. const int i13 = i03;
  4916. const int i12 = i02;
  4917. const int i0 = i01;
  4918. const int i2 = i02;
  4919. const int i3 = i03;
  4920. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4921. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4922. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4923. for (int ic = 0; ic < ne11; ++ic) {
  4924. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4925. }
  4926. }
  4927. //int64_t t1 = ggml_time_us();
  4928. //static int64_t acc = 0;
  4929. //acc += t1 - t0;
  4930. //if (t1 - t0 > 10) {
  4931. // printf("\n");
  4932. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4933. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4934. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4935. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4936. //}
  4937. }
  4938. static void ggml_compute_forward_mul_mat_q4_0_f32(
  4939. const struct ggml_compute_params * params,
  4940. const struct ggml_tensor * src0,
  4941. const struct ggml_tensor * src1,
  4942. struct ggml_tensor * dst) {
  4943. int64_t t0 = ggml_perf_time_us();
  4944. UNUSED(t0);
  4945. const int ne00 = src0->ne[0];
  4946. const int ne01 = src0->ne[1];
  4947. const int ne02 = src0->ne[2];
  4948. const int ne03 = src0->ne[3];
  4949. const int ne10 = src1->ne[0];
  4950. const int ne11 = src1->ne[1];
  4951. const int ne12 = src1->ne[2];
  4952. const int ne13 = src1->ne[3];
  4953. const int ne0 = dst->ne[0];
  4954. const int ne1 = dst->ne[1];
  4955. const int ne2 = dst->ne[2];
  4956. const int ne3 = dst->ne[3];
  4957. const int nb00 = src0->nb[0];
  4958. const int nb01 = src0->nb[1];
  4959. const int nb02 = src0->nb[2];
  4960. const int nb03 = src0->nb[3];
  4961. const int nb10 = src1->nb[0];
  4962. const int nb11 = src1->nb[1];
  4963. const int nb12 = src1->nb[2];
  4964. const int nb13 = src1->nb[3];
  4965. const int nb0 = dst->nb[0];
  4966. const int nb1 = dst->nb[1];
  4967. const int nb2 = dst->nb[2];
  4968. const int nb3 = dst->nb[3];
  4969. const int ith = params->ith;
  4970. const int nth = params->nth;
  4971. GGML_ASSERT(ne02 == ne12);
  4972. GGML_ASSERT(ne03 == ne13);
  4973. GGML_ASSERT(ne2 == ne12);
  4974. GGML_ASSERT(ne3 == ne13);
  4975. // we don't support permuted src0 or src1
  4976. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  4977. GGML_ASSERT(nb10 == sizeof(float));
  4978. // dst cannot be transposed or permuted
  4979. GGML_ASSERT(nb0 == sizeof(float));
  4980. GGML_ASSERT(nb0 <= nb1);
  4981. GGML_ASSERT(nb1 <= nb2);
  4982. GGML_ASSERT(nb2 <= nb3);
  4983. GGML_ASSERT(ne0 == ne01);
  4984. GGML_ASSERT(ne1 == ne11);
  4985. GGML_ASSERT(ne2 == ne02);
  4986. GGML_ASSERT(ne3 == ne03);
  4987. // nb01 >= nb00 - src0 is not transposed
  4988. // compute by src0 rows
  4989. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4990. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4991. if (params->ith != 0) {
  4992. return;
  4993. }
  4994. if (params->type == GGML_TASK_INIT) {
  4995. return;
  4996. }
  4997. if (params->type == GGML_TASK_FINALIZE) {
  4998. return;
  4999. }
  5000. float * const wdata = params->wdata;
  5001. for (int i03 = 0; i03 < ne03; i03++) {
  5002. for (int i02 = 0; i02 < ne02; i02++) {
  5003. {
  5004. size_t id = 0;
  5005. for (int i01 = 0; i01 < ne01; ++i01) {
  5006. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5007. id += ne00;
  5008. }
  5009. }
  5010. const float * x = wdata;
  5011. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5012. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5013. // zT = y * xT
  5014. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5015. ne11, ne01, ne10,
  5016. 1.0f, y, ne10,
  5017. x, ne10,
  5018. 0.0f, d, ne01);
  5019. }
  5020. }
  5021. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5022. return;
  5023. }
  5024. #endif
  5025. if (params->type == GGML_TASK_INIT) {
  5026. char * wdata = params->wdata;
  5027. for (int i13 = 0; i13 < ne13; ++i13) {
  5028. for (int i12 = 0; i12 < ne12; ++i12) {
  5029. for (int i11 = 0; i11 < ne11; ++i11) {
  5030. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5031. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5032. }
  5033. }
  5034. }
  5035. return;
  5036. }
  5037. if (params->type == GGML_TASK_FINALIZE) {
  5038. return;
  5039. }
  5040. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5041. // total rows in src0
  5042. const int nr = ne01*ne02*ne03;
  5043. // rows per thread
  5044. const int dr = (nr + nth - 1)/nth;
  5045. // row range for this thread
  5046. const int ir0 = dr*ith;
  5047. const int ir1 = MIN(ir0 + dr, nr);
  5048. void * wdata = params->wdata;
  5049. for (int ir = ir0; ir < ir1; ++ir) {
  5050. // src0 indices
  5051. const int i03 = ir/(ne02*ne01);
  5052. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5053. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5054. const int i13 = i03;
  5055. const int i12 = i02;
  5056. const int i0 = i01;
  5057. const int i2 = i02;
  5058. const int i3 = i03;
  5059. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5060. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5061. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5062. assert(ne00 % 32 == 0);
  5063. for (int ic = 0; ic < ne11; ++ic) {
  5064. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5065. }
  5066. }
  5067. //int64_t t1 = ggml_time_us();
  5068. //static int64_t acc = 0;
  5069. //acc += t1 - t0;
  5070. //if (t1 - t0 > 10) {
  5071. // printf("\n");
  5072. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5073. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5074. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5075. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5076. //}
  5077. }
  5078. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5079. const struct ggml_compute_params * params,
  5080. const struct ggml_tensor * src0,
  5081. const struct ggml_tensor * src1,
  5082. struct ggml_tensor * dst) {
  5083. int64_t t0 = ggml_perf_time_us();
  5084. UNUSED(t0);
  5085. const int ne00 = src0->ne[0];
  5086. const int ne01 = src0->ne[1];
  5087. const int ne02 = src0->ne[2];
  5088. const int ne03 = src0->ne[3];
  5089. const int ne10 = src1->ne[0];
  5090. const int ne11 = src1->ne[1];
  5091. const int ne12 = src1->ne[2];
  5092. const int ne13 = src1->ne[3];
  5093. const int ne0 = dst->ne[0];
  5094. const int ne1 = dst->ne[1];
  5095. const int ne2 = dst->ne[2];
  5096. const int ne3 = dst->ne[3];
  5097. const int nb00 = src0->nb[0];
  5098. const int nb01 = src0->nb[1];
  5099. const int nb02 = src0->nb[2];
  5100. const int nb03 = src0->nb[3];
  5101. const int nb10 = src1->nb[0];
  5102. const int nb11 = src1->nb[1];
  5103. const int nb12 = src1->nb[2];
  5104. const int nb13 = src1->nb[3];
  5105. const int nb0 = dst->nb[0];
  5106. const int nb1 = dst->nb[1];
  5107. const int nb2 = dst->nb[2];
  5108. const int nb3 = dst->nb[3];
  5109. const int ith = params->ith;
  5110. const int nth = params->nth;
  5111. GGML_ASSERT(ne02 == ne12);
  5112. GGML_ASSERT(ne03 == ne13);
  5113. GGML_ASSERT(ne2 == ne12);
  5114. GGML_ASSERT(ne3 == ne13);
  5115. // we don't support permuted src0 or src1
  5116. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5117. GGML_ASSERT(nb10 == sizeof(float));
  5118. // dst cannot be transposed or permuted
  5119. GGML_ASSERT(nb0 == sizeof(float));
  5120. GGML_ASSERT(nb0 <= nb1);
  5121. GGML_ASSERT(nb1 <= nb2);
  5122. GGML_ASSERT(nb2 <= nb3);
  5123. GGML_ASSERT(ne0 == ne01);
  5124. GGML_ASSERT(ne1 == ne11);
  5125. GGML_ASSERT(ne2 == ne02);
  5126. GGML_ASSERT(ne3 == ne03);
  5127. // nb01 >= nb00 - src0 is not transposed
  5128. // compute by src0 rows
  5129. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5130. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5131. if (params->ith != 0) {
  5132. return;
  5133. }
  5134. if (params->type == GGML_TASK_INIT) {
  5135. return;
  5136. }
  5137. if (params->type == GGML_TASK_FINALIZE) {
  5138. return;
  5139. }
  5140. float * const wdata = params->wdata;
  5141. for (int i03 = 0; i03 < ne03; i03++) {
  5142. for (int i02 = 0; i02 < ne02; i02++) {
  5143. {
  5144. size_t id = 0;
  5145. for (int i01 = 0; i01 < ne01; ++i01) {
  5146. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5147. id += ne00;
  5148. }
  5149. }
  5150. const float * x = wdata;
  5151. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5152. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5153. // zT = y * xT
  5154. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5155. ne11, ne01, ne10,
  5156. 1.0f, y, ne10,
  5157. x, ne10,
  5158. 0.0f, d, ne01);
  5159. }
  5160. }
  5161. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5162. return;
  5163. }
  5164. #endif
  5165. if (params->type == GGML_TASK_INIT) {
  5166. char * wdata = params->wdata;
  5167. for (int i13 = 0; i13 < ne13; ++i13) {
  5168. for (int i12 = 0; i12 < ne12; ++i12) {
  5169. for (int i11 = 0; i11 < ne11; ++i11) {
  5170. //for (int i10 = 0; i10 < ne10; ++i10) {
  5171. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5172. //}
  5173. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5174. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5175. }
  5176. }
  5177. }
  5178. return;
  5179. }
  5180. if (params->type == GGML_TASK_FINALIZE) {
  5181. return;
  5182. }
  5183. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5184. // total rows in src0
  5185. const int nr = ne01*ne02*ne03;
  5186. // rows per thread
  5187. const int dr = (nr + nth - 1)/nth;
  5188. // row range for this thread
  5189. const int ir0 = dr*ith;
  5190. const int ir1 = MIN(ir0 + dr, nr);
  5191. void * wdata = params->wdata;
  5192. for (int ir = ir0; ir < ir1; ++ir) {
  5193. // src0 indices
  5194. const int i03 = ir/(ne02*ne01);
  5195. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5196. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5197. const int i13 = i03;
  5198. const int i12 = i02;
  5199. const int i0 = i01;
  5200. const int i2 = i02;
  5201. const int i3 = i03;
  5202. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5203. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5204. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5205. assert(ne00 % 32 == 0);
  5206. for (int ic = 0; ic < ne11; ++ic) {
  5207. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5208. }
  5209. }
  5210. //int64_t t1 = ggml_time_us();
  5211. //static int64_t acc = 0;
  5212. //acc += t1 - t0;
  5213. //if (t1 - t0 > 10) {
  5214. // printf("\n");
  5215. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5216. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5217. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5218. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5219. //}
  5220. }
  5221. static void ggml_compute_forward_mul_mat(
  5222. const struct ggml_compute_params * params,
  5223. const struct ggml_tensor * src0,
  5224. const struct ggml_tensor * src1,
  5225. struct ggml_tensor * dst) {
  5226. switch (src0->type) {
  5227. case GGML_TYPE_Q4_0:
  5228. {
  5229. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5230. } break;
  5231. case GGML_TYPE_Q4_1:
  5232. {
  5233. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5234. } break;
  5235. case GGML_TYPE_F16:
  5236. {
  5237. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5238. } break;
  5239. case GGML_TYPE_F32:
  5240. {
  5241. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5242. } break;
  5243. case GGML_TYPE_I8:
  5244. case GGML_TYPE_I16:
  5245. case GGML_TYPE_I32:
  5246. case GGML_TYPE_COUNT:
  5247. {
  5248. GGML_ASSERT(false);
  5249. } break;
  5250. }
  5251. #if 0
  5252. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5253. static int first = 8;
  5254. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5255. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5256. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5257. if (first) {
  5258. --first;
  5259. } else {
  5260. for (int k = 0; k < dst->ne[1]; ++k) {
  5261. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5262. for (int i = 0; i < 16; ++i) {
  5263. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5264. }
  5265. printf("\n");
  5266. }
  5267. printf("\n");
  5268. }
  5269. printf("\n");
  5270. exit(0);
  5271. }
  5272. } else {
  5273. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5274. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5275. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5276. }
  5277. #endif
  5278. }
  5279. // ggml_compute_forward_scale
  5280. static void ggml_compute_forward_scale_f32(
  5281. const struct ggml_compute_params * params,
  5282. const struct ggml_tensor * src0,
  5283. const struct ggml_tensor * src1,
  5284. struct ggml_tensor * dst) {
  5285. GGML_ASSERT(ggml_is_contiguous(src0));
  5286. GGML_ASSERT(ggml_is_contiguous(dst));
  5287. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5288. GGML_ASSERT(ggml_is_scalar(src1));
  5289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5290. return;
  5291. }
  5292. // scale factor
  5293. const float v = *(float *) src1->data;
  5294. const int ith = params->ith;
  5295. const int nth = params->nth;
  5296. const int nc = src0->ne[0];
  5297. const int nr = ggml_nrows(src0);
  5298. // rows per thread
  5299. const int dr = (nr + nth - 1)/nth;
  5300. // row range for this thread
  5301. const int ir0 = dr*ith;
  5302. const int ir1 = MIN(ir0 + dr, nr);
  5303. for (int i1 = ir0; i1 < ir1; i1++) {
  5304. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5305. }
  5306. }
  5307. static void ggml_compute_forward_scale(
  5308. const struct ggml_compute_params * params,
  5309. const struct ggml_tensor * src0,
  5310. const struct ggml_tensor * src1,
  5311. struct ggml_tensor * dst) {
  5312. switch (src0->type) {
  5313. case GGML_TYPE_F32:
  5314. {
  5315. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5316. } break;
  5317. case GGML_TYPE_Q4_0:
  5318. case GGML_TYPE_Q4_1:
  5319. case GGML_TYPE_I8:
  5320. case GGML_TYPE_I16:
  5321. case GGML_TYPE_I32:
  5322. case GGML_TYPE_F16:
  5323. case GGML_TYPE_COUNT:
  5324. {
  5325. GGML_ASSERT(false);
  5326. } break;
  5327. }
  5328. }
  5329. // ggml_compute_forward_cpy
  5330. static void ggml_compute_forward_cpy(
  5331. const struct ggml_compute_params * params,
  5332. const struct ggml_tensor * src0,
  5333. struct ggml_tensor * dst) {
  5334. ggml_compute_forward_dup(params, src0, dst);
  5335. }
  5336. // ggml_compute_forward_reshape
  5337. static void ggml_compute_forward_reshape(
  5338. const struct ggml_compute_params * params,
  5339. const struct ggml_tensor * src0,
  5340. struct ggml_tensor * dst) {
  5341. // NOP
  5342. UNUSED(params);
  5343. UNUSED(src0);
  5344. UNUSED(dst);
  5345. }
  5346. // ggml_compute_forward_view
  5347. static void ggml_compute_forward_view(
  5348. const struct ggml_compute_params * params,
  5349. const struct ggml_tensor * src0) {
