arg.cpp 141 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357
  1. #include "gguf.h" // for reading GGUF splits
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "chat.h"
  7. // fix problem with std::min and std::max
  8. #if defined(_WIN32)
  9. #define WIN32_LEAN_AND_MEAN
  10. #ifndef NOMINMAX
  11. # define NOMINMAX
  12. #endif
  13. #include <windows.h>
  14. #endif
  15. #include <algorithm>
  16. #include <climits>
  17. #include <cstdarg>
  18. #include <filesystem>
  19. #include <fstream>
  20. #include <regex>
  21. #include <set>
  22. #include <string>
  23. #include <thread>
  24. #include <vector>
  25. //#define LLAMA_USE_CURL
  26. #if defined(LLAMA_USE_CURL)
  27. #include <curl/curl.h>
  28. #include <curl/easy.h>
  29. #include <future>
  30. #endif
  31. #include "json-schema-to-grammar.h"
  32. using json = nlohmann::ordered_json;
  33. std::initializer_list<enum llama_example> mmproj_examples = {
  34. LLAMA_EXAMPLE_MTMD,
  35. LLAMA_EXAMPLE_SERVER,
  36. };
  37. static std::string read_file(const std::string & fname) {
  38. std::ifstream file(fname);
  39. if (!file) {
  40. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  41. }
  42. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  43. file.close();
  44. return content;
  45. }
  46. static void write_file(const std::string & fname, const std::string & content) {
  47. std::ofstream file(fname);
  48. if (!file) {
  49. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  50. }
  51. file << content;
  52. file.close();
  53. }
  54. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  55. this->examples = std::move(examples);
  56. return *this;
  57. }
  58. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  59. this->excludes = std::move(excludes);
  60. return *this;
  61. }
  62. common_arg & common_arg::set_env(const char * env) {
  63. help = help + "\n(env: " + env + ")";
  64. this->env = env;
  65. return *this;
  66. }
  67. common_arg & common_arg::set_sparam() {
  68. is_sparam = true;
  69. return *this;
  70. }
  71. bool common_arg::in_example(enum llama_example ex) {
  72. return examples.find(ex) != examples.end();
  73. }
  74. bool common_arg::is_exclude(enum llama_example ex) {
  75. return excludes.find(ex) != excludes.end();
  76. }
  77. bool common_arg::get_value_from_env(std::string & output) {
  78. if (env == nullptr) return false;
  79. char * value = std::getenv(env);
  80. if (value) {
  81. output = value;
  82. return true;
  83. }
  84. return false;
  85. }
  86. bool common_arg::has_value_from_env() {
  87. return env != nullptr && std::getenv(env);
  88. }
  89. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  90. std::vector<std::string> result;
  91. std::istringstream iss(input);
  92. std::string line;
  93. auto add_line = [&](const std::string& l) {
  94. if (l.length() <= max_char_per_line) {
  95. result.push_back(l);
  96. } else {
  97. std::istringstream line_stream(l);
  98. std::string word, current_line;
  99. while (line_stream >> word) {
  100. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  101. if (!current_line.empty()) result.push_back(current_line);
  102. current_line = word;
  103. } else {
  104. current_line += (!current_line.empty() ? " " : "") + word;
  105. }
  106. }
  107. if (!current_line.empty()) result.push_back(current_line);
  108. }
  109. };
  110. while (std::getline(iss, line)) {
  111. add_line(line);
  112. }
  113. return result;
  114. }
  115. std::string common_arg::to_string() {
  116. // params for printing to console
  117. const static int n_leading_spaces = 40;
  118. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  119. std::string leading_spaces(n_leading_spaces, ' ');
  120. std::ostringstream ss;
  121. for (const auto arg : args) {
  122. if (arg == args.front()) {
  123. if (args.size() == 1) {
  124. ss << arg;
  125. } else {
  126. // first arg is usually abbreviation, we need padding to make it more beautiful
  127. auto tmp = std::string(arg) + ", ";
  128. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  129. ss << tmp << spaces;
  130. }
  131. } else {
  132. ss << arg << (arg != args.back() ? ", " : "");
  133. }
  134. }
  135. if (value_hint) ss << " " << value_hint;
  136. if (value_hint_2) ss << " " << value_hint_2;
  137. if (ss.tellp() > n_leading_spaces - 3) {
  138. // current line is too long, add new line
  139. ss << "\n" << leading_spaces;
  140. } else {
  141. // padding between arg and help, same line
  142. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  143. }
  144. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  145. for (const auto & line : help_lines) {
  146. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  147. }
  148. return ss.str();
  149. }
  150. //
  151. // downloader
  152. //
  153. struct common_hf_file_res {
  154. std::string repo; // repo name with ":tag" removed
  155. std::string ggufFile;
  156. std::string mmprojFile;
  157. };
  158. #ifdef LLAMA_USE_CURL
  159. bool common_has_curl() {
  160. return true;
  161. }
  162. #ifdef __linux__
  163. #include <linux/limits.h>
  164. #elif defined(_WIN32)
  165. # if !defined(PATH_MAX)
  166. # define PATH_MAX MAX_PATH
  167. # endif
  168. #elif defined(_AIX)
  169. #include <sys/limits.h>
  170. #else
  171. #include <sys/syslimits.h>
  172. #endif
  173. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  174. //
  175. // CURL utils
  176. //
  177. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  178. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  179. struct curl_slist_ptr {
  180. struct curl_slist * ptr = nullptr;
  181. ~curl_slist_ptr() {
  182. if (ptr) {
  183. curl_slist_free_all(ptr);
  184. }
  185. }
  186. };
  187. #define CURL_MAX_RETRY 3
  188. #define CURL_RETRY_DELAY_SECONDS 2
  189. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
  190. int remaining_attempts = max_attempts;
  191. while (remaining_attempts > 0) {
  192. LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  193. CURLcode res = curl_easy_perform(curl);
  194. if (res == CURLE_OK) {
  195. return true;
  196. }
  197. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  198. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  199. remaining_attempts--;
  200. if (remaining_attempts == 0) break;
  201. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  202. }
  203. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  204. return false;
  205. }
  206. // download one single file from remote URL to local path
  207. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
  208. // Initialize libcurl
  209. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  210. curl_slist_ptr http_headers;
  211. if (!curl) {
  212. LOG_ERR("%s: error initializing libcurl\n", __func__);
  213. return false;
  214. }
  215. // Set the URL, allow to follow http redirection
  216. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  217. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  218. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  219. // Check if hf-token or bearer-token was specified
  220. if (!bearer_token.empty()) {
  221. std::string auth_header = "Authorization: Bearer " + bearer_token;
  222. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  223. }
  224. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  225. #if defined(_WIN32)
  226. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  227. // operating system. Currently implemented under MS-Windows.
  228. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  229. #endif
  230. // Check if the file already exists locally
  231. auto file_exists = std::filesystem::exists(path);
  232. // If the file exists, check its JSON metadata companion file.
  233. std::string metadata_path = path + ".json";
  234. nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
  235. std::string etag;
  236. std::string last_modified;
  237. if (file_exists) {
  238. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  239. std::ifstream metadata_in(metadata_path);
  240. if (metadata_in.good()) {
  241. try {
  242. metadata_in >> metadata;
  243. LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  244. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  245. etag = metadata.at("etag");
  246. }
  247. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  248. last_modified = metadata.at("lastModified");
  249. }
  250. } catch (const nlohmann::json::exception & e) {
  251. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  252. }
  253. }
  254. // if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
  255. } else {
  256. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  257. }
  258. // Send a HEAD request to retrieve the etag and last-modified headers
  259. struct common_load_model_from_url_headers {
  260. std::string etag;
  261. std::string last_modified;
  262. };
  263. common_load_model_from_url_headers headers;
  264. bool head_request_ok = false;
  265. bool should_download = !file_exists; // by default, we should download if the file does not exist
  266. // get ETag to see if the remote file has changed
  267. {
  268. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  269. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  270. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  271. static std::regex header_regex("([^:]+): (.*)\r\n");
  272. static std::regex etag_regex("ETag", std::regex_constants::icase);
  273. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  274. std::string header(buffer, n_items);
  275. std::smatch match;
  276. if (std::regex_match(header, match, header_regex)) {
  277. const std::string & key = match[1];
  278. const std::string & value = match[2];
  279. if (std::regex_match(key, match, etag_regex)) {
  280. headers->etag = value;
  281. } else if (std::regex_match(key, match, last_modified_regex)) {
  282. headers->last_modified = value;
  283. }
  284. }
  285. return n_items;
  286. };
  287. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  288. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  289. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  290. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  291. // we only allow retrying once for HEAD requests
  292. // this is for the use case of using running offline (no internet), retrying can be annoying
  293. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
  294. if (!was_perform_successful) {
  295. head_request_ok = false;
  296. }
  297. long http_code = 0;
  298. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  299. if (http_code == 200) {
  300. head_request_ok = true;
  301. } else {
  302. LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  303. head_request_ok = false;
  304. }
  305. }
  306. // if head_request_ok is false, we don't have the etag or last-modified headers
  307. // we leave should_download as-is, which is true if the file does not exist
  308. if (head_request_ok) {
  309. // check if ETag or Last-Modified headers are different
  310. // if it is, we need to download the file again
  311. if (!etag.empty() && etag != headers.etag) {
  312. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  313. should_download = true;
  314. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  315. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  316. should_download = true;
  317. }
  318. }
  319. if (should_download) {
  320. std::string path_temporary = path + ".downloadInProgress";
  321. if (file_exists) {
  322. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  323. if (remove(path.c_str()) != 0) {
  324. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  325. return false;
  326. }
  327. }
  328. // Set the output file
  329. struct FILE_deleter {
  330. void operator()(FILE * f) const {
  331. fclose(f);
  332. }
  333. };
  334. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  335. if (!outfile) {
  336. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  337. return false;
  338. }
  339. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  340. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  341. return fwrite(data, size, nmemb, (FILE *)fd);
  342. };
  343. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  344. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  345. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  346. // display download progress
  347. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  348. // helper function to hide password in URL
  349. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  350. std::size_t protocol_pos = url.find("://");
  351. if (protocol_pos == std::string::npos) {
  352. return url; // Malformed URL
  353. }
  354. std::size_t at_pos = url.find('@', protocol_pos + 3);
  355. if (at_pos == std::string::npos) {
  356. return url; // No password in URL
  357. }
  358. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  359. };
  360. // start the download
  361. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  362. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  363. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
  364. if (!was_perform_successful) {
  365. return false;
  366. }
  367. long http_code = 0;
  368. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  369. if (http_code < 200 || http_code >= 400) {
  370. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  371. return false;
  372. }
  373. // Causes file to be closed explicitly here before we rename it.
  374. outfile.reset();
  375. // Write the updated JSON metadata file.
