ggml.c 595 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // if C99 - static_assert is noop
  29. // ref: https://stackoverflow.com/a/53923785/4039976
  30. #ifndef static_assert
  31. #define static_assert(cond, msg) struct global_scope_noop_trick
  32. #endif
  33. #if defined(_MSC_VER)
  34. // disable "possible loss of data" to avoid hundreds of casts
  35. // we should just be careful :)
  36. #pragma warning(disable: 4244 4267)
  37. #endif
  38. #if defined(_WIN32)
  39. #include <windows.h>
  40. typedef volatile LONG atomic_int;
  41. typedef atomic_int atomic_bool;
  42. static void atomic_store(atomic_int * ptr, LONG val) {
  43. InterlockedExchange(ptr, val);
  44. }
  45. static LONG atomic_load(atomic_int * ptr) {
  46. return InterlockedCompareExchange(ptr, 0, 0);
  47. }
  48. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  49. return InterlockedExchangeAdd(ptr, inc);
  50. }
  51. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  52. return atomic_fetch_add(ptr, -(dec));
  53. }
  54. typedef HANDLE pthread_t;
  55. typedef DWORD thread_ret_t;
  56. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  57. (void) unused;
  58. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  59. if (handle == NULL)
  60. {
  61. return EAGAIN;
  62. }
  63. *out = handle;
  64. return 0;
  65. }
  66. static int pthread_join(pthread_t thread, void * unused) {
  67. (void) unused;
  68. return (int) WaitForSingleObject(thread, INFINITE);
  69. }
  70. static int sched_yield (void) {
  71. Sleep (0);
  72. return 0;
  73. }
  74. #else
  75. #include <pthread.h>
  76. #include <stdatomic.h>
  77. typedef void * thread_ret_t;
  78. #include <sys/types.h>
  79. #include <sys/stat.h>
  80. #include <unistd.h>
  81. #endif
  82. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  83. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  84. #ifndef __FMA__
  85. #define __FMA__
  86. #endif
  87. #ifndef __F16C__
  88. #define __F16C__
  89. #endif
  90. #ifndef __SSE3__
  91. #define __SSE3__
  92. #endif
  93. #endif
  94. #ifdef __HAIKU__
  95. #define static_assert(cond, msg) _Static_assert(cond, msg)
  96. #endif
  97. /*#define GGML_PERF*/
  98. #define GGML_DEBUG 0
  99. #define GGML_GELU_FP16
  100. #define GGML_GELU_QUICK_FP16
  101. #define GGML_SILU_FP16
  102. #define GGML_SOFT_MAX_UNROLL 4
  103. #define GGML_VEC_DOT_UNROLL 2
  104. //
  105. // logging
  106. //
  107. #if (GGML_DEBUG >= 1)
  108. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  109. #else
  110. #define GGML_PRINT_DEBUG(...)
  111. #endif
  112. #if (GGML_DEBUG >= 5)
  113. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  114. #else
  115. #define GGML_PRINT_DEBUG_5(...)
  116. #endif
  117. #if (GGML_DEBUG >= 10)
  118. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG_10(...)
  121. #endif
  122. #define GGML_PRINT(...) printf(__VA_ARGS__)
  123. #ifdef GGML_USE_ACCELERATE
  124. // uncomment to use vDSP for soft max computation
  125. // note: not sure if it is actually faster
  126. //#define GGML_SOFT_MAX_ACCELERATE
  127. #endif
  128. #if UINTPTR_MAX == 0xFFFFFFFF
  129. #define GGML_MEM_ALIGN 4
  130. #else
  131. #define GGML_MEM_ALIGN 16
  132. #endif
  133. //
  134. // logging
  135. //
  136. #if (GGML_DEBUG >= 1)
  137. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG(...)
  140. #endif
  141. #if (GGML_DEBUG >= 5)
  142. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_5(...)
  145. #endif
  146. #if (GGML_DEBUG >= 10)
  147. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_10(...)
  150. #endif
  151. #define GGML_PRINT(...) printf(__VA_ARGS__)
  152. //
  153. // end of logging block
  154. //
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void* ggml_aligned_malloc(size_t size) {
  160. void* aligned_memory = NULL;
  161. #ifdef GGML_USE_METAL
  162. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  163. #else
  164. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  165. #endif
  166. if (result != 0) {
  167. // Handle allocation failure
  168. const char *error_desc = "unknown allocation error";
  169. switch (result) {
  170. case EINVAL:
  171. error_desc = "invalid alignment value";
  172. break;
  173. case ENOMEM:
  174. error_desc = "insufficient memory";
  175. break;
  176. }
  177. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  178. __func__, error_desc, size/(1024.0*1024.0));
  179. return NULL;
  180. }
  181. return aligned_memory;
  182. }
  183. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  184. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  185. #endif
  186. #define UNUSED GGML_UNUSED
  187. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  188. //
  189. // tensor access macros
  190. //
  191. #define GGML_TENSOR_UNARY_OP_LOCALS \
  192. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  193. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  194. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  195. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  196. #define GGML_TENSOR_BINARY_OP_LOCALS \
  197. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  199. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  200. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  201. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  202. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  203. #if defined(GGML_USE_ACCELERATE)
  204. #include <Accelerate/Accelerate.h>
  205. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  206. #include "ggml-opencl.h"
  207. #endif
  208. #elif defined(GGML_USE_OPENBLAS)
  209. #if defined(GGML_BLAS_USE_MKL)
  210. #include <mkl.h>
  211. #else
  212. #include <cblas.h>
  213. #endif
  214. #elif defined(GGML_USE_CUBLAS)
  215. #include "ggml-cuda.h"
  216. #elif defined(GGML_USE_CLBLAST)
  217. #include "ggml-opencl.h"
  218. #endif
  219. #undef MIN
  220. #undef MAX
  221. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  222. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  223. // floating point type used to accumulate sums
  224. typedef double ggml_float;
  225. // 16-bit float
  226. // on Arm, we use __fp16
  227. // on x86, we use uint16_t
  228. #ifdef __ARM_NEON
  229. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  230. //
  231. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  232. //
  233. #include <arm_neon.h>
  234. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  235. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  236. #define GGML_FP16_TO_FP32(x) ((float) (x))
  237. #define GGML_FP32_TO_FP16(x) (x)
  238. #else
  239. #ifdef __wasm_simd128__
  240. #include <wasm_simd128.h>
  241. #else
  242. #ifdef __POWER9_VECTOR__
  243. #include <altivec.h>
  244. #undef bool
  245. #define bool _Bool
  246. #else
  247. #if defined(_MSC_VER) || defined(__MINGW32__)
  248. #include <intrin.h>
  249. #else
  250. #if !defined(__riscv)
  251. #include <immintrin.h>
  252. #endif
  253. #endif
  254. #endif
  255. #endif
  256. #ifdef __F16C__
  257. #ifdef _MSC_VER
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  260. #else
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  263. #endif
  264. #elif defined(__POWER9_VECTOR__)
  265. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  266. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  267. /* the inline asm below is about 12% faster than the lookup method */
  268. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  269. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  270. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  271. register float f;
  272. register double d;
  273. __asm__(
  274. "mtfprd %0,%2\n"
  275. "xscvhpdp %0,%0\n"
  276. "frsp %1,%0\n" :
  277. /* temp */ "=d"(d),
  278. /* out */ "=f"(f):
  279. /* in */ "r"(h));
  280. return f;
  281. }
  282. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  283. register double d;
  284. register ggml_fp16_t r;
  285. __asm__( /* xscvdphp can work on double or single precision */
  286. "xscvdphp %0,%2\n"
  287. "mffprd %1,%0\n" :
  288. /* temp */ "=d"(d),
  289. /* out */ "=r"(r):
  290. /* in */ "f"(f));
  291. return r;
  292. }
  293. #else
  294. // FP16 <-> FP32
  295. // ref: https://github.com/Maratyszcza/FP16
  296. static inline float fp32_from_bits(uint32_t w) {
  297. union {
  298. uint32_t as_bits;
  299. float as_value;
  300. } fp32;
  301. fp32.as_bits = w;
  302. return fp32.as_value;
  303. }
  304. static inline uint32_t fp32_to_bits(float f) {
  305. union {
  306. float as_value;
  307. uint32_t as_bits;
  308. } fp32;
  309. fp32.as_value = f;
  310. return fp32.as_bits;
  311. }
  312. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  313. const uint32_t w = (uint32_t) h << 16;
  314. const uint32_t sign = w & UINT32_C(0x80000000);
  315. const uint32_t two_w = w + w;
  316. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  317. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  318. const float exp_scale = 0x1.0p-112f;
  319. #else
  320. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  321. #endif
  322. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  323. const uint32_t magic_mask = UINT32_C(126) << 23;
  324. const float magic_bias = 0.5f;
  325. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  326. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  327. const uint32_t result = sign |
  328. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  329. return fp32_from_bits(result);
  330. }
  331. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  332. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  333. const float scale_to_inf = 0x1.0p+112f;
  334. const float scale_to_zero = 0x1.0p-110f;
  335. #else
  336. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  337. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  338. #endif
  339. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  340. const uint32_t w = fp32_to_bits(f);
  341. const uint32_t shl1_w = w + w;
  342. const uint32_t sign = w & UINT32_C(0x80000000);
  343. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  344. if (bias < UINT32_C(0x71000000)) {
  345. bias = UINT32_C(0x71000000);
  346. }
  347. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  348. const uint32_t bits = fp32_to_bits(base);
  349. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  350. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  351. const uint32_t nonsign = exp_bits + mantissa_bits;
  352. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  353. }
  354. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  355. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  356. #endif // __F16C__
  357. #endif // __ARM_NEON
  358. //
  359. // global data
  360. //
  361. // precomputed gelu table for f16 (128 KB)
  362. static ggml_fp16_t table_gelu_f16[1 << 16];
  363. // precomputed quick gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  365. // precomputed silu table for f16 (128 KB)
  366. static ggml_fp16_t table_silu_f16[1 << 16];
  367. // precomputed exp table for f16 (128 KB)
  368. static ggml_fp16_t table_exp_f16[1 << 16];
  369. // precomputed f32 table for f16 (256 KB)
  370. static float table_f32_f16[1 << 16];
  371. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  372. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  373. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  374. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  375. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  376. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  377. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  378. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  379. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  380. // precomputed tables for expanding 8bits to 8 bytes:
  381. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  382. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  383. #endif
  384. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  385. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  386. // This is also true for POWER9.
  387. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  388. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  389. uint16_t s;
  390. memcpy(&s, &f, sizeof(uint16_t));
  391. return table_f32_f16[s];
  392. }
  393. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  394. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  395. #endif
  396. // note: do not use these inside ggml.c
  397. // these are meant to be used via the ggml.h API
  398. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  399. return (float) GGML_FP16_TO_FP32(x);
  400. }
  401. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  402. return GGML_FP32_TO_FP16(x);
  403. }
  404. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  405. for (int i = 0; i < n; i++) {
  406. y[i] = GGML_FP16_TO_FP32(x[i]);
  407. }
  408. }
  409. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  410. int i = 0;
  411. #if defined(__F16C__)
  412. for (; i + 7 < n; i += 8) {
  413. __m256 x_vec = _mm256_loadu_ps(x + i);
  414. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  415. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  416. }
  417. for(; i + 3 < n; i += 4) {
  418. __m128 x_vec = _mm_loadu_ps(x + i);
  419. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  420. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  421. }
  422. #endif
  423. for (; i < n; i++) {
  424. y[i] = GGML_FP32_TO_FP16(x[i]);
  425. }
  426. }
  427. //
  428. // timing
  429. //
  430. #if defined(_MSC_VER) || defined(__MINGW32__)
  431. static int64_t timer_freq, timer_start;
  432. void ggml_time_init(void) {
  433. LARGE_INTEGER t;
  434. QueryPerformanceFrequency(&t);
  435. timer_freq = t.QuadPart;
  436. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  437. // and the uptime is high enough.
  438. // We subtract the program start time to reduce the likelihood of that happening.
  439. QueryPerformanceCounter(&t);
  440. timer_start = t.QuadPart;
  441. }
  442. int64_t ggml_time_ms(void) {
  443. LARGE_INTEGER t;
  444. QueryPerformanceCounter(&t);
  445. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  446. }
  447. int64_t ggml_time_us(void) {
  448. LARGE_INTEGER t;
  449. QueryPerformanceCounter(&t);
  450. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  451. }
  452. #else
  453. void ggml_time_init(void) {}
  454. int64_t ggml_time_ms(void) {
  455. struct timespec ts;
  456. clock_gettime(CLOCK_MONOTONIC, &ts);
  457. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  458. }
  459. int64_t ggml_time_us(void) {
  460. struct timespec ts;
  461. clock_gettime(CLOCK_MONOTONIC, &ts);
  462. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  463. }
  464. #endif
  465. int64_t ggml_cycles(void) {
  466. return clock();
  467. }
  468. int64_t ggml_cycles_per_ms(void) {
  469. return CLOCKS_PER_SEC/1000;
  470. }
  471. #ifdef GGML_PERF
  472. #define ggml_perf_time_ms() ggml_time_ms()
  473. #define ggml_perf_time_us() ggml_time_us()
  474. #define ggml_perf_cycles() ggml_cycles()
  475. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  476. #else
  477. #define ggml_perf_time_ms() 0
  478. #define ggml_perf_time_us() 0
  479. #define ggml_perf_cycles() 0
  480. #define ggml_perf_cycles_per_ms() 0
  481. #endif
  482. //
  483. // cache line
  484. //
  485. #if defined(__cpp_lib_hardware_interference_size)
  486. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  487. #else
  488. #if defined(__POWER9_VECTOR__)
  489. #define CACHE_LINE_SIZE 128
  490. #else
  491. #define CACHE_LINE_SIZE 64
  492. #endif
  493. #endif
  494. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  495. //
  496. // quantization
  497. //
  498. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  499. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  500. // multiply int8_t, add results pairwise twice
  501. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  502. // Get absolute values of x vectors
  503. const __m128i ax = _mm_sign_epi8(x, x);
  504. // Sign the values of the y vectors
  505. const __m128i sy = _mm_sign_epi8(y, x);
  506. // Perform multiplication and create 16-bit values
  507. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  508. const __m128i ones = _mm_set1_epi16(1);
  509. return _mm_madd_epi16(ones, dot);
  510. }
  511. #if __AVX__ || __AVX2__ || __AVX512F__
  512. // horizontally add 8 floats
  513. static inline float hsum_float_8(const __m256 x) {
  514. __m128 res = _mm256_extractf128_ps(x, 1);
  515. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  516. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  517. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  518. return _mm_cvtss_f32(res);
  519. }
  520. // horizontally add 8 int32_t
  521. static inline int hsum_i32_8(const __m256i a) {
  522. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  523. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  524. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  525. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  526. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  527. }
  528. // horizontally add 4 int32_t
  529. static inline int hsum_i32_4(const __m128i a) {
  530. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  531. const __m128i sum64 = _mm_add_epi32(hi64, a);
  532. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  533. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  534. }
  535. #if defined(__AVX2__) || defined(__AVX512F__)
  536. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  537. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  538. uint32_t x32;
  539. memcpy(&x32, x, sizeof(uint32_t));
  540. const __m256i shuf_mask = _mm256_set_epi64x(
  541. 0x0303030303030303, 0x0202020202020202,
  542. 0x0101010101010101, 0x0000000000000000);
  543. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  544. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  545. bytes = _mm256_or_si256(bytes, bit_mask);
  546. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  547. }
  548. // Unpack 32 4-bit fields into 32 bytes
  549. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  550. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  551. {
  552. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  553. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  554. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  555. return _mm256_and_si256(lowMask, bytes);
  556. }
  557. // add int16_t pairwise and return as float vector
  558. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  559. const __m256i ones = _mm256_set1_epi16(1);
  560. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  561. return _mm256_cvtepi32_ps(summed_pairs);
  562. }
  563. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  564. #if __AVXVNNI__
  565. const __m256i zero = _mm256_setzero_si256();
  566. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  567. return _mm256_cvtepi32_ps(summed_pairs);
  568. #else
  569. // Perform multiplication and create 16-bit values
  570. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  571. return sum_i16_pairs_float(dot);
  572. #endif
  573. }
  574. // multiply int8_t, add results pairwise twice and return as float vector
  575. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  576. #if __AVXVNNIINT8__
  577. const __m256i zero = _mm256_setzero_si256();
  578. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  579. return _mm256_cvtepi32_ps(summed_pairs);
  580. #else
  581. // Get absolute values of x vectors
  582. const __m256i ax = _mm256_sign_epi8(x, x);
  583. // Sign the values of the y vectors
  584. const __m256i sy = _mm256_sign_epi8(y, x);
  585. return mul_sum_us8_pairs_float(ax, sy);
  586. #endif
  587. }
  588. static inline __m128i packNibbles( __m256i bytes )
  589. {
  590. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  591. #if __AVX512F__
  592. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  593. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  594. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  595. #else
  596. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  597. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  598. __m256i low = _mm256_and_si256( lowByte, bytes );
  599. high = _mm256_srli_epi16( high, 4 );
  600. bytes = _mm256_or_si256( low, high );
  601. // Compress uint16_t lanes into bytes
  602. __m128i r0 = _mm256_castsi256_si128( bytes );
  603. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  604. return _mm_packus_epi16( r0, r1 );
  605. #endif
  606. }
  607. #elif defined(__AVX__)
  608. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  609. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  610. uint32_t x32;
  611. memcpy(&x32, x, sizeof(uint32_t));
  612. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  613. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  614. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  615. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  616. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  617. bytesl = _mm_or_si128(bytesl, bit_mask);
  618. bytesh = _mm_or_si128(bytesh, bit_mask);
  619. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  620. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  621. return MM256_SET_M128I(bytesh, bytesl);
  622. }
  623. // Unpack 32 4-bit fields into 32 bytes
  624. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  625. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  626. {
  627. // Load 16 bytes from memory
  628. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  629. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  630. const __m128i lowMask = _mm_set1_epi8(0xF);
  631. tmpl = _mm_and_si128(lowMask, tmpl);
  632. tmph = _mm_and_si128(lowMask, tmph);
  633. return MM256_SET_M128I(tmph, tmpl);
  634. }
  635. // add int16_t pairwise and return as float vector
  636. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  637. const __m128i ones = _mm_set1_epi16(1);
  638. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  639. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  640. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  641. return _mm256_cvtepi32_ps(summed_pairs);
  642. }
  643. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  644. const __m128i axl = _mm256_castsi256_si128(ax);
  645. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  646. const __m128i syl = _mm256_castsi256_si128(sy);
  647. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  648. // Perform multiplication and create 16-bit values
  649. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  650. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  651. return sum_i16_pairs_float(doth, dotl);
  652. }
  653. // multiply int8_t, add results pairwise twice and return as float vector
  654. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  655. const __m128i xl = _mm256_castsi256_si128(x);
  656. const __m128i xh = _mm256_extractf128_si256(x, 1);
  657. const __m128i yl = _mm256_castsi256_si128(y);
  658. const __m128i yh = _mm256_extractf128_si256(y, 1);
  659. // Get absolute values of x vectors
  660. const __m128i axl = _mm_sign_epi8(xl, xl);
  661. const __m128i axh = _mm_sign_epi8(xh, xh);
  662. // Sign the values of the y vectors
  663. const __m128i syl = _mm_sign_epi8(yl, xl);
  664. const __m128i syh = _mm_sign_epi8(yh, xh);
  665. // Perform multiplication and create 16-bit values
  666. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  667. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  668. return sum_i16_pairs_float(doth, dotl);
  669. }
  670. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  671. {
  672. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  673. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  674. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  675. __m128i low = _mm_and_si128( lowByte, bytes1 );
  676. high = _mm_srli_epi16( high, 4 );
  677. bytes1 = _mm_or_si128( low, high );
  678. high = _mm_andnot_si128( lowByte, bytes2 );
  679. low = _mm_and_si128( lowByte, bytes2 );
  680. high = _mm_srli_epi16( high, 4 );
  681. bytes2 = _mm_or_si128( low, high );
  682. return _mm_packus_epi16( bytes1, bytes2);
  683. }
  684. #endif
  685. #elif defined(__SSSE3__)
  686. // horizontally add 4x4 floats
  687. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  688. __m128 res_0 =_mm_hadd_ps(a, b);
  689. __m128 res_1 =_mm_hadd_ps(c, d);
  690. __m128 res =_mm_hadd_ps(res_0, res_1);
  691. res =_mm_hadd_ps(res, res);
  692. res =_mm_hadd_ps(res, res);
  693. return _mm_cvtss_f32(res);
  694. }
  695. #endif // __AVX__ || __AVX2__ || __AVX512F__
  696. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  697. #if defined(__ARM_NEON)
  698. #if !defined(__aarch64__)
  699. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  700. return
  701. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  702. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  703. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  704. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  705. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  706. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  707. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  708. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  709. }
  710. inline static int16_t vaddvq_s8(int8x16_t v) {
  711. return
  712. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  713. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  714. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  715. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  716. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  717. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  718. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  719. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  720. }
  721. inline static int32_t vaddvq_s16(int16x8_t v) {
  722. return
  723. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  724. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  725. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  726. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  727. }
  728. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  729. return
  730. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  731. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  732. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  733. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  734. }
  735. inline static int32_t vaddvq_s32(int32x4_t v) {
  736. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  737. }
  738. inline static float vaddvq_f32(float32x4_t v) {
  739. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  740. }
  741. inline static float vminvq_f32(float32x4_t v) {
  742. return
  743. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  744. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  745. }
  746. inline static float vmaxvq_f32(float32x4_t v) {
  747. return
  748. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  749. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  750. }
  751. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  752. int32x4_t res;
  753. res[0] = roundf(vgetq_lane_f32(v, 0));
  754. res[1] = roundf(vgetq_lane_f32(v, 1));
  755. res[2] = roundf(vgetq_lane_f32(v, 2));
  756. res[3] = roundf(vgetq_lane_f32(v, 3));
  757. return res;
  758. }
  759. #endif
  760. #endif
  761. #define QK4_0 32
  762. typedef struct {
  763. ggml_fp16_t d; // delta
  764. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  765. } block_q4_0;
  766. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  767. #define QK4_1 32
  768. typedef struct {
  769. ggml_fp16_t d; // delta
  770. ggml_fp16_t m; // min
  771. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  772. } block_q4_1;
  773. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  774. #define QK5_0 32
  775. typedef struct {
  776. ggml_fp16_t d; // delta
  777. uint8_t qh[4]; // 5-th bit of quants
  778. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  779. } block_q5_0;
  780. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  781. #define QK5_1 32
  782. typedef struct {
  783. ggml_fp16_t d; // delta
  784. ggml_fp16_t m; // min
  785. uint8_t qh[4]; // 5-th bit of quants
  786. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  787. } block_q5_1;
  788. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  789. #define QK8_0 32
  790. typedef struct {
  791. ggml_fp16_t d; // delta
  792. int8_t qs[QK8_0]; // quants
  793. } block_q8_0;
  794. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  795. #define QK8_1 32
  796. typedef struct {
  797. float d; // delta
  798. float s; // d * sum(qs[i])
  799. int8_t qs[QK8_1]; // quants
  800. } block_q8_1;
  801. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  802. // reference implementation for deterministic creation of model files
  803. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  804. static const int qk = QK4_0;
  805. assert(k % qk == 0);
  806. const int nb = k / qk;
  807. for (int i = 0; i < nb; i++) {
  808. float amax = 0.0f; // absolute max
  809. float max = 0.0f;
  810. for (int j = 0; j < qk; j++) {
  811. const float v = x[i*qk + j];
  812. if (amax < fabsf(v)) {
  813. amax = fabsf(v);
  814. max = v;
  815. }
  816. }
  817. const float d = max / -8;
  818. const float id = d ? 1.0f/d : 0.0f;
  819. y[i].d = GGML_FP32_TO_FP16(d);
  820. for (int j = 0; j < qk/2; ++j) {
  821. const float x0 = x[i*qk + 0 + j]*id;
  822. const float x1 = x[i*qk + qk/2 + j]*id;
  823. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  824. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  825. y[i].qs[j] = xi0;
  826. y[i].qs[j] |= xi1 << 4;
  827. }
  828. }
  829. }
  830. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  831. quantize_row_q4_0_reference(x, y, k);
  832. }
  833. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  834. const int qk = QK4_1;
  835. assert(k % qk == 0);
  836. const int nb = k / qk;
  837. for (int i = 0; i < nb; i++) {
  838. float min = FLT_MAX;
  839. float max = -FLT_MAX;
  840. for (int j = 0; j < qk; j++) {
  841. const float v = x[i*qk + j];
  842. if (v < min) min = v;
  843. if (v > max) max = v;
  844. }
  845. const float d = (max - min) / ((1 << 4) - 1);
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].d = GGML_FP32_TO_FP16(d);
  848. y[i].m = GGML_FP32_TO_FP16(min);
  849. for (int j = 0; j < qk/2; ++j) {
  850. const float x0 = (x[i*qk + 0 + j] - min)*id;
  851. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  852. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  853. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  854. y[i].qs[j] = xi0;
  855. y[i].qs[j] |= xi1 << 4;
  856. }
  857. }
  858. }
  859. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  860. quantize_row_q4_1_reference(x, y, k);
  861. }
  862. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  863. static const int qk = QK5_0;
  864. assert(k % qk == 0);
  865. const int nb = k / qk;
  866. for (int i = 0; i < nb; i++) {
  867. float amax = 0.0f; // absolute max
  868. float max = 0.0f;
  869. for (int j = 0; j < qk; j++) {
  870. const float v = x[i*qk + j];
  871. if (amax < fabsf(v)) {
  872. amax = fabsf(v);
  873. max = v;
  874. }
  875. }
  876. const float d = max / -16;
  877. const float id = d ? 1.0f/d : 0.0f;
  878. y[i].d = GGML_FP32_TO_FP16(d);
  879. uint32_t qh = 0;
  880. for (int j = 0; j < qk/2; ++j) {
  881. const float x0 = x[i*qk + 0 + j]*id;
  882. const float x1 = x[i*qk + qk/2 + j]*id;
  883. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  884. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  885. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  886. // get the 5-th bit and store it in qh at the right position
  887. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  888. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  889. }
  890. memcpy(&y[i].qh, &qh, sizeof(qh));
  891. }
  892. }
  893. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  894. quantize_row_q5_0_reference(x, y, k);
  895. }
  896. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  897. const int qk = QK5_1;
  898. assert(k % qk == 0);
  899. const int nb = k / qk;
  900. for (int i = 0; i < nb; i++) {
  901. float min = FLT_MAX;
  902. float max = -FLT_MAX;
  903. for (int j = 0; j < qk; j++) {
  904. const float v = x[i*qk + j];
  905. if (v < min) min = v;
  906. if (v > max) max = v;
  907. }
  908. const float d = (max - min) / ((1 << 5) - 1);
  909. const float id = d ? 1.0f/d : 0.0f;
  910. y[i].d = GGML_FP32_TO_FP16(d);
  911. y[i].m = GGML_FP32_TO_FP16(min);
  912. uint32_t qh = 0;
  913. for (int j = 0; j < qk/2; ++j) {
  914. const float x0 = (x[i*qk + 0 + j] - min)*id;
  915. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  916. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  917. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  918. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  919. // get the 5-th bit and store it in qh at the right position
  920. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  921. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  922. }
  923. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  924. }
  925. }
  926. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  927. quantize_row_q5_1_reference(x, y, k);
  928. }
  929. // reference implementation for deterministic creation of model files
  930. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  931. assert(k % QK8_0 == 0);
  932. const int nb = k / QK8_0;
  933. for (int i = 0; i < nb; i++) {
  934. float amax = 0.0f; // absolute max
  935. for (int j = 0; j < QK8_0; j++) {
  936. const float v = x[i*QK8_0 + j];
  937. amax = MAX(amax, fabsf(v));
  938. }
  939. const float d = amax / ((1 << 7) - 1);
  940. const float id = d ? 1.0f/d : 0.0f;
  941. y[i].d = GGML_FP32_TO_FP16(d);
  942. for (int j = 0; j < QK8_0; ++j) {
  943. const float x0 = x[i*QK8_0 + j]*id;
  944. y[i].qs[j] = roundf(x0);
  945. }
  946. }
  947. }
  948. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  949. assert(QK8_0 == 32);
  950. assert(k % QK8_0 == 0);
  951. const int nb = k / QK8_0;
  952. block_q8_0 * restrict y = vy;
  953. #if defined(__ARM_NEON)
  954. for (int i = 0; i < nb; i++) {
  955. float32x4_t srcv [8];
  956. float32x4_t asrcv[8];
  957. float32x4_t amaxv[8];
  958. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  959. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  960. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  961. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  962. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  963. const float amax = vmaxvq_f32(amaxv[0]);
  964. const float d = amax / ((1 << 7) - 1);
  965. const float id = d ? 1.0f/d : 0.0f;
  966. y[i].d = GGML_FP32_TO_FP16(d);
  967. for (int j = 0; j < 8; j++) {
  968. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  969. const int32x4_t vi = vcvtnq_s32_f32(v);
  970. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  971. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  972. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  973. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  974. }
  975. }
  976. #elif defined(__wasm_simd128__)
  977. for (int i = 0; i < nb; i++) {
  978. v128_t srcv [8];
  979. v128_t asrcv[8];
  980. v128_t amaxv[8];
  981. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  982. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  983. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  984. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  985. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  986. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  987. wasm_f32x4_extract_lane(amaxv[0], 1)),
  988. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  989. wasm_f32x4_extract_lane(amaxv[0], 3)));
  990. const float d = amax / ((1 << 7) - 1);
  991. const float id = d ? 1.0f/d : 0.0f;
  992. y[i].d = GGML_FP32_TO_FP16(d);
  993. for (int j = 0; j < 8; j++) {
  994. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  995. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  996. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  997. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  998. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  999. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1000. }
  1001. }
  1002. #elif defined(__AVX2__) || defined(__AVX__)
  1003. for (int i = 0; i < nb; i++) {
  1004. // Load elements into 4 AVX vectors
  1005. __m256 v0 = _mm256_loadu_ps( x );
  1006. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1007. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1008. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1009. x += 32;
  1010. // Compute max(abs(e)) for the block
  1011. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1012. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1013. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1014. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1015. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1016. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1017. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1018. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1019. const float maxScalar = _mm_cvtss_f32( max4 );
  1020. // Quantize these floats
  1021. const float d = maxScalar / 127.f;
  1022. y[i].d = GGML_FP32_TO_FP16(d);
  1023. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1024. const __m256 mul = _mm256_set1_ps( id );
  1025. // Apply the multiplier
  1026. v0 = _mm256_mul_ps( v0, mul );
  1027. v1 = _mm256_mul_ps( v1, mul );
  1028. v2 = _mm256_mul_ps( v2, mul );
  1029. v3 = _mm256_mul_ps( v3, mul );
  1030. // Round to nearest integer
  1031. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1032. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1033. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1034. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1035. // Convert floats to integers
  1036. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1037. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1038. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1039. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1040. #if defined(__AVX2__)
  1041. // Convert int32 to int16
  1042. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1043. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1044. // Convert int16 to int8
  1045. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1046. // We got our precious signed bytes, but the order is now wrong
  1047. // These AVX2 pack instructions process 16-byte pieces independently
  1048. // The following instruction is fixing the order
  1049. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1050. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1051. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1052. #else
  1053. // Since we don't have in AVX some necessary functions,
  1054. // we split the registers in half and call AVX2 analogs from SSE
  1055. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1056. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1057. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1058. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1059. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1060. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1061. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1062. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1063. // Convert int32 to int16
  1064. ni0 = _mm_packs_epi32( ni0, ni1 );
  1065. ni2 = _mm_packs_epi32( ni2, ni3 );
  1066. ni4 = _mm_packs_epi32( ni4, ni5 );
  1067. ni6 = _mm_packs_epi32( ni6, ni7 );
  1068. // Convert int16 to int8
  1069. ni0 = _mm_packs_epi16( ni0, ni2 );
  1070. ni4 = _mm_packs_epi16( ni4, ni6 );
  1071. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1072. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1073. #endif
  1074. }
  1075. #else
  1076. // scalar
  1077. quantize_row_q8_0_reference(x, y, k);
  1078. #endif
  1079. }
  1080. // reference implementation for deterministic creation of model files
  1081. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1082. assert(QK8_1 == 32);
  1083. assert(k % QK8_1 == 0);
  1084. const int nb = k / QK8_1;
  1085. for (int i = 0; i < nb; i++) {
  1086. float amax = 0.0f; // absolute max
  1087. for (int j = 0; j < QK8_1; j++) {
  1088. const float v = x[i*QK8_1 + j];
  1089. amax = MAX(amax, fabsf(v));
  1090. }
  1091. const float d = amax / ((1 << 7) - 1);
  1092. const float id = d ? 1.0f/d : 0.0f;
  1093. y[i].d = d;
  1094. int sum = 0;
  1095. for (int j = 0; j < QK8_1/2; ++j) {
  1096. const float v0 = x[i*QK8_1 + j]*id;
  1097. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1098. y[i].qs[ j] = roundf(v0);
  1099. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1100. sum += y[i].qs[ j];
  1101. sum += y[i].qs[QK8_1/2 + j];
  1102. }
  1103. y[i].s = sum*d;
  1104. }
  1105. }
  1106. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1107. assert(k % QK8_1 == 0);
  1108. const int nb = k / QK8_1;
  1109. block_q8_1 * restrict y = vy;
  1110. #if defined(__ARM_NEON)
  1111. for (int i = 0; i < nb; i++) {
  1112. float32x4_t srcv [8];
  1113. float32x4_t asrcv[8];
  1114. float32x4_t amaxv[8];
  1115. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1116. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1117. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1118. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1119. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1120. const float amax = vmaxvq_f32(amaxv[0]);
  1121. const float d = amax / ((1 << 7) - 1);
  1122. const float id = d ? 1.0f/d : 0.0f;
  1123. y[i].d = d;
  1124. int32x4_t accv = vdupq_n_s32(0);
  1125. for (int j = 0; j < 8; j++) {
  1126. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1127. const int32x4_t vi = vcvtnq_s32_f32(v);
  1128. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1129. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1130. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1131. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1132. accv = vaddq_s32(accv, vi);
  1133. }
  1134. y[i].s = d * vaddvq_s32(accv);
  1135. }
  1136. #elif defined(__wasm_simd128__)
  1137. for (int i = 0; i < nb; i++) {
  1138. v128_t srcv [8];
  1139. v128_t asrcv[8];
  1140. v128_t amaxv[8];
  1141. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1142. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1143. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1144. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1145. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1146. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1147. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1148. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1149. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1150. const float d = amax / ((1 << 7) - 1);
  1151. const float id = d ? 1.0f/d : 0.0f;
  1152. y[i].d = d;
  1153. v128_t accv = wasm_i32x4_splat(0);
  1154. for (int j = 0; j < 8; j++) {
  1155. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1156. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1157. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1158. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1159. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1160. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1161. accv = wasm_i32x4_add(accv, vi);
  1162. }
  1163. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1164. wasm_i32x4_extract_lane(accv, 1) +
  1165. wasm_i32x4_extract_lane(accv, 2) +
  1166. wasm_i32x4_extract_lane(accv, 3));
  1167. }
  1168. #elif defined(__AVX2__) || defined(__AVX__)
  1169. for (int i = 0; i < nb; i++) {
  1170. // Load elements into 4 AVX vectors
  1171. __m256 v0 = _mm256_loadu_ps( x );
  1172. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1173. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1174. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1175. x += 32;
  1176. // Compute max(abs(e)) for the block
  1177. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1178. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1179. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1180. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1182. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1183. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1184. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1185. const float maxScalar = _mm_cvtss_f32( max4 );
  1186. // Quantize these floats
  1187. const float d = maxScalar / 127.f;
  1188. y[i].d = d;
  1189. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1190. const __m256 mul = _mm256_set1_ps( id );
  1191. // Apply the multiplier
  1192. v0 = _mm256_mul_ps( v0, mul );
  1193. v1 = _mm256_mul_ps( v1, mul );
  1194. v2 = _mm256_mul_ps( v2, mul );
  1195. v3 = _mm256_mul_ps( v3, mul );
  1196. // Round to nearest integer
  1197. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1198. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1199. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1200. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1201. // Convert floats to integers
  1202. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1203. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1204. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1205. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1206. #if defined(__AVX2__)
  1207. // Compute the sum of the quants and set y[i].s
  1208. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1209. // Convert int32 to int16
  1210. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1211. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1212. // Convert int16 to int8
  1213. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // We got our precious signed bytes, but the order is now wrong
  1215. // These AVX2 pack instructions process 16-byte pieces independently
  1216. // The following instruction is fixing the order
  1217. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1218. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1219. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1220. #else
  1221. // Since we don't have in AVX some necessary functions,
  1222. // we split the registers in half and call AVX2 analogs from SSE
  1223. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1224. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1225. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1226. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1227. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1228. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1229. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1230. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1231. // Compute the sum of the quants and set y[i].s
  1232. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1233. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1234. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1235. // Convert int32 to int16
  1236. ni0 = _mm_packs_epi32( ni0, ni1 );
  1237. ni2 = _mm_packs_epi32( ni2, ni3 );
  1238. ni4 = _mm_packs_epi32( ni4, ni5 );
  1239. ni6 = _mm_packs_epi32( ni6, ni7 );
  1240. // Convert int16 to int8
  1241. ni0 = _mm_packs_epi16( ni0, ni2 );
  1242. ni4 = _mm_packs_epi16( ni4, ni6 );
  1243. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1244. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1245. #endif
  1246. }
  1247. #else
  1248. // scalar
  1249. quantize_row_q8_1_reference(x, y, k);
  1250. #endif
  1251. }
  1252. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1253. static const int qk = QK4_0;
  1254. assert(k % qk == 0);
  1255. const int nb = k / qk;
  1256. for (int i = 0; i < nb; i++) {
  1257. const float d = GGML_FP16_TO_FP32(x[i].d);
  1258. for (int j = 0; j < qk/2; ++j) {
  1259. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1260. const int x1 = (x[i].qs[j] >> 4) - 8;
  1261. y[i*qk + j + 0 ] = x0*d;
  1262. y[i*qk + j + qk/2] = x1*d;
  1263. }
  1264. }
  1265. }
  1266. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1267. static const int qk = QK4_1;
  1268. assert(k % qk == 0);
  1269. const int nb = k / qk;
  1270. for (int i = 0; i < nb; i++) {
  1271. const float d = GGML_FP16_TO_FP32(x[i].d);
  1272. const float m = GGML_FP16_TO_FP32(x[i].m);
  1273. for (int j = 0; j < qk/2; ++j) {
  1274. const int x0 = (x[i].qs[j] & 0x0F);
  1275. const int x1 = (x[i].qs[j] >> 4);
  1276. y[i*qk + j + 0 ] = x0*d + m;
  1277. y[i*qk + j + qk/2] = x1*d + m;
  1278. }
  1279. }
  1280. }
  1281. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1282. static const int qk = QK5_0;
  1283. assert(k % qk == 0);
  1284. const int nb = k / qk;
  1285. for (int i = 0; i < nb; i++) {
  1286. const float d = GGML_FP16_TO_FP32(x[i].d);
  1287. uint32_t qh;
  1288. memcpy(&qh, x[i].qh, sizeof(qh));
  1289. for (int j = 0; j < qk/2; ++j) {
  1290. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1291. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1292. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1293. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1294. y[i*qk + j + 0 ] = x0*d;
  1295. y[i*qk + j + qk/2] = x1*d;
  1296. }
  1297. }
  1298. }
  1299. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1300. static const int qk = QK5_1;
  1301. assert(k % qk == 0);
  1302. const int nb = k / qk;
  1303. for (int i = 0; i < nb; i++) {
  1304. const float d = GGML_FP16_TO_FP32(x[i].d);
  1305. const float m = GGML_FP16_TO_FP32(x[i].m);
  1306. uint32_t qh;
  1307. memcpy(&qh, x[i].qh, sizeof(qh));
  1308. for (int j = 0; j < qk/2; ++j) {
  1309. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1310. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1311. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1312. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1313. y[i*qk + j + 0 ] = x0*d + m;
  1314. y[i*qk + j + qk/2] = x1*d + m;
  1315. }
  1316. }
  1317. }
  1318. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1319. static const int qk = QK8_0;
  1320. assert(k % qk == 0);
  1321. const int nb = k / qk;
  1322. const block_q8_0 * restrict x = vx;
  1323. for (int i = 0; i < nb; i++) {
  1324. const float d = GGML_FP16_TO_FP32(x[i].d);
  1325. for (int j = 0; j < qk; ++j) {
  1326. y[i*qk + j] = x[i].qs[j]*d;
  1327. }
  1328. }
  1329. }
  1330. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1331. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1332. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1333. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1334. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1338. [GGML_TYPE_F32] = {
  1339. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1340. .vec_dot_type = GGML_TYPE_F32,
  1341. },
  1342. [GGML_TYPE_F16] = {
  1343. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1344. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1345. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1346. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1347. .vec_dot_type = GGML_TYPE_F16,
  1348. },
  1349. [GGML_TYPE_Q4_0] = {
  1350. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1351. .from_float = quantize_row_q4_0,
  1352. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1353. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1354. .vec_dot_type = GGML_TYPE_Q8_0,
  1355. },
  1356. [GGML_TYPE_Q4_1] = {
  1357. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1358. .from_float = quantize_row_q4_1,
  1359. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1360. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1361. .vec_dot_type = GGML_TYPE_Q8_1,
  1362. },
  1363. [GGML_TYPE_Q5_0] = {
  1364. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1365. .from_float = quantize_row_q5_0,
  1366. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1367. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1368. .vec_dot_type = GGML_TYPE_Q8_0,
  1369. },
  1370. [GGML_TYPE_Q5_1] = {
  1371. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1372. .from_float = quantize_row_q5_1,
  1373. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1374. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1375. .vec_dot_type = GGML_TYPE_Q8_1,
  1376. },
  1377. [GGML_TYPE_Q8_0] = {
  1378. .to_float = dequantize_row_q8_0,
  1379. .from_float = quantize_row_q8_0,
  1380. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1381. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1382. .vec_dot_type = GGML_TYPE_Q8_0,
  1383. },
  1384. [GGML_TYPE_Q8_1] = {
  1385. .from_float = quantize_row_q8_1,
  1386. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1387. .vec_dot_type = GGML_TYPE_Q8_1,
  1388. },
  1389. #ifdef GGML_USE_K_QUANTS
  1390. [GGML_TYPE_Q2_K] = {
  1391. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1392. .from_float = quantize_row_q2_K,
  1393. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1394. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1395. .vec_dot_type = GGML_TYPE_Q8_K,
  1396. },
  1397. [GGML_TYPE_Q3_K] = {
  1398. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1399. .from_float = quantize_row_q3_K,
  1400. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1401. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1402. .vec_dot_type = GGML_TYPE_Q8_K,
  1403. },
  1404. [GGML_TYPE_Q4_K] = {
  1405. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1406. .from_float = quantize_row_q4_K,
  1407. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1408. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1409. .vec_dot_type = GGML_TYPE_Q8_K,
  1410. },
  1411. [GGML_TYPE_Q5_K] = {
  1412. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1413. .from_float = quantize_row_q5_K,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1415. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1416. .vec_dot_type = GGML_TYPE_Q8_K,
  1417. },
  1418. [GGML_TYPE_Q6_K] = {
  1419. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1420. .from_float = quantize_row_q6_K,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1422. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1423. .vec_dot_type = GGML_TYPE_Q8_K,
  1424. },
  1425. [GGML_TYPE_Q8_K] = {
  1426. .from_float = quantize_row_q8_K,
  1427. }
  1428. #endif
  1429. };
  1430. // For internal test use
  1431. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1432. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1433. return type_traits[i];
  1434. }
  1435. //
  1436. // simd mappings
  1437. //
  1438. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1439. // we then implement the fundamental computation operations below using only these macros
  1440. // adding support for new architectures requires to define the corresponding SIMD macros
  1441. //
  1442. // GGML_F32_STEP / GGML_F16_STEP
  1443. // number of elements to process in a single step
  1444. //
  1445. // GGML_F32_EPR / GGML_F16_EPR
  1446. // number of elements to fit in a single register
  1447. //
  1448. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1449. #define GGML_SIMD
  1450. // F32 NEON
  1451. #define GGML_F32_STEP 16
  1452. #define GGML_F32_EPR 4
  1453. #define GGML_F32x4 float32x4_t
  1454. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1455. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1456. #define GGML_F32x4_LOAD vld1q_f32
  1457. #define GGML_F32x4_STORE vst1q_f32
  1458. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1459. #define GGML_F32x4_ADD vaddq_f32
  1460. #define GGML_F32x4_MUL vmulq_f32
  1461. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1462. #define GGML_F32x4_REDUCE(res, x) \
  1463. { \
  1464. int offset = GGML_F32_ARR >> 1; \
  1465. for (int i = 0; i < offset; ++i) { \
  1466. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1467. } \
  1468. offset >>= 1; \
  1469. for (int i = 0; i < offset; ++i) { \
  1470. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1471. } \
  1472. offset >>= 1; \
  1473. for (int i = 0; i < offset; ++i) { \
  1474. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1475. } \
  1476. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1477. }
  1478. #define GGML_F32_VEC GGML_F32x4
  1479. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1480. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1481. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1482. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1483. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1484. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1485. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1486. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1487. // F16 NEON
  1488. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1489. #define GGML_F16_STEP 32
  1490. #define GGML_F16_EPR 8
  1491. #define GGML_F16x8 float16x8_t
  1492. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1493. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1494. #define GGML_F16x8_LOAD vld1q_f16
  1495. #define GGML_F16x8_STORE vst1q_f16
  1496. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1497. #define GGML_F16x8_ADD vaddq_f16
  1498. #define GGML_F16x8_MUL vmulq_f16
  1499. #define GGML_F16x8_REDUCE(res, x) \
  1500. { \
  1501. int offset = GGML_F16_ARR >> 1; \
  1502. for (int i = 0; i < offset; ++i) { \
  1503. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1504. } \
  1505. offset >>= 1; \
  1506. for (int i = 0; i < offset; ++i) { \
  1507. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1508. } \
  1509. offset >>= 1; \
  1510. for (int i = 0; i < offset; ++i) { \
  1511. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1512. } \
  1513. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1514. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1515. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1516. }
  1517. #define GGML_F16_VEC GGML_F16x8
  1518. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1519. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1520. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1521. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1522. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1523. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1524. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1525. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1526. #else
  1527. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1528. // and take advantage of the vcvt_ functions to convert to/from FP16
  1529. #define GGML_F16_STEP 16
  1530. #define GGML_F16_EPR 4
  1531. #define GGML_F32Cx4 float32x4_t
  1532. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1533. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1534. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1535. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1536. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1537. #define GGML_F32Cx4_ADD vaddq_f32
  1538. #define GGML_F32Cx4_MUL vmulq_f32
  1539. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1540. #define GGML_F16_VEC GGML_F32Cx4
  1541. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1542. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1543. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1544. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1545. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1546. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1547. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1548. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1549. #endif
  1550. #elif defined(__AVX__)
  1551. #define GGML_SIMD
  1552. // F32 AVX
  1553. #define GGML_F32_STEP 32
  1554. #define GGML_F32_EPR 8
  1555. #define GGML_F32x8 __m256
  1556. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1557. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1558. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1559. #define GGML_F32x8_STORE _mm256_storeu_ps
  1560. #if defined(__FMA__)
  1561. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1562. #else
  1563. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1564. #endif
  1565. #define GGML_F32x8_ADD _mm256_add_ps
  1566. #define GGML_F32x8_MUL _mm256_mul_ps
  1567. #define GGML_F32x8_REDUCE(res, x) \
  1568. { \
  1569. int offset = GGML_F32_ARR >> 1; \
  1570. for (int i = 0; i < offset; ++i) { \
  1571. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1572. } \
  1573. offset >>= 1; \
  1574. for (int i = 0; i < offset; ++i) { \
  1575. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1576. } \
  1577. offset >>= 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1580. } \
  1581. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1582. _mm256_extractf128_ps(x[0], 1)); \
  1583. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1584. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1585. }
  1586. // TODO: is this optimal ?
  1587. #define GGML_F32_VEC GGML_F32x8
  1588. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1589. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1590. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1591. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1592. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1593. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1594. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1595. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1596. // F16 AVX
  1597. #define GGML_F16_STEP 32
  1598. #define GGML_F16_EPR 8
  1599. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1600. #define GGML_F32Cx8 __m256
  1601. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1602. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1603. #if defined(__F16C__)
  1604. // the _mm256_cvt intrinsics require F16C
  1605. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1606. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1607. #else
  1608. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1609. float tmp[8];
  1610. for (int i = 0; i < 8; i++) {
  1611. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1612. }
  1613. return _mm256_loadu_ps(tmp);
  1614. }
  1615. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1616. float arr[8];
  1617. _mm256_storeu_ps(arr, y);
  1618. for (int i = 0; i < 8; i++)
  1619. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1620. }
  1621. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1622. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1623. #endif
  1624. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1625. #define GGML_F32Cx8_ADD _mm256_add_ps
  1626. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1627. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1628. #define GGML_F16_VEC GGML_F32Cx8
  1629. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1630. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1631. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1632. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1633. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1634. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1635. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1636. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1637. #elif defined(__POWER9_VECTOR__)
  1638. #define GGML_SIMD
  1639. // F32 POWER9
  1640. #define GGML_F32_STEP 32
  1641. #define GGML_F32_EPR 4
  1642. #define GGML_F32x4 vector float
  1643. #define GGML_F32x4_ZERO 0.0f
  1644. #define GGML_F32x4_SET1 vec_splats
  1645. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1646. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1647. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1648. #define GGML_F32x4_ADD vec_add
  1649. #define GGML_F32x4_MUL vec_mul
  1650. #define GGML_F32x4_REDUCE(res, x) \
  1651. { \
  1652. int offset = GGML_F32_ARR >> 1; \
  1653. for (int i = 0; i < offset; ++i) { \
  1654. x[i] = vec_add(x[i], x[offset+i]); \
  1655. } \
  1656. offset >>= 1; \
  1657. for (int i = 0; i < offset; ++i) { \
  1658. x[i] = vec_add(x[i], x[offset+i]); \
  1659. } \
  1660. offset >>= 1; \
  1661. for (int i = 0; i < offset; ++i) { \
  1662. x[i] = vec_add(x[i], x[offset+i]); \
  1663. } \
  1664. res = vec_extract(x[0], 0) + \
  1665. vec_extract(x[0], 1) + \
  1666. vec_extract(x[0], 2) + \
  1667. vec_extract(x[0], 3); \
  1668. }
  1669. #define GGML_F32_VEC GGML_F32x4
  1670. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1671. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1672. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1673. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1674. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1675. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1676. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1677. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1678. // F16 POWER9
  1679. #define GGML_F16_STEP GGML_F32_STEP
  1680. #define GGML_F16_EPR GGML_F32_EPR
  1681. #define GGML_F16_VEC GGML_F32x4
  1682. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1683. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1684. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1685. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1686. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1687. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1688. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1689. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1690. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1691. #define GGML_F16_VEC_STORE(p, r, i) \
  1692. if (i & 0x1) \
  1693. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1694. r[i - GGML_ENDIAN_BYTE(0)]), \
  1695. 0, p - GGML_F16_EPR)
  1696. #elif defined(__wasm_simd128__)
  1697. #define GGML_SIMD
  1698. // F32 WASM
  1699. #define GGML_F32_STEP 16
  1700. #define GGML_F32_EPR 4
  1701. #define GGML_F32x4 v128_t
  1702. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1703. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1704. #define GGML_F32x4_LOAD wasm_v128_load
  1705. #define GGML_F32x4_STORE wasm_v128_store
  1706. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1707. #define GGML_F32x4_ADD wasm_f32x4_add
  1708. #define GGML_F32x4_MUL wasm_f32x4_mul
  1709. #define GGML_F32x4_REDUCE(res, x) \
  1710. { \
  1711. int offset = GGML_F32_ARR >> 1; \
  1712. for (int i = 0; i < offset; ++i) { \
  1713. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1714. } \
  1715. offset >>= 1; \
  1716. for (int i = 0; i < offset; ++i) { \
  1717. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1718. } \
  1719. offset >>= 1; \
  1720. for (int i = 0; i < offset; ++i) { \
  1721. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1722. } \
  1723. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1724. wasm_f32x4_extract_lane(x[0], 1) + \
  1725. wasm_f32x4_extract_lane(x[0], 2) + \
  1726. wasm_f32x4_extract_lane(x[0], 3); \
  1727. }
  1728. #define GGML_F32_VEC GGML_F32x4
  1729. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1730. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1731. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1732. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1733. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1734. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1735. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1736. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1737. // F16 WASM
  1738. #define GGML_F16_STEP 16
  1739. #define GGML_F16_EPR 4
  1740. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1741. float tmp[4];
  1742. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1743. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1744. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1745. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1746. return wasm_v128_load(tmp);
  1747. }
  1748. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1749. float tmp[4];
  1750. wasm_v128_store(tmp, x);
  1751. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1752. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1753. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1754. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1755. }
  1756. #define GGML_F16x4 v128_t
  1757. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1758. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1759. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1760. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1761. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1762. #define GGML_F16x4_ADD wasm_f32x4_add
  1763. #define GGML_F16x4_MUL wasm_f32x4_mul
  1764. #define GGML_F16x4_REDUCE(res, x) \
  1765. { \
  1766. int offset = GGML_F16_ARR >> 1; \
  1767. for (int i = 0; i < offset; ++i) { \
  1768. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1769. } \
  1770. offset >>= 1; \
  1771. for (int i = 0; i < offset; ++i) { \
  1772. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1773. } \
  1774. offset >>= 1; \
  1775. for (int i = 0; i < offset; ++i) { \
  1776. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1777. } \
  1778. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1779. wasm_f32x4_extract_lane(x[0], 1) + \
  1780. wasm_f32x4_extract_lane(x[0], 2) + \
  1781. wasm_f32x4_extract_lane(x[0], 3); \
  1782. }
  1783. #define GGML_F16_VEC GGML_F16x4
  1784. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1785. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1786. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1787. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1788. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1789. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1790. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1791. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1792. #elif defined(__SSE3__)
  1793. #define GGML_SIMD
  1794. // F32 SSE
  1795. #define GGML_F32_STEP 32
  1796. #define GGML_F32_EPR 4
  1797. #define GGML_F32x4 __m128
  1798. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1799. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1800. #define GGML_F32x4_LOAD _mm_loadu_ps
  1801. #define GGML_F32x4_STORE _mm_storeu_ps
  1802. #if defined(__FMA__)
  1803. // TODO: Does this work?
  1804. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1805. #else
  1806. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1807. #endif
  1808. #define GGML_F32x4_ADD _mm_add_ps
  1809. #define GGML_F32x4_MUL _mm_mul_ps
  1810. #define GGML_F32x4_REDUCE(res, x) \
  1811. { \
  1812. int offset = GGML_F32_ARR >> 1; \
  1813. for (int i = 0; i < offset; ++i) { \
  1814. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1815. } \
  1816. offset >>= 1; \
  1817. for (int i = 0; i < offset; ++i) { \
  1818. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1819. } \
  1820. offset >>= 1; \
  1821. for (int i = 0; i < offset; ++i) { \
  1822. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1823. } \
  1824. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1825. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1826. }
  1827. // TODO: is this optimal ?
