common.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include "sampling.h"
  5. #define LOG_NO_FILE_LINE_FUNCTION
  6. #include "log.h"
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. #include <random>
  11. #include <thread>
  12. #include <unordered_map>
  13. #include <tuple>
  14. #ifdef _WIN32
  15. #define DIRECTORY_SEPARATOR '\\'
  16. #else
  17. #define DIRECTORY_SEPARATOR '/'
  18. #endif // _WIN32
  19. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  20. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  21. #define print_build_info() do { \
  22. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  23. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  24. } while(0)
  25. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  26. // build info
  27. extern int LLAMA_BUILD_NUMBER;
  28. extern char const * LLAMA_COMMIT;
  29. extern char const * LLAMA_COMPILER;
  30. extern char const * LLAMA_BUILD_TARGET;
  31. struct llama_control_vector_load_info;
  32. //
  33. // CPU utils
  34. //
  35. int32_t cpu_get_num_physical_cores();
  36. int32_t cpu_get_num_math();
  37. //
  38. // CLI argument parsing
  39. //
  40. // dimensionality reduction methods, used by cvector-generator
  41. enum dimre_method {
  42. DIMRE_METHOD_PCA,
  43. DIMRE_METHOD_MEAN,
  44. };
  45. struct gpt_params {
  46. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  47. int32_t n_threads = cpu_get_num_math();
  48. int32_t n_threads_draft = -1;
  49. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  50. int32_t n_threads_batch_draft = -1;
  51. int32_t n_predict = -1; // new tokens to predict
  52. int32_t n_ctx = 0; // context size
  53. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  54. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  55. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  56. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  57. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  58. int32_t n_parallel = 1; // number of parallel sequences to decode
  59. int32_t n_sequences = 1; // number of sequences to decode
  60. float p_split = 0.1f; // speculative decoding split probability
  61. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  62. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  63. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  64. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  65. int32_t grp_attn_n = 1; // group-attention factor
  66. int32_t grp_attn_w = 512; // group-attention width
  67. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  68. float rope_freq_base = 0.0f; // RoPE base frequency
  69. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  70. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  71. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  72. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  73. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  74. int32_t yarn_orig_ctx = 0; // YaRN original context length
  75. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  76. ggml_backend_sched_eval_callback cb_eval = nullptr;
  77. void * cb_eval_user_data = nullptr;
  78. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  79. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  80. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  81. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  82. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  83. // // sampling parameters
  84. struct llama_sampling_params sparams;
  85. std::string model = ""; // model path
  86. std::string model_draft = ""; // draft model for speculative decoding
  87. std::string model_alias = "unknown"; // model alias
  88. std::string model_url = ""; // model url to download
  89. std::string hf_repo = ""; // HF repo
  90. std::string hf_file = ""; // HF file
  91. std::string prompt = "";
  92. std::string prompt_file = ""; // store the external prompt file name
  93. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  94. std::string input_prefix = ""; // string to prefix user inputs with
  95. std::string input_suffix = ""; // string to suffix user inputs with
  96. std::string logdir = ""; // directory in which to save YAML log files
  97. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  98. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  99. std::string logits_file = ""; // file for saving *all* logits
  100. std::string rpc_servers = ""; // comma separated list of RPC servers
  101. std::vector<std::string> in_files; // all input files
  102. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  103. std::vector<llama_model_kv_override> kv_overrides;
  104. // TODO: avoid tuple, use struct
  105. std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
  106. std::string lora_base = ""; // base model path for the lora adapter
  107. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  108. int32_t verbosity = 0;
  109. int32_t control_vector_layer_start = -1; // layer range for control vector
  110. int32_t control_vector_layer_end = -1; // layer range for control vector
  111. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  112. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  113. // (which is more convenient to use for plotting)
  114. //