  376. metadata.update({
  377. {"url", url},
  378. {"etag", headers.etag},
  379. {"lastModified", headers.last_modified}
  380. });
  381. write_file(metadata_path, metadata.dump(4));
  382. LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  383. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  384. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  385. return false;
  386. }
  387. } else {
  388. LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
  389. }
  390. return true;
  391. }
  392. // download multiple files from remote URLs to local paths
  393. // the input is a vector of pairs <url, path>
  394. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
  395. // Prepare download in parallel
  396. std::vector<std::future<bool>> futures_download;
  397. for (auto const & item : urls) {
  398. futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
  399. return common_download_file_single(it.first, it.second, bearer_token);
  400. }, item));
  401. }
  402. // Wait for all downloads to complete
  403. for (auto & f : futures_download) {
  404. if (!f.get()) {
  405. return false;
  406. }
  407. }
  408. return true;
  409. }
  410. static bool common_download_model(
  411. const common_params_model & model,
  412. const std::string & bearer_token) {
  413. // Basic validation of the model.url
  414. if (model.url.empty()) {
  415. LOG_ERR("%s: invalid model url\n", __func__);
  416. return false;
  417. }
  418. if (!common_download_file_single(model.url, model.path, bearer_token)) {
  419. return false;
  420. }
  421. // check for additional GGUFs split to download
  422. int n_split = 0;
  423. {
  424. struct gguf_init_params gguf_params = {
  425. /*.no_alloc = */ true,
  426. /*.ctx = */ NULL,
  427. };
  428. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  429. if (!ctx_gguf) {
  430. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  431. return false;
  432. }
  433. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  434. if (key_n_split >= 0) {
  435. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  436. }
  437. gguf_free(ctx_gguf);
  438. }
  439. if (n_split > 1) {
  440. char split_prefix[PATH_MAX] = {0};
  441. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  442. // Verify the first split file format
  443. // and extract split URL and PATH prefixes
  444. {
  445. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  446. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  447. return false;
  448. }
  449. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  450. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  451. return false;
  452. }
  453. }
  454. std::vector<std::pair<std::string, std::string>> urls;
  455. for (int idx = 1; idx < n_split; idx++) {
  456. char split_path[PATH_MAX] = {0};
  457. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  458. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  459. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  460. if (std::string(split_path) == model.path) {
  461. continue; // skip the already downloaded file
  462. }
  463. urls.push_back({split_url, split_path});
  464. }
  465. // Download in parallel
  466. common_download_file_multiple(urls, bearer_token);
  467. }
  468. return true;
  469. }
  470. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
  471. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  472. curl_slist_ptr http_headers;
  473. std::vector<char> res_buffer;
  474. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  475. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  476. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  477. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  478. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  479. auto data_vec = static_cast<std::vector<char> *>(data);
  480. data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
  481. return size * nmemb;
  482. };
  483. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  484. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
  485. #if defined(_WIN32)
  486. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  487. #endif
  488. if (params.timeout > 0) {
  489. curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
  490. }
  491. if (params.max_size > 0) {
  492. curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
  493. }
  494. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  495. for (const auto & header : params.headers) {
  496. http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
  497. }
  498. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  499. CURLcode res = curl_easy_perform(curl.get());
  500. if (res != CURLE_OK) {
  501. std::string error_msg = curl_easy_strerror(res);
  502. throw std::runtime_error("error: cannot make GET request: " + error_msg);
  503. }
  504. long res_code;
  505. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  506. return { res_code, std::move(res_buffer) };
  507. }
  508. /**
  509. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  510. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  511. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  512. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  513. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  514. *
  515. * Return pair of <repo, file> (with "repo" already having tag removed)
  516. *
  517. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  518. */
  519. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
  520. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  521. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  522. std::string hf_repo = parts[0];
  523. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  524. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  525. }
  526. std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
  527. // headers
  528. std::vector<std::string> headers;
  529. headers.push_back("Accept: application/json");
  530. if (!bearer_token.empty()) {
  531. headers.push_back("Authorization: Bearer " + bearer_token);
  532. }
  533. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  534. // User-Agent header is already set in common_remote_get_content, no need to set it here
  535. // we use "=" to avoid clashing with other component, while still being allowed on windows
  536. std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
  537. string_replace_all(cached_response_fname, "/", "_");
  538. std::string cached_response_path = fs_get_cache_file(cached_response_fname);
  539. // make the request
  540. common_remote_params params;
  541. params.headers = headers;
  542. long res_code = 0;
  543. std::string res_str;
  544. bool use_cache = false;
  545. try {
  546. auto res = common_remote_get_content(url, params);
  547. res_code = res.first;
  548. res_str = std::string(res.second.data(), res.second.size());
  549. } catch (const std::exception & e) {
  550. LOG_WRN("error: failed to get manifest: %s\n", e.what());
  551. LOG_WRN("try reading from cache\n");
  552. // try to read from cache
  553. try {
  554. res_str = read_file(cached_response_path);
  555. res_code = 200;
  556. use_cache = true;
  557. } catch (const std::exception & e) {
  558. throw std::runtime_error("error: failed to get manifest (check your internet connection)");
  559. }
  560. }
  561. std::string ggufFile;
  562. std::string mmprojFile;
  563. if (res_code == 200 || res_code == 304) {
  564. // extract ggufFile.rfilename in json, using regex
  565. {
  566. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  567. std::smatch match;
  568. if (std::regex_search(res_str, match, pattern)) {
  569. ggufFile = match[1].str();
  570. }
  571. }
  572. // extract mmprojFile.rfilename in json, using regex
  573. {
  574. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  575. std::smatch match;
  576. if (std::regex_search(res_str, match, pattern)) {
  577. mmprojFile = match[1].str();
  578. }
  579. }
  580. if (!use_cache) {
  581. // if not using cached response, update the cache file
  582. write_file(cached_response_path, res_str);
  583. }
  584. } else if (res_code == 401) {
  585. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  586. } else {
  587. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  588. }
  589. // check response
  590. if (ggufFile.empty()) {
  591. throw std::runtime_error("error: model does not have ggufFile");
  592. }
  593. return { hf_repo, ggufFile, mmprojFile };
  594. }
  595. #else
  596. bool common_has_curl() {
  597. return false;
  598. }
  599. static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
  600. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  601. return false;
  602. }
  603. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
  604. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  605. return false;
  606. }
  607. static bool common_download_model(
  608. const common_params_model &,
  609. const std::string &) {
  610. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  611. return false;
  612. }
  613. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
  614. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  615. return {};
  616. }
  617. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
  618. if (!url.empty()) {
  619. throw std::runtime_error("error: built without CURL, cannot download model from the internet");
  620. }
  621. return {};
  622. }
  623. #endif // LLAMA_USE_CURL
  624. //
  625. // utils
  626. //
  627. struct handle_model_result {
  628. bool found_mmproj = false;
  629. common_params_model mmproj;
  630. };
  631. static handle_model_result common_params_handle_model(
  632. struct common_params_model & model,
  633. const std::string & bearer_token,
  634. const std::string & model_path_default) {
  635. handle_model_result result;
  636. // handle pre-fill default model path and url based on hf_repo and hf_file
  637. {
  638. if (!model.hf_repo.empty()) {
  639. // short-hand to avoid specifying --hf-file -> default it to --model
  640. if (model.hf_file.empty()) {
  641. if (model.path.empty()) {
  642. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
  643. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  644. exit(1); // built without CURL, error message already printed
  645. }
  646. model.hf_repo = auto_detected.repo;
  647. model.hf_file = auto_detected.ggufFile;
  648. if (!auto_detected.mmprojFile.empty()) {
  649. result.found_mmproj = true;
  650. result.mmproj.hf_repo = model.hf_repo;
  651. result.mmproj.hf_file = auto_detected.mmprojFile;
  652. }
  653. } else {
  654. model.hf_file = model.path;
  655. }
  656. }
  657. std::string model_endpoint = get_model_endpoint();
  658. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  659. // make sure model path is present (for caching purposes)
  660. if (model.path.empty()) {
  661. // this is to avoid different repo having same file name, or same file name in different subdirs
  662. std::string filename = model.hf_repo + "_" + model.hf_file;
  663. // to make sure we don't have any slashes in the filename
  664. string_replace_all(filename, "/", "_");
  665. model.path = fs_get_cache_file(filename);
  666. }
  667. } else if (!model.url.empty()) {
  668. if (model.path.empty()) {
  669. auto f = string_split<std::string>(model.url, '#').front();
  670. f = string_split<std::string>(f, '?').front();
  671. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  672. }
  673. } else if (model.path.empty()) {
  674. model.path = model_path_default;
  675. }
  676. }
  677. // then, download it if needed
  678. if (!model.url.empty()) {
  679. bool ok = common_download_model(model, bearer_token);
  680. if (!ok) {
  681. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  682. exit(1);
  683. }
  684. }
  685. return result;
  686. }
  687. const std::vector<ggml_type> kv_cache_types = {
  688. GGML_TYPE_F32,
  689. GGML_TYPE_F16,
  690. GGML_TYPE_BF16,
  691. GGML_TYPE_Q8_0,
  692. GGML_TYPE_Q4_0,
  693. GGML_TYPE_Q4_1,
  694. GGML_TYPE_IQ4_NL,
  695. GGML_TYPE_Q5_0,
  696. GGML_TYPE_Q5_1,
  697. };
  698. static ggml_type kv_cache_type_from_str(const std::string & s) {
  699. for (const auto & type : kv_cache_types) {
  700. if (ggml_type_name(type) == s) {
  701. return type;
  702. }
  703. }
  704. throw std::runtime_error("Unsupported cache type: " + s);
  705. }
  706. static std::string get_all_kv_cache_types() {
  707. std::ostringstream msg;
  708. for (const auto & type : kv_cache_types) {
  709. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  710. }
  711. return msg.str();
  712. }
  713. //
  714. // CLI argument parsing functions
  715. //
  716. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  717. std::string arg;
  718. const std::string arg_prefix = "--";
  719. common_params & params = ctx_arg.params;
  720. std::unordered_map<std::string, common_arg *> arg_to_options;
  721. for (auto & opt : ctx_arg.options) {
  722. for (const auto & arg : opt.args) {
  723. arg_to_options[arg] = &opt;
  724. }
  725. }
  726. // handle environment variables
  727. for (auto & opt : ctx_arg.options) {
  728. std::string value;
  729. if (opt.get_value_from_env(value)) {
  730. try {
  731. if (opt.handler_void && (value == "1" || value == "true")) {
  732. opt.handler_void(params);
  733. }
  734. if (opt.handler_int) {
  735. opt.handler_int(params, std::stoi(value));
  736. }
  737. if (opt.handler_string) {
  738. opt.handler_string(params, value);
  739. continue;
  740. }
  741. } catch (std::exception & e) {
  742. throw std::invalid_argument(string_format(
  743. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  744. }
  745. }
  746. }
  747. // handle command line arguments
  748. auto check_arg = [&](int i) {
  749. if (i+1 >= argc) {
  750. throw std::invalid_argument("expected value for argument");
  751. }
  752. };
  753. for (int i = 1; i < argc; i++) {
  754. const std::string arg_prefix = "--";
  755. std::string arg = argv[i];
  756. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  757. std::replace(arg.begin(), arg.end(), '_', '-');
  758. }
  759. if (arg_to_options.find(arg) == arg_to_options.end()) {
  760. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  761. }
  762. auto opt = *arg_to_options[arg];
  763. if (opt.has_value_from_env()) {
  764. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  765. }
  766. try {
  767. if (opt.handler_void) {
  768. opt.handler_void(params);
  769. continue;
  770. }
  771. // arg with single value
  772. check_arg(i);
  773. std::string val = argv[++i];
  774. if (opt.handler_int) {
  775. opt.handler_int(params, std::stoi(val));
  776. continue;
  777. }
  778. if (opt.handler_string) {
  779. opt.handler_string(params, val);
  780. continue;
  781. }
  782. // arg with 2 values
  783. check_arg(i);
  784. std::string val2 = argv[++i];
  785. if (opt.handler_str_str) {
  786. opt.handler_str_str(params, val, val2);
  787. continue;
  788. }
  789. } catch (std::exception & e) {
  790. throw std::invalid_argument(string_format(
  791. "error while handling argument \"%s\": %s\n\n"
  792. "usage:\n%s\n\nto show complete usage, run with -h",
  793. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  794. }
  795. }
  796. postprocess_cpu_params(params.cpuparams, nullptr);
  797. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  798. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  799. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  800. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  801. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  802. }
  803. // handle model and download