  1828. #define GGML_F32_VEC GGML_F32x4
  1829. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1830. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1831. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1832. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1833. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1834. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1835. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1836. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1837. // F16 SSE
  1838. #define GGML_F16_STEP 32
  1839. #define GGML_F16_EPR 4
  1840. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1841. float tmp[4];
  1842. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1843. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1844. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1845. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1846. return _mm_loadu_ps(tmp);
  1847. }
  1848. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1849. float arr[4];
  1850. _mm_storeu_ps(arr, y);
  1851. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1852. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1853. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1854. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1855. }
  1856. #define GGML_F32Cx4 __m128
  1857. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1858. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1859. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1860. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1861. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1862. #define GGML_F32Cx4_ADD _mm_add_ps
  1863. #define GGML_F32Cx4_MUL _mm_mul_ps
  1864. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1865. #define GGML_F16_VEC GGML_F32Cx4
  1866. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1867. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1868. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1869. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1870. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1871. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1872. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1873. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1874. #endif
  1875. // GGML_F32_ARR / GGML_F16_ARR
  1876. // number of registers to use per step
  1877. #ifdef GGML_SIMD
  1878. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1879. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1880. #endif
  1881. //
  1882. // fundamental operations
  1883. //
  1884. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1885. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1886. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1887. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1889. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1890. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1891. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1892. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1893. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1894. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1895. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1896. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1897. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1898. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1899. #ifdef GGML_SIMD
  1900. float sumf = 0.0f;
  1901. const int np = (n & ~(GGML_F32_STEP - 1));
  1902. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1903. GGML_F32_VEC ax[GGML_F32_ARR];
  1904. GGML_F32_VEC ay[GGML_F32_ARR];
  1905. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1906. for (int j = 0; j < GGML_F32_ARR; j++) {
  1907. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1908. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1909. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1910. }
  1911. }
  1912. // reduce sum0..sum3 to sum0
  1913. GGML_F32_VEC_REDUCE(sumf, sum);
  1914. // leftovers
  1915. for (int i = np; i < n; ++i) {
  1916. sumf += x[i]*y[i];
  1917. }
  1918. #else
  1919. // scalar
  1920. ggml_float sumf = 0.0;
  1921. for (int i = 0; i < n; ++i) {
  1922. sumf += (ggml_float)(x[i]*y[i]);
  1923. }
  1924. #endif
  1925. *s = sumf;
  1926. }
  1927. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1928. ggml_float sumf = 0.0;
  1929. #if defined(GGML_SIMD)
  1930. const int np = (n & ~(GGML_F16_STEP - 1));
  1931. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1932. GGML_F16_VEC ax[GGML_F16_ARR];
  1933. GGML_F16_VEC ay[GGML_F16_ARR];
  1934. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1935. for (int j = 0; j < GGML_F16_ARR; j++) {
  1936. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1937. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1938. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1939. }
  1940. }
  1941. // reduce sum0..sum3 to sum0
  1942. GGML_F16_VEC_REDUCE(sumf, sum);
  1943. // leftovers
  1944. for (int i = np; i < n; ++i) {
  1945. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1946. }
  1947. #else
  1948. for (int i = 0; i < n; ++i) {
  1949. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1950. }
  1951. #endif
  1952. *s = sumf;
  1953. }
  1954. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1955. const int qk = QK8_0;
  1956. const int nb = n / qk;
  1957. assert(n % qk == 0);
  1958. assert(nb % 2 == 0);
  1959. const block_q4_0 * restrict x = vx;
  1960. const block_q8_0 * restrict y = vy;
  1961. #if defined(__ARM_NEON)
  1962. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1963. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1964. for (int i = 0; i < nb; i += 2) {
  1965. const block_q4_0 * restrict x0 = &x[i + 0];
  1966. const block_q4_0 * restrict x1 = &x[i + 1];
  1967. const block_q8_0 * restrict y0 = &y[i + 0];
  1968. const block_q8_0 * restrict y1 = &y[i + 1];
  1969. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1970. const int8x16_t s8b = vdupq_n_s8(0x8);
  1971. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1972. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1973. // 4-bit -> 8-bit
  1974. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1975. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1976. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1977. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1978. // sub 8
  1979. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1980. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1981. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1982. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1983. // load y
  1984. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1985. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1986. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1987. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1988. #if defined(__ARM_FEATURE_DOTPROD)
  1989. // dot product into int32x4_t
  1990. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1991. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1992. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1993. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1994. #else
  1995. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1996. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1997. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1998. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1999. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2000. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2001. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2002. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2003. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2004. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2005. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2006. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2007. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2008. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2009. #endif
  2010. }
  2011. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2012. #elif defined(__AVX2__)
  2013. // Initialize accumulator with zeros
  2014. __m256 acc = _mm256_setzero_ps();
  2015. // Main loop
  2016. for (int i = 0; i < nb; ++i) {
  2017. /* Compute combined scale for the block */
  2018. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2019. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2020. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2021. const __m256i off = _mm256_set1_epi8( 8 );
  2022. bx = _mm256_sub_epi8( bx, off );
  2023. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2024. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2025. /* Multiply q with scale and accumulate */
  2026. acc = _mm256_fmadd_ps( d, q, acc );
  2027. }
  2028. *s = hsum_float_8(acc);
  2029. #elif defined(__AVX__)
  2030. // Initialize accumulator with zeros
  2031. __m256 acc = _mm256_setzero_ps();
  2032. // Main loop
  2033. for (int i = 0; i < nb; ++i) {
  2034. // Compute combined scale for the block
  2035. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2036. const __m128i lowMask = _mm_set1_epi8(0xF);
  2037. const __m128i off = _mm_set1_epi8(8);
  2038. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2039. __m128i bx = _mm_and_si128(lowMask, tmp);
  2040. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2041. bx = _mm_sub_epi8(bx, off);
  2042. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2043. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2044. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2045. bx = _mm_sub_epi8(bx, off);
  2046. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2047. // Convert int32_t to float
  2048. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2049. // Apply the scale, and accumulate
  2050. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2051. }
  2052. *s = hsum_float_8(acc);
  2053. #elif defined(__SSSE3__)
  2054. // set constants
  2055. const __m128i lowMask = _mm_set1_epi8(0xF);
  2056. const __m128i off = _mm_set1_epi8(8);
  2057. // Initialize accumulator with zeros
  2058. __m128 acc_0 = _mm_setzero_ps();
  2059. __m128 acc_1 = _mm_setzero_ps();
  2060. __m128 acc_2 = _mm_setzero_ps();
  2061. __m128 acc_3 = _mm_setzero_ps();
  2062. // First round without accumulation
  2063. {
  2064. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2065. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2066. // Compute combined scale for the block 0 and 1
  2067. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2068. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2069. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2070. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2071. bx_0 = _mm_sub_epi8(bx_0, off);
  2072. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2073. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2074. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2075. bx_1 = _mm_sub_epi8(bx_1, off);
  2076. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2077. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2078. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2079. // Compute combined scale for the block 2 and 3
  2080. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2081. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2082. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2083. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2084. bx_2 = _mm_sub_epi8(bx_2, off);
  2085. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2086. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2087. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2088. bx_3 = _mm_sub_epi8(bx_3, off);
  2089. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2090. // Convert int32_t to float
  2091. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2092. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2093. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2094. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2095. // Apply the scale
  2096. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2097. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2098. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2099. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2100. }
  2101. // Main loop
  2102. for (int i = 2; i < nb; i+=2) {
  2103. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2104. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2105. // Compute combined scale for the block 0 and 1
  2106. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2107. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2108. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2109. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2110. bx_0 = _mm_sub_epi8(bx_0, off);
  2111. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2112. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2113. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2114. bx_1 = _mm_sub_epi8(bx_1, off);
  2115. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2116. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2117. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2118. // Compute combined scale for the block 2 and 3
  2119. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2120. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2121. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2122. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2123. bx_2 = _mm_sub_epi8(bx_2, off);
  2124. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2125. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2126. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2127. bx_3 = _mm_sub_epi8(bx_3, off);
  2128. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2129. // Convert int32_t to float
  2130. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2131. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2132. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2133. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2134. // Apply the scale
  2135. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2136. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2137. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2138. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2139. // Acummulate
  2140. acc_0 = _mm_add_ps(p0_d, acc_0);
  2141. acc_1 = _mm_add_ps(p1_d, acc_1);
  2142. acc_2 = _mm_add_ps(p2_d, acc_2);
  2143. acc_3 = _mm_add_ps(p3_d, acc_3);
  2144. }
  2145. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2146. #else
  2147. // scalar
  2148. float sumf = 0.0;
  2149. for (int i = 0; i < nb; i++) {
  2150. int sumi = 0;
  2151. for (int j = 0; j < qk/2; ++j) {
  2152. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2153. const int v1 = (x[i].qs[j] >> 4) - 8;
  2154. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2155. }
  2156. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2157. }
  2158. *s = sumf;
  2159. #endif
  2160. }
  2161. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2162. const int qk = QK8_1;
  2163. const int nb = n / qk;
  2164. assert(n % qk == 0);
  2165. assert(nb % 2 == 0);
  2166. const block_q4_1 * restrict x = vx;
  2167. const block_q8_1 * restrict y = vy;
  2168. // TODO: add WASM SIMD
  2169. #if defined(__ARM_NEON)
  2170. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2171. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2172. float summs = 0;
  2173. for (int i = 0; i < nb; i += 2) {
  2174. const block_q4_1 * restrict x0 = &x[i + 0];
  2175. const block_q4_1 * restrict x1 = &x[i + 1];
  2176. const block_q8_1 * restrict y0 = &y[i + 0];
  2177. const block_q8_1 * restrict y1 = &y[i + 1];
  2178. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2179. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2180. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2181. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2182. // 4-bit -> 8-bit
  2183. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2184. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2185. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2186. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2187. // load y
  2188. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2189. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2190. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2191. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2192. #if defined(__ARM_FEATURE_DOTPROD)
  2193. // dot product into int32x4_t
  2194. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2195. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2196. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2197. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2198. #else
  2199. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2200. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2201. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2202. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2203. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2204. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2205. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2206. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2207. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2208. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2209. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2210. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2211. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2212. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2213. #endif
  2214. }
  2215. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2216. #elif defined(__AVX2__) || defined(__AVX__)
  2217. // Initialize accumulator with zeros
  2218. __m256 acc = _mm256_setzero_ps();
  2219. float summs = 0;
  2220. // Main loop
  2221. for (int i = 0; i < nb; ++i) {
  2222. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2223. const float d1 = y[i].d;
  2224. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2225. const __m256 d0v = _mm256_set1_ps( d0 );
  2226. const __m256 d1v = _mm256_set1_ps( d1 );
  2227. // Compute combined scales
  2228. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2229. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2230. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2231. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2232. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2233. // Accumulate d0*d1*x*y
  2234. #if defined(__AVX2__)
  2235. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2236. #else
  2237. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2238. #endif
  2239. }
  2240. *s = hsum_float_8(acc) + summs;
  2241. #else
  2242. // scalar
  2243. float sumf = 0.0;
  2244. for (int i = 0; i < nb; i++) {
  2245. int sumi = 0;
  2246. for (int j = 0; j < qk/2; ++j) {
  2247. const int v0 = (x[i].qs[j] & 0x0F);
  2248. const int v1 = (x[i].qs[j] >> 4);
  2249. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2250. }
  2251. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2252. }
  2253. *s = sumf;
  2254. #endif
  2255. }
  2256. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2257. const int qk = QK8_0;
  2258. const int nb = n / qk;
  2259. assert(n % qk == 0);
  2260. assert(nb % 2 == 0);
  2261. assert(qk == QK5_0);
  2262. const block_q5_0 * restrict x = vx;
  2263. const block_q8_0 * restrict y = vy;
  2264. #if defined(__ARM_NEON)
  2265. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2266. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2267. uint32_t qh0;
  2268. uint32_t qh1;
  2269. uint64_t tmp0[4];
  2270. uint64_t tmp1[4];
  2271. for (int i = 0; i < nb; i += 2) {
  2272. const block_q5_0 * restrict x0 = &x[i];
  2273. const block_q5_0 * restrict x1 = &x[i + 1];
  2274. const block_q8_0 * restrict y0 = &y[i];
  2275. const block_q8_0 * restrict y1 = &y[i + 1];
  2276. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2277. // extract the 5th bit via lookup table ((!b) << 4)
  2278. memcpy(&qh0, x0->qh, sizeof(qh0));
  2279. memcpy(&qh1, x1->qh, sizeof(qh1));
  2280. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2281. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2282. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2283. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2284. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2285. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2286. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2287. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2288. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2289. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2290. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2291. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2292. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2293. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2294. // 4-bit -> 8-bit
  2295. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2296. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2297. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2298. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2299. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2300. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2301. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2302. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2303. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2304. // load y
  2305. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2306. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2307. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2308. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2309. #if defined(__ARM_FEATURE_DOTPROD)
  2310. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2311. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2312. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2313. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2316. #else
  2317. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2318. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2319. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2320. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2321. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2322. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2323. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2324. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2325. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2326. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2327. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2328. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2329. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2330. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2331. #endif
  2332. }
  2333. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2334. #elif defined(__wasm_simd128__)
  2335. v128_t sumv = wasm_f32x4_splat(0.0f);
  2336. uint32_t qh;
  2337. uint64_t tmp[4];
  2338. // TODO: check if unrolling this is better
  2339. for (int i = 0; i < nb; ++i) {
  2340. const block_q5_0 * restrict x0 = &x[i];
  2341. const block_q8_0 * restrict y0 = &y[i];
  2342. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2343. // extract the 5th bit
  2344. memcpy(&qh, x0->qh, sizeof(qh));
  2345. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2346. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2347. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2348. tmp[3] = table_b2b_1[(qh >> 24) ];
  2349. const v128_t qhl = wasm_v128_load(tmp + 0);
  2350. const v128_t qhh = wasm_v128_load(tmp + 2);
  2351. const v128_t v0 = wasm_v128_load(x0->qs);
  2352. // 4-bit -> 8-bit
  2353. const v128_t v0l = wasm_v128_and (v0, m4b);
  2354. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2355. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2356. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2357. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2358. // load y
  2359. const v128_t v1l = wasm_v128_load(y0->qs);
  2360. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2361. // int8x16 -> int16x8
  2362. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2363. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2364. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2365. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2366. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2367. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2368. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2369. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2370. // dot product
  2371. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2372. wasm_i32x4_add(
  2373. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2374. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2375. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2376. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2377. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2378. }
  2379. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2380. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2381. #elif defined(__AVX2__)
  2382. // Initialize accumulator with zeros
  2383. __m256 acc = _mm256_setzero_ps();
  2384. // Main loop
  2385. for (int i = 0; i < nb; i++) {
  2386. /* Compute combined scale for the block */
  2387. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2388. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2389. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2390. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2391. bx = _mm256_or_si256(bx, bxhi);
  2392. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2393. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2394. /* Multiply q with scale and accumulate */
  2395. acc = _mm256_fmadd_ps(d, q, acc);
  2396. }
  2397. *s = hsum_float_8(acc);
  2398. #elif defined(__AVX__)
  2399. // Initialize accumulator with zeros
  2400. __m256 acc = _mm256_setzero_ps();
  2401. __m128i mask = _mm_set1_epi8((char)0xF0);
  2402. // Main loop
  2403. for (int i = 0; i < nb; i++) {
  2404. /* Compute combined scale for the block */
  2405. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2406. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2407. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2408. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2409. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2410. bxhil = _mm_andnot_si128(bxhil, mask);
  2411. bxhih = _mm_andnot_si128(bxhih, mask);
  2412. __m128i bxl = _mm256_castsi256_si128(bx);
  2413. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2414. bxl = _mm_or_si128(bxl, bxhil);
  2415. bxh = _mm_or_si128(bxh, bxhih);
  2416. bx = MM256_SET_M128I(bxh, bxl);
  2417. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2418. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2419. /* Multiply q with scale and accumulate */
  2420. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2421. }
  2422. *s = hsum_float_8(acc);
  2423. #else
  2424. // scalar
  2425. float sumf = 0.0;
  2426. for (int i = 0; i < nb; i++) {
  2427. uint32_t qh;
  2428. memcpy(&qh, x[i].qh, sizeof(qh));
  2429. int sumi = 0;
  2430. for (int j = 0; j < qk/2; ++j) {
  2431. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2432. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2433. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2434. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2435. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2436. }
  2437. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2438. }
  2439. *s = sumf;
  2440. #endif
  2441. }
  2442. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2443. const int qk = QK8_1;
  2444. const int nb = n / qk;
  2445. assert(n % qk == 0);
  2446. assert(nb % 2 == 0);
  2447. assert(qk == QK5_1);
  2448. const block_q5_1 * restrict x = vx;
  2449. const block_q8_1 * restrict y = vy;
  2450. #if defined(__ARM_NEON)
  2451. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2452. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2453. float summs0 = 0.0f;
  2454. float summs1 = 0.0f;
  2455. uint32_t qh0;
  2456. uint32_t qh1;
  2457. uint64_t tmp0[4];
  2458. uint64_t tmp1[4];
  2459. for (int i = 0; i < nb; i += 2) {
  2460. const block_q5_1 * restrict x0 = &x[i];
  2461. const block_q5_1 * restrict x1 = &x[i + 1];
  2462. const block_q8_1 * restrict y0 = &y[i];
  2463. const block_q8_1 * restrict y1 = &y[i + 1];
  2464. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2465. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2466. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2467. // extract the 5th bit via lookup table ((b) << 4)
  2468. memcpy(&qh0, x0->qh, sizeof(qh0));
  2469. memcpy(&qh1, x1->qh, sizeof(qh1));
  2470. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2471. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2472. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2473. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2474. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2475. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2476. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2477. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2478. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2479. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2480. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2481. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2482. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2483. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2484. // 4-bit -> 8-bit
  2485. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2486. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2487. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2488. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2489. // add high bit
  2490. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2491. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2492. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2493. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2494. // load y
  2495. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2496. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2497. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2498. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2499. #if defined(__ARM_FEATURE_DOTPROD)
  2500. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2501. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2502. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2503. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2506. #else
  2507. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2508. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2509. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2510. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2511. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2512. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2513. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2514. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2515. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2516. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2517. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2518. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2519. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2520. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2521. #endif
  2522. }
  2523. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2524. #elif defined(__wasm_simd128__)
  2525. v128_t sumv = wasm_f32x4_splat(0.0f);
  2526. float summs = 0.0f;
  2527. uint32_t qh;
  2528. uint64_t tmp[4];
  2529. // TODO: check if unrolling this is better
  2530. for (int i = 0; i < nb; ++i) {
  2531. const block_q5_1 * restrict x0 = &x[i];
  2532. const block_q8_1 * restrict y0 = &y[i];
  2533. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2534. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2535. // extract the 5th bit
  2536. memcpy(&qh, x0->qh, sizeof(qh));
  2537. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2538. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2539. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2540. tmp[3] = table_b2b_0[(qh >> 24) ];
  2541. const v128_t qhl = wasm_v128_load(tmp + 0);
  2542. const v128_t qhh = wasm_v128_load(tmp + 2);
  2543. const v128_t v0 = wasm_v128_load(x0->qs);
  2544. // 4-bit -> 8-bit
  2545. const v128_t v0l = wasm_v128_and (v0, m4b);
  2546. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2547. // add high bit
  2548. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2549. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2550. // load y
  2551. const v128_t v1l = wasm_v128_load(y0->qs);
  2552. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2553. // int8x16 -> int16x8
  2554. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2555. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2556. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2557. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2558. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2559. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2560. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2561. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2562. // dot product
  2563. sumv = wasm_f32x4_add(sumv,
  2564. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2565. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2566. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2567. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2568. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2569. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2570. }
  2571. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2572. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2573. #elif defined(__AVX2__)
  2574. // Initialize accumulator with zeros
  2575. __m256 acc = _mm256_setzero_ps();
  2576. float summs = 0.0f;
  2577. // Main loop
  2578. for (int i = 0; i < nb; i++) {
  2579. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2580. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2581. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2582. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2583. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2584. bx = _mm256_or_si256(bx, bxhi);
  2585. const __m256 dy = _mm256_set1_ps(y[i].d);
  2586. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2587. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2588. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2589. }
  2590. *s = hsum_float_8(acc) + summs;
  2591. #elif defined(__AVX__)
  2592. // Initialize accumulator with zeros
  2593. __m256 acc = _mm256_setzero_ps();
  2594. __m128i mask = _mm_set1_epi8(0x10);
  2595. float summs = 0.0f;
  2596. // Main loop
  2597. for (int i = 0; i < nb; i++) {
  2598. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2599. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2600. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2601. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2602. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2603. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2604. bxhil = _mm_and_si128(bxhil, mask);
  2605. bxhih = _mm_and_si128(bxhih, mask);
  2606. __m128i bxl = _mm256_castsi256_si128(bx);
  2607. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2608. bxl = _mm_or_si128(bxl, bxhil);
  2609. bxh = _mm_or_si128(bxh, bxhih);
  2610. bx = MM256_SET_M128I(bxh, bxl);
  2611. const __m256 dy = _mm256_set1_ps(y[i].d);
  2612. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2613. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2614. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2615. }
  2616. *s = hsum_float_8(acc) + summs;
  2617. #else
  2618. // scalar
  2619. float sumf = 0.0;
  2620. for (int i = 0; i < nb; i++) {
  2621. uint32_t qh;
  2622. memcpy(&qh, x[i].qh, sizeof(qh));
  2623. int sumi = 0;
  2624. for (int j = 0; j < qk/2; ++j) {
  2625. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2626. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2627. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2628. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2629. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2630. }
  2631. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2632. }
  2633. *s = sumf;
  2634. #endif
  2635. }
  2636. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2637. const int qk = QK8_0;
  2638. const int nb = n / qk;
  2639. assert(n % qk == 0);
  2640. assert(nb % 2 == 0);
  2641. const block_q8_0 * restrict x = vx;
  2642. const block_q8_0 * restrict y = vy;
  2643. #if defined(__ARM_NEON)
  2644. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2645. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2646. for (int i = 0; i < nb; i += 2) {
  2647. const block_q8_0 * restrict x0 = &x[i + 0];
  2648. const block_q8_0 * restrict x1 = &x[i + 1];
  2649. const block_q8_0 * restrict y0 = &y[i + 0];
  2650. const block_q8_0 * restrict y1 = &y[i + 1];
  2651. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2652. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2653. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2654. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2655. // load y
  2656. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2657. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2658. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2659. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2660. #if defined(__ARM_FEATURE_DOTPROD)
  2661. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2662. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2663. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2664. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2666. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2667. #else
  2668. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2669. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2670. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2671. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2672. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2673. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2674. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2675. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2676. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2677. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2678. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2679. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2680. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2681. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2682. #endif
  2683. }
  2684. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2685. #elif defined(__AVX2__) || defined(__AVX__)
  2686. // Initialize accumulator with zeros
  2687. __m256 acc = _mm256_setzero_ps();
  2688. // Main loop
  2689. for (int i = 0; i < nb; ++i) {
  2690. // Compute combined scale for the block
  2691. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2692. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2693. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2694. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2695. // Multiply q with scale and accumulate
  2696. #if defined(__AVX2__)
  2697. acc = _mm256_fmadd_ps( d, q, acc );
  2698. #else
  2699. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2700. #endif
  2701. }
  2702. *s = hsum_float_8(acc);
  2703. #else
  2704. // scalar
  2705. float sumf = 0.0;
  2706. for (int i = 0; i < nb; i++) {
  2707. int sumi = 0;
  2708. for (int j = 0; j < qk; j++) {
  2709. sumi += x[i].qs[j]*y[i].qs[j];
  2710. }
  2711. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2712. }
  2713. *s = sumf;
  2714. #endif
  2715. }
  2716. // compute GGML_VEC_DOT_UNROLL dot products at once
  2717. // xs - x row stride in bytes
  2718. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2719. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2720. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2721. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2722. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2723. }
  2724. #if defined(GGML_SIMD)
  2725. const int np = (n & ~(GGML_F16_STEP - 1));
  2726. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2727. GGML_F16_VEC ax[GGML_F16_ARR];
  2728. GGML_F16_VEC ay[GGML_F16_ARR];
  2729. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2730. for (int j = 0; j < GGML_F16_ARR; j++) {
  2731. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2732. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2733. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2734. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2735. }
  2736. }
  2737. }
  2738. // reduce sum0..sum3 to sum0
  2739. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2740. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2741. }
  2742. // leftovers
  2743. for (int i = np; i < n; ++i) {
  2744. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2745. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2746. }
  2747. }
  2748. #else
  2749. for (int i = 0; i < n; ++i) {
  2750. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2751. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2752. }
  2753. }
  2754. #endif
  2755. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2756. s[i] = sumf[i];
  2757. }
  2758. }
  2759. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2760. #if defined(GGML_SIMD)
  2761. const int np = (n & ~(GGML_F32_STEP - 1));
  2762. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2763. GGML_F32_VEC ax[GGML_F32_ARR];
  2764. GGML_F32_VEC ay[GGML_F32_ARR];
  2765. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2766. for (int j = 0; j < GGML_F32_ARR; j++) {
  2767. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2768. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2769. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2770. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2771. }
  2772. }
  2773. // leftovers
  2774. for (int i = np; i < n; ++i) {
  2775. y[i] += x[i]*v;
  2776. }
  2777. #else
  2778. // scalar
  2779. for (int i = 0; i < n; ++i) {
  2780. y[i] += x[i]*v;
  2781. }
  2782. #endif
  2783. }
  2784. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2785. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2786. #if defined(GGML_SIMD)
  2787. const int np = (n & ~(GGML_F32_STEP - 1));
  2788. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2789. GGML_F32_VEC ay[GGML_F32_ARR];
  2790. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2791. for (int j = 0; j < GGML_F32_ARR; j++) {
  2792. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2793. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2794. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2795. }
  2796. }
  2797. // leftovers
  2798. for (int i = np; i < n; ++i) {
  2799. y[i] *= v;
  2800. }
  2801. #else
  2802. // scalar
  2803. for (int i = 0; i < n; ++i) {
  2804. y[i] *= v;
  2805. }
  2806. #endif
  2807. }
  2808. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2809. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2810. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2811. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2812. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2813. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2814. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2815. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2816. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2817. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2818. static const float GELU_COEF_A = 0.044715f;
  2819. static const float GELU_QUICK_COEF = -1.702f;
  2820. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2821. inline static float ggml_gelu_f32(float x) {
  2822. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2823. }
  2824. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2825. const uint16_t * i16 = (const uint16_t *) x;
  2826. for (int i = 0; i < n; ++i) {
  2827. y[i] = table_gelu_f16[i16[i]];
  2828. }
  2829. }
  2830. #ifdef GGML_GELU_FP16
  2831. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2832. uint16_t t;
  2833. for (int i = 0; i < n; ++i) {
  2834. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2835. memcpy(&t, &fp16, sizeof(uint16_t));
  2836. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2837. }
  2838. }
  2839. #else
  2840. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2841. for (int i = 0; i < n; ++i) {
  2842. y[i] = ggml_gelu_f32(x[i]);
  2843. }
  2844. }
  2845. #endif
  2846. inline static float ggml_gelu_quick_f32(float x) {
  2847. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2848. }
  2849. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2850. // const uint16_t * i16 = (const uint16_t *) x;
  2851. // for (int i = 0; i < n; ++i) {
  2852. // y[i] = table_gelu_quick_f16[i16[i]];
  2853. // }
  2854. //}
  2855. #ifdef GGML_GELU_QUICK_FP16
  2856. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2857. uint16_t t;
  2858. for (int i = 0; i < n; ++i) {
  2859. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2860. memcpy(&t, &fp16, sizeof(uint16_t));
  2861. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2862. }
  2863. }
  2864. #else
  2865. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2866. for (int i = 0; i < n; ++i) {
  2867. y[i] = ggml_gelu_quick_f32(x[i]);
  2868. }
  2869. }
  2870. #endif
  2871. // Sigmoid Linear Unit (SiLU) function
  2872. inline static float ggml_silu_f32(float x) {
  2873. return x/(1.0f + expf(-x));
  2874. }
  2875. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2876. // const uint16_t * i16 = (const uint16_t *) x;
  2877. // for (int i = 0; i < n; ++i) {
  2878. // y[i] = table_silu_f16[i16[i]];
  2879. // }
  2880. //}
  2881. #ifdef GGML_SILU_FP16
  2882. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2883. uint16_t t;
  2884. for (int i = 0; i < n; ++i) {
  2885. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2886. memcpy(&t, &fp16, sizeof(uint16_t));
  2887. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2888. }
  2889. }
  2890. #else
  2891. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2892. for (int i = 0; i < n; ++i) {
  2893. y[i] = ggml_silu_f32(x[i]);
  2894. }
  2895. }
  2896. #endif
  2897. inline static float ggml_silu_backward_f32(float x, float dy) {
  2898. const float s = 1.0f/(1.0f + expf(-x));
  2899. return dy*s*(1.0f + x*(1.0f - s));
  2900. }
  2901. #ifdef GGML_SILU_FP16
  2902. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2903. for (int i = 0; i < n; ++i) {
  2904. // we did not use x[i] to compute forward silu but its f16 equivalent
  2905. // take derivative at f16 of x[i]:
  2906. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2907. float usedx = GGML_FP16_TO_FP32(fp16);
  2908. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2909. }
  2910. }
  2911. #else
  2912. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2913. for (int i = 0; i < n; ++i) {
  2914. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2915. }
  2916. }
  2917. #endif
  2918. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2919. #ifndef GGML_USE_ACCELERATE
  2920. ggml_float sum = 0.0;
  2921. for (int i = 0; i < n; ++i) {
  2922. sum += (ggml_float)x[i];
  2923. }
  2924. *s = sum;
  2925. #else
  2926. vDSP_sve(x, 1, s, n);
  2927. #endif
  2928. }
  2929. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2930. ggml_float sum = 0.0;
  2931. for (int i = 0; i < n; ++i) {
  2932. sum += (ggml_float)x[i];
  2933. }
  2934. *s = sum;
  2935. }
  2936. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2937. #ifndef GGML_USE_ACCELERATE
  2938. float max = -INFINITY;
  2939. for (int i = 0; i < n; ++i) {
  2940. max = MAX(max, x[i]);
  2941. }
  2942. *s = max;
  2943. #else
  2944. vDSP_maxv(x, 1, s, n);
  2945. #endif
  2946. }
  2947. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2948. ggml_vec_norm_f32(n, s, x);
  2949. *s = 1.f/(*s);
  2950. }
  2951. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2952. float max = -INFINITY;
  2953. int idx = 0;
  2954. for (int i = 0; i < n; ++i) {
  2955. max = MAX(max, x[i]);
  2956. if (max == x[i]) { idx = i; }
  2957. }
  2958. *s = idx;
  2959. }
  2960. //
  2961. // data types
  2962. //
  2963. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2964. [GGML_TYPE_F32] = 1,
  2965. [GGML_TYPE_F16] = 1,
  2966. [GGML_TYPE_Q4_0] = QK4_0,
  2967. [GGML_TYPE_Q4_1] = QK4_1,
  2968. [GGML_TYPE_Q5_0] = QK5_0,
  2969. [GGML_TYPE_Q5_1] = QK5_1,
  2970. [GGML_TYPE_Q8_0] = QK8_0,
  2971. [GGML_TYPE_Q8_1] = QK8_1,
  2972. #ifdef GGML_USE_K_QUANTS
  2973. [GGML_TYPE_Q2_K] = QK_K,
  2974. [GGML_TYPE_Q3_K] = QK_K,
  2975. [GGML_TYPE_Q4_K] = QK_K,
  2976. [GGML_TYPE_Q5_K] = QK_K,
  2977. [GGML_TYPE_Q6_K] = QK_K,
  2978. [GGML_TYPE_Q8_K] = QK_K,
  2979. #endif
  2980. [GGML_TYPE_I8] = 1,
  2981. [GGML_TYPE_I16] = 1,
  2982. [GGML_TYPE_I32] = 1,
  2983. };
  2984. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2985. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2986. [GGML_TYPE_F32] = sizeof(float),
  2987. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2988. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2989. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2990. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2991. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2992. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2993. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2994. #ifdef GGML_USE_K_QUANTS
  2995. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2996. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2997. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2998. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2999. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3000. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3001. #endif
  3002. [GGML_TYPE_I8] = sizeof(int8_t),
  3003. [GGML_TYPE_I16] = sizeof(int16_t),
  3004. [GGML_TYPE_I32] = sizeof(int32_t),
  3005. };
  3006. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3007. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3008. [GGML_TYPE_F32] = "f32",
  3009. [GGML_TYPE_F16] = "f16",
  3010. [GGML_TYPE_Q4_0] = "q4_0",
  3011. [GGML_TYPE_Q4_1] = "q4_1",
  3012. [GGML_TYPE_Q5_0] = "q5_0",
  3013. [GGML_TYPE_Q5_1] = "q5_1",
  3014. [GGML_TYPE_Q8_0] = "q8_0",
  3015. [GGML_TYPE_Q8_1] = "q8_1",
  3016. [GGML_TYPE_Q2_K] = "q2_K",
  3017. [GGML_TYPE_Q3_K] = "q3_K",
  3018. [GGML_TYPE_Q4_K] = "q4_K",
  3019. [GGML_TYPE_Q5_K] = "q5_K",
  3020. [GGML_TYPE_Q6_K] = "q6_K",
  3021. [GGML_TYPE_Q8_K] = "q8_K",
  3022. [GGML_TYPE_I8] = "i8",
  3023. [GGML_TYPE_I16] = "i16",
  3024. [GGML_TYPE_I32] = "i32",
  3025. };
  3026. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3027. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3028. [GGML_TYPE_F32] = false,
  3029. [GGML_TYPE_F16] = false,
  3030. [GGML_TYPE_Q4_0] = true,
  3031. [GGML_TYPE_Q4_1] = true,
  3032. [GGML_TYPE_Q5_0] = true,
  3033. [GGML_TYPE_Q5_1] = true,
  3034. [GGML_TYPE_Q8_0] = true,
  3035. [GGML_TYPE_Q8_1] = true,
  3036. [GGML_TYPE_Q2_K] = true,
  3037. [GGML_TYPE_Q3_K] = true,
  3038. [GGML_TYPE_Q4_K] = true,
  3039. [GGML_TYPE_Q5_K] = true,
  3040. [GGML_TYPE_Q6_K] = true,
  3041. [GGML_TYPE_Q8_K] = true,
  3042. [GGML_TYPE_I8] = false,
  3043. [GGML_TYPE_I16] = false,
  3044. [GGML_TYPE_I32] = false,
  3045. };
  3046. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3047. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3048. "NONE",
  3049. "DUP",
  3050. "ADD",
  3051. "ADD1",
  3052. "ACC",
  3053. "SUB",
  3054. "MUL",
  3055. "DIV",
  3056. "SQR",
  3057. "SQRT",
  3058. "LOG",
  3059. "SUM",
  3060. "SUM_ROWS",
  3061. "MEAN",
  3062. "ARGMAX",
  3063. "REPEAT",
  3064. "REPEAT_BACK",
  3065. "ABS",
  3066. "SGN",
  3067. "NEG",
  3068. "STEP",
  3069. "TANH",
  3070. "ELU",
  3071. "RELU",
  3072. "GELU",
  3073. "GELU_QUICK",
  3074. "SILU",
  3075. "SILU_BACK",
  3076. "NORM",
  3077. "RMS_NORM",
  3078. "RMS_NORM_BACK",
  3079. "MUL_MAT",
  3080. "OUT_PROD",
  3081. "SCALE",
  3082. "SET",
  3083. "CPY",
  3084. "CONT",
  3085. "RESHAPE",
  3086. "VIEW",
  3087. "PERMUTE",
  3088. "TRANSPOSE",
  3089. "GET_ROWS",
  3090. "GET_ROWS_BACK",
  3091. "DIAG",
  3092. "DIAG_MASK_INF",
  3093. "DIAG_MASK_ZERO",
  3094. "SOFT_MAX",
  3095. "SOFT_MAX_BACK",
  3096. "ROPE",
  3097. "ROPE_BACK",
  3098. "ALIBI",
  3099. "CLAMP",
  3100. "CONV_1D",
  3101. "CONV_2D",
  3102. "POOL_1D",
  3103. "POOL_2D",
  3104. "FLASH_ATTN",
  3105. "FLASH_FF",
  3106. "FLASH_ATTN_BACK",
  3107. "WIN_PART",
  3108. "WIN_UNPART",
  3109. "MAP_UNARY",
  3110. "MAP_BINARY",
  3111. "MAP_CUSTOM1",
  3112. "MAP_CUSTOM2",
  3113. "MAP_CUSTOM3",
  3114. "CROSS_ENTROPY_LOSS",
  3115. "CROSS_ENTROPY_LOSS_BACK",
  3116. };
  3117. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3118. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3119. "none",
  3120. "x",
  3121. "x+y",
  3122. "x+y",
  3123. "view(x,nb,offset)+=y->x",
  3124. "x-y",
  3125. "x*y",
  3126. "x/y",
  3127. "x^2",
  3128. "√x",
  3129. "log(x)",
  3130. "Σx",
  3131. "Σx_k",
  3132. "Σx/n",
  3133. "argmax(x)",
  3134. "repeat(x)",
  3135. "repeat_back(x)",
  3136. "abs(x)",
  3137. "sgn(x)",
  3138. "-x",
  3139. "step(x)",
  3140. "tanh(x)",
  3141. "elu(x)",
  3142. "relu(x)",
  3143. "gelu(x)",
  3144. "gelu_quick(x)",
  3145. "silu(x)",
  3146. "silu_back(x)",
  3147. "norm(x)",
  3148. "rms_norm(x)",
  3149. "rms_norm_back(x)",
  3150. "X*Y",
  3151. "X*Y",
  3152. "x*v",
  3153. "y-\\>view(x)",
  3154. "x-\\>y",
  3155. "cont(x)",
  3156. "reshape(x)",
  3157. "view(x)",
  3158. "permute(x)",
  3159. "transpose(x)",
  3160. "get_rows(x)",
  3161. "get_rows_back(x)",
  3162. "diag(x)",
  3163. "diag_mask_inf(x)",
  3164. "diag_mask_zero(x)",
  3165. "soft_max(x)",
  3166. "soft_max_back(x)",
  3167. "rope(x)",
  3168. "rope_back(x)",
  3169. "alibi(x)",
  3170. "clamp(x)",
  3171. "conv_1d(x)",
  3172. "conv_2d(x)",
  3173. "pool_1d(x)",
  3174. "pool_2d(x)",
  3175. "flash_attn(x)",
  3176. "flash_ff(x)",
  3177. "flash_attn_back(x)",
  3178. "win_part(x)",
  3179. "win_unpart(x)",
  3180. "f(x)",
  3181. "f(x,y)",
  3182. "custom(x)",
  3183. "custom(x,y)",
  3184. "custom(x,y,z)",
  3185. "cross_entropy_loss(x,y)",
  3186. "cross_entropy_loss_back(x,y)",
  3187. };
  3188. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3189. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3190. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3191. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3192. // WARN:
  3193. // Mis-confguration can lead to problem that's hard to reason about:
  3194. // * At best it crash or talks nosense.
  3195. // * At worst it talks slightly difference but hard to perceive.
  3196. //
  3197. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3198. // Take care about compile options (e.g., GGML_USE_xxx).
  3199. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3200. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3201. static void ggml_setup_op_has_task_pass(void) {
  3202. { // INIT
  3203. bool * p = GGML_OP_HAS_INIT;
  3204. p[GGML_OP_ACC ] = true;
  3205. p[GGML_OP_MUL_MAT ] = true;
  3206. p[GGML_OP_OUT_PROD ] = true;
  3207. p[GGML_OP_SET ] = true;
  3208. p[GGML_OP_GET_ROWS_BACK ] = true;
  3209. p[GGML_OP_DIAG_MASK_INF ] = true;
  3210. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3211. p[GGML_OP_CONV_1D ] = true;
  3212. p[GGML_OP_CONV_2D ] = true;
  3213. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3214. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3215. }
  3216. { // FINALIZE
  3217. bool * p = GGML_OP_HAS_FINALIZE;
  3218. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3219. }
  3220. }
  3221. //
  3222. // ggml context
  3223. //
  3224. struct ggml_context {
  3225. size_t mem_size;
  3226. void * mem_buffer;
  3227. bool mem_buffer_owned;
  3228. bool no_alloc;
  3229. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3230. int n_objects;
  3231. struct ggml_object * objects_begin;
  3232. struct ggml_object * objects_end;
  3233. struct ggml_scratch scratch;
  3234. struct ggml_scratch scratch_save;
  3235. };
  3236. struct ggml_context_container {
  3237. bool used;
  3238. struct ggml_context context;
  3239. };
  3240. //
  3241. // NUMA support
  3242. //
  3243. #define GGML_NUMA_MAX_NODES 8
  3244. #define GGML_NUMA_MAX_CPUS 512
  3245. struct ggml_numa_node {
  3246. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3247. uint32_t n_cpus;
  3248. };
  3249. struct ggml_numa_nodes {
  3250. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3251. uint32_t n_nodes;
  3252. uint32_t total_cpus; // hardware threads on system
  3253. };
  3254. //
  3255. // ggml state
  3256. //
  3257. struct ggml_state {
  3258. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3259. struct ggml_numa_nodes numa;
  3260. };
  3261. // global state
  3262. static struct ggml_state g_state;
  3263. static atomic_int g_state_barrier = 0;
  3264. // barrier via spin lock
  3265. inline static void ggml_critical_section_start(void) {
  3266. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3267. while (processing > 0) {
  3268. // wait for other threads to finish
  3269. atomic_fetch_sub(&g_state_barrier, 1);
  3270. sched_yield(); // TODO: reconsider this
  3271. processing = atomic_fetch_add(&g_state_barrier, 1);
  3272. }
  3273. }
  3274. // TODO: make this somehow automatically executed
  3275. // some sort of "sentry" mechanism
  3276. inline static void ggml_critical_section_end(void) {
  3277. atomic_fetch_sub(&g_state_barrier, 1);
  3278. }
  3279. void ggml_numa_init(void) {
  3280. if (g_state.numa.n_nodes > 0) {
  3281. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3282. return;
  3283. }
  3284. #ifdef __linux__
  3285. struct stat st;
  3286. char path[256];
  3287. int rv;
  3288. // enumerate nodes
  3289. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3290. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3291. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3292. if (stat(path, &st) != 0) { break; }
  3293. ++g_state.numa.n_nodes;
  3294. }
  3295. // enumerate CPUs
  3296. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3297. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3298. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3299. if (stat(path, &st) != 0) { break; }
  3300. ++g_state.numa.total_cpus;
  3301. }
  3302. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3303. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3304. g_state.numa.n_nodes = 0;
  3305. return;
  3306. }
  3307. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3308. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3309. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3310. node->n_cpus = 0;
  3311. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3312. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3313. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3314. if (stat(path, &st) == 0) {
  3315. node->cpus[node->n_cpus++] = c;
  3316. GGML_PRINT_DEBUG(" %u", c);
  3317. }
  3318. }
  3319. GGML_PRINT_DEBUG("\n");
  3320. }
  3321. if (ggml_is_numa()) {
  3322. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3323. if (fptr != NULL) {
  3324. char buf[42];
  3325. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3326. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3327. }
  3328. fclose(fptr);
  3329. }
  3330. }
  3331. #else
  3332. // TODO
  3333. #endif
  3334. }
  3335. bool ggml_is_numa(void) {
  3336. return g_state.numa.n_nodes > 1;
  3337. }
  3338. ////////////////////////////////////////////////////////////////////////////////
  3339. void ggml_print_object(const struct ggml_object * obj) {
  3340. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3341. obj->offs, obj->size, (const void *) obj->next);
  3342. }
  3343. void ggml_print_objects(const struct ggml_context * ctx) {
  3344. struct ggml_object * obj = ctx->objects_begin;
  3345. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3346. while (obj != NULL) {
  3347. ggml_print_object(obj);
  3348. obj = obj->next;
  3349. }
  3350. GGML_PRINT("%s: --- end ---\n", __func__);
  3351. }
  3352. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3353. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3354. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3355. }
  3356. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3357. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3358. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3359. }
  3360. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3361. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3362. // this should handle cases where the tensor is not contiguous in memory
  3363. // probaby just:
  3364. //
  3365. // return tensor->ne[3]*tensor->nb[3]
  3366. //
  3367. // is enough, but just in case, adding the second part
  3368. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3369. }
  3370. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3371. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3372. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3373. }
  3374. int ggml_blck_size(enum ggml_type type) {
  3375. return GGML_BLCK_SIZE[type];
  3376. }
  3377. size_t ggml_type_size(enum ggml_type type) {
  3378. return GGML_TYPE_SIZE[type];
  3379. }
  3380. float ggml_type_sizef(enum ggml_type type) {
  3381. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3382. }
  3383. const char * ggml_type_name(enum ggml_type type) {
  3384. return GGML_TYPE_NAME[type];
  3385. }
  3386. const char * ggml_op_name(enum ggml_op op) {
  3387. return GGML_OP_NAME[op];
  3388. }
  3389. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3390. return GGML_TYPE_SIZE[tensor->type];
  3391. }
  3392. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3393. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3394. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3395. }
  3396. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3397. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3398. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3399. }
  3400. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3401. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3402. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3403. }
  3404. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3406. return (t0->ne[0] == t1->ne[0]) &&
  3407. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3408. (t1->ne[3]%t0->ne[3] == 0);
  3409. }
  3410. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3411. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3412. return
  3413. (t0->ne[1] == t1->ne[1]) &&
  3414. (t0->ne[2] == t1->ne[2]) &&
  3415. (t0->ne[3] == t1->ne[3]);
  3416. }
  3417. bool ggml_is_quantized(enum ggml_type type) {
  3418. return GGML_IS_QUANTIZED[type];
  3419. }
  3420. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3421. enum ggml_type wtype = GGML_TYPE_COUNT;
  3422. switch (ftype) {
  3423. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3424. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3425. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3426. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3427. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3428. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3429. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3430. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3431. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3432. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3433. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3434. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3435. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3436. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3437. }
  3438. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3439. return wtype;
  3440. }
  3441. size_t ggml_tensor_overhead(void) {
  3442. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3443. }
  3444. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3445. return tensor->nb[0] > tensor->nb[1];
  3446. }
  3447. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3448. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3449. return
  3450. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3451. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3452. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3453. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3454. }
  3455. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3456. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3457. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3458. }
  3459. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3460. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3461. return
  3462. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3463. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3464. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3465. }
  3466. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3467. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3468. return
  3469. (t0->ne[0] == t1->ne[0] ) &&
  3470. (t0->ne[1] == t1->ne[1] ) &&
  3471. (t0->ne[2] == t1->ne[2] ) &&
  3472. (t0->ne[3] == t1->ne[3] );
  3473. }
  3474. // check if t1 can be represented as a repeatition of t0
  3475. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3476. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3477. return
  3478. (t1->ne[0]%t0->ne[0] == 0) &&
  3479. (t1->ne[1]%t0->ne[1] == 0) &&
  3480. (t1->ne[2]%t0->ne[2] == 0) &&
  3481. (t1->ne[3]%t0->ne[3] == 0);
  3482. }
  3483. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3484. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3485. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3486. }
  3487. static inline int ggml_up32(int n) {
  3488. return (n + 31) & ~31;
  3489. }
  3490. //static inline int ggml_up64(int n) {
  3491. // return (n + 63) & ~63;
  3492. //}
  3493. static inline int ggml_up(int n, int m) {
  3494. // assert m is a power of 2
  3495. GGML_ASSERT((m & (m - 1)) == 0);
  3496. return (n + m - 1) & ~(m - 1);
  3497. }
  3498. // assert that pointer is aligned to GGML_MEM_ALIGN
  3499. #define ggml_assert_aligned(ptr) \
  3500. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3501. ////////////////////////////////////////////////////////////////////////////////
  3502. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3503. // make this function thread safe
  3504. ggml_critical_section_start();
  3505. static bool is_first_call = true;
  3506. if (is_first_call) {
  3507. // initialize time system (required on Windows)
  3508. ggml_time_init();
  3509. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3510. {
  3511. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3512. ggml_fp16_t ii;
  3513. for (int i = 0; i < (1 << 16); ++i) {
  3514. uint16_t ui = i;
  3515. memcpy(&ii, &ui, sizeof(ii));
  3516. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3517. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3518. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3519. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3520. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3521. }
  3522. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3523. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3524. }
  3525. // initialize g_state
  3526. {
  3527. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3528. g_state = (struct ggml_state) {
  3529. /*.contexts =*/ { { 0 } },
  3530. /*.numa =*/ {
  3531. .n_nodes = 0,
  3532. .total_cpus = 0,
  3533. },
  3534. };
  3535. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3536. g_state.contexts[i].used = false;
  3537. }
  3538. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3539. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3540. }
  3541. #if defined(GGML_USE_CUBLAS)
  3542. ggml_init_cublas();
  3543. #elif defined(GGML_USE_CLBLAST)
  3544. ggml_cl_init();
  3545. #endif
  3546. ggml_setup_op_has_task_pass();
  3547. is_first_call = false;
  3548. }
  3549. // find non-used context in g_state
  3550. struct ggml_context * ctx = NULL;
  3551. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3552. if (!g_state.contexts[i].used) {
  3553. g_state.contexts[i].used = true;
  3554. ctx = &g_state.contexts[i].context;
  3555. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3556. break;
  3557. }
  3558. }
  3559. if (ctx == NULL) {
  3560. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3561. ggml_critical_section_end();
  3562. return NULL;
  3563. }
  3564. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3565. *ctx = (struct ggml_context) {
  3566. /*.mem_size =*/ mem_size,
  3567. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3568. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3569. /*.no_alloc =*/ params.no_alloc,
  3570. /*.no_alloc_save =*/ params.no_alloc,
  3571. /*.n_objects =*/ 0,
  3572. /*.objects_begin =*/ NULL,
  3573. /*.objects_end =*/ NULL,
  3574. /*.scratch =*/ { 0, 0, NULL, },
  3575. /*.scratch_save =*/ { 0, 0, NULL, },
  3576. };
  3577. GGML_ASSERT(ctx->mem_buffer != NULL);
  3578. ggml_assert_aligned(ctx->mem_buffer);
  3579. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3580. ggml_critical_section_end();
  3581. return ctx;
  3582. }
  3583. void ggml_free(struct ggml_context * ctx) {
  3584. // make this function thread safe
  3585. ggml_critical_section_start();
  3586. bool found = false;
  3587. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3588. if (&g_state.contexts[i].context == ctx) {
  3589. g_state.contexts[i].used = false;
  3590. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3591. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3592. if (ctx->mem_buffer_owned) {
  3593. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3594. }
  3595. found = true;
  3596. break;
  3597. }
  3598. }
  3599. if (!found) {
  3600. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3601. }
  3602. ggml_critical_section_end();
  3603. }
  3604. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3605. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3606. }
  3607. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3608. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3609. ctx->scratch = scratch;
  3610. return result;
  3611. }
  3612. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3613. ctx->no_alloc = no_alloc;
  3614. }
  3615. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3616. return ctx->mem_buffer;
  3617. }
  3618. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3619. return ctx->mem_size;
  3620. }
  3621. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3622. size_t max_size = 0;
  3623. struct ggml_object * obj = ctx->objects_begin;
  3624. while (obj != NULL) {
  3625. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3626. const size_t size = ggml_nbytes(tensor);
  3627. if (max_size < size) {
  3628. max_size = size;
  3629. }
  3630. obj = obj->next;
  3631. }
  3632. return max_size;
  3633. }
  3634. // IMPORTANT:
  3635. // when creating "opt" tensors, always save and load the scratch buffer
  3636. // this is an error prone process, but it is necessary to support inplace
  3637. // operators when using scratch buffers
  3638. // TODO: implement a better way
  3639. void ggml_scratch_save(struct ggml_context * ctx) {
  3640. // this is needed to allow opt tensors to store their data
  3641. // TODO: again, need to find a better way
  3642. ctx->no_alloc_save = ctx->no_alloc;
  3643. ctx->no_alloc = false;
  3644. ctx->scratch_save = ctx->scratch;
  3645. ctx->scratch.data = NULL;
  3646. }
  3647. void ggml_scratch_load(struct ggml_context * ctx) {
  3648. ctx->no_alloc = ctx->no_alloc_save;
  3649. ctx->scratch = ctx->scratch_save;
  3650. }