  5350. // NOP
  5351. UNUSED(params);
  5352. UNUSED(src0);
  5353. }
  5354. // ggml_compute_forward_permute
  5355. static void ggml_compute_forward_permute(
  5356. const struct ggml_compute_params * params,
  5357. const struct ggml_tensor * src0) {
  5358. // NOP
  5359. UNUSED(params);
  5360. UNUSED(src0);
  5361. }
  5362. // ggml_compute_forward_transpose
  5363. static void ggml_compute_forward_transpose(
  5364. const struct ggml_compute_params * params,
  5365. const struct ggml_tensor * src0) {
  5366. // NOP
  5367. UNUSED(params);
  5368. UNUSED(src0);
  5369. }
  5370. // ggml_compute_forward_get_rows
  5371. static void ggml_compute_forward_get_rows_q4_0(
  5372. const struct ggml_compute_params * params,
  5373. const struct ggml_tensor * src0,
  5374. const struct ggml_tensor * src1,
  5375. struct ggml_tensor * dst) {
  5376. assert(params->ith == 0);
  5377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5378. return;
  5379. }
  5380. const int nc = src0->ne[0];
  5381. const int nr = ggml_nelements(src1);
  5382. assert( dst->ne[0] == nc);
  5383. assert( dst->ne[1] == nr);
  5384. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5385. for (int i = 0; i < nr; ++i) {
  5386. const int r = ((int32_t *) src1->data)[i];
  5387. dequantize_row_q4_0(
  5388. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5389. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5390. }
  5391. }
  5392. static void ggml_compute_forward_get_rows_q4_1(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0,
  5395. const struct ggml_tensor * src1,
  5396. struct ggml_tensor * dst) {
  5397. assert(params->ith == 0);
  5398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5399. return;
  5400. }
  5401. const int nc = src0->ne[0];
  5402. const int nr = ggml_nelements(src1);
  5403. assert( dst->ne[0] == nc);
  5404. assert( dst->ne[1] == nr);
  5405. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5406. for (int i = 0; i < nr; ++i) {
  5407. const int r = ((int32_t *) src1->data)[i];
  5408. dequantize_row_q4_1(
  5409. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5410. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5411. }
  5412. }
  5413. static void ggml_compute_forward_get_rows_f16(
  5414. const struct ggml_compute_params * params,
  5415. const struct ggml_tensor * src0,
  5416. const struct ggml_tensor * src1,
  5417. struct ggml_tensor * dst) {
  5418. assert(params->ith == 0);
  5419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5420. return;
  5421. }
  5422. const int nc = src0->ne[0];
  5423. const int nr = ggml_nelements(src1);
  5424. assert( dst->ne[0] == nc);
  5425. assert( dst->ne[1] == nr);
  5426. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5427. for (int i = 0; i < nr; ++i) {
  5428. const int r = ((int32_t *) src1->data)[i];
  5429. for (int j = 0; j < nc; ++j) {
  5430. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5431. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5432. }
  5433. }
  5434. }
  5435. static void ggml_compute_forward_get_rows_f32(
  5436. const struct ggml_compute_params * params,
  5437. const struct ggml_tensor * src0,
  5438. const struct ggml_tensor * src1,
  5439. struct ggml_tensor * dst) {
  5440. assert(params->ith == 0);
  5441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5442. return;
  5443. }
  5444. const int nc = src0->ne[0];
  5445. const int nr = ggml_nelements(src1);
  5446. assert( dst->ne[0] == nc);
  5447. assert( dst->ne[1] == nr);
  5448. assert(src0->nb[0] == sizeof(float));
  5449. for (int i = 0; i < nr; ++i) {
  5450. const int r = ((int32_t *) src1->data)[i];
  5451. ggml_vec_cpy_f32(nc,
  5452. (float *) ((char *) dst->data + i*dst->nb[1]),
  5453. (float *) ((char *) src0->data + r*src0->nb[1]));
  5454. }
  5455. }
  5456. static void ggml_compute_forward_get_rows(
  5457. const struct ggml_compute_params * params,
  5458. const struct ggml_tensor * src0,
  5459. const struct ggml_tensor * src1,
  5460. struct ggml_tensor * dst) {
  5461. switch (src0->type) {
  5462. case GGML_TYPE_Q4_0:
  5463. {
  5464. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5465. } break;
  5466. case GGML_TYPE_Q4_1:
  5467. {
  5468. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5469. } break;
  5470. case GGML_TYPE_F16:
  5471. {
  5472. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5473. } break;
  5474. case GGML_TYPE_F32:
  5475. {
  5476. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5477. } break;
  5478. case GGML_TYPE_I8:
  5479. case GGML_TYPE_I16:
  5480. case GGML_TYPE_I32:
  5481. case GGML_TYPE_COUNT:
  5482. {
  5483. GGML_ASSERT(false);
  5484. } break;
  5485. }
  5486. //static bool first = true;
  5487. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5488. //if (first) {
  5489. // first = false;
  5490. //} else {
  5491. // for (int k = 0; k < dst->ne[1]; ++k) {
  5492. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5493. // for (int i = 0; i < 16; ++i) {
  5494. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5495. // }
  5496. // printf("\n");
  5497. // }
  5498. // printf("\n");
  5499. // }
  5500. // printf("\n");
  5501. // exit(0);
  5502. //}
  5503. }
  5504. // ggml_compute_forward_diag_mask_inf
  5505. static void ggml_compute_forward_diag_mask_inf_f32(
  5506. const struct ggml_compute_params * params,
  5507. const struct ggml_tensor * src0,
  5508. const struct ggml_tensor * src1,
  5509. struct ggml_tensor * dst) {
  5510. assert(params->ith == 0);
  5511. assert(src1->type == GGML_TYPE_I32);
  5512. assert(ggml_nelements(src1) == 1);
  5513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5514. return;
  5515. }
  5516. const int n_past = ((int32_t *) src1->data)[0];
  5517. // TODO: handle transposed/permuted matrices
  5518. const int n = ggml_nrows(src0);
  5519. const int nc = src0->ne[0];
  5520. const int nr = src0->ne[1];
  5521. const int nz = n/nr;
  5522. assert( dst->nb[0] == sizeof(float));
  5523. assert(src0->nb[0] == sizeof(float));
  5524. for (int k = 0; k < nz; k++) {
  5525. for (int j = 0; j < nr; j++) {
  5526. for (int i = n_past; i < nc; i++) {
  5527. if (i > n_past + j) {
  5528. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5529. }
  5530. }
  5531. }
  5532. }
  5533. }
  5534. static void ggml_compute_forward_diag_mask_inf(
  5535. const struct ggml_compute_params * params,
  5536. const struct ggml_tensor * src0,
  5537. const struct ggml_tensor * src1,
  5538. struct ggml_tensor * dst) {
  5539. switch (src0->type) {
  5540. case GGML_TYPE_F32:
  5541. {
  5542. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5543. } break;
  5544. case GGML_TYPE_Q4_0:
  5545. case GGML_TYPE_Q4_1:
  5546. case GGML_TYPE_I8:
  5547. case GGML_TYPE_I16:
  5548. case GGML_TYPE_I32:
  5549. case GGML_TYPE_F16:
  5550. case GGML_TYPE_COUNT:
  5551. {
  5552. GGML_ASSERT(false);
  5553. } break;
  5554. }
  5555. }
  5556. // ggml_compute_forward_soft_max
  5557. static void ggml_compute_forward_soft_max_f32(
  5558. const struct ggml_compute_params * params,
  5559. const struct ggml_tensor * src0,
  5560. struct ggml_tensor * dst) {
  5561. GGML_ASSERT(ggml_is_contiguous(src0));
  5562. GGML_ASSERT(ggml_is_contiguous(dst));
  5563. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5564. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5565. return;
  5566. }
  5567. // TODO: handle transposed/permuted matrices
  5568. const int ith = params->ith;
  5569. const int nth = params->nth;
  5570. const int nc = src0->ne[0];
  5571. const int nr = ggml_nrows(src0);
  5572. // rows per thread
  5573. const int dr = (nr + nth - 1)/nth;
  5574. // row range for this thread
  5575. const int ir0 = dr*ith;
  5576. const int ir1 = MIN(ir0 + dr, nr);
  5577. for (int i1 = ir0; i1 < ir1; i1++) {
  5578. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5579. #ifndef NDEBUG
  5580. for (int i = 0; i < nc; ++i) {
  5581. //printf("p[%d] = %f\n", i, p[i]);
  5582. assert(!isnan(p[i]));
  5583. }
  5584. #endif
  5585. float max = -INFINITY;
  5586. ggml_vec_max_f32(nc, &max, p);
  5587. ggml_float sum = 0.0;
  5588. uint16_t scvt;
  5589. for (int i = 0; i < nc; i++) {
  5590. if (p[i] == -INFINITY) {
  5591. p[i] = 0.0f;
  5592. } else {
  5593. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5594. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5595. memcpy(&scvt, &s, sizeof(scvt));
  5596. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5597. sum += val;
  5598. p[i] = val;
  5599. }
  5600. }
  5601. assert(sum > 0.0f);
  5602. sum = 1.0/sum;
  5603. ggml_vec_scale_f32(nc, p, sum);
  5604. #ifndef NDEBUG
  5605. for (int i = 0; i < nc; ++i) {
  5606. assert(!isnan(p[i]));
  5607. assert(!isinf(p[i]));
  5608. }
  5609. #endif
  5610. }
  5611. }
  5612. static void ggml_compute_forward_soft_max(
  5613. const struct ggml_compute_params * params,
  5614. const struct ggml_tensor * src0,
  5615. struct ggml_tensor * dst) {
  5616. switch (src0->type) {
  5617. case GGML_TYPE_F32:
  5618. {
  5619. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5620. } break;
  5621. case GGML_TYPE_Q4_0:
  5622. case GGML_TYPE_Q4_1:
  5623. case GGML_TYPE_I8:
  5624. case GGML_TYPE_I16:
  5625. case GGML_TYPE_I32:
  5626. case GGML_TYPE_F16:
  5627. case GGML_TYPE_COUNT:
  5628. {
  5629. GGML_ASSERT(false);
  5630. } break;
  5631. }
  5632. }
  5633. // ggml_compute_forward_rope
  5634. static void ggml_compute_forward_rope_f32(
  5635. const struct ggml_compute_params * params,
  5636. const struct ggml_tensor * src0,
  5637. const struct ggml_tensor * src1,
  5638. struct ggml_tensor * dst) {
  5639. assert(params->ith == 0);
  5640. assert(src1->type == GGML_TYPE_I32);
  5641. assert(ggml_nelements(src1) == 3);
  5642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5643. return;
  5644. }
  5645. const int n_past = ((int32_t *) src1->data)[0];
  5646. const int n_dims = ((int32_t *) src1->data)[1];
  5647. const int mode = ((int32_t *) src1->data)[2];
  5648. //const int ne0 = src0->ne[0];
  5649. const int ne1 = src0->ne[1];
  5650. const int ne2 = src0->ne[2];
  5651. const int ne3 = src0->ne[3];
  5652. const int nb0 = src0->nb[0];
  5653. const int nb1 = src0->nb[1];
  5654. const int nb2 = src0->nb[2];
  5655. const int nb3 = src0->nb[3];
  5656. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5657. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5658. assert(nb0 == sizeof(float));
  5659. // TODO: optimize
  5660. for (int i3 = 0; i3 < ne3; i3++) {
  5661. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5662. const int p = (mode == 0 ? n_past + i2 : i2);
  5663. for (int i1 = 0; i1 < ne1; i1++) {
  5664. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5665. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5666. const double cos_theta = cos(p*theta);
  5667. const double sin_theta = sin(p*theta);
  5668. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5669. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5670. double x0 = src[0];
  5671. double x1 = src[1];
  5672. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5673. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5674. }
  5675. }
  5676. }
  5677. }
  5678. }
  5679. static void ggml_compute_forward_rope_f16(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. const struct ggml_tensor * src1,
  5683. struct ggml_tensor * dst) {
  5684. assert(params->ith == 0);
  5685. assert(src1->type == GGML_TYPE_I32);
  5686. assert(ggml_nelements(src1) == 3);
  5687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5688. return;
  5689. }
  5690. const int n_past = ((int32_t *) src1->data)[0];
  5691. const int n_dims = ((int32_t *) src1->data)[1];
  5692. const int mode = ((int32_t *) src1->data)[2];
  5693. //const int ne0 = src0->ne[0];
  5694. const int ne1 = src0->ne[1];
  5695. const int ne2 = src0->ne[2];
  5696. const int ne3 = src0->ne[3];
  5697. const int nb0 = src0->nb[0];
  5698. const int nb1 = src0->nb[1];
  5699. const int nb2 = src0->nb[2];
  5700. const int nb3 = src0->nb[3];
  5701. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5702. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5703. assert(nb0 == sizeof(ggml_fp16_t));
  5704. for (int i3 = 0; i3 < ne3; i3++) {
  5705. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5706. const int p = (mode == 0 ? n_past + i2 : i2);
  5707. for (int i1 = 0; i1 < ne1; i1++) {
  5708. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5709. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5710. const double cos_theta = cos(p*theta);
  5711. const double sin_theta = sin(p*theta);
  5712. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5713. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5714. double x0 = ggml_fp16_to_fp32(src[0]);
  5715. double x1 = ggml_fp16_to_fp32(src[1]);
  5716. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5717. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5718. }
  5719. }
  5720. }
  5721. }
  5722. }
  5723. static void ggml_compute_forward_rope(
  5724. const struct ggml_compute_params * params,
  5725. const struct ggml_tensor * src0,
  5726. const struct ggml_tensor * src1,
  5727. struct ggml_tensor * dst) {
  5728. switch (src0->type) {
  5729. case GGML_TYPE_F16:
  5730. {
  5731. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5732. } break;
  5733. case GGML_TYPE_F32:
  5734. {
  5735. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5736. } break;
  5737. case GGML_TYPE_Q4_0:
  5738. case GGML_TYPE_Q4_1:
  5739. case GGML_TYPE_I8:
  5740. case GGML_TYPE_I16:
  5741. case GGML_TYPE_I32:
  5742. case GGML_TYPE_COUNT:
  5743. {
  5744. GGML_ASSERT(false);
  5745. } break;
  5746. }
  5747. }
  5748. // ggml_compute_forward_conv_1d_1s
  5749. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5750. const struct ggml_compute_params * params,
  5751. const struct ggml_tensor * src0,
  5752. const struct ggml_tensor * src1,
  5753. struct ggml_tensor * dst) {
  5754. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5755. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5756. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5757. int64_t t0 = ggml_perf_time_us();
  5758. UNUSED(t0);
  5759. const int ne00 = src0->ne[0];
  5760. const int ne01 = src0->ne[1];
  5761. const int ne02 = src0->ne[2];
  5762. //const int ne03 = src0->ne[3];
  5763. const int ne10 = src1->ne[0];
  5764. const int ne11 = src1->ne[1];
  5765. //const int ne12 = src1->ne[2];
  5766. //const int ne13 = src1->ne[3];
  5767. //const int ne0 = dst->ne[0];
  5768. //const int ne1 = dst->ne[1];
  5769. //const int ne2 = dst->ne[2];
  5770. //const int ne3 = dst->ne[3];
  5771. //const int ne = ne0*ne1*ne2*ne3;
  5772. const int nb00 = src0->nb[0];
  5773. const int nb01 = src0->nb[1];
  5774. const int nb02 = src0->nb[2];
  5775. //const int nb03 = src0->nb[3];
  5776. const int nb10 = src1->nb[0];
  5777. const int nb11 = src1->nb[1];
  5778. //const int nb12 = src1->nb[2];
  5779. //const int nb13 = src1->nb[3];