  804. {
  805. auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
  806. if (params.no_mmproj) {
  807. params.mmproj = {};
  808. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  809. // optionally, handle mmproj model when -hf is specified
  810. params.mmproj = res.mmproj;
  811. }
  812. // only download mmproj if the current example is using it
  813. for (auto & ex : mmproj_examples) {
  814. if (ctx_arg.ex == ex) {
  815. common_params_handle_model(params.mmproj, params.hf_token, "");
  816. break;
  817. }
  818. }
  819. common_params_handle_model(params.speculative.model, params.hf_token, "");
  820. common_params_handle_model(params.vocoder.model, params.hf_token, "");
  821. }
  822. if (params.escape) {
  823. string_process_escapes(params.prompt);
  824. string_process_escapes(params.input_prefix);
  825. string_process_escapes(params.input_suffix);
  826. for (auto & antiprompt : params.antiprompt) {
  827. string_process_escapes(antiprompt);
  828. }
  829. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  830. string_process_escapes(seq_breaker);
  831. }
  832. }
  833. if (!params.kv_overrides.empty()) {
  834. params.kv_overrides.emplace_back();
  835. params.kv_overrides.back().key[0] = 0;
  836. }
  837. if (!params.tensor_buft_overrides.empty()) {
  838. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  839. }
  840. if (params.reranking && params.embedding) {
  841. throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
  842. }
  843. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  844. throw std::runtime_error(string_format(
  845. "error: the supplied chat template is not supported: %s%s\n",
  846. params.chat_template.c_str(),
  847. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  848. ));
  849. }
  850. return true;
  851. }
  852. static void common_params_print_usage(common_params_context & ctx_arg) {
  853. auto print_options = [](std::vector<common_arg *> & options) {
  854. for (common_arg * opt : options) {
  855. printf("%s", opt->to_string().c_str());
  856. }
  857. };
  858. std::vector<common_arg *> common_options;
  859. std::vector<common_arg *> sparam_options;
  860. std::vector<common_arg *> specific_options;
  861. for (auto & opt : ctx_arg.options) {
  862. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  863. if (opt.is_sparam) {
  864. sparam_options.push_back(&opt);
  865. } else if (opt.in_example(ctx_arg.ex)) {
  866. specific_options.push_back(&opt);
  867. } else {
  868. common_options.push_back(&opt);
  869. }
  870. }
  871. printf("----- common params -----\n\n");
  872. print_options(common_options);
  873. printf("\n\n----- sampling params -----\n\n");
  874. print_options(sparam_options);
  875. // TODO: maybe convert enum llama_example to string
  876. printf("\n\n----- example-specific params -----\n\n");
  877. print_options(specific_options);
  878. }
  879. static void common_params_print_completion(common_params_context & ctx_arg) {
  880. std::vector<common_arg *> common_options;
  881. std::vector<common_arg *> sparam_options;
  882. std::vector<common_arg *> specific_options;
  883. for (auto & opt : ctx_arg.options) {
  884. if (opt.is_sparam) {
  885. sparam_options.push_back(&opt);
  886. } else if (opt.in_example(ctx_arg.ex)) {
  887. specific_options.push_back(&opt);
  888. } else {
  889. common_options.push_back(&opt);
  890. }
  891. }
  892. printf("_llama_completions() {\n");
  893. printf(" local cur prev opts\n");
  894. printf(" COMPREPLY=()\n");
  895. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  896. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  897. printf(" opts=\"");
  898. auto print_options = [](const std::vector<common_arg *> & options) {
  899. for (const common_arg * opt : options) {
  900. for (const char * arg : opt->args) {
  901. printf("%s ", arg);
  902. }
  903. }
  904. };
  905. print_options(common_options);
  906. print_options(sparam_options);
  907. print_options(specific_options);
  908. printf("\"\n\n");
  909. printf(" case \"$prev\" in\n");
  910. printf(" --model)\n");
  911. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  912. printf(" return 0\n");
  913. printf(" ;;\n");
  914. printf(" --grammar-file)\n");
  915. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  916. printf(" return 0\n");
  917. printf(" ;;\n");
  918. printf(" --chat-template-file)\n");
  919. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  920. printf(" return 0\n");
  921. printf(" ;;\n");
  922. printf(" *)\n");
  923. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  924. printf(" return 0\n");
  925. printf(" ;;\n");
  926. printf(" esac\n");
  927. printf("}\n\n");
  928. std::set<std::string> executables = {
  929. "llama-batched",
  930. "llama-batched-bench",
  931. "llama-bench",
  932. "llama-cli",
  933. "llama-convert-llama2c-to-ggml",
  934. "llama-cvector-generator",
  935. "llama-embedding",
  936. "llama-eval-callback",
  937. "llama-export-lora",
  938. "llama-gen-docs",
  939. "llama-gguf",
  940. "llama-gguf-hash",
  941. "llama-gguf-split",
  942. "llama-gritlm",
  943. "llama-imatrix",
  944. "llama-infill",
  945. "llama-mtmd-cli",
  946. "llama-llava-clip-quantize-cli",
  947. "llama-lookahead",
  948. "llama-lookup",
  949. "llama-lookup-create",
  950. "llama-lookup-merge",
  951. "llama-lookup-stats",
  952. "llama-parallel",
  953. "llama-passkey",
  954. "llama-perplexity",
  955. "llama-q8dot",
  956. "llama-quantize",
  957. "llama-qwen2vl-cli",
  958. "llama-retrieval",
  959. "llama-run",
  960. "llama-save-load-state",
  961. "llama-server",
  962. "llama-simple",
  963. "llama-simple-chat",
  964. "llama-speculative",
  965. "llama-speculative-simple",
  966. "llama-tokenize",
  967. "llama-tts",
  968. "llama-vdot"
  969. };
  970. for (const auto& exe : executables) {
  971. printf("complete -F _llama_completions %s\n", exe.c_str());
  972. }
  973. }
  974. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  975. std::vector<ggml_backend_dev_t> devices;
  976. auto dev_names = string_split<std::string>(value, ',');
  977. if (dev_names.empty()) {
  978. throw std::invalid_argument("no devices specified");
  979. }
  980. if (dev_names.size() == 1 && dev_names[0] == "none") {
  981. devices.push_back(nullptr);
  982. } else {
  983. for (const auto & device : dev_names) {
  984. auto * dev = ggml_backend_dev_by_name(device.c_str());
  985. if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
  986. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  987. }
  988. devices.push_back(dev);
  989. }
  990. devices.push_back(nullptr);
  991. }
  992. return devices;
  993. }
  994. static void add_rpc_devices(std::string servers) {
  995. auto rpc_servers = string_split<std::string>(servers, ',');
  996. if (rpc_servers.empty()) {
  997. throw std::invalid_argument("no RPC servers specified");
  998. }
  999. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  1000. if (!rpc_reg) {
  1001. throw std::invalid_argument("failed to find RPC backend");
  1002. }
  1003. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  1004. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  1005. if (!ggml_backend_rpc_add_device_fn) {
  1006. throw std::invalid_argument("failed to find RPC device add function");
  1007. }
  1008. for (const auto & server : rpc_servers) {
  1009. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  1010. if (dev) {
  1011. ggml_backend_device_register(dev);
  1012. } else {
  1013. throw std::invalid_argument("failed to register RPC device");
  1014. }
  1015. }
  1016. }
  1017. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1018. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  1019. const common_params params_org = ctx_arg.params; // the example can modify the default params
  1020. try {
  1021. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  1022. ctx_arg.params = params_org;
  1023. return false;
  1024. }
  1025. if (ctx_arg.params.usage) {
  1026. common_params_print_usage(ctx_arg);
  1027. if (ctx_arg.print_usage) {
  1028. ctx_arg.print_usage(argc, argv);
  1029. }
  1030. exit(0);
  1031. }
  1032. if (ctx_arg.params.completion) {
  1033. common_params_print_completion(ctx_arg);
  1034. exit(0);
  1035. }
  1036. } catch (const std::invalid_argument & ex) {
  1037. fprintf(stderr, "%s\n", ex.what());
  1038. ctx_arg.params = params_org;
  1039. return false;
  1040. } catch (std::exception & ex) {
  1041. fprintf(stderr, "%s\n", ex.what());
  1042. exit(1); // for other exceptions, we exit with status code 1
  1043. }
  1044. return true;
  1045. }
  1046. static std::string list_builtin_chat_templates() {
  1047. std::vector<const char *> supported_tmpl;
  1048. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  1049. supported_tmpl.resize(res);
  1050. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  1051. std::ostringstream msg;
  1052. for (auto & tmpl : supported_tmpl) {
  1053. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  1054. }
  1055. return msg.str();
  1056. }
  1057. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1058. // load dynamic backends
  1059. ggml_backend_load_all();
  1060. common_params_context ctx_arg(params);
  1061. ctx_arg.print_usage = print_usage;
  1062. ctx_arg.ex = ex;
  1063. std::string sampler_type_chars;
  1064. std::string sampler_type_names;
  1065. for (const auto & sampler : params.sampling.samplers) {
  1066. sampler_type_chars += common_sampler_type_to_chr(sampler);
  1067. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  1068. }
  1069. sampler_type_names.pop_back();
  1070. /**
  1071. * filter options by example
  1072. * rules:
  1073. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  1074. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  1075. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  1076. */
  1077. auto add_opt = [&](common_arg arg) {
  1078. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  1079. ctx_arg.options.push_back(std::move(arg));
  1080. }
  1081. };
  1082. add_opt(common_arg(
  1083. {"-h", "--help", "--usage"},
  1084. "print usage and exit",
  1085. [](common_params & params) {
  1086. params.usage = true;
  1087. }
  1088. ));
  1089. add_opt(common_arg(
  1090. {"--version"},
  1091. "show version and build info",
  1092. [](common_params &) {
  1093. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1094. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1095. exit(0);
  1096. }
  1097. ));
  1098. add_opt(common_arg(
  1099. {"--completion-bash"},
  1100. "print source-able bash completion script for llama.cpp",
  1101. [](common_params & params) {
  1102. params.completion = true;
  1103. }
  1104. ));
  1105. add_opt(common_arg(
  1106. {"--verbose-prompt"},
  1107. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  1108. [](common_params & params) {
  1109. params.verbose_prompt = true;
  1110. }
  1111. ));
  1112. add_opt(common_arg(
  1113. {"--no-display-prompt"},
  1114. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1115. [](common_params & params) {
  1116. params.display_prompt = false;
  1117. }
  1118. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1119. add_opt(common_arg(
  1120. {"-co", "--color"},
  1121. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1122. [](common_params & params) {
  1123. params.use_color = true;
  1124. }
  1125. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1126. add_opt(common_arg(
  1127. {"-t", "--threads"}, "N",
  1128. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1129. [](common_params & params, int value) {
  1130. params.cpuparams.n_threads = value;
  1131. if (params.cpuparams.n_threads <= 0) {
  1132. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1133. }
  1134. }
  1135. ).set_env("LLAMA_ARG_THREADS"));
  1136. add_opt(common_arg(
  1137. {"-tb", "--threads-batch"}, "N",
  1138. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1139. [](common_params & params, int value) {
  1140. params.cpuparams_batch.n_threads = value;
  1141. if (params.cpuparams_batch.n_threads <= 0) {
  1142. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1143. }
  1144. }
  1145. ));
  1146. add_opt(common_arg(
  1147. {"-C", "--cpu-mask"}, "M",
  1148. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1149. [](common_params & params, const std::string & mask) {
  1150. params.cpuparams.mask_valid = true;
  1151. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1152. throw std::invalid_argument("invalid cpumask");
  1153. }
  1154. }
  1155. ));
  1156. add_opt(common_arg(
  1157. {"-Cr", "--cpu-range"}, "lo-hi",
  1158. "range of CPUs for affinity. Complements --cpu-mask",
  1159. [](common_params & params, const std::string & range) {
  1160. params.cpuparams.mask_valid = true;
  1161. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1162. throw std::invalid_argument("invalid range");
  1163. }
  1164. }
  1165. ));
  1166. add_opt(common_arg(
  1167. {"--cpu-strict"}, "<0|1>",
  1168. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1169. [](common_params & params, const std::string & value) {
  1170. params.cpuparams.strict_cpu = std::stoul(value);
  1171. }
  1172. ));
  1173. add_opt(common_arg(
  1174. {"--prio"}, "N",
  1175. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
  1176. [](common_params & params, int prio) {
  1177. if (prio < 0 || prio > 3) {
  1178. throw std::invalid_argument("invalid value");
  1179. }
  1180. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1181. }
  1182. ));
  1183. add_opt(common_arg(
  1184. {"--poll"}, "<0...100>",
  1185. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1186. [](common_params & params, const std::string & value) {
  1187. params.cpuparams.poll = std::stoul(value);
  1188. }
  1189. ));
  1190. add_opt(common_arg(
  1191. {"-Cb", "--cpu-mask-batch"}, "M",
  1192. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1193. [](common_params & params, const std::string & mask) {
  1194. params.cpuparams_batch.mask_valid = true;
  1195. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1196. throw std::invalid_argument("invalid cpumask");
  1197. }
  1198. }
  1199. ));
  1200. add_opt(common_arg(
  1201. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1202. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1203. [](common_params & params, const std::string & range) {
  1204. params.cpuparams_batch.mask_valid = true;
  1205. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1206. throw std::invalid_argument("invalid range");
  1207. }
  1208. }
  1209. ));
  1210. add_opt(common_arg(
  1211. {"--cpu-strict-batch"}, "<0|1>",
  1212. "use strict CPU placement (default: same as --cpu-strict)",
  1213. [](common_params & params, int value) {
  1214. params.cpuparams_batch.strict_cpu = value;
  1215. }
  1216. ));
  1217. add_opt(common_arg(
  1218. {"--prio-batch"}, "N",
  1219. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1220. [](common_params & params, int prio) {
  1221. if (prio < 0 || prio > 3) {
  1222. throw std::invalid_argument("invalid value");
  1223. }
  1224. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1225. }
  1226. ));
  1227. add_opt(common_arg(
  1228. {"--poll-batch"}, "<0|1>",
  1229. "use polling to wait for work (default: same as --poll)",
  1230. [](common_params & params, int value) {
  1231. params.cpuparams_batch.poll = value;
  1232. }
  1233. ));
  1234. add_opt(common_arg(
  1235. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1236. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1237. [](common_params & params, const std::string & value) {