  3651. ////////////////////////////////////////////////////////////////////////////////
  3652. struct ggml_tensor * ggml_new_tensor_impl(
  3653. struct ggml_context * ctx,
  3654. enum ggml_type type,
  3655. int n_dims,
  3656. const int64_t* ne,
  3657. void* data) {
  3658. // always insert objects at the end of the context's memory pool
  3659. struct ggml_object * obj_cur = ctx->objects_end;
  3660. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3661. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3662. const size_t cur_end = cur_offs + cur_size;
  3663. size_t size_needed = 0;
  3664. if (data == NULL && !ctx->no_alloc) {
  3665. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3666. for (int i = 1; i < n_dims; i++) {
  3667. size_needed *= ne[i];
  3668. }
  3669. // align to GGML_MEM_ALIGN
  3670. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3671. }
  3672. char * const mem_buffer = ctx->mem_buffer;
  3673. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3674. if (ctx->scratch.data == NULL || data != NULL) {
  3675. size_needed += GGML_TENSOR_SIZE;
  3676. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3677. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3678. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3679. assert(false);
  3680. return NULL;
  3681. }
  3682. *obj_new = (struct ggml_object) {
  3683. .offs = cur_end + GGML_OBJECT_SIZE,
  3684. .size = size_needed,
  3685. .next = NULL,
  3686. };
  3687. } else {
  3688. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3689. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3690. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3691. assert(false);
  3692. return NULL;
  3693. }
  3694. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3695. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3696. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3697. assert(false);
  3698. return NULL;
  3699. }
  3700. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3701. *obj_new = (struct ggml_object) {
  3702. .offs = cur_end + GGML_OBJECT_SIZE,
  3703. .size = GGML_TENSOR_SIZE,
  3704. .next = NULL,
  3705. };
  3706. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3707. ctx->scratch.offs += size_needed;
  3708. }
  3709. if (obj_cur != NULL) {
  3710. obj_cur->next = obj_new;
  3711. } else {
  3712. // this is the first object in this context
  3713. ctx->objects_begin = obj_new;
  3714. }
  3715. ctx->objects_end = obj_new;
  3716. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3717. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3718. ggml_assert_aligned(result);
  3719. *result = (struct ggml_tensor) {
  3720. /*.type =*/ type,
  3721. /*.backend =*/ GGML_BACKEND_CPU,
  3722. /*.n_dims =*/ n_dims,
  3723. /*.ne =*/ { 1, 1, 1, 1 },
  3724. /*.nb =*/ { 0, 0, 0, 0 },
  3725. /*.op =*/ GGML_OP_NONE,
  3726. /*.is_param =*/ false,
  3727. /*.grad =*/ NULL,
  3728. /*.src =*/ { NULL },
  3729. /*.perf_runs =*/ 0,
  3730. /*.perf_cycles =*/ 0,
  3731. /*.perf_time_us =*/ 0,
  3732. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3733. /*.name =*/ { 0 },
  3734. /*.extra =*/ NULL,
  3735. /*.padding =*/ { 0 },
  3736. };
  3737. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3738. //ggml_assert_aligned(result->data);
  3739. for (int i = 0; i < n_dims; i++) {
  3740. result->ne[i] = ne[i];
  3741. }
  3742. result->nb[0] = GGML_TYPE_SIZE[type];
  3743. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3744. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3745. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3746. }
  3747. ctx->n_objects++;
  3748. return result;
  3749. }
  3750. struct ggml_tensor * ggml_new_tensor(
  3751. struct ggml_context * ctx,
  3752. enum ggml_type type,
  3753. int n_dims,
  3754. const int64_t * ne) {
  3755. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3756. }
  3757. struct ggml_tensor * ggml_new_tensor_1d(
  3758. struct ggml_context * ctx,
  3759. enum ggml_type type,
  3760. int64_t ne0) {
  3761. return ggml_new_tensor(ctx, type, 1, &ne0);
  3762. }
  3763. struct ggml_tensor * ggml_new_tensor_2d(
  3764. struct ggml_context * ctx,
  3765. enum ggml_type type,
  3766. int64_t ne0,
  3767. int64_t ne1) {
  3768. const int64_t ne[2] = { ne0, ne1 };
  3769. return ggml_new_tensor(ctx, type, 2, ne);
  3770. }
  3771. struct ggml_tensor * ggml_new_tensor_3d(
  3772. struct ggml_context * ctx,
  3773. enum ggml_type type,
  3774. int64_t ne0,
  3775. int64_t ne1,
  3776. int64_t ne2) {
  3777. const int64_t ne[3] = { ne0, ne1, ne2 };
  3778. return ggml_new_tensor(ctx, type, 3, ne);
  3779. }
  3780. struct ggml_tensor * ggml_new_tensor_4d(
  3781. struct ggml_context * ctx,
  3782. enum ggml_type type,
  3783. int64_t ne0,
  3784. int64_t ne1,
  3785. int64_t ne2,
  3786. int64_t ne3) {
  3787. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3788. return ggml_new_tensor(ctx, type, 4, ne);
  3789. }
  3790. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3791. ggml_scratch_save(ctx);
  3792. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3793. ggml_scratch_load(ctx);
  3794. ggml_set_i32(result, value);
  3795. return result;
  3796. }
  3797. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3798. ggml_scratch_save(ctx);
  3799. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3800. ggml_scratch_load(ctx);
  3801. ggml_set_f32(result, value);
  3802. return result;
  3803. }
  3804. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3805. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3806. }
  3807. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3808. memset(tensor->data, 0, ggml_nbytes(tensor));
  3809. return tensor;
  3810. }
  3811. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3812. const int n = ggml_nrows(tensor);
  3813. const int nc = tensor->ne[0];
  3814. const size_t n1 = tensor->nb[1];
  3815. char * const data = tensor->data;
  3816. switch (tensor->type) {
  3817. case GGML_TYPE_I8:
  3818. {
  3819. assert(tensor->nb[0] == sizeof(int8_t));
  3820. for (int i = 0; i < n; i++) {
  3821. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3822. }
  3823. } break;
  3824. case GGML_TYPE_I16:
  3825. {
  3826. assert(tensor->nb[0] == sizeof(int16_t));
  3827. for (int i = 0; i < n; i++) {
  3828. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3829. }
  3830. } break;
  3831. case GGML_TYPE_I32:
  3832. {
  3833. assert(tensor->nb[0] == sizeof(int32_t));
  3834. for (int i = 0; i < n; i++) {
  3835. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3836. }
  3837. } break;
  3838. case GGML_TYPE_F16:
  3839. {
  3840. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3841. for (int i = 0; i < n; i++) {
  3842. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3843. }
  3844. } break;
  3845. case GGML_TYPE_F32:
  3846. {
  3847. assert(tensor->nb[0] == sizeof(float));
  3848. for (int i = 0; i < n; i++) {
  3849. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3850. }
  3851. } break;
  3852. default:
  3853. {
  3854. GGML_ASSERT(false);
  3855. } break;
  3856. }
  3857. return tensor;
  3858. }
  3859. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3860. const int n = ggml_nrows(tensor);
  3861. const int nc = tensor->ne[0];
  3862. const size_t n1 = tensor->nb[1];
  3863. char * const data = tensor->data;
  3864. switch (tensor->type) {
  3865. case GGML_TYPE_I8:
  3866. {
  3867. assert(tensor->nb[0] == sizeof(int8_t));
  3868. for (int i = 0; i < n; i++) {
  3869. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3870. }
  3871. } break;
  3872. case GGML_TYPE_I16:
  3873. {
  3874. assert(tensor->nb[0] == sizeof(int16_t));
  3875. for (int i = 0; i < n; i++) {
  3876. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3877. }
  3878. } break;
  3879. case GGML_TYPE_I32:
  3880. {
  3881. assert(tensor->nb[0] == sizeof(int32_t));
  3882. for (int i = 0; i < n; i++) {
  3883. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3884. }
  3885. } break;
  3886. case GGML_TYPE_F16:
  3887. {
  3888. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3889. for (int i = 0; i < n; i++) {
  3890. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3891. }
  3892. } break;
  3893. case GGML_TYPE_F32:
  3894. {
  3895. assert(tensor->nb[0] == sizeof(float));
  3896. for (int i = 0; i < n; i++) {
  3897. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3898. }
  3899. } break;
  3900. default:
  3901. {
  3902. GGML_ASSERT(false);
  3903. } break;
  3904. }
  3905. return tensor;
  3906. }
  3907. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3908. switch (tensor->type) {
  3909. case GGML_TYPE_I8:
  3910. {
  3911. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3912. return ((int8_t *)(tensor->data))[i];
  3913. } break;
  3914. case GGML_TYPE_I16:
  3915. {
  3916. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3917. return ((int16_t *)(tensor->data))[i];
  3918. } break;
  3919. case GGML_TYPE_I32:
  3920. {
  3921. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3922. return ((int32_t *)(tensor->data))[i];
  3923. } break;
  3924. case GGML_TYPE_F16:
  3925. {
  3926. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3927. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3928. } break;
  3929. case GGML_TYPE_F32:
  3930. {
  3931. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3932. return ((float *)(tensor->data))[i];
  3933. } break;
  3934. default:
  3935. {
  3936. GGML_ASSERT(false);
  3937. } break;
  3938. }
  3939. return 0.0f;
  3940. }
  3941. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3942. switch (tensor->type) {
  3943. case GGML_TYPE_I8:
  3944. {
  3945. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3946. ((int8_t *)(tensor->data))[i] = value;
  3947. } break;
  3948. case GGML_TYPE_I16:
  3949. {
  3950. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3951. ((int16_t *)(tensor->data))[i] = value;
  3952. } break;
  3953. case GGML_TYPE_I32:
  3954. {
  3955. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3956. ((int32_t *)(tensor->data))[i] = value;
  3957. } break;
  3958. case GGML_TYPE_F16:
  3959. {
  3960. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3961. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3962. } break;
  3963. case GGML_TYPE_F32:
  3964. {
  3965. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3966. ((float *)(tensor->data))[i] = value;
  3967. } break;
  3968. default:
  3969. {
  3970. GGML_ASSERT(false);
  3971. } break;
  3972. }
  3973. }
  3974. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3975. switch (tensor->type) {
  3976. case GGML_TYPE_I8:
  3977. {
  3978. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3979. return ((int8_t *)(tensor->data))[i];
  3980. } break;
  3981. case GGML_TYPE_I16:
  3982. {
  3983. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3984. return ((int16_t *)(tensor->data))[i];
  3985. } break;
  3986. case GGML_TYPE_I32:
  3987. {
  3988. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3989. return ((int32_t *)(tensor->data))[i];
  3990. } break;
  3991. case GGML_TYPE_F16:
  3992. {
  3993. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3994. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3995. } break;
  3996. case GGML_TYPE_F32:
  3997. {
  3998. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3999. return ((float *)(tensor->data))[i];
  4000. } break;
  4001. default:
  4002. {
  4003. GGML_ASSERT(false);
  4004. } break;
  4005. }
  4006. return 0.0f;
  4007. }
  4008. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4009. switch (tensor->type) {
  4010. case GGML_TYPE_I8:
  4011. {
  4012. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4013. ((int8_t *)(tensor->data))[i] = value;
  4014. } break;
  4015. case GGML_TYPE_I16:
  4016. {
  4017. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4018. ((int16_t *)(tensor->data))[i] = value;
  4019. } break;
  4020. case GGML_TYPE_I32:
  4021. {
  4022. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4023. ((int32_t *)(tensor->data))[i] = value;
  4024. } break;
  4025. case GGML_TYPE_F16:
  4026. {
  4027. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4028. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4029. } break;
  4030. case GGML_TYPE_F32:
  4031. {
  4032. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4033. ((float *)(tensor->data))[i] = value;
  4034. } break;
  4035. default:
  4036. {
  4037. GGML_ASSERT(false);
  4038. } break;
  4039. }
  4040. }
  4041. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4042. return tensor->data;
  4043. }
  4044. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4045. assert(tensor->type == GGML_TYPE_F32);
  4046. return (float *)(tensor->data);
  4047. }
  4048. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4049. return tensor->name;
  4050. }
  4051. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4052. strncpy(tensor->name, name, sizeof(tensor->name));
  4053. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4054. return tensor;
  4055. }
  4056. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4057. va_list args;
  4058. va_start(args, fmt);
  4059. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4060. va_end(args);
  4061. return tensor;
  4062. }
  4063. struct ggml_tensor * ggml_view_tensor(
  4064. struct ggml_context * ctx,
  4065. const struct ggml_tensor * src) {
  4066. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4067. ggml_format_name(result, "%s (view)", src->name);
  4068. result->nb[0] = src->nb[0];
  4069. result->nb[1] = src->nb[1];
  4070. result->nb[2] = src->nb[2];
  4071. result->nb[3] = src->nb[3];
  4072. return result;
  4073. }
  4074. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4075. struct ggml_object * obj = ctx->objects_begin;
  4076. char * const mem_buffer = ctx->mem_buffer;
  4077. while (obj != NULL) {
  4078. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4079. if (strcmp(cur->name, name) == 0) {
  4080. return cur;
  4081. }
  4082. obj = obj->next;
  4083. }
  4084. return NULL;
  4085. }
  4086. ////////////////////////////////////////////////////////////////////////////////
  4087. // ggml_dup
  4088. struct ggml_tensor * ggml_dup_impl(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. bool inplace) {
  4092. bool is_node = false;
  4093. if (!inplace && (a->grad)) {
  4094. is_node = true;
  4095. }
  4096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4097. result->op = GGML_OP_DUP;
  4098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4099. result->src[0] = a;
  4100. result->src[1] = NULL;
  4101. return result;
  4102. }
  4103. struct ggml_tensor * ggml_dup(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a) {
  4106. return ggml_dup_impl(ctx, a, false);
  4107. }
  4108. struct ggml_tensor * ggml_dup_inplace(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a) {
  4111. return ggml_dup_impl(ctx, a, true);
  4112. }
  4113. // ggml_add
  4114. struct ggml_tensor * ggml_add_impl(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. struct ggml_tensor * b,
  4118. bool inplace) {
  4119. // TODO: support less-strict constraint
  4120. // GGML_ASSERT(ggml_can_repeat(b, a));
  4121. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4122. bool is_node = false;
  4123. if (!inplace && (a->grad || b->grad)) {
  4124. // TODO: support backward pass for broadcasting
  4125. GGML_ASSERT(ggml_are_same_shape(a, b));
  4126. is_node = true;
  4127. }
  4128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4129. result->op = GGML_OP_ADD;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src[0] = a;
  4132. result->src[1] = b;
  4133. return result;
  4134. }
  4135. struct ggml_tensor * ggml_add(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. struct ggml_tensor * b) {
  4139. return ggml_add_impl(ctx, a, b, false);
  4140. }
  4141. struct ggml_tensor * ggml_add_inplace(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b) {
  4145. return ggml_add_impl(ctx, a, b, true);
  4146. }
  4147. // ggml_add1
  4148. struct ggml_tensor * ggml_add1_impl(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. struct ggml_tensor * b,
  4152. bool inplace) {
  4153. GGML_ASSERT(ggml_is_scalar(b));
  4154. GGML_ASSERT(ggml_is_padded_1d(a));
  4155. bool is_node = false;
  4156. if (a->grad || b->grad) {
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4160. result->op = GGML_OP_ADD1;
  4161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4162. result->src[0] = a;
  4163. result->src[1] = b;
  4164. return result;
  4165. }
  4166. struct ggml_tensor * ggml_add1(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. struct ggml_tensor * b) {
  4170. return ggml_add1_impl(ctx, a, b, false);
  4171. }
  4172. struct ggml_tensor * ggml_add1_inplace(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. struct ggml_tensor * b) {
  4176. return ggml_add1_impl(ctx, a, b, true);
  4177. }
  4178. // ggml_acc
  4179. struct ggml_tensor * ggml_acc_impl(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. struct ggml_tensor * b,
  4183. size_t nb1,
  4184. size_t nb2,
  4185. size_t nb3,
  4186. size_t offset,
  4187. bool inplace) {
  4188. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4189. GGML_ASSERT(ggml_is_contiguous(a));
  4190. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4191. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4192. bool is_node = false;
  4193. if (!inplace && (a->grad || b->grad)) {
  4194. is_node = true;
  4195. }
  4196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4197. ggml_scratch_save(ctx);
  4198. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4199. ((int32_t *) c->data)[0] = nb1;
  4200. ((int32_t *) c->data)[1] = nb2;
  4201. ((int32_t *) c->data)[2] = nb3;
  4202. ((int32_t *) c->data)[3] = offset;
  4203. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4204. ggml_scratch_load(ctx);
  4205. result->op = GGML_OP_ACC;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src[0] = a;
  4208. result->src[1] = b;
  4209. result->src[2] = c;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_acc(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b,
  4216. size_t nb1,
  4217. size_t nb2,
  4218. size_t nb3,
  4219. size_t offset) {
  4220. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4221. }
  4222. struct ggml_tensor * ggml_acc_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. size_t nb1,
  4227. size_t nb2,
  4228. size_t nb3,
  4229. size_t offset) {
  4230. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4231. }
  4232. // ggml_sub
  4233. struct ggml_tensor * ggml_sub_impl(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. struct ggml_tensor * b,
  4237. bool inplace) {
  4238. GGML_ASSERT(ggml_are_same_shape(a, b));
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad || b->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. result->op = GGML_OP_SUB;
  4245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4246. result->src[0] = a;
  4247. result->src[1] = b;
  4248. return result;
  4249. }
  4250. struct ggml_tensor * ggml_sub(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b) {
  4254. return ggml_sub_impl(ctx, a, b, false);
  4255. }
  4256. struct ggml_tensor * ggml_sub_inplace(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b) {
  4260. return ggml_sub_impl(ctx, a, b, true);
  4261. }
  4262. // ggml_mul
  4263. struct ggml_tensor * ggml_mul_impl(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. struct ggml_tensor * b,
  4267. bool inplace) {
  4268. // TODO: support less-strict constraint
  4269. // GGML_ASSERT(ggml_can_repeat(b, a));
  4270. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4271. bool is_node = false;
  4272. if (!inplace && (a->grad || b->grad)) {
  4273. // TODO: support backward pass for broadcasting
  4274. GGML_ASSERT(ggml_are_same_shape(a, b));
  4275. is_node = true;
  4276. }
  4277. if (inplace) {
  4278. GGML_ASSERT(is_node == false);
  4279. }
  4280. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4281. result->op = GGML_OP_MUL;
  4282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4283. result->src[0] = a;
  4284. result->src[1] = b;
  4285. return result;
  4286. }
  4287. struct ggml_tensor * ggml_mul(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b) {
  4291. return ggml_mul_impl(ctx, a, b, false);
  4292. }
  4293. struct ggml_tensor * ggml_mul_inplace(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b) {
  4297. return ggml_mul_impl(ctx, a, b, true);
  4298. }
  4299. // ggml_div
  4300. struct ggml_tensor * ggml_div_impl(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. struct ggml_tensor * b,
  4304. bool inplace) {
  4305. GGML_ASSERT(ggml_are_same_shape(a, b));
  4306. bool is_node = false;
  4307. if (!inplace && (a->grad || b->grad)) {
  4308. is_node = true;
  4309. }
  4310. if (inplace) {
  4311. GGML_ASSERT(is_node == false);
  4312. }
  4313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4314. result->op = GGML_OP_DIV;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src[0] = a;
  4317. result->src[1] = b;
  4318. return result;
  4319. }
  4320. struct ggml_tensor * ggml_div(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. struct ggml_tensor * b) {
  4324. return ggml_div_impl(ctx, a, b, false);
  4325. }
  4326. struct ggml_tensor * ggml_div_inplace(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. struct ggml_tensor * b) {
  4330. return ggml_div_impl(ctx, a, b, true);
  4331. }
  4332. // ggml_sqr
  4333. struct ggml_tensor * ggml_sqr_impl(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. bool inplace) {
  4337. bool is_node = false;
  4338. if (!inplace && (a->grad)) {
  4339. is_node = true;
  4340. }
  4341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4342. result->op = GGML_OP_SQR;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. result->src[1] = NULL;
  4346. return result;
  4347. }
  4348. struct ggml_tensor * ggml_sqr(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a) {
  4351. return ggml_sqr_impl(ctx, a, false);
  4352. }
  4353. struct ggml_tensor * ggml_sqr_inplace(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a) {
  4356. return ggml_sqr_impl(ctx, a, true);
  4357. }
  4358. // ggml_sqrt
  4359. struct ggml_tensor * ggml_sqrt_impl(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. bool inplace) {
  4363. bool is_node = false;
  4364. if (!inplace && (a->grad)) {
  4365. is_node = true;
  4366. }
  4367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4368. result->op = GGML_OP_SQRT;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src[0] = a;
  4371. result->src[1] = NULL;
  4372. return result;
  4373. }
  4374. struct ggml_tensor * ggml_sqrt(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a) {
  4377. return ggml_sqrt_impl(ctx, a, false);
  4378. }
  4379. struct ggml_tensor * ggml_sqrt_inplace(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a) {
  4382. return ggml_sqrt_impl(ctx, a, true);
  4383. }
  4384. // ggml_log
  4385. struct ggml_tensor * ggml_log_impl(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a,
  4388. bool inplace) {
  4389. bool is_node = false;
  4390. if (!inplace && (a->grad)) {
  4391. is_node = true;
  4392. }
  4393. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4394. result->op = GGML_OP_LOG;
  4395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4396. result->src[0] = a;
  4397. result->src[1] = NULL;
  4398. return result;
  4399. }
  4400. struct ggml_tensor * ggml_log(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. return ggml_log_impl(ctx, a, false);
  4404. }
  4405. struct ggml_tensor * ggml_log_inplace(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a) {
  4408. return ggml_log_impl(ctx, a, true);
  4409. }
  4410. // ggml_sum
  4411. struct ggml_tensor * ggml_sum(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. bool is_node = false;
  4415. if (a->grad) {
  4416. is_node = true;
  4417. }
  4418. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4419. result->op = GGML_OP_SUM;
  4420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4421. result->src[0] = a;
  4422. result->src[1] = NULL;
  4423. return result;
  4424. }
  4425. // ggml_sum_rows
  4426. struct ggml_tensor * ggml_sum_rows(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a) {
  4429. bool is_node = false;
  4430. if (a->grad) {
  4431. is_node = true;
  4432. }
  4433. int64_t ne[4] = {1,1,1,1};
  4434. for (int i=1; i<a->n_dims; ++i) {
  4435. ne[i] = a->ne[i];
  4436. }
  4437. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4438. result->op = GGML_OP_SUM_ROWS;
  4439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4440. result->src[0] = a;
  4441. result->src[1] = NULL;
  4442. return result;
  4443. }
  4444. // ggml_mean
  4445. struct ggml_tensor * ggml_mean(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. bool is_node = false;
  4449. if (a->grad) {
  4450. GGML_ASSERT(false); // TODO: implement
  4451. is_node = true;
  4452. }
  4453. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4454. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4455. result->op = GGML_OP_MEAN;
  4456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4457. result->src[0] = a;
  4458. result->src[1] = NULL;
  4459. return result;
  4460. }
  4461. // ggml_argmax
  4462. struct ggml_tensor * ggml_argmax(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a) {
  4465. GGML_ASSERT(ggml_is_matrix(a));
  4466. bool is_node = false;
  4467. if (a->grad) {
  4468. GGML_ASSERT(false);
  4469. is_node = true;
  4470. }
  4471. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4472. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4473. result->op = GGML_OP_ARGMAX;
  4474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4475. result->src[0] = a;
  4476. result->src[1] = NULL;
  4477. return result;
  4478. }
  4479. // ggml_repeat
  4480. struct ggml_tensor * ggml_repeat(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a,
  4483. struct ggml_tensor * b) {
  4484. GGML_ASSERT(ggml_can_repeat(a, b));
  4485. bool is_node = false;
  4486. if (a->grad) {
  4487. is_node = true;
  4488. }
  4489. if (ggml_are_same_shape(a, b) && !is_node) {
  4490. return a;
  4491. }
  4492. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4493. result->op = GGML_OP_REPEAT;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. result->src[1] = b;
  4497. return result;
  4498. }
  4499. // ggml_repeat_back
  4500. struct ggml_tensor * ggml_repeat_back(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b) {
  4504. GGML_ASSERT(ggml_can_repeat(b, a));
  4505. bool is_node = false;
  4506. if (a->grad) {
  4507. is_node = true;
  4508. }
  4509. if (ggml_are_same_shape(a, b) && !is_node) {
  4510. return a;
  4511. }
  4512. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4513. result->op = GGML_OP_REPEAT_BACK;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src[0] = a;
  4516. result->src[1] = b;
  4517. return result;
  4518. }
  4519. // ggml_abs
  4520. struct ggml_tensor * ggml_abs_impl(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. bool inplace) {
  4524. bool is_node = false;
  4525. if (!inplace && (a->grad)) {
  4526. is_node = true;
  4527. }
  4528. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4529. result->op = GGML_OP_ABS;
  4530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4531. result->src[0] = a;
  4532. result->src[1] = NULL;
  4533. return result;
  4534. }
  4535. struct ggml_tensor * ggml_abs(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a) {
  4538. return ggml_abs_impl(ctx, a, false);
  4539. }
  4540. struct ggml_tensor * ggml_abs_inplace(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a) {
  4543. return ggml_abs_impl(ctx, a, true);
  4544. }
  4545. // ggml_sgn
  4546. struct ggml_tensor * ggml_sgn_impl(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. bool inplace) {
  4550. bool is_node = false;
  4551. if (!inplace && (a->grad)) {
  4552. is_node = true;
  4553. }
  4554. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4555. result->op = GGML_OP_SGN;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src[0] = a;
  4558. result->src[1] = NULL;
  4559. return result;
  4560. }
  4561. struct ggml_tensor * ggml_sgn(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a) {
  4564. return ggml_sgn_impl(ctx, a, false);
  4565. }
  4566. struct ggml_tensor * ggml_sgn_inplace(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a) {
  4569. return ggml_sgn_impl(ctx, a, true);
  4570. }
  4571. // ggml_neg
  4572. struct ggml_tensor * ggml_neg_impl(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a,
  4575. bool inplace) {
  4576. bool is_node = false;
  4577. if (!inplace && (a->grad)) {
  4578. is_node = true;
  4579. }
  4580. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4581. result->op = GGML_OP_NEG;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src[0] = a;
  4584. result->src[1] = NULL;
  4585. return result;
  4586. }
  4587. struct ggml_tensor * ggml_neg(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a) {
  4590. return ggml_neg_impl(ctx, a, false);
  4591. }
  4592. struct ggml_tensor * ggml_neg_inplace(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a) {
  4595. return ggml_neg_impl(ctx, a, true);
  4596. }
  4597. // ggml_step
  4598. struct ggml_tensor * ggml_step_impl(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. bool inplace) {
  4602. bool is_node = false;
  4603. if (!inplace && (a->grad)) {
  4604. is_node = true;
  4605. }
  4606. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4607. result->op = GGML_OP_STEP;
  4608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4609. result->src[0] = a;
  4610. result->src[1] = NULL;
  4611. return result;
  4612. }
  4613. struct ggml_tensor * ggml_step(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a) {
  4616. return ggml_step_impl(ctx, a, false);
  4617. }
  4618. struct ggml_tensor * ggml_step_inplace(
  4619. struct ggml_context * ctx,
  4620. struct ggml_tensor * a) {
  4621. return ggml_step_impl(ctx, a, true);
  4622. }
  4623. // ggml_tanh
  4624. struct ggml_tensor * ggml_tanh_impl(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. bool inplace) {
  4628. bool is_node = false;
  4629. if (!inplace && (a->grad)) {
  4630. is_node = true;
  4631. }
  4632. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4633. result->op = GGML_OP_TANH;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src[0] = a;
  4636. result->src[1] = NULL;
  4637. return result;
  4638. }
  4639. struct ggml_tensor * ggml_tanh(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a) {
  4642. return ggml_tanh_impl(ctx, a, false);
  4643. }
  4644. struct ggml_tensor * ggml_tanh_inplace(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a) {
  4647. return ggml_tanh_impl(ctx, a, true);
  4648. }
  4649. // ggml_elu
  4650. struct ggml_tensor * ggml_elu_impl(
  4651. struct ggml_context * ctx,
  4652. struct ggml_tensor * a,
  4653. bool inplace) {
  4654. bool is_node = false;
  4655. if (!inplace && (a->grad)) {
  4656. is_node = true;
  4657. }
  4658. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4659. result->op = GGML_OP_ELU;
  4660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4661. result->src[0] = a;
  4662. result->src[1] = NULL;
  4663. return result;
  4664. }
  4665. struct ggml_tensor * ggml_elu(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a) {
  4668. return ggml_elu_impl(ctx, a, false);
  4669. }
  4670. struct ggml_tensor * ggml_elu_inplace(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a) {
  4673. return ggml_elu_impl(ctx, a, true);
  4674. }
  4675. // ggml_relu
  4676. struct ggml_tensor * ggml_relu_impl(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. bool inplace) {
  4680. bool is_node = false;
  4681. if (!inplace && (a->grad)) {
  4682. is_node = true;
  4683. }
  4684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4685. result->op = GGML_OP_RELU;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src[0] = a;
  4688. result->src[1] = NULL;
  4689. return result;
  4690. }
  4691. struct ggml_tensor * ggml_relu(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a) {
  4694. return ggml_relu_impl(ctx, a, false);
  4695. }
  4696. struct ggml_tensor * ggml_relu_inplace(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a) {
  4699. return ggml_relu_impl(ctx, a, true);
  4700. }
  4701. // ggml_gelu
  4702. struct ggml_tensor * ggml_gelu_impl(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. bool inplace) {
  4706. bool is_node = false;
  4707. if (!inplace && (a->grad)) {
  4708. is_node = true;
  4709. }
  4710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4711. result->op = GGML_OP_GELU;
  4712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4713. result->src[0] = a;
  4714. result->src[1] = NULL;
  4715. return result;
  4716. }
  4717. struct ggml_tensor * ggml_gelu(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a) {
  4720. return ggml_gelu_impl(ctx, a, false);
  4721. }
  4722. struct ggml_tensor * ggml_gelu_inplace(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a) {
  4725. return ggml_gelu_impl(ctx, a, true);
  4726. }
  4727. // ggml_gelu_quick
  4728. struct ggml_tensor * ggml_gelu_quick_impl(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. bool inplace) {
  4732. bool is_node = false;
  4733. if (!inplace && (a->grad)) {
  4734. is_node = true;
  4735. }
  4736. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4737. result->op = GGML_OP_GELU_QUICK;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src[0] = a;
  4740. result->src[1] = NULL;
  4741. return result;
  4742. }
  4743. struct ggml_tensor * ggml_gelu_quick(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a) {
  4746. return ggml_gelu_quick_impl(ctx, a, false);
  4747. }
  4748. struct ggml_tensor * ggml_gelu_quick_inplace(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a) {
  4751. return ggml_gelu_quick_impl(ctx, a, true);
  4752. }
  4753. // ggml_silu
  4754. struct ggml_tensor * ggml_silu_impl(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. bool inplace) {
  4758. bool is_node = false;
  4759. if (!inplace && (a->grad)) {
  4760. is_node = true;
  4761. }
  4762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4763. result->op = GGML_OP_SILU;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src[0] = a;
  4766. result->src[1] = NULL;
  4767. return result;
  4768. }
  4769. struct ggml_tensor * ggml_silu(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a) {
  4772. return ggml_silu_impl(ctx, a, false);
  4773. }
  4774. struct ggml_tensor * ggml_silu_inplace(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a) {
  4777. return ggml_silu_impl(ctx, a, true);
  4778. }
  4779. // ggml_silu_back
  4780. struct ggml_tensor * ggml_silu_back(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. struct ggml_tensor * b) {
  4784. bool is_node = false;
  4785. if (a->grad || b->grad) {
  4786. // TODO: implement backward
  4787. is_node = true;
  4788. }
  4789. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4790. result->op = GGML_OP_SILU_BACK;
  4791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4792. result->src[0] = a;
  4793. result->src[1] = b;
  4794. return result;
  4795. }
  4796. // ggml_norm
  4797. struct ggml_tensor * ggml_norm_impl(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. bool inplace) {
  4801. bool is_node = false;
  4802. if (!inplace && (a->grad)) {
  4803. GGML_ASSERT(false); // TODO: implement backward
  4804. is_node = true;
  4805. }
  4806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4807. result->op = GGML_OP_NORM;
  4808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4809. result->src[0] = a;
  4810. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4811. return result;
  4812. }
  4813. struct ggml_tensor * ggml_norm(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a) {
  4816. return ggml_norm_impl(ctx, a, false);
  4817. }
  4818. struct ggml_tensor * ggml_norm_inplace(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a) {
  4821. return ggml_norm_impl(ctx, a, true);
  4822. }
  4823. struct ggml_tensor * ggml_rms_norm_impl(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. bool inplace) {
  4827. bool is_node = false;
  4828. if (!inplace && (a->grad)) {
  4829. is_node = true;
  4830. }
  4831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4832. result->op = GGML_OP_RMS_NORM;
  4833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4834. result->src[0] = a;
  4835. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4836. return result;
  4837. }
  4838. struct ggml_tensor * ggml_rms_norm(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a) {
  4841. return ggml_rms_norm_impl(ctx, a, false);
  4842. }
  4843. struct ggml_tensor * ggml_rms_norm_inplace(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * a) {
  4846. return ggml_rms_norm_impl(ctx, a, true);
  4847. }
  4848. struct ggml_tensor * ggml_rms_norm_back(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. struct ggml_tensor * b) {
  4852. bool is_node = false;
  4853. if (a->grad) {
  4854. // TODO: implement backward
  4855. is_node = true;
  4856. }
  4857. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4858. result->op = GGML_OP_RMS_NORM_BACK;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src[0] = a;
  4861. result->src[1] = b;
  4862. return result;
  4863. }
  4864. // ggml_mul_mat
  4865. struct ggml_tensor * ggml_mul_mat(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b) {
  4869. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4870. GGML_ASSERT(!ggml_is_transposed(a));
  4871. bool is_node = false;
  4872. if (a->grad || b->grad) {
  4873. is_node = true;
  4874. }
  4875. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4876. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4877. result->op = GGML_OP_MUL_MAT;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. result->src[1] = b;
  4881. return result;
  4882. }
  4883. // ggml_out_prod
  4884. struct ggml_tensor * ggml_out_prod(
  4885. struct ggml_context * ctx,
  4886. struct ggml_tensor * a,
  4887. struct ggml_tensor * b) {
  4888. GGML_ASSERT(ggml_can_out_prod(a, b));
  4889. GGML_ASSERT(!ggml_is_transposed(a));
  4890. bool is_node = false;
  4891. if (a->grad || b->grad) {
  4892. is_node = true;
  4893. }
  4894. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4895. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4896. result->op = GGML_OP_OUT_PROD;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. result->src[1] = b;
  4900. return result;
  4901. }
  4902. // ggml_scale
  4903. struct ggml_tensor * ggml_scale_impl(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. struct ggml_tensor * b,
  4907. bool inplace) {
  4908. GGML_ASSERT(ggml_is_scalar(b));
  4909. GGML_ASSERT(ggml_is_padded_1d(a));
  4910. bool is_node = false;
  4911. if (a->grad || b->grad) {
  4912. is_node = true;
  4913. }
  4914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4915. result->op = GGML_OP_SCALE;
  4916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4917. result->src[0] = a;
  4918. result->src[1] = b;
  4919. return result;
  4920. }
  4921. struct ggml_tensor * ggml_scale(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. struct ggml_tensor * b) {
  4925. return ggml_scale_impl(ctx, a, b, false);
  4926. }
  4927. struct ggml_tensor * ggml_scale_inplace(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. struct ggml_tensor * b) {
  4931. return ggml_scale_impl(ctx, a, b, true);
  4932. }
  4933. // ggml_set
  4934. struct ggml_tensor * ggml_set_impl(
  4935. struct ggml_context * ctx,
  4936. struct ggml_tensor * a,
  4937. struct ggml_tensor * b,
  4938. size_t nb1,
  4939. size_t nb2,
  4940. size_t nb3,
  4941. size_t offset,
  4942. bool inplace) {
  4943. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4944. bool is_node = false;
  4945. if (a->grad || b->grad) {
  4946. is_node = true;
  4947. }
  4948. // make a view of the destination
  4949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4950. ggml_scratch_save(ctx);
  4951. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4952. (( int32_t * ) c->data)[0] = nb1;
  4953. (( int32_t * ) c->data)[1] = nb2;
  4954. (( int32_t * ) c->data)[2] = nb3;
  4955. (( int32_t * ) c->data)[3] = offset;
  4956. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4957. ggml_scratch_load(ctx);
  4958. result->op = GGML_OP_SET;
  4959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4960. result->src[0] = a;
  4961. result->src[1] = b;
  4962. result->src[2] = c;
  4963. return result;
  4964. }
  4965. struct ggml_tensor * ggml_set(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a,
  4968. struct ggml_tensor * b,
  4969. size_t nb1,
  4970. size_t nb2,
  4971. size_t nb3,
  4972. size_t offset) {
  4973. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4974. }
  4975. struct ggml_tensor * ggml_set_inplace(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b,
  4979. size_t nb1,
  4980. size_t nb2,
  4981. size_t nb3,
  4982. size_t offset) {
  4983. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4984. }
  4985. struct ggml_tensor * ggml_set_1d(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. struct ggml_tensor * b,
  4989. size_t offset) {
  4990. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4991. }
  4992. struct ggml_tensor * ggml_set_1d_inplace(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. size_t offset) {
  4997. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4998. }
  4999. struct ggml_tensor * ggml_set_2d(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. size_t nb1,
  5004. size_t offset) {
  5005. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5006. }
  5007. struct ggml_tensor * ggml_set_2d_inplace(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. size_t nb1,
  5012. size_t offset) {
  5013. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5014. }
  5015. // ggml_cpy
  5016. struct ggml_tensor * ggml_cpy_impl(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. struct ggml_tensor * b,
  5020. bool inplace) {
  5021. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5022. bool is_node = false;
  5023. if (!inplace && (a->grad || b->grad)) {
  5024. is_node = true;
  5025. }
  5026. // make a view of the destination
  5027. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5028. if (strlen(b->name) > 0) {
  5029. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5030. } else {
  5031. ggml_format_name(result, "%s (copy)", a->name);
  5032. }
  5033. result->op = GGML_OP_CPY;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src[0] = a;
  5036. result->src[1] = b;
  5037. return result;
  5038. }
  5039. struct ggml_tensor * ggml_cpy(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. struct ggml_tensor * b) {
  5043. return ggml_cpy_impl(ctx, a, b, false);
  5044. }
  5045. struct ggml_tensor * ggml_cpy_inplace(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. struct ggml_tensor * b) {
  5049. return ggml_cpy_impl(ctx, a, b, true);
  5050. }
  5051. // ggml_cont
  5052. struct ggml_tensor * ggml_cont_impl(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. bool inplace) {
  5056. bool is_node = false;
  5057. if (!inplace && a->grad) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. ggml_format_name(result, "%s (cont)", a->name);
  5062. result->op = GGML_OP_CONT;
  5063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5064. result->src[0] = a;
  5065. result->src[1] = NULL;
  5066. return result;
  5067. }
  5068. struct ggml_tensor * ggml_cont(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a) {
  5071. return ggml_cont_impl(ctx, a, false);
  5072. }
  5073. struct ggml_tensor * ggml_cont_inplace(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a) {
  5076. return ggml_cont_impl(ctx, a, true);
  5077. }
  5078. // ggml_reshape
  5079. struct ggml_tensor * ggml_reshape(
  5080. struct ggml_context * ctx,
  5081. struct ggml_tensor * a,
  5082. struct ggml_tensor * b) {
  5083. GGML_ASSERT(ggml_is_contiguous(a));
  5084. GGML_ASSERT(ggml_is_contiguous(b));
  5085. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5086. bool is_node = false;
  5087. if (a->grad) {
  5088. is_node = true;
  5089. }
  5090. if (b->grad) {
  5091. // gradient propagation is not supported
  5092. //GGML_ASSERT(false);
  5093. }
  5094. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5095. ggml_format_name(result, "%s (reshaped)", a->name);
  5096. result->op = GGML_OP_RESHAPE;
  5097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5098. result->src[0] = a;
  5099. result->src[1] = NULL;
  5100. return result;
  5101. }
  5102. struct ggml_tensor * ggml_reshape_1d(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. int64_t ne0) {
  5106. GGML_ASSERT(ggml_is_contiguous(a));
  5107. GGML_ASSERT(ggml_nelements(a) == ne0);
  5108. bool is_node = false;
  5109. if (a->grad) {
  5110. is_node = true;
  5111. }
  5112. const int64_t ne[1] = { ne0 };
  5113. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5114. ggml_format_name(result, "%s (reshaped)", a->name);
  5115. result->op = GGML_OP_RESHAPE;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = NULL;
  5119. return result;
  5120. }
  5121. struct ggml_tensor * ggml_reshape_2d(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * a,
  5124. int64_t ne0,
  5125. int64_t ne1) {
  5126. GGML_ASSERT(ggml_is_contiguous(a));
  5127. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5128. bool is_node = false;
  5129. if (a->grad) {
  5130. is_node = true;
  5131. }
  5132. const int64_t ne[2] = { ne0, ne1 };
  5133. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5134. ggml_format_name(result, "%s (reshaped)", a->name);
  5135. result->op = GGML_OP_RESHAPE;
  5136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5137. result->src[0] = a;
  5138. result->src[1] = NULL;
  5139. return result;
  5140. }
  5141. struct ggml_tensor * ggml_reshape_3d(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a,
  5144. int64_t ne0,
  5145. int64_t ne1,
  5146. int64_t ne2) {
  5147. GGML_ASSERT(ggml_is_contiguous(a));
  5148. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5149. bool is_node = false;
  5150. if (a->grad) {
  5151. is_node = true;
  5152. }
  5153. const int64_t ne[3] = { ne0, ne1, ne2 };
  5154. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5155. ggml_format_name(result, "%s (reshaped)", a->name);
  5156. result->op = GGML_OP_RESHAPE;
  5157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5158. result->src[0] = a;
  5159. result->src[1] = NULL;
  5160. return result;
  5161. }
  5162. struct ggml_tensor * ggml_reshape_4d(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. int64_t ne0,
  5166. int64_t ne1,
  5167. int64_t ne2,
  5168. int64_t ne3) {
  5169. GGML_ASSERT(ggml_is_contiguous(a));
  5170. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5171. bool is_node = false;
  5172. if (a->grad) {
  5173. is_node = true;
  5174. }
  5175. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5176. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5177. ggml_format_name(result, "%s (reshaped)", a->name);
  5178. result->op = GGML_OP_RESHAPE;
  5179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5180. result->src[0] = a;
  5181. result->src[1] = NULL;
  5182. return result;
  5183. }
  5184. // ggml_view_1d
  5185. struct ggml_tensor * ggml_view_1d(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. int64_t ne0,
  5189. size_t offset) {
  5190. bool is_node = false;
  5191. if (a->grad) {
  5192. is_node = true;
  5193. }
  5194. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5195. ggml_format_name(result, "%s (view)", a->name);
  5196. ggml_scratch_save(ctx);
  5197. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5198. ggml_set_name(offs, "offset");
  5199. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5200. ggml_scratch_load(ctx);
  5201. result->op = GGML_OP_VIEW;
  5202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5203. result->src[0] = a;
  5204. result->src[1] = NULL;
  5205. result->src[2] = offs;
  5206. return result;
  5207. }
  5208. // ggml_view_2d
  5209. struct ggml_tensor * ggml_view_2d(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. int64_t ne0,
  5213. int64_t ne1,
  5214. size_t nb1,
  5215. size_t offset) {
  5216. bool is_node = false;
  5217. if (a->grad) {
  5218. is_node = true;
  5219. }
  5220. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5221. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5222. ggml_format_name(result, "%s (view)", a->name);
  5223. ggml_scratch_save(ctx);
  5224. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5225. ggml_set_name(offs, "offset");
  5226. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5227. ggml_scratch_load(ctx);
  5228. result->nb[1] = nb1;
  5229. result->nb[2] = result->nb[1]*ne1;
  5230. result->nb[3] = result->nb[2];
  5231. result->op = GGML_OP_VIEW;
  5232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5233. result->src[0] = a;
  5234. result->src[1] = NULL;
  5235. result->src[2] = offs;
  5236. return result;
  5237. }
  5238. // ggml_view_3d
  5239. struct ggml_tensor * ggml_view_3d(
  5240. struct ggml_context * ctx,
  5241. struct ggml_tensor * a,
  5242. int64_t ne0,
  5243. int64_t ne1,
  5244. int64_t ne2,
  5245. size_t nb1,
  5246. size_t nb2,
  5247. size_t offset) {
  5248. bool is_node = false;
  5249. if (a->grad) {
  5250. is_node = true;
  5251. }
  5252. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5253. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5254. ggml_format_name(result, "%s (view)", a->name);
  5255. ggml_scratch_save(ctx);
  5256. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5257. ggml_set_name(offs, "offset");
  5258. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5259. ggml_scratch_load(ctx);
  5260. result->nb[1] = nb1;
  5261. result->nb[2] = nb2;
  5262. result->nb[3] = result->nb[2]*ne2;
  5263. result->op = GGML_OP_VIEW;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src[0] = a;
  5266. result->src[1] = NULL;
  5267. result->src[2] = offs;
  5268. return result;
  5269. }
  5270. // ggml_view_4d
  5271. struct ggml_tensor * ggml_view_4d(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. int64_t ne0,
  5275. int64_t ne1,
  5276. int64_t ne2,
  5277. int64_t ne3,
  5278. size_t nb1,
  5279. size_t nb2,
  5280. size_t nb3,
  5281. size_t offset) {
  5282. bool is_node = false;
  5283. if (a->grad) {
  5284. is_node = true;
  5285. }
  5286. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5287. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5288. ggml_format_name(result, "%s (view)", a->name);
  5289. ggml_scratch_save(ctx);
  5290. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5291. ggml_set_name(offs, "offset");
  5292. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5293. ggml_scratch_load(ctx);
  5294. result->nb[1] = nb1;
  5295. result->nb[2] = nb2;
  5296. result->nb[3] = nb3;
  5297. result->op = GGML_OP_VIEW;
  5298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5299. result->src[0] = a;
  5300. result->src[1] = NULL;
  5301. result->src[2] = offs;
  5302. return result;
  5303. }
  5304. // ggml_permute
  5305. struct ggml_tensor * ggml_permute(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. int axis0,
  5309. int axis1,
  5310. int axis2,
  5311. int axis3) {
  5312. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5313. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5314. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5315. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5316. GGML_ASSERT(axis0 != axis1);
  5317. GGML_ASSERT(axis0 != axis2);
  5318. GGML_ASSERT(axis0 != axis3);
  5319. GGML_ASSERT(axis1 != axis2);
  5320. GGML_ASSERT(axis1 != axis3);
  5321. GGML_ASSERT(axis2 != axis3);
  5322. bool is_node = false;
  5323. if (a->grad) {
  5324. is_node = true;
  5325. }
  5326. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5327. ggml_format_name(result, "%s (permuted)", a->name);
  5328. int ne[GGML_MAX_DIMS];
  5329. int nb[GGML_MAX_DIMS];
  5330. ne[axis0] = a->ne[0];
  5331. ne[axis1] = a->ne[1];
  5332. ne[axis2] = a->ne[2];
  5333. ne[axis3] = a->ne[3];
  5334. nb[axis0] = a->nb[0];
  5335. nb[axis1] = a->nb[1];
  5336. nb[axis2] = a->nb[2];
  5337. nb[axis3] = a->nb[3];
  5338. result->ne[0] = ne[0];
  5339. result->ne[1] = ne[1];
  5340. result->ne[2] = ne[2];
  5341. result->ne[3] = ne[3];
  5342. result->nb[0] = nb[0];
  5343. result->nb[1] = nb[1];
  5344. result->nb[2] = nb[2];
  5345. result->nb[3] = nb[3];
  5346. result->op = GGML_OP_PERMUTE;
  5347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5348. result->src[0] = a;
  5349. result->src[1] = NULL;
  5350. if (is_node) {
  5351. ggml_scratch_save(ctx);
  5352. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5353. ((int32_t *) b->data)[0] = axis0;
  5354. ((int32_t *) b->data)[1] = axis1;
  5355. ((int32_t *) b->data)[2] = axis2;
  5356. ((int32_t *) b->data)[3] = axis3;
  5357. ggml_scratch_load(ctx);
  5358. result->src[2] = b;
  5359. }
  5360. return result;
  5361. }
  5362. // ggml_transpose
  5363. struct ggml_tensor * ggml_transpose(
  5364. struct ggml_context * ctx,
  5365. struct ggml_tensor * a) {
  5366. bool is_node = false;
  5367. if (a->grad) {
  5368. is_node = true;
  5369. }
  5370. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5371. ggml_format_name(result, "%s (transposed)", a->name);
  5372. result->ne[0] = a->ne[1];
  5373. result->ne[1] = a->ne[0];
  5374. result->nb[0] = a->nb[1];
  5375. result->nb[1] = a->nb[0];
  5376. result->op = GGML_OP_TRANSPOSE;
  5377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5378. result->src[0] = a;
  5379. result->src[1] = NULL;
  5380. return result;
  5381. }
  5382. // ggml_get_rows
  5383. struct ggml_tensor * ggml_get_rows(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b) {
  5387. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5388. bool is_node = false;
  5389. if (a->grad || b->grad) {
  5390. is_node = true;
  5391. }
  5392. // TODO: implement non F32 return
  5393. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5394. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5395. result->op = GGML_OP_GET_ROWS;
  5396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5397. result->src[0] = a;
  5398. result->src[1] = b;
  5399. return result;
  5400. }
  5401. // ggml_get_rows_back
  5402. struct ggml_tensor * ggml_get_rows_back(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. struct ggml_tensor * b,
  5406. struct ggml_tensor * c) {
  5407. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5408. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5409. bool is_node = false;
  5410. if (a->grad || b->grad) {
  5411. is_node = true;
  5412. }
  5413. // TODO: implement non F32 return
  5414. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5415. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5416. result->op = GGML_OP_GET_ROWS_BACK;
  5417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5418. result->src[0] = a;
  5419. result->src[1] = b;
  5420. result->src[2] = c;
  5421. return result;
  5422. }
  5423. // ggml_diag
  5424. struct ggml_tensor * ggml_diag(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a) {
  5427. GGML_ASSERT(a->ne[1] == 1);
  5428. bool is_node = false;
  5429. if (a->grad) {
  5430. is_node = true;
  5431. }
  5432. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5433. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5434. result->op = GGML_OP_DIAG;
  5435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5436. result->src[0] = a;
  5437. result->src[1] = NULL;
  5438. return result;
  5439. }
  5440. // ggml_diag_mask_inf
  5441. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. int n_past,
  5445. bool inplace) {
  5446. bool is_node = false;
  5447. if (a->grad) {
  5448. is_node = true;
  5449. }
  5450. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5451. ggml_scratch_save(ctx);
  5452. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5453. ((int32_t *) b->data)[0] = n_past;
  5454. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5455. ggml_scratch_load(ctx);
  5456. result->op = GGML_OP_DIAG_MASK_INF;
  5457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5458. result->src[0] = a;
  5459. result->src[1] = b;
  5460. return result;
  5461. }
  5462. struct ggml_tensor * ggml_diag_mask_inf(
  5463. struct ggml_context * ctx,
  5464. struct ggml_tensor * a,
  5465. int n_past) {
  5466. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5467. }
  5468. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. int n_past) {
  5472. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5473. }
  5474. // ggml_diag_mask_zero
  5475. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5476. struct ggml_context * ctx,
  5477. struct ggml_tensor * a,
  5478. int n_past,
  5479. bool inplace) {
  5480. bool is_node = false;
  5481. if (a->grad) {
  5482. is_node = true;
  5483. }
  5484. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5485. ggml_scratch_save(ctx);
  5486. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5487. ggml_set_name(b, "n_past, inplace");
  5488. ((int32_t *) b->data)[0] = n_past;
  5489. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5490. ggml_scratch_load(ctx);
  5491. result->op = GGML_OP_DIAG_MASK_ZERO;
  5492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5493. result->src[0] = a;
  5494. result->src[1] = b;
  5495. return result;
  5496. }
  5497. struct ggml_tensor * ggml_diag_mask_zero(
  5498. struct ggml_context * ctx,
  5499. struct ggml_tensor * a,
  5500. int n_past) {
  5501. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5502. }
  5503. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a,
  5506. int n_past) {
  5507. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5508. }
  5509. // ggml_soft_max
  5510. struct ggml_tensor * ggml_soft_max_impl(
  5511. struct ggml_context * ctx,
  5512. struct ggml_tensor * a,
  5513. bool inplace) {
  5514. bool is_node = false;
  5515. if (a->grad) {
  5516. is_node = true;
  5517. }
  5518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5519. result->op = GGML_OP_SOFT_MAX;
  5520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5521. result->src[0] = a;
  5522. result->src[1] = NULL;
  5523. return result;
  5524. }
  5525. struct ggml_tensor * ggml_soft_max(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a) {
  5528. return ggml_soft_max_impl(ctx, a, false);
  5529. }
  5530. struct ggml_tensor * ggml_soft_max_inplace(
  5531. struct ggml_context * ctx,
  5532. struct ggml_tensor * a) {
  5533. return ggml_soft_max_impl(ctx, a, true);
  5534. }
  5535. // ggml_soft_max_back
  5536. struct ggml_tensor * ggml_soft_max_back_impl(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. bool inplace) {
  5541. bool is_node = false;
  5542. if (a->grad || b->grad) {
  5543. is_node = true; // TODO : implement backward pass
  5544. }
  5545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5546. result->op = GGML_OP_SOFT_MAX_BACK;
  5547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5548. result->src[0] = a;
  5549. result->src[1] = b;
  5550. return result;
  5551. }
  5552. struct ggml_tensor * ggml_soft_max_back(
  5553. struct ggml_context * ctx,
  5554. struct ggml_tensor * a,
  5555. struct ggml_tensor * b) {
  5556. return ggml_soft_max_back_impl(ctx, a, b, false);
  5557. }
  5558. struct ggml_tensor * ggml_soft_max_back_inplace(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. struct ggml_tensor * b) {
  5562. return ggml_soft_max_back_impl(ctx, a, b, true);
  5563. }
  5564. // ggml_rope
  5565. struct ggml_tensor * ggml_rope_impl(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. int n_past,
  5569. int n_dims,
  5570. int mode,
  5571. int n_ctx,
  5572. bool inplace) {
  5573. GGML_ASSERT(n_past >= 0);
  5574. bool is_node = false;
  5575. if (a->grad) {
  5576. is_node = true;
  5577. }
  5578. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5579. ggml_scratch_save(ctx);
  5580. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5581. ((int32_t *) b->data)[0] = n_past;
  5582. ((int32_t *) b->data)[1] = n_dims;
  5583. ((int32_t *) b->data)[2] = mode;
  5584. ((int32_t *) b->data)[3] = n_ctx;
  5585. ggml_scratch_load(ctx);
  5586. result->op = GGML_OP_ROPE;
  5587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5588. result->src[0] = a;
  5589. result->src[1] = b;
  5590. return result;
  5591. }
  5592. struct ggml_tensor * ggml_rope(
  5593. struct ggml_context * ctx,
  5594. struct ggml_tensor * a,
  5595. int n_past,
  5596. int n_dims,
  5597. int mode,
  5598. int n_ctx) {
  5599. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5600. }
  5601. struct ggml_tensor * ggml_rope_inplace(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * a,
  5604. int n_past,
  5605. int n_dims,
  5606. int mode,
  5607. int n_ctx) {
  5608. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5609. }
  5610. // ggml_rope_back
  5611. struct ggml_tensor * ggml_rope_back(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. int n_past,
  5615. int n_dims,
  5616. int mode) {
  5617. GGML_ASSERT(n_past >= 0);
  5618. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5619. bool is_node = false;
  5620. if (a->grad) {
  5621. is_node = false; // TODO: implement backward
  5622. }
  5623. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5624. ggml_scratch_save(ctx);
  5625. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5626. ggml_set_name(b, "n_past, n_dims, mode");
  5627. ((int32_t *) b->data)[0] = n_past;
  5628. ((int32_t *) b->data)[1] = n_dims;
  5629. ((int32_t *) b->data)[2] = mode;
  5630. ggml_scratch_load(ctx);
  5631. result->op = GGML_OP_ROPE_BACK;
  5632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5633. result->src[0] = a;
  5634. result->src[1] = b;
  5635. return result;
  5636. }
  5637. // ggml_alibi
  5638. struct ggml_tensor * ggml_alibi(
  5639. struct ggml_context * ctx,
  5640. struct ggml_tensor * a,
  5641. int n_past,
  5642. int n_head,
  5643. float bias_max) {
  5644. GGML_ASSERT(n_past >= 0);
  5645. bool is_node = false;
  5646. if (a->grad) {
  5647. GGML_ASSERT(false); // TODO: implement backward
  5648. is_node = true;
  5649. }
  5650. // TODO: when implement backward, fix this:
  5651. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5652. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5653. ggml_scratch_save(ctx);
  5654. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5655. ((int32_t *) b->data)[0] = n_past;
  5656. ((int32_t *) b->data)[1] = n_head;
  5657. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5658. (((float *) b->data)[2]) = bias_max;
  5659. ggml_scratch_load(ctx);
  5660. result->op = GGML_OP_ALIBI;
  5661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5662. result->src[0] = a;
  5663. result->src[1] = b;
  5664. return result;
  5665. }
  5666. // ggml_clamp
  5667. struct ggml_tensor * ggml_clamp(
  5668. struct ggml_context * ctx,
  5669. struct ggml_tensor * a,
  5670. float min,
  5671. float max) {
  5672. bool is_node = false;
  5673. if (a->grad) {
  5674. GGML_ASSERT(false); // TODO: implement backward
  5675. is_node = true;
  5676. }
  5677. // TODO: when implement backward, fix this:
  5678. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5679. ggml_scratch_save(ctx);
  5680. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5681. ((float *) b->data)[0] = min;
  5682. ((float *) b->data)[1] = max;
  5683. ggml_scratch_load(ctx);
  5684. result->op = GGML_OP_CLAMP;
  5685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5686. result->src[0] = a;
  5687. result->src[1] = b;
  5688. return result;
  5689. }
  5690. // ggml_conv_1d
  5691. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5692. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5693. }
  5694. GGML_API struct ggml_tensor * ggml_conv_1d(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * a,
  5697. struct ggml_tensor * b,
  5698. int s0,
  5699. int p0,
  5700. int d0) {
  5701. GGML_ASSERT(ggml_is_matrix(b));
  5702. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5703. bool is_node = false;
  5704. if (a->grad || b->grad) {
  5705. GGML_ASSERT(false); // TODO: implement backward
  5706. is_node = true;
  5707. }
  5708. const int64_t ne[4] = {
  5709. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5710. a->ne[2], 1, 1,
  5711. };
  5712. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5713. ggml_scratch_save(ctx);
  5714. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5715. ((int32_t*)c->data)[0] = s0;
  5716. ((int32_t*)c->data)[1] = p0;
  5717. ((int32_t*)c->data)[2] = d0;
  5718. ggml_scratch_load(ctx);
  5719. result->op = GGML_OP_CONV_1D;
  5720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5721. result->src[0] = a;
  5722. result->src[1] = b;
  5723. result->src[2] = c;
  5724. return result;
  5725. }
  5726. // ggml_conv_2d
  5727. struct ggml_tensor* ggml_conv_2d(
  5728. struct ggml_context* ctx,
  5729. struct ggml_tensor * a,
  5730. struct ggml_tensor * b,
  5731. int s0,
  5732. int s1,
  5733. int p0,
  5734. int p1,
  5735. int d0,
  5736. int d1) {
  5737. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5738. bool is_node = false;
  5739. if (a->grad || b->grad) {
  5740. GGML_ASSERT(false); // TODO: implement backward
  5741. is_node = true;
  5742. }
  5743. const int64_t ne[4] = {
  5744. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5745. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5746. a->ne[3], b->ne[3],
  5747. };
  5748. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5749. ggml_scratch_save(ctx);
  5750. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5751. ((int32_t*)c->data)[0] = s0;
  5752. ((int32_t*)c->data)[1] = s1;
  5753. ((int32_t*)c->data)[2] = p0;
  5754. ((int32_t*)c->data)[3] = p1;
  5755. ((int32_t*)c->data)[4] = d0;
  5756. ((int32_t*)c->data)[5] = d1;
  5757. ggml_scratch_load(ctx);
  5758. result->op = GGML_OP_CONV_2D;
  5759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5760. result->src[0] = a;
  5761. result->src[1] = b;
  5762. result->src[2] = c;
  5763. return result;
  5764. }
  5765. // ggml_conv_1d_ph
  5766. struct ggml_tensor* ggml_conv_1d_ph(
  5767. struct ggml_context * ctx,
  5768. struct ggml_tensor * a,
  5769. struct ggml_tensor * b,
  5770. int s,
  5771. int d) {
  5772. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5773. }
  5774. // ggml_pool_*
  5775. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5776. return (ins + 2 * p - ks) / s + 1;
  5777. }
  5778. // ggml_pool_2d
  5779. struct ggml_tensor* ggml_pool_1d(
  5780. struct ggml_context * ctx,
  5781. struct ggml_tensor * a,
  5782. enum ggml_op_pool op,
  5783. int k0,
  5784. int s0,
  5785. int p0) {
  5786. bool is_node = false;
  5787. if (a->grad) {
  5788. GGML_ASSERT(false); // TODO: implement backward
  5789. is_node = true;
  5790. }
  5791. const int64_t ne[3] = {
  5792. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5793. a->ne[1],
  5794. };
  5795. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5796. ggml_scratch_save(ctx);
  5797. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5798. ((int32_t*)c->data)[0] = op;
  5799. ((int32_t*)c->data)[1] = k0;
  5800. ((int32_t*)c->data)[2] = s0;
  5801. ((int32_t*)c->data)[3] = p0;
  5802. ggml_scratch_load(ctx);
  5803. result->op = GGML_OP_POOL_1D;
  5804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5805. result->src[0] = a;
  5806. result->src[1] = c;
  5807. return result;
  5808. }
  5809. // ggml_pool_2d
  5810. struct ggml_tensor* ggml_pool_2d(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. enum ggml_op_pool op,
  5814. int k0,
  5815. int k1,
  5816. int s0,
  5817. int s1,
  5818. int p0,
  5819. int p1) {
  5820. bool is_node = false;
  5821. if (a->grad) {
  5822. GGML_ASSERT(false); // TODO: implement backward
  5823. is_node = true;
  5824. }
  5825. const int64_t ne[3] = {
  5826. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5827. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5828. a->ne[2],
  5829. };
  5830. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5831. ggml_scratch_save(ctx);
  5832. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 7);
  5833. ((int32_t*)c->data)[0] = op;
  5834. ((int32_t*)c->data)[1] = k0;
  5835. ((int32_t*)c->data)[2] = k1;
  5836. ((int32_t*)c->data)[3] = s0;
  5837. ((int32_t*)c->data)[4] = s1;
  5838. ((int32_t*)c->data)[5] = p0;
  5839. ((int32_t*)c->data)[6] = p1;
  5840. ggml_scratch_load(ctx);
  5841. result->op = GGML_OP_POOL_2D;
  5842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5843. result->src[0] = a;
  5844. result->src[1] = c;
  5845. return result;
  5846. }
  5847. // ggml_flash_attn
  5848. struct ggml_tensor * ggml_flash_attn(
  5849. struct ggml_context * ctx,
  5850. struct ggml_tensor * q,
  5851. struct ggml_tensor * k,
  5852. struct ggml_tensor * v,
  5853. bool masked) {
  5854. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5855. // TODO: check if vT can be multiplied by (k*qT)
  5856. bool is_node = false;
  5857. if (q->grad || k->grad || v->grad) {
  5858. is_node = true;
  5859. }
  5860. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5861. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5862. result->op = GGML_OP_FLASH_ATTN;
  5863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5864. result->src[0] = q;
  5865. result->src[1] = k;
  5866. result->src[2] = v;
  5867. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5868. return result;
  5869. }
  5870. // ggml_flash_ff
  5871. struct ggml_tensor * ggml_flash_ff(
  5872. struct ggml_context * ctx,
  5873. struct ggml_tensor * a,
  5874. struct ggml_tensor * b0,
  5875. struct ggml_tensor * b1,
  5876. struct ggml_tensor * c0,
  5877. struct ggml_tensor * c1) {
  5878. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5879. // TODO: more checks
  5880. bool is_node = false;
  5881. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5882. is_node = true;
  5883. }
  5884. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5885. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5886. result->op = GGML_OP_FLASH_FF;
  5887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5888. result->src[0] = a;
  5889. result->src[1] = b0;
  5890. result->src[2] = b1;
  5891. result->src[3] = c0;
  5892. result->src[4] = c1;
  5893. return result;
  5894. }
  5895. // ggml_flash_attn_back
  5896. struct ggml_tensor * ggml_flash_attn_back(
  5897. struct ggml_context * ctx,
  5898. struct ggml_tensor * q,
  5899. struct ggml_tensor * k,
  5900. struct ggml_tensor * v,
  5901. struct ggml_tensor * d,
  5902. bool masked) {
  5903. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5904. // TODO: check if vT can be multiplied by (k*qT)
  5905. // d shape [D,N,ne2,ne3]
  5906. // q shape [D,N,ne2,ne3]
  5907. // k shape [D,M,ne2,ne3]
  5908. // v shape [M,D,ne2,ne3]
  5909. const int64_t D = q->ne[0];
  5910. const int64_t N = q->ne[1];
  5911. const int64_t M = k->ne[1];
  5912. const int64_t ne2 = q->ne[2];
  5913. const int64_t ne3 = q->ne[3];
  5914. GGML_ASSERT(k->ne[0] == D);
  5915. GGML_ASSERT(v->ne[0] == M);
  5916. GGML_ASSERT(v->ne[1] == D);
  5917. GGML_ASSERT(d->ne[0] == D);
  5918. GGML_ASSERT(d->ne[1] == N);
  5919. GGML_ASSERT(k->ne[2] == ne2);
  5920. GGML_ASSERT(k->ne[3] == ne3);
  5921. GGML_ASSERT(v->ne[2] == ne2);
  5922. GGML_ASSERT(v->ne[3] == ne3);
  5923. GGML_ASSERT(d->ne[2] == ne2);
  5924. GGML_ASSERT(d->ne[3] == ne3);
  5925. bool is_node = false;
  5926. if (q->grad || k->grad || v->grad) {
  5927. // when using this operation (in backwards pass) these grads are set.
  5928. // we don't want to create (big) grad of our result, so is_node is false.
  5929. is_node = false;
  5930. }
  5931. // store gradients of q, k and v as continuous tensors concatenated in result.