  5780. //const int nb0 = dst->nb[0];
  5781. const int nb1 = dst->nb[1];
  5782. //const int nb2 = dst->nb[2];
  5783. //const int nb3 = dst->nb[3];
  5784. const int ith = params->ith;
  5785. const int nth = params->nth;
  5786. const int nk = ne00;
  5787. const int nh = nk/2;
  5788. const int ew0 = ggml_up32(ne01);
  5789. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5790. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5791. GGML_ASSERT(nb10 == sizeof(float));
  5792. if (params->type == GGML_TASK_INIT) {
  5793. // TODO: fix this memset (wsize is overestimated)
  5794. memset(params->wdata, 0, params->wsize);
  5795. // prepare kernel data (src0)
  5796. {
  5797. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5798. for (int i02 = 0; i02 < ne02; i02++) {
  5799. for (int i01 = 0; i01 < ne01; i01++) {
  5800. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5801. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5802. for (int i00 = 0; i00 < ne00; i00++) {
  5803. dst_data[i00*ew0 + i01] = src[i00];
  5804. }
  5805. }
  5806. }
  5807. }
  5808. // prepare source data (src1)
  5809. {
  5810. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5811. for (int i11 = 0; i11 < ne11; i11++) {
  5812. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5813. ggml_fp16_t * dst_data = wdata;
  5814. for (int i10 = 0; i10 < ne10; i10++) {
  5815. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5816. }
  5817. }
  5818. }
  5819. return;
  5820. }
  5821. if (params->type == GGML_TASK_FINALIZE) {
  5822. return;
  5823. }
  5824. // total rows in dst
  5825. const int nr = ne02;
  5826. // rows per thread
  5827. const int dr = (nr + nth - 1)/nth;
  5828. // row range for this thread
  5829. const int ir0 = dr*ith;
  5830. const int ir1 = MIN(ir0 + dr, nr);
  5831. for (int i1 = ir0; i1 < ir1; i1++) {
  5832. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5833. for (int i0 = 0; i0 < ne10; ++i0) {
  5834. dst_data[i0] = 0;
  5835. for (int k = -nh; k <= nh; k++) {
  5836. float v = 0.0f;
  5837. ggml_vec_dot_f16(ew0, &v,
  5838. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5839. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5840. dst_data[i0] += v;
  5841. }
  5842. }
  5843. }
  5844. }
  5845. static void ggml_compute_forward_conv_1d_1s_f32(
  5846. const struct ggml_compute_params * params,
  5847. const struct ggml_tensor * src0,
  5848. const struct ggml_tensor * src1,
  5849. struct ggml_tensor * dst) {
  5850. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5851. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5852. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5853. int64_t t0 = ggml_perf_time_us();
  5854. UNUSED(t0);
  5855. const int ne00 = src0->ne[0];
  5856. const int ne01 = src0->ne[1];
  5857. const int ne02 = src0->ne[2];
  5858. //const int ne03 = src0->ne[3];
  5859. const int ne10 = src1->ne[0];
  5860. const int ne11 = src1->ne[1];
  5861. //const int ne12 = src1->ne[2];
  5862. //const int ne13 = src1->ne[3];
  5863. //const int ne0 = dst->ne[0];
  5864. //const int ne1 = dst->ne[1];
  5865. //const int ne2 = dst->ne[2];
  5866. //const int ne3 = dst->ne[3];
  5867. //const int ne = ne0*ne1*ne2*ne3;
  5868. const int nb00 = src0->nb[0];
  5869. const int nb01 = src0->nb[1];
  5870. const int nb02 = src0->nb[2];
  5871. //const int nb03 = src0->nb[3];
  5872. const int nb10 = src1->nb[0];
  5873. const int nb11 = src1->nb[1];
  5874. //const int nb12 = src1->nb[2];
  5875. //const int nb13 = src1->nb[3];
  5876. //const int nb0 = dst->nb[0];
  5877. const int nb1 = dst->nb[1];
  5878. //const int nb2 = dst->nb[2];
  5879. //const int nb3 = dst->nb[3];
  5880. const int ith = params->ith;
  5881. const int nth = params->nth;
  5882. const int nk = ne00;
  5883. const int nh = nk/2;
  5884. const int ew0 = ggml_up32(ne01);
  5885. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5886. GGML_ASSERT(nb00 == sizeof(float));
  5887. GGML_ASSERT(nb10 == sizeof(float));
  5888. if (params->type == GGML_TASK_INIT) {
  5889. // TODO: fix this memset (wsize is overestimated)
  5890. memset(params->wdata, 0, params->wsize);
  5891. // prepare kernel data (src0)
  5892. {
  5893. float * const wdata = (float *) params->wdata + 0;
  5894. for (int i02 = 0; i02 < ne02; i02++) {
  5895. for (int i01 = 0; i01 < ne01; i01++) {
  5896. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5897. float * dst_data = wdata + i02*ew0*ne00;
  5898. for (int i00 = 0; i00 < ne00; i00++) {
  5899. dst_data[i00*ew0 + i01] = src[i00];
  5900. }
  5901. }
  5902. }
  5903. }
  5904. // prepare source data (src1)
  5905. {
  5906. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5907. for (int i11 = 0; i11 < ne11; i11++) {
  5908. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5909. float * dst_data = wdata;
  5910. for (int i10 = 0; i10 < ne10; i10++) {
  5911. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5912. }
  5913. }
  5914. }
  5915. return;
  5916. }
  5917. if (params->type == GGML_TASK_FINALIZE) {
  5918. return;
  5919. }
  5920. // total rows in dst
  5921. const int nr = ne02;
  5922. // rows per thread
  5923. const int dr = (nr + nth - 1)/nth;
  5924. // row range for this thread
  5925. const int ir0 = dr*ith;
  5926. const int ir1 = MIN(ir0 + dr, nr);
  5927. for (int i1 = ir0; i1 < ir1; i1++) {
  5928. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5929. for (int i0 = 0; i0 < ne10; ++i0) {
  5930. dst_data[i0] = 0;
  5931. for (int k = -nh; k <= nh; k++) {
  5932. float v = 0.0f;
  5933. ggml_vec_dot_f32(ew0, &v,
  5934. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5935. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5936. dst_data[i0] += v;
  5937. }
  5938. }
  5939. }
  5940. }
  5941. static void ggml_compute_forward_conv_1d_1s(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. const struct ggml_tensor * src1,
  5945. struct ggml_tensor * dst) {
  5946. switch (src0->type) {
  5947. case GGML_TYPE_F16:
  5948. {
  5949. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5950. } break;
  5951. case GGML_TYPE_F32:
  5952. {
  5953. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5954. } break;
  5955. case GGML_TYPE_Q4_0:
  5956. case GGML_TYPE_Q4_1:
  5957. case GGML_TYPE_I8:
  5958. case GGML_TYPE_I16:
  5959. case GGML_TYPE_I32:
  5960. case GGML_TYPE_COUNT:
  5961. {
  5962. GGML_ASSERT(false);
  5963. } break;
  5964. }
  5965. }
  5966. // ggml_compute_forward_conv_1d_2s
  5967. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5968. const struct ggml_compute_params * params,
  5969. const struct ggml_tensor * src0,
  5970. const struct ggml_tensor * src1,
  5971. struct ggml_tensor * dst) {
  5972. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5973. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5974. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5975. int64_t t0 = ggml_perf_time_us();
  5976. UNUSED(t0);
  5977. const int ne00 = src0->ne[0];
  5978. const int ne01 = src0->ne[1];
  5979. const int ne02 = src0->ne[2];
  5980. //const int ne03 = src0->ne[3];
  5981. const int ne10 = src1->ne[0];
  5982. const int ne11 = src1->ne[1];
  5983. //const int ne12 = src1->ne[2];
  5984. //const int ne13 = src1->ne[3];
  5985. //const int ne0 = dst->ne[0];
  5986. //const int ne1 = dst->ne[1];
  5987. //const int ne2 = dst->ne[2];
  5988. //const int ne3 = dst->ne[3];
  5989. //const int ne = ne0*ne1*ne2*ne3;
  5990. const int nb00 = src0->nb[0];
  5991. const int nb01 = src0->nb[1];
  5992. const int nb02 = src0->nb[2];
  5993. //const int nb03 = src0->nb[3];
  5994. const int nb10 = src1->nb[0];
  5995. const int nb11 = src1->nb[1];
  5996. //const int nb12 = src1->nb[2];
  5997. //const int nb13 = src1->nb[3];
  5998. //const int nb0 = dst->nb[0];
  5999. const int nb1 = dst->nb[1];
  6000. //const int nb2 = dst->nb[2];
  6001. //const int nb3 = dst->nb[3];
  6002. const int ith = params->ith;
  6003. const int nth = params->nth;
  6004. const int nk = ne00;
  6005. const int nh = nk/2;
  6006. const int ew0 = ggml_up32(ne01);
  6007. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6008. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6009. GGML_ASSERT(nb10 == sizeof(float));
  6010. if (params->type == GGML_TASK_INIT) {
  6011. // TODO: fix this memset (wsize is overestimated)
  6012. memset(params->wdata, 0, params->wsize);
  6013. // prepare kernel data (src0)
  6014. {
  6015. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6016. for (int i02 = 0; i02 < ne02; i02++) {
  6017. for (int i01 = 0; i01 < ne01; i01++) {
  6018. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6019. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6020. for (int i00 = 0; i00 < ne00; i00++) {
  6021. dst_data[i00*ew0 + i01] = src[i00];
  6022. }
  6023. }
  6024. }
  6025. }
  6026. // prepare source data (src1)
  6027. {
  6028. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6029. for (int i11 = 0; i11 < ne11; i11++) {
  6030. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6031. ggml_fp16_t * dst_data = wdata;
  6032. for (int i10 = 0; i10 < ne10; i10++) {
  6033. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6034. }
  6035. }
  6036. }
  6037. return;
  6038. }
  6039. if (params->type == GGML_TASK_FINALIZE) {
  6040. return;
  6041. }
  6042. // total rows in dst
  6043. const int nr = ne02;
  6044. // rows per thread
  6045. const int dr = (nr + nth - 1)/nth;
  6046. // row range for this thread
  6047. const int ir0 = dr*ith;
  6048. const int ir1 = MIN(ir0 + dr, nr);
  6049. for (int i1 = ir0; i1 < ir1; i1++) {
  6050. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6051. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6052. dst_data[i0/2] = 0;
  6053. for (int k = -nh; k <= nh; k++) {
  6054. float v = 0.0f;
  6055. ggml_vec_dot_f16(ew0, &v,
  6056. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6057. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6058. dst_data[i0/2] += v;
  6059. }
  6060. }
  6061. }
  6062. }
  6063. static void ggml_compute_forward_conv_1d_2s_f32(
  6064. const struct ggml_compute_params * params,
  6065. const struct ggml_tensor * src0,
  6066. const struct ggml_tensor * src1,
  6067. struct ggml_tensor * dst) {
  6068. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6069. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6070. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6071. int64_t t0 = ggml_perf_time_us();
  6072. UNUSED(t0);
  6073. const int ne00 = src0->ne[0];
  6074. const int ne01 = src0->ne[1];
  6075. const int ne02 = src0->ne[2];
  6076. //const int ne03 = src0->ne[3];
  6077. const int ne10 = src1->ne[0];
  6078. const int ne11 = src1->ne[1];
  6079. //const int ne12 = src1->ne[2];
  6080. //const int ne13 = src1->ne[3];
  6081. //const int ne0 = dst->ne[0];
  6082. //const int ne1 = dst->ne[1];
  6083. //const int ne2 = dst->ne[2];
  6084. //const int ne3 = dst->ne[3];
  6085. //const int ne = ne0*ne1*ne2*ne3;
  6086. const int nb00 = src0->nb[0];
  6087. const int nb01 = src0->nb[1];
  6088. const int nb02 = src0->nb[2];
  6089. //const int nb03 = src0->nb[3];
  6090. const int nb10 = src1->nb[0];
  6091. const int nb11 = src1->nb[1];
  6092. //const int nb12 = src1->nb[2];
  6093. //const int nb13 = src1->nb[3];
  6094. //const int nb0 = dst->nb[0];
  6095. const int nb1 = dst->nb[1];
  6096. //const int nb2 = dst->nb[2];
  6097. //const int nb3 = dst->nb[3];
  6098. const int ith = params->ith;
  6099. const int nth = params->nth;
  6100. const int nk = ne00;
  6101. const int nh = nk/2;
  6102. const int ew0 = ggml_up32(ne01);
  6103. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6104. GGML_ASSERT(nb00 == sizeof(float));
  6105. GGML_ASSERT(nb10 == sizeof(float));
  6106. if (params->type == GGML_TASK_INIT) {
  6107. // TODO: fix this memset (wsize is overestimated)
  6108. memset(params->wdata, 0, params->wsize);
  6109. // prepare kernel data (src0)
  6110. {
  6111. float * const wdata = (float *) params->wdata + 0;
  6112. for (int i02 = 0; i02 < ne02; i02++) {
  6113. for (int i01 = 0; i01 < ne01; i01++) {
  6114. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6115. float * dst_data = wdata + i02*ew0*ne00;
  6116. for (int i00 = 0; i00 < ne00; i00++) {
  6117. dst_data[i00*ew0 + i01] = src[i00];
  6118. }
  6119. }
  6120. }
  6121. }
  6122. // prepare source data (src1)
  6123. {
  6124. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6125. for (int i11 = 0; i11 < ne11; i11++) {
  6126. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6127. float * dst_data = wdata;
  6128. for (int i10 = 0; i10 < ne10; i10++) {
  6129. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6130. }
  6131. }
  6132. }
  6133. return;
  6134. }
  6135. if (params->type == GGML_TASK_FINALIZE) {
  6136. return;
  6137. }
  6138. // total rows in dst
  6139. const int nr = ne02;
  6140. // rows per thread
  6141. const int dr = (nr + nth - 1)/nth;
  6142. // row range for this thread
  6143. const int ir0 = dr*ith;
  6144. const int ir1 = MIN(ir0 + dr, nr);
  6145. for (int i1 = ir0; i1 < ir1; i1++) {
  6146. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6147. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6148. dst_data[i0/2] = 0;
  6149. for (int k = -nh; k <= nh; k++) {
  6150. float v = 0.0f;
  6151. ggml_vec_dot_f32(ew0, &v,
  6152. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6153. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6154. dst_data[i0/2] += v;
  6155. }
  6156. }
  6157. }
  6158. }
  6159. static void ggml_compute_forward_conv_1d_2s(
  6160. const struct ggml_compute_params * params,
  6161. const struct ggml_tensor * src0,
  6162. const struct ggml_tensor * src1,
  6163. struct ggml_tensor * dst) {
  6164. switch (src0->type) {
  6165. case GGML_TYPE_F16:
  6166. {
  6167. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6168. } break;
  6169. case GGML_TYPE_F32:
  6170. {
  6171. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6172. } break;
  6173. case GGML_TYPE_Q4_0:
  6174. case GGML_TYPE_Q4_1:
  6175. case GGML_TYPE_I8:
  6176. case GGML_TYPE_I16:
  6177. case GGML_TYPE_I32:
  6178. case GGML_TYPE_COUNT:
  6179. {
  6180. GGML_ASSERT(false);
  6181. } break;
  6182. }
  6183. }
  6184. // ggml_compute_forward_flash_attn
  6185. static void ggml_compute_forward_flash_attn_f32(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * q,
  6188. const struct ggml_tensor * k,
  6189. const struct ggml_tensor * v,
  6190. const bool masked,
  6191. struct ggml_tensor * dst) {
  6192. int64_t t0 = ggml_perf_time_us();
  6193. UNUSED(t0);
  6194. const int neq0 = q->ne[0];
  6195. const int neq1 = q->ne[1];
  6196. const int neq2 = q->ne[2];
  6197. const int neq3 = q->ne[3];
  6198. const int nek0 = k->ne[0];
  6199. const int nek1 = k->ne[1];
  6200. //const int nek2 = k->ne[2];
  6201. //const int nek3 = k->ne[3];
  6202. //const int nev0 = v->ne[0];
  6203. const int nev1 = v->ne[1];
  6204. //const int nev2 = v->ne[2];
