| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- import Foundation
- import llama
- let arguments = CommandLine.arguments
- // Check that we have at least one argument (the model path)
- guard arguments.count > 1 else {
- print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
- exit(1)
- }
- let modelPath: String = arguments[1]
- let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
- let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
- // total length of the sequences including the prompt
- let n_len: Int = 32
- // init LLM
- llama_backend_init()
- defer {
- llama_backend_free()
- }
- let model_params = llama_model_default_params()
- guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
- print("Failed to load model")
- exit(1)
- }
- defer {
- llama_free_model(model)
- }
- var tokens = tokenize(text: prompt, add_bos: true)
- let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
- var context_params = llama_context_default_params()
- context_params.seed = 1234
- context_params.n_ctx = n_kv_req
- context_params.n_batch = UInt32(max(n_len, n_parallel))
- context_params.n_threads = 8
- context_params.n_threads_batch = 8
- let context = llama_new_context_with_model(model, context_params)
- guard context != nil else {
- print("Failed to initialize context")
- exit(1)
- }
- defer {
- llama_free(context)
- }
- let n_ctx = llama_n_ctx(context)
- print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
- if n_kv_req > n_ctx {
- print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
- exit(1)
- }
- var buffer: [CChar] = []
- for id: llama_token in tokens {
- print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
- }
- print("\n")
- var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
- defer {
- llama_batch_free(batch)
- }
- // evaluate the initial prompt
- batch.n_tokens = Int32(tokens.count)
- for (i, token) in tokens.enumerated() {
- batch.token[i] = token
- batch.pos[i] = Int32(i)
- batch.n_seq_id[i] = 1
- // batch.seq_id[i][0] = 0
- // TODO: is this the proper way to do this?
- if let seq_id = batch.seq_id[i] {
- seq_id[0] = 0
- }
- batch.logits[i] = 0
- }
- // llama_decode will output logits only for the last token of the prompt
- batch.logits[Int(batch.n_tokens) - 1] = 1
- if llama_decode(context, batch) != 0 {
- print("llama_decode() failed")
- exit(1)
- }
- for i in 1 ..< n_parallel {
- llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
- }
- if n_parallel > 1 {
- print("generating \(n_parallel) sequences ...\n")
- }
- var streams: [String] = .init(repeating: "", count: n_parallel)
- var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
- var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
- var n_cur = batch.n_tokens
- var n_decode = 0
- let t_main_start = ggml_time_us()
- while n_cur <= n_len {
- // prepare the next batch
- batch.n_tokens = 0
- // sample the next token for each parallel sequence / stream
- for i in 0 ..< n_parallel {
- if i_batch[i] < 0 {
- // the stream has already finished
- continue
- }
- var n_vocab = llama_n_vocab(model)
- var logits = llama_get_logits_ith(context, i_batch[i])
- var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
- for token_id in 0 ..< n_vocab {
- candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
- }
- var candidates_p: llama_token_data_array = .init(
- data: &candidates,
- size: candidates.count,
- sorted: false
- )
- let top_k: Int32 = 40
- let top_p: Float = 0.9
- let temp: Float = 0.4
- llama_sample_top_k(context, &candidates_p, top_k, 1)
- llama_sample_top_p(context, &candidates_p, top_p, 1)
- llama_sample_temp(context, &candidates_p, temp)
- let new_token_id = llama_sample_token(context, &candidates_p)
- // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
- // is it an end of stream? -> mark the stream as finished
- if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
- i_batch[i] = -1
- // print("")
- if n_parallel > 1 {
- print("stream \(i) finished at n_cur = \(n_cur)")
- }
- continue
- }
- let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
- // if there is only one stream, we print immediately to stdout
- if n_parallel == 1 {
- print(nextStringPiece, terminator: "")
- }
- streams[i] += nextStringPiece
- // push this new token for next evaluation
- batch.token[Int(batch.n_tokens)] = new_token_id
- batch.pos[Int(batch.n_tokens)] = n_cur
- batch.n_seq_id[Int(batch.n_tokens)] = 1
- if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
- seq_id[0] = Int32(i)
- }
- batch.logits[Int(batch.n_tokens)] = 1
- i_batch[i] = batch.n_tokens
- batch.n_tokens += 1
- n_decode += 1
- }
- // all streams are finished
- if batch.n_tokens == 0 {
- break
- }
- n_cur += 1
- // evaluate the current batch with the transformer model
- if llama_decode(context, batch) != 0 {
- print("llama_decode() failed")
- exit(1)
- }
- }
- if n_parallel > 1 {
- print("\n")
- for (i, stream) in streams.enumerated() {
- print("sequence \(i):\n\n\(prompt)\(stream)\n")
- }
- }
- let t_main_end = ggml_time_us()
- print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
- llama_print_timings(context)
- private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
- let utf8Count = text.utf8.count
- let n_tokens = utf8Count + (add_bos ? 1 : 0)
- let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
- let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
- var swiftTokens: [llama_token] = []
- for i in 0 ..< tokenCount {
- swiftTokens.append(tokens[Int(i)])
- }
- tokens.deallocate()
- return swiftTokens
- }
- private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
- var result = [CChar](repeating: 0, count: 8)
- let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
- if nTokens < 0 {
- let actualTokensCount = -Int(nTokens)
- result = .init(repeating: 0, count: actualTokensCount)
- let check = llama_token_to_piece(
- model,
- token,
- &result,
- Int32(result.count),
- 0,
- false
- )
- assert(check == actualTokensCount)
- } else {
- result.removeLast(result.count - Int(nTokens))
- }
- if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
- return utfString
- } else {
- buffer.append(contentsOf: result)
- let data = Data(buffer.map { UInt8(bitPattern: $0) })
- if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
- buffer = []
- }
- guard let bufferString = String(data: data, encoding: .utf8) else {
- return nil
- }
- buffer = []
- return bufferString
- }
- }
|