  115. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  116. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  117. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  118. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  119. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  120. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  121. bool kl_divergence = false; // compute KL divergence
  122. bool usage = false; // print usage
  123. bool use_color = false; // use color to distinguish generations and inputs
  124. bool special = false; // enable special token output
  125. bool interactive = false; // interactive mode
  126. bool interactive_first = false; // wait for user input immediately
  127. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  128. bool prompt_cache_all = false; // save user input and generations to prompt cache
  129. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  130. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  131. bool multiline_input = false; // reverse the usage of `\`
  132. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  133. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  134. bool flash_attn = false; // flash attention
  135. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  136. bool ignore_eos = false; // ignore generated EOS tokens
  137. bool logits_all = false; // return logits for all tokens in the batch
  138. bool use_mmap = true; // use mmap for faster loads
  139. bool use_mlock = false; // use mlock to keep model in memory
  140. bool verbose_prompt = false; // print prompt tokens before generation
  141. bool display_prompt = true; // print prompt before generation
  142. bool infill = false; // use infill mode
  143. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  144. bool no_kv_offload = false; // disable KV offloading
  145. bool warmup = true; // warmup run
  146. bool check_tensors = false; // validate tensor data
  147. std::string cache_type_k = "f16"; // KV cache data type for the K
  148. std::string cache_type_v = "f16"; // KV cache data type for the V
  149. // multimodal models (see examples/llava)
  150. std::string mmproj = ""; // path to multimodal projector
  151. std::vector<std::string> image; // path to image file(s)
  152. // embedding
  153. bool embedding = false; // get only sentence embedding
  154. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  155. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  156. std::string embd_sep = "\n"; // separator of embendings
  157. // server params
  158. int32_t port = 8080; // server listens on this network port
  159. int32_t timeout_read = 600; // http read timeout in seconds
  160. int32_t timeout_write = timeout_read; // http write timeout in seconds
  161. int32_t n_threads_http = -1; // number of threads to process HTTP requests
  162. std::string hostname = "127.0.0.1";
  163. std::string public_path = "";
  164. std::string chat_template = "";
  165. std::string system_prompt = "";
  166. bool enable_chat_template = true;
  167. std::vector<std::string> api_keys;
  168. std::string ssl_file_key = "";
  169. std::string ssl_file_cert = "";
  170. bool endpoint_slots = true;
  171. bool endpoint_metrics = false;
  172. bool log_json = false;
  173. std::string slot_save_path;
  174. float slot_prompt_similarity = 0.5f;
  175. // batched-bench params
  176. bool is_pp_shared = false;
  177. std::vector<int32_t> n_pp;
  178. std::vector<int32_t> n_tg;
  179. std::vector<int32_t> n_pl;
  180. // retrieval params
  181. std::vector<std::string> context_files; // context files to embed
  182. int32_t chunk_size = 64; // chunk size for context embedding
  183. std::string chunk_separator = "\n"; // chunk separator for context embedding
  184. // passkey params
  185. int32_t n_junk = 250; // number of times to repeat the junk text
  186. int32_t i_pos = -1; // position of the passkey in the junk text
  187. // imatrix params
  188. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  189. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  190. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  191. int32_t i_chunk = 0; // start processing from this chunk
  192. bool process_output = false; // collect data for the output tensor
  193. bool compute_ppl = true; // whether to compute perplexity
  194. // cvector-generator params
  195. int n_pca_batch = 100;
  196. int n_pca_iterations = 1000;
  197. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  198. std::string cvector_outfile = "control_vector.gguf";
  199. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  200. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  201. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  202. };
  203. void gpt_params_handle_model_default(gpt_params & params);
  204. bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
  205. bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
  206. bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  207. void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
  208. std::string gpt_params_get_system_info(const gpt_params & params);
  209. //
  210. // String utils
  211. //
  212. std::vector<std::string> string_split(std::string input, char separator);
  213. std::string string_strip(const std::string & str);
  214. std::string string_get_sortable_timestamp();
  215. template<class T>
  216. static std::vector<T> string_split(const std::string & str, char delim) {
  217. std::vector<T> values;
  218. std::istringstream str_stream(str);