  6205. //const int nev3 = v->ne[3];
  6206. const int ne0 = dst->ne[0];
  6207. const int ne1 = dst->ne[1];
  6208. //const int ne2 = dst->ne[2];
  6209. //const int ne3 = dst->ne[3];
  6210. const int nbk0 = k->nb[0];
  6211. const int nbk1 = k->nb[1];
  6212. const int nbk2 = k->nb[2];
  6213. const int nbk3 = k->nb[3];
  6214. const int nbq0 = q->nb[0];
  6215. const int nbq1 = q->nb[1];
  6216. const int nbq2 = q->nb[2];
  6217. const int nbq3 = q->nb[3];
  6218. const int nbv0 = v->nb[0];
  6219. const int nbv1 = v->nb[1];
  6220. const int nbv2 = v->nb[2];
  6221. const int nbv3 = v->nb[3];
  6222. const int nb0 = dst->nb[0];
  6223. const int nb1 = dst->nb[1];
  6224. const int nb2 = dst->nb[2];
  6225. const int nb3 = dst->nb[3];
  6226. const int ith = params->ith;
  6227. const int nth = params->nth;
  6228. const int D = neq0;
  6229. const int N = neq1;
  6230. const int P = nek1 - N;
  6231. const int M = P + N;
  6232. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6233. GGML_ASSERT(ne0 == D);
  6234. GGML_ASSERT(ne1 == N);
  6235. GGML_ASSERT(P >= 0);
  6236. GGML_ASSERT(nbq0 == sizeof(float));
  6237. GGML_ASSERT(nbk0 == sizeof(float));
  6238. GGML_ASSERT(nbv0 == sizeof(float));
  6239. GGML_ASSERT(neq0 == D);
  6240. GGML_ASSERT(nek0 == D);
  6241. GGML_ASSERT(nev1 == D);
  6242. GGML_ASSERT(neq1 == N);
  6243. GGML_ASSERT(nek1 == N + P);
  6244. GGML_ASSERT(nev1 == D);
  6245. // dst cannot be transposed or permuted
  6246. GGML_ASSERT(nb0 == sizeof(float));
  6247. GGML_ASSERT(nb0 <= nb1);
  6248. GGML_ASSERT(nb1 <= nb2);
  6249. GGML_ASSERT(nb2 <= nb3);
  6250. if (params->type == GGML_TASK_INIT) {
  6251. return;
  6252. }
  6253. if (params->type == GGML_TASK_FINALIZE) {
  6254. return;
  6255. }
  6256. // parallelize by q rows using ggml_vec_dot_f32
  6257. // total rows in q
  6258. const int nr = neq1*neq2*neq3;
  6259. // rows per thread
  6260. const int dr = (nr + nth - 1)/nth;
  6261. // row range for this thread
  6262. const int ir0 = dr*ith;
  6263. const int ir1 = MIN(ir0 + dr, nr);
  6264. const float scale = 1.0/sqrt((double) D);
  6265. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6266. for (int ir = ir0; ir < ir1; ++ir) {
  6267. // q indices
  6268. const int iq3 = ir/(neq2*neq1);
  6269. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6270. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6271. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6272. for (int i = M; i < Mup; ++i) {
  6273. S[i] = -INFINITY;
  6274. }
  6275. for (int ic = 0; ic < nek1; ++ic) {
  6276. // k indices
  6277. const int ik3 = iq3;
  6278. const int ik2 = iq2;
  6279. const int ik1 = ic;
  6280. // S indices
  6281. const int i1 = ik1;
  6282. ggml_vec_dot_f32(neq0,
  6283. S + i1,
  6284. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6285. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6286. }
  6287. // scale
  6288. ggml_vec_scale_f32(nek1, S, scale);
  6289. if (masked) {
  6290. for (int i = P; i < M; i++) {
  6291. if (i > P + iq1) {
  6292. S[i] = -INFINITY;
  6293. }
  6294. }
  6295. }
  6296. // softmax
  6297. {
  6298. float max = -INFINITY;
  6299. ggml_vec_max_f32(M, &max, S);
  6300. float sum = 0.0f;
  6301. {
  6302. #ifdef GGML_SOFT_MAX_ACCELERATE
  6303. max = -max;
  6304. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6305. vvexpf(S, S, &Mup);
  6306. ggml_vec_sum_f32(Mup, &sum, S);
  6307. #else
  6308. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6309. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6310. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6311. float * SS = S + i;
  6312. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6313. if (SS[j] == -INFINITY) {
  6314. SS[j] = 0.0f;
  6315. } else {
  6316. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6317. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6318. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6319. sump[j] += val;
  6320. SS[j] = val;
  6321. }
  6322. }
  6323. }
  6324. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6325. sum += sump[i];
  6326. }
  6327. #endif
  6328. }
  6329. assert(sum > 0.0f);
  6330. sum = 1.0/sum;
  6331. ggml_vec_scale_f32(M, S, sum);
  6332. #ifndef NDEBUG
  6333. for (int i = 0; i < M; ++i) {
  6334. assert(!isnan(S[i]));
  6335. assert(!isinf(S[i]));
  6336. }
  6337. #endif
  6338. }
  6339. for (int ic = 0; ic < nev1; ++ic) {
  6340. // dst indices
  6341. const int i1 = iq1;
  6342. const int i2 = iq2;
  6343. const int i3 = iq3;
  6344. ggml_vec_dot_f32(nek1,
  6345. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6346. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6347. S);
  6348. }
  6349. }
  6350. }
  6351. static void ggml_compute_forward_flash_attn_f16(
  6352. const struct ggml_compute_params * params,
  6353. const struct ggml_tensor * q,
  6354. const struct ggml_tensor * k,
  6355. const struct ggml_tensor * v,
  6356. const bool masked,
  6357. struct ggml_tensor * dst) {
  6358. int64_t t0 = ggml_perf_time_us();
  6359. UNUSED(t0);
  6360. const int neq0 = q->ne[0];
  6361. const int neq1 = q->ne[1];
  6362. const int neq2 = q->ne[2];
  6363. const int neq3 = q->ne[3];
  6364. const int nek0 = k->ne[0];
  6365. const int nek1 = k->ne[1];
  6366. //const int nek2 = k->ne[2];
  6367. //const int nek3 = k->ne[3];
  6368. //const int nev0 = v->ne[0];
  6369. const int nev1 = v->ne[1];
  6370. //const int nev2 = v->ne[2];
  6371. //const int nev3 = v->ne[3];
  6372. const int ne0 = dst->ne[0];
  6373. const int ne1 = dst->ne[1];
  6374. //const int ne2 = dst->ne[2];
  6375. //const int ne3 = dst->ne[3];
  6376. const int nbk0 = k->nb[0];
  6377. const int nbk1 = k->nb[1];
  6378. const int nbk2 = k->nb[2];
  6379. const int nbk3 = k->nb[3];
  6380. const int nbq0 = q->nb[0];
  6381. const int nbq1 = q->nb[1];
  6382. const int nbq2 = q->nb[2];
  6383. const int nbq3 = q->nb[3];
  6384. const int nbv0 = v->nb[0];
  6385. const int nbv1 = v->nb[1];
  6386. const int nbv2 = v->nb[2];
  6387. const int nbv3 = v->nb[3];
  6388. const int nb0 = dst->nb[0];
  6389. const int nb1 = dst->nb[1];
  6390. const int nb2 = dst->nb[2];
  6391. const int nb3 = dst->nb[3];
  6392. const int ith = params->ith;
  6393. const int nth = params->nth;
  6394. const int D = neq0;
  6395. const int N = neq1;
  6396. const int P = nek1 - N;
  6397. const int M = P + N;
  6398. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6399. GGML_ASSERT(ne0 == D);
  6400. GGML_ASSERT(ne1 == N);
  6401. GGML_ASSERT(P >= 0);
  6402. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6403. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6404. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6405. GGML_ASSERT(neq0 == D);
  6406. GGML_ASSERT(nek0 == D);
  6407. GGML_ASSERT(nev1 == D);
  6408. GGML_ASSERT(neq1 == N);
  6409. GGML_ASSERT(nek1 == N + P);
  6410. GGML_ASSERT(nev1 == D);
  6411. // dst cannot be transposed or permuted
  6412. GGML_ASSERT(nb0 == sizeof(float));
  6413. GGML_ASSERT(nb0 <= nb1);
  6414. GGML_ASSERT(nb1 <= nb2);
  6415. GGML_ASSERT(nb2 <= nb3);
  6416. if (params->type == GGML_TASK_INIT) {
  6417. return;
  6418. }
  6419. if (params->type == GGML_TASK_FINALIZE) {
  6420. return;
  6421. }
  6422. // parallelize by q rows using ggml_vec_dot_f32
  6423. // total rows in q
  6424. const int nr = neq1*neq2*neq3;
  6425. // rows per thread
  6426. const int dr = (nr + nth - 1)/nth;
  6427. // row range for this thread
  6428. const int ir0 = dr*ith;
  6429. const int ir1 = MIN(ir0 + dr, nr);
  6430. const float scale = 1.0/sqrt((double) D);
  6431. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6432. for (int ir = ir0; ir < ir1; ++ir) {
  6433. // q indices
  6434. const int iq3 = ir/(neq2*neq1);
  6435. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6436. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6437. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6438. for (int i = M; i < Mup; ++i) {
  6439. S[i] = -INFINITY;
  6440. }
  6441. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6442. for (int ic = 0; ic < nek1; ++ic) {
  6443. // k indices
  6444. const int ik3 = iq3;
  6445. const int ik2 = iq2;
  6446. const int ik1 = ic;
  6447. // S indices
  6448. const int i1 = ik1;
  6449. ggml_vec_dot_f16(neq0,
  6450. S + i1,
  6451. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6452. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6453. }
  6454. } else {
  6455. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6456. // k indices
  6457. const int ik3 = iq3;
  6458. const int ik2 = iq2;
  6459. const int ik1 = ic;
  6460. // S indices
  6461. const int i1 = ik1;
  6462. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6463. S + i1,
  6464. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6465. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6466. }
  6467. }
  6468. // scale
  6469. ggml_vec_scale_f32(nek1, S, scale);
  6470. if (masked) {
  6471. for (int i = P; i < M; i++) {
  6472. if (i > P + iq1) {
  6473. S[i] = -INFINITY;
  6474. }
  6475. }
  6476. }
  6477. // softmax
  6478. {
  6479. float max = -INFINITY;
  6480. ggml_vec_max_f32(M, &max, S);
  6481. float sum = 0.0f;
  6482. {
  6483. #ifdef GGML_SOFT_MAX_ACCELERATE
  6484. max = -max;
  6485. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6486. vvexpf(S, S, &Mup);
  6487. ggml_vec_sum_f32(Mup, &sum, S);
  6488. #else
  6489. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6490. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6491. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6492. float * SS = S + i;
  6493. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6494. if (SS[j] == -INFINITY) {
  6495. SS[j] = 0.0f;
  6496. } else {
  6497. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6498. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6499. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6500. sump[j] += val;
  6501. SS[j] = val;
  6502. }
  6503. }
  6504. }
  6505. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6506. sum += sump[i];
  6507. }
  6508. #endif
  6509. }
  6510. assert(sum > 0.0f);
  6511. sum = 1.0/sum;
  6512. ggml_vec_scale_f32(M, S, sum);
  6513. #ifndef NDEBUG
  6514. for (int i = 0; i < M; ++i) {
  6515. assert(!isnan(S[i]));
  6516. assert(!isinf(S[i]));
  6517. }
  6518. #endif
  6519. }
  6520. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6521. for (int i = 0; i < M; i++) {
  6522. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6523. }
  6524. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6525. for (int ic = 0; ic < nev1; ++ic) {
  6526. // dst indices
  6527. const int i1 = iq1;
  6528. const int i2 = iq2;
  6529. const int i3 = iq3;
  6530. ggml_vec_dot_f16(nek1,
  6531. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6532. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6533. S16);
  6534. }
  6535. } else {
  6536. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6537. // dst indices
  6538. const int i1 = iq1;
  6539. const int i2 = iq2;
  6540. const int i3 = iq3;
  6541. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6542. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6543. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6544. S16);
  6545. }
  6546. }
  6547. }
  6548. }
  6549. static void ggml_compute_forward_flash_attn(
  6550. const struct ggml_compute_params * params,
  6551. const struct ggml_tensor * q,
  6552. const struct ggml_tensor * k,
  6553. const struct ggml_tensor * v,
  6554. const bool masked,
  6555. struct ggml_tensor * dst) {
  6556. switch (q->type) {
  6557. case GGML_TYPE_F16:
  6558. {
  6559. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6560. } break;
  6561. case GGML_TYPE_F32:
  6562. {
  6563. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6564. } break;
  6565. case GGML_TYPE_Q4_0:
  6566. case GGML_TYPE_Q4_1:
  6567. case GGML_TYPE_I8:
  6568. case GGML_TYPE_I16:
  6569. case GGML_TYPE_I32:
  6570. case GGML_TYPE_COUNT:
  6571. {
  6572. GGML_ASSERT(false);
  6573. } break;
  6574. }
  6575. }
  6576. // ggml_compute_forward_flash_ff
  6577. static void ggml_compute_forward_flash_ff_f16(
  6578. const struct ggml_compute_params * params,
  6579. const struct ggml_tensor * a, // F16
  6580. const struct ggml_tensor * b0, // F16 fc_w
  6581. const struct ggml_tensor * b1, // F32 fc_b
  6582. const struct ggml_tensor * c0, // F16 proj_w
  6583. const struct ggml_tensor * c1, // F32 proj_b
  6584. struct ggml_tensor * dst) {
  6585. int64_t t0 = ggml_perf_time_us();
  6586. UNUSED(t0);
  6587. const int nea0 = a->ne[0];
  6588. const int nea1 = a->ne[1];
  6589. const int nea2 = a->ne[2];
  6590. const int nea3 = a->ne[3];
  6591. const int neb00 = b0->ne[0];
  6592. const int neb01 = b0->ne[1];
  6593. //const int neb02 = b0->ne[2];
  6594. //const int neb03 = b0->ne[3];
  6595. const int neb10 = b1->ne[0];
  6596. const int neb11 = b1->ne[1];
  6597. //const int neb12 = b1->ne[2];
  6598. //const int neb13 = b1->ne[3];
  6599. const int nec00 = c0->ne[0];
  6600. const int nec01 = c0->ne[1];
  6601. //const int nec02 = c0->ne[2];
  6602. //const int nec03 = c0->ne[3];
  6603. const int nec10 = c1->ne[0];
  6604. const int nec11 = c1->ne[1];
  6605. //const int nec12 = c1->ne[2];
  6606. //const int nec13 = c1->ne[3];
  6607. const int ne0 = dst->ne[0];
  6608. const int ne1 = dst->ne[1];
  6609. const int ne2 = dst->ne[2];
  6610. //const int ne3 = dst->ne[3];
  6611. const int nba0 = a->nb[0];
  6612. const int nba1 = a->nb[1];
  6613. const int nba2 = a->nb[2];
  6614. const int nba3 = a->nb[3];
  6615. const int nbb00 = b0->nb[0];
  6616. const int nbb01 = b0->nb[1];
  6617. const int nbb02 = b0->nb[2];
  6618. const int nbb03 = b0->nb[3];
  6619. const int nbb10 = b1->nb[0];
  6620. //const int nbb11 = b1->nb[1];
  6621. //const int nbb12 = b1->nb[2];
  6622. //const int nbb13 = b1->nb[3];
  6623. const int nbc00 = c0->nb[0];
  6624. const int nbc01 = c0->nb[1];
  6625. const int nbc02 = c0->nb[2];
  6626. const int nbc03 = c0->nb[3];
  6627. const int nbc10 = c1->nb[0];
  6628. //const int nbc11 = c1->nb[1];
  6629. //const int nbc12 = c1->nb[2];
  6630. //const int nbc13 = c1->nb[3];
  6631. const int nb0 = dst->nb[0];
  6632. const int nb1 = dst->nb[1];
  6633. const int nb2 = dst->nb[2];
  6634. const int nb3 = dst->nb[3];
  6635. const int ith = params->ith;
  6636. const int nth = params->nth;
  6637. const int D = nea0;
  6638. //const int N = nea1;
  6639. const int M = neb01;
  6640. GGML_ASSERT(ne0 == nea0);
  6641. GGML_ASSERT(ne1 == nea1);
  6642. GGML_ASSERT(ne2 == nea2);
  6643. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6644. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6645. GGML_ASSERT(nbb10 == sizeof(float));
  6646. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6647. GGML_ASSERT(nbc10 == sizeof(float));
  6648. GGML_ASSERT(neb00 == D);
  6649. GGML_ASSERT(neb01 == M);
  6650. GGML_ASSERT(neb10 == M);
  6651. GGML_ASSERT(neb11 == 1);
  6652. GGML_ASSERT(nec00 == M);
  6653. GGML_ASSERT(nec01 == D);