  1238. params.lookup_cache_static = value;
  1239. }
  1240. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1241. add_opt(common_arg(
  1242. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1243. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1244. [](common_params & params, const std::string & value) {
  1245. params.lookup_cache_dynamic = value;
  1246. }
  1247. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1248. add_opt(common_arg(
  1249. {"-c", "--ctx-size"}, "N",
  1250. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1251. [](common_params & params, int value) {
  1252. params.n_ctx = value;
  1253. }
  1254. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1255. add_opt(common_arg(
  1256. {"-n", "--predict", "--n-predict"}, "N",
  1257. string_format(
  1258. ex == LLAMA_EXAMPLE_MAIN
  1259. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1260. : "number of tokens to predict (default: %d, -1 = infinity)",
  1261. params.n_predict),
  1262. [](common_params & params, int value) {
  1263. params.n_predict = value;
  1264. }
  1265. ).set_env("LLAMA_ARG_N_PREDICT"));
  1266. add_opt(common_arg(
  1267. {"-b", "--batch-size"}, "N",
  1268. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1269. [](common_params & params, int value) {
  1270. params.n_batch = value;
  1271. }
  1272. ).set_env("LLAMA_ARG_BATCH"));
  1273. add_opt(common_arg(
  1274. {"-ub", "--ubatch-size"}, "N",
  1275. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1276. [](common_params & params, int value) {
  1277. params.n_ubatch = value;
  1278. }
  1279. ).set_env("LLAMA_ARG_UBATCH"));
  1280. add_opt(common_arg(
  1281. {"--keep"}, "N",
  1282. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1283. [](common_params & params, int value) {
  1284. params.n_keep = value;
  1285. }
  1286. ));
  1287. add_opt(common_arg(
  1288. {"--swa-full"},
  1289. string_format("use full-size SWA cache (default: %s)\n"
  1290. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
  1291. [](common_params & params) {
  1292. params.swa_full = true;
  1293. }
  1294. ).set_env("LLAMA_ARG_SWA_FULL"));
  1295. add_opt(common_arg(
  1296. {"--no-context-shift"},
  1297. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1298. [](common_params & params) {
  1299. params.ctx_shift = false;
  1300. }
  1301. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1302. add_opt(common_arg(
  1303. {"--chunks"}, "N",
  1304. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1305. [](common_params & params, int value) {
  1306. params.n_chunks = value;
  1307. }
  1308. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1309. add_opt(common_arg(
  1310. {"-fa", "--flash-attn"},
  1311. string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
  1312. [](common_params & params) {
  1313. params.flash_attn = true;
  1314. }
  1315. ).set_env("LLAMA_ARG_FLASH_ATTN"));
  1316. add_opt(common_arg(
  1317. {"-p", "--prompt"}, "PROMPT",
  1318. "prompt to start generation with; for system message, use -sys",
  1319. [](common_params & params, const std::string & value) {
  1320. params.prompt = value;
  1321. }
  1322. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1323. add_opt(common_arg(
  1324. {"-sys", "--system-prompt"}, "PROMPT",
  1325. "system prompt to use with model (if applicable, depending on chat template)",
  1326. [](common_params & params, const std::string & value) {
  1327. params.system_prompt = value;
  1328. }
  1329. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1330. add_opt(common_arg(
  1331. {"--no-perf"},
  1332. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1333. [](common_params & params) {
  1334. params.no_perf = true;
  1335. params.sampling.no_perf = true;
  1336. }
  1337. ).set_env("LLAMA_ARG_NO_PERF"));
  1338. add_opt(common_arg(
  1339. {"-f", "--file"}, "FNAME",
  1340. "a file containing the prompt (default: none)",
  1341. [](common_params & params, const std::string & value) {
  1342. params.prompt = read_file(value);
  1343. // store the external file name in params
  1344. params.prompt_file = value;
  1345. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1346. params.prompt.pop_back();
  1347. }
  1348. }
  1349. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1350. add_opt(common_arg(
  1351. {"-sysf", "--system-prompt-file"}, "FNAME",
  1352. "a file containing the system prompt (default: none)",
  1353. [](common_params & params, const std::string & value) {
  1354. params.system_prompt = read_file(value);
  1355. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1356. params.system_prompt.pop_back();
  1357. }
  1358. }
  1359. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1360. add_opt(common_arg(
  1361. {"--in-file"}, "FNAME",
  1362. "an input file (repeat to specify multiple files)",
  1363. [](common_params & params, const std::string & value) {
  1364. std::ifstream file(value);
  1365. if (!file) {
  1366. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1367. }
  1368. params.in_files.push_back(value);
  1369. }
  1370. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1371. add_opt(common_arg(
  1372. {"-bf", "--binary-file"}, "FNAME",
  1373. "binary file containing the prompt (default: none)",
  1374. [](common_params & params, const std::string & value) {
  1375. std::ifstream file(value, std::ios::binary);
  1376. if (!file) {
  1377. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1378. }
  1379. // store the external file name in params
  1380. params.prompt_file = value;
  1381. std::ostringstream ss;
  1382. ss << file.rdbuf();
  1383. params.prompt = ss.str();
  1384. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1385. }
  1386. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1387. add_opt(common_arg(
  1388. {"-e", "--escape"},
  1389. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1390. [](common_params & params) {
  1391. params.escape = true;
  1392. }
  1393. ));
  1394. add_opt(common_arg(
  1395. {"--no-escape"},
  1396. "do not process escape sequences",
  1397. [](common_params & params) {
  1398. params.escape = false;
  1399. }
  1400. ));
  1401. add_opt(common_arg(
  1402. {"-ptc", "--print-token-count"}, "N",
  1403. string_format("print token count every N tokens (default: %d)", params.n_print),
  1404. [](common_params & params, int value) {
  1405. params.n_print = value;
  1406. }
  1407. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1408. add_opt(common_arg(
  1409. {"--prompt-cache"}, "FNAME",
  1410. "file to cache prompt state for faster startup (default: none)",
  1411. [](common_params & params, const std::string & value) {
  1412. params.path_prompt_cache = value;
  1413. }
  1414. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1415. add_opt(common_arg(
  1416. {"--prompt-cache-all"},
  1417. "if specified, saves user input and generations to cache as well\n",
  1418. [](common_params & params) {
  1419. params.prompt_cache_all = true;
  1420. }
  1421. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1422. add_opt(common_arg(
  1423. {"--prompt-cache-ro"},
  1424. "if specified, uses the prompt cache but does not update it",
  1425. [](common_params & params) {
  1426. params.prompt_cache_ro = true;
  1427. }
  1428. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1429. add_opt(common_arg(
  1430. {"-r", "--reverse-prompt"}, "PROMPT",
  1431. "halt generation at PROMPT, return control in interactive mode\n",
  1432. [](common_params & params, const std::string & value) {
  1433. params.antiprompt.emplace_back(value);
  1434. }
  1435. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1436. add_opt(common_arg(
  1437. {"-sp", "--special"},
  1438. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1439. [](common_params & params) {
  1440. params.special = true;
  1441. }
  1442. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1443. add_opt(common_arg(
  1444. {"-cnv", "--conversation"},
  1445. "run in conversation mode:\n"
  1446. "- does not print special tokens and suffix/prefix\n"
  1447. "- interactive mode is also enabled\n"
  1448. "(default: auto enabled if chat template is available)",
  1449. [](common_params & params) {
  1450. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1451. }
  1452. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1453. add_opt(common_arg(
  1454. {"-no-cnv", "--no-conversation"},
  1455. "force disable conversation mode (default: false)",
  1456. [](common_params & params) {
  1457. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1458. }
  1459. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1460. add_opt(common_arg(
  1461. {"-st", "--single-turn"},
  1462. "run conversation for a single turn only, then exit when done\n"
  1463. "will not be interactive if first turn is predefined with --prompt\n"
  1464. "(default: false)",
  1465. [](common_params & params) {
  1466. params.single_turn = true;
  1467. }
  1468. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1469. add_opt(common_arg(
  1470. {"-i", "--interactive"},
  1471. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1472. [](common_params & params) {
  1473. params.interactive = true;
  1474. }
  1475. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1476. add_opt(common_arg(
  1477. {"-if", "--interactive-first"},
  1478. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1479. [](common_params & params) {
  1480. params.interactive_first = true;
  1481. }
  1482. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1483. add_opt(common_arg(
  1484. {"-mli", "--multiline-input"},
  1485. "allows you to write or paste multiple lines without ending each in '\\'",
  1486. [](common_params & params) {
  1487. params.multiline_input = true;
  1488. }
  1489. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1490. add_opt(common_arg(
  1491. {"--in-prefix-bos"},
  1492. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1493. [](common_params & params) {
  1494. params.input_prefix_bos = true;
  1495. params.enable_chat_template = false;
  1496. }
  1497. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1498. add_opt(common_arg(
  1499. {"--in-prefix"}, "STRING",
  1500. "string to prefix user inputs with (default: empty)",
  1501. [](common_params & params, const std::string & value) {
  1502. params.input_prefix = value;
  1503. params.enable_chat_template = false;
  1504. }
  1505. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1506. add_opt(common_arg(
  1507. {"--in-suffix"}, "STRING",
  1508. "string to suffix after user inputs with (default: empty)",
  1509. [](common_params & params, const std::string & value) {
  1510. params.input_suffix = value;
  1511. params.enable_chat_template = false;
  1512. }
  1513. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1514. add_opt(common_arg(
  1515. {"--no-warmup"},
  1516. "skip warming up the model with an empty run",
  1517. [](common_params & params) {
  1518. params.warmup = false;
  1519. }
  1520. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL}));
  1521. add_opt(common_arg(
  1522. {"--spm-infill"},
  1523. string_format(
  1524. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1525. params.spm_infill ? "enabled" : "disabled"
  1526. ),
  1527. [](common_params & params) {
  1528. params.spm_infill = true;
  1529. }
  1530. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  1531. add_opt(common_arg(
  1532. {"--samplers"}, "SAMPLERS",
  1533. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1534. [](common_params & params, const std::string & value) {
  1535. const auto sampler_names = string_split<std::string>(value, ';');
  1536. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1537. }
  1538. ).set_sparam());
  1539. add_opt(common_arg(
  1540. {"-s", "--seed"}, "SEED",
  1541. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1542. [](common_params & params, const std::string & value) {
  1543. params.sampling.seed = std::stoul(value);
  1544. }
  1545. ).set_sparam());
  1546. add_opt(common_arg(
  1547. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1548. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1549. [](common_params & params, const std::string & value) {
  1550. params.sampling.samplers = common_sampler_types_from_chars(value);
  1551. }
  1552. ).set_sparam());
  1553. add_opt(common_arg(
  1554. {"--ignore-eos"},
  1555. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1556. [](common_params & params) {
  1557. params.sampling.ignore_eos = true;
  1558. }
  1559. ).set_sparam());
  1560. add_opt(common_arg(
  1561. {"--temp"}, "N",
  1562. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1563. [](common_params & params, const std::string & value) {
  1564. params.sampling.temp = std::stof(value);
  1565. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1566. }
  1567. ).set_sparam());
  1568. add_opt(common_arg(
  1569. {"--top-k"}, "N",
  1570. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1571. [](common_params & params, int value) {
  1572. params.sampling.top_k = value;
  1573. }
  1574. ).set_sparam());
  1575. add_opt(common_arg(
  1576. {"--top-p"}, "N",
  1577. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1578. [](common_params & params, const std::string & value) {
  1579. params.sampling.top_p = std::stof(value);
  1580. }
  1581. ).set_sparam());
  1582. add_opt(common_arg(
  1583. {"--min-p"}, "N",
  1584. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1585. [](common_params & params, const std::string & value) {
  1586. params.sampling.min_p = std::stof(value);
  1587. }
  1588. ).set_sparam());
  1589. add_opt(common_arg(
  1590. {"--top-nsigma"}, "N",
  1591. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1592. [](common_params & params, const std::string & value) {
  1593. params.sampling.top_n_sigma = std::stof(value);
  1594. }
  1595. ).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
  1596. add_opt(common_arg(
  1597. {"--xtc-probability"}, "N",
  1598. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1599. [](common_params & params, const std::string & value) {
  1600. params.sampling.xtc_probability = std::stof(value);
  1601. }
  1602. ).set_sparam());
  1603. add_opt(common_arg(
  1604. {"--xtc-threshold"}, "N",
  1605. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1606. [](common_params & params, const std::string & value) {
  1607. params.sampling.xtc_threshold = std::stof(value);
  1608. }
  1609. ).set_sparam());
  1610. add_opt(common_arg(
  1611. {"--typical"}, "N",
  1612. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1613. [](common_params & params, const std::string & value) {
  1614. params.sampling.typ_p = std::stof(value);
  1615. }
  1616. ).set_sparam());
  1617. add_opt(common_arg(
  1618. {"--repeat-last-n"}, "N",
  1619. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1620. [](common_params & params, int value) {
  1621. if (value < -1) {
  1622. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1623. }
  1624. params.sampling.penalty_last_n = value;
  1625. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1626. }
  1627. ).set_sparam());
  1628. add_opt(common_arg(
  1629. {"--repeat-penalty"}, "N",
  1630. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1631. [](common_params & params, const std::string & value) {
  1632. params.sampling.penalty_repeat = std::stof(value);
  1633. }
  1634. ).set_sparam());
  1635. add_opt(common_arg(
  1636. {"--presence-penalty"}, "N",
  1637. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1638. [](common_params & params, const std::string & value) {
  1639. params.sampling.penalty_present = std::stof(value);