  5932. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5933. // gradq->data = result->data
  5934. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5935. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5936. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5937. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5938. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5939. result->op = GGML_OP_FLASH_ATTN_BACK;
  5940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5941. result->src[0] = q;
  5942. result->src[1] = k;
  5943. result->src[2] = v;
  5944. result->src[3] = d;
  5945. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5946. return result;
  5947. }
  5948. // ggml_win_part
  5949. struct ggml_tensor * ggml_win_part(
  5950. struct ggml_context * ctx,
  5951. struct ggml_tensor * a,
  5952. int w) {
  5953. GGML_ASSERT(a->ne[3] == 1);
  5954. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5955. bool is_node = false;
  5956. if (a->grad) {
  5957. GGML_ASSERT(false); // TODO: implement backward
  5958. is_node = true;
  5959. }
  5960. // padding
  5961. const int px = (w - a->ne[1]%w)%w;
  5962. const int py = (w - a->ne[2]%w)%w;
  5963. const int npx = (px + a->ne[1])/w;
  5964. const int npy = (py + a->ne[2])/w;
  5965. const int np = npx*npy;
  5966. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5967. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5968. ggml_scratch_save(ctx);
  5969. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5970. ((int32_t *) b->data)[0] = npx;
  5971. ((int32_t *) b->data)[1] = npy;
  5972. ((int32_t *) b->data)[2] = w;
  5973. ggml_scratch_load(ctx);
  5974. result->op = GGML_OP_WIN_PART;
  5975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5976. result->src[0] = a;
  5977. result->src[1] = NULL;
  5978. result->src[2] = b;
  5979. return result;
  5980. }
  5981. // ggml_win_unpart
  5982. struct ggml_tensor * ggml_win_unpart(
  5983. struct ggml_context * ctx,
  5984. struct ggml_tensor * a,
  5985. int w0,
  5986. int h0,
  5987. int w) {
  5988. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5989. bool is_node = false;
  5990. if (a->grad) {
  5991. GGML_ASSERT(false); // TODO: implement backward
  5992. is_node = true;
  5993. }
  5994. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5995. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5996. ggml_scratch_save(ctx);
  5997. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5998. ((int32_t *) b->data)[0] = w;
  5999. ggml_scratch_load(ctx);
  6000. result->op = GGML_OP_WIN_UNPART;
  6001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6002. result->src[0] = a;
  6003. result->src[1] = NULL;
  6004. result->src[2] = b;
  6005. return result;
  6006. }
  6007. // ggml_map_unary
  6008. struct ggml_tensor * ggml_map_unary_impl_f32(
  6009. struct ggml_context * ctx,
  6010. struct ggml_tensor * a,
  6011. const ggml_unary_op_f32_t fun,
  6012. bool inplace) {
  6013. bool is_node = false;
  6014. if (!inplace && a->grad) {
  6015. is_node = true;
  6016. }
  6017. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6018. ggml_scratch_save(ctx);
  6019. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6020. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6021. ggml_scratch_load(ctx);
  6022. result->op = GGML_OP_MAP_UNARY;
  6023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6024. result->src[0] = a;
  6025. result->src[2] = addr_tensor;
  6026. return result;
  6027. }
  6028. struct ggml_tensor * ggml_map_unary_f32(
  6029. struct ggml_context * ctx,
  6030. struct ggml_tensor * a,
  6031. const ggml_unary_op_f32_t fun) {
  6032. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6033. }
  6034. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6035. struct ggml_context * ctx,
  6036. struct ggml_tensor * a,
  6037. const ggml_unary_op_f32_t fun) {
  6038. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6039. }
  6040. // ggml_map_binary
  6041. struct ggml_tensor * ggml_map_binary_impl_f32(
  6042. struct ggml_context * ctx,
  6043. struct ggml_tensor * a,
  6044. struct ggml_tensor * b,
  6045. const ggml_binary_op_f32_t fun,
  6046. bool inplace) {
  6047. GGML_ASSERT(ggml_are_same_shape(a, b));
  6048. bool is_node = false;
  6049. if (!inplace && (a->grad || b->grad)) {
  6050. is_node = true;
  6051. }
  6052. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6053. ggml_scratch_save(ctx);
  6054. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6055. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6056. ggml_scratch_load(ctx);
  6057. result->op = GGML_OP_MAP_BINARY;
  6058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6059. result->src[0] = a;
  6060. result->src[1] = b;
  6061. result->src[2] = addr_tensor;
  6062. return result;
  6063. }
  6064. struct ggml_tensor * ggml_map_binary_f32(
  6065. struct ggml_context * ctx,
  6066. struct ggml_tensor * a,
  6067. struct ggml_tensor * b,
  6068. const ggml_binary_op_f32_t fun) {
  6069. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6070. }
  6071. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6072. struct ggml_context * ctx,
  6073. struct ggml_tensor * a,
  6074. struct ggml_tensor * b,
  6075. const ggml_binary_op_f32_t fun) {
  6076. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6077. }
  6078. // ggml_map_custom1
  6079. struct ggml_tensor * ggml_map_custom1_impl_f32(
  6080. struct ggml_context * ctx,
  6081. struct ggml_tensor * a,
  6082. const ggml_custom1_op_f32_t fun,
  6083. bool inplace) {
  6084. bool is_node = false;
  6085. if (!inplace && a->grad) {
  6086. is_node = true;
  6087. }
  6088. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6089. ggml_scratch_save(ctx);
  6090. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6091. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6092. ggml_scratch_load(ctx);
  6093. result->op = GGML_OP_MAP_CUSTOM1;
  6094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6095. result->src[0] = a;
  6096. result->src[2] = addr_tensor;
  6097. return result;
  6098. }
  6099. struct ggml_tensor * ggml_map_custom1_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. const ggml_custom1_op_f32_t fun) {
  6103. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6104. }
  6105. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. const ggml_custom1_op_f32_t fun) {
  6109. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6110. }
  6111. // ggml_map_custom2
  6112. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. struct ggml_tensor * b,
  6116. const ggml_custom2_op_f32_t fun,
  6117. bool inplace) {
  6118. bool is_node = false;
  6119. if (!inplace && (a->grad || b->grad)) {
  6120. is_node = true;
  6121. }
  6122. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6123. ggml_scratch_save(ctx);
  6124. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6125. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6126. ggml_scratch_load(ctx);
  6127. result->op = GGML_OP_MAP_CUSTOM2;
  6128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6129. result->src[0] = a;
  6130. result->src[1] = b;
  6131. result->src[2] = addr_tensor;
  6132. return result;
  6133. }
  6134. struct ggml_tensor * ggml_map_custom2_f32(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. struct ggml_tensor * b,
  6138. const ggml_custom2_op_f32_t fun) {
  6139. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6140. }
  6141. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. struct ggml_tensor * b,
  6145. const ggml_custom2_op_f32_t fun) {
  6146. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6147. }
  6148. // ggml_map_custom3
  6149. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6150. struct ggml_context * ctx,
  6151. struct ggml_tensor * a,
  6152. struct ggml_tensor * b,
  6153. struct ggml_tensor * c,
  6154. const ggml_custom3_op_f32_t fun,
  6155. bool inplace) {
  6156. bool is_node = false;
  6157. if (!inplace && (a->grad || b->grad || c->grad)) {
  6158. is_node = true;
  6159. }
  6160. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6161. ggml_scratch_save(ctx);
  6162. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6163. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6164. ggml_scratch_load(ctx);
  6165. result->op = GGML_OP_MAP_CUSTOM3;
  6166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6167. result->src[0] = a;
  6168. result->src[1] = b;
  6169. result->src[2] = addr_tensor;
  6170. result->src[3] = c;
  6171. return result;
  6172. }
  6173. struct ggml_tensor * ggml_map_custom3_f32(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * a,
  6176. struct ggml_tensor * b,
  6177. struct ggml_tensor * c,
  6178. const ggml_custom3_op_f32_t fun) {
  6179. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6180. }
  6181. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6182. struct ggml_context * ctx,
  6183. struct ggml_tensor * a,
  6184. struct ggml_tensor * b,
  6185. struct ggml_tensor * c,
  6186. const ggml_custom3_op_f32_t fun) {
  6187. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6188. }
  6189. // ggml_cross_entropy_loss
  6190. struct ggml_tensor * ggml_cross_entropy_loss(
  6191. struct ggml_context * ctx,
  6192. struct ggml_tensor * a,
  6193. struct ggml_tensor * b) {
  6194. GGML_ASSERT(ggml_are_same_shape(a, b));
  6195. bool is_node = false;
  6196. if (a->grad || b->grad) {
  6197. is_node = true;
  6198. }
  6199. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6200. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6202. result->src[0] = a;
  6203. result->src[1] = b;
  6204. return result;
  6205. }
  6206. // ggml_cross_entropy_loss_back
  6207. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6208. struct ggml_context * ctx,
  6209. struct ggml_tensor * a,
  6210. struct ggml_tensor * b,
  6211. struct ggml_tensor * c) {
  6212. GGML_ASSERT(ggml_are_same_shape(a, b));
  6213. GGML_ASSERT(ggml_is_scalar(c));
  6214. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6215. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6216. result->grad = NULL;
  6217. result->src[0] = a;
  6218. result->src[1] = b;
  6219. result->src[2] = c;
  6220. return result;
  6221. }
  6222. ////////////////////////////////////////////////////////////////////////////////
  6223. void ggml_set_param(
  6224. struct ggml_context * ctx,
  6225. struct ggml_tensor * tensor) {
  6226. tensor->is_param = true;
  6227. GGML_ASSERT(tensor->grad == NULL);
  6228. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6229. }
  6230. // ggml_compute_forward_dup
  6231. static void ggml_compute_forward_dup_same_cont(
  6232. const struct ggml_compute_params * params,
  6233. const struct ggml_tensor * src0,
  6234. struct ggml_tensor * dst) {
  6235. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6236. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6237. GGML_ASSERT(src0->type == dst->type);
  6238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6239. return;
  6240. }
  6241. const size_t nb00 = src0->nb[0];
  6242. const size_t nb0 = dst->nb[0];
  6243. const int ith = params->ith; // thread index
  6244. const int nth = params->nth; // number of threads
  6245. // parallelize by elements
  6246. const int ne = ggml_nelements(dst);
  6247. const int dr = (ne + nth - 1) / nth;
  6248. const int ie0 = dr * ith;
  6249. const int ie1 = MIN(ie0 + dr, ne);
  6250. if (ie0 < ie1) {
  6251. memcpy(
  6252. ((char *) dst->data + ie0*nb0),
  6253. ((char *) src0->data + ie0*nb00),
  6254. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6255. }
  6256. }
  6257. static void ggml_compute_forward_dup_f16(
  6258. const struct ggml_compute_params * params,
  6259. const struct ggml_tensor * src0,
  6260. struct ggml_tensor * dst) {
  6261. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6262. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6263. return;
  6264. }
  6265. GGML_TENSOR_UNARY_OP_LOCALS;
  6266. const int ith = params->ith; // thread index
  6267. const int nth = params->nth; // number of threads
  6268. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6269. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6270. return;
  6271. }
  6272. // parallelize by rows
  6273. const int nr = ne01;
  6274. // number of rows per thread
  6275. const int dr = (nr + nth - 1) / nth;
  6276. // row range for this thread
  6277. const int ir0 = dr * ith;
  6278. const int ir1 = MIN(ir0 + dr, nr);
  6279. if (src0->type == dst->type &&
  6280. ne00 == ne0 &&
  6281. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6282. // copy by rows
  6283. const size_t rs = ne00*nb00;
  6284. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6285. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6286. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6287. memcpy(
  6288. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6289. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6290. rs);
  6291. }
  6292. }
  6293. }
  6294. return;
  6295. }
  6296. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6297. if (ggml_is_contiguous(dst)) {
  6298. if (nb00 == sizeof(ggml_fp16_t)) {
  6299. if (dst->type == GGML_TYPE_F16) {
  6300. size_t id = 0;
  6301. const size_t rs = ne00 * nb00;
  6302. char * dst_ptr = (char *) dst->data;
  6303. for (int i03 = 0; i03 < ne03; i03++) {
  6304. for (int i02 = 0; i02 < ne02; i02++) {
  6305. id += rs * ir0;
  6306. for (int i01 = ir0; i01 < ir1; i01++) {
  6307. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6308. memcpy(dst_ptr + id, src0_ptr, rs);
  6309. id += rs;
  6310. }
  6311. id += rs * (ne01 - ir1);
  6312. }
  6313. }
  6314. } else if (dst->type == GGML_TYPE_F32) {
  6315. size_t id = 0;
  6316. float * dst_ptr = (float *) dst->data;
  6317. for (int i03 = 0; i03 < ne03; i03++) {
  6318. for (int i02 = 0; i02 < ne02; i02++) {
  6319. id += ne00 * ir0;
  6320. for (int i01 = ir0; i01 < ir1; i01++) {
  6321. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6322. for (int i00 = 0; i00 < ne00; i00++) {
  6323. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6324. id++;
  6325. }
  6326. }
  6327. id += ne00 * (ne01 - ir1);
  6328. }
  6329. }
  6330. } else if (type_traits[dst->type].from_float) {
  6331. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6332. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6333. size_t id = 0;
  6334. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6335. char * dst_ptr = (char *) dst->data;
  6336. for (int i03 = 0; i03 < ne03; i03++) {
  6337. for (int i02 = 0; i02 < ne02; i02++) {
  6338. id += rs * ir0;
  6339. for (int i01 = ir0; i01 < ir1; i01++) {
  6340. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6341. for (int i00 = 0; i00 < ne00; i00++) {
  6342. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6343. }
  6344. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6345. id += rs;
  6346. }
  6347. id += rs * (ne01 - ir1);
  6348. }
  6349. }
  6350. } else {
  6351. GGML_ASSERT(false); // TODO: implement
  6352. }
  6353. } else {
  6354. //printf("%s: this is not optimal - fix me\n", __func__);
  6355. if (dst->type == GGML_TYPE_F32) {
  6356. size_t id = 0;
  6357. float * dst_ptr = (float *) dst->data;
  6358. for (int i03 = 0; i03 < ne03; i03++) {
  6359. for (int i02 = 0; i02 < ne02; i02++) {
  6360. id += ne00 * ir0;
  6361. for (int i01 = ir0; i01 < ir1; i01++) {
  6362. for (int i00 = 0; i00 < ne00; i00++) {
  6363. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6364. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6365. id++;
  6366. }
  6367. }
  6368. id += ne00 * (ne01 - ir1);
  6369. }
  6370. }
  6371. } else if (dst->type == GGML_TYPE_F16) {
  6372. size_t id = 0;
  6373. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6374. for (int i03 = 0; i03 < ne03; i03++) {
  6375. for (int i02 = 0; i02 < ne02; i02++) {
  6376. id += ne00 * ir0;
  6377. for (int i01 = ir0; i01 < ir1; i01++) {
  6378. for (int i00 = 0; i00 < ne00; i00++) {
  6379. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6380. dst_ptr[id] = *src0_ptr;
  6381. id++;
  6382. }
  6383. }
  6384. id += ne00 * (ne01 - ir1);
  6385. }
  6386. }
  6387. } else {
  6388. GGML_ASSERT(false); // TODO: implement
  6389. }
  6390. }
  6391. return;
  6392. }
  6393. // dst counters
  6394. int64_t i10 = 0;
  6395. int64_t i11 = 0;
  6396. int64_t i12 = 0;
  6397. int64_t i13 = 0;
  6398. if (dst->type == GGML_TYPE_F16) {
  6399. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6400. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6401. i10 += ne00 * ir0;
  6402. while (i10 >= ne0) {
  6403. i10 -= ne0;
  6404. if (++i11 == ne1) {
  6405. i11 = 0;
  6406. if (++i12 == ne2) {
  6407. i12 = 0;
  6408. if (++i13 == ne3) {
  6409. i13 = 0;
  6410. }
  6411. }
  6412. }
  6413. }
  6414. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6415. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6416. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6417. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6418. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6419. if (++i10 == ne00) {
  6420. i10 = 0;
  6421. if (++i11 == ne01) {
  6422. i11 = 0;
  6423. if (++i12 == ne02) {
  6424. i12 = 0;
  6425. if (++i13 == ne03) {
  6426. i13 = 0;
  6427. }
  6428. }
  6429. }
  6430. }
  6431. }
  6432. }
  6433. i10 += ne00 * (ne01 - ir1);
  6434. while (i10 >= ne0) {
  6435. i10 -= ne0;
  6436. if (++i11 == ne1) {
  6437. i11 = 0;
  6438. if (++i12 == ne2) {
  6439. i12 = 0;
  6440. if (++i13 == ne3) {
  6441. i13 = 0;
  6442. }
  6443. }
  6444. }
  6445. }
  6446. }
  6447. }
  6448. } else if (dst->type == GGML_TYPE_F32) {
  6449. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6450. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6451. i10 += ne00 * ir0;
  6452. while (i10 >= ne0) {
  6453. i10 -= ne0;
  6454. if (++i11 == ne1) {
  6455. i11 = 0;
  6456. if (++i12 == ne2) {
  6457. i12 = 0;
  6458. if (++i13 == ne3) {
  6459. i13 = 0;
  6460. }
  6461. }
  6462. }
  6463. }
  6464. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6465. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6466. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6467. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6468. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6469. if (++i10 == ne0) {
  6470. i10 = 0;
  6471. if (++i11 == ne1) {
  6472. i11 = 0;
  6473. if (++i12 == ne2) {
  6474. i12 = 0;
  6475. if (++i13 == ne3) {
  6476. i13 = 0;
  6477. }
  6478. }
  6479. }
  6480. }
  6481. }
  6482. }
  6483. i10 += ne00 * (ne01 - ir1);
  6484. while (i10 >= ne0) {
  6485. i10 -= ne0;
  6486. if (++i11 == ne1) {
  6487. i11 = 0;
  6488. if (++i12 == ne2) {
  6489. i12 = 0;
  6490. if (++i13 == ne3) {
  6491. i13 = 0;
  6492. }
  6493. }
  6494. }
  6495. }
  6496. }
  6497. }
  6498. } else {
  6499. GGML_ASSERT(false); // TODO: implement
  6500. }
  6501. }
  6502. static void ggml_compute_forward_dup_f32(
  6503. const struct ggml_compute_params * params,
  6504. const struct ggml_tensor * src0,
  6505. struct ggml_tensor * dst) {
  6506. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6508. return;
  6509. }
  6510. GGML_TENSOR_UNARY_OP_LOCALS;
  6511. const int ith = params->ith; // thread index
  6512. const int nth = params->nth; // number of threads
  6513. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6514. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6515. return;
  6516. }
  6517. // parallelize by rows
  6518. const int nr = ne01;
  6519. // number of rows per thread
  6520. const int dr = (nr + nth - 1) / nth;
  6521. // row range for this thread
  6522. const int ir0 = dr * ith;
  6523. const int ir1 = MIN(ir0 + dr, nr);
  6524. if (src0->type == dst->type &&
  6525. ne00 == ne0 &&
  6526. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6527. // copy by rows
  6528. const size_t rs = ne00*nb00;
  6529. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6530. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6531. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6532. memcpy(
  6533. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6534. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6535. rs);
  6536. }
  6537. }
  6538. }
  6539. return;
  6540. }
  6541. if (ggml_is_contiguous(dst)) {
  6542. // TODO: simplify
  6543. if (nb00 == sizeof(float)) {
  6544. if (dst->type == GGML_TYPE_F32) {
  6545. size_t id = 0;
  6546. const size_t rs = ne00 * nb00;
  6547. char * dst_ptr = (char *) dst->data;
  6548. for (int i03 = 0; i03 < ne03; i03++) {
  6549. for (int i02 = 0; i02 < ne02; i02++) {
  6550. id += rs * ir0;
  6551. for (int i01 = ir0; i01 < ir1; i01++) {
  6552. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6553. memcpy(dst_ptr + id, src0_ptr, rs);
  6554. id += rs;
  6555. }
  6556. id += rs * (ne01 - ir1);
  6557. }
  6558. }
  6559. } else if (type_traits[dst->type].from_float) {
  6560. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6561. size_t id = 0;
  6562. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6563. char * dst_ptr = (char *) dst->data;
  6564. for (int i03 = 0; i03 < ne03; i03++) {
  6565. for (int i02 = 0; i02 < ne02; i02++) {
  6566. id += rs * ir0;
  6567. for (int i01 = ir0; i01 < ir1; i01++) {
  6568. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6569. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6570. id += rs;
  6571. }
  6572. id += rs * (ne01 - ir1);
  6573. }
  6574. }
  6575. } else {
  6576. GGML_ASSERT(false); // TODO: implement
  6577. }
  6578. } else {
  6579. //printf("%s: this is not optimal - fix me\n", __func__);
  6580. if (dst->type == GGML_TYPE_F32) {
  6581. size_t id = 0;
  6582. float * dst_ptr = (float *) dst->data;
  6583. for (int i03 = 0; i03 < ne03; i03++) {
  6584. for (int i02 = 0; i02 < ne02; i02++) {
  6585. id += ne00 * ir0;
  6586. for (int i01 = ir0; i01 < ir1; i01++) {
  6587. for (int i00 = 0; i00 < ne00; i00++) {
  6588. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6589. dst_ptr[id] = *src0_ptr;
  6590. id++;
  6591. }
  6592. }
  6593. id += ne00 * (ne01 - ir1);
  6594. }
  6595. }
  6596. } else if (dst->type == GGML_TYPE_F16) {
  6597. size_t id = 0;
  6598. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6599. for (int i03 = 0; i03 < ne03; i03++) {
  6600. for (int i02 = 0; i02 < ne02; i02++) {
  6601. id += ne00 * ir0;
  6602. for (int i01 = ir0; i01 < ir1; i01++) {
  6603. for (int i00 = 0; i00 < ne00; i00++) {
  6604. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6605. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6606. id++;
  6607. }
  6608. }
  6609. id += ne00 * (ne01 - ir1);
  6610. }
  6611. }
  6612. } else {
  6613. GGML_ASSERT(false); // TODO: implement
  6614. }
  6615. }
  6616. return;
  6617. }
  6618. // dst counters
  6619. int64_t i10 = 0;
  6620. int64_t i11 = 0;
  6621. int64_t i12 = 0;
  6622. int64_t i13 = 0;
  6623. if (dst->type == GGML_TYPE_F32) {
  6624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6626. i10 += ne00 * ir0;
  6627. while (i10 >= ne0) {
  6628. i10 -= ne0;
  6629. if (++i11 == ne1) {
  6630. i11 = 0;
  6631. if (++i12 == ne2) {
  6632. i12 = 0;
  6633. if (++i13 == ne3) {
  6634. i13 = 0;
  6635. }
  6636. }
  6637. }
  6638. }
  6639. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6640. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6641. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6642. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6643. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6644. if (++i10 == ne0) {
  6645. i10 = 0;
  6646. if (++i11 == ne1) {
  6647. i11 = 0;
  6648. if (++i12 == ne2) {
  6649. i12 = 0;
  6650. if (++i13 == ne3) {
  6651. i13 = 0;
  6652. }
  6653. }
  6654. }
  6655. }
  6656. }
  6657. }
  6658. i10 += ne00 * (ne01 - ir1);
  6659. while (i10 >= ne0) {
  6660. i10 -= ne0;
  6661. if (++i11 == ne1) {
  6662. i11 = 0;
  6663. if (++i12 == ne2) {
  6664. i12 = 0;
  6665. if (++i13 == ne3) {
  6666. i13 = 0;
  6667. }
  6668. }
  6669. }
  6670. }
  6671. }
  6672. }
  6673. } else if (dst->type == GGML_TYPE_F16) {
  6674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6676. i10 += ne00 * ir0;
  6677. while (i10 >= ne0) {
  6678. i10 -= ne0;
  6679. if (++i11 == ne1) {
  6680. i11 = 0;
  6681. if (++i12 == ne2) {
  6682. i12 = 0;
  6683. if (++i13 == ne3) {
  6684. i13 = 0;
  6685. }
  6686. }
  6687. }
  6688. }
  6689. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6690. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6691. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6692. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6693. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6694. if (++i10 == ne0) {
  6695. i10 = 0;
  6696. if (++i11 == ne1) {
  6697. i11 = 0;
  6698. if (++i12 == ne2) {
  6699. i12 = 0;
  6700. if (++i13 == ne3) {
  6701. i13 = 0;
  6702. }
  6703. }
  6704. }
  6705. }
  6706. }
  6707. }
  6708. i10 += ne00 * (ne01 - ir1);
  6709. while (i10 >= ne0) {
  6710. i10 -= ne0;
  6711. if (++i11 == ne1) {
  6712. i11 = 0;
  6713. if (++i12 == ne2) {
  6714. i12 = 0;
  6715. if (++i13 == ne3) {
  6716. i13 = 0;
  6717. }
  6718. }
  6719. }
  6720. }
  6721. }
  6722. }
  6723. } else {
  6724. GGML_ASSERT(false); // TODO: implement
  6725. }
  6726. }
  6727. static void ggml_compute_forward_dup(
  6728. const struct ggml_compute_params * params,
  6729. const struct ggml_tensor * src0,
  6730. struct ggml_tensor * dst) {
  6731. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6732. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6733. return;
  6734. }
  6735. switch (src0->type) {
  6736. case GGML_TYPE_F16:
  6737. {
  6738. ggml_compute_forward_dup_f16(params, src0, dst);
  6739. } break;
  6740. case GGML_TYPE_F32:
  6741. {
  6742. ggml_compute_forward_dup_f32(params, src0, dst);
  6743. } break;
  6744. default:
  6745. {
  6746. GGML_ASSERT(false);
  6747. } break;
  6748. }
  6749. }
  6750. // ggml_compute_forward_add
  6751. static void ggml_compute_forward_add_f32(
  6752. const struct ggml_compute_params * params,
  6753. const struct ggml_tensor * src0,
  6754. const struct ggml_tensor * src1,
  6755. struct ggml_tensor * dst) {
  6756. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6757. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6758. return;
  6759. }
  6760. const int ith = params->ith;
  6761. const int nth = params->nth;
  6762. const int nr = ggml_nrows(src0);
  6763. GGML_TENSOR_BINARY_OP_LOCALS;
  6764. GGML_ASSERT( nb0 == sizeof(float));
  6765. GGML_ASSERT(nb00 == sizeof(float));
  6766. // rows per thread
  6767. const int dr = (nr + nth - 1)/nth;
  6768. // row range for this thread
  6769. const int ir0 = dr*ith;
  6770. const int ir1 = MIN(ir0 + dr, nr);
  6771. if (nb10 == sizeof(float)) {
  6772. for (int ir = ir0; ir < ir1; ++ir) {
  6773. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6774. const int64_t i03 = ir/(ne02*ne01);
  6775. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6776. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6777. const int64_t i13 = i03 % ne13;
  6778. const int64_t i12 = i02 % ne12;
  6779. const int64_t i11 = i01 % ne11;
  6780. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6781. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6782. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6783. #ifdef GGML_USE_ACCELERATE
  6784. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6785. #else
  6786. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6787. #endif
  6788. // }
  6789. // }
  6790. }
  6791. } else {
  6792. // src1 is not contiguous
  6793. for (int ir = ir0; ir < ir1; ++ir) {
  6794. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6795. const int64_t i03 = ir/(ne02*ne01);
  6796. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6797. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6798. const int64_t i13 = i03 % ne13;
  6799. const int64_t i12 = i02 % ne12;
  6800. const int64_t i11 = i01 % ne11;
  6801. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6802. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6803. for (int i0 = 0; i0 < ne0; i0++) {
  6804. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6805. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6806. }
  6807. }
  6808. }
  6809. }
  6810. static void ggml_compute_forward_add_f16_f32(
  6811. const struct ggml_compute_params * params,
  6812. const struct ggml_tensor * src0,
  6813. const struct ggml_tensor * src1,
  6814. struct ggml_tensor * dst) {
  6815. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6817. return;
  6818. }
  6819. const int ith = params->ith;
  6820. const int nth = params->nth;
  6821. const int nr = ggml_nrows(src0);
  6822. GGML_TENSOR_BINARY_OP_LOCALS;
  6823. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6824. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6825. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6826. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6827. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6828. // rows per thread
  6829. const int dr = (nr + nth - 1)/nth;
  6830. // row range for this thread
  6831. const int ir0 = dr*ith;
  6832. const int ir1 = MIN(ir0 + dr, nr);
  6833. if (nb10 == sizeof(float)) {
  6834. for (int ir = ir0; ir < ir1; ++ir) {
  6835. // src0, src1 and dst are same shape => same indices
  6836. const int i3 = ir/(ne2*ne1);
  6837. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6838. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6839. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6840. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6841. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6842. for (int i = 0; i < ne0; i++) {
  6843. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6844. }
  6845. }
  6846. }
  6847. else {
  6848. // src1 is not contiguous
  6849. GGML_ASSERT(false);
  6850. }
  6851. }
  6852. static void ggml_compute_forward_add_f16_f16(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * src0,
  6855. const struct ggml_tensor * src1,
  6856. struct ggml_tensor * dst) {
  6857. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6859. return;
  6860. }
  6861. const int ith = params->ith;
  6862. const int nth = params->nth;
  6863. const int nr = ggml_nrows(src0);
  6864. GGML_TENSOR_BINARY_OP_LOCALS;
  6865. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6866. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6867. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6868. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6869. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6870. // rows per thread
  6871. const int dr = (nr + nth - 1)/nth;
  6872. // row range for this thread
  6873. const int ir0 = dr*ith;
  6874. const int ir1 = MIN(ir0 + dr, nr);
  6875. if (nb10 == sizeof(ggml_fp16_t)) {
  6876. for (int ir = ir0; ir < ir1; ++ir) {
  6877. // src0, src1 and dst are same shape => same indices
  6878. const int i3 = ir/(ne2*ne1);
  6879. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6880. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6881. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6882. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6883. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6884. for (int i = 0; i < ne0; i++) {
  6885. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6886. }
  6887. }
  6888. }
  6889. else {
  6890. // src1 is not contiguous
  6891. GGML_ASSERT(false);
  6892. }
  6893. }
  6894. static void ggml_compute_forward_add_q_f32(
  6895. const struct ggml_compute_params * params,
  6896. const struct ggml_tensor * src0,
  6897. const struct ggml_tensor * src1,
  6898. struct ggml_tensor * dst) {
  6899. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6901. return;
  6902. }
  6903. const int nr = ggml_nrows(src0);
  6904. GGML_TENSOR_BINARY_OP_LOCALS;
  6905. const int ith = params->ith;
  6906. const int nth = params->nth;
  6907. const enum ggml_type type = src0->type;
  6908. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6909. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6910. // we don't support permuted src0 or src1
  6911. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6912. GGML_ASSERT(nb10 == sizeof(float));
  6913. // dst cannot be transposed or permuted
  6914. GGML_ASSERT(nb0 <= nb1);
  6915. GGML_ASSERT(nb1 <= nb2);
  6916. GGML_ASSERT(nb2 <= nb3);
  6917. GGML_ASSERT(ggml_is_quantized(src0->type));
  6918. GGML_ASSERT(dst->type == src0->type);
  6919. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6920. // rows per thread
  6921. const int dr = (nr + nth - 1)/nth;
  6922. // row range for this thread
  6923. const int ir0 = dr*ith;
  6924. const int ir1 = MIN(ir0 + dr, nr);
  6925. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6926. for (int ir = ir0; ir < ir1; ++ir) {
  6927. // src0 indices
  6928. const int i03 = ir/(ne02*ne01);
  6929. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6930. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6931. // src1 and dst are same shape as src0 => same indices
  6932. const int i13 = i03;
  6933. const int i12 = i02;
  6934. const int i11 = i01;
  6935. const int i3 = i03;
  6936. const int i2 = i02;
  6937. const int i1 = i01;
  6938. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6939. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6940. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6941. assert(ne00 % 32 == 0);
  6942. // unquantize row from src0 to temp buffer
  6943. dequantize_row_q(src0_row, wdata, ne00);
  6944. // add src1
  6945. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6946. // quantize row to dst
  6947. quantize_row_q(wdata, dst_row, ne00);
  6948. }
  6949. }
  6950. static void ggml_compute_forward_add(
  6951. const struct ggml_compute_params * params,
  6952. const struct ggml_tensor * src0,
  6953. const struct ggml_tensor * src1,
  6954. struct ggml_tensor * dst) {
  6955. switch (src0->type) {
  6956. case GGML_TYPE_F32:
  6957. {
  6958. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6959. } break;
  6960. case GGML_TYPE_F16:
  6961. {
  6962. if (src1->type == GGML_TYPE_F16) {
  6963. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6964. }
  6965. else if (src1->type == GGML_TYPE_F32) {
  6966. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6967. }
  6968. else {
  6969. GGML_ASSERT(false);
  6970. }
  6971. } break;
  6972. case GGML_TYPE_Q4_0:
  6973. case GGML_TYPE_Q4_1:
  6974. case GGML_TYPE_Q5_0:
  6975. case GGML_TYPE_Q5_1:
  6976. case GGML_TYPE_Q8_0:
  6977. case GGML_TYPE_Q2_K:
  6978. case GGML_TYPE_Q3_K:
  6979. case GGML_TYPE_Q4_K:
  6980. case GGML_TYPE_Q5_K:
  6981. case GGML_TYPE_Q6_K:
  6982. {
  6983. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6984. } break;
  6985. default:
  6986. {
  6987. GGML_ASSERT(false);
  6988. } break;
  6989. }
  6990. }
  6991. // ggml_compute_forward_add1
  6992. static void ggml_compute_forward_add1_f32(
  6993. const struct ggml_compute_params * params,
  6994. const struct ggml_tensor * src0,
  6995. const struct ggml_tensor * src1,
  6996. struct ggml_tensor * dst) {
  6997. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6998. GGML_ASSERT(ggml_is_scalar(src1));
  6999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7000. return;
  7001. }
  7002. const int ith = params->ith;
  7003. const int nth = params->nth;
  7004. const int nr = ggml_nrows(src0);
  7005. GGML_TENSOR_UNARY_OP_LOCALS;
  7006. GGML_ASSERT( nb0 == sizeof(float));
  7007. GGML_ASSERT(nb00 == sizeof(float));
  7008. // rows per thread
  7009. const int dr = (nr + nth - 1)/nth;
  7010. // row range for this thread
  7011. const int ir0 = dr*ith;
  7012. const int ir1 = MIN(ir0 + dr, nr);
  7013. for (int ir = ir0; ir < ir1; ++ir) {
  7014. // src0 and dst are same shape => same indices
  7015. const int i3 = ir/(ne2*ne1);
  7016. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7017. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7018. #ifdef GGML_USE_ACCELERATE
  7019. UNUSED(ggml_vec_add1_f32);
  7020. vDSP_vadd(
  7021. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7022. (float *) ((char *) src1->data), 0,
  7023. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7024. ne0);
  7025. #else
  7026. ggml_vec_add1_f32(ne0,
  7027. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7028. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7029. *(float *) src1->data);
  7030. #endif
  7031. }
  7032. }
  7033. static void ggml_compute_forward_add1_f16_f32(
  7034. const struct ggml_compute_params * params,
  7035. const struct ggml_tensor * src0,
  7036. const struct ggml_tensor * src1,
  7037. struct ggml_tensor * dst) {
  7038. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7039. GGML_ASSERT(ggml_is_scalar(src1));
  7040. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7041. return;
  7042. }
  7043. // scalar to add
  7044. const float v = *(float *) src1->data;
  7045. const int ith = params->ith;
  7046. const int nth = params->nth;
  7047. const int nr = ggml_nrows(src0);
  7048. GGML_TENSOR_UNARY_OP_LOCALS;
  7049. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7050. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7051. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7052. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7053. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7054. // rows per thread
  7055. const int dr = (nr + nth - 1)/nth;
  7056. // row range for this thread
  7057. const int ir0 = dr*ith;
  7058. const int ir1 = MIN(ir0 + dr, nr);
  7059. for (int ir = ir0; ir < ir1; ++ir) {
  7060. // src0 and dst are same shape => same indices
  7061. const int i3 = ir/(ne2*ne1);
  7062. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7063. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7064. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7065. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7066. for (int i = 0; i < ne0; i++) {
  7067. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7068. }
  7069. }
  7070. }
  7071. static void ggml_compute_forward_add1_f16_f16(
  7072. const struct ggml_compute_params * params,
  7073. const struct ggml_tensor * src0,
  7074. const struct ggml_tensor * src1,
  7075. struct ggml_tensor * dst) {
  7076. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7077. GGML_ASSERT(ggml_is_scalar(src1));
  7078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7079. return;
  7080. }
  7081. // scalar to add
  7082. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7083. const int ith = params->ith;
  7084. const int nth = params->nth;
  7085. const int nr = ggml_nrows(src0);
  7086. GGML_TENSOR_UNARY_OP_LOCALS;
  7087. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7088. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7089. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7090. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7091. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7092. // rows per thread
  7093. const int dr = (nr + nth - 1)/nth;
  7094. // row range for this thread
  7095. const int ir0 = dr*ith;
  7096. const int ir1 = MIN(ir0 + dr, nr);
  7097. for (int ir = ir0; ir < ir1; ++ir) {
  7098. // src0 and dst are same shape => same indices
  7099. const int i3 = ir/(ne2*ne1);
  7100. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7101. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7102. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7103. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7104. for (int i = 0; i < ne0; i++) {
  7105. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7106. }
  7107. }
  7108. }
  7109. static void ggml_compute_forward_add1_q_f32(
  7110. const struct ggml_compute_params * params,
  7111. const struct ggml_tensor * src0,
  7112. const struct ggml_tensor * src1,
  7113. struct ggml_tensor * dst) {
  7114. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7115. GGML_ASSERT(ggml_is_scalar(src1));
  7116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7117. return;
  7118. }
  7119. // scalar to add
  7120. const float v = *(float *) src1->data;
  7121. const int ith = params->ith;
  7122. const int nth = params->nth;
  7123. const int nr = ggml_nrows(src0);
  7124. GGML_TENSOR_UNARY_OP_LOCALS;
  7125. const enum ggml_type type = src0->type;
  7126. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7127. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7128. // we don't support permuted src0
  7129. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7130. // dst cannot be transposed or permuted
  7131. GGML_ASSERT(nb0 <= nb1);
  7132. GGML_ASSERT(nb1 <= nb2);
  7133. GGML_ASSERT(nb2 <= nb3);
  7134. GGML_ASSERT(ggml_is_quantized(src0->type));
  7135. GGML_ASSERT(dst->type == src0->type);
  7136. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7137. // rows per thread
  7138. const int dr = (nr + nth - 1)/nth;
  7139. // row range for this thread
  7140. const int ir0 = dr*ith;
  7141. const int ir1 = MIN(ir0 + dr, nr);
  7142. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7143. for (int ir = ir0; ir < ir1; ++ir) {
  7144. // src0 and dst are same shape => same indices
  7145. const int i3 = ir/(ne2*ne1);
  7146. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7147. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7148. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7149. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7150. assert(ne0 % 32 == 0);
  7151. // unquantize row from src0 to temp buffer
  7152. dequantize_row_q(src0_row, wdata, ne0);
  7153. // add src1
  7154. ggml_vec_acc1_f32(ne0, wdata, v);
  7155. // quantize row to dst
  7156. quantize_row_q(wdata, dst_row, ne0);
  7157. }
  7158. }
  7159. static void ggml_compute_forward_add1(
  7160. const struct ggml_compute_params * params,
  7161. const struct ggml_tensor * src0,
  7162. const struct ggml_tensor * src1,
  7163. struct ggml_tensor * dst) {
  7164. switch (src0->type) {
  7165. case GGML_TYPE_F32:
  7166. {
  7167. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7168. } break;
  7169. case GGML_TYPE_F16:
  7170. {
  7171. if (src1->type == GGML_TYPE_F16) {
  7172. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7173. }
  7174. else if (src1->type == GGML_TYPE_F32) {
  7175. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7176. }
  7177. else {
  7178. GGML_ASSERT(false);
  7179. }
  7180. } break;
  7181. case GGML_TYPE_Q4_0:
  7182. case GGML_TYPE_Q4_1:
  7183. case GGML_TYPE_Q5_0:
  7184. case GGML_TYPE_Q5_1:
  7185. case GGML_TYPE_Q8_0:
  7186. case GGML_TYPE_Q8_1:
  7187. case GGML_TYPE_Q2_K:
  7188. case GGML_TYPE_Q3_K:
  7189. case GGML_TYPE_Q4_K:
  7190. case GGML_TYPE_Q5_K:
  7191. case GGML_TYPE_Q6_K:
  7192. {
  7193. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7194. } break;
  7195. default:
  7196. {
  7197. GGML_ASSERT(false);
  7198. } break;
  7199. }
  7200. }
  7201. // ggml_compute_forward_acc
  7202. static void ggml_compute_forward_acc_f32(
  7203. const struct ggml_compute_params * params,
  7204. const struct ggml_tensor * src0,
  7205. const struct ggml_tensor * src1,
  7206. const struct ggml_tensor * opt0,
  7207. struct ggml_tensor * dst) {
  7208. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7209. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7210. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7211. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7212. // view src0 and dst with these strides and data offset inbytes during acc
  7213. // nb0 is implicitely element_size because src0 and dst are contiguous
  7214. size_t nb1 = ((int32_t *) opt0->data)[0];
  7215. size_t nb2 = ((int32_t *) opt0->data)[1];
  7216. size_t nb3 = ((int32_t *) opt0->data)[2];
  7217. size_t offset = ((int32_t *) opt0->data)[3];
  7218. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7219. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7220. // memcpy needs to be synchronized across threads to avoid race conditions.
  7221. // => do it in INIT phase
  7222. memcpy(
  7223. ((char *) dst->data),
  7224. ((char *) src0->data),
  7225. ggml_nbytes(dst));
  7226. }
  7227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7228. return;
  7229. }
  7230. const int ith = params->ith;
  7231. const int nth = params->nth;
  7232. const int nr = ggml_nrows(src1);
  7233. const int nc = src1->ne[0];
  7234. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7235. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7236. // src0 and dst as viewed during acc
  7237. const size_t nb0 = ggml_element_size(src0);
  7238. const size_t nb00 = nb0;
  7239. const size_t nb01 = nb1;
  7240. const size_t nb02 = nb2;
  7241. const size_t nb03 = nb3;
  7242. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7243. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7244. GGML_ASSERT(nb10 == sizeof(float));
  7245. // rows per thread
  7246. const int dr = (nr + nth - 1)/nth;
  7247. // row range for this thread
  7248. const int ir0 = dr*ith;
  7249. const int ir1 = MIN(ir0 + dr, nr);
  7250. for (int ir = ir0; ir < ir1; ++ir) {
  7251. // src0 and dst are viewed with shape of src1 and offset
  7252. // => same indices
  7253. const int i3 = ir/(ne12*ne11);
  7254. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7255. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7256. #ifdef GGML_USE_ACCELERATE
  7257. vDSP_vadd(
  7258. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7259. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7260. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7261. #else
  7262. ggml_vec_add_f32(nc,
  7263. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7264. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7265. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7266. #endif
  7267. }
  7268. }
  7269. static void ggml_compute_forward_acc(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. const struct ggml_tensor * src1,
  7273. const struct ggml_tensor * opt0,
  7274. struct ggml_tensor * dst) {
  7275. switch (src0->type) {
  7276. case GGML_TYPE_F32:
  7277. {
  7278. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7279. } break;
  7280. case GGML_TYPE_F16:
  7281. case GGML_TYPE_Q4_0:
  7282. case GGML_TYPE_Q4_1:
  7283. case GGML_TYPE_Q5_0:
  7284. case GGML_TYPE_Q5_1:
  7285. case GGML_TYPE_Q8_0:
  7286. case GGML_TYPE_Q8_1:
  7287. case GGML_TYPE_Q2_K:
  7288. case GGML_TYPE_Q3_K:
  7289. case GGML_TYPE_Q4_K:
  7290. case GGML_TYPE_Q5_K:
  7291. case GGML_TYPE_Q6_K:
  7292. default:
  7293. {
  7294. GGML_ASSERT(false);
  7295. } break;
  7296. }
  7297. }
  7298. // ggml_compute_forward_sub
  7299. static void ggml_compute_forward_sub_f32(
  7300. const struct ggml_compute_params * params,
  7301. const struct ggml_tensor * src0,
  7302. const struct ggml_tensor * src1,
  7303. struct ggml_tensor * dst) {
  7304. assert(params->ith == 0);
  7305. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7307. return;
  7308. }
  7309. const int nr = ggml_nrows(src0);
  7310. GGML_TENSOR_BINARY_OP_LOCALS;
  7311. GGML_ASSERT( nb0 == sizeof(float));
  7312. GGML_ASSERT(nb00 == sizeof(float));
  7313. if (nb10 == sizeof(float)) {
  7314. for (int ir = 0; ir < nr; ++ir) {
  7315. // src0, src1 and dst are same shape => same indices
  7316. const int i3 = ir/(ne2*ne1);
  7317. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7318. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7319. #ifdef GGML_USE_ACCELERATE
  7320. vDSP_vsub(
  7321. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7322. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7323. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7324. ne0);
  7325. #else
  7326. ggml_vec_sub_f32(ne0,
  7327. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7328. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7329. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7330. #endif
  7331. // }
  7332. // }
  7333. }
  7334. } else {
  7335. // src1 is not contiguous
  7336. for (int ir = 0; ir < nr; ++ir) {
  7337. // src0, src1 and dst are same shape => same indices
  7338. const int i3 = ir/(ne2*ne1);
  7339. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7340. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7341. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7342. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7343. for (int i0 = 0; i0 < ne0; i0++) {
  7344. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7345. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7346. }
  7347. }
  7348. }
  7349. }
  7350. static void ggml_compute_forward_sub(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. const struct ggml_tensor * src1,
  7354. struct ggml_tensor * dst) {
  7355. switch (src0->type) {
  7356. case GGML_TYPE_F32:
  7357. {
  7358. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7359. } break;
  7360. default:
  7361. {
  7362. GGML_ASSERT(false);
  7363. } break;
  7364. }
  7365. }
  7366. // ggml_compute_forward_mul
  7367. static void ggml_compute_forward_mul_f32(
  7368. const struct ggml_compute_params * params,
  7369. const struct ggml_tensor * src0,
  7370. const struct ggml_tensor * src1,
  7371. struct ggml_tensor * dst) {
  7372. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7374. return;
  7375. }
  7376. const int ith = params->ith;
  7377. const int nth = params->nth;
  7378. #ifdef GGML_USE_CLBLAST
  7379. if (src1->backend == GGML_BACKEND_GPU) {
  7380. if (ith == 0) {
  7381. ggml_cl_mul(src0, src1, dst);
  7382. }
  7383. return;
  7384. }
  7385. #endif
  7386. const int64_t nr = ggml_nrows(src0);
  7387. GGML_TENSOR_BINARY_OP_LOCALS;
  7388. GGML_ASSERT( nb0 == sizeof(float));
  7389. GGML_ASSERT(nb00 == sizeof(float));
  7390. GGML_ASSERT(ne00 == ne10);
  7391. if (nb10 == sizeof(float)) {
  7392. for (int64_t ir = ith; ir < nr; ir += nth) {
  7393. // src0 and dst are same shape => same indices
  7394. const int64_t i03 = ir/(ne02*ne01);
  7395. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7396. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7397. const int64_t i13 = i03 % ne13;
  7398. const int64_t i12 = i02 % ne12;
  7399. const int64_t i11 = i01 % ne11;
  7400. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7401. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7402. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7403. #ifdef GGML_USE_ACCELERATE
  7404. UNUSED(ggml_vec_mul_f32);
  7405. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7406. #else
  7407. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7408. #endif
  7409. // }
  7410. // }
  7411. }
  7412. } else {
  7413. // src1 is not contiguous
  7414. for (int64_t ir = ith; ir < nr; ir += nth) {
  7415. // src0 and dst are same shape => same indices
  7416. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7417. const int64_t i03 = ir/(ne02*ne01);
  7418. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7419. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7420. const int64_t i13 = i03 % ne13;
  7421. const int64_t i12 = i02 % ne12;
  7422. const int64_t i11 = i01 % ne11;
  7423. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7424. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7425. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7426. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7427. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7428. }
  7429. }
  7430. }
  7431. }
  7432. static void ggml_compute_forward_mul(
  7433. const struct ggml_compute_params * params,
  7434. const struct ggml_tensor * src0,
  7435. const struct ggml_tensor * src1,
  7436. struct ggml_tensor * dst) {
  7437. switch (src0->type) {
  7438. case GGML_TYPE_F32:
  7439. {
  7440. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7441. } break;
  7442. default:
  7443. {
  7444. GGML_ASSERT(false);
  7445. } break;
  7446. }
  7447. }
  7448. // ggml_compute_forward_div
  7449. static void ggml_compute_forward_div_f32(
  7450. const struct ggml_compute_params * params,
  7451. const struct ggml_tensor * src0,
  7452. const struct ggml_tensor * src1,
  7453. struct ggml_tensor * dst) {
  7454. assert(params->ith == 0);
  7455. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7457. return;
  7458. }
  7459. const int nr = ggml_nrows(src0);
  7460. GGML_TENSOR_BINARY_OP_LOCALS;
  7461. GGML_ASSERT( nb0 == sizeof(float));
  7462. GGML_ASSERT(nb00 == sizeof(float));
  7463. if (nb10 == sizeof(float)) {
  7464. for (int ir = 0; ir < nr; ++ir) {
  7465. // src0, src1 and dst are same shape => same indices
  7466. const int i3 = ir/(ne2*ne1);
  7467. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7468. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7469. #ifdef GGML_USE_ACCELERATE
  7470. vDSP_vdiv(
  7471. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7472. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7473. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7474. ne0);
  7475. #else
  7476. ggml_vec_div_f32(ne0,
  7477. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7478. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7479. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7480. #endif
  7481. // }
  7482. // }
  7483. }
  7484. } else {
  7485. // src1 is not contiguous
  7486. for (int ir = 0; ir < nr; ++ir) {
  7487. // src0, src1 and dst are same shape => same indices
  7488. const int i3 = ir/(ne2*ne1);
  7489. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7490. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7491. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7492. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7493. for (int i0 = 0; i0 < ne0; i0++) {
  7494. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7495. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7496. }
  7497. }
  7498. }
  7499. }
  7500. static void ggml_compute_forward_div(
  7501. const struct ggml_compute_params * params,
  7502. const struct ggml_tensor * src0,
  7503. const struct ggml_tensor * src1,
  7504. struct ggml_tensor * dst) {
  7505. switch (src0->type) {
  7506. case GGML_TYPE_F32:
  7507. {
  7508. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7509. } break;
  7510. default:
  7511. {
  7512. GGML_ASSERT(false);
  7513. } break;
  7514. }
  7515. }
  7516. // ggml_compute_forward_sqr
  7517. static void ggml_compute_forward_sqr_f32(
  7518. const struct ggml_compute_params * params,
  7519. const struct ggml_tensor * src0,
  7520. struct ggml_tensor * dst) {
  7521. assert(params->ith == 0);
  7522. assert(ggml_are_same_shape(src0, dst));
  7523. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7524. return;
  7525. }
  7526. const int n = ggml_nrows(src0);
  7527. const int nc = src0->ne[0];
  7528. assert( dst->nb[0] == sizeof(float));
  7529. assert(src0->nb[0] == sizeof(float));
  7530. for (int i = 0; i < n; i++) {
  7531. ggml_vec_sqr_f32(nc,
  7532. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7533. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7534. }
  7535. }
  7536. static void ggml_compute_forward_sqr(
  7537. const struct ggml_compute_params * params,
  7538. const struct ggml_tensor * src0,
  7539. struct ggml_tensor * dst) {
  7540. switch (src0->type) {
  7541. case GGML_TYPE_F32:
  7542. {
  7543. ggml_compute_forward_sqr_f32(params, src0, dst);
  7544. } break;
  7545. default:
  7546. {
  7547. GGML_ASSERT(false);
  7548. } break;
  7549. }
  7550. }
  7551. // ggml_compute_forward_sqrt
  7552. static void ggml_compute_forward_sqrt_f32(
  7553. const struct ggml_compute_params * params,
  7554. const struct ggml_tensor * src0,
  7555. struct ggml_tensor * dst) {
  7556. assert(params->ith == 0);
  7557. assert(ggml_are_same_shape(src0, dst));
  7558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7559. return;
  7560. }
  7561. const int n = ggml_nrows(src0);
  7562. const int nc = src0->ne[0];
  7563. assert( dst->nb[0] == sizeof(float));
  7564. assert(src0->nb[0] == sizeof(float));
  7565. for (int i = 0; i < n; i++) {
  7566. ggml_vec_sqrt_f32(nc,
  7567. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7568. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7569. }
  7570. }
  7571. static void ggml_compute_forward_sqrt(
  7572. const struct ggml_compute_params * params,
  7573. const struct ggml_tensor * src0,
  7574. struct ggml_tensor * dst) {
  7575. switch (src0->type) {
  7576. case GGML_TYPE_F32:
  7577. {
  7578. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7579. } break;
  7580. default:
  7581. {
  7582. GGML_ASSERT(false);
  7583. } break;
  7584. }
  7585. }
  7586. // ggml_compute_forward_log
  7587. static void ggml_compute_forward_log_f32(
  7588. const struct ggml_compute_params * params,
  7589. const struct ggml_tensor * src0,
  7590. struct ggml_tensor * dst) {
  7591. GGML_ASSERT(params->ith == 0);
  7592. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7593. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7594. return;
  7595. }
  7596. const int n = ggml_nrows(src0);
  7597. const int nc = src0->ne[0];
  7598. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7599. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7600. for (int i = 0; i < n; i++) {
  7601. ggml_vec_log_f32(nc,
  7602. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7603. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7604. }
  7605. }
  7606. static void ggml_compute_forward_log(
  7607. const struct ggml_compute_params * params,
  7608. const struct ggml_tensor * src0,
  7609. struct ggml_tensor * dst) {
  7610. switch (src0->type) {
  7611. case GGML_TYPE_F32:
  7612. {
  7613. ggml_compute_forward_log_f32(params, src0, dst);
  7614. } break;
  7615. default:
  7616. {
  7617. GGML_ASSERT(false);
  7618. } break;
  7619. }
  7620. }
  7621. // ggml_compute_forward_sum
  7622. static void ggml_compute_forward_sum_f32(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * src0,
  7625. struct ggml_tensor * dst) {
  7626. assert(params->ith == 0);
  7627. assert(ggml_is_scalar(dst));
  7628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7629. return;
  7630. }
  7631. assert(ggml_is_scalar(dst));
  7632. assert(src0->nb[0] == sizeof(float));
  7633. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7634. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7635. ggml_float sum = 0;
  7636. ggml_float row_sum = 0;
  7637. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7638. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7639. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7640. ggml_vec_sum_ggf(ne00,
  7641. &row_sum,
  7642. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7643. sum += row_sum;
  7644. }
  7645. }
  7646. }
  7647. ((float *) dst->data)[0] = sum;
  7648. }
  7649. static void ggml_compute_forward_sum(
  7650. const struct ggml_compute_params * params,
  7651. const struct ggml_tensor * src0,
  7652. struct ggml_tensor * dst) {
  7653. switch (src0->type) {
  7654. case GGML_TYPE_F32:
  7655. {
  7656. ggml_compute_forward_sum_f32(params, src0, dst);
  7657. } break;
  7658. default:
  7659. {
  7660. GGML_ASSERT(false);
  7661. } break;
  7662. }
  7663. }
  7664. // ggml_compute_forward_sum_rows
  7665. static void ggml_compute_forward_sum_rows_f32(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. GGML_ASSERT(params->ith == 0);
  7670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7671. return;
  7672. }
  7673. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7674. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7675. GGML_TENSOR_UNARY_OP_LOCALS;
  7676. GGML_ASSERT(ne0 == 1);
  7677. GGML_ASSERT(ne1 == ne01);
  7678. GGML_ASSERT(ne2 == ne02);
  7679. GGML_ASSERT(ne3 == ne03);
  7680. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7681. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7682. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7683. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7684. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7685. float row_sum = 0;
  7686. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7687. dst_row[0] = row_sum;
  7688. }
  7689. }
  7690. }
  7691. }
  7692. static void ggml_compute_forward_sum_rows(
  7693. const struct ggml_compute_params * params,
  7694. const struct ggml_tensor * src0,
  7695. struct ggml_tensor * dst) {
  7696. switch (src0->type) {
  7697. case GGML_TYPE_F32:
  7698. {
  7699. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7700. } break;
  7701. default:
  7702. {
  7703. GGML_ASSERT(false);
  7704. } break;
  7705. }
  7706. }
  7707. // ggml_compute_forward_mean
  7708. static void ggml_compute_forward_mean_f32(
  7709. const struct ggml_compute_params * params,
  7710. const struct ggml_tensor * src0,
  7711. struct ggml_tensor * dst) {
  7712. assert(params->ith == 0);
  7713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7714. return;
  7715. }
  7716. assert(src0->nb[0] == sizeof(float));
  7717. GGML_TENSOR_UNARY_OP_LOCALS;
  7718. assert(ne0 == 1);
  7719. assert(ne1 == ne01);
  7720. assert(ne2 == ne02);
  7721. assert(ne3 == ne03);
  7722. UNUSED(ne0);
  7723. UNUSED(ne1);
  7724. UNUSED(ne2);
  7725. UNUSED(ne3);
  7726. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7727. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7728. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7729. ggml_vec_sum_f32(ne00,
  7730. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7731. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7732. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7733. }
  7734. }
  7735. }
  7736. }
  7737. static void ggml_compute_forward_mean(
  7738. const struct ggml_compute_params * params,
  7739. const struct ggml_tensor * src0,
  7740. struct ggml_tensor * dst) {
  7741. switch (src0->type) {
  7742. case GGML_TYPE_F32:
  7743. {
  7744. ggml_compute_forward_mean_f32(params, src0, dst);
  7745. } break;
  7746. default:
  7747. {
  7748. GGML_ASSERT(false);
  7749. } break;
  7750. }
  7751. }
  7752. // ggml_compute_forward_argmax
  7753. static void ggml_compute_forward_argmax_f32(
  7754. const struct ggml_compute_params * params,
  7755. const struct ggml_tensor * src0,
  7756. struct ggml_tensor * dst) {
  7757. assert(params->ith == 0);
  7758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7759. return;
  7760. }
  7761. assert(src0->nb[0] == sizeof(float));
  7762. assert(dst->nb[0] == sizeof(float));
  7763. const int64_t ne00 = src0->ne[0];
  7764. const int64_t ne01 = src0->ne[1];
  7765. const size_t nb01 = src0->nb[1];
  7766. const size_t nb0 = dst->nb[0];
  7767. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7768. float * src = (float *) ((char *) src0->data + i1*nb01);
  7769. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7770. int v = 0;
  7771. ggml_vec_argmax_f32(ne00, &v, src);
  7772. dst_[0] = v;
  7773. }
  7774. }
  7775. static void ggml_compute_forward_argmax(
  7776. const struct ggml_compute_params * params,
  7777. const struct ggml_tensor * src0,
  7778. struct ggml_tensor * dst) {
  7779. switch (src0->type) {
  7780. case GGML_TYPE_F32:
  7781. {
  7782. ggml_compute_forward_argmax_f32(params, src0, dst);
  7783. } break;
  7784. default:
  7785. {
  7786. GGML_ASSERT(false);
  7787. } break;
  7788. }
  7789. }
  7790. // ggml_compute_forward_repeat
  7791. static void ggml_compute_forward_repeat_f32(
  7792. const struct ggml_compute_params * params,
  7793. const struct ggml_tensor * src0,
  7794. struct ggml_tensor * dst) {
  7795. GGML_ASSERT(params->ith == 0);
  7796. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7797. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7798. return;
  7799. }
  7800. GGML_TENSOR_UNARY_OP_LOCALS;
  7801. // guaranteed to be an integer due to the check in ggml_can_repeat
  7802. const int nr0 = (int)(ne0/ne00);
  7803. const int nr1 = (int)(ne1/ne01);
  7804. const int nr2 = (int)(ne2/ne02);
  7805. const int nr3 = (int)(ne3/ne03);
  7806. // TODO: support for transposed / permuted tensors
  7807. GGML_ASSERT(nb0 == sizeof(float));
  7808. GGML_ASSERT(nb00 == sizeof(float));
  7809. // TODO: maybe this is not optimal?
  7810. for (int i3 = 0; i3 < nr3; i3++) {
  7811. for (int k3 = 0; k3 < ne03; k3++) {
  7812. for (int i2 = 0; i2 < nr2; i2++) {
  7813. for (int k2 = 0; k2 < ne02; k2++) {
  7814. for (int i1 = 0; i1 < nr1; i1++) {
  7815. for (int k1 = 0; k1 < ne01; k1++) {
  7816. for (int i0 = 0; i0 < nr0; i0++) {
  7817. ggml_vec_cpy_f32(ne00,
  7818. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7819. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7820. }
  7821. }
  7822. }
  7823. }
  7824. }
  7825. }
  7826. }
  7827. }
  7828. static void ggml_compute_forward_repeat(
  7829. const struct ggml_compute_params * params,
  7830. const struct ggml_tensor * src0,
  7831. struct ggml_tensor * dst) {
  7832. switch (src0->type) {
  7833. case GGML_TYPE_F32:
  7834. {
  7835. ggml_compute_forward_repeat_f32(params, src0, dst);
  7836. } break;
  7837. default:
  7838. {
  7839. GGML_ASSERT(false);
  7840. } break;
  7841. }
  7842. }
  7843. // ggml_compute_forward_repeat_back
  7844. static void ggml_compute_forward_repeat_back_f32(
  7845. const struct ggml_compute_params * params,
  7846. const struct ggml_tensor * src0,
  7847. struct ggml_tensor * dst) {
  7848. GGML_ASSERT(params->ith == 0);
  7849. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7851. return;
  7852. }
  7853. GGML_TENSOR_UNARY_OP_LOCALS;
  7854. // guaranteed to be an integer due to the check in ggml_can_repeat
  7855. const int nr0 = (int)(ne00/ne0);
  7856. const int nr1 = (int)(ne01/ne1);
  7857. const int nr2 = (int)(ne02/ne2);
  7858. const int nr3 = (int)(ne03/ne3);
  7859. // TODO: support for transposed / permuted tensors
  7860. GGML_ASSERT(nb0 == sizeof(float));
  7861. GGML_ASSERT(nb00 == sizeof(float));
  7862. if (ggml_is_contiguous(dst)) {
  7863. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7864. } else {
  7865. for (int k3 = 0; k3 < ne3; k3++) {
  7866. for (int k2 = 0; k2 < ne2; k2++) {
  7867. for (int k1 = 0; k1 < ne1; k1++) {
  7868. ggml_vec_set_f32(ne0,
  7869. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7870. 0);
  7871. }
  7872. }
  7873. }
  7874. }
  7875. // TODO: maybe this is not optimal?