  6654. GGML_ASSERT(nec10 == D);
  6655. GGML_ASSERT(nec11 == 1);
  6656. // dst cannot be transposed or permuted
  6657. GGML_ASSERT(nb0 == sizeof(float));
  6658. GGML_ASSERT(nb0 <= nb1);
  6659. GGML_ASSERT(nb1 <= nb2);
  6660. GGML_ASSERT(nb2 <= nb3);
  6661. if (params->type == GGML_TASK_INIT) {
  6662. return;
  6663. }
  6664. if (params->type == GGML_TASK_FINALIZE) {
  6665. return;
  6666. }
  6667. // parallelize by a rows using ggml_vec_dot_f32
  6668. // total rows in a
  6669. const int nr = nea1*nea2*nea3;
  6670. // rows per thread
  6671. const int dr = (nr + nth - 1)/nth;
  6672. // row range for this thread
  6673. const int ir0 = dr*ith;
  6674. const int ir1 = MIN(ir0 + dr, nr);
  6675. for (int ir = ir0; ir < ir1; ++ir) {
  6676. // a indices
  6677. const int ia3 = ir/(nea2*nea1);
  6678. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6679. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6680. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6681. for (int ic = 0; ic < neb01; ++ic) {
  6682. // b0 indices
  6683. const int ib03 = ia3;
  6684. const int ib02 = ia2;
  6685. const int ib01 = ic;
  6686. // S indices
  6687. const int i1 = ib01;
  6688. ggml_vec_dot_f16(nea0,
  6689. S + i1,
  6690. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6691. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6692. }
  6693. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6694. //ggml_vec_gelu_f32(neb01, S, S);
  6695. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6696. for (int i = 0; i < M; i++) {
  6697. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6698. }
  6699. ggml_vec_gelu_f16(neb01, S16, S16);
  6700. {
  6701. // dst indices
  6702. const int i1 = ia1;
  6703. const int i2 = ia2;
  6704. const int i3 = ia3;
  6705. for (int ic = 0; ic < nec01; ++ic) {
  6706. ggml_vec_dot_f16(neb01,
  6707. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6708. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6709. S16);
  6710. }
  6711. ggml_vec_add_f32(nec01,
  6712. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6713. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6714. (float *) c1->data);
  6715. }
  6716. }
  6717. }
  6718. static void ggml_compute_forward_flash_ff(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * a,
  6721. const struct ggml_tensor * b0,
  6722. const struct ggml_tensor * b1,
  6723. const struct ggml_tensor * c0,
  6724. const struct ggml_tensor * c1,
  6725. struct ggml_tensor * dst) {
  6726. switch (b0->type) {
  6727. case GGML_TYPE_F16:
  6728. {
  6729. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6730. } break;
  6731. case GGML_TYPE_F32:
  6732. {
  6733. GGML_ASSERT(false); // TODO
  6734. } break;
  6735. case GGML_TYPE_Q4_0:
  6736. case GGML_TYPE_Q4_1:
  6737. case GGML_TYPE_I8:
  6738. case GGML_TYPE_I16:
  6739. case GGML_TYPE_I32:
  6740. case GGML_TYPE_COUNT:
  6741. {
  6742. GGML_ASSERT(false);
  6743. } break;
  6744. }
  6745. }
  6746. /////////////////////////////////
  6747. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6748. GGML_ASSERT(params);
  6749. switch (tensor->op) {
  6750. case GGML_OP_DUP:
  6751. {
  6752. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6753. } break;
  6754. case GGML_OP_ADD:
  6755. {
  6756. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6757. } break;
  6758. case GGML_OP_SUB:
  6759. {
  6760. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6761. } break;
  6762. case GGML_OP_MUL:
  6763. {
  6764. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6765. } break;
  6766. case GGML_OP_DIV:
  6767. {
  6768. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6769. } break;
  6770. case GGML_OP_SQR:
  6771. {
  6772. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6773. } break;
  6774. case GGML_OP_SQRT:
  6775. {
  6776. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6777. } break;
  6778. case GGML_OP_SUM:
  6779. {
  6780. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6781. } break;
  6782. case GGML_OP_MEAN:
  6783. {
  6784. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6785. } break;
  6786. case GGML_OP_REPEAT:
  6787. {
  6788. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6789. } break;
  6790. case GGML_OP_ABS:
  6791. {
  6792. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6793. } break;
  6794. case GGML_OP_SGN:
  6795. {
  6796. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6797. } break;
  6798. case GGML_OP_NEG:
  6799. {
  6800. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6801. } break;
  6802. case GGML_OP_STEP:
  6803. {
  6804. ggml_compute_forward_step(params, tensor->src0, tensor);
  6805. } break;
  6806. case GGML_OP_RELU:
  6807. {
  6808. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6809. } break;
  6810. case GGML_OP_GELU:
  6811. {
  6812. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6813. } break;
  6814. case GGML_OP_SILU:
  6815. {
  6816. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6817. } break;
  6818. case GGML_OP_NORM:
  6819. {
  6820. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6821. } break;
  6822. case GGML_OP_RMS_NORM:
  6823. {
  6824. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6825. } break;
  6826. case GGML_OP_MUL_MAT:
  6827. {
  6828. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6829. } break;
  6830. case GGML_OP_SCALE:
  6831. {
  6832. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6833. } break;
  6834. case GGML_OP_CPY:
  6835. {
  6836. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6837. } break;
  6838. case GGML_OP_RESHAPE:
  6839. {
  6840. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6841. } break;
  6842. case GGML_OP_VIEW:
  6843. {
  6844. ggml_compute_forward_view(params, tensor->src0);
  6845. } break;
  6846. case GGML_OP_PERMUTE:
  6847. {
  6848. ggml_compute_forward_permute(params, tensor->src0);
  6849. } break;
  6850. case GGML_OP_TRANSPOSE:
  6851. {
  6852. ggml_compute_forward_transpose(params, tensor->src0);
  6853. } break;
  6854. case GGML_OP_GET_ROWS:
  6855. {
  6856. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6857. } break;
  6858. case GGML_OP_DIAG_MASK_INF:
  6859. {
  6860. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6861. } break;
  6862. case GGML_OP_SOFT_MAX:
  6863. {
  6864. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6865. } break;
  6866. case GGML_OP_ROPE:
  6867. {
  6868. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6869. } break;
  6870. case GGML_OP_CONV_1D_1S:
  6871. {
  6872. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6873. } break;
  6874. case GGML_OP_CONV_1D_2S:
  6875. {
  6876. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6877. } break;
  6878. case GGML_OP_FLASH_ATTN:
  6879. {
  6880. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6881. GGML_ASSERT(t == 0 || t == 1);
  6882. bool masked = t != 0;
  6883. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6884. } break;
  6885. case GGML_OP_FLASH_FF:
  6886. {
  6887. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6888. } break;
  6889. case GGML_OP_NONE:
  6890. {
  6891. // nop
  6892. } break;
  6893. case GGML_OP_COUNT:
  6894. {
  6895. GGML_ASSERT(false);
  6896. } break;
  6897. }
  6898. }
  6899. ////////////////////////////////////////////////////////////////////////////////
  6900. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6901. struct ggml_tensor * src0 = tensor->src0;
  6902. struct ggml_tensor * src1 = tensor->src1;
  6903. switch (tensor->op) {
  6904. case GGML_OP_DUP:
  6905. {
  6906. if (src0->grad) {
  6907. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6908. }
  6909. } break;
  6910. case GGML_OP_ADD:
  6911. {
  6912. if (src0->grad) {
  6913. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6914. }
  6915. if (src1->grad) {
  6916. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6917. }
  6918. } break;
  6919. case GGML_OP_SUB:
  6920. {
  6921. if (src0->grad) {
  6922. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6923. }
  6924. if (src1->grad) {
  6925. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6926. }
  6927. } break;
  6928. case GGML_OP_MUL:
  6929. {
  6930. if (src0->grad) {
  6931. src0->grad =
  6932. ggml_add_impl(ctx,
  6933. src0->grad,
  6934. ggml_mul(ctx, src1, tensor->grad),
  6935. inplace);
  6936. }
  6937. if (src1->grad) {
  6938. src1->grad =
  6939. ggml_add_impl(ctx,
  6940. src1->grad,
  6941. ggml_mul(ctx, src0, tensor->grad),
  6942. inplace);
  6943. }
  6944. } break;
  6945. case GGML_OP_DIV:
  6946. {
  6947. if (src0->grad) {
  6948. src0->grad =
  6949. ggml_add_impl(ctx,
  6950. src0->grad,
  6951. ggml_div(ctx, tensor->grad, src1),
  6952. inplace);
  6953. }
  6954. if (src1->grad) {
  6955. src1->grad =
  6956. ggml_sub_impl(ctx,
  6957. src1->grad,
  6958. ggml_mul(ctx,
  6959. tensor->grad,
  6960. ggml_div(ctx, tensor, src1)),
  6961. inplace);
  6962. }
  6963. } break;
  6964. case GGML_OP_SQR:
  6965. {
  6966. if (src0->grad) {
  6967. src0->grad =
  6968. ggml_add_impl(ctx,
  6969. src0->grad,
  6970. ggml_mul(ctx,
  6971. ggml_mul(ctx, src0, tensor->grad),
  6972. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  6973. inplace);
  6974. }
  6975. } break;
  6976. case GGML_OP_SQRT:
  6977. {
  6978. if (src0->grad) {
  6979. src0->grad =
  6980. ggml_add_impl(ctx,
  6981. src0->grad,
  6982. ggml_div(ctx,
  6983. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  6984. tensor),
  6985. inplace);
  6986. }
  6987. } break;
  6988. case GGML_OP_SUM:
  6989. {
  6990. if (src0->grad) {
  6991. src0->grad =
  6992. ggml_add_impl(ctx,
  6993. src0->grad,
  6994. ggml_repeat(ctx, tensor->grad, src0->grad),
  6995. inplace);
  6996. }
  6997. } break;
  6998. case GGML_OP_MEAN:
  6999. {
  7000. GGML_ASSERT(false); // TODO: implement
  7001. } break;
  7002. case GGML_OP_REPEAT:
  7003. {
  7004. if (src0->grad) {
  7005. src0->grad =
  7006. ggml_add_impl(ctx,
  7007. src0->grad,
  7008. ggml_sum(ctx, tensor->grad),
  7009. inplace);
  7010. }
  7011. } break;
  7012. case GGML_OP_ABS:
  7013. {
  7014. if (src0->grad) {
  7015. src0->grad =
  7016. ggml_add_impl(ctx,
  7017. src0->grad,
  7018. ggml_mul(ctx,
  7019. ggml_sgn(ctx, src0),
  7020. tensor->grad),
  7021. inplace);
  7022. }
  7023. } break;
  7024. case GGML_OP_SGN:
  7025. {
  7026. if (src0->grad) {
  7027. // noop
  7028. }
  7029. } break;
  7030. case GGML_OP_NEG:
  7031. {
  7032. if (src0->grad) {
  7033. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7034. }
  7035. } break;
  7036. case GGML_OP_STEP:
  7037. {
  7038. if (src0->grad) {
  7039. // noop
  7040. }
  7041. } break;
  7042. case GGML_OP_RELU:
  7043. {
  7044. if (src0->grad) {
  7045. src0->grad = ggml_sub_impl(ctx,
  7046. src0->grad,
  7047. ggml_mul(ctx,
  7048. ggml_step(ctx, src0),
  7049. tensor->grad),
  7050. inplace);
  7051. }
  7052. } break;
  7053. case GGML_OP_GELU:
  7054. {
  7055. GGML_ASSERT(false); // TODO: not implemented
  7056. } break;
  7057. case GGML_OP_SILU:
  7058. {
  7059. GGML_ASSERT(false); // TODO: not implemented
  7060. } break;
  7061. case GGML_OP_NORM:
  7062. {
  7063. GGML_ASSERT(false); // TODO: not implemented
  7064. } break;
  7065. case GGML_OP_RMS_NORM:
  7066. {
  7067. GGML_ASSERT(false); // TODO: not implemented
  7068. } break;
  7069. case GGML_OP_MUL_MAT:
  7070. {
  7071. if (src0->grad) {
  7072. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7073. GGML_ASSERT(false);
  7074. }
  7075. if (src1->grad) {
  7076. src1->grad =
  7077. ggml_add_impl(ctx,
  7078. src1->grad,
  7079. // TODO: fix transpose, the node will break the graph connections
  7080. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7081. inplace);
  7082. }
  7083. } break;
  7084. case GGML_OP_SCALE:
  7085. {
  7086. GGML_ASSERT(false); // TODO: not implemented
  7087. } break;
  7088. case GGML_OP_CPY:
  7089. {
  7090. GGML_ASSERT(false); // TODO: not implemented
  7091. } break;
  7092. case GGML_OP_RESHAPE:
  7093. {
  7094. GGML_ASSERT(false); // TODO: not implemented
  7095. } break;
  7096. case GGML_OP_VIEW:
  7097. {
  7098. GGML_ASSERT(false); // not supported
  7099. } break;
  7100. case GGML_OP_PERMUTE:
  7101. {
  7102. GGML_ASSERT(false); // TODO: not implemented
  7103. } break;
  7104. case GGML_OP_TRANSPOSE:
  7105. {
  7106. GGML_ASSERT(false); // TODO: not implemented
  7107. } break;
  7108. case GGML_OP_GET_ROWS:
  7109. {
  7110. GGML_ASSERT(false); // TODO: not implemented
  7111. } break;
  7112. case GGML_OP_DIAG_MASK_INF:
  7113. {
  7114. GGML_ASSERT(false); // TODO: not implemented
  7115. } break;
  7116. case GGML_OP_SOFT_MAX:
  7117. {
  7118. GGML_ASSERT(false); // TODO: not implemented
  7119. } break;
  7120. case GGML_OP_ROPE:
  7121. {
  7122. GGML_ASSERT(false); // TODO: not implemented
  7123. } break;
  7124. case GGML_OP_CONV_1D_1S:
  7125. {
  7126. GGML_ASSERT(false); // TODO: not implemented
  7127. } break;
  7128. case GGML_OP_CONV_1D_2S:
  7129. {
  7130. GGML_ASSERT(false); // TODO: not implemented
  7131. } break;
  7132. case GGML_OP_FLASH_ATTN:
  7133. {
  7134. GGML_ASSERT(false); // not supported
  7135. } break;
  7136. case GGML_OP_FLASH_FF:
  7137. {
  7138. GGML_ASSERT(false); // not supported
  7139. } break;
  7140. case GGML_OP_NONE:
  7141. {
  7142. // nop
  7143. } break;
  7144. case GGML_OP_COUNT:
  7145. {
  7146. GGML_ASSERT(false);
  7147. } break;
  7148. }
  7149. }
  7150. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7151. if (node->grad == NULL) {
  7152. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7153. // it can also happen during forward pass, if the user performs computations with constants
  7154. if (node->op != GGML_OP_NONE) {
  7155. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7156. }
  7157. }
  7158. // check if already visited
  7159. for (int i = 0; i < cgraph->n_nodes; i++) {
  7160. if (cgraph->nodes[i] == node) {
  7161. return;
  7162. }
  7163. }
  7164. for (int i = 0; i < cgraph->n_leafs; i++) {
  7165. if (cgraph->leafs[i] == node) {
  7166. return;
  7167. }
  7168. }
  7169. if (node->src0) {
  7170. ggml_visit_parents(cgraph, node->src0);
  7171. }
  7172. if (node->src1) {
  7173. ggml_visit_parents(cgraph, node->src1);
  7174. }
  7175. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7176. if (node->opt[i]) {
  7177. ggml_visit_parents(cgraph, node->opt[i]);
  7178. }
  7179. }
  7180. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7181. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7182. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7183. cgraph->leafs[cgraph->n_leafs] = node;
  7184. cgraph->n_leafs++;
  7185. } else {
  7186. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7187. cgraph->nodes[cgraph->n_nodes] = node;
  7188. cgraph->grads[cgraph->n_nodes] = node->grad;
  7189. cgraph->n_nodes++;
  7190. }
  7191. }
  7192. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7193. if (!expand) {
