convert_hf_to_gguf.py 449 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. else:
  173. weight_map = {}
  174. else:
  175. weight_map = {}
  176. for part_name in part_names:
  177. logger.info(f"gguf: indexing model part '{part_name}'")
  178. ctx: ContextManager[Any]
  179. if is_safetensors:
  180. from safetensors import safe_open
  181. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. if self.lazy:
  189. data = model_part.get_slice(name)
  190. data_gen = lambda data=data: LazyTorchTensor.from_safetensors_slice(data) # noqa: E731
  191. else:
  192. data = model_part.get_tensor(name)
  193. data_gen = lambda data=data: data # noqa: E731
  194. else:
  195. data = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor) -> Tensor:
  231. scale = scale.float()
  232. if (weight_block_size := quant_config.get("weight_block_size")):
  233. # TODO: make sure it's a list of integers
  234. for i, size in enumerate(weight_block_size):
  235. scale = scale.repeat_interleave(size, i)
  236. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  237. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  238. return weight.float() * scale
  239. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  240. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  241. bits = quant_config["bits"]
  242. assert bits in (2, 3, 4, 8)
  243. assert qweight.dtype == qzeros.dtype
  244. maxq = (2 ** bits) - 1
  245. weight = None
  246. zeros = None
  247. pack_dtype_bits = qweight.dtype.itemsize * 8
  248. if bits in [2, 4, 8]:
  249. pack_factor = pack_dtype_bits // bits
  250. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  251. if self.lazy:
  252. wf = LazyTorchTensor.from_eager(wf)
  253. zeros = torch.bitwise_right_shift(
  254. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  255. wf.unsqueeze(0)
  256. ).to(torch.int16 if bits == 8 else torch.int8)
  257. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  258. weight = torch.bitwise_and(
  259. torch.bitwise_right_shift(
  260. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  261. wf.unsqueeze(-1)
  262. ).to(torch.int16 if bits == 8 else torch.int8),
  263. maxq
  264. )
  265. elif bits == 3:
  266. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  267. assert weight is not None
  268. assert zeros is not None
  269. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  270. # gptq_v2 doesn't need to offset zeros
  271. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  272. zeros += 1
  273. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  274. if quant_method == "bitnet":
  275. for name in self.model_tensors.keys():
  276. if name.endswith(".weight_scale"):
  277. weight_name = name.removesuffix("_scale")
  278. w = self.model_tensors[weight_name]
  279. s = self.model_tensors[name]
  280. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  281. tensors_to_remove.append(name)
  282. elif quant_method == "fp8":
  283. for name in self.model_tensors.keys():
  284. if name.endswith(".weight_scale_inv"):
  285. weight_name = name.removesuffix("_scale_inv")
  286. w = self.model_tensors[weight_name]
  287. s = self.model_tensors[name]
  288. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s())
  289. tensors_to_remove.append(name)
  290. elif quant_method == "gptq":
  291. for name in self.model_tensors.keys():
  292. if name.endswith(".qweight"):
  293. base_name = name.removesuffix(".qweight")
  294. g_idx = self.model_tensors[base_name + ".g_idx"]
  295. qweight = self.model_tensors[base_name + ".qweight"]
  296. qzeros = self.model_tensors[base_name + ".qzeros"]
  297. scales = self.model_tensors[base_name + ".scales"]
  298. new_tensors[base_name + ".weight"] = (
  299. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  300. g(), w(), z(), s()
  301. )
  302. )
  303. tensors_to_remove += [
  304. base_name + n
  305. for n in (
  306. ".g_idx",
  307. ".qzeros",
  308. ".qweight",
  309. ".scales",
  310. )
  311. ]
  312. else:
  313. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  314. for name in tensors_to_remove:
  315. if name in self.model_tensors:
  316. del self.model_tensors[name]
  317. for name, value in new_tensors.items():
  318. self.model_tensors[name] = value
  319. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  320. for name, gen in self.model_tensors.items():
  321. yield name, gen()
  322. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  323. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  324. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  325. name: str = gguf.TENSOR_NAMES[key]
  326. if "{bid}" in name:
  327. assert bid is not None
  328. name = name.format(bid=bid)
  329. return name + suffix
  330. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  331. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  332. return False
  333. key_name: str = gguf.TENSOR_NAMES[key]
  334. if "{bid}" in key_name:
  335. if bid is None:
  336. return False
  337. key_name = key_name.format(bid=bid)
  338. else:
  339. if bid is not None:
  340. return False
  341. return name == (key_name + suffix)
  342. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  343. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  344. if new_name is None:
  345. raise ValueError(f"Can not map tensor {name!r}")
  346. return new_name
  347. def set_gguf_parameters(self):
  348. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  350. del bid # unused
  351. return [(self.map_tensor_name(name), data_torch)]
  352. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  353. del name, new_name, bid, n_dims # unused
  354. return False
  355. # some models need extra generated tensors (like rope_freqs)
  356. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  357. return ()
  358. def prepare_tensors(self):
  359. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  360. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  361. # we don't need these
  362. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  363. continue
  364. old_dtype = data_torch.dtype
  365. # convert any unsupported data types to float32
  366. if data_torch.dtype not in (torch.float16, torch.float32):
  367. data_torch = data_torch.to(torch.float32)
  368. # use the first number-like part of the tensor name as the block id
  369. bid = None
  370. for part in name.split("."):
  371. if part.isdecimal():
  372. bid = int(part)
  373. break
  374. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  375. # TODO: why do we squeeze here?
  376. # data = data_torch.squeeze().numpy()
  377. data = data_torch.numpy()
  378. n_dims = len(data.shape)
  379. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  380. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  381. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  382. data_qtype = gguf.GGMLQuantizationType.F32
  383. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  384. # Some tensor types are always in float32
  385. if data_qtype is False and (
  386. any(
  387. self.match_model_tensor_name(new_name, key, bid)
  388. for key in (
  389. gguf.MODEL_TENSOR.FFN_GATE_INP,
  390. gguf.MODEL_TENSOR.POS_EMBD,
  391. gguf.MODEL_TENSOR.TOKEN_TYPES,
  392. gguf.MODEL_TENSOR.SSM_CONV1D,
  393. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  394. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  395. gguf.MODEL_TENSOR.TIME_MIX_W1,
  396. gguf.MODEL_TENSOR.TIME_MIX_W2,
  397. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  398. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  399. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  400. gguf.MODEL_TENSOR.POSNET_NORM1,
  401. gguf.MODEL_TENSOR.POSNET_NORM2,
  402. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  403. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  404. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  405. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  406. )
  407. )
  408. or not new_name.endswith(".weight")
  409. ):
  410. data_qtype = gguf.GGMLQuantizationType.F32
  411. if data_qtype is False and any(
  412. self.match_model_tensor_name(new_name, key, bid)
  413. for key in (
  414. gguf.MODEL_TENSOR.TOKEN_EMBD,
  415. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  416. gguf.MODEL_TENSOR.OUTPUT,
  417. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  418. gguf.MODEL_TENSOR.LAUREL_L,
  419. gguf.MODEL_TENSOR.LAUREL_R,
  420. )
  421. ):
  422. if self.ftype in (
  423. gguf.LlamaFileType.MOSTLY_TQ1_0,
  424. gguf.LlamaFileType.MOSTLY_TQ2_0,
  425. ):
  426. # TODO: use Q4_K and Q6_K
  427. data_qtype = gguf.GGMLQuantizationType.F16
  428. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  429. if isinstance(data_qtype, bool):
  430. if self.ftype == gguf.LlamaFileType.ALL_F32:
  431. data_qtype = gguf.GGMLQuantizationType.F32
  432. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  433. data_qtype = gguf.GGMLQuantizationType.F16
  434. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  435. data_qtype = gguf.GGMLQuantizationType.BF16
  436. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  437. data_qtype = gguf.GGMLQuantizationType.Q8_0
  438. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  439. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  440. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  441. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  442. else:
  443. raise ValueError(f"Unknown file type: {self.ftype.name}")
  444. try:
  445. data = gguf.quants.quantize(data, data_qtype)
  446. except gguf.QuantError as e:
  447. logger.warning("%s, %s", e, "falling back to F16")
  448. data_qtype = gguf.GGMLQuantizationType.F16
  449. data = gguf.quants.quantize(data, data_qtype)
  450. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  451. # reverse shape to make it similar to the internal ggml dimension order
  452. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  453. # n_dims is implicit in the shape
  454. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  455. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  456. def set_type(self):
  457. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  458. def prepare_metadata(self, vocab_only: bool):
  459. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  460. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  461. # If we are using HF model id, set the metadata name to the model id
  462. if self.remote_hf_model_id:
  463. self.metadata.name = self.remote_hf_model_id
  464. # Fallback to model directory name if metadata name is still missing
  465. if self.metadata.name is None:
  466. self.metadata.name = self.dir_model.name
  467. # Generate parameter weight class (useful for leader boards) if not yet determined
  468. if self.metadata.size_label is None and total_params > 0:
  469. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  470. self.set_type()
  471. logger.info("Set meta model")
  472. self.metadata.set_gguf_meta_model(self.gguf_writer)
  473. logger.info("Set model parameters")
  474. self.set_gguf_parameters()
  475. logger.info("Set model quantization version")
  476. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  477. def write_vocab(self):
  478. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  479. def write(self):
  480. self.prepare_tensors()
  481. self.prepare_metadata(vocab_only=False)
  482. self.gguf_writer.write_header_to_file(path=self.fname_out)
  483. self.gguf_writer.write_kv_data_to_file()
  484. self.gguf_writer.write_tensors_to_file(progress=True)
  485. self.gguf_writer.close()
  486. @staticmethod
  487. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  488. part_names: list[str] = []
  489. for filename in os.listdir(dir_model):
  490. if filename.startswith(prefix) and filename.endswith(suffix):
  491. part_names.append(filename)
  492. part_names.sort()
  493. return part_names
  494. @staticmethod
  495. def load_hparams(dir_model: Path, is_mistral_format: bool):
  496. if is_mistral_format:
  497. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  498. config = json.load(f)
  499. return config
  500. try:
  501. # for security reason, we don't allow loading remote code by default
  502. # if a model need remote code, we will fallback to config.json
  503. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  504. except Exception as e:
  505. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  506. logger.warning("Trying to load config.json instead")
  507. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  508. config = json.load(f)
  509. if "llm_config" in config:
  510. # rename for InternVL
  511. config["text_config"] = config["llm_config"]
  512. if "thinker_config" in config:
  513. # rename for Qwen2.5-Omni
  514. config["text_config"] = config["thinker_config"]["text_config"]
  515. return config
  516. @classmethod
  517. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  518. assert names
  519. def func(modelcls: AnyModel) -> AnyModel:
  520. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  521. for name in names:
  522. cls._model_classes[model_type][name] = modelcls
  523. return modelcls
  524. return func
  525. @classmethod
  526. def print_registered_models(cls):
  527. for model_type, model_classes in cls._model_classes.items():
  528. logger.error(f"{model_type.name} models:")
  529. for name in sorted(model_classes.keys()):
  530. logger.error(f" - {name}")
  531. @classmethod
  532. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  533. try:
  534. return cls._model_classes[model_type][arch]
  535. except KeyError:
  536. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  537. class TextModel(ModelBase):
  538. model_type = ModelType.TEXT
  539. hf_arch: str
  540. def __init__(self, *args, **kwargs):
  541. super().__init__(*args, **kwargs)
  542. if not self.is_mistral_format:
  543. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  544. else:
  545. self.hf_arch = ""
  546. if "text_config" in self.hparams:
  547. # move the text_config to the root level
  548. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  549. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  550. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  551. @classmethod
  552. def __init_subclass__(cls):
  553. # can't use an abstract property, because overriding it without type errors
  554. # would require using decorated functions instead of simply defining the property
  555. if "model_arch" not in cls.__dict__:
  556. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  557. def set_vocab(self):
  558. self._set_vocab_gpt2()
  559. def prepare_metadata(self, vocab_only: bool):
  560. super().prepare_metadata(vocab_only=vocab_only)
  561. total_params = self.gguf_writer.get_total_parameter_count()[0]
  562. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  563. output_type: str = self.ftype.name.partition("_")[2]
  564. # Filename Output
  565. if self.fname_out.is_dir():
  566. # Generate default filename based on model specification and available metadata
  567. if not vocab_only:
  568. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  569. else:
  570. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  571. # Use the default filename
  572. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  573. else:
  574. # Output path is a custom defined templated filename
  575. # Note: `not is_dir()` is used because `.is_file()` will not detect
  576. # file template strings as it doesn't actually exist as a file
  577. # Process templated file name with the output ftype, useful with the "auto" ftype
  578. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  579. logger.info("Set model tokenizer")
  580. self.set_vocab()
  581. def set_gguf_parameters(self):
  582. self.gguf_writer.add_block_count(self.block_count)
  583. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  584. self.gguf_writer.add_context_length(n_ctx)
  585. logger.info(f"gguf: context length = {n_ctx}")
  586. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  587. self.gguf_writer.add_embedding_length(n_embd)
  588. logger.info(f"gguf: embedding length = {n_embd}")
  589. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  590. self.gguf_writer.add_feed_forward_length(n_ff)
  591. logger.info(f"gguf: feed forward length = {n_ff}")
  592. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  593. self.gguf_writer.add_head_count(n_head)
  594. logger.info(f"gguf: head count = {n_head}")
  595. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  596. self.gguf_writer.add_head_count_kv(n_head_kv)
  597. logger.info(f"gguf: key-value head count = {n_head_kv}")
  598. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  599. self.gguf_writer.add_rope_freq_base(rope_theta)
  600. logger.info(f"gguf: rope theta = {rope_theta}")
  601. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  602. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  603. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  604. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  605. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  606. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  607. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  608. self.gguf_writer.add_expert_count(n_experts)
  609. logger.info(f"gguf: expert count = {n_experts}")
  610. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  611. self.gguf_writer.add_expert_used_count(n_experts_used)
  612. logger.info(f"gguf: experts used count = {n_experts_used}")
  613. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  614. self.gguf_writer.add_expert_group_count(n_expert_groups)
  615. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  616. if (n_group_used := self.hparams.get("topk_group")) is not None:
  617. self.gguf_writer.add_expert_group_used_count(n_group_used)
  618. logger.info(f"gguf: expert groups used count = {n_group_used}")
  619. if (head_dim := self.hparams.get("head_dim")) is not None:
  620. self.gguf_writer.add_key_length(head_dim)
  621. self.gguf_writer.add_value_length(head_dim)
  622. self.gguf_writer.add_file_type(self.ftype)
  623. logger.info(f"gguf: file type = {self.ftype}")
  624. def write_vocab(self):
  625. if len(self.gguf_writer.tensors) != 1:
  626. raise ValueError('Splitting the vocabulary is not supported')
  627. self.prepare_metadata(vocab_only=True)
  628. self.gguf_writer.write_header_to_file(path=self.fname_out)
  629. self.gguf_writer.write_kv_data_to_file()
  630. self.gguf_writer.close()
  631. def does_token_look_special(self, token: str | bytes) -> bool:
  632. if isinstance(token, (bytes, bytearray)):
  633. token_text = token.decode(encoding="utf-8")
  634. elif isinstance(token, memoryview):
  635. token_text = token.tobytes().decode(encoding="utf-8")
  636. else:
  637. token_text = token
  638. # Some models mark some added tokens which ought to be control tokens as not special.
  639. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  640. seems_special = token_text in (
  641. "<pad>", # deepseek-coder
  642. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  643. )
  644. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  645. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  646. # TODO: should these be marked as UNUSED instead? (maybe not)
  647. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  648. return seems_special
  649. # used for GPT-2 BPE and WordPiece vocabs
  650. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  651. tokens: list[str] = []
  652. toktypes: list[int] = []
  653. from transformers import AutoTokenizer
  654. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  655. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  656. assert max(tokenizer.vocab.values()) < vocab_size
  657. tokpre = self.get_vocab_base_pre(tokenizer)
  658. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  659. added_vocab = tokenizer.get_added_vocab()
  660. added_tokens_decoder = tokenizer.added_tokens_decoder
  661. for i in range(vocab_size):
  662. if i not in reverse_vocab:
  663. tokens.append(f"[PAD{i}]")
  664. toktypes.append(gguf.TokenType.UNUSED)
  665. else:
  666. token: str = reverse_vocab[i]
  667. if token in added_vocab:
  668. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  669. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  670. if not added_tokens_decoder[i].normalized:
  671. previous_token = token
  672. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  673. if previous_token != token:
  674. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  675. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  676. toktypes.append(gguf.TokenType.CONTROL)
  677. else:
  678. # NOTE: this was added for Gemma.
  679. # Encoding and decoding the tokens above isn't sufficient for this case.
  680. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  681. toktypes.append(gguf.TokenType.USER_DEFINED)
  682. else:
  683. toktypes.append(gguf.TokenType.NORMAL)
  684. tokens.append(token)
  685. return tokens, toktypes, tokpre
  686. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  687. # do not modify it manually!
  688. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  689. # Marker: Start get_vocab_base_pre
  690. def get_vocab_base_pre(self, tokenizer) -> str:
  691. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  692. # is specific for the BPE pre-tokenizer used by the model
  693. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  694. # use in llama.cpp to implement the same pre-tokenizer
  695. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  696. chktok = tokenizer.encode(chktxt)
  697. chkhsh = sha256(str(chktok).encode()).hexdigest()
  698. logger.debug(f"chktok: {chktok}")
  699. logger.debug(f"chkhsh: {chkhsh}")
  700. res = None
  701. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  702. # or pull the latest version of the model from Huggingface
  703. # don't edit the hashes manually!