  7876. for (int i3 = 0; i3 < nr3; i3++) {
  7877. for (int k3 = 0; k3 < ne3; k3++) {
  7878. for (int i2 = 0; i2 < nr2; i2++) {
  7879. for (int k2 = 0; k2 < ne2; k2++) {
  7880. for (int i1 = 0; i1 < nr1; i1++) {
  7881. for (int k1 = 0; k1 < ne1; k1++) {
  7882. for (int i0 = 0; i0 < nr0; i0++) {
  7883. ggml_vec_acc_f32(ne0,
  7884. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7885. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7886. }
  7887. }
  7888. }
  7889. }
  7890. }
  7891. }
  7892. }
  7893. }
  7894. static void ggml_compute_forward_repeat_back(
  7895. const struct ggml_compute_params * params,
  7896. const struct ggml_tensor * src0,
  7897. struct ggml_tensor * dst) {
  7898. switch (src0->type) {
  7899. case GGML_TYPE_F32:
  7900. {
  7901. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7902. } break;
  7903. default:
  7904. {
  7905. GGML_ASSERT(false);
  7906. } break;
  7907. }
  7908. }
  7909. // ggml_compute_forward_abs
  7910. static void ggml_compute_forward_abs_f32(
  7911. const struct ggml_compute_params * params,
  7912. const struct ggml_tensor * src0,
  7913. struct ggml_tensor * dst) {
  7914. assert(params->ith == 0);
  7915. assert(ggml_are_same_shape(src0, dst));
  7916. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7917. return;
  7918. }
  7919. const int n = ggml_nrows(src0);
  7920. const int nc = src0->ne[0];
  7921. assert(dst->nb[0] == sizeof(float));
  7922. assert(src0->nb[0] == sizeof(float));
  7923. for (int i = 0; i < n; i++) {
  7924. ggml_vec_abs_f32(nc,
  7925. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7926. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7927. }
  7928. }
  7929. static void ggml_compute_forward_abs(
  7930. const struct ggml_compute_params * params,
  7931. const struct ggml_tensor * src0,
  7932. struct ggml_tensor * dst) {
  7933. switch (src0->type) {
  7934. case GGML_TYPE_F32:
  7935. {
  7936. ggml_compute_forward_abs_f32(params, src0, dst);
  7937. } break;
  7938. default:
  7939. {
  7940. GGML_ASSERT(false);
  7941. } break;
  7942. }
  7943. }
  7944. // ggml_compute_forward_sgn
  7945. static void ggml_compute_forward_sgn_f32(
  7946. const struct ggml_compute_params * params,
  7947. const struct ggml_tensor * src0,
  7948. struct ggml_tensor * dst) {
  7949. assert(params->ith == 0);
  7950. assert(ggml_are_same_shape(src0, dst));
  7951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7952. return;
  7953. }
  7954. const int n = ggml_nrows(src0);
  7955. const int nc = src0->ne[0];
  7956. assert(dst->nb[0] == sizeof(float));
  7957. assert(src0->nb[0] == sizeof(float));
  7958. for (int i = 0; i < n; i++) {
  7959. ggml_vec_sgn_f32(nc,
  7960. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7961. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7962. }
  7963. }
  7964. static void ggml_compute_forward_sgn(
  7965. const struct ggml_compute_params * params,
  7966. const struct ggml_tensor * src0,
  7967. struct ggml_tensor * dst) {
  7968. switch (src0->type) {
  7969. case GGML_TYPE_F32:
  7970. {
  7971. ggml_compute_forward_sgn_f32(params, src0, dst);
  7972. } break;
  7973. default:
  7974. {
  7975. GGML_ASSERT(false);
  7976. } break;
  7977. }
  7978. }
  7979. // ggml_compute_forward_neg
  7980. static void ggml_compute_forward_neg_f32(
  7981. const struct ggml_compute_params * params,
  7982. const struct ggml_tensor * src0,
  7983. struct ggml_tensor * dst) {
  7984. assert(params->ith == 0);
  7985. assert(ggml_are_same_shape(src0, dst));
  7986. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7987. return;
  7988. }
  7989. const int n = ggml_nrows(src0);
  7990. const int nc = src0->ne[0];
  7991. assert(dst->nb[0] == sizeof(float));
  7992. assert(src0->nb[0] == sizeof(float));
  7993. for (int i = 0; i < n; i++) {
  7994. ggml_vec_neg_f32(nc,
  7995. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7996. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7997. }
  7998. }
  7999. static void ggml_compute_forward_neg(
  8000. const struct ggml_compute_params * params,
  8001. const struct ggml_tensor * src0,
  8002. struct ggml_tensor * dst) {
  8003. switch (src0->type) {
  8004. case GGML_TYPE_F32:
  8005. {
  8006. ggml_compute_forward_neg_f32(params, src0, dst);
  8007. } break;
  8008. default:
  8009. {
  8010. GGML_ASSERT(false);
  8011. } break;
  8012. }
  8013. }
  8014. // ggml_compute_forward_step
  8015. static void ggml_compute_forward_step_f32(
  8016. const struct ggml_compute_params * params,
  8017. const struct ggml_tensor * src0,
  8018. struct ggml_tensor * dst) {
  8019. assert(params->ith == 0);
  8020. assert(ggml_are_same_shape(src0, dst));
  8021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8022. return;
  8023. }
  8024. const int n = ggml_nrows(src0);
  8025. const int nc = src0->ne[0];
  8026. assert(dst->nb[0] == sizeof(float));
  8027. assert(src0->nb[0] == sizeof(float));
  8028. for (int i = 0; i < n; i++) {
  8029. ggml_vec_step_f32(nc,
  8030. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8031. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8032. }
  8033. }
  8034. static void ggml_compute_forward_step(
  8035. const struct ggml_compute_params * params,
  8036. const struct ggml_tensor * src0,
  8037. struct ggml_tensor * dst) {
  8038. switch (src0->type) {
  8039. case GGML_TYPE_F32:
  8040. {
  8041. ggml_compute_forward_step_f32(params, src0, dst);
  8042. } break;
  8043. default:
  8044. {
  8045. GGML_ASSERT(false);
  8046. } break;
  8047. }
  8048. }
  8049. // ggml_compute_forward_tanh
  8050. static void ggml_compute_forward_tanh_f32(
  8051. const struct ggml_compute_params * params,
  8052. const struct ggml_tensor * src0,
  8053. struct ggml_tensor * dst) {
  8054. assert(params->ith == 0);
  8055. assert(ggml_are_same_shape(src0, dst));
  8056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8057. return;
  8058. }
  8059. const int n = ggml_nrows(src0);
  8060. const int nc = src0->ne[0];
  8061. assert(dst->nb[0] == sizeof(float));
  8062. assert(src0->nb[0] == sizeof(float));
  8063. for (int i = 0; i < n; i++) {
  8064. ggml_vec_tanh_f32(nc,
  8065. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8066. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8067. }
  8068. }
  8069. static void ggml_compute_forward_tanh(
  8070. const struct ggml_compute_params * params,
  8071. const struct ggml_tensor * src0,
  8072. struct ggml_tensor * dst) {
  8073. switch (src0->type) {
  8074. case GGML_TYPE_F32:
  8075. {
  8076. ggml_compute_forward_tanh_f32(params, src0, dst);
  8077. } break;
  8078. default:
  8079. {
  8080. GGML_ASSERT(false);
  8081. } break;
  8082. }
  8083. }
  8084. // ggml_compute_forward_elu
  8085. static void ggml_compute_forward_elu_f32(
  8086. const struct ggml_compute_params * params,
  8087. const struct ggml_tensor * src0,
  8088. struct ggml_tensor * dst) {
  8089. assert(params->ith == 0);
  8090. assert(ggml_are_same_shape(src0, dst));
  8091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8092. return;
  8093. }
  8094. const int n = ggml_nrows(src0);
  8095. const int nc = src0->ne[0];
  8096. assert(dst->nb[0] == sizeof(float));
  8097. assert(src0->nb[0] == sizeof(float));
  8098. for (int i = 0; i < n; i++) {
  8099. ggml_vec_elu_f32(nc,
  8100. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8101. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8102. }
  8103. }
  8104. static void ggml_compute_forward_elu(
  8105. const struct ggml_compute_params * params,
  8106. const struct ggml_tensor * src0,
  8107. struct ggml_tensor * dst) {
  8108. switch (src0->type) {
  8109. case GGML_TYPE_F32:
  8110. {
  8111. ggml_compute_forward_elu_f32(params, src0, dst);
  8112. } break;
  8113. default:
  8114. {
  8115. GGML_ASSERT(false);
  8116. } break;
  8117. }
  8118. }
  8119. // ggml_compute_forward_relu
  8120. static void ggml_compute_forward_relu_f32(
  8121. const struct ggml_compute_params * params,
  8122. const struct ggml_tensor * src0,
  8123. struct ggml_tensor * dst) {
  8124. assert(params->ith == 0);
  8125. assert(ggml_are_same_shape(src0, dst));
  8126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8127. return;
  8128. }
  8129. const int n = ggml_nrows(src0);
  8130. const int nc = src0->ne[0];
  8131. assert(dst->nb[0] == sizeof(float));
  8132. assert(src0->nb[0] == sizeof(float));
  8133. for (int i = 0; i < n; i++) {
  8134. ggml_vec_relu_f32(nc,
  8135. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8136. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8137. }
  8138. }
  8139. static void ggml_compute_forward_relu(
  8140. const struct ggml_compute_params * params,
  8141. const struct ggml_tensor * src0,
  8142. struct ggml_tensor * dst) {
  8143. switch (src0->type) {
  8144. case GGML_TYPE_F32:
  8145. {
  8146. ggml_compute_forward_relu_f32(params, src0, dst);
  8147. } break;
  8148. default:
  8149. {
  8150. GGML_ASSERT(false);
  8151. } break;
  8152. }
  8153. }
  8154. // ggml_compute_forward_gelu
  8155. static void ggml_compute_forward_gelu_f32(
  8156. const struct ggml_compute_params * params,
  8157. const struct ggml_tensor * src0,
  8158. struct ggml_tensor * dst) {
  8159. GGML_ASSERT(ggml_is_contiguous(src0));
  8160. GGML_ASSERT(ggml_is_contiguous(dst));
  8161. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8163. return;
  8164. }
  8165. const int ith = params->ith;
  8166. const int nth = params->nth;
  8167. const int nc = src0->ne[0];
  8168. const int nr = ggml_nrows(src0);
  8169. // rows per thread
  8170. const int dr = (nr + nth - 1)/nth;
  8171. // row range for this thread
  8172. const int ir0 = dr*ith;
  8173. const int ir1 = MIN(ir0 + dr, nr);
  8174. for (int i1 = ir0; i1 < ir1; i1++) {
  8175. ggml_vec_gelu_f32(nc,
  8176. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8177. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8178. #ifndef NDEBUG
  8179. for (int k = 0; k < nc; k++) {
  8180. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8181. UNUSED(x);
  8182. assert(!isnan(x));
  8183. assert(!isinf(x));
  8184. }
  8185. #endif
  8186. }
  8187. }
  8188. static void ggml_compute_forward_gelu(
  8189. const struct ggml_compute_params * params,
  8190. const struct ggml_tensor * src0,
  8191. struct ggml_tensor * dst) {
  8192. switch (src0->type) {
  8193. case GGML_TYPE_F32:
  8194. {
  8195. ggml_compute_forward_gelu_f32(params, src0, dst);
  8196. } break;
  8197. default:
  8198. {
  8199. GGML_ASSERT(false);
  8200. } break;
  8201. }
  8202. }
  8203. // ggml_compute_forward_gelu_quick
  8204. static void ggml_compute_forward_gelu_quick_f32(
  8205. const struct ggml_compute_params * params,
  8206. const struct ggml_tensor * src0,
  8207. struct ggml_tensor * dst) {
  8208. GGML_ASSERT(ggml_is_contiguous(src0));
  8209. GGML_ASSERT(ggml_is_contiguous(dst));
  8210. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8212. return;
  8213. }
  8214. const int ith = params->ith;
  8215. const int nth = params->nth;
  8216. const int nc = src0->ne[0];
  8217. const int nr = ggml_nrows(src0);
  8218. // rows per thread
  8219. const int dr = (nr + nth - 1)/nth;
  8220. // row range for this thread
  8221. const int ir0 = dr*ith;
  8222. const int ir1 = MIN(ir0 + dr, nr);
  8223. for (int i1 = ir0; i1 < ir1; i1++) {
  8224. ggml_vec_gelu_quick_f32(nc,
  8225. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8226. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8227. #ifndef NDEBUG
  8228. for (int k = 0; k < nc; k++) {
  8229. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8230. UNUSED(x);
  8231. assert(!isnan(x));
  8232. assert(!isinf(x));
  8233. }
  8234. #endif
  8235. }
  8236. }
  8237. static void ggml_compute_forward_gelu_quick(
  8238. const struct ggml_compute_params * params,
  8239. const struct ggml_tensor * src0,
  8240. struct ggml_tensor * dst) {
  8241. switch (src0->type) {
  8242. case GGML_TYPE_F32:
  8243. {
  8244. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8245. } break;
  8246. default:
  8247. {
  8248. GGML_ASSERT(false);
  8249. } break;
  8250. }
  8251. }
  8252. // ggml_compute_forward_silu
  8253. static void ggml_compute_forward_silu_f32(
  8254. const struct ggml_compute_params * params,
  8255. const struct ggml_tensor * src0,
  8256. struct ggml_tensor * dst) {
  8257. GGML_ASSERT(ggml_is_contiguous(src0));
  8258. GGML_ASSERT(ggml_is_contiguous(dst));
  8259. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8261. return;
  8262. }
  8263. const int ith = params->ith;
  8264. const int nth = params->nth;
  8265. const int nc = src0->ne[0];
  8266. const int nr = ggml_nrows(src0);
  8267. // rows per thread
  8268. const int dr = (nr + nth - 1)/nth;
  8269. // row range for this thread
  8270. const int ir0 = dr*ith;
  8271. const int ir1 = MIN(ir0 + dr, nr);
  8272. for (int i1 = ir0; i1 < ir1; i1++) {
  8273. ggml_vec_silu_f32(nc,
  8274. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8275. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8276. #ifndef NDEBUG
  8277. for (int k = 0; k < nc; k++) {
  8278. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8279. UNUSED(x);
  8280. assert(!isnan(x));
  8281. assert(!isinf(x));
  8282. }
  8283. #endif
  8284. }
  8285. }
  8286. static void ggml_compute_forward_silu(
  8287. const struct ggml_compute_params * params,
  8288. const struct ggml_tensor * src0,
  8289. struct ggml_tensor * dst) {
  8290. switch (src0->type) {
  8291. case GGML_TYPE_F32:
  8292. {
  8293. ggml_compute_forward_silu_f32(params, src0, dst);
  8294. } break;
  8295. default:
  8296. {
  8297. GGML_ASSERT(false);
  8298. } break;
  8299. }
  8300. }
  8301. // ggml_compute_forward_silu_back
  8302. static void ggml_compute_forward_silu_back_f32(
  8303. const struct ggml_compute_params * params,
  8304. const struct ggml_tensor * src0,
  8305. const struct ggml_tensor * grad,
  8306. struct ggml_tensor * dst) {
  8307. GGML_ASSERT(ggml_is_contiguous(grad));
  8308. GGML_ASSERT(ggml_is_contiguous(src0));
  8309. GGML_ASSERT(ggml_is_contiguous(dst));
  8310. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8311. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8313. return;
  8314. }
  8315. const int ith = params->ith;
  8316. const int nth = params->nth;
  8317. const int nc = src0->ne[0];
  8318. const int nr = ggml_nrows(src0);
  8319. // rows per thread
  8320. const int dr = (nr + nth - 1)/nth;
  8321. // row range for this thread
  8322. const int ir0 = dr*ith;
  8323. const int ir1 = MIN(ir0 + dr, nr);
  8324. for (int i1 = ir0; i1 < ir1; i1++) {
  8325. ggml_vec_silu_backward_f32(nc,
  8326. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8327. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8328. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8329. #ifndef NDEBUG
  8330. for (int k = 0; k < nc; k++) {
  8331. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8332. UNUSED(x);
  8333. assert(!isnan(x));
  8334. assert(!isinf(x));
  8335. }
  8336. #endif
  8337. }
  8338. }
  8339. static void ggml_compute_forward_silu_back(
  8340. const struct ggml_compute_params * params,
  8341. const struct ggml_tensor * src0,
  8342. const struct ggml_tensor * grad,
  8343. struct ggml_tensor * dst) {
  8344. switch (src0->type) {
  8345. case GGML_TYPE_F32:
  8346. {
  8347. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8348. } break;
  8349. default:
  8350. {
  8351. GGML_ASSERT(false);
  8352. } break;
  8353. }
  8354. }
  8355. // ggml_compute_forward_norm
  8356. static void ggml_compute_forward_norm_f32(
  8357. const struct ggml_compute_params * params,
  8358. const struct ggml_tensor * src0,
  8359. struct ggml_tensor * dst) {
  8360. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8362. return;
  8363. }
  8364. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8365. const int ith = params->ith;
  8366. const int nth = params->nth;
  8367. GGML_TENSOR_UNARY_OP_LOCALS;
  8368. const float eps = 1e-5f; // TODO: make this a parameter
  8369. // TODO: optimize
  8370. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8372. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8373. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8374. ggml_float sum = 0.0;
  8375. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8376. sum += (ggml_float)x[i00];
  8377. }
  8378. float mean = sum/ne00;
  8379. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8380. ggml_float sum2 = 0.0;
  8381. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8382. float v = x[i00] - mean;
  8383. y[i00] = v;
  8384. sum2 += (ggml_float)(v*v);
  8385. }
  8386. float variance = sum2/ne00;
  8387. const float scale = 1.0f/sqrtf(variance + eps);
  8388. ggml_vec_scale_f32(ne00, y, scale);
  8389. }
  8390. }
  8391. }
  8392. }
  8393. static void ggml_compute_forward_norm(
  8394. const struct ggml_compute_params * params,
  8395. const struct ggml_tensor * src0,
  8396. struct ggml_tensor * dst) {
  8397. switch (src0->type) {
  8398. case GGML_TYPE_F32:
  8399. {
  8400. ggml_compute_forward_norm_f32(params, src0, dst);
  8401. } break;
  8402. default:
  8403. {
  8404. GGML_ASSERT(false);
  8405. } break;
  8406. }
  8407. }
  8408. static void ggml_compute_forward_rms_norm_f32(
  8409. const struct ggml_compute_params * params,
  8410. const struct ggml_tensor * src0,
  8411. struct ggml_tensor * dst) {
  8412. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8414. return;
  8415. }
  8416. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8417. const int ith = params->ith;
  8418. const int nth = params->nth;
  8419. GGML_TENSOR_UNARY_OP_LOCALS;
  8420. const float eps = 1e-6f; // TODO: make this a parameter
  8421. // TODO: optimize
  8422. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8423. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8424. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8425. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8426. ggml_float sum = 0.0;
  8427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8428. sum += (ggml_float)(x[i00] * x[i00]);
  8429. }
  8430. const float mean = sum/ne00;
  8431. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8432. memcpy(y, x, ne00 * sizeof(float));
  8433. // for (int i00 = 0; i00 < ne00; i00++) {
  8434. // y[i00] = x[i00];
  8435. // }
  8436. const float scale = 1.0f/sqrtf(mean + eps);
  8437. ggml_vec_scale_f32(ne00, y, scale);
  8438. }
  8439. }
  8440. }
  8441. }
  8442. static void ggml_compute_forward_rms_norm(
  8443. const struct ggml_compute_params * params,
  8444. const struct ggml_tensor * src0,
  8445. struct ggml_tensor * dst) {
  8446. switch (src0->type) {
  8447. case GGML_TYPE_F32:
  8448. {
  8449. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8450. } break;
  8451. default:
  8452. {
  8453. GGML_ASSERT(false);
  8454. } break;
  8455. }
  8456. }
  8457. static void ggml_compute_forward_rms_norm_back_f32(
  8458. const struct ggml_compute_params * params,
  8459. const struct ggml_tensor * src0,
  8460. const struct ggml_tensor * src1,
  8461. struct ggml_tensor * dst) {
  8462. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8463. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8464. return;
  8465. }
  8466. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8467. const int ith = params->ith;
  8468. const int nth = params->nth;
  8469. GGML_TENSOR_BINARY_OP_LOCALS;
  8470. const float eps = 1e-6f; // TODO: make this a parameter
  8471. // TODO: optimize
  8472. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8473. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8474. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8475. // src1 is same shape as src0 => same indices
  8476. const int64_t i11 = i01;
  8477. const int64_t i12 = i02;
  8478. const int64_t i13 = i03;
  8479. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8480. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8481. ggml_float sum_xx = 0.0;
  8482. ggml_float sum_xdz = 0.0;
  8483. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8484. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8485. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8486. }
  8487. //const float mean = (float)(sum_xx)/ne00;
  8488. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8489. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8490. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8491. // we could cache rms from forward pass to improve performance.
  8492. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8493. //const float rms = sqrtf(mean_eps);
  8494. const float rrms = 1.0f / sqrtf(mean_eps);
  8495. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8496. {
  8497. // z = rms_norm(x)
  8498. //
  8499. // rms_norm(src0) =
  8500. // scale(
  8501. // src0,
  8502. // div(
  8503. // 1,
  8504. // sqrt(
  8505. // add(
  8506. // scale(
  8507. // sum(
  8508. // sqr(
  8509. // src0)),
  8510. // (1.0/N)),
  8511. // eps))));
  8512. // postorder:
  8513. // ## op args grad
  8514. // 00 param src0 grad[#00]
  8515. // 01 const 1
  8516. // 02 sqr (#00) grad[#02]
  8517. // 03 sum (#02) grad[#03]
  8518. // 04 const 1/N
  8519. // 05 scale (#03, #04) grad[#05]
  8520. // 06 const eps
  8521. // 07 add (#05, #06) grad[#07]
  8522. // 08 sqrt (#07) grad[#08]
  8523. // 09 div (#01,#08) grad[#09]
  8524. // 10 scale (#00,#09) grad[#10]
  8525. //
  8526. // backward pass, given grad[#10]
  8527. // #10: scale
  8528. // grad[#00] += scale(grad[#10],#09)
  8529. // grad[#09] += sum(mul(grad[#10],#00))
  8530. // #09: div
  8531. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8532. // #08: sqrt
  8533. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8534. // #07: add
  8535. // grad[#05] += grad[#07]
  8536. // #05: scale
  8537. // grad[#03] += scale(grad[#05],#04)
  8538. // #03: sum
  8539. // grad[#02] += repeat(grad[#03], #02)
  8540. // #02:
  8541. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8542. //
  8543. // substitute and simplify:
  8544. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8545. // grad[#02] = repeat(grad[#03], #02)
  8546. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8547. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8548. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8549. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8550. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8551. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8552. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8553. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8554. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8555. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8556. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8557. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8558. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8559. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8560. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8561. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8562. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8563. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8564. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8565. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8566. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8567. // a = b*c + d*e
  8568. // a = b*c*f/f + d*e*f/f
  8569. // a = (b*c*f + d*e*f)*(1/f)
  8570. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8571. // a = (b + d*e/c)*c
  8572. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8573. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8574. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8575. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8576. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8577. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8578. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8579. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8580. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8581. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8582. }
  8583. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8584. // post-order:
  8585. // dx := x
  8586. // dx := scale(dx,-mean_xdz/mean_eps)
  8587. // dx := add(dx, dz)
  8588. // dx := scale(dx, rrms)
  8589. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8590. ggml_vec_cpy_f32 (ne00, dx, x);
  8591. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8592. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8593. ggml_vec_acc_f32 (ne00, dx, dz);
  8594. ggml_vec_scale_f32(ne00, dx, rrms);
  8595. }
  8596. }
  8597. }
  8598. }
  8599. static void ggml_compute_forward_rms_norm_back(
  8600. const struct ggml_compute_params * params,
  8601. const struct ggml_tensor * src0,
  8602. const struct ggml_tensor * src1,
  8603. struct ggml_tensor * dst) {
  8604. switch (src0->type) {
  8605. case GGML_TYPE_F32:
  8606. {
  8607. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8608. } break;
  8609. default:
  8610. {
  8611. GGML_ASSERT(false);
  8612. } break;
  8613. }
  8614. }
  8615. // ggml_compute_forward_mul_mat
  8616. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8617. // helper function to determine if it is better to use BLAS or not
  8618. // for large matrices, BLAS is faster
  8619. static bool ggml_compute_forward_mul_mat_use_blas(
  8620. const struct ggml_tensor * src0,
  8621. const struct ggml_tensor * src1,
  8622. struct ggml_tensor * dst) {
  8623. //const int64_t ne00 = src0->ne[0];
  8624. //const int64_t ne01 = src0->ne[1];
  8625. const int64_t ne10 = src1->ne[0];
  8626. const int64_t ne0 = dst->ne[0];
  8627. const int64_t ne1 = dst->ne[1];
  8628. // TODO: find the optimal values for these
  8629. if (ggml_is_contiguous(src0) &&
  8630. ggml_is_contiguous(src1) &&
  8631. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8632. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8633. return true;
  8634. }
  8635. return false;
  8636. }
  8637. #endif
  8638. static void ggml_compute_forward_mul_mat(
  8639. const struct ggml_compute_params * params,
  8640. const struct ggml_tensor * src0,
  8641. const struct ggml_tensor * src1,
  8642. struct ggml_tensor * dst) {
  8643. int64_t t0 = ggml_perf_time_us();
  8644. UNUSED(t0);
  8645. GGML_TENSOR_BINARY_OP_LOCALS;
  8646. const int ith = params->ith;
  8647. const int nth = params->nth;
  8648. const enum ggml_type type = src0->type;
  8649. const bool src1_cont = ggml_is_contiguous(src1);
  8650. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8651. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8652. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8653. GGML_ASSERT(ne0 == ne01);
  8654. GGML_ASSERT(ne1 == ne11);
  8655. GGML_ASSERT(ne2 == ne12);
  8656. GGML_ASSERT(ne3 == ne13);
  8657. // we don't support permuted src0 or src1
  8658. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8659. GGML_ASSERT(nb10 == sizeof(float));
  8660. // dst cannot be transposed or permuted
  8661. GGML_ASSERT(nb0 == sizeof(float));
  8662. GGML_ASSERT(nb0 <= nb1);
  8663. GGML_ASSERT(nb1 <= nb2);
  8664. GGML_ASSERT(nb2 <= nb3);
  8665. // nb01 >= nb00 - src0 is not transposed
  8666. // compute by src0 rows
  8667. #if defined(GGML_USE_CLBLAST)
  8668. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8669. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8670. // ref: https://github.com/ggerganov/ggml/pull/224
  8671. GGML_ASSERT(ne02 == ne12);
  8672. GGML_ASSERT(ne03 == ne13);
  8673. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8674. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8675. }
  8676. return;
  8677. }
  8678. #endif
  8679. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8680. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8681. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8682. // ref: https://github.com/ggerganov/ggml/pull/224
  8683. GGML_ASSERT(ne02 == ne12);
  8684. GGML_ASSERT(ne03 == ne13);
  8685. if (params->ith != 0) {
  8686. return;
  8687. }
  8688. if (params->type == GGML_TASK_INIT) {
  8689. return;
  8690. }
  8691. if (params->type == GGML_TASK_FINALIZE) {
  8692. return;
  8693. }
  8694. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8696. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8697. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8698. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8699. if (type != GGML_TYPE_F32) {
  8700. float * const wdata = params->wdata;
  8701. ggml_to_float_t const to_float = type_traits[type].to_float;
  8702. size_t id = 0;
  8703. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8704. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8705. id += ne00;
  8706. }
  8707. assert(id*sizeof(float) <= params->wsize);
  8708. x = wdata;
  8709. }
  8710. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8711. ne11, ne01, ne10,
  8712. 1.0f, y, ne10,
  8713. x, ne00,
  8714. 0.0f, d, ne01);
  8715. }
  8716. }
  8717. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8718. return;
  8719. }
  8720. #endif
  8721. if (params->type == GGML_TASK_INIT) {
  8722. if (src1->type != vec_dot_type) {
  8723. char * wdata = params->wdata;
  8724. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8725. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8726. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8727. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8728. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8729. wdata += row_size;
  8730. }
  8731. }
  8732. }
  8733. }
  8734. return;
  8735. }
  8736. if (params->type == GGML_TASK_FINALIZE) {
  8737. return;
  8738. }
  8739. // parallelize by src0 rows
  8740. const int64_t dr = (ne01 + nth - 1)/nth;
  8741. const int64_t ir10 = dr*ith;
  8742. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8743. // src1 rows
  8744. const int64_t nr1 = ne11*ne12*ne13;
  8745. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8746. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8747. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8748. const int64_t i13 = (ir1/(ne12*ne11));
  8749. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8750. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8751. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8752. const int64_t i03 = (ir0/(ne02));
  8753. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8754. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8755. // GG: this is likely the correct way to broadcast, though need some more thought
  8756. // therefore leaving the comments to remind us for now
  8757. const int64_t i02 = (i12 / (ne12 / ne02));
  8758. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8759. // const int64_t i02 = (ir0 - i03*ne02);
  8760. const int64_t i1 = i11;
  8761. const int64_t i2 = i12;
  8762. const int64_t i3 = i13;
  8763. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8764. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8765. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8766. // the original src1 data pointer, so we should index using the indices directly
  8767. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8768. const char * src1_col = (const char *) wdata +
  8769. (src1_cont || src1->type != vec_dot_type
  8770. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8771. : (i11*nb11 + i12*nb12 + i13*nb13));
  8772. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8773. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8774. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8775. }
  8776. }
  8777. //int64_t t1 = ggml_time_us();
  8778. //static int64_t acc = 0;
  8779. //acc += t1 - t0;
  8780. //if (t1 - t0 > 10) {
  8781. // printf("\n");
  8782. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8783. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8784. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8785. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8786. //}
  8787. }
  8788. // ggml_compute_forward_out_prod
  8789. static void ggml_compute_forward_out_prod_f32(
  8790. const struct ggml_compute_params * params,
  8791. const struct ggml_tensor * src0,
  8792. const struct ggml_tensor * src1,
  8793. struct ggml_tensor * dst) {
  8794. int64_t t0 = ggml_perf_time_us();
  8795. UNUSED(t0);
  8796. GGML_TENSOR_BINARY_OP_LOCALS;
  8797. const int ith = params->ith;
  8798. const int nth = params->nth;
  8799. GGML_ASSERT(ne02 == ne12);
  8800. GGML_ASSERT(ne03 == ne13);
  8801. GGML_ASSERT(ne2 == ne12);
  8802. GGML_ASSERT(ne3 == ne13);
  8803. // we don't support permuted src0 or src1
  8804. GGML_ASSERT(nb00 == sizeof(float));
  8805. // dst cannot be transposed or permuted
  8806. GGML_ASSERT(nb0 == sizeof(float));
  8807. // GGML_ASSERT(nb0 <= nb1);
  8808. // GGML_ASSERT(nb1 <= nb2);
  8809. // GGML_ASSERT(nb2 <= nb3);
  8810. GGML_ASSERT(ne0 == ne00);
  8811. GGML_ASSERT(ne1 == ne10);
  8812. GGML_ASSERT(ne2 == ne02);
  8813. GGML_ASSERT(ne3 == ne03);
  8814. // nb01 >= nb00 - src0 is not transposed
  8815. // compute by src0 rows
  8816. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8817. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8818. if (params->type == GGML_TASK_INIT) {
  8819. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8820. return;
  8821. }
  8822. if (params->type == GGML_TASK_FINALIZE) {
  8823. return;
  8824. }
  8825. // parallelize by last three dimensions
  8826. // total rows in dst
  8827. const int64_t nr = ne1*ne2*ne3;
  8828. // rows per thread
  8829. const int64_t dr = (nr + nth - 1)/nth;
  8830. // row range for this thread
  8831. const int64_t ir0 = dr*ith;
  8832. const int64_t ir1 = MIN(ir0 + dr, nr);
  8833. // dst[:,:,:,:] = 0
  8834. // for i2,i3:
  8835. // for i1:
  8836. // for i01:
  8837. // for i0:
  8838. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8839. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8840. // dst indices
  8841. const int64_t i3 = ir/(ne2*ne1);
  8842. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8843. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8844. const int64_t i02 = i2;
  8845. const int64_t i03 = i3;
  8846. //const int64_t i10 = i1;
  8847. const int64_t i12 = i2;
  8848. const int64_t i13 = i3;
  8849. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8850. const int64_t i11 = i01;
  8851. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8852. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8853. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8854. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8855. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8856. // d[i0] += s0[i0] * s1[i1];
  8857. // }
  8858. }
  8859. }
  8860. //int64_t t1 = ggml_perf_time_us();
  8861. //static int64_t acc = 0;
  8862. //acc += t1 - t0;
  8863. //if (t1 - t0 > 10) {
  8864. // printf("\n");
  8865. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8866. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8867. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8868. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8869. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8870. //}
  8871. }
  8872. static void ggml_compute_forward_out_prod(
  8873. const struct ggml_compute_params * params,
  8874. const struct ggml_tensor * src0,
  8875. const struct ggml_tensor * src1,
  8876. struct ggml_tensor * dst) {
  8877. switch (src0->type) {
  8878. case GGML_TYPE_Q4_0:
  8879. case GGML_TYPE_Q4_1:
  8880. case GGML_TYPE_Q5_0:
  8881. case GGML_TYPE_Q5_1:
  8882. case GGML_TYPE_Q8_0:
  8883. case GGML_TYPE_Q8_1:
  8884. {
  8885. GGML_ASSERT(false); // todo
  8886. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8887. } break;
  8888. case GGML_TYPE_F16:
  8889. {
  8890. GGML_ASSERT(false); // todo
  8891. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8892. } break;
  8893. case GGML_TYPE_F32:
  8894. {
  8895. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8896. } break;
  8897. default:
  8898. {
  8899. GGML_ASSERT(false);
  8900. } break;
  8901. }
  8902. }
  8903. // ggml_compute_forward_scale
  8904. static void ggml_compute_forward_scale_f32(
  8905. const struct ggml_compute_params * params,
  8906. const struct ggml_tensor * src0,
  8907. const struct ggml_tensor * src1,
  8908. struct ggml_tensor * dst) {
  8909. GGML_ASSERT(ggml_is_contiguous(src0));
  8910. GGML_ASSERT(ggml_is_contiguous(dst));
  8911. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8912. GGML_ASSERT(ggml_is_scalar(src1));
  8913. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8914. return;
  8915. }
  8916. // scale factor
  8917. const float v = *(float *) src1->data;
  8918. const int ith = params->ith;
  8919. const int nth = params->nth;
  8920. const int nc = src0->ne[0];
  8921. const int nr = ggml_nrows(src0);
  8922. // rows per thread
  8923. const int dr = (nr + nth - 1)/nth;
  8924. // row range for this thread
  8925. const int ir0 = dr*ith;
  8926. const int ir1 = MIN(ir0 + dr, nr);
  8927. const size_t nb01 = src0->nb[1];
  8928. const size_t nb1 = dst->nb[1];
  8929. for (int i1 = ir0; i1 < ir1; i1++) {
  8930. if (dst->data != src0->data) {
  8931. // src0 is same shape as dst => same indices
  8932. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8933. }
  8934. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8935. }
  8936. }
  8937. static void ggml_compute_forward_scale(
  8938. const struct ggml_compute_params * params,
  8939. const struct ggml_tensor * src0,
  8940. const struct ggml_tensor * src1,
  8941. struct ggml_tensor * dst) {
  8942. switch (src0->type) {
  8943. case GGML_TYPE_F32:
  8944. {
  8945. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8946. } break;
  8947. default:
  8948. {
  8949. GGML_ASSERT(false);
  8950. } break;
  8951. }
  8952. }
  8953. // ggml_compute_forward_set
  8954. static void ggml_compute_forward_set_f32(
  8955. const struct ggml_compute_params * params,
  8956. const struct ggml_tensor * src0,
  8957. const struct ggml_tensor * src1,
  8958. const struct ggml_tensor * opt0,
  8959. struct ggml_tensor * dst) {
  8960. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8961. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8962. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8963. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8964. // view src0 and dst with these strides and data offset inbytes during set
  8965. // nb0 is implicitely element_size because src0 and dst are contiguous
  8966. size_t nb1 = ((int32_t *) opt0->data)[0];
  8967. size_t nb2 = ((int32_t *) opt0->data)[1];
  8968. size_t nb3 = ((int32_t *) opt0->data)[2];
  8969. size_t offset = ((int32_t *) opt0->data)[3];
  8970. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8971. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8972. // memcpy needs to be synchronized across threads to avoid race conditions.
  8973. // => do it in INIT phase
  8974. memcpy(
  8975. ((char *) dst->data),
  8976. ((char *) src0->data),
  8977. ggml_nbytes(dst));
  8978. }
  8979. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8980. return;
  8981. }
  8982. const int ith = params->ith;
  8983. const int nth = params->nth;
  8984. const int nr = ggml_nrows(src1);
  8985. const int nc = src1->ne[0];
  8986. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8987. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8988. // src0 and dst as viewed during set
  8989. const size_t nb0 = ggml_element_size(src0);
  8990. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8991. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8992. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8993. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8994. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8995. GGML_ASSERT(nb10 == sizeof(float));
  8996. // rows per thread
  8997. const int dr = (nr + nth - 1)/nth;
  8998. // row range for this thread
  8999. const int ir0 = dr*ith;
  9000. const int ir1 = MIN(ir0 + dr, nr);
  9001. for (int ir = ir0; ir < ir1; ++ir) {
  9002. // src0 and dst are viewed with shape of src1 and offset
  9003. // => same indices
  9004. const int i3 = ir/(ne12*ne11);
  9005. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9006. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9007. ggml_vec_cpy_f32(nc,
  9008. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9009. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9010. }
  9011. }
  9012. static void ggml_compute_forward_set(
  9013. const struct ggml_compute_params * params,
  9014. const struct ggml_tensor * src0,
  9015. const struct ggml_tensor * src1,
  9016. const struct ggml_tensor * opt0,
  9017. struct ggml_tensor * dst) {
  9018. switch (src0->type) {
  9019. case GGML_TYPE_F32:
  9020. {
  9021. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9022. } break;
  9023. case GGML_TYPE_F16:
  9024. case GGML_TYPE_Q4_0:
  9025. case GGML_TYPE_Q4_1:
  9026. case GGML_TYPE_Q5_0:
  9027. case GGML_TYPE_Q5_1:
  9028. case GGML_TYPE_Q8_0:
  9029. case GGML_TYPE_Q8_1:
  9030. case GGML_TYPE_Q2_K:
  9031. case GGML_TYPE_Q3_K:
  9032. case GGML_TYPE_Q4_K:
  9033. case GGML_TYPE_Q5_K:
  9034. case GGML_TYPE_Q6_K:
  9035. default:
  9036. {
  9037. GGML_ASSERT(false);
  9038. } break;
  9039. }
  9040. }
  9041. // ggml_compute_forward_cpy
  9042. static void ggml_compute_forward_cpy(
  9043. const struct ggml_compute_params * params,
  9044. const struct ggml_tensor * src0,
  9045. struct ggml_tensor * dst) {
  9046. ggml_compute_forward_dup(params, src0, dst);
  9047. }
  9048. // ggml_compute_forward_cont
  9049. static void ggml_compute_forward_cont(
  9050. const struct ggml_compute_params * params,
  9051. const struct ggml_tensor * src0,
  9052. struct ggml_tensor * dst) {
  9053. ggml_compute_forward_dup(params, src0, dst);
  9054. }
  9055. // ggml_compute_forward_reshape
  9056. static void ggml_compute_forward_reshape(
  9057. const struct ggml_compute_params * params,
  9058. const struct ggml_tensor * src0,
  9059. struct ggml_tensor * dst) {
  9060. // NOP
  9061. UNUSED(params);
  9062. UNUSED(src0);
  9063. UNUSED(dst);
  9064. }
  9065. // ggml_compute_forward_view
  9066. static void ggml_compute_forward_view(
  9067. const struct ggml_compute_params * params,
  9068. const struct ggml_tensor * src0) {
  9069. // NOP
  9070. UNUSED(params);
  9071. UNUSED(src0);
  9072. }
  9073. // ggml_compute_forward_permute
  9074. static void ggml_compute_forward_permute(
  9075. const struct ggml_compute_params * params,
  9076. const struct ggml_tensor * src0) {
  9077. // NOP
  9078. UNUSED(params);
  9079. UNUSED(src0);
  9080. }
  9081. // ggml_compute_forward_transpose
  9082. static void ggml_compute_forward_transpose(
  9083. const struct ggml_compute_params * params,
  9084. const struct ggml_tensor * src0) {
  9085. // NOP
  9086. UNUSED(params);
  9087. UNUSED(src0);
  9088. }
  9089. // ggml_compute_forward_get_rows
  9090. static void ggml_compute_forward_get_rows_q(
  9091. const struct ggml_compute_params * params,
  9092. const struct ggml_tensor * src0,
  9093. const struct ggml_tensor * src1,
  9094. struct ggml_tensor * dst) {
  9095. assert(params->ith == 0);
  9096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9097. return;
  9098. }
  9099. const int nc = src0->ne[0];
  9100. const int nr = ggml_nelements(src1);
  9101. const enum ggml_type type = src0->type;
  9102. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9103. assert( dst->ne[0] == nc);
  9104. assert( dst->ne[1] == nr);
  9105. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9106. for (int i = 0; i < nr; ++i) {
  9107. const int r = ((int32_t *) src1->data)[i];
  9108. dequantize_row_q(
  9109. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9110. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9111. }
  9112. }
  9113. static void ggml_compute_forward_get_rows_f16(
  9114. const struct ggml_compute_params * params,
  9115. const struct ggml_tensor * src0,
  9116. const struct ggml_tensor * src1,
  9117. struct ggml_tensor * dst) {
  9118. assert(params->ith == 0);
  9119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9120. return;
  9121. }
  9122. const int nc = src0->ne[0];
  9123. const int nr = ggml_nelements(src1);
  9124. assert( dst->ne[0] == nc);
  9125. assert( dst->ne[1] == nr);
  9126. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9127. for (int i = 0; i < nr; ++i) {
  9128. const int r = ((int32_t *) src1->data)[i];
  9129. for (int j = 0; j < nc; ++j) {
  9130. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9131. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9132. }
  9133. }
  9134. }
  9135. static void ggml_compute_forward_get_rows_f32(
  9136. const struct ggml_compute_params * params,
  9137. const struct ggml_tensor * src0,
  9138. const struct ggml_tensor * src1,
  9139. struct ggml_tensor * dst) {
  9140. assert(params->ith == 0);
  9141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9142. return;
  9143. }
  9144. const int nc = src0->ne[0];
  9145. const int nr = ggml_nelements(src1);
  9146. assert( dst->ne[0] == nc);
  9147. assert( dst->ne[1] == nr);
  9148. assert(src0->nb[0] == sizeof(float));
  9149. for (int i = 0; i < nr; ++i) {
  9150. const int r = ((int32_t *) src1->data)[i];
  9151. ggml_vec_cpy_f32(nc,
  9152. (float *) ((char *) dst->data + i*dst->nb[1]),
  9153. (float *) ((char *) src0->data + r*src0->nb[1]));
  9154. }
  9155. }
  9156. static void ggml_compute_forward_get_rows(
  9157. const struct ggml_compute_params * params,
  9158. const struct ggml_tensor * src0,
  9159. const struct ggml_tensor * src1,
  9160. struct ggml_tensor * dst) {
  9161. switch (src0->type) {
  9162. case GGML_TYPE_Q4_0:
  9163. case GGML_TYPE_Q4_1:
  9164. case GGML_TYPE_Q5_0:
  9165. case GGML_TYPE_Q5_1:
  9166. case GGML_TYPE_Q8_0:
  9167. case GGML_TYPE_Q8_1:
  9168. case GGML_TYPE_Q2_K:
  9169. case GGML_TYPE_Q3_K:
  9170. case GGML_TYPE_Q4_K:
  9171. case GGML_TYPE_Q5_K:
  9172. case GGML_TYPE_Q6_K:
  9173. {
  9174. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9175. } break;
  9176. case GGML_TYPE_F16:
  9177. {
  9178. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9179. } break;
  9180. case GGML_TYPE_F32:
  9181. {
  9182. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9183. } break;
  9184. default:
  9185. {
  9186. GGML_ASSERT(false);
  9187. } break;
  9188. }
  9189. //static bool first = true;
  9190. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9191. //if (first) {
  9192. // first = false;
  9193. //} else {
  9194. // for (int k = 0; k < dst->ne[1]; ++k) {
  9195. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9196. // for (int i = 0; i < 16; ++i) {
  9197. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9198. // }
  9199. // printf("\n");
  9200. // }
  9201. // printf("\n");
  9202. // }
  9203. // printf("\n");
  9204. // exit(0);
  9205. //}
  9206. }
  9207. // ggml_compute_forward_get_rows_back
  9208. static void ggml_compute_forward_get_rows_back_f32_f16(
  9209. const struct ggml_compute_params * params,
  9210. const struct ggml_tensor * src0,
  9211. const struct ggml_tensor * src1,
  9212. const struct ggml_tensor * opt0,
  9213. struct ggml_tensor * dst) {
  9214. GGML_ASSERT(params->ith == 0);
  9215. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9216. GGML_ASSERT(ggml_is_contiguous(opt0));
  9217. GGML_ASSERT(ggml_is_contiguous(dst));
  9218. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9220. return;
  9221. }
  9222. const int nc = src0->ne[0];
  9223. const int nr = ggml_nelements(src1);
  9224. GGML_ASSERT( dst->ne[0] == nc);
  9225. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9226. for (int i = 0; i < nr; ++i) {
  9227. const int r = ((int32_t *) src1->data)[i];
  9228. for (int j = 0; j < nc; ++j) {
  9229. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9230. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9231. }
  9232. }
  9233. }
  9234. static void ggml_compute_forward_get_rows_back_f32(
  9235. const struct ggml_compute_params * params,
  9236. const struct ggml_tensor * src0,
  9237. const struct ggml_tensor * src1,
  9238. const struct ggml_tensor * opt0,
  9239. struct ggml_tensor * dst) {
  9240. GGML_ASSERT(params->ith == 0);
  9241. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9242. GGML_ASSERT(ggml_is_contiguous(opt0));
  9243. GGML_ASSERT(ggml_is_contiguous(dst));
  9244. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9245. if (params->type == GGML_TASK_INIT) {
  9246. memset(dst->data, 0, ggml_nbytes(dst));
  9247. }
  9248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9249. return;
  9250. }
  9251. const int nc = src0->ne[0];
  9252. const int nr = ggml_nelements(src1);
  9253. GGML_ASSERT( dst->ne[0] == nc);
  9254. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9255. for (int i = 0; i < nr; ++i) {
  9256. const int r = ((int32_t *) src1->data)[i];
  9257. ggml_vec_add_f32(nc,
  9258. (float *) ((char *) dst->data + r*dst->nb[1]),
  9259. (float *) ((char *) dst->data + r*dst->nb[1]),
  9260. (float *) ((char *) src0->data + i*src0->nb[1]));
  9261. }
  9262. }
  9263. static void ggml_compute_forward_get_rows_back(
  9264. const struct ggml_compute_params * params,
  9265. const struct ggml_tensor * src0,
  9266. const struct ggml_tensor * src1,
  9267. const struct ggml_tensor * opt0,
  9268. struct ggml_tensor * dst) {
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F16:
  9271. {
  9272. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9273. } break;
  9274. case GGML_TYPE_F32:
  9275. {
  9276. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9277. } break;
  9278. default:
  9279. {
  9280. GGML_ASSERT(false);
  9281. } break;
  9282. }
  9283. //static bool first = true;
  9284. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9285. //if (first) {
  9286. // first = false;
  9287. //} else {
  9288. // for (int k = 0; k < dst->ne[1]; ++k) {
  9289. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9290. // for (int i = 0; i < 16; ++i) {
  9291. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9292. // }
  9293. // printf("\n");
  9294. // }
  9295. // printf("\n");
  9296. // }
  9297. // printf("\n");
  9298. // exit(0);
  9299. //}
  9300. }
  9301. // ggml_compute_forward_diag
  9302. static void ggml_compute_forward_diag_f32(
  9303. const struct ggml_compute_params * params,
  9304. const struct ggml_tensor * src0,
  9305. struct ggml_tensor * dst) {
  9306. GGML_ASSERT(params->ith == 0);
  9307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9308. return;
  9309. }
  9310. // TODO: handle transposed/permuted matrices
  9311. GGML_TENSOR_UNARY_OP_LOCALS;
  9312. GGML_ASSERT(ne00 == ne0);
  9313. GGML_ASSERT(ne00 == ne1);
  9314. GGML_ASSERT(ne01 == 1);
  9315. GGML_ASSERT(ne02 == ne2);
  9316. GGML_ASSERT(ne03 == ne3);
  9317. GGML_ASSERT(nb00 == sizeof(float));
  9318. GGML_ASSERT(nb0 == sizeof(float));
  9319. for (int i3 = 0; i3 < ne3; i3++) {
  9320. for (int i2 = 0; i2 < ne2; i2++) {
  9321. for (int i1 = 0; i1 < ne1; i1++) {
  9322. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9323. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9324. for (int i0 = 0; i0 < i1; i0++) {
  9325. d[i0] = 0;
  9326. }
  9327. d[i1] = s[i1];
  9328. for (int i0 = i1+1; i0 < ne0; i0++) {
  9329. d[i0] = 0;
  9330. }
  9331. }
  9332. }
  9333. }
  9334. }
  9335. static void ggml_compute_forward_diag(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. struct ggml_tensor * dst) {
  9339. switch (src0->type) {
  9340. case GGML_TYPE_F32:
  9341. {
  9342. ggml_compute_forward_diag_f32(params, src0, dst);
  9343. } break;
  9344. default:
  9345. {
  9346. GGML_ASSERT(false);
  9347. } break;
  9348. }
  9349. }
  9350. // ggml_compute_forward_diag_mask_inf
  9351. static void ggml_compute_forward_diag_mask_f32(
  9352. const struct ggml_compute_params * params,
  9353. const struct ggml_tensor * src0,
  9354. const struct ggml_tensor * src1,
  9355. struct ggml_tensor * dst,
  9356. const float value) {
  9357. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9358. GGML_ASSERT(ggml_nelements(src1) == 2);
  9359. const int ith = params->ith;
  9360. const int nth = params->nth;
  9361. const int n_past = ((int32_t *) src1->data)[0];
  9362. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9363. GGML_ASSERT(n_past >= 0);
  9364. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9365. // memcpy needs to be synchronized across threads to avoid race conditions.
  9366. // => do it in INIT phase
  9367. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9368. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9369. memcpy(
  9370. ((char *) dst->data),
  9371. ((char *) src0->data),
  9372. ggml_nbytes(dst));
  9373. }
  9374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9375. return;
  9376. }
  9377. // TODO: handle transposed/permuted matrices
  9378. const int n = ggml_nrows(src0);
  9379. const int nc = src0->ne[0];
  9380. const int nr = src0->ne[1];
  9381. const int nz = n/nr;
  9382. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9383. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9384. for (int k = 0; k < nz; k++) {
  9385. for (int j = ith; j < nr; j += nth) {
  9386. for (int i = n_past; i < nc; i++) {
  9387. if (i > n_past + j) {
  9388. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9389. }
  9390. }
  9391. }
  9392. }
  9393. }
  9394. static void ggml_compute_forward_diag_mask_inf(
  9395. const struct ggml_compute_params * params,
  9396. const struct ggml_tensor * src0,
  9397. const struct ggml_tensor * src1,
  9398. struct ggml_tensor * dst) {
  9399. switch (src0->type) {
  9400. case GGML_TYPE_F32:
  9401. {
  9402. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9403. } break;
  9404. default:
  9405. {
  9406. GGML_ASSERT(false);
  9407. } break;
  9408. }
  9409. }
  9410. static void ggml_compute_forward_diag_mask_zero(
  9411. const struct ggml_compute_params * params,
  9412. const struct ggml_tensor * src0,
  9413. const struct ggml_tensor * src1,
  9414. struct ggml_tensor * dst) {
  9415. switch (src0->type) {
  9416. case GGML_TYPE_F32:
  9417. {
  9418. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9419. } break;
  9420. default:
  9421. {
  9422. GGML_ASSERT(false);
  9423. } break;
  9424. }
  9425. }
  9426. // ggml_compute_forward_soft_max
  9427. static void ggml_compute_forward_soft_max_f32(
  9428. const struct ggml_compute_params * params,
  9429. const struct ggml_tensor * src0,
  9430. struct ggml_tensor * dst) {
  9431. GGML_ASSERT(ggml_is_contiguous(src0));
  9432. GGML_ASSERT(ggml_is_contiguous(dst));
  9433. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9435. return;
  9436. }
  9437. // TODO: handle transposed/permuted matrices
  9438. const int ith = params->ith;
  9439. const int nth = params->nth;
  9440. const int nc = src0->ne[0];
  9441. const int nr = ggml_nrows(src0);
  9442. // rows per thread
  9443. const int dr = (nr + nth - 1)/nth;
  9444. // row range for this thread
  9445. const int ir0 = dr*ith;
  9446. const int ir1 = MIN(ir0 + dr, nr);
  9447. for (int i1 = ir0; i1 < ir1; i1++) {
  9448. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9449. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9450. #ifndef NDEBUG
  9451. for (int i = 0; i < nc; ++i) {
  9452. //printf("p[%d] = %f\n", i, p[i]);
  9453. assert(!isnan(sp[i]));
  9454. }
  9455. #endif
  9456. float max = -INFINITY;
  9457. ggml_vec_max_f32(nc, &max, sp);
  9458. ggml_float sum = 0.0;
  9459. uint16_t scvt;
  9460. for (int i = 0; i < nc; i++) {
  9461. if (sp[i] == -INFINITY) {
  9462. dp[i] = 0.0f;
  9463. } else {
  9464. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9465. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9466. memcpy(&scvt, &s, sizeof(scvt));
  9467. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9468. sum += (ggml_float)val;
  9469. dp[i] = val;
  9470. }
  9471. }
  9472. assert(sum > 0.0);
  9473. sum = 1.0/sum;
  9474. ggml_vec_scale_f32(nc, dp, sum);
  9475. #ifndef NDEBUG
  9476. for (int i = 0; i < nc; ++i) {
  9477. assert(!isnan(dp[i]));
  9478. assert(!isinf(dp[i]));
  9479. }
  9480. #endif
  9481. }
  9482. }
  9483. static void ggml_compute_forward_soft_max(
  9484. const struct ggml_compute_params * params,
  9485. const struct ggml_tensor * src0,
  9486. struct ggml_tensor * dst) {
  9487. switch (src0->type) {
  9488. case GGML_TYPE_F32:
  9489. {
  9490. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9491. } break;
  9492. default:
  9493. {
  9494. GGML_ASSERT(false);
  9495. } break;
  9496. }
  9497. }
  9498. // ggml_compute_forward_soft_max_back
  9499. static void ggml_compute_forward_soft_max_back_f32(
  9500. const struct ggml_compute_params * params,
  9501. const struct ggml_tensor * src0,
  9502. const struct ggml_tensor * src1,
  9503. struct ggml_tensor * dst) {
  9504. GGML_ASSERT(ggml_is_contiguous(src0));
  9505. GGML_ASSERT(ggml_is_contiguous(src1));
  9506. GGML_ASSERT(ggml_is_contiguous(dst));
  9507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9508. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9510. return;
  9511. }
  9512. // TODO: handle transposed/permuted matrices
  9513. const int ith = params->ith;
  9514. const int nth = params->nth;
  9515. const int nc = src0->ne[0];
  9516. const int nr = ggml_nrows(src0);
  9517. // rows per thread
  9518. const int dr = (nr + nth - 1)/nth;
  9519. // row range for this thread
  9520. const int ir0 = dr*ith;
  9521. const int ir1 = MIN(ir0 + dr, nr);
  9522. for (int i1 = ir0; i1 < ir1; i1++) {
  9523. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9524. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9525. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9526. #ifndef NDEBUG
  9527. for (int i = 0; i < nc; ++i) {
  9528. //printf("p[%d] = %f\n", i, p[i]);
  9529. assert(!isnan(dy[i]));
  9530. assert(!isnan(y[i]));
  9531. }
  9532. #endif
  9533. // Jii = yi - yi*yi
  9534. // Jij = -yi*yj
  9535. // J = diag(y)-y.T*y
  9536. // dx = J * dy
  9537. // dxk = sum_i(Jki * dyi)
  9538. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9539. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9540. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9541. // dxk = -yk * dot(y, dy) + yk*dyk
  9542. // dxk = yk * (- dot(y, dy) + dyk)
  9543. // dxk = yk * (dyk - dot(y, dy))
  9544. //
  9545. // post-order:
  9546. // dot_y_dy := dot(y, dy)
  9547. // dx := dy
  9548. // dx := dx - dot_y_dy
  9549. // dx := dx * y
  9550. // linear runtime, no additional memory
  9551. float dot_y_dy = 0;
  9552. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9553. ggml_vec_cpy_f32 (nc, dx, dy);
  9554. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9555. ggml_vec_mul_f32 (nc, dx, dx, y);
  9556. #ifndef NDEBUG
  9557. for (int i = 0; i < nc; ++i) {
  9558. assert(!isnan(dx[i]));
  9559. assert(!isinf(dx[i]));
  9560. }
  9561. #endif
  9562. }
  9563. }
  9564. static void ggml_compute_forward_soft_max_back(
  9565. const struct ggml_compute_params * params,
  9566. const struct ggml_tensor * src0,
  9567. const struct ggml_tensor * src1,
  9568. struct ggml_tensor * dst) {
  9569. switch (src0->type) {
  9570. case GGML_TYPE_F32:
  9571. {
  9572. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9573. } break;
  9574. default:
  9575. {
  9576. GGML_ASSERT(false);
  9577. } break;
  9578. }
  9579. }
  9580. // ggml_compute_forward_alibi
  9581. static void ggml_compute_forward_alibi_f32(
  9582. const struct ggml_compute_params * params,
  9583. const struct ggml_tensor * src0,
  9584. const struct ggml_tensor * src1,
  9585. struct ggml_tensor * dst) {
  9586. assert(params->ith == 0);
  9587. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9588. GGML_ASSERT(ggml_nelements(src1) == 3);
  9589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9590. return;
  9591. }
  9592. const int n_past = ((int32_t *) src1->data)[0];
  9593. const int n_head = ((int32_t *) src1->data)[1];
  9594. const float max_bias = ((float *) src1->data)[2];
  9595. assert(n_past >= 0);
  9596. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9597. const int ne1 = src0->ne[1]; // seq_len_without_past
  9598. const int ne2 = src0->ne[2]; // n_head -> this is k
  9599. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9600. const int n = ggml_nrows(src0);
  9601. const int ne2_ne3 = n/ne1; // ne2*ne3
  9602. const int nb0 = src0->nb[0];
  9603. const int nb1 = src0->nb[1];
  9604. const int nb2 = src0->nb[2];
  9605. //const int nb3 = src0->nb[3];
  9606. GGML_ASSERT(nb0 == sizeof(float));
  9607. GGML_ASSERT(ne1 + n_past == ne0);
  9608. GGML_ASSERT(n_head == ne2);
  9609. // add alibi to src0 (KQ_scaled)
  9610. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9611. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9612. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9613. for (int i = 0; i < ne0; i++) {
  9614. for (int j = 0; j < ne1; j++) {
  9615. for (int k = 0; k < ne2_ne3; k++) {
  9616. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9617. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9618. // TODO: k*nb2 or k*nb3
  9619. float m_k;
  9620. if (k < n_heads_log2_floor) {
  9621. m_k = powf(m0, k + 1);
  9622. } else {
  9623. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9624. }
  9625. pdst[0] = i * m_k + src[0];
  9626. }
  9627. }
  9628. }
  9629. }
  9630. static void ggml_compute_forward_alibi_f16(
  9631. const struct ggml_compute_params * params,
  9632. const struct ggml_tensor * src0,
  9633. const struct ggml_tensor * src1,
  9634. struct ggml_tensor * dst) {
  9635. assert(params->ith == 0);
  9636. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9637. GGML_ASSERT(ggml_nelements(src1) == 3);
  9638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9639. return;
  9640. }
  9641. const int n_past = ((int32_t *) src1->data)[0];
  9642. const int n_head = ((int32_t *) src1->data)[1];
  9643. const float max_bias = ((float *) src1->data)[2];
  9644. assert(n_past >= 0);
  9645. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9646. const int ne1 = src0->ne[1]; // seq_len_without_past
  9647. const int ne2 = src0->ne[2]; // n_head -> this is k
  9648. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9649. const int n = ggml_nrows(src0);
  9650. const int ne2_ne3 = n/ne1; // ne2*ne3
  9651. const int nb0 = src0->nb[0];
  9652. const int nb1 = src0->nb[1];
  9653. const int nb2 = src0->nb[2];
  9654. //const int nb3 = src0->nb[3];
  9655. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9656. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9657. GGML_ASSERT(n_head == ne2);
  9658. // add alibi to src0 (KQ_scaled)
  9659. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9660. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9661. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9662. for (int i = 0; i < ne0; i++) {
  9663. for (int j = 0; j < ne1; j++) {
  9664. for (int k = 0; k < ne2_ne3; k++) {
  9665. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9666. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9667. // TODO: k*nb2 or k*nb3
  9668. float m_k;
  9669. if (k < n_heads_log2_floor) {
  9670. m_k = powf(m0, k + 1);
  9671. } else {
  9672. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9673. }
  9674. // we return F32
  9675. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9676. }
  9677. }
  9678. }
  9679. }
  9680. static void ggml_compute_forward_alibi(
  9681. const struct ggml_compute_params * params,
  9682. const struct ggml_tensor * src0,
  9683. const struct ggml_tensor * src1,
  9684. struct ggml_tensor * dst) {
  9685. switch (src0->type) {
  9686. case GGML_TYPE_F16:
  9687. {
  9688. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9689. } break;
  9690. case GGML_TYPE_F32:
  9691. {
  9692. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9693. } break;
  9694. case GGML_TYPE_Q4_0:
  9695. case GGML_TYPE_Q4_1:
  9696. case GGML_TYPE_Q5_0:
  9697. case GGML_TYPE_Q5_1:
  9698. case GGML_TYPE_Q8_0:
  9699. case GGML_TYPE_Q8_1:
  9700. case GGML_TYPE_Q2_K:
  9701. case GGML_TYPE_Q3_K:
  9702. case GGML_TYPE_Q4_K:
  9703. case GGML_TYPE_Q5_K:
  9704. case GGML_TYPE_Q6_K:
  9705. case GGML_TYPE_Q8_K:
  9706. case GGML_TYPE_I8:
  9707. case GGML_TYPE_I16:
  9708. case GGML_TYPE_I32:
  9709. case GGML_TYPE_COUNT:
  9710. {
  9711. GGML_ASSERT(false);
  9712. } break;
  9713. }
  9714. }
  9715. // ggml_compute_forward_clamp
  9716. static void ggml_compute_forward_clamp_f32(
  9717. const struct ggml_compute_params * params,
  9718. const struct ggml_tensor * src0,
  9719. const struct ggml_tensor * src1,
  9720. struct ggml_tensor * dst) {
  9721. assert(params->ith == 0);
  9722. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9723. GGML_ASSERT(ggml_nelements(src1) == 2);
  9724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9725. return;
  9726. }
  9727. const float min = ((float *) src1->data)[0];
  9728. const float max = ((float *) src1->data)[1];
  9729. const int ith = params->ith;
  9730. const int nth = params->nth;
  9731. const int n = ggml_nrows(src0);
  9732. const int nc = src0->ne[0];
  9733. const size_t nb00 = src0->nb[0];
  9734. const size_t nb01 = src0->nb[1];
  9735. const size_t nb0 = dst->nb[0];
  9736. const size_t nb1 = dst->nb[1];
  9737. GGML_ASSERT( nb0 == sizeof(float));
  9738. GGML_ASSERT(nb00 == sizeof(float));
  9739. for (int j = ith; j < n; j += nth) {
  9740. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9741. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9742. for (int i = 0; i < nc; i++) {
  9743. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9744. }
  9745. }
  9746. }
  9747. static void ggml_compute_forward_clamp(
  9748. const struct ggml_compute_params * params,
  9749. const struct ggml_tensor * src0,
  9750. const struct ggml_tensor * src1,
  9751. struct ggml_tensor * dst) {
  9752. switch (src0->type) {
  9753. case GGML_TYPE_F32:
  9754. {
  9755. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9756. } break;
  9757. case GGML_TYPE_F16:
  9758. case GGML_TYPE_Q4_0:
  9759. case GGML_TYPE_Q4_1:
  9760. case GGML_TYPE_Q5_0:
  9761. case GGML_TYPE_Q5_1:
  9762. case GGML_TYPE_Q8_0:
  9763. case GGML_TYPE_Q8_1:
  9764. case GGML_TYPE_Q2_K:
  9765. case GGML_TYPE_Q3_K:
  9766. case GGML_TYPE_Q4_K:
  9767. case GGML_TYPE_Q5_K:
  9768. case GGML_TYPE_Q6_K:
  9769. case GGML_TYPE_Q8_K:
  9770. case GGML_TYPE_I8:
  9771. case GGML_TYPE_I16:
  9772. case GGML_TYPE_I32:
  9773. case GGML_TYPE_COUNT:
  9774. {
  9775. GGML_ASSERT(false);
  9776. } break;
  9777. }
  9778. }
  9779. // ggml_compute_forward_rope
  9780. static void ggml_compute_forward_rope_f32(
  9781. const struct ggml_compute_params * params,
  9782. const struct ggml_tensor * src0,
  9783. const struct ggml_tensor * src1,
  9784. struct ggml_tensor * dst) {
  9785. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9786. GGML_ASSERT(ggml_nelements(src1) == 4);
  9787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9788. return;
  9789. }
  9790. const int n_past = ((int32_t *) src1->data)[0];
  9791. const int n_dims = ((int32_t *) src1->data)[1];
  9792. const int mode = ((int32_t *) src1->data)[2];
  9793. const int n_ctx = ((int32_t *) src1->data)[3];
  9794. assert(n_past >= 0);
  9795. GGML_TENSOR_UNARY_OP_LOCALS;
  9796. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9797. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9798. GGML_ASSERT(nb00 == sizeof(float));
  9799. const int ith = params->ith;
  9800. const int nth = params->nth;
  9801. const int nr = ggml_nrows(dst);
  9802. GGML_ASSERT(n_dims <= ne0);
  9803. GGML_ASSERT(n_dims % 2 == 0);
  9804. // rows per thread
  9805. const int dr = (nr + nth - 1)/nth;
  9806. // row range for this thread
  9807. const int ir0 = dr*ith;
  9808. const int ir1 = MIN(ir0 + dr, nr);
  9809. // row index used to determine which thread to use
  9810. int ir = 0;
  9811. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9812. const bool is_neox = mode & 2;
  9813. const bool is_glm = mode & 4;
  9814. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9815. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9816. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9817. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9818. if (ir++ < ir0) continue;
  9819. if (ir > ir1) break;
  9820. float theta = (float)p;
  9821. if (is_glm) {
  9822. theta = MIN(p, n_ctx - 2);
  9823. float block_theta = MAX(p - (n_ctx - 2), 0);
  9824. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9825. const float cos_theta = cosf(theta);
  9826. const float sin_theta = sinf(theta);
  9827. const float cos_block_theta = cosf(block_theta);
  9828. const float sin_block_theta = sinf(block_theta);
  9829. theta *= theta_scale;
  9830. block_theta *= theta_scale;
  9831. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9832. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9833. const float x0 = src[0];
  9834. const float x1 = src[n_dims/2];
  9835. const float x2 = src[n_dims];
  9836. const float x3 = src[n_dims/2*3];
  9837. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9838. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9839. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9840. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9841. }
  9842. } else if (!is_neox) {
  9843. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9844. const float cos_theta = cosf(theta);
  9845. const float sin_theta = sinf(theta);
  9846. theta *= theta_scale;
  9847. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9848. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9849. const float x0 = src[0];
  9850. const float x1 = src[1];
  9851. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9852. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9853. }
  9854. } else {
  9855. // TODO: this is probably wrong, but I can't figure it out ..