  7194. cgraph->n_nodes = 0;
  7195. cgraph->n_leafs = 0;
  7196. }
  7197. const int n0 = cgraph->n_nodes;
  7198. UNUSED(n0);
  7199. ggml_visit_parents(cgraph, tensor);
  7200. const int n_new = cgraph->n_nodes - n0;
  7201. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7202. if (n_new > 0) {
  7203. // the last added node should always be starting point
  7204. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7205. }
  7206. }
  7207. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7208. ggml_build_forward_impl(cgraph, tensor, true);
  7209. }
  7210. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7211. struct ggml_cgraph result = {
  7212. /*.n_nodes =*/ 0,
  7213. /*.n_leafs =*/ 0,
  7214. /*.n_threads =*/ 0,
  7215. /*.work_size =*/ 0,
  7216. /*.work =*/ NULL,
  7217. /*.nodes =*/ { NULL },
  7218. /*.grads =*/ { NULL },
  7219. /*.leafs =*/ { NULL },
  7220. /*.perf_runs =*/ 0,
  7221. /*.perf_cycles =*/ 0,
  7222. /*.perf_time_us =*/ 0,
  7223. };
  7224. ggml_build_forward_impl(&result, tensor, false);
  7225. return result;
  7226. }
  7227. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7228. struct ggml_cgraph result = *gf;
  7229. GGML_ASSERT(gf->n_nodes > 0);
  7230. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7231. if (keep) {
  7232. for (int i = 0; i < gf->n_nodes; i++) {
  7233. struct ggml_tensor * node = gf->nodes[i];
  7234. if (node->grad) {
  7235. node->grad = ggml_dup_tensor(ctx, node);
  7236. gf->grads[i] = node->grad;
  7237. }
  7238. }
  7239. }
  7240. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7241. struct ggml_tensor * node = gf->nodes[i];
  7242. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7243. if (node->grad) {
  7244. ggml_compute_backward(ctx, node, keep);
  7245. }
  7246. }
  7247. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7248. struct ggml_tensor * node = gf->nodes[i];
  7249. if (node->is_param) {
  7250. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7251. ggml_build_forward_impl(&result, node->grad, true);
  7252. }
  7253. }
  7254. return result;
  7255. }
  7256. //
  7257. // thread data
  7258. //
  7259. // synchronization is done via busy loops
  7260. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7261. //
  7262. #ifdef __APPLE__
  7263. //#include <os/lock.h>
  7264. //
  7265. //typedef os_unfair_lock ggml_lock_t;
  7266. //
  7267. //#define ggml_lock_init(x) UNUSED(x)
  7268. //#define ggml_lock_destroy(x) UNUSED(x)
  7269. //#define ggml_lock_lock os_unfair_lock_lock
  7270. //#define ggml_lock_unlock os_unfair_lock_unlock
  7271. //
  7272. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7273. typedef int ggml_lock_t;
  7274. #define ggml_lock_init(x) UNUSED(x)
  7275. #define ggml_lock_destroy(x) UNUSED(x)
  7276. #define ggml_lock_lock(x) UNUSED(x)
  7277. #define ggml_lock_unlock(x) UNUSED(x)
  7278. #define GGML_LOCK_INITIALIZER 0
  7279. typedef pthread_t ggml_thread_t;
  7280. #define ggml_thread_create pthread_create
  7281. #define ggml_thread_join pthread_join
  7282. #else
  7283. //typedef pthread_spinlock_t ggml_lock_t;
  7284. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7285. //#define ggml_lock_destroy pthread_spin_destroy
  7286. //#define ggml_lock_lock pthread_spin_lock
  7287. //#define ggml_lock_unlock pthread_spin_unlock
  7288. typedef int ggml_lock_t;
  7289. #define ggml_lock_init(x) UNUSED(x)
  7290. #define ggml_lock_destroy(x) UNUSED(x)
  7291. #define ggml_lock_lock(x) UNUSED(x)
  7292. #define ggml_lock_unlock(x) UNUSED(x)
  7293. #define GGML_LOCK_INITIALIZER 0
  7294. typedef pthread_t ggml_thread_t;
  7295. #define ggml_thread_create pthread_create
  7296. #define ggml_thread_join pthread_join
  7297. #endif
  7298. struct ggml_compute_state_shared {
  7299. ggml_lock_t spin;
  7300. int n_threads;
  7301. // synchronization primitives
  7302. atomic_int n_ready;
  7303. atomic_bool has_work;
  7304. atomic_bool stop; // stop all threads
  7305. };
  7306. struct ggml_compute_state {
  7307. ggml_thread_t thrd;
  7308. struct ggml_compute_params params;
  7309. struct ggml_tensor * node;
  7310. struct ggml_compute_state_shared * shared;
  7311. };
  7312. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7313. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7314. const int n_threads = state->shared->n_threads;
  7315. while (true) {
  7316. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7317. atomic_store(&state->shared->has_work, false);
  7318. } else {
  7319. while (atomic_load(&state->shared->has_work)) {
  7320. if (atomic_load(&state->shared->stop)) {
  7321. return 0;
  7322. }
  7323. ggml_lock_lock (&state->shared->spin);
  7324. ggml_lock_unlock(&state->shared->spin);
  7325. }
  7326. }
  7327. atomic_fetch_sub(&state->shared->n_ready, 1);
  7328. // wait for work
  7329. while (!atomic_load(&state->shared->has_work)) {
  7330. if (atomic_load(&state->shared->stop)) {
  7331. return 0;
  7332. }
  7333. ggml_lock_lock (&state->shared->spin);
  7334. ggml_lock_unlock(&state->shared->spin);
  7335. }
  7336. // check if we should stop
  7337. if (atomic_load(&state->shared->stop)) {
  7338. break;
  7339. }
  7340. if (state->node) {
  7341. if (state->params.ith < state->params.nth) {
  7342. ggml_compute_forward(&state->params, state->node);
  7343. }
  7344. state->node = NULL;
  7345. } else {
  7346. break;
  7347. }
  7348. }
  7349. return 0;
  7350. }
  7351. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7352. const int n_threads = cgraph->n_threads;
  7353. struct ggml_compute_state_shared state_shared = {
  7354. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7355. /*.n_threads =*/ n_threads,
  7356. /*.n_ready =*/ 0,
  7357. /*.has_work =*/ false,
  7358. /*.stop =*/ false,
  7359. };
  7360. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7361. // create thread pool
  7362. if (n_threads > 1) {
  7363. ggml_lock_init(&state_shared.spin);
  7364. atomic_store(&state_shared.has_work, true);
  7365. for (int j = 0; j < n_threads - 1; j++) {
  7366. workers[j] = (struct ggml_compute_state) {
  7367. .thrd = 0,
  7368. .params = {
  7369. .type = GGML_TASK_COMPUTE,
  7370. .ith = j + 1,
  7371. .nth = n_threads,
  7372. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7373. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7374. },
  7375. .node = NULL,
  7376. .shared = &state_shared,
  7377. };
  7378. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7379. GGML_ASSERT(rc == 0);
  7380. UNUSED(rc);
  7381. }
  7382. }
  7383. // initialize tasks + work buffer
  7384. {
  7385. size_t work_size = 0;
  7386. // thread scheduling for the different operations
  7387. for (int i = 0; i < cgraph->n_nodes; i++) {
  7388. struct ggml_tensor * node = cgraph->nodes[i];
  7389. switch (node->op) {
  7390. case GGML_OP_DUP:
  7391. {
  7392. node->n_tasks = 1;
  7393. } break;
  7394. case GGML_OP_ADD:
  7395. {
  7396. node->n_tasks = n_threads;
  7397. } break;
  7398. case GGML_OP_SUB:
  7399. case GGML_OP_MUL:
  7400. case GGML_OP_DIV:
  7401. case GGML_OP_SQR:
  7402. case GGML_OP_SQRT:
  7403. case GGML_OP_SUM:
  7404. case GGML_OP_MEAN:
  7405. case GGML_OP_REPEAT:
  7406. case GGML_OP_ABS:
  7407. case GGML_OP_SGN:
  7408. case GGML_OP_NEG:
  7409. case GGML_OP_STEP:
  7410. case GGML_OP_RELU:
  7411. {
  7412. node->n_tasks = 1;
  7413. } break;
  7414. case GGML_OP_GELU:
  7415. {
  7416. node->n_tasks = n_threads;
  7417. } break;
  7418. case GGML_OP_SILU:
  7419. {
  7420. node->n_tasks = n_threads;
  7421. } break;
  7422. case GGML_OP_NORM:
  7423. case GGML_OP_RMS_NORM:
  7424. {
  7425. node->n_tasks = n_threads;
  7426. } break;
  7427. case GGML_OP_MUL_MAT:
  7428. {
  7429. node->n_tasks = n_threads;
  7430. // TODO: use different scheduling for different matrix sizes
  7431. //const int nr0 = ggml_nrows(node->src0);
  7432. //const int nr1 = ggml_nrows(node->src1);
  7433. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7434. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7435. size_t cur = 0;
  7436. if (node->src0->type == GGML_TYPE_F16 &&
  7437. node->src1->type == GGML_TYPE_F32) {
  7438. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7439. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7440. node->n_tasks = 1; // TODO: this actually is doing nothing
  7441. // the threads are still spinning
  7442. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7443. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7444. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7445. //printf("cur = %zu\n", cur);
  7446. } else {
  7447. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7448. }
  7449. #else
  7450. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7451. #endif
  7452. } else if (node->src0->type == GGML_TYPE_F32 &&
  7453. node->src1->type == GGML_TYPE_F32) {
  7454. cur = 0;
  7455. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7456. node->src1->type == GGML_TYPE_F32) {
  7457. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7458. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7459. node->n_tasks = 1;
  7460. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7461. } else {
  7462. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7463. }
  7464. #else
  7465. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7466. #endif
  7467. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7468. node->src1->type == GGML_TYPE_F32) {
  7469. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7470. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7471. node->n_tasks = 1;
  7472. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7473. } else {
  7474. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7475. }
  7476. #else
  7477. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7478. #endif
  7479. } else {
  7480. GGML_ASSERT(false);
  7481. }
  7482. work_size = MAX(work_size, cur);
  7483. } break;
  7484. case GGML_OP_SCALE:
  7485. {
  7486. node->n_tasks = n_threads;
  7487. } break;
  7488. case GGML_OP_CPY:
  7489. case GGML_OP_RESHAPE:
  7490. case GGML_OP_VIEW:
  7491. case GGML_OP_PERMUTE:
  7492. case GGML_OP_TRANSPOSE:
  7493. case GGML_OP_GET_ROWS:
  7494. case GGML_OP_DIAG_MASK_INF:
  7495. {
  7496. node->n_tasks = 1;
  7497. } break;
  7498. case GGML_OP_SOFT_MAX:
  7499. {
  7500. node->n_tasks = n_threads;
  7501. } break;
  7502. case GGML_OP_ROPE:
  7503. {
  7504. node->n_tasks = 1;
  7505. } break;
  7506. case GGML_OP_CONV_1D_1S:
  7507. case GGML_OP_CONV_1D_2S:
  7508. {
  7509. node->n_tasks = n_threads;
  7510. GGML_ASSERT(node->src0->ne[3] == 1);
  7511. GGML_ASSERT(node->src1->ne[2] == 1);
  7512. GGML_ASSERT(node->src1->ne[3] == 1);
  7513. size_t cur = 0;
  7514. const int nk = node->src0->ne[0];
  7515. if (node->src0->type == GGML_TYPE_F16 &&
  7516. node->src1->type == GGML_TYPE_F32) {
  7517. cur = sizeof(ggml_fp16_t)*(
  7518. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7519. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7520. );
  7521. } else if (node->src0->type == GGML_TYPE_F32 &&
  7522. node->src1->type == GGML_TYPE_F32) {
  7523. cur = sizeof(float)*(
  7524. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7525. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7526. );
  7527. } else {
  7528. GGML_ASSERT(false);
  7529. }
  7530. work_size = MAX(work_size, cur);
  7531. } break;
  7532. case GGML_OP_FLASH_ATTN:
  7533. {
  7534. node->n_tasks = n_threads;
  7535. size_t cur = 0;
  7536. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7537. if (node->src1->type == GGML_TYPE_F32) {
  7538. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7539. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7540. }
  7541. if (node->src1->type == GGML_TYPE_F16) {
  7542. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7543. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7544. }
  7545. work_size = MAX(work_size, cur);
  7546. } break;
  7547. case GGML_OP_FLASH_FF:
  7548. {
  7549. node->n_tasks = n_threads;
  7550. size_t cur = 0;
  7551. if (node->src1->type == GGML_TYPE_F32) {
  7552. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7553. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7554. }
  7555. if (node->src1->type == GGML_TYPE_F16) {
  7556. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7557. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7558. }
  7559. work_size = MAX(work_size, cur);
  7560. } break;
  7561. case GGML_OP_NONE:
  7562. {
  7563. node->n_tasks = 1;
  7564. } break;
  7565. case GGML_OP_COUNT:
  7566. {
  7567. GGML_ASSERT(false);
  7568. } break;
  7569. }
  7570. }
  7571. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7572. GGML_ASSERT(false); // TODO: better handling
  7573. }
  7574. if (work_size > 0 && cgraph->work == NULL) {
  7575. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7576. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7577. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7578. }
  7579. }
  7580. const int64_t perf_start_cycles = ggml_perf_cycles();
  7581. const int64_t perf_start_time_us = ggml_perf_time_us();
  7582. for (int i = 0; i < cgraph->n_nodes; i++) {
  7583. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7584. struct ggml_tensor * node = cgraph->nodes[i];
  7585. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7586. //if (node->grad == NULL && node->perf_runs > 0) {
  7587. // continue;
  7588. //}
  7589. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7590. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7591. // INIT
  7592. struct ggml_compute_params params = {
  7593. /*.type =*/ GGML_TASK_INIT,
  7594. /*.ith =*/ 0,
  7595. /*.nth =*/ node->n_tasks,
  7596. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7597. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7598. };
  7599. ggml_compute_forward(&params, node);
  7600. // COMPUTE
  7601. if (node->n_tasks > 1) {
  7602. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7603. atomic_store(&state_shared.has_work, false);
  7604. }
  7605. while (atomic_load(&state_shared.has_work)) {
  7606. ggml_lock_lock (&state_shared.spin);
  7607. ggml_lock_unlock(&state_shared.spin);
  7608. }
  7609. // launch thread pool
  7610. for (int j = 0; j < n_threads - 1; j++) {
  7611. workers[j].params = (struct ggml_compute_params) {
  7612. .type = GGML_TASK_COMPUTE,
  7613. .ith = j + 1,
  7614. .nth = node->n_tasks,
  7615. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7616. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7617. };
  7618. workers[j].node = node;
  7619. }
  7620. atomic_fetch_sub(&state_shared.n_ready, 1);
  7621. while (atomic_load(&state_shared.n_ready) > 0) {
  7622. ggml_lock_lock (&state_shared.spin);
  7623. ggml_lock_unlock(&state_shared.spin);
  7624. }
  7625. atomic_store(&state_shared.has_work, true);
  7626. }
  7627. params.type = GGML_TASK_COMPUTE;
  7628. ggml_compute_forward(&params, node);
  7629. // wait for thread pool