  1640. }
  1641. ).set_sparam());
  1642. add_opt(common_arg(
  1643. {"--frequency-penalty"}, "N",
  1644. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1645. [](common_params & params, const std::string & value) {
  1646. params.sampling.penalty_freq = std::stof(value);
  1647. }
  1648. ).set_sparam());
  1649. add_opt(common_arg(
  1650. {"--dry-multiplier"}, "N",
  1651. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1652. [](common_params & params, const std::string & value) {
  1653. params.sampling.dry_multiplier = std::stof(value);
  1654. }
  1655. ).set_sparam());
  1656. add_opt(common_arg(
  1657. {"--dry-base"}, "N",
  1658. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1659. [](common_params & params, const std::string & value) {
  1660. float potential_base = std::stof(value);
  1661. if (potential_base >= 1.0f)
  1662. {
  1663. params.sampling.dry_base = potential_base;
  1664. }
  1665. }
  1666. ).set_sparam());
  1667. add_opt(common_arg(
  1668. {"--dry-allowed-length"}, "N",
  1669. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1670. [](common_params & params, int value) {
  1671. params.sampling.dry_allowed_length = value;
  1672. }
  1673. ).set_sparam());
  1674. add_opt(common_arg(
  1675. {"--dry-penalty-last-n"}, "N",
  1676. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1677. [](common_params & params, int value) {
  1678. if (value < -1) {
  1679. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1680. }
  1681. params.sampling.dry_penalty_last_n = value;
  1682. }
  1683. ).set_sparam());
  1684. add_opt(common_arg(
  1685. {"--dry-sequence-breaker"}, "STRING",
  1686. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1687. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1688. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1689. params.sampling.dry_sequence_breakers.end(),
  1690. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1691. [](const std::string& a, const std::string& b) {
  1692. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1693. return a + ", '" + formatted_b + "'";
  1694. }).c_str()),
  1695. [](common_params & params, const std::string & value) {
  1696. static bool defaults_cleared = false;
  1697. if (!defaults_cleared) {
  1698. params.sampling.dry_sequence_breakers.clear();
  1699. defaults_cleared = true;
  1700. }
  1701. if (value == "none") {
  1702. params.sampling.dry_sequence_breakers.clear();
  1703. } else {
  1704. params.sampling.dry_sequence_breakers.emplace_back(value);
  1705. }
  1706. }
  1707. ).set_sparam());
  1708. add_opt(common_arg(
  1709. {"--dynatemp-range"}, "N",
  1710. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1711. [](common_params & params, const std::string & value) {
  1712. params.sampling.dynatemp_range = std::stof(value);
  1713. }
  1714. ).set_sparam());
  1715. add_opt(common_arg(
  1716. {"--dynatemp-exp"}, "N",
  1717. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1718. [](common_params & params, const std::string & value) {
  1719. params.sampling.dynatemp_exponent = std::stof(value);
  1720. }
  1721. ).set_sparam());
  1722. add_opt(common_arg(
  1723. {"--mirostat"}, "N",
  1724. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1725. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1726. [](common_params & params, int value) {
  1727. params.sampling.mirostat = value;
  1728. }
  1729. ).set_sparam());
  1730. add_opt(common_arg(
  1731. {"--mirostat-lr"}, "N",
  1732. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1733. [](common_params & params, const std::string & value) {
  1734. params.sampling.mirostat_eta = std::stof(value);
  1735. }
  1736. ).set_sparam());
  1737. add_opt(common_arg(
  1738. {"--mirostat-ent"}, "N",
  1739. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1740. [](common_params & params, const std::string & value) {
  1741. params.sampling.mirostat_tau = std::stof(value);
  1742. }
  1743. ).set_sparam());
  1744. add_opt(common_arg(
  1745. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1746. "modifies the likelihood of token appearing in the completion,\n"
  1747. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1748. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1749. [](common_params & params, const std::string & value) {
  1750. std::stringstream ss(value);
  1751. llama_token key;
  1752. char sign;
  1753. std::string value_str;
  1754. try {
  1755. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1756. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1757. params.sampling.logit_bias.push_back({key, bias});
  1758. } else {
  1759. throw std::invalid_argument("invalid input format");
  1760. }
  1761. } catch (const std::exception&) {
  1762. throw std::invalid_argument("invalid input format");
  1763. }
  1764. }
  1765. ).set_sparam());
  1766. add_opt(common_arg(
  1767. {"--grammar"}, "GRAMMAR",
  1768. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1769. [](common_params & params, const std::string & value) {
  1770. params.sampling.grammar = value;
  1771. }
  1772. ).set_sparam());
  1773. add_opt(common_arg(
  1774. {"--grammar-file"}, "FNAME",
  1775. "file to read grammar from",
  1776. [](common_params & params, const std::string & value) {
  1777. params.sampling.grammar = read_file(value);
  1778. }
  1779. ).set_sparam());
  1780. add_opt(common_arg(
  1781. {"-j", "--json-schema"}, "SCHEMA",
  1782. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1783. [](common_params & params, const std::string & value) {
  1784. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1785. }
  1786. ).set_sparam());
  1787. add_opt(common_arg(
  1788. {"-jf", "--json-schema-file"}, "FILE",
  1789. "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1790. [](common_params & params, const std::string & value) {
  1791. std::ifstream file(value);
  1792. if (!file) {
  1793. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1794. }
  1795. std::string schema;
  1796. std::copy(
  1797. std::istreambuf_iterator<char>(file),
  1798. std::istreambuf_iterator<char>(),
  1799. std::back_inserter(schema)
  1800. );
  1801. params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
  1802. }
  1803. ).set_sparam());
  1804. add_opt(common_arg(
  1805. {"--pooling"}, "{none,mean,cls,last,rank}",
  1806. "pooling type for embeddings, use model default if unspecified",
  1807. [](common_params & params, const std::string & value) {
  1808. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1809. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1810. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1811. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1812. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1813. else { throw std::invalid_argument("invalid value"); }
  1814. }
  1815. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1816. add_opt(common_arg(
  1817. {"--attention"}, "{causal,non-causal}",
  1818. "attention type for embeddings, use model default if unspecified",
  1819. [](common_params & params, const std::string & value) {
  1820. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1821. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1822. else { throw std::invalid_argument("invalid value"); }
  1823. }
  1824. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1825. add_opt(common_arg(
  1826. {"--rope-scaling"}, "{none,linear,yarn}",
  1827. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1828. [](common_params & params, const std::string & value) {
  1829. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1830. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1831. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1832. else { throw std::invalid_argument("invalid value"); }
  1833. }
  1834. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1835. add_opt(common_arg(
  1836. {"--rope-scale"}, "N",
  1837. "RoPE context scaling factor, expands context by a factor of N",
  1838. [](common_params & params, const std::string & value) {
  1839. params.rope_freq_scale = 1.0f / std::stof(value);
  1840. }
  1841. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1842. add_opt(common_arg(
  1843. {"--rope-freq-base"}, "N",
  1844. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1845. [](common_params & params, const std::string & value) {
  1846. params.rope_freq_base = std::stof(value);
  1847. }
  1848. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1849. add_opt(common_arg(
  1850. {"--rope-freq-scale"}, "N",
  1851. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1852. [](common_params & params, const std::string & value) {
  1853. params.rope_freq_scale = std::stof(value);
  1854. }
  1855. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1856. add_opt(common_arg(
  1857. {"--yarn-orig-ctx"}, "N",
  1858. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1859. [](common_params & params, int value) {
  1860. params.yarn_orig_ctx = value;
  1861. }
  1862. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1863. add_opt(common_arg(
  1864. {"--yarn-ext-factor"}, "N",
  1865. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1866. [](common_params & params, const std::string & value) {
  1867. params.yarn_ext_factor = std::stof(value);
  1868. }
  1869. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1870. add_opt(common_arg(
  1871. {"--yarn-attn-factor"}, "N",
  1872. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1873. [](common_params & params, const std::string & value) {
  1874. params.yarn_attn_factor = std::stof(value);
  1875. }
  1876. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1877. add_opt(common_arg(
  1878. {"--yarn-beta-slow"}, "N",
  1879. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1880. [](common_params & params, const std::string & value) {
  1881. params.yarn_beta_slow = std::stof(value);
  1882. }
  1883. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1884. add_opt(common_arg(
  1885. {"--yarn-beta-fast"}, "N",
  1886. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1887. [](common_params & params, const std::string & value) {
  1888. params.yarn_beta_fast = std::stof(value);
  1889. }
  1890. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1891. add_opt(common_arg(
  1892. {"-gan", "--grp-attn-n"}, "N",
  1893. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1894. [](common_params & params, int value) {
  1895. params.grp_attn_n = value;
  1896. }
  1897. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  1898. add_opt(common_arg(
  1899. {"-gaw", "--grp-attn-w"}, "N",
  1900. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1901. [](common_params & params, int value) {
  1902. params.grp_attn_w = value;
  1903. }
  1904. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  1905. add_opt(common_arg(
  1906. {"-nkvo", "--no-kv-offload"},
  1907. "disable KV offload",
  1908. [](common_params & params) {
  1909. params.no_kv_offload = true;
  1910. }
  1911. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  1912. add_opt(common_arg(
  1913. {"-ctk", "--cache-type-k"}, "TYPE",
  1914. string_format(
  1915. "KV cache data type for K\n"
  1916. "allowed values: %s\n"
  1917. "(default: %s)",
  1918. get_all_kv_cache_types().c_str(),
  1919. ggml_type_name(params.cache_type_k)
  1920. ),
  1921. [](common_params & params, const std::string & value) {
  1922. params.cache_type_k = kv_cache_type_from_str(value);
  1923. }
  1924. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1925. add_opt(common_arg(
  1926. {"-ctv", "--cache-type-v"}, "TYPE",
  1927. string_format(
  1928. "KV cache data type for V\n"
  1929. "allowed values: %s\n"
  1930. "(default: %s)",
  1931. get_all_kv_cache_types().c_str(),
  1932. ggml_type_name(params.cache_type_v)
  1933. ),
  1934. [](common_params & params, const std::string & value) {
  1935. params.cache_type_v = kv_cache_type_from_str(value);
  1936. }
  1937. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1938. add_opt(common_arg(
  1939. {"--hellaswag"},
  1940. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1941. [](common_params & params) {
  1942. params.hellaswag = true;
  1943. }
  1944. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1945. add_opt(common_arg(
  1946. {"--hellaswag-tasks"}, "N",
  1947. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1948. [](common_params & params, int value) {
  1949. params.hellaswag_tasks = value;
  1950. }
  1951. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1952. add_opt(common_arg(
  1953. {"--winogrande"},
  1954. "compute Winogrande score over random tasks from datafile supplied with -f",
  1955. [](common_params & params) {
  1956. params.winogrande = true;
  1957. }
  1958. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1959. add_opt(common_arg(
  1960. {"--winogrande-tasks"}, "N",
  1961. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1962. [](common_params & params, int value) {
  1963. params.winogrande_tasks = value;
  1964. }
  1965. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1966. add_opt(common_arg(
  1967. {"--multiple-choice"},
  1968. "compute multiple choice score over random tasks from datafile supplied with -f",
  1969. [](common_params & params) {
  1970. params.multiple_choice = true;
  1971. }
  1972. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1973. add_opt(common_arg(
  1974. {"--multiple-choice-tasks"}, "N",
  1975. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1976. [](common_params & params, int value) {
  1977. params.multiple_choice_tasks = value;
  1978. }
  1979. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1980. add_opt(common_arg(
  1981. {"--kl-divergence"},
  1982. "computes KL-divergence to logits provided via --kl-divergence-base",
  1983. [](common_params & params) {
  1984. params.kl_divergence = true;
  1985. }
  1986. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1987. add_opt(common_arg(
  1988. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1989. "set logits file",
  1990. [](common_params & params, const std::string & value) {
  1991. params.logits_file = value;
  1992. }
  1993. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1994. add_opt(common_arg(
  1995. {"--ppl-stride"}, "N",
  1996. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  1997. [](common_params & params, int value) {
  1998. params.ppl_stride = value;
  1999. }
  2000. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2001. add_opt(common_arg(
  2002. {"--ppl-output-type"}, "<0|1>",
  2003. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  2004. [](common_params & params, int value) {
  2005. params.ppl_output_type = value;
  2006. }
  2007. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2008. add_opt(common_arg(
  2009. {"-dt", "--defrag-thold"}, "N",
  2010. string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
  2011. [](common_params & params, const std::string & value) {
  2012. params.defrag_thold = std::stof(value);
  2013. }
  2014. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  2015. add_opt(common_arg(
  2016. {"-np", "--parallel"}, "N",
  2017. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  2018. [](common_params & params, int value) {
  2019. params.n_parallel = value;
  2020. }
  2021. ).set_env("LLAMA_ARG_N_PARALLEL"));
  2022. add_opt(common_arg(
  2023. {"-ns", "--sequences"}, "N",
  2024. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  2025. [](common_params & params, int value) {
  2026. params.n_sequences = value;
  2027. }
  2028. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  2029. add_opt(common_arg(