  704. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  705. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  706. res = "chatglm-bpe"
  707. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  708. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  709. res = "chatglm-bpe"
  710. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  711. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  712. res = "glm4"
  713. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  714. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  715. res = "glm4"
  716. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  717. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  718. res = "minerva-7b"
  719. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  720. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  721. res = "hunyuan"
  722. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  723. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  724. res = "hunyuan-dense"
  725. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  726. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  727. res = "falcon-h1"
  728. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  729. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  730. res = "falcon-h1"
  731. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  732. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  733. res = "falcon-h1"
  734. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  735. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  736. res = "falcon-h1"
  737. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  738. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  739. res = "kimi-k2"
  740. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  741. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  742. res = "qwen2"
  743. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  744. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  745. res = "grok-2"
  746. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  747. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  748. res = "llama-bpe"
  749. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  750. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  751. res = "deepseek-llm"
  752. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  753. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  754. res = "deepseek-coder"
  755. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  756. # ref: https://huggingface.co/tiiuae/falcon-7b
  757. res = "falcon"
  758. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  759. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  760. res = "bert-bge"
  761. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  762. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  763. res = "falcon3"
  764. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  765. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  766. res = "bert-bge-large"
  767. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  768. # ref: https://huggingface.co/mosaicml/mpt-7b
  769. res = "mpt"
  770. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  771. # ref: https://huggingface.co/bigcode/starcoder2-3b
  772. res = "starcoder"
  773. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  774. # ref: https://huggingface.co/openai-community/gpt2
  775. res = "gpt-2"
  776. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  777. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  778. res = "stablelm2"
  779. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  780. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  781. res = "refact"
  782. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  783. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  784. res = "command-r"
  785. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  786. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  787. res = "qwen2"
  788. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  789. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  790. res = "olmo"
  791. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  792. # ref: https://huggingface.co/databricks/dbrx-base
  793. res = "dbrx"
  794. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  795. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  796. res = "jina-v1-en"
  797. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  798. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  799. res = "jina-v2-en"
  800. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  801. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  802. res = "jina-v2-es"
  803. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  804. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  805. res = "jina-v2-de"
  806. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  807. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  808. res = "smaug-bpe"
  809. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  810. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  811. res = "poro-chat"
  812. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  813. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  814. res = "jina-v2-code"
  815. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  816. # ref: https://huggingface.co/LumiOpen/Viking-7B
  817. res = "viking"
  818. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  819. # ref: https://huggingface.co/core42/jais-13b
  820. res = "jais"
  821. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  822. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  823. res = "codeshell"
  824. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  825. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  826. res = "tekken"
  827. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  828. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  829. res = "smollm"
  830. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  831. # ref: https://huggingface.co/bigscience/bloom
  832. res = "bloom"
  833. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  834. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  835. res = "gpt3-finnish"
  836. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  837. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  838. res = "exaone"
  839. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  840. # ref: https://huggingface.co/microsoft/phi-2
  841. res = "phi-2"
  842. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  843. # ref: https://huggingface.co/facebook/chameleon-7b
  844. res = "chameleon"
  845. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  846. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  847. res = "roberta-bpe"
  848. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  849. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  850. res = "gigachat"
  851. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  852. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  853. res = "megrez"
  854. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  855. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  856. res = "deepseek-v3"
  857. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  858. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  859. res = "deepseek-r1-qwen"
  860. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  861. # ref: https://huggingface.co/Xenova/gpt-4o
  862. res = "gpt-4o"
  863. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  864. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  865. res = "superbpe"
  866. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  867. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  868. res = "trillion"
  869. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  870. # ref: https://huggingface.co/inclusionAI/Ling-lite
  871. res = "bailingmoe"
  872. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  873. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  874. res = "llama4"
  875. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  876. # ref: https://huggingface.co/mistral-community/pixtral-12b
  877. res = "pixtral"
  878. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  879. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  880. res = "seed-coder"
  881. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  882. # ref: https://huggingface.co/skt/A.X-4.0
  883. res = "a.x-4.0"
  884. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  885. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  886. res = "midm-2.0"
  887. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  888. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  889. res = "lfm2"
  890. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  891. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  892. res = "exaone4"
  893. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  894. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  895. res = "mellum"
  896. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  897. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  898. res = "bailingmoe2"
  899. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  900. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  901. res = "granite-docling"
  902. if res is None:
  903. logger.warning("\n")
  904. logger.warning("**************************************************************************************")
  905. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  906. logger.warning("** There are 2 possible reasons for this:")
  907. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  908. logger.warning("** - the pre-tokenization config has changed upstream")
  909. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  910. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  911. logger.warning("**")
  912. logger.warning(f"** chkhsh: {chkhsh}")
  913. logger.warning("**************************************************************************************")
  914. logger.warning("\n")
  915. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  916. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  917. logger.debug(f"chkhsh: {chkhsh}")
  918. return res
  919. # Marker: End get_vocab_base_pre
  920. def _set_vocab_none(self) -> None:
  921. self.gguf_writer.add_tokenizer_model("none")
  922. def _set_vocab_gpt2(self) -> None:
  923. tokens, toktypes, tokpre = self.get_vocab_base()
  924. self.gguf_writer.add_tokenizer_model("gpt2")
  925. self.gguf_writer.add_tokenizer_pre(tokpre)
  926. self.gguf_writer.add_token_list(tokens)
  927. self.gguf_writer.add_token_types(toktypes)
  928. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  929. special_vocab.add_to_gguf(self.gguf_writer)
  930. def _set_vocab_qwen(self):
  931. dir_model = self.dir_model
  932. hparams = self.hparams
  933. tokens: list[str] = []
  934. toktypes: list[int] = []
  935. from transformers import AutoTokenizer
  936. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  937. vocab_size = hparams["vocab_size"]
  938. assert max(tokenizer.get_vocab().values()) < vocab_size
  939. tokpre = self.get_vocab_base_pre(tokenizer)
  940. merges = []
  941. vocab = {}
  942. mergeable_ranks = tokenizer.mergeable_ranks
  943. for token, rank in mergeable_ranks.items():
  944. vocab[QwenModel.token_bytes_to_string(token)] = rank
  945. if len(token) == 1:
  946. continue
  947. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  948. assert len(merged) == 2
  949. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  950. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  951. added_vocab = tokenizer.special_tokens
  952. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  953. for i in range(vocab_size):
  954. if i not in reverse_vocab:
  955. tokens.append(f"[PAD{i}]")
  956. toktypes.append(gguf.TokenType.UNUSED)
  957. elif reverse_vocab[i] in added_vocab:
  958. tokens.append(reverse_vocab[i])
  959. toktypes.append(gguf.TokenType.CONTROL)
  960. else:
  961. tokens.append(reverse_vocab[i])
  962. toktypes.append(gguf.TokenType.NORMAL)
  963. self.gguf_writer.add_tokenizer_model("gpt2")
  964. self.gguf_writer.add_tokenizer_pre(tokpre)
  965. self.gguf_writer.add_token_list(tokens)
  966. self.gguf_writer.add_token_types(toktypes)
  967. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  968. special_vocab.merges = merges
  969. # only add special tokens when they were not already loaded from config.json
  970. if len(special_vocab.special_token_ids) == 0:
  971. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  972. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  973. # this one is usually not in config.json anyway
  974. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  975. special_vocab.add_to_gguf(self.gguf_writer)
  976. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  977. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  978. self.gguf_writer.add_tokenizer_model("llama")
  979. self.gguf_writer.add_tokenizer_pre("default")
  980. self.gguf_writer.add_token_list(tokens)
  981. self.gguf_writer.add_token_scores(scores)
  982. self.gguf_writer.add_token_types(toktypes)
  983. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  984. special_vocab.add_to_gguf(self.gguf_writer)
  985. def _create_vocab_sentencepiece(self):
  986. from sentencepiece import SentencePieceProcessor
  987. tokenizer_path = self.dir_model / 'tokenizer.model'
  988. if not tokenizer_path.is_file():
  989. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  990. tokenizer = SentencePieceProcessor()
  991. tokenizer.LoadFromFile(str(tokenizer_path))
  992. vocab_size = self.find_hparam([
  993. "vocab_size_per_layer_input", # gemma3n
  994. "vocab_size",
  995. ], optional=True) or tokenizer.vocab_size()
  996. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  997. scores: list[float] = [-10000.0] * vocab_size
  998. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  999. for token_id in range(tokenizer.vocab_size()):
  1000. if token_id >= vocab_size:
  1001. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1002. break
  1003. piece = tokenizer.IdToPiece(token_id)
  1004. text = piece.encode("utf-8")
  1005. score = tokenizer.GetScore(token_id)
  1006. toktype = SentencePieceTokenTypes.NORMAL
  1007. if tokenizer.IsUnknown(token_id):
  1008. toktype = SentencePieceTokenTypes.UNKNOWN
  1009. elif tokenizer.IsControl(token_id):
  1010. toktype = SentencePieceTokenTypes.CONTROL
  1011. elif tokenizer.IsUnused(token_id):
  1012. toktype = SentencePieceTokenTypes.UNUSED
  1013. elif tokenizer.IsByte(token_id):
  1014. toktype = SentencePieceTokenTypes.BYTE
  1015. tokens[token_id] = text
  1016. scores[token_id] = score
  1017. toktypes[token_id] = toktype
  1018. added_tokens_file = self.dir_model / 'added_tokens.json'
  1019. if added_tokens_file.is_file():
  1020. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1021. added_tokens_json = json.load(f)
  1022. for key in added_tokens_json:
  1023. token_id = added_tokens_json[key]
  1024. if token_id >= vocab_size:
  1025. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1026. continue
  1027. tokens[token_id] = key.encode("utf-8")
  1028. scores[token_id] = -1000.0
  1029. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1030. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1031. if tokenizer_config_file.is_file():
  1032. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1033. tokenizer_config_json = json.load(f)
  1034. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1035. for token_id, token_data in added_tokens_decoder.items():
  1036. token_id = int(token_id)
  1037. token: str = token_data["content"]
  1038. if token_id >= vocab_size:
  1039. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1040. continue
  1041. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1042. if tokens[token_id] != token.encode("utf-8"):
  1043. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1044. if token_data.get("special") or self.does_token_look_special(token):
  1045. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1046. else:
  1047. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1048. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1049. scores[token_id] = -1000.0
  1050. tokens[token_id] = token.encode("utf-8")
  1051. if vocab_size > len(tokens):
  1052. pad_count = vocab_size - len(tokens)
  1053. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1054. for i in range(1, pad_count + 1):
  1055. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1056. scores.append(-1000.0)
  1057. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1058. return tokens, scores, toktypes
  1059. def _set_vocab_llama_hf(self):
  1060. vocab = gguf.LlamaHfVocab(self.dir_model)
  1061. tokens = []
  1062. scores = []
  1063. toktypes = []
  1064. for text, score, toktype in vocab.all_tokens():
  1065. tokens.append(text)
  1066. scores.append(score)
  1067. toktypes.append(toktype)
  1068. assert len(tokens) == vocab.vocab_size
  1069. self.gguf_writer.add_tokenizer_model("llama")
  1070. self.gguf_writer.add_tokenizer_pre("default")
  1071. self.gguf_writer.add_token_list(tokens)
  1072. self.gguf_writer.add_token_scores(scores)
  1073. self.gguf_writer.add_token_types(toktypes)
  1074. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1075. special_vocab.add_to_gguf(self.gguf_writer)
  1076. def _set_vocab_rwkv_world(self):
  1077. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1078. vocab_size = self.hparams.get("vocab_size", 65536)
  1079. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1080. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1081. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1082. lines = f.readlines()
  1083. for line in lines:
  1084. parts = line.split(' ')
  1085. assert len(parts) >= 3
  1086. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1087. token = token.encode("utf-8") if isinstance(token, str) else token
  1088. assert isinstance(token, bytes)
  1089. assert len(token) == token_len
  1090. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1091. tokens.append(token_text.encode("utf-8"))
  1092. toktypes.append(gguf.TokenType.NORMAL)
  1093. remainder = vocab_size - len(tokens)
  1094. assert remainder >= 0
  1095. for i in range(len(tokens), vocab_size):
  1096. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1097. toktypes.append(gguf.TokenType.UNUSED)
  1098. self.gguf_writer.add_tokenizer_model("rwkv")
  1099. self.gguf_writer.add_token_list(tokens)
  1100. self.gguf_writer.add_token_types(toktypes)
  1101. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1102. if special_vocab.chat_template is None:
  1103. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1104. if template_path.is_file():
  1105. with open(template_path, "r", encoding="utf-8") as f:
  1106. template = f.read()
  1107. else:
  1108. template = "rwkv-world"
  1109. special_vocab.chat_template = template
  1110. # hack: Add '\n\n' as the EOT token to make it chat normally
  1111. special_vocab._set_special_token("eot", 261)
  1112. # hack: Override these as they have already been set (incorrectly)
  1113. special_vocab.special_token_ids["bos"] = 0
  1114. special_vocab.special_token_ids["eos"] = 0
  1115. special_vocab.add_to_gguf(self.gguf_writer)
  1116. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1117. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1118. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1119. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1120. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1121. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1122. assert field # tokenizer model
  1123. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1124. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1125. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1126. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1127. assert field # token list
  1128. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1129. if model_name == "llama-spm":
  1130. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1131. assert field # token scores
  1132. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1133. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1134. assert field # token types
  1135. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1136. if model_name != "llama-spm":
  1137. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1138. assert field # token merges
  1139. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1140. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1141. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1142. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1143. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1144. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1145. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1146. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1147. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1148. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1149. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1150. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1151. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1152. def _try_set_pooling_type(self) -> None:
  1153. # get pooling path
  1154. pooling_path = None
  1155. module_path = self.dir_model / "modules.json"
  1156. if module_path.is_file():
  1157. with open(module_path, encoding="utf-8") as f:
  1158. modules = json.load(f)
  1159. for mod in modules:
  1160. if mod["type"] == "sentence_transformers.models.Pooling":
  1161. pooling_path = mod["path"]
  1162. break
  1163. # get pooling type
  1164. if pooling_path is not None:
  1165. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1166. pooling = json.load(f)
  1167. if pooling["pooling_mode_mean_tokens"]:
  1168. pooling_type = gguf.PoolingType.MEAN
  1169. elif pooling["pooling_mode_cls_token"]:
  1170. pooling_type = gguf.PoolingType.CLS
  1171. elif pooling["pooling_mode_lasttoken"]:
  1172. pooling_type = gguf.PoolingType.LAST
  1173. else:
  1174. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1175. self.gguf_writer.add_pooling_type(pooling_type)
  1176. def _set_vocab_interns1(self):
  1177. tokens: list[str] = []
  1178. toktypes: list[int] = []
  1179. from transformers import AutoTokenizer
  1180. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1181. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1182. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1183. assert max(vocab.values()) < vocab_size
  1184. tokpre = self.get_vocab_base_pre(tokenizer)
  1185. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1186. added_vocab = tokenizer.get_added_vocab()
  1187. added_tokens_decoder = tokenizer.added_tokens_decoder
  1188. for i in range(vocab_size):
  1189. if i not in reverse_vocab:
  1190. tokens.append(f"[PAD{i}]")
  1191. toktypes.append(gguf.TokenType.UNUSED)
  1192. else:
  1193. token: str = reverse_vocab[i]
  1194. if token in added_vocab:
  1195. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1196. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1197. if not added_tokens_decoder[i].normalized:
  1198. previous_token = token
  1199. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1200. if previous_token != token:
  1201. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1202. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1203. toktypes.append(gguf.TokenType.CONTROL)
  1204. else:
  1205. toktypes.append(gguf.TokenType.USER_DEFINED)
  1206. else:
  1207. toktypes.append(gguf.TokenType.NORMAL)
  1208. tokens.append(token)
  1209. self.gguf_writer.add_tokenizer_model("gpt2")
  1210. self.gguf_writer.add_tokenizer_pre(tokpre)
  1211. self.gguf_writer.add_token_list(tokens)
  1212. self.gguf_writer.add_token_types(toktypes)
  1213. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1214. special_vocab._set_special_token("bos", 151643)
  1215. special_vocab.add_to_gguf(self.gguf_writer)
  1216. class MmprojModel(ModelBase):
  1217. model_type = ModelType.MMPROJ
  1218. model_arch = gguf.MODEL_ARCH.MMPROJ
  1219. preprocessor_config: dict[str, Any]
  1220. global_config: dict[str, Any]
  1221. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1222. has_vision_encoder: bool = True # by default
  1223. has_audio_encoder: bool = False
  1224. # for models having multiple encoders, we need to separate their hparams
  1225. hparams_vision: dict[str, Any] | None = None
  1226. hparams_audio: dict[str, Any] | None = None
  1227. def __init__(self, *args, **kwargs):
  1228. super().__init__(*args, **kwargs)
  1229. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1230. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1231. # get n_embd of the text model
  1232. if not self.is_mistral_format:
  1233. if "text_config" not in self.hparams:
  1234. self.hparams["text_config"] = {}
  1235. if "audio_config" not in self.hparams:
  1236. self.hparams["audio_config"] = {}
  1237. text_config = {**self.hparams, **self.hparams["text_config"]}
  1238. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1239. else:
  1240. text_config = {
  1241. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1242. }
  1243. self.n_embd_text = text_config.get("hidden_dim", 0)
  1244. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1245. # move vision config to the top level, while preserving the original hparams in global_config
  1246. import copy
  1247. self.global_config = copy.deepcopy(self.hparams)
  1248. self.hparams_vision = self.get_vision_config()
  1249. self.hparams_audio = self.get_audio_config()
  1250. if self.hparams_vision is None and self.hparams_audio is None:
  1251. raise ValueError("vision_config / audio_config not found in hparams")
  1252. # for compat with vision-only models
  1253. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1254. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1255. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1256. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1257. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1258. # load preprocessor config
  1259. self.preprocessor_config = {}
  1260. if not self.is_mistral_format:
  1261. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1262. self.preprocessor_config = json.load(f)
  1263. def get_vision_config(self) -> dict[str, Any] | None:
  1264. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1265. return self.global_config.get(config_name)
  1266. def get_audio_config(self) -> dict[str, Any] | None:
  1267. return self.global_config.get("audio_config")
  1268. def set_type(self):
  1269. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1270. def prepare_metadata(self, vocab_only: bool):
  1271. super().prepare_metadata(vocab_only=vocab_only)
  1272. output_type: str = self.ftype.name.partition("_")[2]
  1273. if self.fname_out.is_dir():
  1274. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1275. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1276. else:
  1277. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1278. def set_gguf_parameters(self):
  1279. self.gguf_writer.add_file_type(self.ftype)
  1280. if self.has_vision_encoder:
  1281. self.gguf_writer.add_clip_has_vision_encoder(True)
  1282. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1283. # vision config
  1284. self.image_size = self.find_vparam(["image_size"])
  1285. self.gguf_writer.add_vision_image_size(self.image_size)
  1286. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1287. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1288. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1289. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1290. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1291. # preprocessor config
  1292. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1293. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1294. self.gguf_writer.add_vision_image_mean(image_mean)
  1295. self.gguf_writer.add_vision_image_std(image_std)
  1296. if self.has_audio_encoder:
  1297. self.gguf_writer.add_clip_has_audio_encoder(True)
  1298. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1299. # audio config
  1300. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1301. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1302. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1303. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1304. if not self.has_vision_encoder and not self.has_audio_encoder:
  1305. raise ValueError("MmprojModel must have either vision or audio encoder")
  1306. def write_vocab(self):
  1307. raise ValueError("MmprojModel does not support vocab writing")
  1308. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1309. assert self.hparams_vision is not None
  1310. return self._find_param(self.hparams_vision, keys, optional)
  1311. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1312. assert self.hparams_audio is not None
  1313. return self._find_param(self.hparams_audio, keys, optional)
  1314. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1315. key = next((k for k in keys if k in obj), None)
  1316. if key is not None:
  1317. return obj[key]
  1318. if optional:
  1319. return None
  1320. raise KeyError(f"could not find any of: {keys}")
  1321. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1322. del bid, name, n_dims # unused
  1323. if ".patch_embd.weight" in new_name:
  1324. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1325. return False
  1326. @ModelBase.register("GPTNeoXForCausalLM")
  1327. class GPTNeoXModel(TextModel):
  1328. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1329. def set_gguf_parameters(self):
  1330. block_count = self.hparams["num_hidden_layers"]
  1331. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1332. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1333. self.gguf_writer.add_block_count(block_count)
  1334. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1335. self.gguf_writer.add_rope_dimension_count(
  1336. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1337. )
  1338. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1339. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1340. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1342. del bid # unused
  1343. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1344. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1345. tensors: list[tuple[str, Tensor]] = []
  1346. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1347. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1348. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1349. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1350. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1351. data_torch = torch.cat(
  1352. (
  1353. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1354. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1355. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1356. ),
  1357. dim=0,
  1358. )
  1359. logger.info("re-format attention.linear_qkv.weight")
  1360. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1361. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1362. data_torch = torch.cat(
  1363. (
  1364. qkv_bias[:, 0, :].reshape((n_embed,)),
  1365. qkv_bias[:, 1, :].reshape((n_embed,)),
  1366. qkv_bias[:, 2, :].reshape((n_embed,)),
  1367. ),
  1368. dim=0,
  1369. )
  1370. logger.info("re-format attention.linear_qkv.bias")
  1371. tensors.append((self.map_tensor_name(name), data_torch))
  1372. return tensors
  1373. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1374. class BloomModel(TextModel):
  1375. model_arch = gguf.MODEL_ARCH.BLOOM
  1376. def set_gguf_parameters(self):
  1377. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1378. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1379. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1380. self.gguf_writer.add_embedding_length(n_embed)
  1381. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1382. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1383. self.gguf_writer.add_head_count(n_head)
  1384. self.gguf_writer.add_head_count_kv(n_head)
  1385. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1386. self.gguf_writer.add_file_type(self.ftype)
  1387. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1388. del bid # unused
  1389. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1390. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1391. name = re.sub(r'transformer\.', '', name)
  1392. tensors: list[tuple[str, Tensor]] = []
  1393. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1394. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1395. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1396. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1397. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1398. data_torch = torch.cat(
  1399. (
  1400. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1401. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1402. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1403. ),
  1404. dim=0,
  1405. )
  1406. logger.info("re-format attention.linear_qkv.weight")
  1407. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1408. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1409. data_torch = torch.cat(
  1410. (
  1411. qkv_bias[:, 0, :].reshape((n_embed,)),
  1412. qkv_bias[:, 1, :].reshape((n_embed,)),
  1413. qkv_bias[:, 2, :].reshape((n_embed,)),
  1414. ),
  1415. dim=0,
  1416. )
  1417. logger.info("re-format attention.linear_qkv.bias")
  1418. tensors.append((self.map_tensor_name(name), data_torch))
  1419. return tensors
  1420. @ModelBase.register("MPTForCausalLM")
  1421. class MPTModel(TextModel):
  1422. model_arch = gguf.MODEL_ARCH.MPT
  1423. def set_vocab(self):
  1424. try:
  1425. self._set_vocab_gpt2()
  1426. except Exception:
  1427. # Fallback for SEA-LION model
  1428. self._set_vocab_sentencepiece()
  1429. self.gguf_writer.add_add_bos_token(False)
  1430. self.gguf_writer.add_pad_token_id(3)
  1431. self.gguf_writer.add_eos_token_id(1)
  1432. self.gguf_writer.add_unk_token_id(0)
  1433. def set_gguf_parameters(self):
  1434. block_count = self.hparams["n_layers"]
  1435. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1436. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1437. self.gguf_writer.add_block_count(block_count)
  1438. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1439. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1440. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1441. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1442. self.gguf_writer.add_layer_norm_eps(1e-5)
  1443. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1444. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1445. if self.hparams["attn_config"]["alibi"]:
  1446. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1447. else:
  1448. self.gguf_writer.add_max_alibi_bias(0.0)
  1449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1450. del bid # unused
  1451. if "scales" in name:
  1452. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1453. new_name = new_name.replace("scales", "act.scales")
  1454. else:
  1455. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1456. return [(new_name, data_torch)]
  1457. @ModelBase.register("OrionForCausalLM")
  1458. class OrionModel(TextModel):
  1459. model_arch = gguf.MODEL_ARCH.ORION
  1460. def set_vocab(self):
  1461. self._set_vocab_sentencepiece()
  1462. def set_gguf_parameters(self):
  1463. block_count = self.hparams["num_hidden_layers"]
  1464. head_count = self.hparams["num_attention_heads"]
  1465. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1466. ctx_length = 0
  1467. if "max_sequence_length" in self.hparams:
  1468. ctx_length = self.hparams["max_sequence_length"]
  1469. elif "max_position_embeddings" in self.hparams:
  1470. ctx_length = self.hparams["max_position_embeddings"]
  1471. elif "model_max_length" in self.hparams:
  1472. ctx_length = self.hparams["model_max_length"]
  1473. else:
  1474. raise ValueError("gguf: can not find ctx length parameter.")