  9856. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9857. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9858. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9859. const float cos_theta = cosf(theta);
  9860. const float sin_theta = sinf(theta);
  9861. theta *= theta_scale;
  9862. const int64_t i0 = ib*n_dims + ic/2;
  9863. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9864. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9865. const float x0 = src[0];
  9866. const float x1 = src[n_dims/2];
  9867. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9868. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9869. }
  9870. }
  9871. }
  9872. }
  9873. }
  9874. }
  9875. }
  9876. static void ggml_compute_forward_rope_f16(
  9877. const struct ggml_compute_params * params,
  9878. const struct ggml_tensor * src0,
  9879. const struct ggml_tensor * src1,
  9880. struct ggml_tensor * dst) {
  9881. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9882. GGML_ASSERT(ggml_nelements(src1) == 4);
  9883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9884. return;
  9885. }
  9886. const int n_past = ((int32_t *) src1->data)[0];
  9887. const int n_dims = ((int32_t *) src1->data)[1];
  9888. const int mode = ((int32_t *) src1->data)[2];
  9889. const int n_ctx = ((int32_t *) src1->data)[3];
  9890. assert(n_past >= 0);
  9891. GGML_TENSOR_UNARY_OP_LOCALS;
  9892. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9893. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9894. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9895. const int ith = params->ith;
  9896. const int nth = params->nth;
  9897. const int nr = ggml_nrows(dst);
  9898. GGML_ASSERT(n_dims <= ne0);
  9899. GGML_ASSERT(n_dims % 2 == 0);
  9900. // rows per thread
  9901. const int dr = (nr + nth - 1)/nth;
  9902. // row range for this thread
  9903. const int ir0 = dr*ith;
  9904. const int ir1 = MIN(ir0 + dr, nr);
  9905. // row index used to determine which thread to use
  9906. int ir = 0;
  9907. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9908. const bool is_neox = mode & 2;
  9909. const bool is_glm = mode & 4;
  9910. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9911. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9912. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9913. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9914. if (ir++ < ir0) continue;
  9915. if (ir > ir1) break;
  9916. float theta = (float)p;
  9917. if (is_glm) {
  9918. theta = MIN(p, n_ctx - 2);
  9919. float block_theta = MAX(p - (n_ctx - 2), 0);
  9920. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9921. const float cos_theta = cosf(theta);
  9922. const float sin_theta = sinf(theta);
  9923. const float cos_block_theta = cosf(block_theta);
  9924. const float sin_block_theta = sinf(block_theta);
  9925. theta *= theta_scale;
  9926. block_theta *= theta_scale;
  9927. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9928. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9929. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9930. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9931. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9932. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9933. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9934. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9935. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9936. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9937. }
  9938. } if (!is_neox) {
  9939. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9940. const float cos_theta = cosf(theta);
  9941. const float sin_theta = sinf(theta);
  9942. theta *= theta_scale;
  9943. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9944. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9945. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9946. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9947. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9948. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9949. }
  9950. } else {
  9951. // TODO: this is probably wrong, but I can't figure it out ..
  9952. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9953. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9954. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9955. const float cos_theta = cosf(theta);
  9956. const float sin_theta = sinf(theta);
  9957. theta *= theta_scale;
  9958. const int64_t i0 = ib*n_dims + ic/2;
  9959. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9960. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9961. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9962. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9963. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9964. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9965. }
  9966. }
  9967. }
  9968. }
  9969. }
  9970. }
  9971. }
  9972. static void ggml_compute_forward_rope(
  9973. const struct ggml_compute_params * params,
  9974. const struct ggml_tensor * src0,
  9975. const struct ggml_tensor * src1,
  9976. struct ggml_tensor * dst) {
  9977. switch (src0->type) {
  9978. case GGML_TYPE_F16:
  9979. {
  9980. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9981. } break;
  9982. case GGML_TYPE_F32:
  9983. {
  9984. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9985. } break;
  9986. default:
  9987. {
  9988. GGML_ASSERT(false);
  9989. } break;
  9990. }
  9991. }
  9992. // ggml_compute_forward_rope_back
  9993. static void ggml_compute_forward_rope_back_f32(
  9994. const struct ggml_compute_params * params,
  9995. const struct ggml_tensor * src0,
  9996. const struct ggml_tensor * src1,
  9997. struct ggml_tensor * dst) {
  9998. assert(src1->type == GGML_TYPE_I32);
  9999. assert(ggml_nelements(src1) == 3);
  10000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10001. return;
  10002. }
  10003. // y = rope(x, src1)
  10004. // dx = rope_back(dy, src1)
  10005. // src0 is dy, src1 contains options
  10006. const int n_past = ((int32_t *) src1->data)[0];
  10007. const int n_dims = ((int32_t *) src1->data)[1];
  10008. const int mode = ((int32_t *) src1->data)[2];
  10009. assert(n_past >= 0);
  10010. GGML_TENSOR_UNARY_OP_LOCALS;
  10011. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10012. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10013. assert(nb0 == sizeof(float));
  10014. const int ith = params->ith;
  10015. const int nth = params->nth;
  10016. const int nr = ggml_nrows(dst);
  10017. // rows per thread
  10018. const int dr = (nr + nth - 1)/nth;
  10019. // row range for this thread
  10020. const int ir0 = dr*ith;
  10021. const int ir1 = MIN(ir0 + dr, nr);
  10022. // row index used to determine which thread to use
  10023. int ir = 0;
  10024. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10025. const bool is_neox = mode & 2;
  10026. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10027. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10028. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10029. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10030. if (ir++ < ir0) continue;
  10031. if (ir > ir1) break;
  10032. float theta = (float)p;
  10033. if (!is_neox) {
  10034. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10035. const float cos_theta = cosf(theta);
  10036. const float sin_theta = sinf(theta);
  10037. theta *= theta_scale;
  10038. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10039. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10040. const float dy0 = dy[0];
  10041. const float dy1 = dy[1];
  10042. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10043. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10044. }
  10045. } else {
  10046. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10047. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10048. const float cos_theta = cosf(theta);
  10049. const float sin_theta = sinf(theta);
  10050. theta *= theta_scale;
  10051. const int64_t i0 = ib*n_dims + ic/2;
  10052. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10053. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10054. const float dy0 = dy[0];
  10055. const float dy1 = dy[n_dims/2];
  10056. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10057. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10058. }
  10059. }
  10060. }
  10061. }
  10062. }
  10063. }
  10064. }
  10065. static void ggml_compute_forward_rope_back_f16(
  10066. const struct ggml_compute_params * params,
  10067. const struct ggml_tensor * src0,
  10068. const struct ggml_tensor * src1,
  10069. struct ggml_tensor * dst) {
  10070. assert(src1->type == GGML_TYPE_I32);
  10071. assert(ggml_nelements(src1) == 3);
  10072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10073. return;
  10074. }
  10075. // y = rope(x, src1)
  10076. // dx = rope_back(dy, src1)
  10077. // src0 is dy, src1 contains options
  10078. const int n_past = ((int32_t *) src1->data)[0];
  10079. const int n_dims = ((int32_t *) src1->data)[1];
  10080. const int mode = ((int32_t *) src1->data)[2];
  10081. assert(n_past >= 0);
  10082. GGML_TENSOR_UNARY_OP_LOCALS;
  10083. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10084. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10085. assert(nb0 == sizeof(ggml_fp16_t));
  10086. const int ith = params->ith;
  10087. const int nth = params->nth;
  10088. const int nr = ggml_nrows(dst);
  10089. // rows per thread
  10090. const int dr = (nr + nth - 1)/nth;
  10091. // row range for this thread
  10092. const int ir0 = dr*ith;
  10093. const int ir1 = MIN(ir0 + dr, nr);
  10094. // row index used to determine which thread to use
  10095. int ir = 0;
  10096. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10097. const bool is_neox = mode & 2;
  10098. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10099. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10100. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10101. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10102. if (ir++ < ir0) continue;
  10103. if (ir > ir1) break;
  10104. float theta = (float)p;
  10105. if (!is_neox) {
  10106. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10107. const float cos_theta = cosf(theta);
  10108. const float sin_theta = sinf(theta);
  10109. theta *= theta_scale;
  10110. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10111. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10112. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10113. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10114. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10115. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10116. }
  10117. } else {
  10118. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10119. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10120. const float cos_theta = cosf(theta);
  10121. const float sin_theta = sinf(theta);
  10122. theta *= theta_scale;
  10123. const int64_t i0 = ib*n_dims + ic/2;
  10124. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10125. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10126. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10127. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10128. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10129. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10130. }
  10131. }
  10132. }
  10133. }
  10134. }
  10135. }
  10136. }
  10137. static void ggml_compute_forward_rope_back(
  10138. const struct ggml_compute_params * params,
  10139. const struct ggml_tensor * src0,
  10140. const struct ggml_tensor * src1,
  10141. struct ggml_tensor * dst) {
  10142. switch (src0->type) {
  10143. case GGML_TYPE_F16:
  10144. {
  10145. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10146. } break;
  10147. case GGML_TYPE_F32:
  10148. {
  10149. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10150. } break;
  10151. default:
  10152. {
  10153. GGML_ASSERT(false);
  10154. } break;
  10155. }
  10156. }
  10157. // ggml_compute_forward_conv_1d
  10158. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10159. const struct ggml_compute_params * params,
  10160. const struct ggml_tensor * src0,
  10161. const struct ggml_tensor * src1,
  10162. struct ggml_tensor * dst) {
  10163. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10164. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10165. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10166. int64_t t0 = ggml_perf_time_us();
  10167. UNUSED(t0);
  10168. GGML_TENSOR_BINARY_OP_LOCALS;
  10169. const int ith = params->ith;
  10170. const int nth = params->nth;
  10171. const int nk = ne00;
  10172. const int nh = nk/2;
  10173. const int ew0 = ggml_up32(ne01);
  10174. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10175. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10176. GGML_ASSERT(nb10 == sizeof(float));
  10177. if (params->type == GGML_TASK_INIT) {
  10178. // TODO: fix this memset (wsize is overestimated)
  10179. memset(params->wdata, 0, params->wsize);
  10180. // prepare kernel data (src0)
  10181. {
  10182. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10185. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10186. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10187. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10188. dst_data[i00*ew0 + i01] = src[i00];
  10189. }
  10190. }
  10191. }
  10192. }
  10193. // prepare source data (src1)
  10194. {
  10195. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10196. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10197. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10198. ggml_fp16_t * dst_data = wdata;
  10199. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10200. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10201. }
  10202. }
  10203. }
  10204. return;
  10205. }
  10206. if (params->type == GGML_TASK_FINALIZE) {
  10207. return;
  10208. }
  10209. // total rows in dst
  10210. const int nr = ne02;
  10211. // rows per thread
  10212. const int dr = (nr + nth - 1)/nth;
  10213. // row range for this thread
  10214. const int ir0 = dr*ith;
  10215. const int ir1 = MIN(ir0 + dr, nr);
  10216. for (int i1 = ir0; i1 < ir1; i1++) {
  10217. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10218. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10219. dst_data[i0] = 0;
  10220. for (int k = -nh; k <= nh; k++) {
  10221. float v = 0.0f;
  10222. ggml_vec_dot_f16(ew0, &v,
  10223. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10224. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10225. dst_data[i0] += v;
  10226. }
  10227. }
  10228. }
  10229. }
  10230. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10231. const struct ggml_compute_params * params,
  10232. const struct ggml_tensor * src0,
  10233. const struct ggml_tensor * src1,
  10234. struct ggml_tensor * dst) {
  10235. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10236. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10237. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10238. int64_t t0 = ggml_perf_time_us();
  10239. UNUSED(t0);
  10240. GGML_TENSOR_BINARY_OP_LOCALS;
  10241. const int ith = params->ith;
  10242. const int nth = params->nth;
  10243. const int nk = ne00;
  10244. const int nh = nk/2;
  10245. const int ew0 = ggml_up32(ne01);
  10246. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10247. GGML_ASSERT(nb00 == sizeof(float));
  10248. GGML_ASSERT(nb10 == sizeof(float));
  10249. if (params->type == GGML_TASK_INIT) {
  10250. // TODO: fix this memset (wsize is overestimated)
  10251. memset(params->wdata, 0, params->wsize);
  10252. // prepare kernel data (src0)
  10253. {
  10254. float * const wdata = (float *) params->wdata + 0;
  10255. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10256. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10257. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10258. float * dst_data = wdata + i02*ew0*ne00;
  10259. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10260. dst_data[i00*ew0 + i01] = src[i00];
  10261. }
  10262. }
  10263. }
  10264. }
  10265. // prepare source data (src1)
  10266. {
  10267. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10268. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10269. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10270. float * dst_data = wdata;
  10271. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10272. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10273. }
  10274. }
  10275. }
  10276. return;
  10277. }
  10278. if (params->type == GGML_TASK_FINALIZE) {
  10279. return;
  10280. }
  10281. // total rows in dst
  10282. const int nr = ne02;
  10283. // rows per thread
  10284. const int dr = (nr + nth - 1)/nth;
  10285. // row range for this thread
  10286. const int ir0 = dr*ith;
  10287. const int ir1 = MIN(ir0 + dr, nr);
  10288. for (int i1 = ir0; i1 < ir1; i1++) {
  10289. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10290. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10291. dst_data[i0] = 0;
  10292. for (int k = -nh; k <= nh; k++) {
  10293. float v = 0.0f;
  10294. ggml_vec_dot_f32(ew0, &v,
  10295. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10296. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10297. dst_data[i0] += v;
  10298. }
  10299. }
  10300. }
  10301. }
  10302. static void ggml_compute_forward_conv_1d_s1_ph(
  10303. const struct ggml_compute_params * params,
  10304. const struct ggml_tensor * src0,
  10305. const struct ggml_tensor * src1,
  10306. struct ggml_tensor * dst) {
  10307. switch (src0->type) {
  10308. case GGML_TYPE_F16:
  10309. {
  10310. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10311. } break;
  10312. case GGML_TYPE_F32:
  10313. {
  10314. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10315. } break;
  10316. default:
  10317. {
  10318. GGML_ASSERT(false);
  10319. } break;
  10320. }
  10321. }
  10322. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10323. const struct ggml_compute_params * params,
  10324. const struct ggml_tensor * src0,
  10325. const struct ggml_tensor * src1,
  10326. struct ggml_tensor * dst) {
  10327. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10328. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10329. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10330. int64_t t0 = ggml_perf_time_us();
  10331. UNUSED(t0);
  10332. GGML_TENSOR_BINARY_OP_LOCALS;
  10333. const int ith = params->ith;
  10334. const int nth = params->nth;
  10335. const int nk = ne00;
  10336. const int nh = nk/2;
  10337. const int ew0 = ggml_up32(ne01);
  10338. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10339. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10340. GGML_ASSERT(nb10 == sizeof(float));
  10341. if (params->type == GGML_TASK_INIT) {
  10342. // TODO: fix this memset (wsize is overestimated)
  10343. memset(params->wdata, 0, params->wsize);
  10344. // prepare kernel data (src0)
  10345. {
  10346. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10348. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10349. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10350. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10351. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10352. dst_data[i00*ew0 + i01] = src[i00];
  10353. }
  10354. }
  10355. }
  10356. }
  10357. // prepare source data (src1)
  10358. {
  10359. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10360. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10361. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10362. ggml_fp16_t * dst_data = wdata;
  10363. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10364. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10365. }
  10366. }
  10367. }
  10368. return;
  10369. }
  10370. if (params->type == GGML_TASK_FINALIZE) {
  10371. return;
  10372. }
  10373. // total rows in dst
  10374. const int nr = ne02;
  10375. // rows per thread
  10376. const int dr = (nr + nth - 1)/nth;
  10377. // row range for this thread
  10378. const int ir0 = dr*ith;
  10379. const int ir1 = MIN(ir0 + dr, nr);
  10380. for (int i1 = ir0; i1 < ir1; i1++) {
  10381. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10382. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10383. dst_data[i0/2] = 0;
  10384. for (int k = -nh; k <= nh; k++) {
  10385. float v = 0.0f;
  10386. ggml_vec_dot_f16(ew0, &v,
  10387. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10388. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10389. dst_data[i0/2] += v;
  10390. }
  10391. }
  10392. }
  10393. }
  10394. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10395. const struct ggml_compute_params * params,
  10396. const struct ggml_tensor * src0,
  10397. const struct ggml_tensor * src1,
  10398. struct ggml_tensor * dst) {
  10399. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10400. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10401. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10402. int64_t t0 = ggml_perf_time_us();
  10403. UNUSED(t0);
  10404. GGML_TENSOR_BINARY_OP_LOCALS;
  10405. const int ith = params->ith;
  10406. const int nth = params->nth;
  10407. const int nk = ne00;
  10408. const int nh = nk/2;
  10409. const int ew0 = ggml_up32(ne01);
  10410. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10411. GGML_ASSERT(nb00 == sizeof(float));
  10412. GGML_ASSERT(nb10 == sizeof(float));
  10413. if (params->type == GGML_TASK_INIT) {
  10414. // TODO: fix this memset (wsize is overestimated)
  10415. memset(params->wdata, 0, params->wsize);
  10416. // prepare kernel data (src0)
  10417. {
  10418. float * const wdata = (float *) params->wdata + 0;
  10419. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10420. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10421. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10422. float * dst_data = wdata + i02*ew0*ne00;
  10423. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10424. dst_data[i00*ew0 + i01] = src[i00];
  10425. }
  10426. }
  10427. }
  10428. }
  10429. // prepare source data (src1)
  10430. {
  10431. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10432. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10433. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10434. float * dst_data = wdata;
  10435. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10436. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10437. }
  10438. }
  10439. }
  10440. return;
  10441. }
  10442. if (params->type == GGML_TASK_FINALIZE) {
  10443. return;
  10444. }
  10445. // total rows in dst
  10446. const int nr = ne02;
  10447. // rows per thread
  10448. const int dr = (nr + nth - 1)/nth;
  10449. // row range for this thread
  10450. const int ir0 = dr*ith;
  10451. const int ir1 = MIN(ir0 + dr, nr);
  10452. for (int i1 = ir0; i1 < ir1; i1++) {
  10453. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10454. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10455. dst_data[i0/2] = 0;
  10456. for (int k = -nh; k <= nh; k++) {
  10457. float v = 0.0f;
  10458. ggml_vec_dot_f32(ew0, &v,
  10459. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10460. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10461. dst_data[i0/2] += v;
  10462. }
  10463. }
  10464. }
  10465. }
  10466. static void ggml_compute_forward_conv_1d_s2_ph(
  10467. const struct ggml_compute_params * params,
  10468. const struct ggml_tensor * src0,
  10469. const struct ggml_tensor * src1,
  10470. struct ggml_tensor * dst) {
  10471. switch (src0->type) {
  10472. case GGML_TYPE_F16:
  10473. {
  10474. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10475. } break;
  10476. case GGML_TYPE_F32:
  10477. {
  10478. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10479. } break;
  10480. default:
  10481. {
  10482. GGML_ASSERT(false);
  10483. } break;
  10484. }
  10485. }
  10486. // ggml_compute_forward_conv_1d
  10487. static void ggml_compute_forward_conv_1d(
  10488. const struct ggml_compute_params * params,
  10489. const struct ggml_tensor * src0,
  10490. const struct ggml_tensor * src1,
  10491. const struct ggml_tensor * opt0,
  10492. struct ggml_tensor * dst) {
  10493. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10494. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10495. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10496. GGML_ASSERT(d0 == 1); // dilation not supported
  10497. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10498. if (s0 == 1) {
  10499. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10500. } else if (s0 == 2) {
  10501. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10502. } else {
  10503. GGML_ASSERT(false); // only stride 1 and 2 supported
  10504. };
  10505. }
  10506. // ggml_compute_forward_conv_2d
  10507. static void ggml_compute_forward_conv_2d_f16_f32(
  10508. const struct ggml_compute_params * params,
  10509. const struct ggml_tensor * src0,
  10510. const struct ggml_tensor * src1,
  10511. const struct ggml_tensor * opt0,
  10512. struct ggml_tensor * dst) {
  10513. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10514. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10515. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10516. int64_t t0 = ggml_perf_time_us();
  10517. UNUSED(t0);
  10518. GGML_TENSOR_BINARY_OP_LOCALS;
  10519. const int ith = params->ith;
  10520. const int nth = params->nth;
  10521. const int nk0 = ne00;
  10522. const int nk1 = ne01;
  10523. // size of the convolution row - the kernel size unrolled across all channels
  10524. const int ew0 = nk0*nk1*ne02;
  10525. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10526. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10527. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10528. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10529. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10530. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10531. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10532. GGML_ASSERT(nb10 == sizeof(float));
  10533. if (params->type == GGML_TASK_INIT) {
  10534. memset(params->wdata, 0, params->wsize);
  10535. // prepare source data (src1)
  10536. {
  10537. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10538. for (int i12 = 0; i12 < ne12; i12++) {
  10539. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10540. ggml_fp16_t * dst_data = wdata;
  10541. for (int i1 = 0; i1 < ne1; i1++) {
  10542. for (int i0 = 0; i0 < ne0; i0++) {
  10543. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10544. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10545. const int idx0 = i0*s0 + ik0*d0 - p0;
  10546. const int idx1 = i1*s1 + ik1*d1 - p1;
  10547. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10548. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10549. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10550. }
  10551. }
  10552. }
  10553. }
  10554. }
  10555. }
  10556. }
  10557. return;
  10558. }
  10559. if (params->type == GGML_TASK_FINALIZE) {
  10560. return;
  10561. }
  10562. // total patches in dst
  10563. const int np = ne2;
  10564. // patches per thread
  10565. const int dp = (np + nth - 1)/nth;
  10566. // patch range for this thread
  10567. const int ip0 = dp*ith;
  10568. const int ip1 = MIN(ip0 + dp, np);
  10569. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10570. for (int i3 = 0; i3 < ne3; i3++) {
  10571. for (int i2 = ip0; i2 < ip1; i2++) {
  10572. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10573. for (int i1 = 0; i1 < ne1; ++i1) {
  10574. for (int i0 = 0; i0 < ne0; ++i0) {
  10575. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10576. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10577. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10578. }
  10579. }
  10580. }
  10581. }
  10582. }
  10583. static void ggml_compute_forward_conv_2d(
  10584. const struct ggml_compute_params * params,
  10585. const struct ggml_tensor * src0,
  10586. const struct ggml_tensor * src1,
  10587. const struct ggml_tensor * opt0,
  10588. struct ggml_tensor * dst
  10589. ) {
  10590. switch (src0->type) {
  10591. case GGML_TYPE_F16:
  10592. {
  10593. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, opt0, dst);
  10594. } break;
  10595. case GGML_TYPE_F32:
  10596. {
  10597. //ggml_compute_forward_conv_2d_f32(params, src0, src1, opt0, dst);
  10598. GGML_ASSERT(false);
  10599. } break;
  10600. default:
  10601. {
  10602. GGML_ASSERT(false);
  10603. } break;
  10604. }
  10605. }
  10606. // ggml_compute_forward_pool_1d_sk_p0
  10607. static void ggml_compute_forward_pool_1d_sk_p0(
  10608. const struct ggml_compute_params * params,
  10609. const enum ggml_op_pool op,
  10610. const struct ggml_tensor * src,
  10611. const int k,
  10612. struct ggml_tensor * dst) {
  10613. assert(src->type == GGML_TYPE_F32);
  10614. assert(params->ith == 0);
  10615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10616. return;
  10617. }
  10618. const char * cdata = (const char *)src->data;
  10619. const char * const data_end = cdata + ggml_nbytes(src);
  10620. float * drow = (float *)dst->data;
  10621. const int64_t rs = dst->ne[0];
  10622. while (cdata < data_end) {
  10623. const float * const srow = (const float *)cdata;
  10624. int j = 0;
  10625. for (int64_t i = 0; i < rs; ++i) {
  10626. switch (op) {
  10627. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10628. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10629. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10630. }
  10631. for (int ki = 0; ki < k; ++ki) {
  10632. switch (op) {
  10633. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10634. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10635. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10636. }
  10637. ++j;
  10638. }
  10639. switch (op) {
  10640. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10641. case GGML_OP_POOL_MAX: break;
  10642. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10643. }
  10644. }
  10645. cdata += src->nb[1];
  10646. drow += rs;
  10647. }
  10648. }
  10649. // ggml_compute_forward_pool_1d
  10650. static void ggml_compute_forward_pool_1d(
  10651. const struct ggml_compute_params* params,
  10652. const struct ggml_tensor* src0,
  10653. const struct ggml_tensor* opt0,
  10654. struct ggml_tensor* dst) {
  10655. GGML_ASSERT(opt0->ne[0] == 4);
  10656. const int* opts = (const int*)opt0->data;
  10657. enum ggml_op_pool op = opts[0];
  10658. const int k0 = opts[1];
  10659. const int s0 = opts[2];
  10660. const int p0 = opts[3];
  10661. GGML_ASSERT(p0 == 0); // padding not supported
  10662. GGML_ASSERT(k0 == s0); // only s = k supported
  10663. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10664. }
  10665. // ggml_compute_forward_pool_2d_sk_p0
  10666. static void ggml_compute_forward_pool_2d_sk_p0(
  10667. const struct ggml_compute_params * params,
  10668. const enum ggml_op_pool op,
  10669. const struct ggml_tensor * src,
  10670. const int k0,
  10671. const int k1,
  10672. struct ggml_tensor * dst) {
  10673. assert(src->type == GGML_TYPE_F32);
  10674. assert(params->ith == 0);
  10675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10676. return;
  10677. }
  10678. const char * cdata = (const char*)src->data;
  10679. const char * const data_end = cdata + ggml_nbytes(src);
  10680. const int64_t px = dst->ne[0];
  10681. const int64_t py = dst->ne[1];
  10682. const int64_t pa = px * py;
  10683. float * dplane = (float *)dst->data;
  10684. const int ka = k0 * k1;
  10685. while (cdata < data_end) {
  10686. for (int oy = 0; oy < py; ++oy) {
  10687. float * const drow = dplane + oy * px;
  10688. for (int ox = 0; ox < px; ++ox) {
  10689. float * const out = drow + ox;
  10690. switch (op) {
  10691. case GGML_OP_POOL_AVG: *out = 0; break;
  10692. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10693. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10694. }
  10695. const int ix = ox * k0;
  10696. const int iy = oy * k1;
  10697. for (int ky = 0; ky < k1; ++ky) {
  10698. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10699. for (int kx = 0; kx < k0; ++kx) {
  10700. int j = ix + kx;
  10701. switch (op) {
  10702. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10703. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10704. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10705. }
  10706. }
  10707. }
  10708. switch (op) {
  10709. case GGML_OP_POOL_AVG: *out /= ka; break;
  10710. case GGML_OP_POOL_MAX: break;
  10711. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10712. }
  10713. }
  10714. }
  10715. cdata += src->nb[2];
  10716. dplane += pa;
  10717. }
  10718. }
  10719. // ggml_compute_forward_pool_2d
  10720. static void ggml_compute_forward_pool_2d(
  10721. const struct ggml_compute_params * params,
  10722. const struct ggml_tensor * src0,
  10723. const struct ggml_tensor * opt0,
  10724. struct ggml_tensor * dst) {
  10725. GGML_ASSERT(opt0->ne[0] == 7);
  10726. const int* opts = (const int*)opt0->data;
  10727. enum ggml_op_pool op = opts[0];
  10728. const int k0 = opts[1];
  10729. const int k1 = opts[2];
  10730. const int s0 = opts[3];
  10731. const int s1 = opts[4];
  10732. const int p0 = opts[5];
  10733. const int p1 = opts[6];
  10734. GGML_ASSERT(p0 == 0);
  10735. GGML_ASSERT(p1 == 0); // padding not supported
  10736. GGML_ASSERT(k0 == s0);
  10737. GGML_ASSERT(k1 == s1); // only s = k supported
  10738. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10739. }
  10740. // ggml_compute_forward_flash_attn
  10741. static void ggml_compute_forward_flash_attn_f32(
  10742. const struct ggml_compute_params * params,
  10743. const struct ggml_tensor * q,
  10744. const struct ggml_tensor * k,
  10745. const struct ggml_tensor * v,
  10746. const bool masked,
  10747. struct ggml_tensor * dst) {
  10748. int64_t t0 = ggml_perf_time_us();
  10749. UNUSED(t0);
  10750. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10751. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10752. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10753. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10754. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10755. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10756. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10757. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10758. const int ith = params->ith;
  10759. const int nth = params->nth;
  10760. const int64_t D = neq0;
  10761. const int64_t N = neq1;
  10762. const int64_t P = nek1 - N;
  10763. const int64_t M = P + N;
  10764. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10765. GGML_ASSERT(ne0 == D);
  10766. GGML_ASSERT(ne1 == N);
  10767. GGML_ASSERT(P >= 0);
  10768. GGML_ASSERT(nbq0 == sizeof(float));
  10769. GGML_ASSERT(nbk0 == sizeof(float));
  10770. GGML_ASSERT(nbv0 == sizeof(float));
  10771. GGML_ASSERT(neq0 == D);
  10772. GGML_ASSERT(nek0 == D);
  10773. GGML_ASSERT(nev1 == D);
  10774. GGML_ASSERT(neq1 == N);
  10775. GGML_ASSERT(nek1 == N + P);
  10776. GGML_ASSERT(nev1 == D);
  10777. // dst cannot be transposed or permuted
  10778. GGML_ASSERT(nb0 == sizeof(float));
  10779. GGML_ASSERT(nb0 <= nb1);
  10780. GGML_ASSERT(nb1 <= nb2);
  10781. GGML_ASSERT(nb2 <= nb3);
  10782. if (params->type == GGML_TASK_INIT) {
  10783. return;
  10784. }
  10785. if (params->type == GGML_TASK_FINALIZE) {
  10786. return;
  10787. }
  10788. // parallelize by q rows using ggml_vec_dot_f32
  10789. // total rows in q
  10790. const int nr = neq1*neq2*neq3;
  10791. // rows per thread
  10792. const int dr = (nr + nth - 1)/nth;
  10793. // row range for this thread
  10794. const int ir0 = dr*ith;
  10795. const int ir1 = MIN(ir0 + dr, nr);
  10796. const float scale = 1.0f/sqrtf(D);
  10797. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10798. for (int ir = ir0; ir < ir1; ++ir) {
  10799. // q indices
  10800. const int iq3 = ir/(neq2*neq1);
  10801. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10802. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10803. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10804. for (int i = M; i < Mup; ++i) {
  10805. S[i] = -INFINITY;
  10806. }
  10807. for (int64_t ic = 0; ic < nek1; ++ic) {
  10808. // k indices
  10809. const int ik3 = iq3;
  10810. const int ik2 = iq2;
  10811. const int ik1 = ic;
  10812. // S indices
  10813. const int i1 = ik1;
  10814. ggml_vec_dot_f32(neq0,
  10815. S + i1,
  10816. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10817. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10818. }
  10819. // scale
  10820. ggml_vec_scale_f32(nek1, S, scale);
  10821. if (masked) {
  10822. for (int64_t i = P; i < M; i++) {
  10823. if (i > P + iq1) {
  10824. S[i] = -INFINITY;
  10825. }
  10826. }
  10827. }
  10828. // softmax
  10829. {
  10830. float max = -INFINITY;
  10831. ggml_vec_max_f32(M, &max, S);
  10832. ggml_float sum = 0.0;
  10833. {
  10834. #ifdef GGML_SOFT_MAX_ACCELERATE
  10835. max = -max;
  10836. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10837. vvexpf(S, S, &Mup);
  10838. ggml_vec_sum_f32(Mup, &sum, S);
  10839. #else
  10840. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10841. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10842. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10843. float * SS = S + i;
  10844. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10845. if (SS[j] == -INFINITY) {
  10846. SS[j] = 0.0f;
  10847. } else {
  10848. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10849. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10850. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10851. sump[j] += (ggml_float)val;
  10852. SS[j] = val;
  10853. }
  10854. }
  10855. }
  10856. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10857. sum += sump[i];
  10858. }
  10859. #endif
  10860. }
  10861. assert(sum > 0.0);
  10862. sum = 1.0/sum;
  10863. ggml_vec_scale_f32(M, S, sum);
  10864. #ifndef NDEBUG
  10865. for (int i = 0; i < M; ++i) {
  10866. assert(!isnan(S[i]));
  10867. assert(!isinf(S[i]));
  10868. }
  10869. #endif
  10870. }
  10871. for (int64_t ic = 0; ic < nev1; ++ic) {
  10872. // dst indices
  10873. const int i1 = iq1;
  10874. const int i2 = iq2;
  10875. const int i3 = iq3;
  10876. ggml_vec_dot_f32(nek1,
  10877. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10878. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10879. S);
  10880. }
  10881. }
  10882. }
  10883. static void ggml_compute_forward_flash_attn_f16(
  10884. const struct ggml_compute_params * params,
  10885. const struct ggml_tensor * q,
  10886. const struct ggml_tensor * k,
  10887. const struct ggml_tensor * v,
  10888. const bool masked,
  10889. struct ggml_tensor * dst) {
  10890. int64_t t0 = ggml_perf_time_us();
  10891. UNUSED(t0);
  10892. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10893. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10894. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10895. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10896. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10897. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10898. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10899. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10900. const int ith = params->ith;
  10901. const int nth = params->nth;
  10902. const int64_t D = neq0;
  10903. const int64_t N = neq1;
  10904. const int64_t P = nek1 - N;
  10905. const int64_t M = P + N;
  10906. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10907. GGML_ASSERT(ne0 == D);
  10908. GGML_ASSERT(ne1 == N);
  10909. GGML_ASSERT(P >= 0);
  10910. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10911. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10912. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10913. GGML_ASSERT(neq0 == D);
  10914. GGML_ASSERT(nek0 == D);
  10915. GGML_ASSERT(nev1 == D);
  10916. GGML_ASSERT(neq1 == N);
  10917. GGML_ASSERT(nek1 == N + P);
  10918. GGML_ASSERT(nev1 == D);
  10919. // dst cannot be transposed or permuted
  10920. GGML_ASSERT(nb0 == sizeof(float));
  10921. GGML_ASSERT(nb0 <= nb1);
  10922. GGML_ASSERT(nb1 <= nb2);
  10923. GGML_ASSERT(nb2 <= nb3);
  10924. if (params->type == GGML_TASK_INIT) {
  10925. return;
  10926. }
  10927. if (params->type == GGML_TASK_FINALIZE) {
  10928. return;
  10929. }
  10930. // parallelize by q rows using ggml_vec_dot_f32
  10931. // total rows in q
  10932. const int nr = neq1*neq2*neq3;
  10933. // rows per thread
  10934. const int dr = (nr + nth - 1)/nth;
  10935. // row range for this thread
  10936. const int ir0 = dr*ith;
  10937. const int ir1 = MIN(ir0 + dr, nr);
  10938. const float scale = 1.0f/sqrtf(D);
  10939. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10940. for (int ir = ir0; ir < ir1; ++ir) {
  10941. // q indices
  10942. const int iq3 = ir/(neq2*neq1);
  10943. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10944. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10945. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10946. for (int i = M; i < Mup; ++i) {
  10947. S[i] = -INFINITY;
  10948. }
  10949. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10950. for (int64_t ic = 0; ic < nek1; ++ic) {
  10951. // k indices
  10952. const int ik3 = iq3;
  10953. const int ik2 = iq2;
  10954. const int ik1 = ic;
  10955. // S indices
  10956. const int i1 = ik1;
  10957. ggml_vec_dot_f16(neq0,
  10958. S + i1,
  10959. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10960. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10961. }
  10962. } else {
  10963. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10964. // k indices
  10965. const int ik3 = iq3;
  10966. const int ik2 = iq2;
  10967. const int ik1 = ic;
  10968. // S indices
  10969. const int i1 = ik1;
  10970. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10971. S + i1,
  10972. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10973. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10974. }
  10975. }
  10976. // scale
  10977. ggml_vec_scale_f32(nek1, S, scale);
  10978. if (masked) {
  10979. for (int64_t i = P; i < M; i++) {
  10980. if (i > P + iq1) {
  10981. S[i] = -INFINITY;
  10982. }
  10983. }
  10984. }
  10985. // softmax
  10986. {
  10987. float max = -INFINITY;
  10988. ggml_vec_max_f32(M, &max, S);
  10989. ggml_float sum = 0.0;
  10990. {
  10991. #ifdef GGML_SOFT_MAX_ACCELERATE
  10992. max = -max;
  10993. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10994. vvexpf(S, S, &Mup);
  10995. ggml_vec_sum_f32(Mup, &sum, S);
  10996. #else
  10997. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10998. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10999. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11000. float * SS = S + i;
  11001. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11002. if (SS[j] == -INFINITY) {
  11003. SS[j] = 0.0f;
  11004. } else {
  11005. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11006. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11007. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11008. sump[j] += (ggml_float)val;
  11009. SS[j] = val;
  11010. }
  11011. }
  11012. }
  11013. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11014. sum += sump[i];
  11015. }
  11016. #endif
  11017. }
  11018. assert(sum > 0.0);
  11019. sum = 1.0/sum;
  11020. ggml_vec_scale_f32(M, S, sum);
  11021. #ifndef NDEBUG
  11022. for (int i = 0; i < M; ++i) {
  11023. assert(!isnan(S[i]));
  11024. assert(!isinf(S[i]));
  11025. }
  11026. #endif
  11027. }
  11028. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11029. for (int64_t i = 0; i < M; i++) {
  11030. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11031. }
  11032. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11033. for (int64_t ic = 0; ic < nev1; ++ic) {
  11034. // dst indices
  11035. const int i1 = iq1;
  11036. const int i2 = iq2;
  11037. const int i3 = iq3;
  11038. ggml_vec_dot_f16(nek1,
  11039. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11040. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11041. S16);
  11042. }
  11043. } else {
  11044. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11045. // dst indices
  11046. const int i1 = iq1;
  11047. const int i2 = iq2;
  11048. const int i3 = iq3;
  11049. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11050. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11051. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11052. S16);
  11053. }
  11054. }
  11055. }
  11056. }
  11057. static void ggml_compute_forward_flash_attn(
  11058. const struct ggml_compute_params * params,
  11059. const struct ggml_tensor * q,
  11060. const struct ggml_tensor * k,
  11061. const struct ggml_tensor * v,
  11062. const bool masked,
  11063. struct ggml_tensor * dst) {
  11064. switch (q->type) {
  11065. case GGML_TYPE_F16:
  11066. {
  11067. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11068. } break;
  11069. case GGML_TYPE_F32:
  11070. {
  11071. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11072. } break;
  11073. default:
  11074. {
  11075. GGML_ASSERT(false);
  11076. } break;
  11077. }
  11078. }
  11079. // ggml_compute_forward_flash_ff
  11080. static void ggml_compute_forward_flash_ff_f16(
  11081. const struct ggml_compute_params * params,
  11082. const struct ggml_tensor * a, // F16
  11083. const struct ggml_tensor * b0, // F16 fc_w
  11084. const struct ggml_tensor * b1, // F32 fc_b
  11085. const struct ggml_tensor * c0, // F16 proj_w
  11086. const struct ggml_tensor * c1, // F32 proj_b
  11087. struct ggml_tensor * dst) {
  11088. int64_t t0 = ggml_perf_time_us();
  11089. UNUSED(t0);
  11090. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11091. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11092. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11093. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11094. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11095. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11096. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11097. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11098. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11099. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11100. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11101. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11102. const int ith = params->ith;
  11103. const int nth = params->nth;
  11104. const int64_t D = nea0;
  11105. //const int64_t N = nea1;
  11106. const int64_t M = neb01;
  11107. GGML_ASSERT(ne0 == nea0);
  11108. GGML_ASSERT(ne1 == nea1);
  11109. GGML_ASSERT(ne2 == nea2);
  11110. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11111. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11112. GGML_ASSERT(nbb10 == sizeof(float));
  11113. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11114. GGML_ASSERT(nbc10 == sizeof(float));
  11115. GGML_ASSERT(neb00 == D);
  11116. GGML_ASSERT(neb01 == M);
  11117. GGML_ASSERT(neb10 == M);
  11118. GGML_ASSERT(neb11 == 1);
  11119. GGML_ASSERT(nec00 == M);
  11120. GGML_ASSERT(nec01 == D);
  11121. GGML_ASSERT(nec10 == D);
  11122. GGML_ASSERT(nec11 == 1);
  11123. // dst cannot be transposed or permuted
  11124. GGML_ASSERT(nb0 == sizeof(float));
  11125. GGML_ASSERT(nb0 <= nb1);
  11126. GGML_ASSERT(nb1 <= nb2);
  11127. GGML_ASSERT(nb2 <= nb3);
  11128. if (params->type == GGML_TASK_INIT) {
  11129. return;
  11130. }
  11131. if (params->type == GGML_TASK_FINALIZE) {
  11132. return;
  11133. }
  11134. // parallelize by a rows using ggml_vec_dot_f32
  11135. // total rows in a
  11136. const int nr = nea1*nea2*nea3;
  11137. // rows per thread
  11138. const int dr = (nr + nth - 1)/nth;
  11139. // row range for this thread
  11140. const int ir0 = dr*ith;
  11141. const int ir1 = MIN(ir0 + dr, nr);
  11142. for (int ir = ir0; ir < ir1; ++ir) {
  11143. // a indices
  11144. const int ia3 = ir/(nea2*nea1);
  11145. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11146. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11147. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11148. for (int64_t ic = 0; ic < neb01; ++ic) {
  11149. // b0 indices
  11150. const int ib03 = ia3;
  11151. const int ib02 = ia2;
  11152. const int ib01 = ic;
  11153. // S indices
  11154. const int i1 = ib01;
  11155. ggml_vec_dot_f16(nea0,
  11156. S + i1,
  11157. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11158. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11159. }
  11160. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11161. //ggml_vec_gelu_f32(neb01, S, S);
  11162. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11163. for (int64_t i = 0; i < M; i++) {
  11164. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11165. }
  11166. ggml_vec_gelu_f16(neb01, S16, S16);
  11167. {
  11168. // dst indices
  11169. const int i1 = ia1;
  11170. const int i2 = ia2;
  11171. const int i3 = ia3;
  11172. for (int64_t ic = 0; ic < nec01; ++ic) {
  11173. ggml_vec_dot_f16(neb01,
  11174. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11175. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11176. S16);
  11177. }
  11178. ggml_vec_add_f32(nec01,
  11179. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11180. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11181. (float *) c1->data);
  11182. }
  11183. }
  11184. }
  11185. static void ggml_compute_forward_flash_ff(
  11186. const struct ggml_compute_params * params,
  11187. const struct ggml_tensor * a,
  11188. const struct ggml_tensor * b0,
  11189. const struct ggml_tensor * b1,
  11190. const struct ggml_tensor * c0,
  11191. const struct ggml_tensor * c1,
  11192. struct ggml_tensor * dst) {
  11193. switch (b0->type) {
  11194. case GGML_TYPE_F16:
  11195. {
  11196. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11197. } break;
  11198. case GGML_TYPE_F32:
  11199. {
  11200. GGML_ASSERT(false); // TODO
  11201. } break;
  11202. default:
  11203. {
  11204. GGML_ASSERT(false);
  11205. } break;
  11206. }
  11207. }
  11208. // ggml_compute_forward_flash_attn_back
  11209. static void ggml_compute_forward_flash_attn_back_f32(
  11210. const struct ggml_compute_params * params,
  11211. const struct ggml_tensor * q,
  11212. const struct ggml_tensor * k,
  11213. const struct ggml_tensor * v,
  11214. const struct ggml_tensor * d,
  11215. const bool masked,
  11216. struct ggml_tensor * dst) {
  11217. int64_t t0 = ggml_perf_time_us();
  11218. UNUSED(t0);
  11219. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11220. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11221. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11222. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11223. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11224. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11225. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11226. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11227. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11228. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11229. const int ith = params->ith;
  11230. const int nth = params->nth;
  11231. const int64_t D = neq0;
  11232. const int64_t N = neq1;
  11233. const int64_t P = nek1 - N;
  11234. const int64_t M = P + N;
  11235. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11236. const int mxDM = MAX(D, Mup);
  11237. // GGML_ASSERT(ne0 == D);
  11238. // GGML_ASSERT(ne1 == N);
  11239. GGML_ASSERT(P >= 0);
  11240. GGML_ASSERT(nbq0 == sizeof(float));
  11241. GGML_ASSERT(nbk0 == sizeof(float));
  11242. GGML_ASSERT(nbv0 == sizeof(float));
  11243. GGML_ASSERT(neq0 == D);
  11244. GGML_ASSERT(nek0 == D);
  11245. GGML_ASSERT(nev1 == D);
  11246. GGML_ASSERT(ned0 == D);
  11247. GGML_ASSERT(neq1 == N);
  11248. GGML_ASSERT(nek1 == N + P);
  11249. GGML_ASSERT(nev1 == D);
  11250. GGML_ASSERT(ned1 == N);
  11251. // dst cannot be transposed or permuted
  11252. GGML_ASSERT(nb0 == sizeof(float));
  11253. GGML_ASSERT(nb0 <= nb1);
  11254. GGML_ASSERT(nb1 <= nb2);
  11255. GGML_ASSERT(nb2 <= nb3);
  11256. if (params->type == GGML_TASK_INIT) {
  11257. if (ith == 0) {
  11258. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11259. }
  11260. return;
  11261. }
  11262. if (params->type == GGML_TASK_FINALIZE) {
  11263. return;
  11264. }
  11265. // parallelize by q rows using ggml_vec_dot_f32
  11266. // total rows in q
  11267. const int nr = neq2*neq3;
  11268. // rows per thread
  11269. const int dr = (nr + nth - 1)/nth;
  11270. // row range for this thread
  11271. const int ir0 = dr*ith;
  11272. const int ir1 = MIN(ir0 + dr, nr);
  11273. const float scale = 1.0f/sqrtf(D);
  11274. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11275. for (int ir = ir0; ir < ir1; ++ir) {
  11276. // q indices
  11277. const int iq3 = ir/(neq2);
  11278. const int iq2 = ir - iq3*neq2;
  11279. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11280. // not sure about CACHE_LINE_SIZE_F32..