  2030. {"-cb", "--cont-batching"},
  2031. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  2032. [](common_params & params) {
  2033. params.cont_batching = true;
  2034. }
  2035. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  2036. add_opt(common_arg(
  2037. {"-nocb", "--no-cont-batching"},
  2038. "disable continuous batching",
  2039. [](common_params & params) {
  2040. params.cont_batching = false;
  2041. }
  2042. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  2043. add_opt(common_arg(
  2044. {"--mmproj"}, "FILE",
  2045. "path to a multimodal projector file. see tools/mtmd/README.md\n"
  2046. "note: if -hf is used, this argument can be omitted",
  2047. [](common_params & params, const std::string & value) {
  2048. params.mmproj.path = value;
  2049. }
  2050. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
  2051. add_opt(common_arg(
  2052. {"--mmproj-url"}, "URL",
  2053. "URL to a multimodal projector file. see tools/mtmd/README.md",
  2054. [](common_params & params, const std::string & value) {
  2055. params.mmproj.url = value;
  2056. }
  2057. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
  2058. add_opt(common_arg(
  2059. {"--no-mmproj"},
  2060. "explicitly disable multimodal projector, useful when using -hf",
  2061. [](common_params & params) {
  2062. params.no_mmproj = true;
  2063. }
  2064. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
  2065. add_opt(common_arg(
  2066. {"--no-mmproj-offload"},
  2067. "do not offload multimodal projector to GPU",
  2068. [](common_params & params) {
  2069. params.mmproj_use_gpu = false;
  2070. }
  2071. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
  2072. add_opt(common_arg(
  2073. {"--image", "--audio"}, "FILE",
  2074. "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
  2075. [](common_params & params, const std::string & value) {
  2076. params.image.emplace_back(value);
  2077. }
  2078. ).set_examples({LLAMA_EXAMPLE_MTMD}));
  2079. if (llama_supports_rpc()) {
  2080. add_opt(common_arg(
  2081. {"--rpc"}, "SERVERS",
  2082. "comma separated list of RPC servers",
  2083. [](common_params & params, const std::string & value) {
  2084. add_rpc_devices(value);
  2085. GGML_UNUSED(params);
  2086. }
  2087. ).set_env("LLAMA_ARG_RPC"));
  2088. }
  2089. add_opt(common_arg(
  2090. {"--mlock"},
  2091. "force system to keep model in RAM rather than swapping or compressing",
  2092. [](common_params & params) {
  2093. params.use_mlock = true;
  2094. }
  2095. ).set_env("LLAMA_ARG_MLOCK"));
  2096. add_opt(common_arg(
  2097. {"--no-mmap"},
  2098. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  2099. [](common_params & params) {
  2100. params.use_mmap = false;
  2101. }
  2102. ).set_env("LLAMA_ARG_NO_MMAP"));
  2103. add_opt(common_arg(
  2104. {"--numa"}, "TYPE",
  2105. "attempt optimizations that help on some NUMA systems\n"
  2106. "- distribute: spread execution evenly over all nodes\n"
  2107. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  2108. "- numactl: use the CPU map provided by numactl\n"
  2109. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  2110. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  2111. [](common_params & params, const std::string & value) {
  2112. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2113. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2114. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2115. else { throw std::invalid_argument("invalid value"); }
  2116. }
  2117. ).set_env("LLAMA_ARG_NUMA"));
  2118. add_opt(common_arg(
  2119. {"-dev", "--device"}, "<dev1,dev2,..>",
  2120. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2121. "use --list-devices to see a list of available devices",
  2122. [](common_params & params, const std::string & value) {
  2123. params.devices = parse_device_list(value);
  2124. }
  2125. ).set_env("LLAMA_ARG_DEVICE"));
  2126. add_opt(common_arg(
  2127. {"--list-devices"},
  2128. "print list of available devices and exit",
  2129. [](common_params &) {
  2130. std::vector<ggml_backend_dev_t> rpc_devices;
  2131. std::vector<ggml_backend_dev_t> all_devices;
  2132. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2133. auto * dev = ggml_backend_dev_get(i);
  2134. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  2135. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  2136. if (ggml_backend_reg_name(reg) == std::string("RPC")) {
  2137. rpc_devices.push_back(dev);
  2138. } else {
  2139. all_devices.push_back(dev);
  2140. }
  2141. }
  2142. }
  2143. // insert RPC devices in front
  2144. all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
  2145. printf("Available devices:\n");
  2146. for (size_t i = 0; i < all_devices.size(); ++i) {
  2147. auto * dev = all_devices[i];
  2148. size_t free, total;
  2149. ggml_backend_dev_memory(dev, &free, &total);
  2150. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2151. }
  2152. exit(0);
  2153. }
  2154. ));
  2155. add_opt(common_arg(
  2156. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  2157. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2158. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  2159. if (buft_list.empty()) {
  2160. // enumerate all the devices and add their buffer types to the list
  2161. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2162. auto * dev = ggml_backend_dev_get(i);
  2163. auto * buft = ggml_backend_dev_buffer_type(dev);
  2164. if (buft) {
  2165. buft_list[ggml_backend_buft_name(buft)] = buft;
  2166. }
  2167. }
  2168. }
  2169. for (const auto & override : string_split<std::string>(value, ',')) {
  2170. std::string::size_type pos = override.find('=');
  2171. if (pos == std::string::npos) {
  2172. throw std::invalid_argument("invalid value");
  2173. }
  2174. std::string tensor_name = override.substr(0, pos);
  2175. std::string buffer_type = override.substr(pos + 1);
  2176. if (buft_list.find(buffer_type) == buft_list.end()) {
  2177. printf("Available buffer types:\n");
  2178. for (const auto & it : buft_list) {
  2179. printf(" %s\n", ggml_backend_buft_name(it.second));
  2180. }
  2181. throw std::invalid_argument("unknown buffer type");
  2182. }
  2183. // FIXME: this leaks memory
  2184. params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
  2185. }
  2186. }
  2187. ));
  2188. add_opt(common_arg(
  2189. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2190. "number of layers to store in VRAM",
  2191. [](common_params & params, int value) {
  2192. params.n_gpu_layers = value;
  2193. if (!llama_supports_gpu_offload()) {
  2194. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2195. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2196. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2197. }
  2198. }
  2199. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2200. add_opt(common_arg(
  2201. {"-sm", "--split-mode"}, "{none,layer,row}",
  2202. "how to split the model across multiple GPUs, one of:\n"
  2203. "- none: use one GPU only\n"
  2204. "- layer (default): split layers and KV across GPUs\n"
  2205. "- row: split rows across GPUs",
  2206. [](common_params & params, const std::string & value) {
  2207. std::string arg_next = value;
  2208. if (arg_next == "none") {
  2209. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2210. } else if (arg_next == "layer") {
  2211. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2212. } else if (arg_next == "row") {
  2213. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2214. } else {
  2215. throw std::invalid_argument("invalid value");
  2216. }
  2217. if (!llama_supports_gpu_offload()) {
  2218. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2219. }
  2220. }
  2221. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2222. add_opt(common_arg(
  2223. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2224. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2225. [](common_params & params, const std::string & value) {
  2226. std::string arg_next = value;
  2227. // split string by , and /
  2228. const std::regex regex{ R"([,/]+)" };
  2229. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2230. std::vector<std::string> split_arg{ it, {} };
  2231. if (split_arg.size() >= llama_max_devices()) {
  2232. throw std::invalid_argument(
  2233. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2234. );
  2235. }
  2236. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2237. if (i < split_arg.size()) {
  2238. params.tensor_split[i] = std::stof(split_arg[i]);
  2239. } else {
  2240. params.tensor_split[i] = 0.0f;
  2241. }
  2242. }
  2243. if (!llama_supports_gpu_offload()) {
  2244. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2245. }
  2246. }
  2247. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2248. add_opt(common_arg(
  2249. {"-mg", "--main-gpu"}, "INDEX",
  2250. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2251. [](common_params & params, int value) {
  2252. params.main_gpu = value;
  2253. if (!llama_supports_gpu_offload()) {
  2254. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2255. }
  2256. }
  2257. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2258. add_opt(common_arg(
  2259. {"--check-tensors"},
  2260. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2261. [](common_params & params) {
  2262. params.check_tensors = true;
  2263. }
  2264. ));
  2265. add_opt(common_arg(
  2266. {"--override-kv"}, "KEY=TYPE:VALUE",
  2267. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2268. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2269. [](common_params & params, const std::string & value) {
  2270. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2271. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2272. }
  2273. }
  2274. ));
  2275. add_opt(common_arg(
  2276. {"--no-op-offload"},
  2277. string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
  2278. [](common_params & params) {
  2279. params.no_op_offload = true;
  2280. }
  2281. ));
  2282. add_opt(common_arg(
  2283. {"--lora"}, "FNAME",
  2284. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2285. [](common_params & params, const std::string & value) {
  2286. params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
  2287. }
  2288. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2289. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2290. add_opt(common_arg(
  2291. {"--lora-scaled"}, "FNAME", "SCALE",
  2292. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2293. [](common_params & params, const std::string & fname, const std::string & scale) {
  2294. params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
  2295. }
  2296. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2297. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2298. add_opt(common_arg(
  2299. {"--control-vector"}, "FNAME",
  2300. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2301. [](common_params & params, const std::string & value) {
  2302. params.control_vectors.push_back({ 1.0f, value, });
  2303. }
  2304. ));
  2305. add_opt(common_arg(
  2306. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2307. "add a control vector with user defined scaling SCALE\n"
  2308. "note: this argument can be repeated to add multiple scaled control vectors",
  2309. [](common_params & params, const std::string & fname, const std::string & scale) {
  2310. params.control_vectors.push_back({ std::stof(scale), fname });
  2311. }
  2312. ));
  2313. add_opt(common_arg(
  2314. {"--control-vector-layer-range"}, "START", "END",
  2315. "layer range to apply the control vector(s) to, start and end inclusive",
  2316. [](common_params & params, const std::string & start, const std::string & end) {
  2317. params.control_vector_layer_start = std::stoi(start);
  2318. params.control_vector_layer_end = std::stoi(end);
  2319. }
  2320. ));
  2321. add_opt(common_arg(
  2322. {"-a", "--alias"}, "STRING",
  2323. "set alias for model name (to be used by REST API)",
  2324. [](common_params & params, const std::string & value) {
  2325. params.model_alias = value;
  2326. }
  2327. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2328. add_opt(common_arg(
  2329. {"-m", "--model"}, "FNAME",
  2330. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2331. ? std::string("model path from which to load base model")
  2332. : string_format(
  2333. "model path (default: `models/$filename` with filename from `--hf-file` "
  2334. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2335. ),
  2336. [](common_params & params, const std::string & value) {
  2337. params.model.path = value;
  2338. }
  2339. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2340. add_opt(common_arg(
  2341. {"-mu", "--model-url"}, "MODEL_URL",
  2342. "model download url (default: unused)",
  2343. [](common_params & params, const std::string & value) {
  2344. params.model.url = value;
  2345. }
  2346. ).set_env("LLAMA_ARG_MODEL_URL"));
  2347. add_opt(common_arg(
  2348. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2349. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2350. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2351. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2352. "(default: unused)",
  2353. [](common_params & params, const std::string & value) {
  2354. params.model.hf_repo = value;
  2355. }
  2356. ).set_env("LLAMA_ARG_HF_REPO"));
  2357. add_opt(common_arg(
  2358. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2359. "Same as --hf-repo, but for the draft model (default: unused)",
  2360. [](common_params & params, const std::string & value) {
  2361. params.speculative.model.hf_repo = value;
  2362. }
  2363. ).set_env("LLAMA_ARG_HFD_REPO"));
  2364. add_opt(common_arg(
  2365. {"-hff", "--hf-file"}, "FILE",
  2366. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2367. [](common_params & params, const std::string & value) {
  2368. params.model.hf_file = value;
  2369. }
  2370. ).set_env("LLAMA_ARG_HF_FILE"));
  2371. add_opt(common_arg(
  2372. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2373. "Hugging Face model repository for the vocoder model (default: unused)",
  2374. [](common_params & params, const std::string & value) {
  2375. params.vocoder.model.hf_repo = value;
  2376. }
  2377. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2378. add_opt(common_arg(
  2379. {"-hffv", "--hf-file-v"}, "FILE",
  2380. "Hugging Face model file for the vocoder model (default: unused)",
  2381. [](common_params & params, const std::string & value) {
  2382. params.vocoder.model.hf_file = value;
  2383. }
  2384. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2385. add_opt(common_arg(
  2386. {"-hft", "--hf-token"}, "TOKEN",
  2387. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2388. [](common_params & params, const std::string & value) {
  2389. params.hf_token = value;
  2390. }
  2391. ).set_env("HF_TOKEN"));
  2392. add_opt(common_arg(
  2393. {"--context-file"}, "FNAME",
  2394. "file to load context from (repeat to specify multiple files)",
  2395. [](common_params & params, const std::string & value) {
  2396. std::ifstream file(value, std::ios::binary);
  2397. if (!file) {
  2398. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2399. }
  2400. params.context_files.push_back(value);
  2401. }
  2402. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2403. add_opt(common_arg(
  2404. {"--chunk-size"}, "N",
  2405. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2406. [](common_params & params, int value) {
  2407. params.chunk_size = value;
  2408. }