  1475. self.gguf_writer.add_file_type(self.ftype)
  1476. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1477. self.gguf_writer.add_context_length(ctx_length)
  1478. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1479. self.gguf_writer.add_block_count(block_count)
  1480. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1481. self.gguf_writer.add_head_count(head_count)
  1482. self.gguf_writer.add_head_count_kv(head_count_kv)
  1483. # note: config provides rms norm but it is actually layer norm
  1484. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1485. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1486. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1487. class BaichuanModel(TextModel):
  1488. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1489. def set_vocab(self):
  1490. self._set_vocab_sentencepiece()
  1491. def set_gguf_parameters(self):
  1492. block_count = self.hparams["num_hidden_layers"]
  1493. head_count = self.hparams["num_attention_heads"]
  1494. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1495. ctx_length = 0
  1496. if "max_sequence_length" in self.hparams:
  1497. ctx_length = self.hparams["max_sequence_length"]
  1498. elif "max_position_embeddings" in self.hparams:
  1499. ctx_length = self.hparams["max_position_embeddings"]
  1500. elif "model_max_length" in self.hparams:
  1501. ctx_length = self.hparams["model_max_length"]
  1502. else:
  1503. raise ValueError("gguf: can not find ctx length parameter.")
  1504. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1505. self.gguf_writer.add_context_length(ctx_length)
  1506. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1507. self.gguf_writer.add_block_count(block_count)
  1508. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1509. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1510. self.gguf_writer.add_head_count(head_count)
  1511. self.gguf_writer.add_head_count_kv(head_count_kv)
  1512. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1513. self.gguf_writer.add_file_type(self.ftype)
  1514. rope_scaling = self.hparams.get("rope_scaling") or {}
  1515. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1516. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1517. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1518. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1519. head_count = self.hparams["num_attention_heads"]
  1520. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1521. tensors: list[tuple[str, Tensor]] = []
  1522. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1523. logger.info(f"Unpacking and permuting layer {bid}")
  1524. tensors = [
  1525. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1526. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1527. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1528. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1529. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1530. self._reverse_hf_part(data_torch, 2)),
  1531. ]
  1532. else:
  1533. tensors = [(self.map_tensor_name(name), data_torch)]
  1534. return tensors
  1535. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1536. if n_kv_head is not None and n_head != n_kv_head:
  1537. n_head //= n_kv_head
  1538. return (
  1539. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1540. .swapaxes(1, 2)
  1541. .reshape(weights.shape)
  1542. )
  1543. def _reverse_hf_permute_part(
  1544. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1545. ) -> Tensor:
  1546. r = weights.shape[0] // 3
  1547. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1548. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1549. r = weights.shape[0] // 3
  1550. return weights[r * n_part:r * n_part + r, ...]
  1551. @ModelBase.register("XverseForCausalLM")
  1552. class XverseModel(TextModel):
  1553. model_arch = gguf.MODEL_ARCH.XVERSE
  1554. def set_vocab(self):
  1555. assert (self.dir_model / "tokenizer.json").is_file()
  1556. dir_model = self.dir_model
  1557. hparams = self.hparams
  1558. tokens: list[bytes] = []
  1559. toktypes: list[int] = []
  1560. from transformers import AutoTokenizer
  1561. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1562. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1563. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1564. # because vocab_size is the count of items, and indexes start at 0.
  1565. max_vocab_index = max(tokenizer.get_vocab().values())
  1566. if max_vocab_index >= vocab_size:
  1567. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1568. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1569. added_vocab = tokenizer.get_added_vocab()
  1570. for token_id in range(vocab_size):
  1571. token_text = reverse_vocab[token_id].encode('utf-8')
  1572. # replace "\x00" to string with length > 0
  1573. if token_text == b"\x00":
  1574. toktype = gguf.TokenType.BYTE # special
  1575. token_text = f"<{token_text}>".encode('utf-8')
  1576. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1577. toktype = gguf.TokenType.BYTE # special
  1578. elif reverse_vocab[token_id] in added_vocab:
  1579. if tokenizer.added_tokens_decoder[token_id].special:
  1580. toktype = gguf.TokenType.CONTROL
  1581. else:
  1582. toktype = gguf.TokenType.USER_DEFINED
  1583. else:
  1584. toktype = gguf.TokenType.NORMAL
  1585. tokens.append(token_text)
  1586. toktypes.append(toktype)
  1587. self.gguf_writer.add_tokenizer_model("llama")
  1588. self.gguf_writer.add_tokenizer_pre("default")
  1589. self.gguf_writer.add_token_list(tokens)
  1590. self.gguf_writer.add_token_types(toktypes)
  1591. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1592. special_vocab.add_to_gguf(self.gguf_writer)
  1593. def set_gguf_parameters(self):
  1594. block_count = self.hparams["num_hidden_layers"]
  1595. head_count = self.hparams["num_attention_heads"]
  1596. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1597. ctx_length = 0
  1598. if "max_sequence_length" in self.hparams:
  1599. ctx_length = self.hparams["max_sequence_length"]
  1600. elif "max_position_embeddings" in self.hparams:
  1601. ctx_length = self.hparams["max_position_embeddings"]
  1602. elif "model_max_length" in self.hparams:
  1603. ctx_length = self.hparams["model_max_length"]
  1604. else:
  1605. raise ValueError("gguf: can not find ctx length parameter.")
  1606. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1607. self.gguf_writer.add_context_length(ctx_length)
  1608. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1609. self.gguf_writer.add_block_count(block_count)
  1610. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1611. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1612. self.gguf_writer.add_head_count(head_count)
  1613. self.gguf_writer.add_head_count_kv(head_count_kv)
  1614. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1615. self.gguf_writer.add_file_type(self.ftype)
  1616. rope_scaling = self.hparams.get("rope_scaling") or {}
  1617. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1618. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1619. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1620. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1621. del bid # unused
  1622. head_count = self.hparams["num_attention_heads"]
  1623. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1624. # HF models permute some of the tensors, so we need to undo that
  1625. if name.endswith("q_proj.weight"):
  1626. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1627. if name.endswith("k_proj.weight"):
  1628. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1629. return [(self.map_tensor_name(name), data_torch)]
  1630. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1631. if n_kv_head is not None and n_head != n_kv_head:
  1632. n_head //= n_kv_head
  1633. return (
  1634. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1635. .swapaxes(1, 2)
  1636. .reshape(weights.shape)
  1637. )
  1638. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1639. class FalconModel(TextModel):
  1640. model_arch = gguf.MODEL_ARCH.FALCON
  1641. def set_gguf_parameters(self):
  1642. block_count = self.hparams.get("num_hidden_layers")
  1643. if block_count is None:
  1644. block_count = self.hparams["n_layer"] # old name
  1645. n_head = self.hparams.get("num_attention_heads")
  1646. if n_head is None:
  1647. n_head = self.hparams["n_head"] # old name
  1648. n_head_kv = self.hparams.get("num_kv_heads")
  1649. if n_head_kv is None:
  1650. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1651. self.gguf_writer.add_context_length(2048) # not in config.json
  1652. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1653. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1654. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1655. self.gguf_writer.add_block_count(block_count)
  1656. self.gguf_writer.add_head_count(n_head)
  1657. self.gguf_writer.add_head_count_kv(n_head_kv)
  1658. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1659. self.gguf_writer.add_file_type(self.ftype)
  1660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1661. del bid # unused
  1662. # QKV tensor transform
  1663. # The original query_key_value tensor contains n_head_kv "kv groups",
  1664. # each consisting of n_head/n_head_kv query weights followed by one key
  1665. # and one value weight (shared by all query heads in the kv group).
  1666. # This layout makes it a big pain to work with in GGML.
  1667. # So we rearrange them here,, so that we have n_head query weights
  1668. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1669. # in contiguous fashion.
  1670. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1671. if "query_key_value" in name:
  1672. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1673. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1674. head_dim = self.hparams["hidden_size"] // n_head
  1675. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1676. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1677. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1678. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1679. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1680. return [(self.map_tensor_name(name), data_torch)]
  1681. @ModelBase.register("GPTBigCodeForCausalLM")
  1682. class StarCoderModel(TextModel):
  1683. model_arch = gguf.MODEL_ARCH.STARCODER
  1684. def set_gguf_parameters(self):
  1685. block_count = self.hparams["n_layer"]
  1686. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1687. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1688. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1689. self.gguf_writer.add_block_count(block_count)
  1690. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1691. self.gguf_writer.add_head_count_kv(1)
  1692. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1693. self.gguf_writer.add_file_type(self.ftype)
  1694. @ModelBase.register("GPTRefactForCausalLM")
  1695. class RefactModel(TextModel):
  1696. model_arch = gguf.MODEL_ARCH.REFACT
  1697. def set_vocab(self):
  1698. super().set_vocab()
  1699. # TODO: how to determine special FIM tokens automatically?
  1700. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1701. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1702. special_vocab._set_special_token("prefix", 1)
  1703. special_vocab._set_special_token("suffix", 3)
  1704. special_vocab._set_special_token("middle", 2)
  1705. special_vocab.chat_template = None # do not add it twice
  1706. special_vocab.add_to_gguf(self.gguf_writer)
  1707. def set_gguf_parameters(self):
  1708. hidden_dim = self.hparams["n_embd"]
  1709. inner_dim = 4 * hidden_dim
  1710. hidden_dim = int(2 * inner_dim / 3)
  1711. multiple_of = 256
  1712. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1713. block_count = self.hparams["n_layer"]
  1714. # refact uses Alibi. So this is from config.json which might be used by training.