  11281. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11282. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11283. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11284. for (int i = M; i < Mup; ++i) {
  11285. S[i] = -INFINITY;
  11286. }
  11287. for (int64_t ic = 0; ic < nek1; ++ic) {
  11288. // k indices
  11289. const int ik3 = iq3;
  11290. const int ik2 = iq2;
  11291. const int ik1 = ic;
  11292. // S indices
  11293. const int i1 = ik1;
  11294. ggml_vec_dot_f32(neq0,
  11295. S + i1,
  11296. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11297. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11298. }
  11299. // scale
  11300. ggml_vec_scale_f32(nek1, S, scale);
  11301. if (masked) {
  11302. for (int64_t i = P; i < M; i++) {
  11303. if (i > P + iq1) {
  11304. S[i] = -INFINITY;
  11305. }
  11306. }
  11307. }
  11308. // softmax
  11309. {
  11310. float max = -INFINITY;
  11311. ggml_vec_max_f32(M, &max, S);
  11312. ggml_float sum = 0.0;
  11313. {
  11314. #ifdef GGML_SOFT_MAX_ACCELERATE
  11315. max = -max;
  11316. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11317. vvexpf(SM, SM, &Mup);
  11318. ggml_vec_sum_f32(Mup, &sum, SM);
  11319. #else
  11320. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11321. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11322. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11323. float * SR = S + i;
  11324. float * SW = SM + i;
  11325. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11326. if (SR[j] == -INFINITY) {
  11327. SW[j] = 0.0f;
  11328. } else {
  11329. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11330. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11331. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11332. sump[j] += (ggml_float)val;
  11333. SW[j] = val;
  11334. }
  11335. }
  11336. }
  11337. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11338. sum += sump[i];
  11339. }
  11340. #endif
  11341. }
  11342. assert(sum > 0.0);
  11343. sum = 1.0/sum;
  11344. ggml_vec_scale_f32(M, SM, sum);
  11345. }
  11346. // step-by-step explanation
  11347. {
  11348. // forward-process shape grads from backward process
  11349. // parallel_for iq2,iq3:
  11350. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11351. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11352. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11353. // for iq1:
  11354. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11355. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11356. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11357. // S0 = -Inf [D,1,1,1]
  11358. // ~S1[i] = dot(kcur[:D,i], qcur)
  11359. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11360. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11361. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11362. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11363. // ~S5[i] = dot(vcur[:,i], S4)
  11364. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11365. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11366. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11367. // dst backward-/ grad[dst] = d
  11368. //
  11369. // output gradients with their dependencies:
  11370. //
  11371. // grad[kcur] = grad[S1].T @ qcur
  11372. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11373. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11374. // grad[S4] = grad[S5] @ vcur
  11375. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11376. // grad[qcur] = grad[S1] @ kcur
  11377. // grad[vcur] = grad[S5].T @ S4
  11378. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11379. //
  11380. // in post-order:
  11381. //
  11382. // S1 = qcur @ kcur.T
  11383. // S2 = S1 * scale
  11384. // S3 = diag_mask_inf(S2, P)
  11385. // S4 = softmax(S3)
  11386. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11387. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11388. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11389. // grad[qcur] = grad[S1] @ kcur
  11390. // grad[kcur] = grad[S1].T @ qcur
  11391. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11392. //
  11393. // using less variables (SM=S4):
  11394. //
  11395. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11396. // SM = softmax(S)
  11397. // S = d[:D,iq1,iq2,iq3] @ vcur
  11398. // dot_SM_gradSM = dot(SM, S)
  11399. // S = SM * (S - dot(SM, S))
  11400. // S = diag_mask_zero(S, P) * scale
  11401. //
  11402. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11403. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11404. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11405. }
  11406. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11407. // S = d[:D,iq1,iq2,iq3] @ vcur
  11408. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11409. ggml_vec_set_f32(M, S, 0);
  11410. for (int64_t ic = 0; ic < D; ++ic) {
  11411. // dst indices
  11412. const int i1 = iq1;
  11413. const int i2 = iq2;
  11414. const int i3 = iq3;
  11415. ggml_vec_mad_f32(M,
  11416. S,
  11417. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11418. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11419. }
  11420. // S = SM * (S - dot(SM, S))
  11421. float dot_SM_gradSM = 0;
  11422. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11423. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11424. ggml_vec_mul_f32 (M, S, S, SM);
  11425. // S = diag_mask_zero(S, P) * scale
  11426. if (masked) {
  11427. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11428. // S[i] = 0;
  11429. // }
  11430. for (int64_t i = P; i < M; i++) {
  11431. if (i > P + iq1) {
  11432. S[i] = 0;
  11433. }
  11434. }
  11435. }
  11436. ggml_vec_scale_f32(M, S, scale);
  11437. void * grad_q = (char *) dst->data;
  11438. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11439. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11440. const size_t nbgq1 = nb0*neq0;
  11441. const size_t nbgq2 = nb0*neq0*neq1;
  11442. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11443. const size_t nbgk1 = nb0*nek0;
  11444. const size_t nbgk2 = nb0*nek0*nek1;
  11445. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11446. const size_t nbgv1 = nb0*nev0;
  11447. const size_t nbgv2 = nb0*nev0*nev1;
  11448. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11449. // S shape [M,1]
  11450. // SM shape [M,1]
  11451. // kcur shape [D,M]
  11452. // qcur shape [D,1]
  11453. // vcur shape [M,D]
  11454. //
  11455. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11456. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11457. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11458. //
  11459. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11460. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11461. for (int64_t ic = 0; ic < M; ++ic) {
  11462. // dst indices
  11463. const int i1 = iq1;
  11464. const int i2 = iq2;
  11465. const int i3 = iq3;
  11466. ggml_vec_mad_f32(D,
  11467. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11468. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11469. S[ic]);
  11470. }
  11471. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11472. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11473. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11474. for (int64_t ic = 0; ic < M; ++ic) {
  11475. // dst indices
  11476. const int i1 = iq1;
  11477. const int i2 = iq2;
  11478. const int i3 = iq3;
  11479. // ggml_vec_set_f32(D,
  11480. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11481. // 0);
  11482. ggml_vec_mad_f32(D,
  11483. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11484. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11485. S[ic]);
  11486. }
  11487. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11488. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11489. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11490. for (int64_t ic = 0; ic < D; ++ic) {
  11491. // dst indices
  11492. const int i1 = iq1;
  11493. const int i2 = iq2;
  11494. const int i3 = iq3;
  11495. // ggml_vec_set_f32(M,
  11496. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11497. // 0);
  11498. ggml_vec_mad_f32(M,
  11499. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11500. SM,
  11501. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11502. }
  11503. }
  11504. }
  11505. }
  11506. static void ggml_compute_forward_flash_attn_back(
  11507. const struct ggml_compute_params * params,
  11508. const struct ggml_tensor * q,
  11509. const struct ggml_tensor * k,
  11510. const struct ggml_tensor * v,
  11511. const struct ggml_tensor * d,
  11512. const bool masked,
  11513. struct ggml_tensor * dst) {
  11514. switch (q->type) {
  11515. case GGML_TYPE_F32:
  11516. {
  11517. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11518. } break;
  11519. default:
  11520. {
  11521. GGML_ASSERT(false);
  11522. } break;
  11523. }
  11524. }
  11525. // ggml_compute_forward_win_part
  11526. static void ggml_compute_forward_win_part_f32(
  11527. const struct ggml_compute_params * params,
  11528. const struct ggml_tensor * src0,
  11529. const struct ggml_tensor * opt0,
  11530. struct ggml_tensor * dst) {
  11531. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11532. return;
  11533. }
  11534. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11535. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11536. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11537. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11538. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11539. assert(ne00 == ne0);
  11540. assert(ne3 == nep0*nep1);
  11541. // TODO: optimize / multi-thread
  11542. for (int py = 0; py < nep1; ++py) {
  11543. for (int px = 0; px < nep0; ++px) {
  11544. const int64_t i3 = py*nep0 + px;
  11545. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11546. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11547. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11548. const int64_t i02 = py*w + i2;
  11549. const int64_t i01 = px*w + i1;
  11550. const int64_t i00 = i0;
  11551. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11552. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11553. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11554. ((float *) dst->data)[i] = 0.0f;
  11555. } else {
  11556. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11557. }
  11558. }
  11559. }
  11560. }
  11561. }
  11562. }
  11563. }
  11564. static void ggml_compute_forward_win_part(
  11565. const struct ggml_compute_params * params,
  11566. const struct ggml_tensor * src0,
  11567. const struct ggml_tensor * opt0,
  11568. struct ggml_tensor * dst) {
  11569. switch (src0->type) {
  11570. case GGML_TYPE_F32:
  11571. {
  11572. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11573. } break;
  11574. default:
  11575. {
  11576. GGML_ASSERT(false);
  11577. } break;
  11578. }
  11579. }
  11580. // ggml_compute_forward_win_unpart
  11581. static void ggml_compute_forward_win_unpart_f32(
  11582. const struct ggml_compute_params * params,
  11583. const struct ggml_tensor * src0,
  11584. const struct ggml_tensor * opt0,
  11585. struct ggml_tensor * dst) {
  11586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11587. return;
  11588. }
  11589. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11590. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11591. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11592. // padding
  11593. const int px = (w - ne1%w)%w;
  11594. //const int py = (w - ne2%w)%w;
  11595. const int npx = (px + ne1)/w;
  11596. //const int npy = (py + ne2)/w;
  11597. assert(ne0 == ne00);
  11598. // TODO: optimize / multi-thread
  11599. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11600. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11601. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11602. const int ip2 = i2/w;
  11603. const int ip1 = i1/w;
  11604. const int64_t i02 = i2%w;
  11605. const int64_t i01 = i1%w;
  11606. const int64_t i00 = i0;
  11607. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11608. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11609. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11610. }
  11611. }
  11612. }
  11613. }
  11614. static void ggml_compute_forward_win_unpart(
  11615. const struct ggml_compute_params * params,
  11616. const struct ggml_tensor * src0,
  11617. const struct ggml_tensor * opt0,
  11618. struct ggml_tensor * dst) {
  11619. switch (src0->type) {
  11620. case GGML_TYPE_F32:
  11621. {
  11622. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11623. } break;
  11624. default:
  11625. {
  11626. GGML_ASSERT(false);
  11627. } break;
  11628. }
  11629. }
  11630. // ggml_compute_forward_map_unary
  11631. static void ggml_compute_forward_map_unary_f32(
  11632. const struct ggml_compute_params * params,
  11633. const struct ggml_tensor * src0,
  11634. struct ggml_tensor * dst,
  11635. const ggml_unary_op_f32_t fun) {
  11636. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11638. return;
  11639. }
  11640. const int n = ggml_nrows(src0);
  11641. const int nc = src0->ne[0];
  11642. assert( dst->nb[0] == sizeof(float));
  11643. assert(src0->nb[0] == sizeof(float));
  11644. for (int i = 0; i < n; i++) {
  11645. fun(nc,
  11646. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11647. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11648. }
  11649. }
  11650. static void ggml_compute_forward_map_unary(
  11651. const struct ggml_compute_params * params,
  11652. const struct ggml_tensor * src0,
  11653. struct ggml_tensor * dst,
  11654. const ggml_unary_op_f32_t fun) {
  11655. switch (src0->type) {
  11656. case GGML_TYPE_F32:
  11657. {
  11658. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11659. } break;
  11660. default:
  11661. {
  11662. GGML_ASSERT(false);
  11663. } break;
  11664. }
  11665. }
  11666. // ggml_compute_forward_map_binary
  11667. static void ggml_compute_forward_map_binary_f32(
  11668. const struct ggml_compute_params * params,
  11669. const struct ggml_tensor * src0,
  11670. const struct ggml_tensor * src1,
  11671. struct ggml_tensor * dst,
  11672. const ggml_binary_op_f32_t fun) {
  11673. assert(params->ith == 0);
  11674. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11676. return;
  11677. }
  11678. const int n = ggml_nrows(src0);
  11679. const int nc = src0->ne[0];
  11680. assert( dst->nb[0] == sizeof(float));
  11681. assert(src0->nb[0] == sizeof(float));
  11682. assert(src1->nb[0] == sizeof(float));
  11683. for (int i = 0; i < n; i++) {
  11684. fun(nc,
  11685. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11686. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11687. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11688. }
  11689. }
  11690. static void ggml_compute_forward_map_binary(
  11691. const struct ggml_compute_params * params,
  11692. const struct ggml_tensor * src0,
  11693. const struct ggml_tensor * src1,
  11694. struct ggml_tensor * dst,
  11695. const ggml_binary_op_f32_t fun) {
  11696. switch (src0->type) {
  11697. case GGML_TYPE_F32:
  11698. {
  11699. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11700. } break;
  11701. default:
  11702. {
  11703. GGML_ASSERT(false);
  11704. } break;
  11705. }
  11706. }
  11707. // ggml_compute_forward_map_custom1
  11708. static void ggml_compute_forward_map_custom1_f32(
  11709. const struct ggml_compute_params * params,
  11710. const struct ggml_tensor * a,
  11711. struct ggml_tensor * dst,
  11712. const ggml_custom1_op_f32_t fun) {
  11713. assert(params->ith == 0);
  11714. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11715. return;
  11716. }
  11717. fun(dst, a);
  11718. }
  11719. static void ggml_compute_forward_map_custom1(
  11720. const struct ggml_compute_params * params,
  11721. const struct ggml_tensor * a,
  11722. struct ggml_tensor * dst,
  11723. const ggml_custom1_op_f32_t fun) {
  11724. switch (a->type) {
  11725. case GGML_TYPE_F32:
  11726. {
  11727. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11728. } break;
  11729. default:
  11730. {
  11731. GGML_ASSERT(false);
  11732. } break;
  11733. }
  11734. }
  11735. // ggml_compute_forward_map_custom2
  11736. static void ggml_compute_forward_map_custom2_f32(
  11737. const struct ggml_compute_params * params,
  11738. const struct ggml_tensor * a,
  11739. const struct ggml_tensor * b,
  11740. struct ggml_tensor * dst,
  11741. const ggml_custom2_op_f32_t fun) {
  11742. assert(params->ith == 0);
  11743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11744. return;
  11745. }
  11746. fun(dst, a, b);
  11747. }
  11748. static void ggml_compute_forward_map_custom2(
  11749. const struct ggml_compute_params * params,
  11750. const struct ggml_tensor * a,
  11751. const struct ggml_tensor * b,
  11752. struct ggml_tensor * dst,
  11753. const ggml_custom2_op_f32_t fun) {
  11754. switch (a->type) {
  11755. case GGML_TYPE_F32:
  11756. {
  11757. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11758. } break;
  11759. default:
  11760. {
  11761. GGML_ASSERT(false);
  11762. } break;
  11763. }
  11764. }
  11765. // ggml_compute_forward_map_custom3
  11766. static void ggml_compute_forward_map_custom3_f32(
  11767. const struct ggml_compute_params * params,
  11768. const struct ggml_tensor * a,
  11769. const struct ggml_tensor * b,
  11770. const struct ggml_tensor * c,
  11771. struct ggml_tensor * dst,
  11772. const ggml_custom3_op_f32_t fun) {
  11773. assert(params->ith == 0);
  11774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11775. return;
  11776. }
  11777. fun(dst, a, b, c);
  11778. }
  11779. static void ggml_compute_forward_map_custom3(
  11780. const struct ggml_compute_params * params,
  11781. const struct ggml_tensor * a,
  11782. const struct ggml_tensor * b,
  11783. const struct ggml_tensor * c,
  11784. struct ggml_tensor * dst,
  11785. const ggml_custom3_op_f32_t fun) {
  11786. switch (a->type) {
  11787. case GGML_TYPE_F32:
  11788. {
  11789. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11790. } break;
  11791. default:
  11792. {
  11793. GGML_ASSERT(false);
  11794. } break;
  11795. }
  11796. }
  11797. // ggml_compute_forward_cross_entropy_loss
  11798. static void ggml_compute_forward_cross_entropy_loss_f32(
  11799. const struct ggml_compute_params * params,
  11800. const struct ggml_tensor * src0,
  11801. const struct ggml_tensor * src1,
  11802. struct ggml_tensor * dst) {
  11803. GGML_ASSERT(ggml_is_contiguous(src0));
  11804. GGML_ASSERT(ggml_is_contiguous(src1));
  11805. GGML_ASSERT(ggml_is_scalar(dst));
  11806. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11807. const int ith = params->ith;
  11808. const int nth = params->nth;
  11809. float * sums = (float *) params->wdata;
  11810. // TODO: handle transposed/permuted matrices
  11811. const int nc = src0->ne[0];
  11812. const int nr = ggml_nrows(src0);
  11813. if (params->type == GGML_TASK_INIT) {
  11814. if (ith == 0) {
  11815. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11816. }
  11817. return;
  11818. }
  11819. if (params->type == GGML_TASK_FINALIZE) {
  11820. if (ith == 0) {
  11821. float * dp = (float *) dst->data;
  11822. ggml_vec_sum_f32(nth, dp, sums);
  11823. dp[0] *= -1.0f;
  11824. }
  11825. return;
  11826. }
  11827. const double eps = 1e-9;
  11828. // rows per thread
  11829. const int dr = (nr + nth - 1)/nth;
  11830. // row range for this thread
  11831. const int ir0 = dr*ith;
  11832. const int ir1 = MIN(ir0 + dr, nr);
  11833. for (int i1 = ir0; i1 < ir1; i1++) {
  11834. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11835. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11836. float * st = (float *) params->wdata + nth + ith*nc;
  11837. #ifndef NDEBUG
  11838. for (int i = 0; i < nc; ++i) {
  11839. //printf("p[%d] = %f\n", i, p[i]);
  11840. assert(!isnan(s0[i]));
  11841. assert(!isnan(s1[i]));
  11842. }
  11843. #endif
  11844. // soft_max
  11845. ggml_float sum = 0.0;
  11846. {
  11847. float max = -INFINITY;
  11848. ggml_vec_max_f32(nc, &max, s0);
  11849. uint16_t scvt;
  11850. for (int i = 0; i < nc; i++) {
  11851. if (s0[i] == -INFINITY) {
  11852. st[i] = 0.0f;
  11853. } else {
  11854. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11855. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11856. memcpy(&scvt, &s, sizeof(scvt));
  11857. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11858. sum += (ggml_float)val;
  11859. st[i] = val;
  11860. }
  11861. }
  11862. assert(sum > 0.0);
  11863. // sum = 1.0/sum;
  11864. }
  11865. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11866. sum = (1.0 - eps) / sum;
  11867. ggml_vec_scale_f32(nc, st, sum);
  11868. ggml_vec_add1_f32(nc, st, st, eps);
  11869. ggml_vec_log_f32(nc, st, st);
  11870. ggml_vec_mul_f32(nc, st, st, s1);
  11871. ggml_vec_sum_f32(nc, sums + ith, st);
  11872. #ifndef NDEBUG
  11873. for (int i = 0; i < nc; ++i) {
  11874. assert(!isnan(st[i]));
  11875. assert(!isinf(st[i]));
  11876. }
  11877. #endif
  11878. }
  11879. }
  11880. static void ggml_compute_forward_cross_entropy_loss(
  11881. const struct ggml_compute_params * params,
  11882. const struct ggml_tensor * src0,
  11883. const struct ggml_tensor * src1,
  11884. struct ggml_tensor * dst) {
  11885. switch (src0->type) {
  11886. case GGML_TYPE_F32:
  11887. {
  11888. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11889. } break;
  11890. default:
  11891. {
  11892. GGML_ASSERT(false);
  11893. } break;
  11894. }
  11895. }
  11896. // ggml_compute_forward_cross_entropy_loss_back
  11897. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11898. const struct ggml_compute_params * params,
  11899. const struct ggml_tensor * src0,
  11900. const struct ggml_tensor * src1,
  11901. const struct ggml_tensor * opt0,
  11902. struct ggml_tensor * dst) {
  11903. GGML_ASSERT(ggml_is_contiguous(dst));
  11904. GGML_ASSERT(ggml_is_contiguous(src0));
  11905. GGML_ASSERT(ggml_is_contiguous(src1));
  11906. GGML_ASSERT(ggml_is_contiguous(opt0));
  11907. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11908. const int64_t ith = params->ith;
  11909. const int64_t nth = params->nth;
  11910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11911. return;
  11912. }
  11913. const float eps = 1e-9f;
  11914. // TODO: handle transposed/permuted matrices
  11915. const int64_t nc = src0->ne[0];
  11916. const int64_t nr = ggml_nrows(src0);
  11917. // rows per thread
  11918. const int64_t dr = (nr + nth - 1)/nth;
  11919. // row range for this thread
  11920. const int64_t ir0 = dr*ith;
  11921. const int64_t ir1 = MIN(ir0 + dr, nr);
  11922. float * d = (float *) opt0->data;
  11923. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11924. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11925. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11926. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11927. float * sm = (float *) params->wdata + ith*nc;
  11928. #ifndef NDEBUG
  11929. for (int i = 0; i < nc; ++i) {
  11930. //printf("p[%d] = %f\n", i, p[i]);
  11931. assert(!isnan(s0[i]));
  11932. assert(!isnan(s1[i]));
  11933. }
  11934. #endif
  11935. // step by step explanation:
  11936. {
  11937. //float * sums = (float *) params->wdata;
  11938. // forward pass with annotated gradients from backward pass
  11939. // (built by going in reverse operation order, adding to gradients of current operation args)
  11940. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11941. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11942. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11943. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11944. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11945. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11946. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11947. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11948. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11949. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11950. // postorder:
  11951. // grad[st1] := softmax(s0)
  11952. // grad[st1] := grad[st1]*(1.0 - eps)
  11953. // grad[st1] := grad[st1] + eps
  11954. // grad[st1] := s1 / grad[st1]
  11955. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11956. // src0 gradients by going through softmax_back
  11957. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11958. // from softmax_back:
  11959. // dxk = yk * (dyk - dot(y, dy))
  11960. // dot_y_dy := dot(y, dy)
  11961. // dx := dy
  11962. // dx := dx - dot_y_dy
  11963. // dx := dx * y
  11964. // postorder:
  11965. // dot_st1_dst1 := dot(st1, grad[st1])
  11966. // grad[s0] := grad[st1]
  11967. // grad[s0] := grad[s0] - dot_st1_dst1
  11968. // grad[s0] := grad[s0] * st1
  11969. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11970. // sm := softmax(s0)
  11971. // grad[s0] := sm*(1.0 - eps)
  11972. // grad[s0] := grad[s0] + eps
  11973. // grad[s0] := s1 / grad[s0]
  11974. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11975. // dot_st1_dst1 := dot(sm, grad[s0])
  11976. // grad[s0] := grad[s0] - dot_st1_dst1
  11977. // grad[s0] := grad[s0] * sm
  11978. }
  11979. // soft_max
  11980. ggml_float sum = 0.0;
  11981. {
  11982. float max = -INFINITY;
  11983. ggml_vec_max_f32(nc, &max, s0);
  11984. uint16_t scvt;
  11985. for (int i = 0; i < nc; i++) {
  11986. if (s0[i] == -INFINITY) {
  11987. sm[i] = 0.0f;
  11988. } else {
  11989. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11990. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11991. memcpy(&scvt, &s, sizeof(scvt));
  11992. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11993. sum += (ggml_float)val;
  11994. sm[i] = val;
  11995. }
  11996. }
  11997. assert(sum > 0.0);
  11998. sum = 1.0/sum;
  11999. }
  12000. float dot_st1_dst1 = 0;
  12001. ggml_vec_scale_f32(nc, sm, sum);
  12002. ggml_vec_cpy_f32 (nc, ds0, sm);
  12003. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12004. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12005. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12006. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12007. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12008. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12009. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12010. #ifndef NDEBUG
  12011. for (int i = 0; i < nc; ++i) {
  12012. assert(!isnan(sm[i]));
  12013. assert(!isinf(sm[i]));
  12014. assert(!isnan(ds0[i]));
  12015. assert(!isinf(ds0[i]));
  12016. }
  12017. #endif
  12018. }
  12019. }
  12020. static void ggml_compute_forward_cross_entropy_loss_back(
  12021. const struct ggml_compute_params * params,
  12022. const struct ggml_tensor * src0,
  12023. const struct ggml_tensor * src1,
  12024. const struct ggml_tensor * opt0,
  12025. struct ggml_tensor * dst) {
  12026. switch (src0->type) {
  12027. case GGML_TYPE_F32:
  12028. {
  12029. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12030. } break;
  12031. default:
  12032. {
  12033. GGML_ASSERT(false);
  12034. } break;
  12035. }
  12036. }
  12037. /////////////////////////////////
  12038. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12039. GGML_ASSERT(params);
  12040. #ifdef GGML_USE_CUBLAS
  12041. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12042. if (skip_cpu) {
  12043. return;
  12044. }
  12045. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12046. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12047. #endif // GGML_USE_CUBLAS
  12048. switch (tensor->op) {
  12049. case GGML_OP_DUP:
  12050. {
  12051. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12052. } break;
  12053. case GGML_OP_ADD:
  12054. {
  12055. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12056. } break;
  12057. case GGML_OP_ADD1:
  12058. {
  12059. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12060. } break;
  12061. case GGML_OP_ACC:
  12062. {
  12063. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12064. } break;
  12065. case GGML_OP_SUB:
  12066. {
  12067. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12068. } break;
  12069. case GGML_OP_MUL:
  12070. {
  12071. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12072. } break;
  12073. case GGML_OP_DIV:
  12074. {
  12075. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12076. } break;
  12077. case GGML_OP_SQR:
  12078. {
  12079. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12080. } break;
  12081. case GGML_OP_SQRT:
  12082. {
  12083. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12084. } break;
  12085. case GGML_OP_LOG:
  12086. {
  12087. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12088. } break;
  12089. case GGML_OP_SUM:
  12090. {
  12091. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12092. } break;
  12093. case GGML_OP_SUM_ROWS:
  12094. {
  12095. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12096. } break;
  12097. case GGML_OP_MEAN:
  12098. {
  12099. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12100. } break;
  12101. case GGML_OP_ARGMAX:
  12102. {
  12103. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12104. } break;
  12105. case GGML_OP_REPEAT:
  12106. {
  12107. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12108. } break;
  12109. case GGML_OP_REPEAT_BACK:
  12110. {
  12111. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12112. } break;
  12113. case GGML_OP_ABS:
  12114. {
  12115. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  12116. } break;
  12117. case GGML_OP_SGN:
  12118. {
  12119. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  12120. } break;
  12121. case GGML_OP_NEG:
  12122. {
  12123. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  12124. } break;
  12125. case GGML_OP_STEP:
  12126. {
  12127. ggml_compute_forward_step(params, tensor->src[0], tensor);
  12128. } break;
  12129. case GGML_OP_TANH:
  12130. {
  12131. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  12132. } break;
  12133. case GGML_OP_ELU:
  12134. {
  12135. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  12136. } break;
  12137. case GGML_OP_RELU:
  12138. {
  12139. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  12140. } break;
  12141. case GGML_OP_GELU:
  12142. {
  12143. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  12144. } break;
  12145. case GGML_OP_GELU_QUICK:
  12146. {
  12147. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  12148. } break;
  12149. case GGML_OP_SILU:
  12150. {
  12151. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  12152. } break;
  12153. case GGML_OP_SILU_BACK:
  12154. {
  12155. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12156. } break;
  12157. case GGML_OP_NORM:
  12158. {
  12159. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12160. } break;
  12161. case GGML_OP_RMS_NORM:
  12162. {
  12163. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12164. } break;
  12165. case GGML_OP_RMS_NORM_BACK:
  12166. {
  12167. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12168. } break;
  12169. case GGML_OP_MUL_MAT:
  12170. {
  12171. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12172. } break;
  12173. case GGML_OP_OUT_PROD:
  12174. {
  12175. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12176. } break;
  12177. case GGML_OP_SCALE:
  12178. {
  12179. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12180. } break;
  12181. case GGML_OP_SET:
  12182. {
  12183. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12184. } break;
  12185. case GGML_OP_CPY:
  12186. {
  12187. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12188. } break;
  12189. case GGML_OP_CONT:
  12190. {
  12191. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12192. } break;
  12193. case GGML_OP_RESHAPE:
  12194. {
  12195. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12196. } break;
  12197. case GGML_OP_VIEW:
  12198. {
  12199. ggml_compute_forward_view(params, tensor->src[0]);
  12200. } break;
  12201. case GGML_OP_PERMUTE:
  12202. {
  12203. ggml_compute_forward_permute(params, tensor->src[0]);
  12204. } break;
  12205. case GGML_OP_TRANSPOSE:
  12206. {
  12207. ggml_compute_forward_transpose(params, tensor->src[0]);
  12208. } break;
  12209. case GGML_OP_GET_ROWS:
  12210. {
  12211. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12212. } break;
  12213. case GGML_OP_GET_ROWS_BACK:
  12214. {
  12215. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12216. } break;
  12217. case GGML_OP_DIAG:
  12218. {
  12219. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12220. } break;
  12221. case GGML_OP_DIAG_MASK_INF:
  12222. {
  12223. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
  12224. } break;
  12225. case GGML_OP_DIAG_MASK_ZERO:
  12226. {
  12227. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
  12228. } break;
  12229. case GGML_OP_SOFT_MAX:
  12230. {
  12231. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12232. } break;
  12233. case GGML_OP_SOFT_MAX_BACK:
  12234. {
  12235. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12236. } break;
  12237. case GGML_OP_ROPE:
  12238. {
  12239. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12240. } break;
  12241. case GGML_OP_ROPE_BACK:
  12242. {
  12243. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12244. } break;
  12245. case GGML_OP_ALIBI:
  12246. {
  12247. ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
  12248. } break;
  12249. case GGML_OP_CLAMP:
  12250. {
  12251. ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
  12252. } break;
  12253. case GGML_OP_CONV_1D:
  12254. {
  12255. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12256. } break;
  12257. case GGML_OP_CONV_2D:
  12258. {
  12259. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12260. } break;
  12261. case GGML_OP_POOL_1D:
  12262. {
  12263. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor->src[1], tensor);
  12264. } break;
  12265. case GGML_OP_POOL_2D:
  12266. {
  12267. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor->src[1], tensor);
  12268. } break;
  12269. case GGML_OP_FLASH_ATTN:
  12270. {
  12271. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12272. GGML_ASSERT(t == 0 || t == 1);
  12273. const bool masked = t != 0;
  12274. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12275. } break;
  12276. case GGML_OP_FLASH_FF:
  12277. {
  12278. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12279. } break;
  12280. case GGML_OP_FLASH_ATTN_BACK:
  12281. {
  12282. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12283. GGML_ASSERT(t == 0 || t == 1);
  12284. bool masked = t != 0;
  12285. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12286. } break;
  12287. case GGML_OP_WIN_PART:
  12288. {
  12289. ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
  12290. } break;
  12291. case GGML_OP_WIN_UNPART:
  12292. {
  12293. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
  12294. } break;
  12295. case GGML_OP_MAP_UNARY:
  12296. {
  12297. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
  12298. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12299. }
  12300. break;
  12301. case GGML_OP_MAP_BINARY:
  12302. {
  12303. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
  12304. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12305. }
  12306. break;
  12307. case GGML_OP_MAP_CUSTOM1:
  12308. {
  12309. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
  12310. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12311. }
  12312. break;
  12313. case GGML_OP_MAP_CUSTOM2:
  12314. {
  12315. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
  12316. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12317. }
  12318. break;
  12319. case GGML_OP_MAP_CUSTOM3:
  12320. {
  12321. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
  12322. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
  12323. }
  12324. break;
  12325. case GGML_OP_CROSS_ENTROPY_LOSS:
  12326. {
  12327. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12328. }
  12329. break;
  12330. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12331. {
  12332. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12333. }
  12334. break;
  12335. case GGML_OP_NONE:
  12336. {
  12337. // nop
  12338. } break;
  12339. case GGML_OP_COUNT:
  12340. {
  12341. GGML_ASSERT(false);
  12342. } break;
  12343. }
  12344. }
  12345. ////////////////////////////////////////////////////////////////////////////////
  12346. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12347. struct ggml_tensor * src0 = tensor->src[0];
  12348. struct ggml_tensor * src1 = tensor->src[1];
  12349. switch (tensor->op) {
  12350. case GGML_OP_DUP:
  12351. {
  12352. if (src0->grad) {
  12353. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12354. }
  12355. } break;
  12356. case GGML_OP_ADD:
  12357. {
  12358. if (src0->grad) {
  12359. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12360. }
  12361. if (src1->grad) {
  12362. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12363. }
  12364. } break;
  12365. case GGML_OP_ADD1:
  12366. {
  12367. if (src0->grad) {
  12368. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12369. }
  12370. if (src1->grad) {
  12371. src1->grad = ggml_add_impl(ctx,
  12372. src1->grad,
  12373. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12374. inplace);
  12375. }
  12376. } break;
  12377. case GGML_OP_ACC:
  12378. {
  12379. if (src0->grad) {
  12380. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12381. }
  12382. if (src1->grad) {
  12383. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12384. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12385. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12386. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12387. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12388. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12389. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12390. tensor->grad,
  12391. src1->grad->ne[0],
  12392. src1->grad->ne[1],
  12393. src1->grad->ne[2],
  12394. src1->grad->ne[3],
  12395. nb1, nb2, nb3, offset);
  12396. src1->grad =
  12397. ggml_add_impl(ctx,
  12398. src1->grad,
  12399. ggml_reshape(ctx,
  12400. ggml_cont(ctx, tensor_grad_view),
  12401. src1->grad),
  12402. inplace);
  12403. }
  12404. } break;
  12405. case GGML_OP_SUB:
  12406. {
  12407. if (src0->grad) {
  12408. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12409. }
  12410. if (src1->grad) {
  12411. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12412. }
  12413. } break;
  12414. case GGML_OP_MUL:
  12415. {
  12416. if (src0->grad) {
  12417. src0->grad =
  12418. ggml_add_impl(ctx,
  12419. src0->grad,
  12420. ggml_mul(ctx, src1, tensor->grad),
  12421. inplace);
  12422. }
  12423. if (src1->grad) {
  12424. src1->grad =
  12425. ggml_add_impl(ctx,
  12426. src1->grad,
  12427. ggml_mul(ctx, src0, tensor->grad),
  12428. inplace);
  12429. }
  12430. } break;
  12431. case GGML_OP_DIV:
  12432. {
  12433. if (src0->grad) {
  12434. src0->grad =
  12435. ggml_add_impl(ctx,
  12436. src0->grad,
  12437. ggml_div(ctx, tensor->grad, src1),
  12438. inplace);
  12439. }
  12440. if (src1->grad) {
  12441. src1->grad =
  12442. ggml_sub_impl(ctx,
  12443. src1->grad,
  12444. ggml_mul(ctx,
  12445. tensor->grad,
  12446. ggml_div(ctx, tensor, src1)),
  12447. inplace);
  12448. }
  12449. } break;
  12450. case GGML_OP_SQR:
  12451. {
  12452. if (src0->grad) {
  12453. src0->grad =
  12454. ggml_add_impl(ctx,
  12455. src0->grad,
  12456. ggml_scale(ctx,
  12457. ggml_mul(ctx, src0, tensor->grad),
  12458. ggml_new_f32(ctx, 2.0f)),
  12459. inplace);
  12460. }
  12461. } break;
  12462. case GGML_OP_SQRT:
  12463. {
  12464. if (src0->grad) {
  12465. src0->grad =
  12466. ggml_add_impl(ctx,
  12467. src0->grad,
  12468. ggml_scale(ctx,
  12469. ggml_div(ctx,
  12470. tensor->grad,
  12471. tensor),
  12472. ggml_new_f32(ctx, 0.5f)),
  12473. inplace);
  12474. }
  12475. } break;
  12476. case GGML_OP_LOG:
  12477. {
  12478. if (src0->grad) {
  12479. src0->grad =
  12480. ggml_add_impl(ctx,
  12481. src0->grad,
  12482. ggml_div(ctx,
  12483. tensor->grad,
  12484. src0),
  12485. inplace);
  12486. }
  12487. } break;
  12488. case GGML_OP_SUM:
  12489. {
  12490. if (src0->grad) {
  12491. src0->grad =
  12492. ggml_add1_impl(ctx,
  12493. src0->grad,
  12494. tensor->grad,
  12495. inplace);
  12496. }
  12497. } break;
  12498. case GGML_OP_SUM_ROWS:
  12499. {
  12500. if (src0->grad) {
  12501. src0->grad =
  12502. ggml_add_impl(ctx,
  12503. src0->grad,
  12504. ggml_repeat(ctx,
  12505. tensor->grad,
  12506. src0->grad),
  12507. inplace);
  12508. }
  12509. } break;
  12510. case GGML_OP_MEAN:
  12511. case GGML_OP_ARGMAX:
  12512. {
  12513. GGML_ASSERT(false); // TODO: implement
  12514. } break;
  12515. case GGML_OP_REPEAT:
  12516. {
  12517. // necessary for llama
  12518. if (src0->grad) {
  12519. src0->grad = ggml_add_impl(ctx,
  12520. src0->grad,
  12521. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12522. inplace);
  12523. }
  12524. } break;
  12525. case GGML_OP_REPEAT_BACK:
  12526. {
  12527. if (src0->grad) {
  12528. // TODO: test this
  12529. src0->grad = ggml_add_impl(ctx,
  12530. src0->grad,
  12531. ggml_repeat(ctx, tensor->grad, src0->grad),
  12532. inplace);
  12533. }
  12534. } break;
  12535. case GGML_OP_ABS:
  12536. {
  12537. if (src0->grad) {
  12538. src0->grad =
  12539. ggml_add_impl(ctx,
  12540. src0->grad,
  12541. ggml_mul(ctx,
  12542. ggml_sgn(ctx, src0),
  12543. tensor->grad),
  12544. inplace);
  12545. }
  12546. } break;
  12547. case GGML_OP_SGN:
  12548. {
  12549. if (src0->grad) {
  12550. // noop
  12551. }
  12552. } break;
  12553. case GGML_OP_NEG:
  12554. {
  12555. if (src0->grad) {
  12556. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12557. }
  12558. } break;
  12559. case GGML_OP_STEP:
  12560. {
  12561. if (src0->grad) {
  12562. // noop
  12563. }
  12564. } break;
  12565. case GGML_OP_TANH:
  12566. {
  12567. GGML_ASSERT(false); // TODO: not implemented
  12568. } break;
  12569. case GGML_OP_ELU:
  12570. {
  12571. GGML_ASSERT(false); // TODO: not implemented
  12572. } break;
  12573. case GGML_OP_RELU:
  12574. {
  12575. if (src0->grad) {
  12576. src0->grad = ggml_sub_impl(ctx,
  12577. src0->grad,
  12578. ggml_mul(ctx,
  12579. ggml_step(ctx, src0),
  12580. tensor->grad),
  12581. inplace);
  12582. }
  12583. } break;
  12584. case GGML_OP_GELU:
  12585. {
  12586. GGML_ASSERT(false); // TODO: not implemented
  12587. } break;
  12588. case GGML_OP_GELU_QUICK:
  12589. {
  12590. GGML_ASSERT(false); // TODO: not implemented
  12591. } break;
  12592. case GGML_OP_SILU:
  12593. {
  12594. // necessary for llama
  12595. if (src0->grad) {
  12596. src0->grad = ggml_add_impl(ctx,
  12597. src0->grad,
  12598. ggml_silu_back(ctx, src0, tensor->grad),
  12599. inplace);
  12600. }
  12601. } break;
  12602. case GGML_OP_SILU_BACK:
  12603. {
  12604. GGML_ASSERT(false); // TODO: not implemented
  12605. } break;
  12606. case GGML_OP_NORM:
  12607. {
  12608. GGML_ASSERT(false); // TODO: not implemented
  12609. } break;
  12610. case GGML_OP_RMS_NORM:
  12611. {
  12612. // necessary for llama
  12613. if (src0->grad) {
  12614. src0->grad = ggml_add_impl(ctx,
  12615. src0->grad,
  12616. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12617. inplace);
  12618. }
  12619. } break;
  12620. case GGML_OP_RMS_NORM_BACK:
  12621. {
  12622. GGML_ASSERT(false); // TODO: not implemented
  12623. } break;
  12624. case GGML_OP_MUL_MAT:
  12625. {
  12626. // https://cs231n.github.io/optimization-2/#staged
  12627. // # forward pass
  12628. // s0 = np.random.randn(5, 10)
  12629. // s1 = np.random.randn(10, 3)
  12630. // t = s0.dot(s1)
  12631. // # now suppose we had the gradient on t from above in the circuit
  12632. // dt = np.random.randn(*t.shape) # same shape as t
  12633. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12634. // ds1 = t.T.dot(dt)
  12635. // tensor.shape [m,p]
  12636. // src0.shape [n,m]
  12637. // src1.shape [n,p]
  12638. // necessary for llama
  12639. if (src0->grad) {
  12640. src0->grad =
  12641. ggml_add_impl(ctx,
  12642. src0->grad,
  12643. ggml_out_prod(ctx, // [n,m]
  12644. src1, // [n,p]
  12645. tensor->grad), // [m,p]
  12646. inplace);
  12647. }
  12648. if (src1->grad) {
  12649. src1->grad =
  12650. ggml_add_impl(ctx,
  12651. src1->grad,
  12652. // ggml_mul_mat(ctx, // [n,p]
  12653. // ggml_cont(ctx, // [m,n]
  12654. // ggml_transpose(ctx, src0)), // [m,n]
  12655. // tensor->grad), // [m,p]
  12656. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12657. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12658. // // and then use ggml_out_prod
  12659. ggml_out_prod(ctx, // [n,p]
  12660. src0, // [n,m]
  12661. ggml_transpose(ctx, // [p,m]
  12662. tensor->grad)), // [m,p]
  12663. inplace);
  12664. }
  12665. } break;
  12666. case GGML_OP_OUT_PROD:
  12667. {
  12668. GGML_ASSERT(false); // TODO: not implemented
  12669. } break;
  12670. case GGML_OP_SCALE:
  12671. {
  12672. // necessary for llama
  12673. if (src0->grad) {
  12674. src0->grad =
  12675. ggml_add_impl(ctx,
  12676. src0->grad,
  12677. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12678. inplace);
  12679. }
  12680. if (src1->grad) {
  12681. src1->grad =
  12682. ggml_add_impl(ctx,
  12683. src1->grad,
  12684. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12685. inplace);
  12686. }
  12687. } break;
  12688. case GGML_OP_SET:
  12689. {
  12690. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12691. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12692. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12693. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12694. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12695. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12696. struct ggml_tensor * tensor_grad_view = NULL;
  12697. if (src0->grad || src1->grad) {
  12698. GGML_ASSERT(src0->type == tensor->type);
  12699. GGML_ASSERT(tensor->grad->type == tensor->type);
  12700. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12701. tensor_grad_view = ggml_view_4d(ctx,
  12702. tensor->grad,
  12703. src1->grad->ne[0],
  12704. src1->grad->ne[1],
  12705. src1->grad->ne[2],
  12706. src1->grad->ne[3],
  12707. nb1, nb2, nb3, offset);
  12708. }
  12709. if (src0->grad) {
  12710. src0->grad = ggml_add_impl(ctx,
  12711. src0->grad,
  12712. ggml_acc_impl(ctx,
  12713. tensor->grad,
  12714. ggml_neg(ctx, tensor_grad_view),
  12715. nb1, nb2, nb3, offset, false),
  12716. inplace);
  12717. }
  12718. if (src1->grad) {
  12719. src1->grad =
  12720. ggml_add_impl(ctx,
  12721. src1->grad,
  12722. ggml_reshape(ctx,
  12723. ggml_cont(ctx, tensor_grad_view),
  12724. src1->grad),
  12725. inplace);
  12726. }
  12727. } break;
  12728. case GGML_OP_CPY:
  12729. {
  12730. // necessary for llama
  12731. // cpy overwrites value of src1 by src0 and returns view(src1)
  12732. // the overwriting is mathematically equivalent to:
  12733. // tensor = src0 * 1 + src1 * 0
  12734. if (src0->grad) {
  12735. // dsrc0 = dtensor * 1
  12736. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12737. }
  12738. if (src1->grad) {
  12739. // dsrc1 = dtensor * 0 -> noop
  12740. }
  12741. } break;
  12742. case GGML_OP_CONT:
  12743. {
  12744. // same as cpy
  12745. if (src0->grad) {
  12746. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12747. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12748. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12749. }
  12750. } break;
  12751. case GGML_OP_RESHAPE:
  12752. {
  12753. // necessary for llama
  12754. if (src0->grad) {
  12755. src0->grad =
  12756. ggml_add_impl(ctx, src0->grad,
  12757. ggml_reshape(ctx, tensor->grad, src0->grad),
  12758. inplace);
  12759. }
  12760. } break;
  12761. case GGML_OP_VIEW:
  12762. {
  12763. // necessary for llama
  12764. if (src0->grad) {
  12765. size_t offset;
  12766. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
  12767. memcpy(&offset, tensor->src[2]->data, sizeof(offset));
  12768. size_t nb1 = tensor->nb[1];
  12769. size_t nb2 = tensor->nb[2];
  12770. size_t nb3 = tensor->nb[3];
  12771. if (src0->type != src0->grad->type) {
  12772. // gradient is typically F32, but src0 could be other type
  12773. size_t ng = ggml_element_size(src0->grad);
  12774. size_t n0 = ggml_element_size(src0);
  12775. GGML_ASSERT(offset % n0 == 0);
  12776. GGML_ASSERT(nb1 % n0 == 0);
  12777. GGML_ASSERT(nb2 % n0 == 0);
  12778. GGML_ASSERT(nb3 % n0 == 0);
  12779. offset = (offset / n0) * ng;
  12780. nb1 = (nb1 / n0) * ng;
  12781. nb2 = (nb2 / n0) * ng;
  12782. nb3 = (nb3 / n0) * ng;
  12783. }
  12784. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12785. }
  12786. } break;
  12787. case GGML_OP_PERMUTE:
  12788. {
  12789. // necessary for llama
  12790. if (src0->grad) {
  12791. int32_t * axes = (int32_t *) tensor->src[2]->data;
  12792. int axis0 = axes[0] & 0x3;
  12793. int axis1 = axes[1] & 0x3;
  12794. int axis2 = axes[2] & 0x3;
  12795. int axis3 = axes[3] & 0x3;
  12796. int axes_backward[4] = {0,0,0,0};
  12797. axes_backward[axis0] = 0;
  12798. axes_backward[axis1] = 1;
  12799. axes_backward[axis2] = 2;
  12800. axes_backward[axis3] = 3;
  12801. src0->grad =
  12802. ggml_add_impl(ctx, src0->grad,
  12803. ggml_permute(ctx,
  12804. tensor->grad,
  12805. axes_backward[0],
  12806. axes_backward[1],
  12807. axes_backward[2],
  12808. axes_backward[3]),
  12809. inplace);
  12810. }
  12811. } break;
  12812. case GGML_OP_TRANSPOSE:
  12813. {
  12814. // necessary for llama
  12815. if (src0->grad) {
  12816. src0->grad =
  12817. ggml_add_impl(ctx, src0->grad,
  12818. ggml_transpose(ctx, tensor->grad),
  12819. inplace);
  12820. }
  12821. } break;
  12822. case GGML_OP_GET_ROWS:
  12823. {
  12824. // necessary for llama (only for tokenizer)
  12825. if (src0->grad) {
  12826. src0->grad =
  12827. ggml_add_impl(ctx, src0->grad,
  12828. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12829. inplace);
  12830. }
  12831. if (src1->grad) {
  12832. // noop
  12833. }
  12834. } break;
  12835. case GGML_OP_GET_ROWS_BACK:
  12836. {
  12837. GGML_ASSERT(false); // TODO: not implemented
  12838. } break;
  12839. case GGML_OP_DIAG:
  12840. {
  12841. GGML_ASSERT(false); // TODO: not implemented
  12842. } break;
  12843. case GGML_OP_DIAG_MASK_INF:
  12844. {
  12845. // necessary for llama
  12846. if (src0->grad) {
  12847. assert(src1->type == GGML_TYPE_I32);
  12848. assert(ggml_nelements(src1) == 2);
  12849. const int n_past = ((int32_t *) src1->data)[0];
  12850. src0->grad =
  12851. ggml_add_impl(ctx, src0->grad,
  12852. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12853. inplace);
  12854. }
  12855. if (src1->grad) {
  12856. // noop
  12857. }
  12858. } break;
  12859. case GGML_OP_DIAG_MASK_ZERO:
  12860. {
  12861. // necessary for llama
  12862. if (src0->grad) {
  12863. assert(src1->type == GGML_TYPE_I32);
  12864. assert(ggml_nelements(src1) == 2);
  12865. const int n_past = ((int32_t *) src1->data)[0];
  12866. src0->grad =
  12867. ggml_add_impl(ctx, src0->grad,
  12868. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12869. inplace);
  12870. }
  12871. if (src1->grad) {
  12872. // noop
  12873. }
  12874. } break;
  12875. case GGML_OP_SOFT_MAX:
  12876. {
  12877. // necessary for llama
  12878. if (src0->grad) {
  12879. src0->grad =
  12880. ggml_add_impl(ctx, src0->grad,
  12881. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12882. inplace);
  12883. }
  12884. } break;
  12885. case GGML_OP_SOFT_MAX_BACK:
  12886. {
  12887. GGML_ASSERT(false); // TODO: not implemented
  12888. } break;
  12889. case GGML_OP_ROPE:
  12890. {
  12891. // necessary for llama
  12892. if (src0->grad) {
  12893. assert(src1->type == GGML_TYPE_I32);
  12894. assert(ggml_nelements(src1) == 4);
  12895. const int n_past = ((int32_t *) src1->data)[0];
  12896. const int n_dims = ((int32_t *) src1->data)[1];
  12897. const int mode = ((int32_t *) src1->data)[2];
  12898. src0->grad = ggml_add_impl(ctx,
  12899. src0->grad,
  12900. ggml_rope_back(ctx,
  12901. tensor->grad,
  12902. n_past,
  12903. n_dims,
  12904. mode),
  12905. inplace);
  12906. }
  12907. if (src1->grad) {
  12908. // noop
  12909. }
  12910. } break;
  12911. case GGML_OP_ROPE_BACK:
  12912. {
  12913. if (src0->grad) {
  12914. assert(src1->type == GGML_TYPE_I32);
  12915. assert(ggml_nelements(src1) == 4);
  12916. const int n_past = ((int32_t *) src1->data)[0];
  12917. const int n_dims = ((int32_t *) src1->data)[1];
  12918. const int mode = ((int32_t *) src1->data)[2];
  12919. const int n_ctx = ((int32_t *) src1->data)[3];
  12920. src0->grad = ggml_add_impl(ctx,
  12921. src0->grad,
  12922. ggml_rope(ctx,
  12923. tensor->grad,
  12924. n_past,
  12925. n_dims,
  12926. mode,
  12927. n_ctx),
  12928. inplace);
  12929. }
  12930. if (src1->grad) {
  12931. // noop
  12932. }
  12933. } break;
  12934. case GGML_OP_ALIBI:
  12935. {
  12936. GGML_ASSERT(false); // TODO: not implemented
  12937. } break;
  12938. case GGML_OP_CLAMP:
  12939. {
  12940. GGML_ASSERT(false); // TODO: not implemented
  12941. } break;
  12942. case GGML_OP_CONV_1D:
  12943. {
  12944. GGML_ASSERT(false); // TODO: not implemented
  12945. } break;
  12946. case GGML_OP_CONV_2D:
  12947. {
  12948. GGML_ASSERT(false); // TODO: not implemented
  12949. } break;
  12950. case GGML_OP_POOL_1D:
  12951. {
  12952. GGML_ASSERT(false); // TODO: not implemented
  12953. } break;
  12954. case GGML_OP_POOL_2D:
  12955. {
  12956. GGML_ASSERT(false); // TODO: not implemented
  12957. } break;
  12958. case GGML_OP_FLASH_ATTN:
  12959. {
  12960. struct ggml_tensor * flash_grad = NULL;
  12961. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12962. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12963. GGML_ASSERT(t == 0 || t == 1);
  12964. bool masked = t != 0;
  12965. flash_grad =
  12966. ggml_flash_attn_back(ctx,
  12967. src0,
  12968. src1,
  12969. tensor->src[2],
  12970. tensor->grad,
  12971. masked);
  12972. }
  12973. if (src0->grad) {
  12974. struct ggml_tensor * grad_q = NULL;
  12975. const size_t nb0 = flash_grad->nb[0];
  12976. const size_t offset = 0;
  12977. switch(src0->n_dims) {
  12978. case 2:
  12979. {
  12980. grad_q = ggml_view_2d(ctx,
  12981. flash_grad,
  12982. src0->ne[0],
  12983. src0->ne[1],
  12984. nb0*src0->ne[0],
  12985. offset);
  12986. } break;
  12987. case 3:
  12988. {
  12989. grad_q = ggml_view_3d(ctx,
  12990. flash_grad,
  12991. src0->ne[0],
  12992. src0->ne[1],
  12993. src0->ne[2],
  12994. nb0*src0->ne[0],
  12995. nb0*src0->ne[0]*src0->ne[1],
  12996. offset);
  12997. } break;
  12998. case 4:
  12999. {
  13000. grad_q = ggml_view_4d(ctx,
  13001. flash_grad,
  13002. src0->ne[0],
  13003. src0->ne[1],
  13004. src0->ne[2],
  13005. src0->ne[3],
  13006. nb0*src0->ne[0],
  13007. nb0*src0->ne[0]*src0->ne[1],
  13008. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13009. offset);
  13010. } break;
  13011. }
  13012. src0->grad = ggml_add_impl(ctx,
  13013. src0->grad,
  13014. grad_q,
  13015. inplace);
  13016. }
  13017. if (src1->grad) {
  13018. struct ggml_tensor * grad_k = NULL;
  13019. const size_t nb0 = flash_grad->nb[0];
  13020. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13021. switch(src1->n_dims) {
  13022. case 2:
  13023. {
  13024. grad_k = ggml_view_2d(ctx,
  13025. flash_grad,
  13026. src1->ne[0],
  13027. src1->ne[1],
  13028. nb0*src1->ne[0],
  13029. offset);
  13030. } break;
  13031. case 3:
  13032. {
  13033. grad_k = ggml_view_3d(ctx,
  13034. flash_grad,
  13035. src1->ne[0],
  13036. src1->ne[1],
  13037. src1->ne[2],
  13038. nb0*src1->ne[0],
  13039. nb0*src1->ne[0]*src1->ne[1],
  13040. offset);
  13041. } break;
  13042. case 4:
  13043. {
  13044. grad_k = ggml_view_4d(ctx,
  13045. flash_grad,
  13046. src1->ne[0],
  13047. src1->ne[1],
  13048. src1->ne[2],
  13049. src1->ne[3],
  13050. nb0*src1->ne[0],
  13051. nb0*src1->ne[0]*src1->ne[1],
  13052. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13053. offset);
  13054. } break;
  13055. }
  13056. src1->grad = ggml_add_impl(ctx,
  13057. src1->grad,
  13058. grad_k,
  13059. inplace);
  13060. }
  13061. struct ggml_tensor * opt0 = tensor->src[2];
  13062. if (opt0->grad) {
  13063. struct ggml_tensor * grad_v = NULL;
  13064. const size_t nb0 = flash_grad->nb[0];
  13065. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13066. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13067. switch(opt0->n_dims) {
  13068. case 2:
  13069. {
  13070. grad_v = ggml_view_2d(ctx,
  13071. flash_grad,
  13072. opt0->ne[0],
  13073. opt0->ne[1],
  13074. nb0*opt0->ne[0],
  13075. offset);
  13076. } break;
  13077. case 3:
  13078. {
  13079. grad_v = ggml_view_3d(ctx,
  13080. flash_grad,
  13081. opt0->ne[0],
  13082. opt0->ne[1],
  13083. opt0->ne[2],
  13084. nb0*opt0->ne[0],
  13085. nb0*opt0->ne[0]*opt0->ne[1],
  13086. offset);
  13087. } break;
  13088. case 4:
  13089. {
  13090. grad_v = ggml_view_4d(ctx,
  13091. flash_grad,
  13092. opt0->ne[0],
  13093. opt0->ne[1],
  13094. opt0->ne[2],
  13095. opt0->ne[3],
  13096. nb0*opt0->ne[0],
  13097. nb0*opt0->ne[0]*opt0->ne[1],
  13098. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13099. offset);
  13100. } break;
  13101. }
  13102. opt0->grad = ggml_add_impl(ctx,
  13103. opt0->grad,
  13104. grad_v,
  13105. inplace);
  13106. }
  13107. } break;
  13108. case GGML_OP_FLASH_FF:
  13109. {
  13110. GGML_ASSERT(false); // not supported
  13111. } break;
  13112. case GGML_OP_FLASH_ATTN_BACK:
  13113. {
  13114. GGML_ASSERT(false); // not supported
  13115. } break;
  13116. case GGML_OP_WIN_PART:
  13117. case GGML_OP_WIN_UNPART:
  13118. case GGML_OP_MAP_UNARY:
  13119. case GGML_OP_MAP_BINARY:
  13120. case GGML_OP_MAP_CUSTOM1:
  13121. case GGML_OP_MAP_CUSTOM2:
  13122. case GGML_OP_MAP_CUSTOM3:
  13123. {
  13124. GGML_ASSERT(false); // not supported
  13125. } break;
  13126. case GGML_OP_CROSS_ENTROPY_LOSS:
  13127. {
  13128. if (src0->grad) {
  13129. src0->grad = ggml_add_impl(ctx,
  13130. src0->grad,
  13131. ggml_cross_entropy_loss_back(ctx,
  13132. src0,
  13133. src1,
  13134. tensor->grad),
  13135. inplace);
  13136. }
  13137. } break;
  13138. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13139. {
  13140. GGML_ASSERT(false); // not supported
  13141. } break;
  13142. case GGML_OP_NONE:
  13143. {
  13144. // nop
  13145. } break;
  13146. case GGML_OP_COUNT:
  13147. {
  13148. GGML_ASSERT(false);
  13149. } break;
  13150. }
  13151. }
  13152. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13153. if (node->grad == NULL) {
  13154. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13155. // it can also happen during forward pass, if the user performs computations with constants
  13156. if (node->op != GGML_OP_NONE) {
  13157. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13158. }
  13159. }
  13160. // check if already visited
  13161. for (int i = 0; i < cgraph->n_nodes; i++) {
  13162. if (cgraph->nodes[i] == node) {
  13163. return;
  13164. }
  13165. }
  13166. for (int i = 0; i < cgraph->n_leafs; i++) {
  13167. if (cgraph->leafs[i] == node) {
  13168. return;
  13169. }
  13170. }
  13171. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13172. if (node->src[i]) {
  13173. ggml_visit_parents(cgraph, node->src[i]);
  13174. }
  13175. }
  13176. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13177. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13178. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13179. if (strlen(node->name) == 0) {
  13180. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13181. }
  13182. cgraph->leafs[cgraph->n_leafs] = node;
  13183. cgraph->n_leafs++;
  13184. } else {
  13185. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13186. if (strlen(node->name) == 0) {
  13187. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13188. }
  13189. cgraph->nodes[cgraph->n_nodes] = node;
  13190. cgraph->grads[cgraph->n_nodes] = node->grad;
  13191. cgraph->n_nodes++;
  13192. }
  13193. }
  13194. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13195. if (!expand) {
  13196. cgraph->n_nodes = 0;
  13197. cgraph->n_leafs = 0;
  13198. }
  13199. const int n0 = cgraph->n_nodes;
  13200. UNUSED(n0);
  13201. ggml_visit_parents(cgraph, tensor);
  13202. const int n_new = cgraph->n_nodes - n0;
  13203. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13204. if (n_new > 0) {
  13205. // the last added node should always be starting point
  13206. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13207. }
  13208. }
  13209. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13210. ggml_build_forward_impl(cgraph, tensor, true);
  13211. }
  13212. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13213. struct ggml_cgraph result = {
  13214. /*.n_nodes =*/ 0,
  13215. /*.n_leafs =*/ 0,
  13216. /*.nodes =*/ { NULL },
  13217. /*.grads =*/ { NULL },
  13218. /*.leafs =*/ { NULL },
  13219. /*.perf_runs =*/ 0,
  13220. /*.perf_cycles =*/ 0,
  13221. /*.perf_time_us =*/ 0,
  13222. };
  13223. ggml_build_forward_impl(&result, tensor, false);
  13224. return result;
  13225. }
  13226. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13227. struct ggml_cgraph result = *gf;
  13228. GGML_ASSERT(gf->n_nodes > 0);
  13229. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13230. if (keep) {
  13231. for (int i = 0; i < gf->n_nodes; i++) {
  13232. struct ggml_tensor * node = gf->nodes[i];
  13233. if (node->grad) {
  13234. node->grad = ggml_dup_tensor(ctx, node);
  13235. gf->grads[i] = node->grad;
  13236. }
  13237. }
  13238. }
  13239. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13240. struct ggml_tensor * node = gf->nodes[i];
  13241. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13242. if (node->grad) {
  13243. ggml_compute_backward(ctx, node, keep);
  13244. }
  13245. }
  13246. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13247. struct ggml_tensor * node = gf->nodes[i];
  13248. if (node->is_param) {
  13249. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13250. ggml_build_forward_impl(&result, node->grad, true);
  13251. }
  13252. }
  13253. return result;
  13254. }
  13255. //
  13256. // thread data
  13257. //
  13258. // synchronization is done via busy loops
  13259. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13260. //
  13261. #ifdef __APPLE__
  13262. //#include <os/lock.h>
  13263. //
  13264. //typedef os_unfair_lock ggml_lock_t;
  13265. //
  13266. //#define ggml_lock_init(x) UNUSED(x)
  13267. //#define ggml_lock_destroy(x) UNUSED(x)
  13268. //#define ggml_lock_lock os_unfair_lock_lock
  13269. //#define ggml_lock_unlock os_unfair_lock_unlock
  13270. //
  13271. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13272. typedef int ggml_lock_t;
  13273. #define ggml_lock_init(x) UNUSED(x)
  13274. #define ggml_lock_destroy(x) UNUSED(x)
  13275. #define ggml_lock_lock(x) UNUSED(x)
  13276. #define ggml_lock_unlock(x) UNUSED(x)
  13277. #define GGML_LOCK_INITIALIZER 0
  13278. typedef pthread_t ggml_thread_t;
  13279. #define ggml_thread_create pthread_create
  13280. #define ggml_thread_join pthread_join
  13281. #else
  13282. //typedef pthread_spinlock_t ggml_lock_t;
  13283. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13284. //#define ggml_lock_destroy pthread_spin_destroy
  13285. //#define ggml_lock_lock pthread_spin_lock
  13286. //#define ggml_lock_unlock pthread_spin_unlock
  13287. typedef int ggml_lock_t;
  13288. #define ggml_lock_init(x) UNUSED(x)
  13289. #define ggml_lock_destroy(x) UNUSED(x)
  13290. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13291. #define ggml_lock_lock(x) _mm_pause()
  13292. #else
  13293. #define ggml_lock_lock(x) UNUSED(x)
  13294. #endif
  13295. #define ggml_lock_unlock(x) UNUSED(x)
  13296. #define GGML_LOCK_INITIALIZER 0
  13297. typedef pthread_t ggml_thread_t;
  13298. #define ggml_thread_create pthread_create
  13299. #define ggml_thread_join pthread_join
  13300. #endif
  13301. // Android's libc implementation "bionic" does not support setting affinity
  13302. #if defined(__linux__) && !defined(__BIONIC__)
  13303. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13304. if (!ggml_is_numa()) {
  13305. return;
  13306. }
  13307. // run thread on node_num thread_n / (threads per node)
  13308. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13309. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13310. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13311. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13312. CPU_ZERO_S(setsize, cpus);
  13313. for (size_t i = 0; i < node->n_cpus; ++i) {
  13314. CPU_SET_S(node->cpus[i], setsize, cpus);
  13315. }
  13316. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13317. if (rv) {
  13318. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13319. strerror(rv));
  13320. }
  13321. CPU_FREE(cpus);
  13322. }
  13323. void clear_numa_thread_affinity(void) {
  13324. if (!ggml_is_numa()) {
  13325. return;
  13326. }
  13327. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13328. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13329. CPU_ZERO_S(setsize, cpus);
  13330. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13331. CPU_SET_S(i, setsize, cpus);
  13332. }
  13333. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13334. if (rv) {
  13335. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13336. strerror(rv));
  13337. }
  13338. CPU_FREE(cpus);
  13339. }
  13340. #else
  13341. // TODO: Windows etc.
  13342. // (the linux implementation may also work on BSD, someone should test)
  13343. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13344. void clear_numa_thread_affinity(void) {}
  13345. #endif
  13346. struct ggml_compute_state_shared {
  13347. const struct ggml_cgraph * cgraph;
  13348. const struct ggml_cplan * cplan;
  13349. int64_t perf_node_start_cycles;
  13350. int64_t perf_node_start_time_us;
  13351. const int n_threads;
  13352. // synchronization primitives
  13353. atomic_int n_active; // num active threads
  13354. atomic_int node_n; // active graph node
  13355. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13356. void * abort_callback_data;
  13357. };
  13358. struct ggml_compute_state {
  13359. ggml_thread_t thrd;
  13360. int ith;
  13361. struct ggml_compute_state_shared * shared;
  13362. };
  13363. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13364. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13365. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13366. node->perf_runs++;
  13367. node->perf_cycles += cycles_cur;
  13368. node->perf_time_us += time_us_cur;
  13369. }
  13370. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13371. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13372. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13373. const struct ggml_cplan * cplan = state->shared->cplan;
  13374. const int * n_tasks_arr = cplan->n_tasks;
  13375. const int n_threads = state->shared->n_threads;
  13376. set_numa_thread_affinity(state->ith, n_threads);
  13377. int node_n = -1;
  13378. while (true) {
  13379. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13380. state->shared->node_n += 1;
  13381. return (thread_ret_t) GGML_EXIT_ABORTED;
  13382. }
  13383. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13384. // all other threads are finished and spinning
  13385. // do finalize and init here so we don't have synchronize again
  13386. struct ggml_compute_params params = {
  13387. /*.type =*/ GGML_TASK_FINALIZE,
  13388. /*.ith =*/ 0,
  13389. /*.nth =*/ 0,
  13390. /*.wsize =*/ cplan->work_size,
  13391. /*.wdata =*/ cplan->work_data,
  13392. };
  13393. if (node_n != -1) {
  13394. /* FINALIZE */
  13395. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13396. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13397. params.nth = n_tasks_arr[node_n];
  13398. ggml_compute_forward(&params, node);
  13399. ggml_graph_compute_perf_stats_node(node, state->shared);
  13400. }
  13401. }
  13402. // distribute new work or execute it direct if 1T
  13403. while (++node_n < cgraph->n_nodes) {
  13404. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13405. struct ggml_tensor * node = cgraph->nodes[node_n];
  13406. const int n_tasks = n_tasks_arr[node_n];
  13407. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13408. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13409. params.nth = n_tasks;
  13410. /* INIT */
  13411. if (GGML_OP_HAS_INIT[node->op]) {
  13412. params.type = GGML_TASK_INIT;
  13413. ggml_compute_forward(&params, node);
  13414. }
  13415. if (n_tasks == 1) {
  13416. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13417. // they do something more efficient than spinning (?)