  7630. if (node->n_tasks > 1) {
  7631. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7632. atomic_store(&state_shared.has_work, false);
  7633. }
  7634. while (atomic_load(&state_shared.has_work)) {
  7635. ggml_lock_lock (&state_shared.spin);
  7636. ggml_lock_unlock(&state_shared.spin);
  7637. }
  7638. atomic_fetch_sub(&state_shared.n_ready, 1);
  7639. while (atomic_load(&state_shared.n_ready) != 0) {
  7640. ggml_lock_lock (&state_shared.spin);
  7641. ggml_lock_unlock(&state_shared.spin);
  7642. }
  7643. }
  7644. // FINALIZE
  7645. if (node->n_tasks > 1) {
  7646. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7647. atomic_store(&state_shared.has_work, false);
  7648. }
  7649. while (atomic_load(&state_shared.has_work)) {
  7650. ggml_lock_lock (&state_shared.spin);
  7651. ggml_lock_unlock(&state_shared.spin);
  7652. }
  7653. // launch thread pool
  7654. for (int j = 0; j < n_threads - 1; j++) {
  7655. workers[j].params = (struct ggml_compute_params) {
  7656. .type = GGML_TASK_FINALIZE,
  7657. .ith = j + 1,
  7658. .nth = node->n_tasks,
  7659. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7660. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7661. };
  7662. workers[j].node = node;
  7663. }
  7664. atomic_fetch_sub(&state_shared.n_ready, 1);
  7665. while (atomic_load(&state_shared.n_ready) > 0) {
  7666. ggml_lock_lock (&state_shared.spin);
  7667. ggml_lock_unlock(&state_shared.spin);
  7668. }
  7669. atomic_store(&state_shared.has_work, true);
  7670. }
  7671. params.type = GGML_TASK_FINALIZE;
  7672. ggml_compute_forward(&params, node);
  7673. // wait for thread pool
  7674. if (node->n_tasks > 1) {
  7675. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7676. atomic_store(&state_shared.has_work, false);
  7677. }
  7678. while (atomic_load(&state_shared.has_work)) {
  7679. ggml_lock_lock (&state_shared.spin);
  7680. ggml_lock_unlock(&state_shared.spin);
  7681. }
  7682. atomic_fetch_sub(&state_shared.n_ready, 1);
  7683. while (atomic_load(&state_shared.n_ready) != 0) {
  7684. ggml_lock_lock (&state_shared.spin);
  7685. ggml_lock_unlock(&state_shared.spin);
  7686. }
  7687. }
  7688. // performance stats (node)
  7689. {
  7690. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7691. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7692. node->perf_runs++;
  7693. node->perf_cycles += perf_cycles_cur;
  7694. node->perf_time_us += perf_time_us_cur;
  7695. }
  7696. }
  7697. // join thread pool
  7698. if (n_threads > 1) {
  7699. atomic_store(&state_shared.stop, true);
  7700. atomic_store(&state_shared.has_work, true);
  7701. for (int j = 0; j < n_threads - 1; j++) {
  7702. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7703. GGML_ASSERT(rc == 0);
  7704. UNUSED(rc);
  7705. }
  7706. ggml_lock_destroy(&state_shared.spin);
  7707. }
  7708. // performance stats (graph)
  7709. {
  7710. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7711. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7712. cgraph->perf_runs++;
  7713. cgraph->perf_cycles += perf_cycles_cur;
  7714. cgraph->perf_time_us += perf_time_us_cur;
  7715. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7716. __func__, cgraph->perf_runs,
  7717. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7718. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7719. (double) perf_time_us_cur / 1000.0,
  7720. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7721. }
  7722. }
  7723. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7724. for (int i = 0; i < cgraph->n_nodes; i++) {
  7725. struct ggml_tensor * grad = cgraph->grads[i];
  7726. if (grad) {
  7727. ggml_set_zero(grad);
  7728. }
  7729. }
  7730. }
  7731. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7732. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7733. GGML_PRINT("=== GRAPH ===\n");
  7734. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7735. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7736. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7737. for (int i = 0; i < cgraph->n_nodes; i++) {
  7738. struct ggml_tensor * node = cgraph->nodes[i];
  7739. perf_total_per_op_us[node->op] += node->perf_time_us;
  7740. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7741. i,
  7742. node->ne[0], node->ne[1], node->ne[2],
  7743. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7744. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7745. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7746. (double) node->perf_time_us / 1000.0,
  7747. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7748. }
  7749. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7750. for (int i = 0; i < cgraph->n_leafs; i++) {
  7751. struct ggml_tensor * node = cgraph->leafs[i];
  7752. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7753. i,
  7754. node->ne[0], node->ne[1],
  7755. GGML_OP_LABEL[node->op]);
  7756. }
  7757. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7758. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7759. }
  7760. GGML_PRINT("========================================\n");
  7761. }
  7762. // check if node is part of the graph
  7763. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7764. if (cgraph == NULL) {
  7765. return true;
  7766. }
  7767. for (int i = 0; i < cgraph->n_nodes; i++) {
  7768. if (cgraph->nodes[i] == node) {
  7769. return true;
  7770. }
  7771. }
  7772. return false;
  7773. }
  7774. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7775. for (int i = 0; i < cgraph->n_nodes; i++) {
  7776. struct ggml_tensor * parent = cgraph->nodes[i];
  7777. if (parent->grad == node) {
  7778. return parent;
  7779. }
  7780. }
  7781. return NULL;
  7782. }
  7783. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7784. char color[16];
  7785. FILE * fp = fopen(filename, "w");
  7786. GGML_ASSERT(fp);
  7787. fprintf(fp, "digraph G {\n");
  7788. fprintf(fp, " newrank = true;\n");
  7789. fprintf(fp, " rankdir = LR;\n");
  7790. for (int i = 0; i < gb->n_nodes; i++) {
  7791. struct ggml_tensor * node = gb->nodes[i];
  7792. if (ggml_graph_get_parent(gb, node) != NULL) {
  7793. continue;
  7794. }
  7795. if (node->is_param) {
  7796. snprintf(color, sizeof(color), "yellow");
  7797. } else if (node->grad) {
  7798. if (ggml_graph_find(gf, node)) {
  7799. snprintf(color, sizeof(color), "green");
  7800. } else {
  7801. snprintf(color, sizeof(color), "lightblue");
  7802. }
  7803. } else {
  7804. snprintf(color, sizeof(color), "white");
  7805. }
  7806. fprintf(fp, " \"%p\" [ \
  7807. style = filled; fillcolor = %s; shape = record; \
  7808. label=\"%d [%d, %d] | <x>%s",
  7809. (void *) node, color,
  7810. i, node->ne[0], node->ne[1],
  7811. GGML_OP_SYMBOL[node->op]);
  7812. if (node->grad) {
  7813. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7814. } else {
  7815. fprintf(fp, "\"; ]\n");
  7816. }
  7817. }
  7818. for (int i = 0; i < gb->n_leafs; i++) {
  7819. struct ggml_tensor * node = gb->leafs[i];
  7820. snprintf(color, sizeof(color), "pink");
  7821. if (ggml_nelements(node) == 1) {
  7822. fprintf(fp, " \"%p\" [ \
  7823. style = filled; fillcolor = %s; shape = record; \
  7824. label=\"<x>%.1e\"; ]\n",
  7825. (void *) node, color, ggml_get_f32_1d(node, 0));
  7826. } else {
  7827. fprintf(fp, " \"%p\" [ \
  7828. style = filled; fillcolor = %s; shape = record; \
  7829. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7830. (void *) node, color,
  7831. i, node->ne[0], node->ne[1]);
  7832. }
  7833. }
  7834. for (int i = 0; i < gb->n_nodes; i++) {
  7835. struct ggml_tensor * node = gb->nodes[i];
  7836. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7837. if (node->src0) {
  7838. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7839. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7840. parent0 ? (void *) parent0 : (void *) node->src0,
  7841. parent0 ? "g" : "x",
  7842. parent ? (void *) parent : (void *) node,
  7843. parent ? "g" : "x",
  7844. parent ? "empty" : "vee",
  7845. parent ? "dashed" : "solid");
  7846. }
  7847. if (node->src1) {
  7848. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7849. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7850. parent1 ? (void *) parent1 : (void *) node->src1,
  7851. parent1 ? "g" : "x",
  7852. parent ? (void *) parent : (void *) node,
  7853. parent ? "g" : "x",
  7854. parent ? "empty" : "vee",
  7855. parent ? "dashed" : "solid");
  7856. }
  7857. }
  7858. for (int i = 0; i < gb->n_leafs; i++) {
  7859. struct ggml_tensor * node = gb->leafs[i];
  7860. if (node->src0) {
  7861. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7862. (void *) node->src0, "x",
  7863. (void *) node, "x");
  7864. }
  7865. if (node->src1) {
  7866. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7867. (void *) node->src1, "x",
  7868. (void *) node, "x");
  7869. }
  7870. }
  7871. fprintf(fp, "}\n");
  7872. fclose(fp);
  7873. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7874. }
  7875. ////////////////////////////////////////////////////////////////////////////////
  7876. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7877. int i = 0;
  7878. for (int p = 0; p < np; ++p) {
  7879. const int ne = ggml_nelements(ps[p]) ;
  7880. // TODO: add function to set tensor from array
  7881. for (int j = 0; j < ne; ++j) {
  7882. ggml_set_f32_1d(ps[p], j, x[i++]);
  7883. }
  7884. }
  7885. }
  7886. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7887. int i = 0;
  7888. for (int p = 0; p < np; ++p) {
  7889. const int ne = ggml_nelements(ps[p]) ;
  7890. // TODO: add function to get all elements at once
  7891. for (int j = 0; j < ne; ++j) {
  7892. x[i++] = ggml_get_f32_1d(ps[p], j);
  7893. }
  7894. }
  7895. }
  7896. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7897. int i = 0;
  7898. for (int p = 0; p < np; ++p) {
  7899. const int ne = ggml_nelements(ps[p]) ;
  7900. // TODO: add function to get all elements at once
  7901. for (int j = 0; j < ne; ++j) {
  7902. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7903. }
  7904. }
  7905. }
  7906. //
  7907. // ADAM
  7908. //
  7909. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7910. //
  7911. static enum ggml_opt_result ggml_opt_adam(
  7912. struct ggml_context * ctx,
  7913. struct ggml_opt_params params,
  7914. struct ggml_tensor * f,
  7915. struct ggml_cgraph * gf,
  7916. struct ggml_cgraph * gb) {
  7917. GGML_ASSERT(ggml_is_scalar(f));
  7918. gf->n_threads = params.n_threads;
  7919. gb->n_threads = params.n_threads;
  7920. // these will store the parameters we want to optimize
  7921. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7922. int np = 0;
  7923. int nx = 0;
  7924. for (int i = 0; i < gf->n_nodes; ++i) {
  7925. if (gf->nodes[i]->is_param) {
  7926. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7927. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7928. ps[np++] = gf->nodes[i];
  7929. nx += ggml_nelements(gf->nodes[i]);
  7930. }
  7931. }
  7932. // constants
  7933. const float alpha = params.adam.alpha;
  7934. const float beta1 = params.adam.beta1;
  7935. const float beta2 = params.adam.beta2;
  7936. const float eps = params.adam.eps;
  7937. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7938. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7939. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7940. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7941. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7942. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7943. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7944. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7945. // initialize
  7946. ggml_vec_set_f32(nx, m, 0.0f);
  7947. ggml_vec_set_f32(nx, v, 0.0f);
  7948. // update view
  7949. ggml_opt_get_params(np, ps, x);
  7950. // compute the function value
  7951. ggml_graph_reset (gf);
  7952. ggml_set_f32 (f->grad, 1.0f);
  7953. ggml_graph_compute(ctx, gb);
  7954. float fx_prev = ggml_get_f32_1d(f, 0);
  7955. if (pf) {
  7956. pf[0] = fx_prev;
  7957. }
  7958. int n_no_improvement = 0;
  7959. float fx_best = fx_prev;
  7960. // run the optimizer
  7961. for (int t = 0; t < params.adam.n_iter; ++t) {
  7962. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7963. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7964. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7965. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7966. for (int i = 0; i < np; ++i) {
  7967. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7968. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7969. }
  7970. const int64_t t_start_wall = ggml_time_us();
  7971. const int64_t t_start_cpu = ggml_cycles();
  7972. UNUSED(t_start_wall);
  7973. UNUSED(t_start_cpu);
  7974. {
  7975. // update the gradient
  7976. ggml_opt_get_grad(np, ps, g1);
  7977. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  7978. ggml_vec_scale_f32(nx, m, beta1);
  7979. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  7980. // g2 = g1^2
  7981. ggml_vec_sqr_f32 (nx, g2, g1);
  7982. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  7983. ggml_vec_scale_f32(nx, v, beta2);
  7984. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  7985. // m^hat = m_t / (1 - beta1^t)
  7986. // v^hat = v_t / (1 - beta2^t)
  7987. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  7988. ggml_vec_cpy_f32 (nx, mh, m);
  7989. ggml_vec_cpy_f32 (nx, vh, v);
  7990. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  7991. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  7992. ggml_vec_sqrt_f32 (nx, vh, vh);
  7993. ggml_vec_acc1_f32 (nx, vh, eps);
  7994. ggml_vec_div_f32 (nx, mh, mh, vh);
  7995. ggml_vec_sub_f32 (nx, x, x, mh);
  7996. // update the parameters
  7997. ggml_opt_set_params(np, ps, x);
  7998. }
  7999. ggml_graph_reset (gf);
  8000. ggml_set_f32 (f->grad, 1.0f);
  8001. ggml_graph_compute(ctx, gb);
  8002. const float fx = ggml_get_f32_1d(f, 0);
  8003. // check convergence
  8004. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8005. GGML_PRINT_DEBUG("converged\n");
  8006. return GGML_OPT_OK;
  8007. }
  8008. // delta-based convergence test
  8009. if (pf != NULL) {
  8010. // need at least params.past iterations to start checking for convergence
  8011. if (params.past <= t) {
  8012. const float rate = (pf[t%params.past] - fx)/fx;
  8013. if (fabs(rate) < params.delta) {
  8014. return GGML_OPT_OK;
  8015. }
  8016. }
  8017. pf[t%params.past] = fx;
  8018. }
  8019. // check for improvement
  8020. if (params.max_no_improvement > 0) {
  8021. if (fx_best > fx) {
  8022. fx_best = fx;
  8023. n_no_improvement = 0;
  8024. } else {
  8025. ++n_no_improvement;
  8026. if (n_no_improvement >= params.max_no_improvement) {
  8027. return GGML_OPT_OK;
  8028. }
  8029. }
  8030. }
  8031. fx_prev = fx;
  8032. {
  8033. const int64_t t_end_cpu = ggml_cycles();
  8034. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8035. UNUSED(t_end_cpu);
  8036. const int64_t t_end_wall = ggml_time_us();