  1715. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1716. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1717. self.gguf_writer.add_feed_forward_length(ff_dim)
  1718. self.gguf_writer.add_block_count(block_count)
  1719. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1720. self.gguf_writer.add_head_count_kv(1)
  1721. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1722. self.gguf_writer.add_file_type(self.ftype)
  1723. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1724. hidden_dim = self.hparams["n_embd"]
  1725. inner_dim = 4 * hidden_dim
  1726. hidden_dim = int(2 * inner_dim / 3)
  1727. multiple_of = 256
  1728. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1729. n_head = self.hparams["n_head"]
  1730. n_head_kv = 1
  1731. head_dim = self.hparams["n_embd"] // n_head
  1732. tensors: list[tuple[str, Tensor]] = []
  1733. if bid is not None:
  1734. if name == f"transformer.h.{bid}.attn.kv.weight":
  1735. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1736. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1737. elif name == f"transformer.h.{bid}.attn.q.weight":
  1738. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1739. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1740. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1741. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1742. if len(tensors) == 0:
  1743. tensors.append((self.map_tensor_name(name), data_torch))
  1744. return tensors
  1745. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1746. class StableLMModel(TextModel):
  1747. model_arch = gguf.MODEL_ARCH.STABLELM
  1748. def set_vocab(self):
  1749. if (self.dir_model / "tokenizer.json").is_file():
  1750. self._set_vocab_gpt2()
  1751. else:
  1752. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1753. self._set_vocab_qwen()
  1754. def set_gguf_parameters(self):
  1755. hparams = self.hparams
  1756. block_count = hparams["num_hidden_layers"]
  1757. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1758. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1759. self.gguf_writer.add_block_count(block_count)
  1760. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1761. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1762. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1763. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1764. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1765. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1766. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1767. self.gguf_writer.add_file_type(self.ftype)
  1768. _q_norms: list[dict[str, Tensor]] | None = None
  1769. _k_norms: list[dict[str, Tensor]] | None = None
  1770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1771. n_head = self.hparams["num_attention_heads"]
  1772. n_kv_head = self.hparams["num_key_value_heads"]
  1773. if name.find("q_layernorm.norms") != -1:
  1774. assert bid is not None
  1775. if self._q_norms is None:
  1776. self._q_norms = [{} for _ in range(self.block_count)]
  1777. self._q_norms[bid][name] = data_torch
  1778. if len(self._q_norms[bid]) >= n_head:
  1779. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1780. else:
  1781. return []
  1782. if name.find("k_layernorm.norms") != -1:
  1783. assert bid is not None
  1784. if self._k_norms is None:
  1785. self._k_norms = [{} for _ in range(self.block_count)]
  1786. self._k_norms[bid][name] = data_torch
  1787. if len(self._k_norms[bid]) >= n_kv_head:
  1788. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1789. else:
  1790. return []
  1791. return [(self.map_tensor_name(name), data_torch)]
  1792. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1793. datas: list[Tensor] = []
  1794. # extract the norms in order
  1795. for xid in range(n_head):
  1796. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1797. datas.append(norms[ename])
  1798. del norms[ename]
  1799. data_torch = torch.stack(datas, dim=0)
  1800. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1801. new_name = self.map_tensor_name(merged_name)
  1802. return [(new_name, data_torch)]
  1803. def prepare_tensors(self):
  1804. super().prepare_tensors()
  1805. if self._q_norms is not None or self._k_norms is not None:
  1806. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1807. norms = (
  1808. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1809. ) + (
  1810. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1811. )
  1812. if len(norms) > 0:
  1813. raise ValueError(f"Unprocessed norms: {norms}")
  1814. @ModelBase.register(
  1815. "LLaMAForCausalLM",
  1816. "LlamaForCausalLM",
  1817. "MistralForCausalLM",
  1818. "MixtralForCausalLM",
  1819. "VLlama3ForCausalLM",
  1820. "LlavaForConditionalGeneration",
  1821. "VoxtralForConditionalGeneration",
  1822. "LlamaModel")
  1823. class LlamaModel(TextModel):
  1824. model_arch = gguf.MODEL_ARCH.LLAMA
  1825. undo_permute = True
  1826. def __init__(self, *args, **kwargs):
  1827. super().__init__(*args, **kwargs)
  1828. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1829. if self.hf_arch == "VLlama3ForCausalLM":
  1830. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1831. def _set_vocab_mistral(self):
  1832. if not _mistral_common_installed:
  1833. raise ImportError(_mistral_import_error_msg)
  1834. vocab = MistralVocab(self.dir_model)
  1835. logger.info(
  1836. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1837. )
  1838. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1839. tokens = []
  1840. scores = []
  1841. toktypes = []
  1842. for text, score, toktype in vocab.all_tokens():
  1843. tokens.append(text)
  1844. scores.append(score)
  1845. toktypes.append(toktype)
  1846. assert len(tokens) == vocab.vocab_size, (
  1847. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1848. )
  1849. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1850. self.gguf_writer.add_tokenizer_pre("tekken")
  1851. self.gguf_writer.add_token_merges(
  1852. vocab.extract_vocab_merges_from_model()
  1853. )
  1854. logger.info(
  1855. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1856. )
  1857. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1858. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1859. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1860. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1861. self.gguf_writer.add_token_list(tokens)
  1862. self.gguf_writer.add_token_scores(scores)
  1863. self.gguf_writer.add_token_types(toktypes)
  1864. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1865. self.gguf_writer.add_add_bos_token(True)
  1866. self.gguf_writer.add_add_eos_token(False)
  1867. template_dir = Path(__file__).parent / "models/templates/"
  1868. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1869. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1870. if self.is_mistral_format:
  1871. logger.info(
  1872. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1873. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1874. )
  1875. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1876. self.gguf_writer.add_chat_template(template)
  1877. else:
  1878. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1879. def set_vocab(self):
  1880. if self.is_mistral_format:
  1881. return self._set_vocab_mistral()
  1882. path_tekken_json = self.dir_model / "tekken.json"
  1883. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1884. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1885. self._set_vocab_mistral()
  1886. try:
  1887. self._set_vocab_sentencepiece()
  1888. except FileNotFoundError:
  1889. try:
  1890. self._set_vocab_llama_hf()
  1891. except (FileNotFoundError, TypeError):
  1892. # Llama 3
  1893. self._set_vocab_gpt2()
  1894. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1895. if self.hparams.get("vocab_size", 32000) == 32016:
  1896. special_vocab = gguf.SpecialVocab(
  1897. self.dir_model, load_merges=False,
  1898. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1899. )
  1900. special_vocab._set_special_token("prefix", 32007)
  1901. special_vocab._set_special_token("suffix", 32008)
  1902. special_vocab._set_special_token("middle", 32009)
  1903. special_vocab._set_special_token("eot", 32010)
  1904. special_vocab.add_to_gguf(self.gguf_writer)
  1905. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1906. if tokenizer_config_file.is_file():
  1907. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1908. tokenizer_config_json = json.load(f)
  1909. if "add_prefix_space" in tokenizer_config_json:
  1910. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1911. # Apply to granite small models only
  1912. if self.hparams.get("vocab_size", 32000) == 49152:
  1913. self.gguf_writer.add_add_bos_token(False)
  1914. def set_gguf_parameters(self):
  1915. super().set_gguf_parameters()
  1916. hparams = self.hparams
  1917. if not self.is_mistral_format:
  1918. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1919. if (rope_dim := hparams.get("head_dim")) is None:
  1920. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1921. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1922. rope_scaling = self.hparams.get("rope_scaling") or {}
  1923. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1924. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1925. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1926. @staticmethod
  1927. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1928. if n_head_kv is not None and n_head != n_head_kv:
  1929. n_head = n_head_kv
  1930. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1931. .swapaxes(1, 2)
  1932. .reshape(weights.shape))
  1933. _experts: list[dict[str, Tensor]] | None = None
  1934. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1935. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1936. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1937. vision_prefixes = [
  1938. "vision_encoder.",
  1939. "vision_language_adapter.",
  1940. "patch_merger.",
  1941. "pre_mm_projector_norm",
  1942. ]
  1943. is_multimodal_tensor = "vision_tower" in name \
  1944. or "vision_model" in name \
  1945. or "audio_tower" in name \
  1946. or "model.connector" in name \
  1947. or "multi_modal_projector" in name \
  1948. or any(
  1949. name.startswith(prefix)
  1950. for prefix in vision_prefixes
  1951. )
  1952. if is_multimodal_tensor:
  1953. return [] # skip vision tensors
  1954. elif self.hf_arch == "LlamaModel":
  1955. name = "model." + name
  1956. elif name.startswith("model.text_model"):
  1957. name = name.replace("text_model.", "") # for SmolVLM
  1958. elif name.startswith("language_model."):
  1959. name = name.replace("language_model.", "") # for the rest
  1960. if self.undo_permute:
  1961. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1962. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1963. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1964. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1965. # process the experts separately
  1966. if name.find("block_sparse_moe.experts") != -1:
  1967. n_experts = self.hparams["num_local_experts"]
  1968. assert bid is not None
  1969. if self._experts is None:
  1970. self._experts = [{} for _ in range(self.block_count)]
  1971. self._experts[bid][name] = data_torch
  1972. if len(self._experts[bid]) >= n_experts * 3:
  1973. tensors: list[tuple[str, Tensor]] = []
  1974. # merge the experts into a single 3d tensor
  1975. for wid in ["w1", "w2", "w3"]:
  1976. datas: list[Tensor] = []
  1977. for xid in range(n_experts):
  1978. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1979. datas.append(self._experts[bid][ename])
  1980. del self._experts[bid][ename]
  1981. data_torch = torch.stack(datas, dim=0)
  1982. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1983. new_name = self.map_tensor_name(merged_name)
  1984. tensors.append((new_name, data_torch))
  1985. return tensors
  1986. else:
  1987. return []
  1988. return [(self.map_tensor_name(name), data_torch)]
  1989. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1990. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1991. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1992. base = self.hparams.get("rope_theta", 10000.0)
  1993. if (dim := self.hparams.get("head_dim")) is None:
  1994. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1995. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1996. factor = rope_scaling.get("factor", 8.0)
  1997. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1998. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1999. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2000. low_freq_wavelen = old_context_len / low_freq_factor
  2001. high_freq_wavelen = old_context_len / high_freq_factor
  2002. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2003. rope_factors = []
  2004. for freq in freqs:
  2005. wavelen = 2 * math.pi / freq
  2006. if wavelen < high_freq_wavelen:
  2007. rope_factors.append(1)
  2008. elif wavelen > low_freq_wavelen:
  2009. rope_factors.append(factor)
  2010. else:
  2011. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2012. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2013. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2014. def prepare_tensors(self):
  2015. super().prepare_tensors()
  2016. if self._experts is not None:
  2017. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2018. experts = [k for d in self._experts for k in d.keys()]
  2019. if len(experts) > 0:
  2020. raise ValueError(f"Unprocessed experts: {experts}")
  2021. @ModelBase.register("ArceeForCausalLM")
  2022. class ArceeModel(LlamaModel):
  2023. model_arch = gguf.MODEL_ARCH.ARCEE
  2024. def set_gguf_parameters(self):
  2025. super().set_gguf_parameters()
  2026. self._try_set_pooling_type()
  2027. rope_scaling = self.hparams.get("rope_scaling") or {}
  2028. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2029. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2030. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2031. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2032. @ModelBase.register(
  2033. "LlavaForConditionalGeneration", # pixtral
  2034. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2035. )
  2036. class LlavaVisionModel(MmprojModel):
  2037. img_break_tok_id = -1
  2038. use_break_tok = True
  2039. def __init__(self, *args, **kwargs):
  2040. super().__init__(*args, **kwargs)
  2041. if self.hparams.get("model_type") == "pixtral":
  2042. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2043. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2044. if self.use_break_tok:
  2045. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2046. elif self.is_mistral_format:
  2047. # hparams is already vision config here so norm_eps is only defined in global_config.
  2048. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2049. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2050. if self.use_break_tok:
  2051. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2052. else:
  2053. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2054. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2055. def get_token_id(self, token: str) -> int:
  2056. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2057. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2058. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2059. for id_, token_data in added_tokens_decoder.items():
  2060. if token_data["content"] == token:
  2061. return int(id_)
  2062. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2063. def set_gguf_parameters(self):
  2064. super().set_gguf_parameters()
  2065. hparams = self.hparams
  2066. if hparams.get("model_type") == "pixtral":
  2067. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2068. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2069. # hidden_act
  2070. if hparams["hidden_act"] == "silu":
  2071. self.gguf_writer.add_vision_use_silu(True)
  2072. elif hparams["hidden_act"] == "gelu":
  2073. self.gguf_writer.add_vision_use_gelu(True)
  2074. else:
  2075. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2076. # spatial_merge_size
  2077. if "spatial_merge_size" in self.global_config:
  2078. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2080. del bid # unused
  2081. n_head = (
  2082. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2083. )
  2084. n_kv_head = n_head
  2085. valid_prefixes = (
  2086. "multi_modal_projector.",
  2087. "vision_tower.",
  2088. "vision_encoder.",
  2089. "vision_language_adapter.",
  2090. "patch_merger.",
  2091. "pre_mm_projector_norm",
  2092. )
  2093. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2094. # process vision tensors
  2095. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2096. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2097. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2098. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2099. return [(self.map_tensor_name(name), data_torch)]
  2100. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2101. if self.img_break_tok_id > 0 and embed_key in name:
  2102. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2103. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2104. img_break_embd = data_torch[self.img_break_tok_id]
  2105. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2106. return [(self.map_tensor_name(name), img_break_embd)]
  2107. return [] # skip other tensors
  2108. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2109. class SmolVLMModel(MmprojModel):
  2110. def __init__(self, *args, **kwargs):
  2111. super().__init__(*args, **kwargs)
  2112. if self.hparams["model_type"] == "smolvlm_vision":
  2113. # fix for SmolVLM2, missing some keys in config.json
  2114. # default values are taken from transformers code
  2115. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2116. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2117. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2118. def set_gguf_parameters(self):
  2119. super().set_gguf_parameters()
  2120. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2121. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2122. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2123. self.gguf_writer.add_vision_use_gelu(True)
  2124. # Add the preprocessor longest edge size
  2125. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2126. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2127. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2128. if ".embeddings." in name:
  2129. return gguf.GGMLQuantizationType.F32
  2130. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2132. del bid # unused
  2133. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2134. if is_vision_tensor:
  2135. return [(self.map_tensor_name(name), data_torch)]
  2136. return [] # skip other tensors
  2137. @ModelBase.register(
  2138. "Llama4ForConditionalGeneration",
  2139. "Llama4ForCausalLM",
  2140. )
  2141. class Llama4Model(LlamaModel):
  2142. model_arch = gguf.MODEL_ARCH.LLAMA4
  2143. undo_permute = False
  2144. def __init__(self, *args, **kwargs):
  2145. super().__init__(*args, **kwargs)
  2146. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2147. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2148. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2149. def set_vocab(self):
  2150. self._set_vocab_gpt2()
  2151. def set_gguf_parameters(self):
  2152. super().set_gguf_parameters()
  2153. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2154. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2155. if "layer_types" in self.hparams:
  2156. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2157. # all layers are full attention (for MobileLLM), disable swa
  2158. self.gguf_writer.add_sliding_window(0)
  2159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2160. if name.startswith("language_model."):
  2161. name = name.replace("language_model.", "")
  2162. # split the gate_up into gate and up
  2163. if "gate_up_proj" in name:
  2164. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2165. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2166. dim_half = data_torch.shape[-1] // 2
  2167. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2168. return [
  2169. (self.map_tensor_name(name_gate), gate_proj_weight),
  2170. (self.map_tensor_name(name_up), up_proj_weight)
  2171. ]
  2172. if name.endswith("down_proj"):
  2173. name += ".weight"
  2174. data_torch = data_torch.transpose(-1, -2)
  2175. if "multi_modal_projector" in name or "vision_model" in name:
  2176. return []
  2177. return super().modify_tensors(data_torch, name, bid)
  2178. @ModelBase.register("Llama4ForConditionalGeneration")
  2179. class Llama4VisionModel(MmprojModel):
  2180. def set_gguf_parameters(self):
  2181. super().set_gguf_parameters()
  2182. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2183. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2184. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2185. assert self.hparams["hidden_act"] == "gelu"
  2186. self.gguf_writer.add_vision_use_gelu(True)
  2187. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2188. del bid # unused
  2189. if "multi_modal_projector" in name or "vision_model" in name:
  2190. # process vision tensors
  2191. if "positional_embedding_vlm" in name and ".weight" not in name:
  2192. name += ".weight"
  2193. if "multi_modal_projector.linear_1" in name:
  2194. # despite the name with number postfix, this is a single fully connected layer
  2195. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2196. return [(self.map_tensor_name(name), data_torch)]
  2197. return []
  2198. @ModelBase.register("Mistral3ForConditionalGeneration")
  2199. class Mistral3Model(LlamaModel):
  2200. model_arch = gguf.MODEL_ARCH.LLAMA
  2201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2202. name = name.replace("language_model.", "")
  2203. if "multi_modal_projector" in name or "vision_tower" in name:
  2204. return []
  2205. return super().modify_tensors(data_torch, name, bid)
  2206. @ModelBase.register("DeciLMForCausalLM")
  2207. class DeciModel(TextModel):
  2208. model_arch = gguf.MODEL_ARCH.DECI
  2209. @staticmethod
  2210. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2211. # DeciLM-specific code
  2212. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2213. return DeciModel._find_multiple(intermediate_size, 256)
  2214. @staticmethod
  2215. def _find_multiple(n: int, k: int) -> int:
  2216. # DeciLM-specific code
  2217. if n % k == 0:
  2218. return n
  2219. return n + k - (n % k)
  2220. def __init__(self, *args, **kwargs):
  2221. super().__init__(*args, **kwargs)
  2222. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2223. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2224. assert self.block_count == len(_block_configs)
  2225. self._num_kv_heads = list()
  2226. self._num_heads = list()
  2227. _ffn_multipliers = list()
  2228. # ***linear attention layer***
  2229. # if n_heads_in_group is None and replace_with_linear is True
  2230. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2231. # ***attention-free layer***
  2232. # if n_heads_in_group is None and replace_with_linear is False
  2233. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2234. # ***normal attention-layer***
  2235. # if n_heads_in_group is not None, then
  2236. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2237. # _num_heads[il] is num_attention_head
  2238. # ***dummy layer*** for nemotron 253B
  2239. # if n_heads_in_group is None and ffn_mult is None
  2240. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2241. for il in range(len(_block_configs)):
  2242. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2243. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2244. self._num_kv_heads.append(0)
  2245. self._num_heads.append(self.hparams["num_attention_heads"])
  2246. else:
  2247. self._num_kv_heads.append(0)
  2248. self._num_heads.append(0)
  2249. else:
  2250. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2251. self._num_heads.append(self.hparams["num_attention_heads"])
  2252. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2253. _ffn_multipliers.append(0.0)
  2254. else:
  2255. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2256. assert self.block_count == len(self._num_kv_heads)
  2257. assert self.block_count == len(self._num_heads)
  2258. assert self.block_count == len(_ffn_multipliers)
  2259. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2260. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2261. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2262. self._ffn_dims: list[int] = [
  2263. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2264. for multiplier in _ffn_multipliers
  2265. ]
  2266. def set_vocab(self):
  2267. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2268. # eos_token from '|eot_id|' to '|end_of_text|'
  2269. if self.hparams.get("vocab_size", 128256) == 128256:
  2270. tokens, toktypes, tokpre = self.get_vocab_base()
  2271. self.gguf_writer.add_tokenizer_model("gpt2")
  2272. self.gguf_writer.add_tokenizer_pre(tokpre)
  2273. self.gguf_writer.add_token_list(tokens)
  2274. self.gguf_writer.add_token_types(toktypes)
  2275. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2276. special_vocab.add_to_gguf(self.gguf_writer)
  2277. else:
  2278. # DeciLM-7B
  2279. self._set_vocab_llama_hf()
  2280. def set_gguf_parameters(self):
  2281. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2282. assert self.block_count == len(self._num_kv_heads)