  2409. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2410. add_opt(common_arg(
  2411. {"--chunk-separator"}, "STRING",
  2412. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2413. [](common_params & params, const std::string & value) {
  2414. params.chunk_separator = value;
  2415. }
  2416. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2417. add_opt(common_arg(
  2418. {"--junk"}, "N",
  2419. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2420. [](common_params & params, int value) {
  2421. params.n_junk = value;
  2422. }
  2423. ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
  2424. add_opt(common_arg(
  2425. {"--pos"}, "N",
  2426. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2427. [](common_params & params, int value) {
  2428. params.i_pos = value;
  2429. }
  2430. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2431. add_opt(common_arg(
  2432. {"-o", "--output", "--output-file"}, "FNAME",
  2433. string_format("output file (default: '%s')", params.out_file.c_str()),
  2434. [](common_params & params, const std::string & value) {
  2435. params.out_file = value;
  2436. }
  2437. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
  2438. add_opt(common_arg(
  2439. {"-ofreq", "--output-frequency"}, "N",
  2440. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2441. [](common_params & params, int value) {
  2442. params.n_out_freq = value;
  2443. }
  2444. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2445. add_opt(common_arg(
  2446. {"--save-frequency"}, "N",
  2447. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2448. [](common_params & params, int value) {
  2449. params.n_save_freq = value;
  2450. }
  2451. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2452. add_opt(common_arg(
  2453. {"--process-output"},
  2454. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2455. [](common_params & params) {
  2456. params.process_output = true;
  2457. }
  2458. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2459. add_opt(common_arg(
  2460. {"--no-ppl"},
  2461. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2462. [](common_params & params) {
  2463. params.compute_ppl = false;
  2464. }
  2465. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2466. add_opt(common_arg(
  2467. {"--chunk", "--from-chunk"}, "N",
  2468. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2469. [](common_params & params, int value) {
  2470. params.i_chunk = value;
  2471. }
  2472. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2473. add_opt(common_arg(
  2474. {"--parse-special"},
  2475. string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
  2476. [](common_params & params) {
  2477. params.parse_special = true;
  2478. }
  2479. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2480. add_opt(common_arg(
  2481. {"-pps"},
  2482. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2483. [](common_params & params) {
  2484. params.is_pp_shared = true;
  2485. }
  2486. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2487. add_opt(common_arg(
  2488. {"-npp"}, "n0,n1,...",
  2489. "number of prompt tokens",
  2490. [](common_params & params, const std::string & value) {
  2491. auto p = string_split<int>(value, ',');
  2492. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2493. }
  2494. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2495. add_opt(common_arg(
  2496. {"-ntg"}, "n0,n1,...",
  2497. "number of text generation tokens",
  2498. [](common_params & params, const std::string & value) {
  2499. auto p = string_split<int>(value, ',');
  2500. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2501. }
  2502. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2503. add_opt(common_arg(
  2504. {"-npl"}, "n0,n1,...",
  2505. "number of parallel prompts",
  2506. [](common_params & params, const std::string & value) {
  2507. auto p = string_split<int>(value, ',');
  2508. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2509. }
  2510. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2511. add_opt(common_arg(
  2512. {"--embd-normalize"}, "N",
  2513. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2514. [](common_params & params, int value) {
  2515. params.embd_normalize = value;
  2516. }
  2517. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2518. add_opt(common_arg(
  2519. {"--embd-output-format"}, "FORMAT",
  2520. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2521. [](common_params & params, const std::string & value) {
  2522. params.embd_out = value;
  2523. }
  2524. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2525. add_opt(common_arg(
  2526. {"--embd-separator"}, "STRING",
  2527. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2528. [](common_params & params, const std::string & value) {
  2529. params.embd_sep = value;
  2530. }
  2531. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2532. add_opt(common_arg(
  2533. {"--host"}, "HOST",
  2534. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2535. [](common_params & params, const std::string & value) {
  2536. params.hostname = value;
  2537. }
  2538. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2539. add_opt(common_arg(
  2540. {"--port"}, "PORT",
  2541. string_format("port to listen (default: %d)", params.port),
  2542. [](common_params & params, int value) {
  2543. params.port = value;
  2544. }
  2545. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2546. add_opt(common_arg(
  2547. {"--path"}, "PATH",
  2548. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2549. [](common_params & params, const std::string & value) {
  2550. params.public_path = value;
  2551. }
  2552. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2553. add_opt(common_arg(
  2554. {"--no-webui"},
  2555. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2556. [](common_params & params) {
  2557. params.webui = false;
  2558. }
  2559. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2560. add_opt(common_arg(
  2561. {"--embedding", "--embeddings"},
  2562. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2563. [](common_params & params) {
  2564. params.embedding = true;
  2565. }
  2566. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2567. add_opt(common_arg(
  2568. {"--reranking", "--rerank"},
  2569. string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
  2570. [](common_params & params) {
  2571. params.reranking = true;
  2572. }
  2573. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2574. add_opt(common_arg(
  2575. {"--api-key"}, "KEY",
  2576. "API key to use for authentication (default: none)",
  2577. [](common_params & params, const std::string & value) {
  2578. params.api_keys.push_back(value);
  2579. }
  2580. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2581. add_opt(common_arg(
  2582. {"--api-key-file"}, "FNAME",
  2583. "path to file containing API keys (default: none)",
  2584. [](common_params & params, const std::string & value) {
  2585. std::ifstream key_file(value);
  2586. if (!key_file) {
  2587. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2588. }
  2589. std::string key;
  2590. while (std::getline(key_file, key)) {
  2591. if (!key.empty()) {
  2592. params.api_keys.push_back(key);
  2593. }
  2594. }
  2595. key_file.close();
  2596. }
  2597. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2598. add_opt(common_arg(
  2599. {"--ssl-key-file"}, "FNAME",
  2600. "path to file a PEM-encoded SSL private key",
  2601. [](common_params & params, const std::string & value) {
  2602. params.ssl_file_key = value;
  2603. }
  2604. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2605. add_opt(common_arg(
  2606. {"--ssl-cert-file"}, "FNAME",
  2607. "path to file a PEM-encoded SSL certificate",
  2608. [](common_params & params, const std::string & value) {
  2609. params.ssl_file_cert = value;
  2610. }
  2611. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2612. add_opt(common_arg(
  2613. {"-to", "--timeout"}, "N",
  2614. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2615. [](common_params & params, int value) {
  2616. params.timeout_read = value;
  2617. params.timeout_write = value;
  2618. }
  2619. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2620. add_opt(common_arg(
  2621. {"--threads-http"}, "N",
  2622. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2623. [](common_params & params, int value) {
  2624. params.n_threads_http = value;
  2625. }
  2626. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2627. add_opt(common_arg(
  2628. {"--cache-reuse"}, "N",
  2629. string_format(
  2630. "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
  2631. "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
  2632. ),
  2633. [](common_params & params, int value) {
  2634. params.n_cache_reuse = value;
  2635. }
  2636. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2637. add_opt(common_arg(
  2638. {"--metrics"},
  2639. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2640. [](common_params & params) {
  2641. params.endpoint_metrics = true;
  2642. }
  2643. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2644. add_opt(common_arg(
  2645. {"--slots"},
  2646. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2647. [](common_params & params) {
  2648. params.endpoint_slots = true;
  2649. }
  2650. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2651. add_opt(common_arg(
  2652. {"--props"},
  2653. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2654. [](common_params & params) {
  2655. params.endpoint_props = true;
  2656. }
  2657. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2658. add_opt(common_arg(
  2659. {"--no-slots"},
  2660. "disables slots monitoring endpoint",
  2661. [](common_params & params) {
  2662. params.endpoint_slots = false;
  2663. }
  2664. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2665. add_opt(common_arg(
  2666. {"--slot-save-path"}, "PATH",
  2667. "path to save slot kv cache (default: disabled)",
  2668. [](common_params & params, const std::string & value) {
  2669. params.slot_save_path = value;
  2670. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2671. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2672. params.slot_save_path += DIRECTORY_SEPARATOR;
  2673. }
  2674. }
  2675. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2676. add_opt(common_arg(
  2677. {"--jinja"},
  2678. "use jinja template for chat (default: disabled)",
  2679. [](common_params & params) {
  2680. params.use_jinja = true;
  2681. }
  2682. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2683. add_opt(common_arg(
  2684. {"--reasoning-format"}, "FORMAT",
  2685. "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
  2686. "- none: leaves thoughts unparsed in `message.content`\n"
  2687. "- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
  2688. "(default: deepseek)",
  2689. [](common_params & params, const std::string & value) {
  2690. /**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
  2691. else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
  2692. else { throw std::invalid_argument("invalid value"); }
  2693. }
  2694. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2695. add_opt(common_arg(
  2696. {"--reasoning-budget"}, "N",
  2697. "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
  2698. [](common_params & params, int value) {
  2699. if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
  2700. params.reasoning_budget = value;
  2701. }
  2702. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
  2703. add_opt(common_arg(
  2704. {"--chat-template"}, "JINJA_TEMPLATE",
  2705. string_format(
  2706. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2707. "if suffix/prefix are specified, template will be disabled\n"
  2708. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2709. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2710. ),
  2711. [](common_params & params, const std::string & value) {
  2712. params.chat_template = value;
  2713. }
  2714. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2715. add_opt(common_arg(
  2716. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2717. string_format(
  2718. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2719. "if suffix/prefix are specified, template will be disabled\n"
  2720. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2721. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2722. ),
  2723. [](common_params & params, const std::string & value) {
  2724. params.chat_template = read_file(value);
  2725. }
  2726. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2727. add_opt(common_arg(
  2728. {"--no-prefill-assistant"},
  2729. string_format(
  2730. "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
  2731. "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
  2732. ),
  2733. [](common_params & params) {
  2734. params.prefill_assistant = false;
  2735. }
  2736. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT"));
  2737. add_opt(common_arg(
  2738. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2739. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2740. [](common_params & params, const std::string & value) {
  2741. params.slot_prompt_similarity = std::stof(value);
  2742. }
  2743. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2744. add_opt(common_arg(
  2745. {"--lora-init-without-apply"},
  2746. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2747. [](common_params & params) {
  2748. params.lora_init_without_apply = true;
  2749. }
  2750. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2751. add_opt(common_arg(
  2752. {"--simple-io"},
  2753. "use basic IO for better compatibility in subprocesses and limited consoles",
  2754. [](common_params & params) {
  2755. params.simple_io = true;
  2756. }
  2757. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  2758. add_opt(common_arg(
  2759. {"--positive-file"}, "FNAME",
  2760. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2761. [](common_params & params, const std::string & value) {
  2762. params.cvector_positive_file = value;
  2763. }
  2764. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2765. add_opt(common_arg(
  2766. {"--negative-file"}, "FNAME",
  2767. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2768. [](common_params & params, const std::string & value) {
  2769. params.cvector_negative_file = value;
  2770. }
  2771. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2772. add_opt(common_arg(
  2773. {"--pca-batch"}, "N",
  2774. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2775. [](common_params & params, int value) {
  2776. params.n_pca_batch = value;
  2777. }
  2778. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2779. add_opt(common_arg(
  2780. {"--pca-iter"}, "N",
  2781. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2782. [](common_params & params, int value) {
  2783. params.n_pca_iterations = value;
  2784. }
  2785. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2786. add_opt(common_arg(
  2787. {"--method"}, "{pca, mean}",
  2788. "dimensionality reduction method to be used (default: pca)",
  2789. [](common_params & params, const std::string & value) {
  2790. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2791. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2792. else { throw std::invalid_argument("invalid value"); }
  2793. }
  2794. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2795. add_opt(common_arg(
  2796. {"--output-format"}, "{md,jsonl}",
  2797. "output format for batched-bench results (default: md)",
  2798. [](common_params & params, const std::string & value) {