  13418. params.type = GGML_TASK_COMPUTE;
  13419. ggml_compute_forward(&params, node);
  13420. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13421. params.type = GGML_TASK_FINALIZE;
  13422. ggml_compute_forward(&params, node);
  13423. ggml_graph_compute_perf_stats_node(node, state->shared);
  13424. }
  13425. } else {
  13426. break;
  13427. }
  13428. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13429. break;
  13430. }
  13431. }
  13432. atomic_store(&state->shared->n_active, n_threads);
  13433. atomic_store(&state->shared->node_n, node_n);
  13434. } else {
  13435. // wait for other threads to finish
  13436. const int last = node_n;
  13437. do {
  13438. //sched_yield();
  13439. node_n = atomic_load(&state->shared->node_n);
  13440. } while (node_n == last);
  13441. }
  13442. // check if we should stop
  13443. if (node_n >= cgraph->n_nodes) break;
  13444. /* COMPUTE */
  13445. struct ggml_tensor * node = cgraph->nodes[node_n];
  13446. const int n_tasks = n_tasks_arr[node_n];
  13447. struct ggml_compute_params params = {
  13448. /*.type =*/ GGML_TASK_COMPUTE,
  13449. /*.ith =*/ state->ith,
  13450. /*.nth =*/ n_tasks,
  13451. /*.wsize =*/ cplan->work_size,
  13452. /*.wdata =*/ cplan->work_data,
  13453. };
  13454. if (state->ith < n_tasks) {
  13455. ggml_compute_forward(&params, node);
  13456. }
  13457. }
  13458. return GGML_EXIT_SUCCESS;
  13459. }
  13460. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13461. if (n_threads <= 0) {
  13462. n_threads = GGML_DEFAULT_N_THREADS;
  13463. }
  13464. size_t work_size = 0;
  13465. struct ggml_cplan cplan;
  13466. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13467. // thread scheduling for the different operations + work buffer size estimation
  13468. for (int i = 0; i < cgraph->n_nodes; i++) {
  13469. int n_tasks = 1;
  13470. struct ggml_tensor * node = cgraph->nodes[i];
  13471. switch (node->op) {
  13472. case GGML_OP_CPY:
  13473. case GGML_OP_DUP:
  13474. {
  13475. n_tasks = n_threads;
  13476. size_t cur = 0;
  13477. if (ggml_is_quantized(node->type)) {
  13478. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13479. }
  13480. work_size = MAX(work_size, cur);
  13481. } break;
  13482. case GGML_OP_ADD:
  13483. case GGML_OP_ADD1:
  13484. {
  13485. n_tasks = n_threads;
  13486. size_t cur = 0;
  13487. if (ggml_is_quantized(node->src[0]->type)) {
  13488. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13489. }
  13490. work_size = MAX(work_size, cur);
  13491. } break;
  13492. case GGML_OP_ACC:
  13493. {
  13494. n_tasks = n_threads;
  13495. size_t cur = 0;
  13496. if (ggml_is_quantized(node->src[0]->type)) {
  13497. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13498. }
  13499. work_size = MAX(work_size, cur);
  13500. } break;
  13501. case GGML_OP_SUB:
  13502. case GGML_OP_DIV:
  13503. case GGML_OP_SQR:
  13504. case GGML_OP_SQRT:
  13505. case GGML_OP_LOG:
  13506. case GGML_OP_SUM:
  13507. case GGML_OP_SUM_ROWS:
  13508. case GGML_OP_MEAN:
  13509. case GGML_OP_ARGMAX:
  13510. case GGML_OP_REPEAT:
  13511. case GGML_OP_REPEAT_BACK:
  13512. case GGML_OP_ABS:
  13513. case GGML_OP_SGN:
  13514. case GGML_OP_NEG:
  13515. case GGML_OP_STEP:
  13516. case GGML_OP_TANH:
  13517. case GGML_OP_ELU:
  13518. case GGML_OP_RELU:
  13519. {
  13520. n_tasks = 1;
  13521. } break;
  13522. case GGML_OP_MUL:
  13523. case GGML_OP_GELU:
  13524. case GGML_OP_GELU_QUICK:
  13525. case GGML_OP_SILU:
  13526. case GGML_OP_SILU_BACK:
  13527. case GGML_OP_NORM:
  13528. case GGML_OP_RMS_NORM:
  13529. case GGML_OP_RMS_NORM_BACK:
  13530. {
  13531. n_tasks = n_threads;
  13532. } break;
  13533. case GGML_OP_MUL_MAT:
  13534. case GGML_OP_OUT_PROD:
  13535. {
  13536. n_tasks = n_threads;
  13537. // TODO: use different scheduling for different matrix sizes
  13538. //const int nr0 = ggml_nrows(node->src[0]);
  13539. //const int nr1 = ggml_nrows(node->src[1]);
  13540. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13541. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13542. size_t cur = 0;
  13543. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13544. #if defined(GGML_USE_CUBLAS)
  13545. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13546. n_tasks = 1; // TODO: this actually is doing nothing
  13547. // the threads are still spinning
  13548. } else
  13549. #elif defined(GGML_USE_CLBLAST)
  13550. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13551. n_tasks = 1; // TODO: this actually is doing nothing
  13552. // the threads are still spinning
  13553. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13554. } else
  13555. #endif
  13556. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13557. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13558. n_tasks = 1; // TODO: this actually is doing nothing
  13559. // the threads are still spinning
  13560. if (node->src[0]->type != GGML_TYPE_F32) {
  13561. // here we need memory just for single 2D matrix from src0
  13562. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13563. }
  13564. } else
  13565. #endif
  13566. if (node->src[1]->type != vec_dot_type) {
  13567. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13568. } else {
  13569. cur = 0;
  13570. }
  13571. work_size = MAX(work_size, cur);
  13572. } break;
  13573. case GGML_OP_SCALE:
  13574. {
  13575. n_tasks = 1;
  13576. } break;
  13577. case GGML_OP_SET:
  13578. case GGML_OP_CONT:
  13579. case GGML_OP_RESHAPE:
  13580. case GGML_OP_VIEW:
  13581. case GGML_OP_PERMUTE:
  13582. case GGML_OP_TRANSPOSE:
  13583. case GGML_OP_GET_ROWS:
  13584. case GGML_OP_GET_ROWS_BACK:
  13585. case GGML_OP_DIAG:
  13586. case GGML_OP_DIAG_MASK_ZERO:
  13587. {
  13588. n_tasks = 1;
  13589. } break;
  13590. case GGML_OP_DIAG_MASK_INF:
  13591. case GGML_OP_SOFT_MAX:
  13592. case GGML_OP_SOFT_MAX_BACK:
  13593. case GGML_OP_ROPE:
  13594. case GGML_OP_ROPE_BACK:
  13595. {
  13596. n_tasks = n_threads;
  13597. } break;
  13598. case GGML_OP_ALIBI:
  13599. {
  13600. n_tasks = 1; //TODO
  13601. } break;
  13602. case GGML_OP_CLAMP:
  13603. {
  13604. n_tasks = 1; //TODO
  13605. } break;
  13606. case GGML_OP_CONV_1D:
  13607. {
  13608. n_tasks = n_threads;
  13609. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13610. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13611. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13612. size_t cur = 0;
  13613. const int nk = node->src[0]->ne[0];
  13614. if (node->src[0]->type == GGML_TYPE_F16 &&
  13615. node->src[1]->type == GGML_TYPE_F32) {
  13616. cur = sizeof(ggml_fp16_t)*(
  13617. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13618. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13619. );
  13620. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13621. node->src[1]->type == GGML_TYPE_F32) {
  13622. cur = sizeof(float)*(
  13623. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13624. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13625. );
  13626. } else {
  13627. GGML_ASSERT(false);
  13628. }
  13629. work_size = MAX(work_size, cur);
  13630. } break;
  13631. case GGML_OP_CONV_2D:
  13632. {
  13633. n_tasks = n_threads;
  13634. const int64_t ne00 = node->src[0]->ne[0]; // W
  13635. const int64_t ne01 = node->src[0]->ne[1]; // H
  13636. const int64_t ne02 = node->src[0]->ne[2]; // C
  13637. const int64_t ne03 = node->src[0]->ne[3]; // N
  13638. const int64_t ne10 = node->src[1]->ne[0]; // W
  13639. const int64_t ne11 = node->src[1]->ne[1]; // H
  13640. const int64_t ne12 = node->src[1]->ne[2]; // C
  13641. const int64_t ne0 = node->ne[0];
  13642. const int64_t ne1 = node->ne[1];
  13643. const int64_t ne2 = node->ne[2];
  13644. const int64_t nk = ne00*ne01;
  13645. const int64_t ew0 = nk * ne02;
  13646. UNUSED(ne03);
  13647. UNUSED(ne2);
  13648. size_t cur = 0;
  13649. if (node->src[0]->type == GGML_TYPE_F16 &&
  13650. node->src[1]->type == GGML_TYPE_F32) {
  13651. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13652. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13653. node->src[1]->type == GGML_TYPE_F32) {
  13654. cur = sizeof(float)* (ne10*ne11*ne12);
  13655. } else {
  13656. GGML_ASSERT(false);
  13657. }
  13658. work_size = MAX(work_size, cur);
  13659. } break;
  13660. case GGML_OP_POOL_1D:
  13661. case GGML_OP_POOL_2D:
  13662. {
  13663. n_tasks = 1;
  13664. } break;
  13665. case GGML_OP_FLASH_ATTN:
  13666. {
  13667. n_tasks = n_threads;
  13668. size_t cur = 0;
  13669. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13670. if (node->src[1]->type == GGML_TYPE_F32) {
  13671. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13672. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13673. }
  13674. if (node->src[1]->type == GGML_TYPE_F16) {
  13675. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13676. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13677. }
  13678. work_size = MAX(work_size, cur);
  13679. } break;
  13680. case GGML_OP_FLASH_FF:
  13681. {
  13682. n_tasks = n_threads;
  13683. size_t cur = 0;
  13684. if (node->src[1]->type == GGML_TYPE_F32) {
  13685. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13686. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13687. }
  13688. if (node->src[1]->type == GGML_TYPE_F16) {
  13689. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13690. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13691. }
  13692. work_size = MAX(work_size, cur);
  13693. } break;
  13694. case GGML_OP_FLASH_ATTN_BACK:
  13695. {
  13696. n_tasks = n_threads;
  13697. size_t cur = 0;
  13698. const int64_t D = node->src[0]->ne[0];
  13699. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13700. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13701. if (node->src[1]->type == GGML_TYPE_F32) {
  13702. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13703. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13704. }
  13705. if (node->src[1]->type == GGML_TYPE_F16) {
  13706. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13707. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13708. }
  13709. work_size = MAX(work_size, cur);
  13710. } break;
  13711. case GGML_OP_WIN_PART:
  13712. case GGML_OP_WIN_UNPART:
  13713. case GGML_OP_MAP_UNARY:
  13714. case GGML_OP_MAP_BINARY:
  13715. case GGML_OP_MAP_CUSTOM1:
  13716. case GGML_OP_MAP_CUSTOM2:
  13717. case GGML_OP_MAP_CUSTOM3:
  13718. {
  13719. n_tasks = 1;
  13720. } break;
  13721. case GGML_OP_CROSS_ENTROPY_LOSS:
  13722. {
  13723. n_tasks = n_threads;
  13724. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13725. work_size = MAX(work_size, cur);
  13726. } break;
  13727. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13728. {
  13729. n_tasks = n_threads;
  13730. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13731. work_size = MAX(work_size, cur);
  13732. } break;
  13733. case GGML_OP_NONE:
  13734. {
  13735. n_tasks = 1;
  13736. } break;
  13737. case GGML_OP_COUNT:
  13738. {
  13739. GGML_ASSERT(false);
  13740. } break;
  13741. }
  13742. cplan.n_tasks[i] = n_tasks;
  13743. }
  13744. if (work_size > 0) {
  13745. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13746. }
  13747. cplan.n_threads = n_threads;
  13748. cplan.work_size = work_size;
  13749. cplan.work_data = NULL;
  13750. return cplan;
  13751. }
  13752. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13753. {
  13754. GGML_ASSERT(cplan);
  13755. GGML_ASSERT(cplan->n_threads > 0);
  13756. if (cplan->work_size > 0) {
  13757. GGML_ASSERT(cplan->work_data);
  13758. }
  13759. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13760. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13761. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13762. }
  13763. }
  13764. }
  13765. const int n_threads = cplan->n_threads;
  13766. struct ggml_compute_state_shared state_shared = {
  13767. /*.cgraph =*/ cgraph,
  13768. /*.cgraph_plan =*/ cplan,
  13769. /*.perf_node_start_cycles =*/ 0,
  13770. /*.perf_node_start_time_us =*/ 0,
  13771. /*.n_threads =*/ n_threads,
  13772. /*.n_active =*/ n_threads,
  13773. /*.node_n =*/ -1,
  13774. /*.abort_callback =*/ NULL,
  13775. /*.abort_callback_data =*/ NULL,
  13776. };
  13777. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13778. // create thread pool
  13779. if (n_threads > 1) {
  13780. for (int j = 1; j < n_threads; ++j) {
  13781. workers[j] = (struct ggml_compute_state) {
  13782. .thrd = 0,
  13783. .ith = j,
  13784. .shared = &state_shared,
  13785. };
  13786. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13787. GGML_ASSERT(rc == 0);
  13788. }
  13789. }
  13790. workers[0].ith = 0;
  13791. workers[0].shared = &state_shared;
  13792. const int64_t perf_start_cycles = ggml_perf_cycles();
  13793. const int64_t perf_start_time_us = ggml_perf_time_us();
  13794. // this is a work thread too
  13795. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13796. // don't leave affinity set on the main thread
  13797. clear_numa_thread_affinity();
  13798. // join or kill thread pool
  13799. if (n_threads > 1) {
  13800. for (int j = 1; j < n_threads; j++) {
  13801. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13802. GGML_ASSERT(rc == 0);
  13803. }
  13804. }
  13805. // performance stats (graph)
  13806. {
  13807. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13808. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13809. cgraph->perf_runs++;
  13810. cgraph->perf_cycles += perf_cycles_cur;
  13811. cgraph->perf_time_us += perf_time_us_cur;
  13812. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13813. __func__, cgraph->perf_runs,
  13814. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13815. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13816. (double) perf_time_us_cur / 1000.0,
  13817. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13818. }
  13819. return compute_status;
  13820. }
  13821. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13822. for (int i = 0; i < cgraph->n_nodes; i++) {
  13823. struct ggml_tensor * grad = cgraph->grads[i];
  13824. if (grad) {
  13825. ggml_set_zero(grad);
  13826. }
  13827. }
  13828. }
  13829. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13830. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13831. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13832. GGML_ASSERT(buf);
  13833. cplan.work_data = buf->data;
  13834. ggml_graph_compute(cgraph, &cplan);
  13835. }
  13836. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13837. for (int i = 0; i < cgraph->n_leafs; i++) {
  13838. struct ggml_tensor * leaf = cgraph->leafs[i];
  13839. if (strcmp(leaf->name, name) == 0) {
  13840. return leaf;
  13841. }
  13842. }
  13843. for (int i = 0; i < cgraph->n_nodes; i++) {
  13844. struct ggml_tensor * node = cgraph->nodes[i];
  13845. if (strcmp(node->name, name) == 0) {
  13846. return node;
  13847. }
  13848. }
  13849. return NULL;
  13850. }
  13851. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13852. const int64_t * ne = tensor->ne;
  13853. const size_t * nb = tensor->nb;
  13854. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13855. ggml_type_name(tensor->type),
  13856. ggml_op_name (tensor->op),
  13857. tensor->n_dims,
  13858. ne[0], ne[1], ne[2], ne[3],
  13859. nb[0], nb[1], nb[2], nb[3],
  13860. tensor->data,
  13861. tensor->name);
  13862. }
  13863. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13864. const int64_t * ne = tensor->ne;
  13865. const size_t * nb = tensor->nb;
  13866. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13867. arg,
  13868. ggml_type_name(tensor->type),
  13869. ggml_op_name (tensor->op),
  13870. tensor->n_dims,
  13871. ne[0], ne[1], ne[2], ne[3],
  13872. nb[0], nb[1], nb[2], nb[3],
  13873. tensor->data,
  13874. tensor->name);
  13875. }
  13876. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13877. //assert(cgraph->work == NULL);
  13878. //assert(cgraph->work_size == 0);
  13879. uint64_t size_eval = 0;
  13880. // compute size of intermediate results
  13881. // TODO: does not take into account scratch buffers !!!!
  13882. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13883. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13884. }
  13885. // print
  13886. {
  13887. FILE * fout = stdout;
  13888. fprintf(fout, "\n");
  13889. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13890. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13891. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13892. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13893. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13894. // header
  13895. fprintf(fout, "\n");
  13896. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13897. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13898. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13899. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13900. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13901. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13902. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13903. }
  13904. // header
  13905. fprintf(fout, "\n");
  13906. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13907. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13908. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13909. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13910. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13911. if (cgraph->nodes[i]->src[j]) {
  13912. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13913. }
  13914. }
  13915. fprintf(fout, "\n");
  13916. }
  13917. fprintf(fout, "\n");
  13918. }
  13919. // write binary data
  13920. {
  13921. FILE * fout = fopen(fname, "wb");
  13922. if (!fout) {
  13923. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13924. return;
  13925. }
  13926. // header
  13927. {
  13928. const uint32_t magic = GGML_FILE_MAGIC;
  13929. const uint32_t version = GGML_FILE_VERSION;
  13930. const uint32_t n_leafs = cgraph->n_leafs;
  13931. const uint32_t nodes = cgraph->n_nodes;
  13932. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13933. fwrite(&version, sizeof(uint32_t), 1, fout);
  13934. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13935. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13936. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13937. }
  13938. // leafs
  13939. {
  13940. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13941. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13942. const uint32_t type = tensor->type;
  13943. const uint32_t op = tensor->op;
  13944. const uint32_t n_dims = tensor->n_dims;
  13945. fwrite(&type, sizeof(uint32_t), 1, fout);
  13946. fwrite(&op, sizeof(uint32_t), 1, fout);
  13947. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13948. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13949. const uint64_t ne = tensor->ne[j];
  13950. const uint64_t nb = tensor->nb[j];
  13951. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13952. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13953. }
  13954. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13955. // dump the data
  13956. // TODO: pad this to 32 byte boundary
  13957. {
  13958. const size_t size = ggml_nbytes(tensor);
  13959. fwrite(tensor->data, sizeof(char), size, fout);
  13960. }
  13961. }
  13962. }
  13963. // nodes
  13964. {
  13965. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13966. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13967. const uint32_t type = tensor->type;
  13968. const uint32_t op = tensor->op;
  13969. const uint32_t n_dims = tensor->n_dims;
  13970. fwrite(&type, sizeof(uint32_t), 1, fout);
  13971. fwrite(&op, sizeof(uint32_t), 1, fout);
  13972. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13973. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13974. const uint64_t ne = tensor->ne[j];
  13975. const uint64_t nb = tensor->nb[j];
  13976. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13977. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13978. }
  13979. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13980. // output the op arguments
  13981. {
  13982. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13983. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13984. args[j] = tensor->src[j];
  13985. }
  13986. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13987. if (args[j]) {
  13988. int32_t idx = -1;
  13989. // check if leaf
  13990. {
  13991. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13992. if (args[j] == cgraph->leafs[k]) {
  13993. idx = k;
  13994. break;
  13995. }
  13996. }
  13997. }
  13998. // check if node
  13999. if (idx == -1) {
  14000. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14001. if (args[j] == cgraph->nodes[k]) {
  14002. idx = GGML_MAX_NODES + k;
  14003. break;
  14004. }
  14005. }
  14006. }
  14007. if (idx == -1) {
  14008. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14009. return;
  14010. }
  14011. fwrite(&idx, sizeof(int32_t), 1, fout);
  14012. } else {
  14013. const int32_t nul = -1;
  14014. fwrite(&nul, sizeof(int32_t), 1, fout);
  14015. }
  14016. }
  14017. }
  14018. }
  14019. }
  14020. fclose(fout);
  14021. }
  14022. }
  14023. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14024. assert(*ctx_data == NULL);
  14025. assert(*ctx_eval == NULL);
  14026. struct ggml_cgraph result = { 0 };
  14027. struct ggml_tensor * data = NULL;
  14028. // read file into data
  14029. {
  14030. FILE * fin = fopen(fname, "rb");
  14031. if (!fin) {
  14032. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14033. return result;
  14034. }
  14035. size_t fsize = 0;
  14036. fseek(fin, 0, SEEK_END);
  14037. fsize = ftell(fin);
  14038. fseek(fin, 0, SEEK_SET);
  14039. // create the data context
  14040. {
  14041. const size_t overhead = 1*ggml_tensor_overhead();
  14042. struct ggml_init_params params = {
  14043. .mem_size = fsize + overhead,
  14044. .mem_buffer = NULL,
  14045. .no_alloc = false,
  14046. };
  14047. *ctx_data = ggml_init(params);
  14048. if (!*ctx_data) {
  14049. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14050. fclose(fin);
  14051. return result;
  14052. }
  14053. }
  14054. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14055. {
  14056. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14057. if (ret != fsize) {
  14058. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14059. fclose(fin);
  14060. return result;
  14061. }
  14062. }
  14063. fclose(fin);
  14064. }
  14065. // populate result
  14066. {
  14067. char * ptr = (char *) data->data;
  14068. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14069. if (magic != GGML_FILE_MAGIC) {
  14070. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14071. return result;
  14072. }
  14073. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14074. if (version != GGML_FILE_VERSION) {
  14075. fprintf(stderr, "%s: invalid version number\n", __func__);
  14076. return result;
  14077. }
  14078. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14079. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14080. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14081. result.n_leafs = n_leafs;
  14082. result.n_nodes = n_nodes;
  14083. // create the data context
  14084. {
  14085. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14086. struct ggml_init_params params = {
  14087. .mem_size = size_eval + overhead,
  14088. .mem_buffer = NULL,
  14089. .no_alloc = true,
  14090. };
  14091. *ctx_eval = ggml_init(params);
  14092. if (!*ctx_eval) {
  14093. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14094. return result;
  14095. }
  14096. }
  14097. // leafs
  14098. {
  14099. uint32_t type;
  14100. uint32_t op;
  14101. uint32_t n_dims;
  14102. for (uint32_t i = 0; i < n_leafs; ++i) {
  14103. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14104. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14105. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14106. int64_t ne[GGML_MAX_DIMS];
  14107. size_t nb[GGML_MAX_DIMS];
  14108. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14109. uint64_t ne_cur;
  14110. uint64_t nb_cur;
  14111. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14112. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14113. ne[j] = ne_cur;
  14114. nb[j] = nb_cur;
  14115. }
  14116. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14117. tensor->op = (enum ggml_op) op;
  14118. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14119. tensor->data = (void *) ptr;
  14120. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14121. tensor->nb[j] = nb[j];
  14122. }
  14123. result.leafs[i] = tensor;
  14124. ptr += ggml_nbytes(tensor);
  14125. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14126. }
  14127. }
  14128. ggml_set_no_alloc(*ctx_eval, false);
  14129. // nodes
  14130. {
  14131. uint32_t type;
  14132. uint32_t op;
  14133. uint32_t n_dims;
  14134. for (uint32_t i = 0; i < n_nodes; ++i) {
  14135. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14136. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14137. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14138. enum ggml_op eop = (enum ggml_op) op;
  14139. int64_t ne[GGML_MAX_DIMS];
  14140. size_t nb[GGML_MAX_DIMS];
  14141. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14142. uint64_t ne_cur;
  14143. uint64_t nb_cur;
  14144. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14145. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14146. ne[j] = ne_cur;
  14147. nb[j] = nb_cur;
  14148. }
  14149. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14150. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14151. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14152. // parse args
  14153. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14154. const int32_t arg_idx = ptr_arg_idx[j];
  14155. if (arg_idx == -1) {
  14156. continue;
  14157. }
  14158. if (arg_idx < GGML_MAX_NODES) {
  14159. args[j] = result.leafs[arg_idx];
  14160. } else {
  14161. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14162. }
  14163. }
  14164. // create the tensor
  14165. // "view" operations are handled differently
  14166. // TODO: handle inplace ops - currently a copy is always made
  14167. struct ggml_tensor * tensor = NULL;
  14168. switch (eop) {
  14169. // TODO: implement other view ops
  14170. case GGML_OP_RESHAPE:
  14171. {
  14172. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14173. } break;
  14174. case GGML_OP_VIEW:
  14175. {
  14176. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14177. uint64_t offs;
  14178. memcpy(&offs, args[2]->data, sizeof(offs));
  14179. tensor->data = ((char *) tensor->data) + offs;
  14180. } break;
  14181. case GGML_OP_TRANSPOSE:
  14182. {
  14183. tensor = ggml_transpose(*ctx_eval, args[0]);
  14184. } break;
  14185. case GGML_OP_PERMUTE:
  14186. {
  14187. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14188. } break;
  14189. default:
  14190. {
  14191. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14192. tensor->op = eop;
  14193. } break;
  14194. }
  14195. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14196. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14197. tensor->nb[j] = nb[j];
  14198. }
  14199. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14200. tensor->src[j] = args[j];
  14201. }
  14202. result.nodes[i] = tensor;
  14203. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14204. }
  14205. }
  14206. }
  14207. return result;
  14208. }
  14209. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14210. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14211. GGML_PRINT("=== GRAPH ===\n");
  14212. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14213. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14214. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14215. for (int i = 0; i < cgraph->n_nodes; i++) {
  14216. struct ggml_tensor * node = cgraph->nodes[i];
  14217. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14218. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14219. i,
  14220. node->ne[0], node->ne[1], node->ne[2],
  14221. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14222. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14223. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14224. (double) node->perf_time_us / 1000.0,
  14225. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14226. }
  14227. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14228. for (int i = 0; i < cgraph->n_leafs; i++) {
  14229. struct ggml_tensor * node = cgraph->leafs[i];
  14230. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14231. i,
  14232. node->ne[0], node->ne[1],
  14233. GGML_OP_NAME[node->op]);
  14234. }
  14235. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14236. if (perf_total_per_op_us[i] == 0) {
  14237. continue;
  14238. }
  14239. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14240. }
  14241. GGML_PRINT("========================================\n");
  14242. }
  14243. // check if node is part of the graph
  14244. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14245. if (cgraph == NULL) {
  14246. return true;
  14247. }
  14248. for (int i = 0; i < cgraph->n_nodes; i++) {
  14249. if (cgraph->nodes[i] == node) {
  14250. return true;
  14251. }
  14252. }
  14253. return false;
  14254. }
  14255. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14256. for (int i = 0; i < cgraph->n_nodes; i++) {
  14257. struct ggml_tensor * parent = cgraph->nodes[i];
  14258. if (parent->grad == node) {
  14259. return parent;
  14260. }
  14261. }
  14262. return NULL;
  14263. }
  14264. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14265. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14266. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14267. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14268. gparent0 ? (void *) gparent0 : (void *) parent,
  14269. gparent0 ? "g" : "x",
  14270. gparent ? (void *) gparent : (void *) node,
  14271. gparent ? "g" : "x",
  14272. gparent ? "empty" : "vee",
  14273. gparent ? "dashed" : "solid",
  14274. label);
  14275. }
  14276. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14277. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14278. (void *) parent, "x",
  14279. (void *) node, "x",
  14280. label);
  14281. }
  14282. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14283. char color[16];
  14284. FILE * fp = fopen(filename, "w");
  14285. GGML_ASSERT(fp);
  14286. fprintf(fp, "digraph G {\n");
  14287. fprintf(fp, " newrank = true;\n");
  14288. fprintf(fp, " rankdir = LR;\n");
  14289. for (int i = 0; i < gb->n_nodes; i++) {
  14290. struct ggml_tensor * node = gb->nodes[i];
  14291. if (ggml_graph_get_parent(gb, node) != NULL) {
  14292. continue;
  14293. }
  14294. if (node->is_param) {
  14295. snprintf(color, sizeof(color), "yellow");
  14296. } else if (node->grad) {
  14297. if (ggml_graph_find(gf, node)) {
  14298. snprintf(color, sizeof(color), "green");
  14299. } else {
  14300. snprintf(color, sizeof(color), "lightblue");
  14301. }
  14302. } else {
  14303. snprintf(color, sizeof(color), "white");
  14304. }
  14305. fprintf(fp, " \"%p\" [ "
  14306. "style = filled; fillcolor = %s; shape = record; "
  14307. "label=\"",
  14308. (void *) node, color);
  14309. if (strlen(node->name) > 0) {
  14310. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14311. } else {
  14312. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14313. }
  14314. if (node->n_dims == 2) {
  14315. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14316. } else {
  14317. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14318. }
  14319. if (node->grad) {
  14320. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14321. } else {
  14322. fprintf(fp, "\"; ]\n");
  14323. }
  14324. }
  14325. for (int i = 0; i < gb->n_leafs; i++) {
  14326. struct ggml_tensor * node = gb->leafs[i];
  14327. snprintf(color, sizeof(color), "pink");
  14328. fprintf(fp, " \"%p\" [ "
  14329. "style = filled; fillcolor = %s; shape = record; "
  14330. "label=\"<x>",
  14331. (void *) node, color);
  14332. if (strlen(node->name) > 0) {
  14333. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14334. } else {
  14335. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14336. }
  14337. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14338. if (ggml_nelements(node) < 5) {
  14339. fprintf(fp, " | (");
  14340. for (int j = 0; j < ggml_nelements(node); j++) {
  14341. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14342. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14343. }
  14344. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14345. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14346. }
  14347. else {
  14348. fprintf(fp, "#");
  14349. }
  14350. if (j < ggml_nelements(node) - 1) {
  14351. fprintf(fp, ", ");
  14352. }
  14353. }
  14354. fprintf(fp, ")");
  14355. }
  14356. fprintf(fp, "\"; ]\n");
  14357. }
  14358. for (int i = 0; i < gb->n_nodes; i++) {
  14359. struct ggml_tensor * node = gb->nodes[i];
  14360. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14361. if (node->src[j]) {
  14362. char label[16];
  14363. snprintf(label, sizeof(label), "src %d", j);
  14364. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14365. }
  14366. }
  14367. }
  14368. for (int i = 0; i < gb->n_leafs; i++) {
  14369. struct ggml_tensor * node = gb->leafs[i];
  14370. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14371. if (node->src[j]) {
  14372. char label[16];
  14373. snprintf(label, sizeof(label), "src %d", j);
  14374. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14375. }
  14376. }
  14377. }
  14378. fprintf(fp, "}\n");
  14379. fclose(fp);
  14380. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14381. }
  14382. ////////////////////////////////////////////////////////////////////////////////
  14383. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14384. int i = 0;
  14385. for (int p = 0; p < np; ++p) {
  14386. const int64_t ne = ggml_nelements(ps[p]) ;
  14387. // TODO: add function to set tensor from array
  14388. for (int64_t j = 0; j < ne; ++j) {
  14389. ggml_set_f32_1d(ps[p], j, x[i++]);
  14390. }
  14391. }
  14392. }
  14393. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14394. int i = 0;
  14395. for (int p = 0; p < np; ++p) {
  14396. const int64_t ne = ggml_nelements(ps[p]) ;
  14397. // TODO: add function to get all elements at once
  14398. for (int64_t j = 0; j < ne; ++j) {
  14399. x[i++] = ggml_get_f32_1d(ps[p], j);
  14400. }
  14401. }
  14402. }
  14403. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14404. int i = 0;
  14405. for (int p = 0; p < np; ++p) {
  14406. const int64_t ne = ggml_nelements(ps[p]) ;
  14407. // TODO: add function to get all elements at once
  14408. for (int64_t j = 0; j < ne; ++j) {
  14409. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14410. }
  14411. }
  14412. }
  14413. //
  14414. // ADAM
  14415. //
  14416. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14417. //
  14418. static enum ggml_opt_result ggml_opt_adam(
  14419. struct ggml_context * ctx,
  14420. struct ggml_opt_context * opt,
  14421. struct ggml_opt_params params,
  14422. struct ggml_tensor * f,
  14423. struct ggml_cgraph * gf,
  14424. struct ggml_cgraph * gb) {
  14425. GGML_ASSERT(ggml_is_scalar(f));
  14426. // these will store the parameters we want to optimize
  14427. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14428. int np = 0;
  14429. int nx = 0;
  14430. for (int i = 0; i < gf->n_nodes; ++i) {
  14431. if (gf->nodes[i]->is_param) {
  14432. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14433. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14434. ps[np++] = gf->nodes[i];
  14435. nx += ggml_nelements(gf->nodes[i]);
  14436. }
  14437. }
  14438. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14439. int iter = opt->iter;
  14440. ggml_opt_init(opt->ctx, opt, params, nx);
  14441. opt->iter = iter;
  14442. }
  14443. // constants
  14444. const float sched = params.adam.sched;
  14445. const float decay = params.adam.decay * sched;
  14446. const float alpha = params.adam.alpha * sched;
  14447. const float beta1 = params.adam.beta1;
  14448. const float beta2 = params.adam.beta2;
  14449. const float eps = params.adam.eps;
  14450. float * x = opt->adam.x->data; // view of the parameters
  14451. float * g1 = opt->adam.g1->data; // gradient
  14452. float * g2 = opt->adam.g2->data; // gradient squared
  14453. float * m = opt->adam.m->data; // first moment
  14454. float * v = opt->adam.v->data; // second moment
  14455. float * mh = opt->adam.mh->data; // first moment hat
  14456. float * vh = opt->adam.vh->data; // second moment hat
  14457. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14458. // update view
  14459. ggml_opt_get_params(np, ps, x);
  14460. // compute the function value
  14461. ggml_graph_reset (gf);
  14462. ggml_set_f32 (f->grad, 1.0f);
  14463. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14464. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14465. opt->adam.fx_best = opt->adam.fx_prev;
  14466. if (pf) {
  14467. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14468. }
  14469. // initialize
  14470. if (opt->just_initialized) {
  14471. opt->adam.n_no_improvement = 0;
  14472. opt->just_initialized = false;
  14473. }
  14474. float * fx_best = &opt->adam.fx_best;
  14475. float * fx_prev = &opt->adam.fx_prev;
  14476. int * n_no_improvement = &opt->adam.n_no_improvement;
  14477. int iter0 = opt->iter;
  14478. // run the optimizer
  14479. for (int t = 0; t < params.adam.n_iter; ++t) {
  14480. opt->iter = iter0 + t + 1;
  14481. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14482. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14483. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14484. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14485. for (int i = 0; i < np; ++i) {
  14486. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14487. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14488. }
  14489. const int64_t t_start_wall = ggml_time_us();
  14490. const int64_t t_start_cpu = ggml_cycles();
  14491. UNUSED(t_start_wall);
  14492. UNUSED(t_start_cpu);
  14493. {
  14494. // update the gradient
  14495. ggml_opt_get_grad(np, ps, g1);
  14496. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14497. ggml_vec_scale_f32(nx, m, beta1);
  14498. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14499. // g2 = g1^2
  14500. ggml_vec_sqr_f32 (nx, g2, g1);
  14501. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14502. ggml_vec_scale_f32(nx, v, beta2);
  14503. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14504. // m^hat = m_t / (1 - beta1^t)
  14505. // v^hat = v_t / (1 - beta2^t)
  14506. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14507. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14508. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14509. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14510. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14511. ggml_vec_cpy_f32 (nx, mh, m);
  14512. ggml_vec_cpy_f32 (nx, vh, v);
  14513. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14514. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14515. ggml_vec_sqrt_f32 (nx, vh, vh);
  14516. ggml_vec_acc1_f32 (nx, vh, eps);
  14517. ggml_vec_div_f32 (nx, mh, mh, vh);
  14518. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14519. ggml_vec_sub_f32 (nx, x, x, mh);
  14520. // update the parameters
  14521. ggml_opt_set_params(np, ps, x);
  14522. }
  14523. ggml_graph_reset (gf);
  14524. ggml_set_f32 (f->grad, 1.0f);
  14525. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14526. const float fx = ggml_get_f32_1d(f, 0);
  14527. // check convergence
  14528. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14529. GGML_PRINT_DEBUG("converged\n");
  14530. return GGML_OPT_OK;
  14531. }
  14532. // delta-based convergence test
  14533. if (pf != NULL) {
  14534. // need at least params.past iterations to start checking for convergence
  14535. if (params.past <= iter0 + t) {
  14536. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14537. if (fabsf(rate) < params.delta) {
  14538. return GGML_OPT_OK;
  14539. }
  14540. }
  14541. pf[(iter0 + t)%params.past] = fx;
  14542. }
  14543. // check for improvement
  14544. if (params.max_no_improvement > 0) {
  14545. if (fx_best[0] > fx) {
  14546. fx_best[0] = fx;
  14547. n_no_improvement[0] = 0;
  14548. } else {
  14549. ++n_no_improvement[0];
  14550. if (n_no_improvement[0] >= params.max_no_improvement) {
  14551. return GGML_OPT_OK;
  14552. }
  14553. }
  14554. }
  14555. fx_prev[0] = fx;
  14556. {
  14557. const int64_t t_end_cpu = ggml_cycles();
  14558. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14559. UNUSED(t_end_cpu);
  14560. const int64_t t_end_wall = ggml_time_us();
  14561. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14562. UNUSED(t_end_wall);
  14563. }
  14564. }
  14565. return GGML_OPT_DID_NOT_CONVERGE;
  14566. }
  14567. //
  14568. // L-BFGS
  14569. //
  14570. // the L-BFGS implementation below is based on the following implementation:
  14571. //
  14572. // https://github.com/chokkan/liblbfgs
  14573. //
  14574. struct ggml_lbfgs_iteration_data {
  14575. float alpha;
  14576. float ys;
  14577. float * s;
  14578. float * y;
  14579. };
  14580. static enum ggml_opt_result linesearch_backtracking(
  14581. struct ggml_context * ctx,
  14582. const struct ggml_opt_params * params,
  14583. int nx,
  14584. float * x,
  14585. float * fx,
  14586. float * g,
  14587. float * d,
  14588. float * step,
  14589. const float * xp,
  14590. struct ggml_tensor * f,
  14591. struct ggml_cgraph * gf,
  14592. struct ggml_cgraph * gb,
  14593. const int np,
  14594. struct ggml_tensor * ps[]) {
  14595. int count = 0;
  14596. float width = 0.0f;
  14597. float dg = 0.0f;
  14598. float finit = 0.0f;
  14599. float dginit = 0.0f;
  14600. float dgtest = 0.0f;
  14601. const float dec = 0.5f;
  14602. const float inc = 2.1f;
  14603. if (*step <= 0.f) {
  14604. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14605. }
  14606. // compute the initial gradient in the search direction
  14607. ggml_vec_dot_f32(nx, &dginit, g, d);
  14608. // make sure that d points to a descent direction
  14609. if (0 < dginit) {
  14610. return GGML_LINESEARCH_FAIL;
  14611. }
  14612. // initialize local variables
  14613. finit = *fx;
  14614. dgtest = params->lbfgs.ftol*dginit;
  14615. while (true) {
  14616. ggml_vec_cpy_f32(nx, x, xp);
  14617. ggml_vec_mad_f32(nx, x, d, *step);
  14618. // evaluate the function and gradient values
  14619. {
  14620. ggml_opt_set_params(np, ps, x);
  14621. ggml_graph_reset (gf);
  14622. ggml_set_f32 (f->grad, 1.0f);
  14623. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14624. ggml_opt_get_grad(np, ps, g);
  14625. *fx = ggml_get_f32_1d(f, 0);
  14626. }
  14627. ++count;
  14628. if (*fx > finit + (*step)*dgtest) {
  14629. width = dec;
  14630. } else {
  14631. // Armijo condition is satisfied
  14632. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14633. return count;
  14634. }
  14635. ggml_vec_dot_f32(nx, &dg, g, d);
  14636. // check the Wolfe condition
  14637. if (dg < params->lbfgs.wolfe * dginit) {
  14638. width = inc;
  14639. } else {
  14640. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14641. // regular Wolfe conditions
  14642. return count;
  14643. }
  14644. if(dg > -params->lbfgs.wolfe*dginit) {
  14645. width = dec;
  14646. } else {
  14647. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14648. return count;
  14649. }
  14650. return count;
  14651. }
  14652. }
  14653. if (*step < params->lbfgs.min_step) {
  14654. return GGML_LINESEARCH_MINIMUM_STEP;
  14655. }
  14656. if (*step > params->lbfgs.max_step) {
  14657. return GGML_LINESEARCH_MAXIMUM_STEP;
  14658. }
  14659. if (params->lbfgs.max_linesearch <= count) {
  14660. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14661. }
  14662. (*step) *= width;
  14663. }
  14664. return GGML_LINESEARCH_FAIL;
  14665. }
  14666. static enum ggml_opt_result ggml_opt_lbfgs(
  14667. struct ggml_context * ctx,
  14668. struct ggml_opt_context * opt,
  14669. struct ggml_opt_params params,
  14670. struct ggml_tensor * f,
  14671. struct ggml_cgraph * gf,
  14672. struct ggml_cgraph * gb) {
  14673. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14674. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14675. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14676. return GGML_OPT_INVALID_WOLFE;
  14677. }
  14678. }
  14679. const int m = params.lbfgs.m;
  14680. // these will store the parameters we want to optimize
  14681. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14682. int np = 0;
  14683. int nx = 0;
  14684. for (int i = 0; i < gf->n_nodes; ++i) {
  14685. if (gf->nodes[i]->is_param) {
  14686. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14687. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14688. ps[np++] = gf->nodes[i];
  14689. nx += ggml_nelements(gf->nodes[i]);
  14690. }
  14691. }
  14692. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14693. int iter = opt->iter;
  14694. ggml_opt_init(ctx, opt, params, nx);
  14695. opt->iter = iter;
  14696. }
  14697. float * x = opt->lbfgs.x->data; // current parameters
  14698. float * xp = opt->lbfgs.xp->data; // previous parameters
  14699. float * g = opt->lbfgs.g->data; // current gradient
  14700. float * gp = opt->lbfgs.gp->data; // previous gradient
  14701. float * d = opt->lbfgs.d->data; // search direction
  14702. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14703. float fx = 0.0f; // cost function value
  14704. float xnorm = 0.0f; // ||x||
  14705. float gnorm = 0.0f; // ||g||
  14706. // initialize x from the graph nodes
  14707. ggml_opt_get_params(np, ps, x);
  14708. // the L-BFGS memory
  14709. float * lm_alpha = opt->lbfgs.lmal->data;
  14710. float * lm_ys = opt->lbfgs.lmys->data;
  14711. float * lm_s = opt->lbfgs.lms->data;
  14712. float * lm_y = opt->lbfgs.lmy->data;
  14713. // evaluate the function value and its gradient
  14714. {
  14715. ggml_opt_set_params(np, ps, x);
  14716. ggml_graph_reset (gf);
  14717. ggml_set_f32 (f->grad, 1.0f);
  14718. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14719. ggml_opt_get_grad(np, ps, g);
  14720. fx = ggml_get_f32_1d(f, 0);
  14721. }
  14722. // search direction = -gradient
  14723. ggml_vec_neg_f32(nx, d, g);
  14724. // ||x||, ||g||
  14725. ggml_vec_norm_f32(nx, &xnorm, x);
  14726. ggml_vec_norm_f32(nx, &gnorm, g);
  14727. if (xnorm < 1.0f) {
  14728. xnorm = 1.0f;
  14729. }
  14730. // already optimized
  14731. if (gnorm/xnorm <= params.lbfgs.eps) {
  14732. return GGML_OPT_OK;
  14733. }
  14734. if (opt->just_initialized) {
  14735. if (pf) {
  14736. pf[0] = fx;
  14737. }
  14738. opt->lbfgs.fx_best = fx;
  14739. // initial step
  14740. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14741. opt->lbfgs.j = 0;
  14742. opt->lbfgs.k = 1;
  14743. opt->lbfgs.end = 0;
  14744. opt->lbfgs.n_no_improvement = 0;
  14745. opt->just_initialized = false;
  14746. }
  14747. float * fx_best = &opt->lbfgs.fx_best;
  14748. float * step = &opt->lbfgs.step;
  14749. int * j = &opt->lbfgs.j;
  14750. int * k = &opt->lbfgs.k;
  14751. int * end = &opt->lbfgs.end;
  14752. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14753. int ls = 0;
  14754. int bound = 0;
  14755. float ys = 0.0f;
  14756. float yy = 0.0f;
  14757. float beta = 0.0f;
  14758. int it = 0;
  14759. while (true) {
  14760. // store the current position and gradient vectors
  14761. ggml_vec_cpy_f32(nx, xp, x);
  14762. ggml_vec_cpy_f32(nx, gp, g);
  14763. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14764. if (ls < 0) {
  14765. // linesearch failed - go back to the previous point and return
  14766. ggml_vec_cpy_f32(nx, x, xp);
  14767. ggml_vec_cpy_f32(nx, g, gp);
  14768. return ls;
  14769. }
  14770. ggml_vec_norm_f32(nx, &xnorm, x);
  14771. ggml_vec_norm_f32(nx, &gnorm, g);
  14772. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14773. if (xnorm < 1.0f) {
  14774. xnorm = 1.0f;
  14775. }
  14776. if (gnorm/xnorm <= params.lbfgs.eps) {
  14777. // converged
  14778. return GGML_OPT_OK;
  14779. }
  14780. // delta-based convergence test
  14781. if (pf != NULL) {
  14782. // need at least params.past iterations to start checking for convergence
  14783. if (params.past <= k[0]) {
  14784. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14785. if (fabsf(rate) < params.delta) {
  14786. return GGML_OPT_OK;
  14787. }
  14788. }
  14789. pf[k[0]%params.past] = fx;
  14790. }
  14791. // check for improvement
  14792. if (params.max_no_improvement > 0) {
  14793. if (fx < fx_best[0]) {
  14794. fx_best[0] = fx;
  14795. n_no_improvement[0] = 0;
  14796. } else {
  14797. n_no_improvement[0]++;
  14798. if (n_no_improvement[0] >= params.max_no_improvement) {
  14799. return GGML_OPT_OK;
  14800. }
  14801. }
  14802. }
  14803. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14804. // reached the maximum number of iterations
  14805. return GGML_OPT_DID_NOT_CONVERGE;
  14806. }
  14807. // update vectors s and y:
  14808. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14809. // y_{k+1} = g_{k+1} - g_{k}.
  14810. //
  14811. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14812. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14813. // compute scalars ys and yy:
  14814. // ys = y^t \cdot s -> 1 / \rho.
  14815. // yy = y^t \cdot y.
  14816. //
  14817. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14818. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14819. lm_ys[end[0]] = ys;
  14820. // find new search direction
  14821. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14822. bound = (m <= k[0]) ? m : k[0];
  14823. k[0]++;
  14824. it++;
  14825. end[0] = (end[0] + 1)%m;
  14826. // initialize search direction with -g
  14827. ggml_vec_neg_f32(nx, d, g);
  14828. j[0] = end[0];
  14829. for (int i = 0; i < bound; ++i) {
  14830. j[0] = (j[0] + m - 1) % m;
  14831. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14832. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14833. lm_alpha[j[0]] /= lm_ys[j[0]];
  14834. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14835. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14836. }
  14837. ggml_vec_scale_f32(nx, d, ys/yy);
  14838. for (int i = 0; i < bound; ++i) {
  14839. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14840. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14841. beta /= lm_ys[j[0]];
  14842. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14843. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14844. j[0] = (j[0] + 1)%m;
  14845. }
  14846. step[0] = 1.0;
  14847. }
  14848. return GGML_OPT_DID_NOT_CONVERGE;
  14849. }
  14850. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14851. struct ggml_opt_params result;
  14852. switch (type) {
  14853. case GGML_OPT_ADAM:
  14854. {
  14855. result = (struct ggml_opt_params) {
  14856. .type = GGML_OPT_ADAM,
  14857. .n_threads = 1,
  14858. .past = 0,
  14859. .delta = 1e-5f,
  14860. .max_no_improvement = 100,
  14861. .print_forward_graph = true,
  14862. .print_backward_graph = true,
  14863. .adam = {
  14864. .n_iter = 10000,
  14865. .sched = 1.000f,
  14866. .decay = 0.001f,
  14867. .alpha = 0.001f,
  14868. .beta1 = 0.9f,
  14869. .beta2 = 0.999f,
  14870. .eps = 1e-8f,
  14871. .eps_f = 1e-5f,
  14872. .eps_g = 1e-3f,
  14873. },
  14874. };
  14875. } break;
  14876. case GGML_OPT_LBFGS:
  14877. {
  14878. result = (struct ggml_opt_params) {
  14879. .type = GGML_OPT_LBFGS,
  14880. .n_threads = 1,
  14881. .past = 0,
  14882. .delta = 1e-5f,
  14883. .max_no_improvement = 0,
  14884. .print_forward_graph = true,
  14885. .print_backward_graph = true,
  14886. .lbfgs = {
  14887. .m = 6,
  14888. .n_iter = 100,
  14889. .max_linesearch = 20,
  14890. .eps = 1e-5f,
  14891. .ftol = 1e-4f,
  14892. .wolfe = 0.9f,
  14893. .min_step = 1e-20f,
  14894. .max_step = 1e+20f,
  14895. .linesearch = GGML_LINESEARCH_DEFAULT,
  14896. },
  14897. };
  14898. } break;
  14899. }
  14900. return result;
  14901. }
  14902. GGML_API void ggml_opt_init(
  14903. struct ggml_context * ctx,
  14904. struct ggml_opt_context * opt,
  14905. struct ggml_opt_params params,
  14906. int64_t nx) {
  14907. opt->ctx = ctx;
  14908. opt->params = params;
  14909. opt->iter = 0;
  14910. opt->nx = nx;
  14911. opt->just_initialized = true;
  14912. switch (opt->params.type) {
  14913. case GGML_OPT_ADAM:
  14914. {
  14915. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14916. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14917. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14918. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14919. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14920. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14921. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14922. opt->adam.pf = params.past > 0
  14923. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14924. : NULL;
  14925. ggml_set_zero(opt->adam.x);
  14926. ggml_set_zero(opt->adam.g1);
  14927. ggml_set_zero(opt->adam.g2);
  14928. ggml_set_zero(opt->adam.m);
  14929. ggml_set_zero(opt->adam.v);
  14930. ggml_set_zero(opt->adam.mh);
  14931. ggml_set_zero(opt->adam.vh);
  14932. if (opt->adam.pf) {
  14933. ggml_set_zero(opt->adam.pf);
  14934. }
  14935. } break;
  14936. case GGML_OPT_LBFGS:
  14937. {
  14938. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14939. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14940. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14941. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14942. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14943. opt->lbfgs.pf = params.past > 0
  14944. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14945. : NULL;
  14946. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14947. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14948. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14949. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14950. ggml_set_zero(opt->lbfgs.x);
  14951. ggml_set_zero(opt->lbfgs.xp);
  14952. ggml_set_zero(opt->lbfgs.g);
  14953. ggml_set_zero(opt->lbfgs.gp);
  14954. ggml_set_zero(opt->lbfgs.d);
  14955. if (opt->lbfgs.pf) {
  14956. ggml_set_zero(opt->lbfgs.pf);
  14957. }
  14958. ggml_set_zero(opt->lbfgs.lmal);
  14959. ggml_set_zero(opt->lbfgs.lmys);
  14960. ggml_set_zero(opt->lbfgs.lms);
  14961. ggml_set_zero(opt->lbfgs.lmy);
  14962. } break;
  14963. }
  14964. }
  14965. enum ggml_opt_result ggml_opt(
  14966. struct ggml_context * ctx,
  14967. struct ggml_opt_params params,
  14968. struct ggml_tensor * f) {
  14969. bool free_ctx = false;
  14970. if (ctx == NULL) {
  14971. struct ggml_init_params params_ctx = {
  14972. .mem_size = 16*1024*1024,
  14973. .mem_buffer = NULL,
  14974. .no_alloc = false,
  14975. };
  14976. ctx = ggml_init(params_ctx);
  14977. if (ctx == NULL) {
  14978. return GGML_OPT_NO_CONTEXT;
  14979. }
  14980. free_ctx = true;
  14981. }
  14982. enum ggml_opt_result result = GGML_OPT_OK;
  14983. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14984. ggml_opt_init(ctx, opt, params, 0);
  14985. result = ggml_opt_resume(ctx, opt, f);
  14986. if (free_ctx) {
  14987. ggml_free(ctx);
  14988. }
  14989. return result;
  14990. }
  14991. enum ggml_opt_result ggml_opt_resume(
  14992. struct ggml_context * ctx,
  14993. struct ggml_opt_context * opt,
  14994. struct ggml_tensor * f) {
  14995. // build forward + backward compute graphs
  14996. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14997. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14998. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14999. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15000. *gf = ggml_build_forward (f);
  15001. *gb = ggml_build_backward(ctx, gf, true);
  15002. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15003. }
  15004. enum ggml_opt_result ggml_opt_resume_g(
  15005. struct ggml_context * ctx,
  15006. struct ggml_opt_context * opt,
  15007. struct ggml_tensor * f,
  15008. struct ggml_cgraph * gf,
  15009. struct ggml_cgraph * gb) {
  15010. // build forward + backward compute graphs
  15011. enum ggml_opt_result result = GGML_OPT_OK;
  15012. switch (opt->params.type) {
  15013. case GGML_OPT_ADAM:
  15014. {
  15015. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15016. } break;
  15017. case GGML_OPT_LBFGS:
  15018. {
  15019. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15020. } break;
  15021. }
  15022. if (opt->params.print_forward_graph) {
  15023. ggml_graph_print (gf);
  15024. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15025. }
  15026. if (opt->params.print_backward_graph) {
  15027. ggml_graph_print (gb);
  15028. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15029. }
  15030. return result;
  15031. }
  15032. ////////////////////////////////////////////////////////////////////////////////
  15033. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15034. assert(k % QK4_0 == 0);
  15035. const int nb = k / QK4_0;
  15036. for (int b = 0; b < n; b += k) {
  15037. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15038. quantize_row_q4_0_reference(src + b, y, k);
  15039. for (int i = 0; i < nb; i++) {
  15040. for (int j = 0; j < QK4_0; j += 2) {
  15041. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15042. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15043. hist[vi0]++;
  15044. hist[vi1]++;
  15045. }
  15046. }
  15047. }
  15048. return (n/QK4_0*sizeof(block_q4_0));
  15049. }
  15050. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15051. assert(k % QK4_1 == 0);
  15052. const int nb = k / QK4_1;
  15053. for (int b = 0; b < n; b += k) {
  15054. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15055. quantize_row_q4_1_reference(src + b, y, k);
  15056. for (int i = 0; i < nb; i++) {
  15057. for (int j = 0; j < QK4_1; j += 2) {
  15058. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15059. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15060. hist[vi0]++;
  15061. hist[vi1]++;
  15062. }
  15063. }
  15064. }
  15065. return (n/QK4_1*sizeof(block_q4_1));
  15066. }
  15067. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15068. assert(k % QK5_0 == 0);
  15069. const int nb = k / QK5_0;
  15070. for (int b = 0; b < n; b += k) {
  15071. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15072. quantize_row_q5_0_reference(src + b, y, k);
  15073. for (int i = 0; i < nb; i++) {
  15074. uint32_t qh;
  15075. memcpy(&qh, &y[i].qh, sizeof(qh));
  15076. for (int j = 0; j < QK5_0; j += 2) {
  15077. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15078. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15079. // cast to 16 bins
  15080. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15081. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15082. hist[vi0]++;
  15083. hist[vi1]++;
  15084. }
  15085. }
  15086. }
  15087. return (n/QK5_0*sizeof(block_q5_0));
  15088. }
  15089. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15090. assert(k % QK5_1 == 0);
  15091. const int nb = k / QK5_1;
  15092. for (int b = 0; b < n; b += k) {
  15093. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15094. quantize_row_q5_1_reference(src + b, y, k);
  15095. for (int i = 0; i < nb; i++) {
  15096. uint32_t qh;
  15097. memcpy(&qh, &y[i].qh, sizeof(qh));
  15098. for (int j = 0; j < QK5_1; j += 2) {
  15099. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15100. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15101. // cast to 16 bins
  15102. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15103. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15104. hist[vi0]++;
  15105. hist[vi1]++;
  15106. }
  15107. }
  15108. }
  15109. return (n/QK5_1*sizeof(block_q5_1));
  15110. }
  15111. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15112. assert(k % QK8_0 == 0);
  15113. const int nb = k / QK8_0;
  15114. for (int b = 0; b < n; b += k) {
  15115. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15116. quantize_row_q8_0_reference(src + b, y, k);
  15117. for (int i = 0; i < nb; i++) {
  15118. for (int j = 0; j < QK8_0; ++j) {
  15119. const int8_t vi = y[i].qs[j];
  15120. hist[vi/16 + 8]++;
  15121. }
  15122. }
  15123. }
  15124. return (n/QK8_0*sizeof(block_q8_0));
  15125. }
  15126. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15127. size_t result = 0;
  15128. switch (type) {
  15129. case GGML_TYPE_Q4_0:
  15130. {
  15131. GGML_ASSERT(start % QK4_0 == 0);
  15132. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15133. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15134. } break;
  15135. case GGML_TYPE_Q4_1:
  15136. {
  15137. GGML_ASSERT(start % QK4_1 == 0);
  15138. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15139. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15140. } break;
  15141. case GGML_TYPE_Q5_0:
  15142. {
  15143. GGML_ASSERT(start % QK5_0 == 0);
  15144. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15145. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15146. } break;
  15147. case GGML_TYPE_Q5_1:
  15148. {
  15149. GGML_ASSERT(start % QK5_1 == 0);
  15150. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15151. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15152. } break;
  15153. case GGML_TYPE_Q8_0:
  15154. {
  15155. GGML_ASSERT(start % QK8_0 == 0);
  15156. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15157. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15158. } break;
  15159. #ifdef GGML_USE_K_QUANTS
  15160. case GGML_TYPE_Q2_K:
  15161. {
  15162. GGML_ASSERT(start % QK_K == 0);
  15163. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15164. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15165. } break;
  15166. case GGML_TYPE_Q3_K:
  15167. {
  15168. GGML_ASSERT(start % QK_K == 0);
  15169. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15170. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15171. } break;
  15172. case GGML_TYPE_Q4_K:
  15173. {
  15174. GGML_ASSERT(start % QK_K == 0);
  15175. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15176. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15177. } break;
  15178. case GGML_TYPE_Q5_K:
  15179. {
  15180. GGML_ASSERT(start % QK_K == 0);
  15181. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15182. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15183. } break;
  15184. case GGML_TYPE_Q6_K:
  15185. {
  15186. GGML_ASSERT(start % QK_K == 0);
  15187. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15188. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15189. } break;
  15190. #endif
  15191. case GGML_TYPE_F16:
  15192. {
  15193. int elemsize = sizeof(ggml_fp16_t);
  15194. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15195. result = n * elemsize;
  15196. } break;
  15197. case GGML_TYPE_F32:
  15198. {
  15199. int elemsize = sizeof(float);
  15200. result = n * elemsize;
  15201. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15202. } break;
  15203. default:
  15204. assert(false);
  15205. }
  15206. return result;
  15207. }
  15208. ////////////////////////////////////////////////////////////////////////////////
  15209. int ggml_cpu_has_avx(void) {
  15210. #if defined(__AVX__)
  15211. return 1;
  15212. #else
  15213. return 0;
  15214. #endif
  15215. }
  15216. int ggml_cpu_has_avx2(void) {
  15217. #if defined(__AVX2__)
  15218. return 1;
  15219. #else
  15220. return 0;
  15221. #endif
  15222. }
  15223. int ggml_cpu_has_avx512(void) {
  15224. #if defined(__AVX512F__)
  15225. return 1;
  15226. #else
  15227. return 0;
  15228. #endif
  15229. }
  15230. int ggml_cpu_has_avx512_vbmi(void) {
  15231. #if defined(__AVX512VBMI__)
  15232. return 1;
  15233. #else
  15234. return 0;
  15235. #endif
  15236. }
  15237. int ggml_cpu_has_avx512_vnni(void) {
  15238. #if defined(__AVX512VNNI__)
  15239. return 1;
  15240. #else
  15241. return 0;
  15242. #endif
  15243. }
  15244. int ggml_cpu_has_fma(void) {
  15245. #if defined(__FMA__)
  15246. return 1;
  15247. #else
  15248. return 0;
  15249. #endif
  15250. }
  15251. int ggml_cpu_has_neon(void) {
  15252. #if defined(__ARM_NEON)
  15253. return 1;
  15254. #else
  15255. return 0;
  15256. #endif
  15257. }
  15258. int ggml_cpu_has_arm_fma(void) {
  15259. #if defined(__ARM_FEATURE_FMA)
  15260. return 1;
  15261. #else
  15262. return 0;
  15263. #endif
  15264. }
  15265. int ggml_cpu_has_f16c(void) {
  15266. #if defined(__F16C__)
  15267. return 1;
  15268. #else
  15269. return 0;
  15270. #endif
  15271. }
  15272. int ggml_cpu_has_fp16_va(void) {
  15273. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15274. return 1;
  15275. #else
  15276. return 0;
  15277. #endif
  15278. }
  15279. int ggml_cpu_has_wasm_simd(void) {
  15280. #if defined(__wasm_simd128__)
  15281. return 1;
  15282. #else
  15283. return 0;
  15284. #endif
  15285. }
  15286. int ggml_cpu_has_blas(void) {
  15287. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15288. return 1;
  15289. #else
  15290. return 0;
  15291. #endif
  15292. }
  15293. int ggml_cpu_has_cublas(void) {
  15294. #if defined(GGML_USE_CUBLAS)
  15295. return 1;
  15296. #else
  15297. return 0;
  15298. #endif
  15299. }
  15300. int ggml_cpu_has_clblast(void) {
  15301. #if defined(GGML_USE_CLBLAST)
  15302. return 1;
  15303. #else
  15304. return 0;
  15305. #endif
  15306. }
  15307. int ggml_cpu_has_gpublas(void) {
  15308. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15309. }
  15310. int ggml_cpu_has_sse3(void) {
  15311. #if defined(__SSE3__)
  15312. return 1;
  15313. #else
  15314. return 0;
  15315. #endif
  15316. }
  15317. int ggml_cpu_has_vsx(void) {
  15318. #if defined(__POWER9_VECTOR__)
  15319. return 1;
  15320. #else
  15321. return 0;
  15322. #endif
  15323. }
  15324. ////////////////////////////////////////////////////////////////////////////////