  2283. assert self.block_count == len(self._num_heads)
  2284. assert self.block_count == len(self._ffn_dims)
  2285. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2286. self.gguf_writer.add_rope_freq_base(rope_theta)
  2287. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2288. self.gguf_writer.add_head_count(self._num_heads)
  2289. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2290. self.gguf_writer.add_block_count(self.block_count)
  2291. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2292. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2293. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2294. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2295. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2296. self.gguf_writer.add_file_type(self.ftype)
  2297. else: # DeciLM-7B
  2298. super().set_gguf_parameters()
  2299. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2300. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2301. assert self.block_count == len(self._num_kv_heads)
  2302. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2303. hparams = self.hparams
  2304. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2305. if (rope_dim := hparams.get("head_dim")) is None:
  2306. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2307. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2308. rope_scaling = self.hparams.get("rope_scaling") or {}
  2309. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2310. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2311. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2312. @staticmethod
  2313. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2314. if n_head_kv is not None and n_head != n_head_kv:
  2315. n_head = n_head_kv
  2316. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2317. .swapaxes(1, 2)
  2318. .reshape(weights.shape))
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. n_head = self.hparams["num_attention_heads"]
  2321. if bid is not None:
  2322. if "num_key_value_heads_per_layer" in self.hparams:
  2323. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2324. elif "block_configs" in self.hparams:
  2325. n_kv_head = self._num_kv_heads[bid]
  2326. n_head = self._num_heads[bid]
  2327. else:
  2328. n_kv_head = self.hparams.get("num_key_value_heads")
  2329. else:
  2330. n_kv_head = self.hparams.get("num_key_value_heads")
  2331. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2332. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2333. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2334. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2335. return [(self.map_tensor_name(name), data_torch)]
  2336. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2337. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2338. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2339. base = self.hparams.get("rope_theta", 10000.0)
  2340. if (dim := self.hparams.get("head_dim")) is None:
  2341. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2342. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2343. factor = rope_scaling.get("factor", 8.0)
  2344. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2345. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2346. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2347. low_freq_wavelen = old_context_len / low_freq_factor
  2348. high_freq_wavelen = old_context_len / high_freq_factor
  2349. assert low_freq_wavelen != high_freq_wavelen
  2350. rope_factors = []
  2351. for freq in freqs:
  2352. wavelen = 2 * math.pi / freq
  2353. if wavelen < high_freq_wavelen:
  2354. rope_factors.append(1)
  2355. elif wavelen > low_freq_wavelen:
  2356. rope_factors.append(factor)
  2357. else:
  2358. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2359. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2360. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2361. def prepare_tensors(self):
  2362. super().prepare_tensors()
  2363. @ModelBase.register("BitnetForCausalLM")
  2364. class BitnetModel(TextModel):
  2365. model_arch = gguf.MODEL_ARCH.BITNET
  2366. def set_vocab(self):
  2367. self._set_vocab_sentencepiece()
  2368. def set_gguf_parameters(self):
  2369. super().set_gguf_parameters()
  2370. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2371. self.gguf_writer.add_rope_scaling_factor(1.0)
  2372. def weight_quant(self, weight: Tensor) -> Tensor:
  2373. dtype = weight.dtype
  2374. weight = weight.float()
  2375. scale = weight.abs().mean().clamp(min=1e-5)
  2376. iscale = 1 / scale
  2377. # TODO: multiply by the scale directly instead of inverting it twice
  2378. # (this is also unnecessarily doubly inverted upstream)
  2379. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2380. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2381. return result.type(dtype)
  2382. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2383. new_name = self.map_tensor_name(name)
  2384. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2385. gguf.MODEL_TENSOR.ATTN_Q,
  2386. gguf.MODEL_TENSOR.ATTN_K,
  2387. gguf.MODEL_TENSOR.ATTN_V,
  2388. gguf.MODEL_TENSOR.ATTN_OUT,
  2389. gguf.MODEL_TENSOR.FFN_UP,
  2390. gguf.MODEL_TENSOR.FFN_DOWN,
  2391. gguf.MODEL_TENSOR.FFN_GATE,
  2392. ]):
  2393. # transform weight into 1/0/-1 (in fp32)
  2394. data_torch = self.weight_quant(data_torch)
  2395. yield (new_name, data_torch)
  2396. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2397. class GrokModel(TextModel):
  2398. model_arch = gguf.MODEL_ARCH.GROK
  2399. def set_vocab(self):
  2400. if (self.dir_model / 'tokenizer.model').is_file():
  2401. self._set_vocab_sentencepiece()
  2402. return
  2403. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2404. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2405. sys.exit(1)
  2406. self._set_vocab_gpt2()
  2407. def __init__(self, *args, **kwargs):
  2408. super().__init__(*args, **kwargs)
  2409. def set_gguf_parameters(self):
  2410. super().set_gguf_parameters()
  2411. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2412. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2413. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2414. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2415. if (rope_dim := self.hparams.get("head_dim")) is None:
  2416. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2417. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2418. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2419. # Treat "original" as "yarn", seems to have been a mistake
  2420. if self.hparams.get("rope_type") in ("yarn", "original"):
  2421. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2422. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2423. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2424. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2425. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2426. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2427. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2428. if temp_len := self.hparams.get("attn_temperature_len"):
  2429. self.gguf_writer.add_attn_temperature_length(temp_len)
  2430. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2431. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2432. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2433. _experts: list[dict[str, list[Tensor]]] | None = None
  2434. _cur_expert = ""
  2435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2436. tensors: list[tuple[str, Tensor]] = []
  2437. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2438. if not is_expert:
  2439. tensors.append((self.map_tensor_name(name), data_torch))
  2440. # process the experts separately
  2441. if is_expert or self._cur_expert:
  2442. n_experts = self.hparams["num_local_experts"]
  2443. assert bid is not None
  2444. if self._experts is None:
  2445. self._experts = [{} for _ in range(self.block_count)]
  2446. # concatenate split tensors
  2447. if name in self._experts[bid]:
  2448. self._cur_expert = name
  2449. self._experts[bid][name].append(data_torch)
  2450. return []
  2451. elif is_expert:
  2452. self._cur_expert = name
  2453. self._experts[bid][name] = [data_torch]
  2454. return []
  2455. else:
  2456. self._cur_expert = ""
  2457. for bid in range(self.block_count):
  2458. if len(self._experts[bid]) >= n_experts * 3:
  2459. # merge the experts into a single 3d tensor
  2460. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2461. datas: list[Tensor] = []
  2462. for xid in range(n_experts):
  2463. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2464. if ename not in self._experts[bid]:
  2465. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2466. tensor_list = self._experts[bid][ename]
  2467. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2468. del self._experts[bid][ename]
  2469. data_torch = torch.stack(datas, dim=0)
  2470. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2471. new_name = self.map_tensor_name(merged_name)
  2472. yield (new_name, data_torch)
  2473. yield from tensors
  2474. @ModelBase.register("DbrxForCausalLM")
  2475. class DbrxModel(TextModel):
  2476. model_arch = gguf.MODEL_ARCH.DBRX
  2477. def set_gguf_parameters(self):
  2478. ffn_config = self.hparams["ffn_config"]
  2479. attn_config = self.hparams["attn_config"]
  2480. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2481. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2482. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2483. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2484. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2485. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2486. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2487. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2488. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2489. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2490. self.gguf_writer.add_layer_norm_eps(1e-5)
  2491. self.gguf_writer.add_file_type(self.ftype)
  2492. logger.info(f"gguf: file type = {self.ftype}")
  2493. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2494. del bid # unused
  2495. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2496. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2497. n_embd = self.hparams["d_model"]
  2498. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2499. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2500. # But llama.cpp moe graph works differently
  2501. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2502. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2503. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2504. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2505. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2506. experts = False
  2507. for exp_tensor_name in exp_tensor_names.keys():
  2508. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2509. experts = True
  2510. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2511. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2512. data_torch = data_torch.permute(*permute_tensor)
  2513. break
  2514. # map tensor names
  2515. # In MoE models the ffn tensors are typically most of the model weights,
  2516. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2517. # Every other model has the weight names ending in .weight,
  2518. # let's assume that is the convention which is not the case for dbrx:
  2519. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2520. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2521. return [(new_name, data_torch)]
  2522. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2523. del name, new_name, bid # unused
  2524. return n_dims > 1
  2525. @ModelBase.register("MiniCPMForCausalLM")
  2526. class MiniCPMModel(TextModel):
  2527. model_arch = gguf.MODEL_ARCH.MINICPM
  2528. def set_gguf_parameters(self):
  2529. super().set_gguf_parameters()
  2530. embedding_scale = float(self.hparams["scale_emb"])
  2531. self.gguf_writer.add_embedding_scale(embedding_scale)
  2532. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2533. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2534. self.gguf_writer.add_residual_scale(residual_scale)
  2535. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2536. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2537. self.gguf_writer.add_logit_scale(logit_scale)
  2538. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2539. rope_scaling = self.hparams.get("rope_scaling") or {}
  2540. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2541. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2542. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2543. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2544. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2545. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2546. if rope_scaling is not None:
  2547. long_factors = rope_scaling.get('long_factor', None)
  2548. short_factors = rope_scaling.get('short_factor', None)
  2549. if long_factors is None or short_factors is None:
  2550. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2551. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2552. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2553. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2554. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2555. def set_vocab(self):
  2556. self._set_vocab_sentencepiece()
  2557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2558. del bid # unused
  2559. n_head = self.hparams["num_attention_heads"]
  2560. n_kv_head = self.hparams.get("num_key_value_heads")
  2561. # HF models permute some of the tensors, so we need to undo that
  2562. if name.endswith(("q_proj.weight")):
  2563. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2564. if name.endswith(("k_proj.weight")):
  2565. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2566. return [(self.map_tensor_name(name), data_torch)]
  2567. @ModelBase.register("MiniCPM3ForCausalLM")
  2568. class MiniCPM3Model(TextModel):
  2569. model_arch = gguf.MODEL_ARCH.MINICPM3
  2570. def set_gguf_parameters(self):
  2571. hparams = self.hparams
  2572. self.gguf_writer.add_file_type(self.ftype)
  2573. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2574. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2575. self.gguf_writer.add_block_count(self.block_count)
  2576. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2577. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2578. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2579. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2580. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2581. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2582. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2583. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2584. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2585. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2586. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2587. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2588. if rope_scaling is not None:
  2589. rope_dims = self.hparams["qk_rope_head_dim"]
  2590. long_factors = rope_scaling.get('long_factor', None)
  2591. short_factors = rope_scaling.get('short_factor', None)
  2592. if long_factors is None or short_factors is None:
  2593. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2594. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2595. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2596. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2597. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2598. def set_vocab(self):
  2599. self._set_vocab_sentencepiece()
  2600. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2601. if n_kv_head is not None and n_head != n_kv_head:
  2602. n_head //= n_kv_head
  2603. return (
  2604. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2605. .swapaxes(1, 2)
  2606. .reshape(weights.shape)
  2607. )
  2608. @ModelBase.register("QWenLMHeadModel")
  2609. class QwenModel(TextModel):
  2610. model_arch = gguf.MODEL_ARCH.QWEN
  2611. @staticmethod
  2612. def token_bytes_to_string(b):
  2613. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2614. byte_encoder = bytes_to_unicode()
  2615. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2616. @staticmethod
  2617. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2618. parts = [bytes([b]) for b in token]
  2619. while True:
  2620. min_idx = None
  2621. min_rank = None
  2622. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2623. rank = mergeable_ranks.get(pair[0] + pair[1])
  2624. if rank is not None and (min_rank is None or rank < min_rank):
  2625. min_idx = i
  2626. min_rank = rank
  2627. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2628. break
  2629. assert min_idx is not None
  2630. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2631. return parts
  2632. def set_vocab(self):
  2633. self._set_vocab_qwen()
  2634. def set_gguf_parameters(self):
  2635. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2636. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2637. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2638. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2639. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2640. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2641. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2642. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2643. self.gguf_writer.add_file_type(self.ftype)
  2644. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2645. class Qwen2Model(TextModel):
  2646. model_arch = gguf.MODEL_ARCH.QWEN2
  2647. def set_vocab(self):
  2648. try:
  2649. self._set_vocab_sentencepiece()
  2650. except FileNotFoundError:
  2651. self._set_vocab_gpt2()
  2652. def set_gguf_parameters(self):
  2653. super().set_gguf_parameters()
  2654. self._try_set_pooling_type()
  2655. rope_scaling = self.hparams.get("rope_scaling") or {}
  2656. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2657. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2658. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2659. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2661. if self.hf_arch == "Qwen2Model":
  2662. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2663. if "language_model." in name:
  2664. name = name.replace("language_model.", "") # for InternVL
  2665. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2666. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2667. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2668. # skip vision and audio tensors
  2669. return []
  2670. yield from super().modify_tensors(data_torch, name, bid)
  2671. @ModelBase.register("DreamModel")
  2672. class DreamModel(TextModel):
  2673. model_arch = gguf.MODEL_ARCH.DREAM
  2674. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2675. tokens: list[str] = []
  2676. toktypes: list[int] = []
  2677. from transformers import AutoTokenizer
  2678. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2679. vocab_dict = tokenizer.get_vocab()
  2680. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2681. assert max(vocab_dict.values()) < vocab_size
  2682. tokpre = self.get_vocab_base_pre(tokenizer)
  2683. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2684. added_vocab = tokenizer.get_added_vocab()
  2685. for i in range(vocab_size):
  2686. if i not in reverse_vocab:
  2687. tokens.append(f"[PAD{i}]")
  2688. toktypes.append(gguf.TokenType.UNUSED)
  2689. elif reverse_vocab[i] in added_vocab:
  2690. tokens.append(reverse_vocab[i])
  2691. # Check if it's a special token - treat special tokens as CONTROL tokens
  2692. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2693. if tokenizer.added_tokens_decoder[i].special:
  2694. toktypes.append(gguf.TokenType.CONTROL)
  2695. else:
  2696. toktypes.append(gguf.TokenType.USER_DEFINED)
  2697. else:
  2698. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2699. toktypes.append(gguf.TokenType.CONTROL)
  2700. else:
  2701. tokens.append(reverse_vocab[i])
  2702. toktypes.append(gguf.TokenType.NORMAL)
  2703. return tokens, toktypes, tokpre
  2704. def set_vocab(self):
  2705. try:
  2706. self._set_vocab_sentencepiece()
  2707. except FileNotFoundError:
  2708. self._set_vocab_gpt2()
  2709. def set_gguf_parameters(self):
  2710. super().set_gguf_parameters()
  2711. self._try_set_pooling_type()
  2712. # Dream models use non-causal attention for diffusion
  2713. self.gguf_writer.add_causal_attention(False)
  2714. # Handle RoPE scaling similar to Qwen2
  2715. rope_scaling = self.hparams.get("rope_scaling") or {}
  2716. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2717. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2718. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2719. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2720. # Add Dream-specific parameters
  2721. mask_token_id = self.hparams.get("mask_token_id")
  2722. if mask_token_id is not None:
  2723. self.gguf_writer.add_mask_token_id(mask_token_id)
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. # Dream model tensors should be mapped directly since it's the base model
  2726. yield from super().modify_tensors(data_torch, name, bid)
  2727. @ModelBase.register("LLaDAModelLM")
  2728. class LLaDAModel(TextModel):
  2729. model_arch = gguf.MODEL_ARCH.LLADA
  2730. undo_permute = True
  2731. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2732. tokens: list[str] = []
  2733. toktypes: list[int] = []
  2734. from transformers import AutoTokenizer
  2735. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2736. vocab_dict = tokenizer.get_vocab()
  2737. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2738. assert max(vocab_dict.values()) < vocab_size
  2739. tokpre = self.get_vocab_base_pre(tokenizer)
  2740. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2741. added_vocab = tokenizer.get_added_vocab()
  2742. for i in range(vocab_size):
  2743. if i not in reverse_vocab:
  2744. tokens.append(f"[PAD{i}]")
  2745. toktypes.append(gguf.TokenType.UNUSED)
  2746. elif reverse_vocab[i] in added_vocab:
  2747. tokens.append(reverse_vocab[i])
  2748. # Check if it's a special token - treat special tokens as CONTROL tokens
  2749. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2750. if tokenizer.added_tokens_decoder[i].special:
  2751. toktypes.append(gguf.TokenType.CONTROL)
  2752. else:
  2753. toktypes.append(gguf.TokenType.USER_DEFINED)
  2754. else:
  2755. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2756. toktypes.append(gguf.TokenType.CONTROL)
  2757. else:
  2758. tokens.append(reverse_vocab[i])
  2759. toktypes.append(gguf.TokenType.NORMAL)
  2760. return tokens, toktypes, tokpre
  2761. def set_vocab(self):
  2762. self._set_vocab_gpt2()
  2763. # LLaDA specific parameters
  2764. self.gguf_writer.add_add_bos_token(True)
  2765. def set_gguf_parameters(self):
  2766. super().set_gguf_parameters()
  2767. self._try_set_pooling_type()
  2768. # Add parameters similar to LlamaModel
  2769. hparams = self.hparams
  2770. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2771. if (rope_dim := hparams.get("head_dim")) is None:
  2772. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2773. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2774. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2775. # Set context length for LLaDA
  2776. context_length = self.hparams.get("max_sequence_length", 4096)
  2777. self.gguf_writer.add_context_length(context_length)
  2778. # Set embedding length (dimension size)
  2779. embedding_length = self.hparams.get("d_model", 4096)
  2780. self.gguf_writer.add_embedding_length(embedding_length)
  2781. # Set feed forward length (MLP hidden size)
  2782. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2783. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2784. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2785. self.gguf_writer.add_causal_attention(False)
  2786. # LLaDA models don't shift their logits
  2787. self.gguf_writer.add_diffusion_shift_logits(False)
  2788. @staticmethod
  2789. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2790. if n_head_kv is not None and n_head != n_head_kv:
  2791. n_head = n_head_kv
  2792. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2793. .swapaxes(1, 2)
  2794. .reshape(weights.shape))
  2795. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2796. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2797. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2798. if self.undo_permute:
  2799. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2800. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2801. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2802. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2803. # LLaDA model tensors should be mapped directly since it's the base model
  2804. yield from super().modify_tensors(data_torch, name, bid)
  2805. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2806. class Ernie4_5Model(TextModel):
  2807. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2808. def set_vocab(self):
  2809. self._set_vocab_sentencepiece()
  2810. def set_gguf_parameters(self):
  2811. super().set_gguf_parameters()
  2812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2813. num_heads = self.hparams["num_attention_heads"]
  2814. num_kv_heads = self.hparams["num_key_value_heads"]
  2815. if (head_dim := self.hparams.get("head_dim")) is None:
  2816. head_dim = self.hparams["hidden_size"] // num_heads
  2817. if "ernie." in name:
  2818. name = name.replace("ernie.", "model.")