  2799. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2800. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2801. else { throw std::invalid_argument("invalid value"); }
  2802. }
  2803. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2804. add_opt(common_arg(
  2805. {"--log-disable"},
  2806. "Log disable",
  2807. [](common_params &) {
  2808. common_log_pause(common_log_main());
  2809. }
  2810. ));
  2811. add_opt(common_arg(
  2812. {"--log-file"}, "FNAME",
  2813. "Log to file",
  2814. [](common_params &, const std::string & value) {
  2815. common_log_set_file(common_log_main(), value.c_str());
  2816. }
  2817. ));
  2818. add_opt(common_arg(
  2819. {"--log-colors"},
  2820. "Enable colored logging",
  2821. [](common_params &) {
  2822. common_log_set_colors(common_log_main(), true);
  2823. }
  2824. ).set_env("LLAMA_LOG_COLORS"));
  2825. add_opt(common_arg(
  2826. {"-v", "--verbose", "--log-verbose"},
  2827. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2828. [](common_params & params) {
  2829. params.verbosity = INT_MAX;
  2830. common_log_set_verbosity_thold(INT_MAX);
  2831. }
  2832. ));
  2833. add_opt(common_arg(
  2834. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2835. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  2836. [](common_params & params, int value) {
  2837. params.verbosity = value;
  2838. common_log_set_verbosity_thold(value);
  2839. }
  2840. ).set_env("LLAMA_LOG_VERBOSITY"));
  2841. add_opt(common_arg(
  2842. {"--log-prefix"},
  2843. "Enable prefix in log messages",
  2844. [](common_params &) {
  2845. common_log_set_prefix(common_log_main(), true);
  2846. }
  2847. ).set_env("LLAMA_LOG_PREFIX"));
  2848. add_opt(common_arg(
  2849. {"--log-timestamps"},
  2850. "Enable timestamps in log messages",
  2851. [](common_params &) {
  2852. common_log_set_timestamps(common_log_main(), true);
  2853. }
  2854. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2855. // speculative parameters
  2856. add_opt(common_arg(
  2857. {"-td", "--threads-draft"}, "N",
  2858. "number of threads to use during generation (default: same as --threads)",
  2859. [](common_params & params, int value) {
  2860. params.speculative.cpuparams.n_threads = value;
  2861. if (params.speculative.cpuparams.n_threads <= 0) {
  2862. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2863. }
  2864. }
  2865. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2866. add_opt(common_arg(
  2867. {"-tbd", "--threads-batch-draft"}, "N",
  2868. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2869. [](common_params & params, int value) {
  2870. params.speculative.cpuparams_batch.n_threads = value;
  2871. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2872. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2873. }
  2874. }
  2875. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2876. add_opt(common_arg(
  2877. {"-Cd", "--cpu-mask-draft"}, "M",
  2878. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2879. [](common_params & params, const std::string & mask) {
  2880. params.speculative.cpuparams.mask_valid = true;
  2881. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2882. throw std::invalid_argument("invalid cpumask");
  2883. }
  2884. }
  2885. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2886. add_opt(common_arg(
  2887. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2888. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2889. [](common_params & params, const std::string & range) {
  2890. params.speculative.cpuparams.mask_valid = true;
  2891. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2892. throw std::invalid_argument("invalid range");
  2893. }
  2894. }
  2895. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2896. add_opt(common_arg(
  2897. {"--cpu-strict-draft"}, "<0|1>",
  2898. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  2899. [](common_params & params, int value) {
  2900. params.speculative.cpuparams.strict_cpu = value;
  2901. }
  2902. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2903. add_opt(common_arg(
  2904. {"--prio-draft"}, "N",
  2905. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  2906. [](common_params & params, int prio) {
  2907. if (prio < 0 || prio > 3) {
  2908. throw std::invalid_argument("invalid value");
  2909. }
  2910. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  2911. }
  2912. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2913. add_opt(common_arg(
  2914. {"--poll-draft"}, "<0|1>",
  2915. "Use polling to wait for draft model work (default: same as --poll])",
  2916. [](common_params & params, int value) {
  2917. params.speculative.cpuparams.poll = value;
  2918. }
  2919. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2920. add_opt(common_arg(
  2921. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  2922. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2923. [](common_params & params, const std::string & mask) {
  2924. params.speculative.cpuparams_batch.mask_valid = true;
  2925. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  2926. throw std::invalid_argument("invalid cpumask");
  2927. }
  2928. }
  2929. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2930. add_opt(common_arg(
  2931. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  2932. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  2933. [](common_params & params, const std::string & range) {
  2934. params.speculative.cpuparams_batch.mask_valid = true;
  2935. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  2936. throw std::invalid_argument("invalid cpumask");
  2937. }
  2938. }
  2939. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2940. add_opt(common_arg(
  2941. {"--cpu-strict-batch-draft"}, "<0|1>",
  2942. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  2943. [](common_params & params, int value) {
  2944. params.speculative.cpuparams_batch.strict_cpu = value;
  2945. }
  2946. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2947. add_opt(common_arg(
  2948. {"--prio-batch-draft"}, "N",
  2949. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  2950. [](common_params & params, int prio) {
  2951. if (prio < 0 || prio > 3) {
  2952. throw std::invalid_argument("invalid value");
  2953. }
  2954. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  2955. }
  2956. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2957. add_opt(common_arg(
  2958. {"--poll-batch-draft"}, "<0|1>",
  2959. "Use polling to wait for draft model work (default: --poll-draft)",
  2960. [](common_params & params, int value) {
  2961. params.speculative.cpuparams_batch.poll = value;
  2962. }
  2963. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2964. add_opt(common_arg(
  2965. {"--draft-max", "--draft", "--draft-n"}, "N",
  2966. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  2967. [](common_params & params, int value) {
  2968. params.speculative.n_max = value;
  2969. }
  2970. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  2971. add_opt(common_arg(
  2972. {"--draft-min", "--draft-n-min"}, "N",
  2973. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  2974. [](common_params & params, int value) {
  2975. params.speculative.n_min = value;
  2976. }
  2977. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  2978. add_opt(common_arg(
  2979. {"--draft-p-split"}, "P",
  2980. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  2981. [](common_params & params, const std::string & value) {
  2982. params.speculative.p_split = std::stof(value);
  2983. }
  2984. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  2985. add_opt(common_arg(
  2986. {"--draft-p-min"}, "P",
  2987. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  2988. [](common_params & params, const std::string & value) {
  2989. params.speculative.p_min = std::stof(value);
  2990. }
  2991. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  2992. add_opt(common_arg(
  2993. {"-cd", "--ctx-size-draft"}, "N",
  2994. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  2995. [](common_params & params, int value) {
  2996. params.speculative.n_ctx = value;
  2997. }
  2998. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  2999. add_opt(common_arg(
  3000. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  3001. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  3002. "use --list-devices to see a list of available devices",
  3003. [](common_params & params, const std::string & value) {
  3004. params.speculative.devices = parse_device_list(value);
  3005. }
  3006. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3007. add_opt(common_arg(
  3008. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  3009. "number of layers to store in VRAM for the draft model",
  3010. [](common_params & params, int value) {
  3011. params.speculative.n_gpu_layers = value;
  3012. if (!llama_supports_gpu_offload()) {
  3013. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  3014. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  3015. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  3016. }
  3017. }
  3018. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  3019. add_opt(common_arg(
  3020. {"-md", "--model-draft"}, "FNAME",
  3021. "draft model for speculative decoding (default: unused)",
  3022. [](common_params & params, const std::string & value) {
  3023. params.speculative.model.path = value;
  3024. }
  3025. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  3026. add_opt(common_arg(
  3027. {"-mv", "--model-vocoder"}, "FNAME",
  3028. "vocoder model for audio generation (default: unused)",
  3029. [](common_params & params, const std::string & value) {
  3030. params.vocoder.model.path = value;
  3031. }
  3032. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3033. add_opt(common_arg(
  3034. {"--tts-use-guide-tokens"},
  3035. "Use guide tokens to improve TTS word recall",
  3036. [](common_params & params) {
  3037. params.vocoder.use_guide_tokens = true;
  3038. }
  3039. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3040. add_opt(common_arg(
  3041. {"--tts-speaker-file"}, "FNAME",
  3042. "speaker file path for audio generation",
  3043. [](common_params & params, const std::string & value) {
  3044. params.vocoder.speaker_file = value;
  3045. }
  3046. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3047. // model-specific
  3048. add_opt(common_arg(
  3049. {"--tts-oute-default"},
  3050. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3051. [](common_params & params) {
  3052. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3053. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3054. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3055. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3056. }
  3057. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3058. add_opt(common_arg(
  3059. {"--embd-bge-small-en-default"},
  3060. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  3061. [](common_params & params) {
  3062. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  3063. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  3064. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3065. params.embd_normalize = 2;
  3066. params.n_ctx = 512;
  3067. params.verbose_prompt = true;
  3068. params.embedding = true;
  3069. }
  3070. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3071. add_opt(common_arg(
  3072. {"--embd-e5-small-en-default"},
  3073. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  3074. [](common_params & params) {
  3075. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  3076. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  3077. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3078. params.embd_normalize = 2;
  3079. params.n_ctx = 512;
  3080. params.verbose_prompt = true;
  3081. params.embedding = true;
  3082. }
  3083. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3084. add_opt(common_arg(
  3085. {"--embd-gte-small-default"},
  3086. string_format("use default gte-small model (note: can download weights from the internet)"),
  3087. [](common_params & params) {
  3088. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  3089. params.model.hf_file = "gte-small-q8_0.gguf";
  3090. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3091. params.embd_normalize = 2;
  3092. params.n_ctx = 512;
  3093. params.verbose_prompt = true;
  3094. params.embedding = true;
  3095. }
  3096. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3097. add_opt(common_arg(
  3098. {"--fim-qwen-1.5b-default"},
  3099. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3100. [](common_params & params) {
  3101. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3102. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3103. params.port = 8012;
  3104. params.n_gpu_layers = 99;
  3105. params.flash_attn = true;
  3106. params.n_ubatch = 1024;
  3107. params.n_batch = 1024;
  3108. params.n_ctx = 0;
  3109. params.n_cache_reuse = 256;
  3110. }
  3111. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3112. add_opt(common_arg(
  3113. {"--fim-qwen-3b-default"},
  3114. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3115. [](common_params & params) {
  3116. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3117. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3118. params.port = 8012;
  3119. params.n_gpu_layers = 99;
  3120. params.flash_attn = true;
  3121. params.n_ubatch = 1024;
  3122. params.n_batch = 1024;
  3123. params.n_ctx = 0;
  3124. params.n_cache_reuse = 256;
  3125. }
  3126. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3127. add_opt(common_arg(
  3128. {"--fim-qwen-7b-default"},
  3129. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3130. [](common_params & params) {
  3131. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3132. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3133. params.port = 8012;
  3134. params.n_gpu_layers = 99;
  3135. params.flash_attn = true;
  3136. params.n_ubatch = 1024;
  3137. params.n_batch = 1024;
  3138. params.n_ctx = 0;
  3139. params.n_cache_reuse = 256;
  3140. }
  3141. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3142. add_opt(common_arg(
  3143. {"--fim-qwen-7b-spec"},
  3144. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3145. [](common_params & params) {
  3146. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3147. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3148. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3149. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3150. params.speculative.n_gpu_layers = 99;
  3151. params.port = 8012;
  3152. params.n_gpu_layers = 99;
  3153. params.flash_attn = true;
  3154. params.n_ubatch = 1024;
  3155. params.n_batch = 1024;
  3156. params.n_ctx = 0;
  3157. params.n_cache_reuse = 256;
  3158. }
  3159. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3160. add_opt(common_arg(
  3161. {"--fim-qwen-14b-spec"},
  3162. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3163. [](common_params & params) {
  3164. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3165. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3166. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3167. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3168. params.speculative.n_gpu_layers = 99;
  3169. params.port = 8012;
  3170. params.n_gpu_layers = 99;
  3171. params.flash_attn = true;
  3172. params.n_ubatch = 1024;
  3173. params.n_batch = 1024;
  3174. params.n_ctx = 0;
  3175. params.n_cache_reuse = 256;
  3176. }
  3177. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3178. return ctx_arg;
  3179. }