  219. std::string token;
  220. while (std::getline(str_stream, token, delim)) {
  221. T value;
  222. std::istringstream token_stream(token);
  223. token_stream >> value;
  224. values.push_back(value);
  225. }
  226. return values;
  227. }
  228. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  229. void string_process_escapes(std::string & input);
  230. //
  231. // Filesystem utils
  232. //
  233. bool fs_validate_filename(const std::string & filename);
  234. bool fs_create_directory_with_parents(const std::string & path);
  235. std::string fs_get_cache_directory();
  236. std::string fs_get_cache_file(const std::string & filename);
  237. //
  238. // Model utils
  239. //
  240. // TODO: avoid tuplue, use struct
  241. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  242. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  243. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  244. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
  245. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
  246. // Batch utils
  247. void llama_batch_clear(struct llama_batch & batch);
  248. void llama_batch_add(
  249. struct llama_batch & batch,
  250. llama_token id,
  251. llama_pos pos,
  252. const std::vector<llama_seq_id> & seq_ids,
  253. bool logits);
  254. //
  255. // Vocab utils
  256. //
  257. // tokenizes a string into a vector of tokens
  258. // should work similar to Python's `tokenizer.encode`
  259. std::vector<llama_token> llama_tokenize(
  260. const struct llama_context * ctx,
  261. const std::string & text,
  262. bool add_special,
  263. bool parse_special = false);
  264. std::vector<llama_token> llama_tokenize(
  265. const struct llama_model * model,
  266. const std::string & text,
  267. bool add_special,
  268. bool parse_special = false);
  269. // tokenizes a token into a piece, optionally renders special/control tokens
  270. // should work similar to Python's `tokenizer.id_to_piece`
  271. std::string llama_token_to_piece(
  272. const struct llama_context * ctx,
  273. llama_token token,
  274. bool special = true);
  275. // detokenizes a vector of tokens into a string
  276. // should work similar to Python's `tokenizer.decode`
  277. // optionally renders special/control tokens
  278. std::string llama_detokenize(
  279. llama_context * ctx,
  280. const std::vector<llama_token> & tokens,
  281. bool special = true);
  282. // Uses the value from the model metadata if possible, otherwise
  283. // defaults to true when model type is SPM, otherwise false.
  284. bool llama_should_add_bos_token(const llama_model * model);
  285. //
  286. // Chat template utils
  287. //
  288. // same with llama_chat_message, but uses std::string
  289. struct llama_chat_msg {
  290. std::string role;
  291. std::string content;
  292. };
  293. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  294. bool llama_chat_verify_template(const std::string & tmpl);
  295. // CPP wrapper for llama_chat_apply_template
  296. // If the built-in template is not supported, we default to chatml
  297. // If the custom "tmpl" is not supported, we throw an error
  298. std::string llama_chat_apply_template(const struct llama_model * model,
  299. const std::string & tmpl,
  300. const std::vector<llama_chat_msg> & chat,
  301. bool add_ass);
  302. // Format single message, while taking into account the position of that message in chat history
  303. std::string llama_chat_format_single(const struct llama_model * model,
  304. const std::string & tmpl,
  305. const std::vector<llama_chat_msg> & past_msg,
  306. const llama_chat_msg & new_msg,
  307. bool add_ass);
  308. // Returns an example of formatted chat
  309. std::string llama_chat_format_example(const struct llama_model * model,
  310. const std::string & tmpl);
  311. //
  312. // KV cache utils
  313. //
  314. // Dump the KV cache view with the number of sequences per cell.
  315. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  316. // Dump the KV cache view showing individual sequences in each cell (long output).
  317. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  318. //
  319. // Embedding utils
  320. //
  321. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  322. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  323. //
  324. // Control vector utils
  325. //
  326. struct llama_control_vector_data {
  327. int n_embd;
  328. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  329. std::vector<float> data;
  330. };
  331. struct llama_control_vector_load_info {
  332. float strength;
  333. std::string fname;
  334. };
  335. // Load control vectors, scale each by strength, and add them together.
  336. // On error, returns {-1, empty}
  337. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  338. //
  339. // Split utils
  340. //
  341. static const char * const LLM_KV_SPLIT_NO = "split.no";
  342. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  343. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  344. //
  345. // YAML utils
  346. //
  347. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  348. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  349. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  350. void yaml_dump_non_result_info(
  351. FILE * stream, const gpt_params & params, const llama_context * lctx,
  352. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);