  2819. # split the qkv weights
  2820. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2821. if "qkv_proj" in name:
  2822. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2823. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2824. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2825. total_q_dim = num_heads * head_dim
  2826. total_k_dim = num_kv_heads * head_dim
  2827. total_v_dim = num_kv_heads * head_dim
  2828. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2829. return [
  2830. (self.map_tensor_name(name_q), q_proj_weight),
  2831. (self.map_tensor_name(name_k), k_proj_weight),
  2832. (self.map_tensor_name(name_v), v_proj_weight)
  2833. ]
  2834. # split the up_gate_proj into gate and up
  2835. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2836. if "up_gate_proj" in name:
  2837. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2838. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2839. dim_half = data_torch.shape[0] // 2
  2840. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2841. return [
  2842. (self.map_tensor_name(name_gate), gate_proj_weight),
  2843. (self.map_tensor_name(name_up), up_proj_weight)
  2844. ]
  2845. return [(self.map_tensor_name(name), data_torch)]
  2846. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2847. class Ernie4_5MoeModel(Ernie4_5Model):
  2848. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2849. _experts: list[dict[str, Tensor]] | None = None
  2850. def __init__(self, *args, **kwargs):
  2851. super().__init__(*args, **kwargs)
  2852. self._experts = [{} for _ in range(self.block_count)]
  2853. def set_gguf_parameters(self):
  2854. super().set_gguf_parameters()
  2855. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2856. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2857. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2858. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2859. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2860. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2861. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2862. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2863. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2864. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2866. # Modify correction bias name as in DeepseekV2
  2867. if name.endswith("e_score_correction_bias"):
  2868. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2869. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2870. match = re.match(r"model.mtp_block.(\d+)", name)
  2871. if match:
  2872. return []
  2873. # skip all other MTP tensors for now
  2874. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2875. if match:
  2876. return []
  2877. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2878. if match:
  2879. return []
  2880. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2881. if match:
  2882. return []
  2883. # process the experts separately
  2884. if name.find("mlp.experts") != -1:
  2885. n_experts = self.hparams["moe_num_experts"]
  2886. assert bid is not None
  2887. if self._experts is None:
  2888. self._experts = [{} for _ in range(self.block_count)]
  2889. self._experts[bid][name] = data_torch
  2890. if len(self._experts[bid]) >= n_experts * 3:
  2891. tensors: list[tuple[str, Tensor]] = []
  2892. # merge the experts into a single 3d tensor
  2893. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2894. datas: list[Tensor] = []
  2895. for xid in range(n_experts):
  2896. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2897. datas.append(self._experts[bid][ename_to_retrieve])
  2898. del self._experts[bid][ename_to_retrieve]
  2899. data_torch = torch.stack(datas, dim=0)
  2900. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2901. new_name = self.map_tensor_name(merged_name)
  2902. tensors.append((new_name, data_torch))
  2903. return tensors
  2904. else:
  2905. return []
  2906. return [(self.map_tensor_name(name), data_torch)]
  2907. def prepare_tensors(self):
  2908. super().prepare_tensors()
  2909. if self._experts is not None:
  2910. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2911. experts = [k for d in self._experts for k in d.keys()]
  2912. if len(experts) > 0:
  2913. raise ValueError(f"Unprocessed experts: {experts}")
  2914. @ModelBase.register(
  2915. "Qwen2VLModel",
  2916. "Qwen2VLForConditionalGeneration",
  2917. "Qwen2_5_VLForConditionalGeneration",
  2918. "Qwen2_5OmniModel",
  2919. )
  2920. class Qwen2VLModel(TextModel):
  2921. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2922. def set_gguf_parameters(self):
  2923. super().set_gguf_parameters()
  2924. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2925. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2926. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2927. def set_vocab(self):
  2928. try:
  2929. self._set_vocab_sentencepiece()
  2930. except FileNotFoundError:
  2931. self._set_vocab_gpt2()
  2932. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2933. del bid # unused
  2934. if name.startswith("thinker."):
  2935. name = name.replace("thinker.", "")
  2936. if name.startswith("visual") or name.startswith("audio") or \
  2937. name.startswith("talker") or name.startswith("token2wav"):
  2938. # skip multimodal tensors
  2939. return []
  2940. return [(self.map_tensor_name(name), data_torch)]
  2941. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2942. class Qwen2VLVisionModel(MmprojModel):
  2943. def __init__(self, *args, **kwargs):
  2944. super().__init__(*args, **kwargs)
  2945. assert self.hparams_vision is not None
  2946. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2947. # rename config.json values
  2948. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2949. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2950. if "embed_dim" in self.hparams_vision: # qwen2vl
  2951. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2952. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2953. def set_gguf_parameters(self):
  2954. super().set_gguf_parameters()
  2955. assert self.hparams_vision is not None
  2956. hparams = self.hparams_vision
  2957. model_type = self.global_config['model_type']
  2958. if model_type == 'qwen2_vl':
  2959. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2960. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2961. if model_type == 'qwen2_5_omni':
  2962. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2963. else:
  2964. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2965. self.gguf_writer.add_vision_use_silu(True)
  2966. # find n_wa_pattern (window attention pattern)
  2967. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2968. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2969. n_wa_pattern = fullatt_block_indexes[0] + 1
  2970. # validate n_wa_pattern
  2971. for i in range(1, len(fullatt_block_indexes)):
  2972. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2973. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2974. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2975. else:
  2976. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2977. # default values below are taken from HF tranformers code
  2978. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2979. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2980. if ".position_embd." in new_name:
  2981. return gguf.GGMLQuantizationType.F32
  2982. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2984. del bid # unused
  2985. if name.startswith("visual."):
  2986. # process visual tensors
  2987. # split QKV tensors if needed
  2988. if ".qkv." in name:
  2989. if data_torch.ndim == 2: # weight
  2990. c3, _ = data_torch.shape
  2991. else: # bias
  2992. c3 = data_torch.shape[0]
  2993. assert c3 % 3 == 0
  2994. c = c3 // 3
  2995. wq = data_torch[:c]
  2996. wk = data_torch[c: c * 2]
  2997. wv = data_torch[c * 2:]
  2998. return [
  2999. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3000. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3001. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3002. ]
  3003. elif 'patch_embed.proj.weight' in name:
  3004. # split Conv3D into Conv2Ds
  3005. c1, c2, kt, kh, kw = data_torch.shape
  3006. del c1, c2, kh, kw # unused
  3007. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3008. return [
  3009. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3010. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3011. ]
  3012. else:
  3013. return [(self.map_tensor_name(name), data_torch)]
  3014. return [] # skip other tensors
  3015. @ModelBase.register("Qwen2_5OmniModel")
  3016. class Qwen25OmniModel(Qwen2VLVisionModel):
  3017. has_vision_encoder = True
  3018. has_audio_encoder = True
  3019. def __init__(self, *args, **kwargs):
  3020. super().__init__(*args, **kwargs)
  3021. assert self.hparams_audio is not None
  3022. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3023. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3024. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3025. def set_gguf_parameters(self):
  3026. super().set_gguf_parameters()
  3027. assert self.hparams_audio is not None
  3028. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3029. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3030. def get_vision_config(self) -> dict[str, Any] | None:
  3031. return self.global_config["thinker_config"].get("vision_config")
  3032. def get_audio_config(self) -> dict[str, Any] | None:
  3033. return self.global_config["thinker_config"].get("audio_config")
  3034. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3035. # SinusoidsPositionEmbedding
  3036. assert self.hparams_audio is not None
  3037. max_timescale = 10000
  3038. length = 1500
  3039. channels = self.hparams_audio["hidden_size"]
  3040. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3041. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3042. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3043. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3044. yield ("audio_tower.embed_positions.weight", pos_embd)
  3045. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3046. if ".conv" in name and ".weight" in name:
  3047. return gguf.GGMLQuantizationType.F16
  3048. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3049. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3050. if name.startswith("thinker."):
  3051. name = name.replace("thinker.", "")
  3052. if name.startswith("audio_tower"):
  3053. # process audio tensors
  3054. if "conv1.bias" in name or "conv2.bias" in name:
  3055. # transpose conv1 and conv2 bias
  3056. data_torch = data_torch.unsqueeze(-1)
  3057. if "audio_bos_eos_token" in name:
  3058. # this tensor is left unused in transformers code
  3059. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3060. return []
  3061. return [(self.map_tensor_name(name), data_torch)]
  3062. return super().modify_tensors(data_torch, name, bid)
  3063. @ModelBase.register("InternVisionModel")
  3064. class InternVisionModel(MmprojModel):
  3065. def set_gguf_parameters(self):
  3066. assert self.hparams_vision is not None
  3067. if isinstance(self.hparams_vision['image_size'], list):
  3068. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3069. if isinstance(self.hparams_vision['patch_size'], list):
  3070. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3071. super().set_gguf_parameters()
  3072. hparams = self.hparams
  3073. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3074. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3075. # hidden_act
  3076. if hparams["hidden_act"] == "silu":
  3077. self.gguf_writer.add_vision_use_silu(True)
  3078. elif hparams["hidden_act"] == "gelu":
  3079. self.gguf_writer.add_vision_use_gelu(True)
  3080. else:
  3081. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3082. # downsample_ratio
  3083. downsample_ratio = self.global_config.get("downsample_ratio")
  3084. assert downsample_ratio is not None
  3085. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3086. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3087. if ".position_embd." in new_name:
  3088. return gguf.GGMLQuantizationType.F32
  3089. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3090. def _mapping_interns1_name(self, name):
  3091. names_map = {
  3092. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3093. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3094. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3095. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3096. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3097. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3098. }
  3099. if name in names_map:
  3100. name = names_map[name]
  3101. return name
  3102. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3103. del bid # unused
  3104. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3105. # deal with intern-s1 special case
  3106. name = self._mapping_interns1_name(name)
  3107. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3108. # process visual tensors
  3109. # correct name
  3110. if name.startswith("vision_model"):
  3111. name = "vision_tower." + name
  3112. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3113. name += ".weight"
  3114. # split QKV tensors if needed
  3115. if ".qkv." in name:
  3116. if data_torch.ndim == 2: # weight
  3117. c3, _ = data_torch.shape
  3118. else: # bias
  3119. c3 = data_torch.shape[0]
  3120. assert c3 % 3 == 0
  3121. c = c3 // 3
  3122. wq = data_torch[:c]
  3123. wk = data_torch[c: c * 2]
  3124. wv = data_torch[c * 2:]
  3125. return [
  3126. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3127. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3128. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3129. ]
  3130. return [(self.map_tensor_name(name), data_torch)]
  3131. return [] # skip other tensors
  3132. @ModelBase.register("WavTokenizerDec")
  3133. class WavTokenizerDecModel(TextModel):
  3134. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3135. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3136. del bid # unused
  3137. if \
  3138. name.endswith("codebook.cluster_size") or \
  3139. name.endswith("codebook.embed_avg") or \
  3140. name.endswith("codebook.inited"):
  3141. logger.debug(f"Skipping {name!r}")
  3142. return []
  3143. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3144. return [(self.map_tensor_name(name), data_torch)]
  3145. def set_vocab(self):
  3146. self._set_vocab_none()
  3147. def set_gguf_parameters(self):
  3148. super().set_gguf_parameters()
  3149. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3150. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3151. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3152. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3153. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3154. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3155. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3156. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3157. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3158. self.gguf_writer.add_causal_attention(False)
  3159. @ModelBase.register("Qwen2MoeForCausalLM")
  3160. class Qwen2MoeModel(TextModel):
  3161. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3162. def set_gguf_parameters(self):
  3163. super().set_gguf_parameters()
  3164. if (n_experts := self.hparams.get("num_experts")) is not None:
  3165. self.gguf_writer.add_expert_count(n_experts)
  3166. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3167. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3168. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3169. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3170. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3171. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3172. # YaRN is not enabled by default
  3173. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3174. rope_scaling = self.hparams.get("rope_scaling") or {}
  3175. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3176. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3177. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3178. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3179. _experts: list[dict[str, Tensor]] | None = None
  3180. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3181. # process the experts separately
  3182. name = name.replace("language_model.", "") # InternVL
  3183. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3184. # skip visual tensors
  3185. return []
  3186. if name.find("experts") != -1:
  3187. n_experts = self.hparams["num_experts"]
  3188. assert bid is not None
  3189. if self._experts is None:
  3190. self._experts = [{} for _ in range(self.block_count)]
  3191. self._experts[bid][name] = data_torch
  3192. if len(self._experts[bid]) >= n_experts * 3:
  3193. tensors: list[tuple[str, Tensor]] = []
  3194. # merge the experts into a single 3d tensor
  3195. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3196. datas: list[Tensor] = []
  3197. for xid in range(n_experts):
  3198. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3199. datas.append(self._experts[bid][ename])
  3200. del self._experts[bid][ename]
  3201. data_torch = torch.stack(datas, dim=0)
  3202. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3203. new_name = self.map_tensor_name(merged_name)
  3204. tensors.append((new_name, data_torch))
  3205. return tensors
  3206. else:
  3207. return []
  3208. return [(self.map_tensor_name(name), data_torch)]
  3209. def prepare_tensors(self):
  3210. super().prepare_tensors()
  3211. if self._experts is not None:
  3212. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3213. experts = [k for d in self._experts for k in d.keys()]
  3214. if len(experts) > 0:
  3215. raise ValueError(f"Unprocessed experts: {experts}")
  3216. @ModelBase.register("Qwen3ForCausalLM")
  3217. class Qwen3Model(Qwen2Model):
  3218. model_arch = gguf.MODEL_ARCH.QWEN3
  3219. # extra logic for rerank models
  3220. is_rerank: bool = False
  3221. is_tied_embeddings: bool = False
  3222. token_false_id: int | None = None
  3223. token_true_id: int | None = None
  3224. def __init__(self, *args, **kwargs):
  3225. super().__init__(*args, **kwargs)
  3226. # track for intern-s1-mini
  3227. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3228. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3229. # a bit hacky, but currently the only way to detect if this is a rerank model
  3230. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3231. readme_path = self.dir_model / "README.md"
  3232. readme_text = ""
  3233. if readme_path.exists():
  3234. with readme_path.open("r", encoding="utf-8") as f:
  3235. readme_text = f.read()
  3236. if "# Qwen3-Reranker" in readme_text:
  3237. self._find_rerank_config()
  3238. def set_vocab(self):
  3239. # deal with intern-s1-mini
  3240. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3241. self._set_vocab_interns1()
  3242. return
  3243. super().set_vocab()
  3244. def _find_rerank_config(self):
  3245. from transformers import AutoTokenizer
  3246. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3247. self.is_rerank = True
  3248. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3249. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3250. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3251. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3252. assert self.token_false_id is not None and self.token_true_id is not None
  3253. def set_gguf_parameters(self):
  3254. super().set_gguf_parameters()
  3255. if self.is_rerank:
  3256. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3257. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3258. self.gguf_writer.add_chat_template([{
  3259. "name": "rerank",
  3260. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3261. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3262. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3263. }])
  3264. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3265. # extract "yes" and "no" tokens from the output lm_head tensor
  3266. false_row = data_torch[self.token_false_id]
  3267. true_row = data_torch[self.token_true_id]
  3268. return torch.stack([true_row, false_row], dim=0)
  3269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3270. if "model.vision_" in name:
  3271. # skip multimodal tensors
  3272. return []
  3273. if self.is_rerank:
  3274. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3275. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3276. if is_tied_head or is_real_head:
  3277. cls_out_head = (
  3278. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3279. self._get_cls_out_tensor(data_torch),
  3280. )
  3281. if is_tied_head:
  3282. embed = (self.map_tensor_name(name), data_torch)
  3283. return [cls_out_head, embed]
  3284. if is_real_head:
  3285. return [cls_out_head]
  3286. return super().modify_tensors(data_torch, name, bid)
  3287. @ModelBase.register("Qwen3MoeForCausalLM")
  3288. class Qwen3MoeModel(Qwen2MoeModel):
  3289. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3290. def __init__(self, *args, **kwargs):
  3291. super().__init__(*args, **kwargs)
  3292. hparams = ModelBase.load_hparams(self.dir_model, False)
  3293. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3294. def set_vocab(self):
  3295. # deal with intern-s1
  3296. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3297. self._set_vocab_interns1()
  3298. return
  3299. super().set_vocab()
  3300. @ModelBase.register("GPT2LMHeadModel")
  3301. class GPT2Model(TextModel):
  3302. model_arch = gguf.MODEL_ARCH.GPT2
  3303. def set_gguf_parameters(self):
  3304. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3305. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3306. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3307. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3308. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3309. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3310. self.gguf_writer.add_file_type(self.ftype)
  3311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3312. del bid # unused
  3313. tensors: list[tuple[str, Tensor]] = []
  3314. # we don't need these
  3315. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3316. return tensors
  3317. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3318. data_torch = data_torch.transpose(1, 0)
  3319. new_name = self.map_tensor_name(name)
  3320. tensors.append((new_name, data_torch))
  3321. return tensors
  3322. @ModelBase.register("PhiForCausalLM")
  3323. class Phi2Model(TextModel):
  3324. model_arch = gguf.MODEL_ARCH.PHI2
  3325. def set_gguf_parameters(self):
  3326. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3327. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3328. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3329. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3330. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3331. self.gguf_writer.add_embedding_length(n_embd)
  3332. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3333. self.gguf_writer.add_block_count(block_count)
  3334. self.gguf_writer.add_head_count(n_head)
  3335. self.gguf_writer.add_head_count_kv(n_head)
  3336. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3337. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3338. self.gguf_writer.add_file_type(self.ftype)
  3339. self.gguf_writer.add_add_bos_token(False)
  3340. @ModelBase.register("Phi3ForCausalLM")
  3341. class Phi3MiniModel(TextModel):
  3342. model_arch = gguf.MODEL_ARCH.PHI3
  3343. def set_vocab(self):
  3344. # Phi-4 model uses GPT2Tokenizer
  3345. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3346. if tokenizer_config_file.is_file():
  3347. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3348. tokenizer_config_json = json.load(f)
  3349. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3350. if tokenizer_class == 'GPT2Tokenizer':
  3351. return self._set_vocab_gpt2()
  3352. from sentencepiece import SentencePieceProcessor
  3353. tokenizer_path = self.dir_model / 'tokenizer.model'
  3354. if not tokenizer_path.is_file():
  3355. raise ValueError(f'Error: Missing {tokenizer_path}')
  3356. tokenizer = SentencePieceProcessor()
  3357. tokenizer.LoadFromFile(str(tokenizer_path))
  3358. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3359. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3360. scores: list[float] = [-10000.0] * vocab_size
  3361. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3362. for token_id in range(tokenizer.vocab_size()):
  3363. piece = tokenizer.IdToPiece(token_id)
  3364. text = piece.encode("utf-8")
  3365. score = tokenizer.GetScore(token_id)
  3366. toktype = SentencePieceTokenTypes.NORMAL
  3367. if tokenizer.IsUnknown(token_id):
  3368. toktype = SentencePieceTokenTypes.UNKNOWN
  3369. elif tokenizer.IsControl(token_id):
  3370. toktype = SentencePieceTokenTypes.CONTROL
  3371. elif tokenizer.IsUnused(token_id):
  3372. toktype = SentencePieceTokenTypes.UNUSED
  3373. elif tokenizer.IsByte(token_id):
  3374. toktype = SentencePieceTokenTypes.BYTE
  3375. tokens[token_id] = text
  3376. scores[token_id] = score
  3377. toktypes[token_id] = toktype
  3378. added_tokens_file = self.dir_model / 'added_tokens.json'
  3379. if added_tokens_file.is_file():
  3380. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3381. added_tokens_json = json.load(f)
  3382. for key in added_tokens_json:
  3383. token_id = added_tokens_json[key]
  3384. if token_id >= vocab_size:
  3385. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3386. continue
  3387. tokens[token_id] = key.encode("utf-8")
  3388. scores[token_id] = -1000.0
  3389. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3390. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3391. if tokenizer_config_file.is_file():
  3392. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3393. tokenizer_config_json = json.load(f)
  3394. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3395. for token_id, foken_data in added_tokens_decoder.items():
  3396. token_id = int(token_id)
  3397. token = foken_data["content"].encode("utf-8")
  3398. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3399. if tokens[token_id] != token:
  3400. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3401. tokens[token_id] = token
  3402. scores[token_id] = -1000.0
  3403. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3404. if foken_data.get("special"):
  3405. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3406. tokenizer_file = self.dir_model / 'tokenizer.json'
  3407. if tokenizer_file.is_file():
  3408. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3409. tokenizer_json = json.load(f)
  3410. added_tokens = tokenizer_json.get("added_tokens", [])
  3411. for foken_data in added_tokens:
  3412. token_id = int(foken_data["id"])
  3413. token = foken_data["content"].encode("utf-8")
  3414. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3415. if tokens[token_id] != token:
  3416. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3417. tokens[token_id] = token
  3418. scores[token_id] = -1000.0
  3419. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3420. if foken_data.get("special"):
  3421. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3422. self.gguf_writer.add_tokenizer_model("llama")
  3423. self.gguf_writer.add_tokenizer_pre("default")
  3424. self.gguf_writer.add_token_list(tokens)
  3425. self.gguf_writer.add_token_scores(scores)
  3426. self.gguf_writer.add_token_types(toktypes)
  3427. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3428. special_vocab.add_to_gguf(self.gguf_writer)
  3429. def set_gguf_parameters(self):
  3430. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3431. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3432. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3433. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3434. rms_eps = self.find_hparam(["rms_norm_eps"])
  3435. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3436. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3437. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3438. rope_dims = int(rot_pct * n_embd) // n_head
  3439. self.gguf_writer.add_context_length(max_pos_embds)
  3440. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3441. self.gguf_writer.add_embedding_length(n_embd)
  3442. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3443. self.gguf_writer.add_block_count(block_count)
  3444. self.gguf_writer.add_head_count(n_head)
  3445. self.gguf_writer.add_head_count_kv(n_head_kv)
  3446. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3447. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3448. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3449. self.gguf_writer.add_file_type(self.ftype)
  3450. sliding_window = self.hparams.get("sliding_window")
  3451. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3452. if sliding_window is None:
  3453. sliding_window = 0
  3454. self.gguf_writer.add_sliding_window(sliding_window)
  3455. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3456. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3457. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3458. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3459. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3460. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3461. rope_dims = int(rot_pct * n_embd) // n_head
  3462. # write rope scaling for long context (128k) model
  3463. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3464. if rope_scaling is None:
  3465. return
  3466. scale = max_pos_embds / orig_max_pos_embds
  3467. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3468. if len(rope_scaling_type) == 0:
  3469. raise KeyError('Missing the required key rope_scaling.type')
  3470. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3471. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3472. elif rope_scaling_type == 'yarn':
  3473. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3474. else:
  3475. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3476. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3477. long_factors = rope_scaling.get('long_factor', None)
  3478. short_factors = rope_scaling.get('short_factor', None)
  3479. if long_factors is None or short_factors is None:
  3480. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3481. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3482. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3483. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3484. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3485. @ModelBase.register("PhiMoEForCausalLM")
  3486. class PhiMoeModel(Phi3MiniModel):
  3487. model_arch = gguf.MODEL_ARCH.PHIMOE
  3488. _experts: list[dict[str, Tensor]] | None = None
  3489. def set_gguf_parameters(self):
  3490. super().set_gguf_parameters()
  3491. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3492. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3493. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3494. # process the experts separately
  3495. if name.find("block_sparse_moe.experts") != -1:
  3496. n_experts = self.hparams["num_local_experts"]
  3497. assert bid is not None
  3498. if self._experts is None:
  3499. self._experts = [{} for _ in range(self.block_count)]
  3500. self._experts[bid][name] = data_torch
  3501. if len(self._experts[bid]) >= n_experts * 3:
  3502. tensors: list[tuple[str, Tensor]] = []
  3503. # merge the experts into a single 3d tensor
  3504. for w_name in ["w1", "w2", "w3"]:
  3505. datas: list[Tensor] = []
  3506. for xid in range(n_experts):
  3507. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3508. datas.append(self._experts[bid][ename])
  3509. del self._experts[bid][ename]
  3510. data_torch = torch.stack(datas, dim=0)
  3511. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3512. new_name = self.map_tensor_name(merged_name)
  3513. tensors.append((new_name, data_torch))
  3514. return tensors
  3515. else:
  3516. return []
  3517. return [(self.map_tensor_name(name), data_torch)]
  3518. def prepare_tensors(self):
  3519. super().prepare_tensors()
  3520. if self._experts is not None:
  3521. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3522. experts = [k for d in self._experts for k in d.keys()]
  3523. if len(experts) > 0:
  3524. raise ValueError(f"Unprocessed experts: {experts}")
  3525. @ModelBase.register("PlamoForCausalLM")
  3526. class PlamoModel(TextModel):
  3527. model_arch = gguf.MODEL_ARCH.PLAMO
  3528. def set_vocab(self):
  3529. self._set_vocab_sentencepiece()
  3530. def set_gguf_parameters(self):
  3531. hparams = self.hparams
  3532. block_count = hparams["num_hidden_layers"]
  3533. self.gguf_writer.add_context_length(4096) # not in config.json
  3534. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3535. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3536. self.gguf_writer.add_block_count(block_count)
  3537. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3538. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3539. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3540. self.gguf_writer.add_file_type(self.ftype)
  3541. def shuffle_attn_q_weight(self, data_torch):
  3542. assert data_torch.size() == (5120, 5120)
  3543. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3544. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3545. data_torch = torch.reshape(data_torch, (5120, 5120))
  3546. return data_torch
  3547. def shuffle_attn_output_weight(self, data_torch):
  3548. assert data_torch.size() == (5120, 5120)
  3549. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3550. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3551. data_torch = torch.reshape(data_torch, (5120, 5120))
  3552. return data_torch
  3553. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3554. del bid # unused
  3555. new_name = self.map_tensor_name(name)
  3556. # shuffle for broadcasting of gqa in ggml_mul_mat
  3557. if new_name.endswith("attn_q.weight"):
  3558. data_torch = self.shuffle_attn_q_weight(data_torch)
  3559. elif new_name.endswith("attn_output.weight"):
  3560. data_torch = self.shuffle_attn_output_weight(data_torch)
  3561. return [(new_name, data_torch)]
  3562. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3563. class Plamo2Model(TextModel):
  3564. model_arch = gguf.MODEL_ARCH.PLAMO2
  3565. def set_vocab(self):
  3566. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3567. # We need to handle this specially
  3568. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3569. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3570. if not tokenizer_jsonl_path.is_file():
  3571. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3572. # Load tokenizer config
  3573. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3574. tokenizer_config = json.load(f)
  3575. # Load tokens from JSONL file (actually a list format)
  3576. tokens = []
  3577. scores = []
  3578. toktypes = []
  3579. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3580. for line_num, line in enumerate(f):
  3581. if line.strip():
  3582. token_data = json.loads(line)
  3583. # Format: [token, score, type, ?, ?, ?, ?]