  8037. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8038. UNUSED(t_end_wall);
  8039. }
  8040. }
  8041. return GGML_OPT_DID_NOT_CONVERGE;
  8042. }
  8043. //
  8044. // L-BFGS
  8045. //
  8046. // the L-BFGS implementation below is based on the following implementation:
  8047. //
  8048. // https://github.com/chokkan/liblbfgs
  8049. //
  8050. struct ggml_lbfgs_iteration_data {
  8051. float alpha;
  8052. float ys;
  8053. float * s;
  8054. float * y;
  8055. };
  8056. static enum ggml_opt_result linesearch_backtracking(
  8057. struct ggml_context * ctx,
  8058. const struct ggml_opt_params * params,
  8059. int nx,
  8060. float * x,
  8061. float * fx,
  8062. float * g,
  8063. float * d,
  8064. float * step,
  8065. const float * xp,
  8066. struct ggml_tensor * f,
  8067. struct ggml_cgraph * gf,
  8068. struct ggml_cgraph * gb,
  8069. const int np,
  8070. struct ggml_tensor * ps[]) {
  8071. int count = 0;
  8072. float width = 0.0f;
  8073. float dg = 0.0f;
  8074. float finit = 0.0f;
  8075. float dginit = 0.0f;
  8076. float dgtest = 0.0f;
  8077. const float dec = 0.5f;
  8078. const float inc = 2.1f;
  8079. if (*step <= 0.) {
  8080. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8081. }
  8082. // compute the initial gradient in the search direction
  8083. ggml_vec_dot_f32(nx, &dginit, g, d);
  8084. // make sure that d points to a descent direction
  8085. if (0 < dginit) {
  8086. return GGML_LINESEARCH_FAIL;
  8087. }
  8088. // initialize local variables
  8089. finit = *fx;
  8090. dgtest = params->lbfgs.ftol*dginit;
  8091. while (true) {
  8092. ggml_vec_cpy_f32(nx, x, xp);
  8093. ggml_vec_mad_f32(nx, x, d, *step);
  8094. // evaluate the function and gradient values
  8095. {
  8096. ggml_opt_set_params(np, ps, x);
  8097. ggml_graph_reset (gf);
  8098. ggml_set_f32 (f->grad, 1.0f);
  8099. ggml_graph_compute(ctx, gb);
  8100. ggml_opt_get_grad(np, ps, g);
  8101. *fx = ggml_get_f32_1d(f, 0);
  8102. }
  8103. ++count;
  8104. if (*fx > finit + (*step)*dgtest) {
  8105. width = dec;
  8106. } else {
  8107. // Armijo condition is satisfied
  8108. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8109. return count;
  8110. }
  8111. ggml_vec_dot_f32(nx, &dg, g, d);
  8112. // check the Wolfe condition
  8113. if (dg < params->lbfgs.wolfe * dginit) {
  8114. width = inc;
  8115. } else {
  8116. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8117. // regular Wolfe conditions
  8118. return count;
  8119. }
  8120. if(dg > -params->lbfgs.wolfe*dginit) {
  8121. width = dec;
  8122. } else {
  8123. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8124. return count;
  8125. }
  8126. return count;
  8127. }
  8128. }
  8129. if (*step < params->lbfgs.min_step) {
  8130. return GGML_LINESEARCH_MINIMUM_STEP;
  8131. }
  8132. if (*step > params->lbfgs.max_step) {
  8133. return GGML_LINESEARCH_MAXIMUM_STEP;
  8134. }
  8135. if (params->lbfgs.max_linesearch <= count) {
  8136. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8137. }
  8138. (*step) *= width;
  8139. }
  8140. return GGML_LINESEARCH_FAIL;
  8141. }
  8142. static enum ggml_opt_result ggml_opt_lbfgs(
  8143. struct ggml_context * ctx,
  8144. struct ggml_opt_params params,
  8145. struct ggml_tensor * f,
  8146. struct ggml_cgraph * gf,
  8147. struct ggml_cgraph * gb) {
  8148. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8149. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8150. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8151. return GGML_OPT_INVALID_WOLFE;
  8152. }
  8153. }
  8154. gf->n_threads = params.n_threads;
  8155. gb->n_threads = params.n_threads;
  8156. const int m = params.lbfgs.m;
  8157. // these will store the parameters we want to optimize
  8158. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8159. int np = 0;
  8160. int nx = 0;
  8161. for (int i = 0; i < gf->n_nodes; ++i) {
  8162. if (gf->nodes[i]->is_param) {
  8163. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8164. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8165. ps[np++] = gf->nodes[i];
  8166. nx += ggml_nelements(gf->nodes[i]);
  8167. }
  8168. }
  8169. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8170. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8171. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8172. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8173. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8174. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8175. float fx = 0.0f; // cost function value
  8176. float xnorm = 0.0f; // ||x||
  8177. float gnorm = 0.0f; // ||g||
  8178. float step = 0.0f;
  8179. // initialize x from the graph nodes
  8180. ggml_opt_get_params(np, ps, x);
  8181. // the L-BFGS memory
  8182. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8183. for (int i = 0; i < m; ++i) {
  8184. lm[i].alpha = 0.0f;
  8185. lm[i].ys = 0.0f;
  8186. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8187. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8188. }
  8189. // evaluate the function value and its gradient
  8190. {
  8191. ggml_opt_set_params(np, ps, x);
  8192. ggml_graph_reset (gf);
  8193. ggml_set_f32 (f->grad, 1.0f);
  8194. ggml_graph_compute(ctx, gb);
  8195. ggml_opt_get_grad(np, ps, g);
  8196. fx = ggml_get_f32_1d(f, 0);
  8197. }
  8198. if (pf) {
  8199. pf[0] = fx;
  8200. }
  8201. float fx_best = fx;
  8202. // search direction = -gradient
  8203. ggml_vec_neg_f32(nx, d, g);
  8204. // ||x||, ||g||
  8205. ggml_vec_norm_f32(nx, &xnorm, x);
  8206. ggml_vec_norm_f32(nx, &gnorm, g);
  8207. if (xnorm < 1.0f) {
  8208. xnorm = 1.0f;
  8209. }
  8210. // already optimized
  8211. if (gnorm/xnorm <= params.lbfgs.eps) {
  8212. return GGML_OPT_OK;
  8213. }
  8214. // initial step
  8215. ggml_vec_norm_inv_f32(nx, &step, d);
  8216. int j = 0;
  8217. int k = 1;
  8218. int ls = 0;
  8219. int end = 0;
  8220. int bound = 0;
  8221. int n_no_improvement = 0;
  8222. float ys = 0.0f;
  8223. float yy = 0.0f;
  8224. float beta = 0.0f;
  8225. while (true) {
  8226. // store the current position and gradient vectors
  8227. ggml_vec_cpy_f32(nx, xp, x);
  8228. ggml_vec_cpy_f32(nx, gp, g);
  8229. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8230. if (ls < 0) {
  8231. // linesearch failed - go back to the previous point and return
  8232. ggml_vec_cpy_f32(nx, x, xp);
  8233. ggml_vec_cpy_f32(nx, g, gp);
  8234. return ls;
  8235. }
  8236. ggml_vec_norm_f32(nx, &xnorm, x);
  8237. ggml_vec_norm_f32(nx, &gnorm, g);
  8238. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8239. if (xnorm < 1.0) {
  8240. xnorm = 1.0;
  8241. }
  8242. if (gnorm/xnorm <= params.lbfgs.eps) {
  8243. // converged
  8244. return GGML_OPT_OK;
  8245. }
  8246. // delta-based convergence test
  8247. if (pf != NULL) {
  8248. // need at least params.past iterations to start checking for convergence
  8249. if (params.past <= k) {
  8250. const float rate = (pf[k%params.past] - fx)/fx;
  8251. if (fabs(rate) < params.delta) {
  8252. return GGML_OPT_OK;
  8253. }
  8254. }
  8255. pf[k%params.past] = fx;
  8256. }
  8257. // check for improvement
  8258. if (params.max_no_improvement > 0) {
  8259. if (fx < fx_best) {
  8260. fx_best = fx;
  8261. n_no_improvement = 0;
  8262. } else {
  8263. n_no_improvement++;
  8264. if (n_no_improvement >= params.max_no_improvement) {
  8265. return GGML_OPT_OK;
  8266. }
  8267. }
  8268. }
  8269. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8270. // reached the maximum number of iterations
  8271. return GGML_OPT_DID_NOT_CONVERGE;
  8272. }
  8273. // update vectors s and y:
  8274. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8275. // y_{k+1} = g_{k+1} - g_{k}.
  8276. //
  8277. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8278. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8279. // compute scalars ys and yy:
  8280. // ys = y^t \cdot s -> 1 / \rho.
  8281. // yy = y^t \cdot y.
  8282. //
  8283. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8284. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8285. lm[end].ys = ys;
  8286. // find new search direction
  8287. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8288. bound = (m <= k) ? m : k;
  8289. k++;
  8290. end = (end + 1)%m;
  8291. // initialize search direction with -g
  8292. ggml_vec_neg_f32(nx, d, g);
  8293. j = end;
  8294. for (int i = 0; i < bound; ++i) {
  8295. j = (j + m - 1) % m;
  8296. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8297. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8298. lm[j].alpha /= lm[j].ys;
  8299. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8300. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8301. }
  8302. ggml_vec_scale_f32(nx, d, ys/yy);
  8303. for (int i = 0; i < bound; ++i) {
  8304. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8305. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8306. beta /= lm[j].ys;
  8307. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8308. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8309. j = (j + 1)%m;
  8310. }
  8311. step = 1.0;
  8312. }
  8313. return GGML_OPT_DID_NOT_CONVERGE;
  8314. }
  8315. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8316. struct ggml_opt_params result;
  8317. switch (type) {
  8318. case GGML_OPT_ADAM:
  8319. {
  8320. result = (struct ggml_opt_params) {
  8321. .type = GGML_OPT_ADAM,
  8322. .n_threads = 1,
  8323. .past = 0,
  8324. .delta = 1e-5f,
  8325. .max_no_improvement = 100,
  8326. .print_forward_graph = true,
  8327. .print_backward_graph = true,
  8328. .adam = {
  8329. .n_iter = 10000,
  8330. .alpha = 0.001f,
  8331. .beta1 = 0.9f,
  8332. .beta2 = 0.999f,
  8333. .eps = 1e-8f,
  8334. .eps_f = 1e-5f,
  8335. .eps_g = 1e-3f,
  8336. },
  8337. };
  8338. } break;
  8339. case GGML_OPT_LBFGS:
  8340. {
  8341. result = (struct ggml_opt_params) {
  8342. .type = GGML_OPT_LBFGS,
  8343. .n_threads = 1,
  8344. .past = 0,
  8345. .delta = 1e-5f,
  8346. .max_no_improvement = 0,
  8347. .print_forward_graph = true,
  8348. .print_backward_graph = true,
  8349. .lbfgs = {
  8350. .m = 6,
  8351. .n_iter = 100,
  8352. .max_linesearch = 20,
  8353. .eps = 1e-5f,
  8354. .ftol = 1e-4f,
  8355. .wolfe = 0.9f,
  8356. .min_step = 1e-20f,
  8357. .max_step = 1e+20f,
  8358. .linesearch = GGML_LINESEARCH_DEFAULT,
  8359. },
  8360. };
  8361. } break;
  8362. }
  8363. return result;
  8364. }
  8365. enum ggml_opt_result ggml_opt(
  8366. struct ggml_context * ctx,
  8367. struct ggml_opt_params params,
  8368. struct ggml_tensor * f) {
  8369. bool free_ctx = false;
  8370. if (ctx == NULL) {
  8371. struct ggml_init_params params_ctx = {
  8372. .mem_size = 16*1024*1024,
  8373. .mem_buffer = NULL,
  8374. };
  8375. ctx = ggml_init(params_ctx);
  8376. if (ctx == NULL) {
  8377. return GGML_OPT_NO_CONTEXT;
  8378. }
  8379. free_ctx = true;
  8380. }
  8381. enum ggml_opt_result result = GGML_OPT_OK;
  8382. // build forward + backward compute graphs
  8383. struct ggml_cgraph gf = ggml_build_forward (f);
  8384. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8385. switch (params.type) {
  8386. case GGML_OPT_ADAM:
  8387. {
  8388. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8389. } break;
  8390. case GGML_OPT_LBFGS:
  8391. {
  8392. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8393. } break;
  8394. }
  8395. if (params.print_forward_graph) {
  8396. ggml_graph_print (&gf);
  8397. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8398. }
  8399. if (params.print_backward_graph) {
  8400. ggml_graph_print (&gb);
  8401. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8402. }
  8403. if (free_ctx) {
  8404. ggml_free(ctx);
  8405. }
  8406. return result;
  8407. }
  8408. ////////////////////////////////////////////////////////////////////////////////
  8409. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8410. assert(k % QK == 0);
  8411. const int nb = k / QK;
  8412. for (int j = 0; j < n; j += k) {
  8413. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8414. quantize_row_q4_0_reference(src + j, y, k);
  8415. for (int i = 0; i < nb; i++) {
  8416. for (int l = 0; l < QK; l += 2) {
  8417. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8418. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8419. hist[vi0]++;
  8420. hist[vi1]++;
  8421. }
  8422. }
  8423. }
  8424. return (n/QK*sizeof(block_q4_0));
  8425. }
  8426. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8427. assert(k % QK == 0);
  8428. const int nb = k / QK;
  8429. for (int j = 0; j < n; j += k) {
  8430. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8431. quantize_row_q4_1(src + j, y, k);
  8432. for (int i = 0; i < nb; i++) {
  8433. for (int l = 0; l < QK; l += 2) {
  8434. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8435. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8436. hist[vi0]++;
  8437. hist[vi1]++;
  8438. }
  8439. }
  8440. }
  8441. return (n/QK*sizeof(block_q4_1));
  8442. }
  8443. ////////////////////////////////////////////////////////////////////////////////
  8444. int ggml_cpu_has_avx(void) {
  8445. #if defined(__AVX__)
  8446. return 1;
  8447. #else
  8448. return 0;
  8449. #endif
  8450. }
  8451. int ggml_cpu_has_avx2(void) {
  8452. #if defined(__AVX2__)
  8453. return 1;
  8454. #else
  8455. return 0;
  8456. #endif
  8457. }
  8458. int ggml_cpu_has_avx512(void) {
  8459. #if defined(__AVX512F__)
  8460. return 1;
  8461. #else
  8462. return 0;
  8463. #endif
  8464. }
  8465. int ggml_cpu_has_fma(void) {
  8466. #if defined(__FMA__)
  8467. return 1;
  8468. #else
  8469. return 0;
  8470. #endif
  8471. }
  8472. int ggml_cpu_has_neon(void) {
  8473. #if defined(__ARM_NEON)
  8474. return 1;
  8475. #else
  8476. return 0;
  8477. #endif
  8478. }
  8479. int ggml_cpu_has_arm_fma(void) {
  8480. #if defined(__ARM_FEATURE_FMA)
  8481. return 1;
  8482. #else
  8483. return 0;
  8484. #endif
  8485. }
  8486. int ggml_cpu_has_f16c(void) {
  8487. #if defined(__F16C__)
  8488. return 1;
  8489. #else
  8490. return 0;
  8491. #endif
  8492. }
  8493. int ggml_cpu_has_fp16_va(void) {
  8494. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8495. return 1;
  8496. #else
  8497. return 0;
  8498. #endif
  8499. }
  8500. int ggml_cpu_has_wasm_simd(void) {
  8501. #if defined(__wasm_simd128__)
  8502. return 1;
  8503. #else
  8504. return 0;
  8505. #endif
  8506. }
  8507. int ggml_cpu_has_blas(void) {
  8508. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8509. return 1;
  8510. #else
  8511. return 0;
  8512. #endif
  8513. }
  8514. int ggml_cpu_has_sse3(void) {
  8515. #if defined(__SSE3__)
  8516. return 1;
  8517. #else
  8518. return 0;
  8519. #endif
  8520. }
  8521. int ggml_cpu_has_vsx(void) {
  8522. #if defined(__POWER9_VECTOR__)
  8523. return 1;
  8524. #else
  8525. return 0;
  8526. #endif
  8527. }
  8528. ////////////////////////////////////////////////////////////////////////////////