  3584. token = token_data[0].encode("utf-8")
  3585. score = float(token_data[1])
  3586. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3587. tokens.append(token)
  3588. scores.append(score)
  3589. # Map token type strings to GGUF token types
  3590. if token_type_str == "UNKNOWN":
  3591. toktypes.append(gguf.TokenType.UNKNOWN)
  3592. elif token_type_str == "CONTROL":
  3593. toktypes.append(gguf.TokenType.CONTROL)
  3594. elif token_type_str == "BYTE":
  3595. toktypes.append(gguf.TokenType.BYTE)
  3596. else:
  3597. # Check for PLaMo-2 special tokens
  3598. token_str = token_data[0]
  3599. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3600. toktypes.append(gguf.TokenType.CONTROL)
  3601. else:
  3602. toktypes.append(gguf.TokenType.NORMAL)
  3603. vocab_size = self.hparams["vocab_size"]
  3604. if vocab_size > len(tokens):
  3605. pad_count = vocab_size - len(tokens)
  3606. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3607. for i in range(1, pad_count + 1):
  3608. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3609. scores.append(-1000.0)
  3610. toktypes.append(gguf.TokenType.UNUSED)
  3611. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3612. self.gguf_writer.add_tokenizer_model("plamo2")
  3613. self.gguf_writer.add_tokenizer_pre("default")
  3614. self.gguf_writer.add_token_list(tokens)
  3615. self.gguf_writer.add_token_scores(scores)
  3616. self.gguf_writer.add_token_types(toktypes)
  3617. # Add special tokens from config
  3618. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3619. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3620. self.gguf_writer.add_bos_token_id(token_id)
  3621. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3622. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3623. self.gguf_writer.add_eos_token_id(token_id)
  3624. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3625. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3626. self.gguf_writer.add_pad_token_id(token_id)
  3627. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3628. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3629. self.gguf_writer.add_sep_token_id(token_id)
  3630. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3631. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3632. self.gguf_writer.add_unk_token_id(token_id)
  3633. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3634. self.gguf_writer.add_eot_token_id(4)
  3635. self.gguf_writer.add_add_space_prefix(False)
  3636. def set_gguf_parameters(self):
  3637. hparams = self.hparams
  3638. block_count = hparams["num_hidden_layers"]
  3639. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3640. # Which layers are Mamba layers
  3641. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3642. # This logic matches modeling_plamo.py's is_mamba function
  3643. mamba_step = hparams.get("mamba_step", 2)
  3644. mamba_enabled = hparams.get("mamba_enabled", True)
  3645. num_key_value_heads = []
  3646. num_attention_heads = []
  3647. if mamba_enabled:
  3648. for i in range(block_count):
  3649. if block_count <= (mamba_step // 2):
  3650. # use attention in last layer
  3651. is_mamba = (i != block_count - 1)
  3652. else:
  3653. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3654. if is_mamba:
  3655. num_key_value_heads.append(0)
  3656. num_attention_heads.append(0)
  3657. else:
  3658. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3659. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3660. if num_key_value_heads and num_attention_heads:
  3661. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3662. self.gguf_writer.add_head_count(num_attention_heads)
  3663. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3664. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3665. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3666. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3667. self.gguf_writer.add_block_count(block_count)
  3668. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3669. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3670. # Mamba parameters
  3671. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3672. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3673. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3674. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3675. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3676. self.gguf_writer.add_ssm_group_count(0)
  3677. # MLP feed forward parameters (for attention layers)
  3678. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3679. self.gguf_writer.add_file_type(self.ftype)
  3680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3681. del bid # unused
  3682. if name.endswith(".A_log"):
  3683. data_torch = -torch.exp(data_torch)
  3684. elif name.endswith(".dt_bias"):
  3685. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3686. elif name.endswith(".dt_norm_weight"):
  3687. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3688. elif name.endswith(".B_norm_weight"):
  3689. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3690. elif name.endswith(".C_norm_weight"):
  3691. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3692. elif name.endswith(".k_weight"):
  3693. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3694. elif name.endswith(".q_weight"):
  3695. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3696. elif name.endswith(".conv1d.weight"):
  3697. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3698. assert data_torch.ndim == 2
  3699. elif name.endswith(".pre_mixer_norm.weight"):
  3700. data_torch += 1.0
  3701. elif name.endswith(".post_mixer_norm.weight"):
  3702. data_torch += 1.0 / 5
  3703. elif name.endswith(".pre_mlp_norm.weight"):
  3704. data_torch += 1.0
  3705. elif name.endswith(".post_mlp_norm.weight"):
  3706. data_torch += 1.0 / (5**1.5)
  3707. elif name.endswith(".norm.weight"):
  3708. data_torch += 1.0
  3709. new_name = self.map_tensor_name(name)
  3710. return [(new_name, data_torch)]
  3711. @ModelBase.register("CodeShellForCausalLM")
  3712. class CodeShellModel(TextModel):
  3713. model_arch = gguf.MODEL_ARCH.CODESHELL
  3714. def set_gguf_parameters(self):
  3715. block_count = self.hparams["n_layer"]
  3716. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3717. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3718. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3719. self.gguf_writer.add_block_count(block_count)
  3720. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3721. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3722. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3723. self.gguf_writer.add_file_type(self.ftype)
  3724. self.gguf_writer.add_rope_freq_base(10000.0)
  3725. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3726. self.gguf_writer.add_rope_scaling_factor(1.0)
  3727. @ModelBase.register("InternLM2ForCausalLM")
  3728. class InternLM2Model(TextModel):
  3729. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3730. def set_vocab(self):
  3731. # (TODO): Is there a better way?
  3732. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3733. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3734. # recognized as an empty string in C++.
  3735. from sentencepiece import SentencePieceProcessor
  3736. from sentencepiece import sentencepiece_model_pb2 as model
  3737. tokenizer_path = self.dir_model / 'tokenizer.model'
  3738. tokens: list[bytes] = []
  3739. scores: list[float] = []
  3740. toktypes: list[int] = []
  3741. if not tokenizer_path.is_file():
  3742. logger.error(f'Error: Missing {tokenizer_path}')
  3743. sys.exit(1)
  3744. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3745. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3746. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3747. tokenizer = SentencePieceProcessor()
  3748. tokenizer.LoadFromFile(str(tokenizer_path))
  3749. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3750. for token_id in range(vocab_size):
  3751. piece = tokenizer.IdToPiece(token_id)
  3752. text = piece.encode("utf-8")
  3753. score = tokenizer.GetScore(token_id)
  3754. if text == b"\x00":
  3755. # (TODO): fixme
  3756. # Hack here and replace the \x00 characters.
  3757. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3758. text = "🐉".encode("utf-8")
  3759. toktype = SentencePieceTokenTypes.NORMAL
  3760. if tokenizer.IsUnknown(token_id):
  3761. toktype = SentencePieceTokenTypes.UNKNOWN
  3762. elif tokenizer.IsControl(token_id):
  3763. toktype = SentencePieceTokenTypes.CONTROL
  3764. elif tokenizer.IsUnused(token_id):
  3765. toktype = SentencePieceTokenTypes.UNUSED
  3766. elif tokenizer.IsByte(token_id):
  3767. toktype = SentencePieceTokenTypes.BYTE
  3768. # take care of ununsed raw token
  3769. if piece.startswith('[UNUSED'):
  3770. toktype = SentencePieceTokenTypes.UNUSED
  3771. tokens.append(text)
  3772. scores.append(score)
  3773. toktypes.append(toktype)
  3774. added_tokens_file = self.dir_model / 'added_tokens.json'
  3775. if added_tokens_file.is_file():
  3776. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3777. added_tokens_json = json.load(f)
  3778. for key in added_tokens_json:
  3779. tokens.append(key.encode("utf-8"))
  3780. scores.append(-1000.0)
  3781. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3782. chat_eos_token = '<|im_end|>'
  3783. chat_eos_token_id = None
  3784. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3785. if tokenizer_config_file.is_file():
  3786. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3787. tokenizer_config_json = json.load(f)
  3788. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3789. for token_id, foken_data in added_tokens_decoder.items():
  3790. token_id = int(token_id)
  3791. token = foken_data["content"]
  3792. if token == chat_eos_token:
  3793. chat_eos_token_id = token_id
  3794. token = token.encode("utf-8")
  3795. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3796. if tokens[token_id] != token:
  3797. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3798. tokens[token_id] = token
  3799. scores[token_id] = -1000.0
  3800. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3801. if foken_data.get("special"):
  3802. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3803. tokenizer_file = self.dir_model / 'tokenizer.json'
  3804. if tokenizer_file.is_file():
  3805. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3806. tokenizer_json = json.load(f)
  3807. added_tokens = tokenizer_json.get("added_tokens", [])
  3808. for foken_data in added_tokens:
  3809. token_id = int(foken_data["id"])
  3810. token = foken_data["content"]
  3811. if token == chat_eos_token:
  3812. chat_eos_token_id = token_id
  3813. token = token.encode("utf-8")
  3814. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3815. if tokens[token_id] != token:
  3816. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3817. tokens[token_id] = token
  3818. scores[token_id] = -1000.0
  3819. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3820. if foken_data.get("special"):
  3821. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3822. self.gguf_writer.add_tokenizer_model("llama")
  3823. self.gguf_writer.add_tokenizer_pre("default")
  3824. self.gguf_writer.add_token_list(tokens)
  3825. self.gguf_writer.add_token_scores(scores)
  3826. self.gguf_writer.add_token_types(toktypes)
  3827. self.gguf_writer.add_add_space_prefix(add_prefix)
  3828. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3829. old_eos = special_vocab.special_token_ids["eos"]
  3830. if chat_eos_token_id is not None:
  3831. # For the chat model, we replace the eos with '<|im_end|>'.
  3832. # TODO: this is a hack, should be fixed
  3833. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3834. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3835. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3836. " in chat mode so that the conversation can end normally.")
  3837. special_vocab.add_to_gguf(self.gguf_writer)
  3838. def set_gguf_parameters(self):
  3839. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3840. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3841. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3842. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3843. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3844. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3845. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3846. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3847. self.gguf_writer.add_file_type(self.ftype)
  3848. rope_scaling = self.hparams.get("rope_scaling") or {}
  3849. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3850. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3851. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3853. num_heads = self.hparams["num_attention_heads"]
  3854. num_kv_heads = self.hparams["num_key_value_heads"]
  3855. n_embd = self.hparams["hidden_size"]
  3856. q_per_kv = num_heads // num_kv_heads
  3857. head_dim = n_embd // num_heads
  3858. num_groups = num_heads // q_per_kv
  3859. name = name.replace("language_model.", "") # InternVL
  3860. if name.startswith("mlp") or name.startswith("vision_model"):
  3861. # skip visual tensors
  3862. return []
  3863. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3864. qkv = data_torch
  3865. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3866. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3867. # The model weights of q and k equire additional reshape.
  3868. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3869. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3870. v = v.reshape((-1, v.shape[-1]))
  3871. return [
  3872. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3873. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3874. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3875. ]
  3876. else:
  3877. return [(self.map_tensor_name(name), data_torch)]
  3878. @ModelBase.register("InternLM3ForCausalLM")
  3879. class InternLM3Model(TextModel):
  3880. model_arch = gguf.MODEL_ARCH.LLAMA
  3881. def set_vocab(self):
  3882. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3883. self.gguf_writer.add_tokenizer_model("llama")
  3884. self.gguf_writer.add_tokenizer_pre("default")
  3885. self.gguf_writer.add_token_list(tokens)
  3886. self.gguf_writer.add_token_scores(scores)
  3887. self.gguf_writer.add_token_types(toktypes)
  3888. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3889. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3890. if tokenizer_config_file.is_file():
  3891. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3892. tokenizer_config_json = json.load(f)
  3893. if "add_prefix_space" in tokenizer_config_json:
  3894. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3895. if "added_tokens_decoder" in tokenizer_config_json:
  3896. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3897. if token_data.get("special"):
  3898. token_id = int(token_id)
  3899. token = token_data["content"]
  3900. special_vocab._set_special_token(token, token_id)
  3901. # update eos token
  3902. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3903. special_vocab.special_token_ids["eos"] = token_id
  3904. special_vocab.add_to_gguf(self.gguf_writer)
  3905. def set_gguf_parameters(self):
  3906. super().set_gguf_parameters()
  3907. hparams = self.hparams
  3908. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3909. if (rope_dim := hparams.get("head_dim")) is None:
  3910. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3911. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3912. rope_scaling = self.hparams.get("rope_scaling") or {}
  3913. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3914. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3915. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3917. n_head = self.hparams["num_attention_heads"]
  3918. n_kv_head = self.hparams.get("num_key_value_heads")
  3919. name = name.replace("language_model.", "") # InternVL
  3920. if name.startswith("mlp") or name.startswith("vision_model"):
  3921. # skip visual tensors
  3922. return []
  3923. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3924. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3925. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3926. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3927. return [(self.map_tensor_name(name), data_torch)]
  3928. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3929. class BertModel(TextModel):
  3930. model_arch = gguf.MODEL_ARCH.BERT
  3931. def __init__(self, *args, **kwargs):
  3932. super().__init__(*args, **kwargs)
  3933. self.vocab_size = None
  3934. if cls_out_labels := self.hparams.get("id2label"):
  3935. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3936. # Remove dummy labels added by AutoConfig
  3937. cls_out_labels = None
  3938. self.cls_out_labels = cls_out_labels
  3939. def set_gguf_parameters(self):
  3940. super().set_gguf_parameters()
  3941. self.gguf_writer.add_causal_attention(False)
  3942. self._try_set_pooling_type()
  3943. if self.cls_out_labels:
  3944. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3945. def set_vocab(self):
  3946. tokens, toktypes, tokpre = self.get_vocab_base()
  3947. self.vocab_size = len(tokens)
  3948. # we need this to validate the size of the token_type embeddings
  3949. # though currently we are passing all zeros to the token_type embeddings
  3950. # "Sequence A" or "Sequence B"
  3951. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3952. # convert to phantom space vocab
  3953. def phantom(tok):
  3954. if tok.startswith("[") and tok.endswith("]"):
  3955. return tok
  3956. if tok.startswith("##"):
  3957. return tok[2:]
  3958. return "\u2581" + tok
  3959. tokens = list(map(phantom, tokens))
  3960. # add vocab to gguf
  3961. self.gguf_writer.add_tokenizer_model("bert")
  3962. self.gguf_writer.add_tokenizer_pre(tokpre)
  3963. self.gguf_writer.add_token_list(tokens)
  3964. self.gguf_writer.add_token_types(toktypes)
  3965. # handle special tokens
  3966. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3967. special_vocab.add_to_gguf(self.gguf_writer)
  3968. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3969. del bid # unused
  3970. if name.startswith("bert."):
  3971. name = name[5:]
  3972. if name.endswith(".gamma"):
  3973. name = name[:-6] + ".weight"
  3974. if name.endswith(".beta"):
  3975. name = name[:-5] + ".bias"
  3976. # we are only using BERT for embeddings so we don't need the pooling layer
  3977. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3978. return [] # we don't need these
  3979. if name.startswith("cls.predictions"):
  3980. return []
  3981. if name.startswith("cls.seq_relationship"):
  3982. return []
  3983. if self.cls_out_labels:
  3984. # For BertForSequenceClassification (direct projection layer)
  3985. if name == "classifier.weight":
  3986. name = "classifier.out_proj.weight"
  3987. if name == "classifier.bias":
  3988. name = "classifier.out_proj.bias"
  3989. return [(self.map_tensor_name(name), data_torch)]
  3990. def _xlmroberta_tokenizer_init(self) -> None:
  3991. # we need the pad_token_id to know how to chop down position_embd matrix
  3992. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3993. self._position_offset = 1 + pad_token_id
  3994. if "max_position_embeddings" in self.hparams:
  3995. self.hparams["max_position_embeddings"] -= self._position_offset
  3996. else:
  3997. self._position_offset = None
  3998. def _xlmroberta_set_vocab(self) -> None:
  3999. # to avoid TypeError: Descriptors cannot be created directly
  4000. # exception when importing sentencepiece_model_pb2
  4001. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4002. from sentencepiece import SentencePieceProcessor
  4003. from sentencepiece import sentencepiece_model_pb2 as model
  4004. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4005. tokenizer_json = {}
  4006. tokenizer_config_json = {}
  4007. if not tokenizer_path.is_file():
  4008. tokenizer_path = self.dir_model / 'tokenizer.json'
  4009. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4010. if not tokenizer_path.is_file():
  4011. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4012. from base64 import b64decode
  4013. from transformers import AutoTokenizer
  4014. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4015. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4016. tokenizer_json = json.load(fp)
  4017. if tokenizer_config_path.is_file():
  4018. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4019. tokenizer_config_json = json.load(fp)
  4020. add_prefix = tokenizer.add_prefix_space
  4021. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4022. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4023. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4024. else:
  4025. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4026. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4027. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4028. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4029. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4030. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4031. tokenizer = SentencePieceProcessor()
  4032. tokenizer.LoadFromFile(str(tokenizer_path))
  4033. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4034. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4035. scores: list[float] = [-10000.0] * vocab_size
  4036. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4037. if isinstance(tokenizer, SentencePieceProcessor):
  4038. for token_id in range(tokenizer.vocab_size()):
  4039. piece = tokenizer.IdToPiece(token_id)
  4040. text = piece.encode("utf-8")
  4041. score = tokenizer.GetScore(token_id)
  4042. toktype = SentencePieceTokenTypes.NORMAL
  4043. if tokenizer.IsUnknown(token_id):
  4044. toktype = SentencePieceTokenTypes.UNKNOWN
  4045. elif tokenizer.IsControl(token_id):
  4046. toktype = SentencePieceTokenTypes.CONTROL
  4047. elif tokenizer.IsUnused(token_id):
  4048. toktype = SentencePieceTokenTypes.UNUSED
  4049. elif tokenizer.IsByte(token_id):
  4050. toktype = SentencePieceTokenTypes.BYTE
  4051. tokens[token_id] = text
  4052. scores[token_id] = score
  4053. toktypes[token_id] = toktype
  4054. else:
  4055. added_vocab = tokenizer.get_added_vocab()
  4056. unk_token = tokenizer_config_json.get("unk_token")
  4057. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4058. for token_id in range(tokenizer.vocab_size):
  4059. piece = tokenizer._convert_id_to_token(token_id)
  4060. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4061. text = piece.encode("utf-8")
  4062. score = tokenizer_json["model"]["vocab"][token_id][1]
  4063. toktype = SentencePieceTokenTypes.NORMAL
  4064. if token_id == unk_token_id:
  4065. toktype = SentencePieceTokenTypes.UNKNOWN
  4066. elif token_id in tokenizer.all_special_ids:
  4067. toktype = SentencePieceTokenTypes.CONTROL
  4068. elif token_id in added_vocab.values():
  4069. toktype = SentencePieceTokenTypes.USER_DEFINED
  4070. # No reliable way to detect this, but jina doesn't have any
  4071. # elif tokenizer.IsByte(token_id):
  4072. # toktype = SentencePieceTokenTypes.BYTE
  4073. tokens[token_id] = text
  4074. scores[token_id] = score
  4075. toktypes[token_id] = toktype
  4076. if isinstance(tokenizer, SentencePieceProcessor):
  4077. # realign tokens (see HF tokenizer code)
  4078. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4079. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4080. toktypes = [
  4081. SentencePieceTokenTypes.CONTROL,
  4082. SentencePieceTokenTypes.CONTROL,
  4083. SentencePieceTokenTypes.CONTROL,
  4084. SentencePieceTokenTypes.UNKNOWN,
  4085. ] + toktypes[3:-1]
  4086. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4087. # Add mask token missing from sentencepiece.bpe.model
  4088. tokens[250001] = b'<mask>'
  4089. scores[250001] = 0.0
  4090. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4091. self.gguf_writer.add_tokenizer_model("t5")
  4092. self.gguf_writer.add_tokenizer_pre("default")
  4093. self.gguf_writer.add_token_list(tokens)
  4094. self.gguf_writer.add_token_scores(scores)
  4095. self.gguf_writer.add_token_types(toktypes)
  4096. self.gguf_writer.add_add_space_prefix(add_prefix)
  4097. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4098. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4099. if precompiled_charsmap:
  4100. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4101. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4102. special_vocab.add_to_gguf(self.gguf_writer)
  4103. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4104. class DistilBertModel(BertModel):
  4105. model_arch = gguf.MODEL_ARCH.BERT
  4106. def set_gguf_parameters(self):
  4107. self.gguf_writer.add_layer_norm_eps(1e-12)
  4108. logger.info("gguf: layer norm epsilon = 1e-12")
  4109. super().set_gguf_parameters()
  4110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4111. if name.startswith("distilbert."):
  4112. name = name[11:]
  4113. # These layers act as MLM head, so we don't need them
  4114. if name.startswith("vocab_"):
  4115. return []
  4116. return super().modify_tensors(data_torch, name, bid)
  4117. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4118. class RobertaModel(BertModel):
  4119. model_arch = gguf.MODEL_ARCH.BERT
  4120. def __init__(self, *args, **kwargs):
  4121. super().__init__(*args, **kwargs)
  4122. # we need the pad_token_id to know how to chop down position_embd matrix
  4123. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4124. self._position_offset = 1 + pad_token_id
  4125. if "max_position_embeddings" in self.hparams:
  4126. self.hparams["max_position_embeddings"] -= self._position_offset
  4127. else:
  4128. self._position_offset = None
  4129. def set_vocab(self):
  4130. """Support BPE tokenizers for roberta models"""
  4131. bpe_tok_path = self.dir_model / "tokenizer.json"
  4132. if bpe_tok_path.exists():
  4133. self._set_vocab_gpt2()
  4134. # we need this to validate the size of the token_type embeddings
  4135. # though currently we are passing all zeros to the token_type embeddings
  4136. # "Sequence A" or "Sequence B"
  4137. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4138. else:
  4139. return super().set_vocab()
  4140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4141. # if name starts with "roberta.", remove the prefix
  4142. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4143. if name.startswith("roberta."):
  4144. name = name[8:]
  4145. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4146. if name == "embeddings.position_embeddings.weight":
  4147. if self._position_offset is not None:
  4148. data_torch = data_torch[self._position_offset:,:]
  4149. return super().modify_tensors(data_torch, name, bid)
  4150. @ModelBase.register("NomicBertModel")
  4151. class NomicBertModel(BertModel):
  4152. model_arch = gguf.MODEL_ARCH.BERT
  4153. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4154. hparams = kwargs.pop("hparams", None)
  4155. if hparams is None:
  4156. hparams = ModelBase.load_hparams(dir_model, False)
  4157. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4158. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4159. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4160. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4161. if self._tokenizer_is_xlmroberta:
  4162. self._xlmroberta_tokenizer_init()
  4163. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4164. if npos == 8192 and mtp == 2048:
  4165. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4166. elif npos == 2048 and mtp == 2048:
  4167. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4168. else:
  4169. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4170. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4171. # this doesn't do anything in the HF version
  4172. assert self.hparams["causal"] is False
  4173. # no bias tensors unless MoE
  4174. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4175. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4176. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4177. # norm at end of layer
  4178. assert self.hparams["prenorm"] is False
  4179. # standard RoPE
  4180. assert self.hparams["rotary_emb_fraction"] == 1.0
  4181. assert self.hparams["rotary_emb_interleaved"] is False
  4182. assert self.hparams["rotary_emb_scale_base"] is None
  4183. def set_vocab(self) -> None:
  4184. if self._tokenizer_is_xlmroberta:
  4185. return self._xlmroberta_set_vocab()
  4186. return super().set_vocab()
  4187. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4188. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4189. if "mlp.experts.bias" in name:
  4190. return [] # Explicitly return an empty list.
  4191. if "mlp.experts.mlp.w1" in name:
  4192. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4193. name += ".weight"
  4194. if "mlp.experts.mlp.w2" in name:
  4195. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4196. data_torch = data_torch.transpose(1, 2)
  4197. name += ".weight"
  4198. return [(self.map_tensor_name(name), data_torch)]
  4199. def set_gguf_parameters(self):
  4200. super().set_gguf_parameters()
  4201. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4202. if self.is_moe:
  4203. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4204. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4205. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4206. def _is_tokenizer_xlmroberta(self) -> bool:
  4207. with open(self.dir_model / "tokenizer.json") as f:
  4208. tokenizer_json = json.load(f)
  4209. toktyp = tokenizer_json["model"]["type"]
  4210. if toktyp == "Unigram":
  4211. return True
  4212. if toktyp == "WordPiece":
  4213. return False
  4214. raise ValueError(f"unknown tokenizer: {toktyp}")
  4215. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4216. class NeoBert(BertModel):
  4217. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4218. def set_gguf_parameters(self):
  4219. super().set_gguf_parameters()
  4220. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4221. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4222. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4223. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4224. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4225. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4226. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4227. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4228. def modify_tensors(self, data_torch, name, bid):
  4229. if name.startswith("decoder."):
  4230. return []
  4231. if name.startswith("model."):
  4232. name = name[6:]
  4233. return super().modify_tensors(data_torch, name, bid)
  4234. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4235. class XLMRobertaModel(BertModel):
  4236. model_arch = gguf.MODEL_ARCH.BERT
  4237. _lora_files = {}
  4238. _lora_names = []
  4239. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4240. hparams = kwargs.pop("hparams", None)
  4241. if hparams is None:
  4242. hparams = ModelBase.load_hparams(dir_model, False)
  4243. if lora_names := hparams.get("lora_adaptations"):
  4244. self._lora_names = lora_names
  4245. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4246. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4247. self._xlmroberta_tokenizer_init()
  4248. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4249. if self._lora_names:
  4250. for name in self._lora_names:
  4251. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4252. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4253. return super().generate_extra_tensors()
  4254. def set_type(self):
  4255. for lora_writer in self._lora_files.values():
  4256. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4257. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4258. super().set_type()
  4259. def set_vocab(self):
  4260. self._xlmroberta_set_vocab()
  4261. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4262. # if name starts with "roberta.", remove the prefix
  4263. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4264. if name.startswith("roberta."):
  4265. name = name[8:]
  4266. # jina-embeddings-v3
  4267. if ".parametrizations." in name:
  4268. name = name.replace(".parametrizations.", ".")
  4269. if name.endswith(".original"):
  4270. name = name[:-9]
  4271. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4272. if name == "embeddings.position_embeddings.weight":
  4273. if self._position_offset is not None:
  4274. data_torch = data_torch[self._position_offset:,:]
  4275. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4276. if name.startswith("pooler.dense"):
  4277. return []
  4278. num_loras = data_torch.size(0)
  4279. assert num_loras == len(self._lora_names)
  4280. # Split out each LoRA in their own GGUF
  4281. for i, lora_writer in enumerate(self._lora_files.values()):
  4282. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4283. data = data_torch[i, :, :]
  4284. # Transpose/flip token_embd/types into correct shape
  4285. if new_name == "token_embd.weight.lora_b":
  4286. data = data.T
  4287. elif new_name.startswith("token_types.weight."):
  4288. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4289. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4290. return []
  4291. return super().modify_tensors(data_torch, name, bid)
  4292. def set_gguf_parameters(self):
  4293. super().set_gguf_parameters()
  4294. # jina-embeddings-v3
  4295. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4296. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4297. lora_alpha = self.hparams.get("lora_alpha")
  4298. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4299. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4300. for lora_name, lora_writer in self._lora_files.items():
  4301. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4302. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4303. if lora_prompt_prefixes:
  4304. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4305. def write(self):
  4306. super().write()
  4307. for lora_writer in self._lora_files.values():
  4308. lora_writer.write_header_to_file()
  4309. lora_writer.write_kv_data_to_file()
  4310. lora_writer.write_tensors_to_file(progress=True)
  4311. lora_writer.close()
  4312. @ModelBase.register("GemmaForCausalLM")
  4313. class GemmaModel(TextModel):
  4314. model_arch = gguf.MODEL_ARCH.GEMMA
  4315. def set_vocab(self):
  4316. self._set_vocab_sentencepiece()
  4317. # TODO: these special tokens should be exported only for the CodeGemma family
  4318. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4319. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4320. special_vocab._set_special_token("prefix", 67)
  4321. special_vocab._set_special_token("suffix", 69)
  4322. special_vocab._set_special_token("middle", 68)
  4323. special_vocab._set_special_token("fsep", 70)
  4324. special_vocab._set_special_token("eot", 107)
  4325. special_vocab.chat_template = None # do not add it twice
  4326. special_vocab.add_to_gguf(self.gguf_writer)
  4327. self.gguf_writer.add_add_space_prefix(False)
  4328. def set_gguf_parameters(self):
  4329. hparams = self.hparams
  4330. block_count = hparams["num_hidden_layers"]
  4331. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4332. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4333. self.gguf_writer.add_block_count(block_count)
  4334. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4335. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4336. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4337. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4338. self.gguf_writer.add_key_length(hparams["head_dim"])
  4339. self.gguf_writer.add_value_length(hparams["head_dim"])
  4340. self.gguf_writer.add_file_type(self.ftype)
  4341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4342. del bid # unused
  4343. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4344. # To prevent errors, skip loading lm_head.weight.
  4345. if name == "lm_head.weight":
  4346. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4347. return []
  4348. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4349. if name.endswith("norm.weight"):
  4350. data_torch = data_torch + 1
  4351. return [(self.map_tensor_name(name), data_torch)]
  4352. @ModelBase.register("Gemma2ForCausalLM")
  4353. class Gemma2Model(TextModel):
  4354. model_arch = gguf.MODEL_ARCH.GEMMA2
  4355. def set_vocab(self):
  4356. self._set_vocab_sentencepiece()
  4357. self.gguf_writer.add_add_space_prefix(False)
  4358. def set_gguf_parameters(self):
  4359. hparams = self.hparams
  4360. block_count = hparams["num_hidden_layers"]
  4361. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4362. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4363. self.gguf_writer.add_block_count(block_count)
  4364. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4365. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4366. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4367. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4368. self.gguf_writer.add_key_length(hparams["head_dim"])
  4369. self.gguf_writer.add_value_length(hparams["head_dim"])
  4370. self.gguf_writer.add_file_type(self.ftype)
  4371. self.gguf_writer.add_attn_logit_softcapping(
  4372. self.hparams["attn_logit_softcapping"]
  4373. )
  4374. self.gguf_writer.add_final_logit_softcapping(
  4375. self.hparams["final_logit_softcapping"]
  4376. )
  4377. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4379. del bid # unused
  4380. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4381. # To prevent errors, skip loading lm_head.weight.
  4382. if name == "lm_head.weight":
  4383. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4384. return []
  4385. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4386. if name.endswith("norm.weight"):
  4387. data_torch = data_torch + 1
  4388. return [(self.map_tensor_name(name), data_torch)]
  4389. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4390. class Gemma3Model(TextModel):
  4391. model_arch = gguf.MODEL_ARCH.GEMMA3
  4392. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4393. def set_vocab(self):
  4394. self._set_vocab_sentencepiece()
  4395. self.gguf_writer.add_add_space_prefix(False)
  4396. def set_gguf_parameters(self):
  4397. hparams = self.hparams
  4398. block_count = hparams["num_hidden_layers"]
  4399. # some default values are not specified in the hparams
  4400. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4401. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4402. self.gguf_writer.add_block_count(block_count)
  4403. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4404. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4405. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4406. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4407. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4408. self.gguf_writer.add_file_type(self.ftype)
  4409. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4410. # attn_logit_softcapping is removed in Gemma3
  4411. assert hparams.get("attn_logit_softcapping") is None
  4412. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4413. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4414. if hparams.get("rope_scaling") is not None:
  4415. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4416. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4417. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4418. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4420. del bid # unused
  4421. if "language_model." in name:
  4422. name = name.replace("language_model.", "")
  4423. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4424. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4425. return [] # skip vision tensors
  4426. # remove OOV (out-of-vocabulary) rows in token_embd
  4427. if "embed_tokens.weight" in name:
  4428. vocab = self._create_vocab_sentencepiece()
  4429. tokens = vocab[0]
  4430. data_torch = data_torch[:len(tokens)]
  4431. # ref code in Gemma3RMSNorm
  4432. # output = output * (1.0 + self.weight.float())
  4433. # note: this is not the case on gemma3n
  4434. if name.endswith("norm.weight"):
  4435. data_torch = data_torch + self.norm_shift
  4436. return [(self.map_tensor_name(name), data_torch)]
  4437. @ModelBase.register("Gemma3TextModel")
  4438. class EmbeddingGemma(Gemma3Model):
  4439. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4440. module_paths = []
  4441. dense_features_dims = {}
  4442. def __init__(self, *args, **kwargs):
  4443. super().__init__(*args, **kwargs)
  4444. if self.sentence_transformers_dense_modules:
  4445. # read modules.json to determine if model has Dense layers
  4446. modules_file = self.dir_model / "modules.json"
  4447. if modules_file.is_file():
  4448. with open(modules_file, encoding="utf-8") as modules_json_file:
  4449. mods = json.load(modules_json_file)
  4450. for mod in mods:
  4451. if mod["type"] == "sentence_transformers.models.Dense":
  4452. mod_path = mod["path"]
  4453. # check if model.safetensors file for Dense layer exists
  4454. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4455. if model_tensors_file.is_file():
  4456. self.module_paths.append(mod_path)
  4457. # read config.json of the Dense layer to get in/out features
  4458. mod_conf_file = self.dir_model / mod_path / "config.json"
  4459. if mod_conf_file.is_file():
  4460. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4461. mod_conf = json.load(mod_conf_json_file)
  4462. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4463. prefix = self._get_dense_prefix(mod_path)
  4464. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4465. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4466. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4467. from safetensors.torch import load_file
  4468. module_paths = list(self.module_paths)
  4469. for i, module_path in enumerate(module_paths):
  4470. tensors_file = self.dir_model / module_path / "model.safetensors"
  4471. local_tensors = load_file(tensors_file)
  4472. tensor_name = self._get_dense_prefix(module_path)
  4473. for name, local_tensor in local_tensors.items():
  4474. if not name.endswith(".weight"):
  4475. continue
  4476. orig_name = name.replace("linear", tensor_name)
  4477. name = self.map_tensor_name(orig_name)
  4478. yield name, local_tensor.clone()
  4479. @staticmethod
  4480. def _get_dense_prefix(module_path) -> str:
  4481. """Get the tensor name prefix for the Dense layer from module path."""
  4482. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4483. return tensor_name
  4484. def set_gguf_parameters(self):
  4485. super().set_gguf_parameters()
  4486. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4487. # constructor. We want to use the value from the original model's config.json.
  4488. # ref: https://github.com/huggingface/transformers/pull/40700
  4489. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4490. config = json.load(f)
  4491. orig_sliding_window = config.get("sliding_window")
  4492. if orig_sliding_window is None:
  4493. raise ValueError("sliding_window not found in model config - this is required for the model")
  4494. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4495. f"instead of {self.hparams['sliding_window']}")
  4496. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4497. if self.sentence_transformers_dense_modules:
  4498. for dense, dims in self.dense_features_dims.items():
  4499. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4500. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4501. self._try_set_pooling_type()
  4502. @ModelBase.register("Gemma3ForConditionalGeneration")
  4503. class Gemma3VisionModel(MmprojModel):
  4504. def set_gguf_parameters(self):
  4505. super().set_gguf_parameters()
  4506. hparams = self.hparams
  4507. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4508. # default values below are taken from HF tranformers code
  4509. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4510. self.gguf_writer.add_vision_use_gelu(True)
  4511. # calculate proj_scale_factor (used by tinygemma3 test model)
  4512. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4513. n_per_side = int(image_seq_length ** 0.5)
  4514. image_size = self.hparams["image_size"]
  4515. patch_size = self.hparams["patch_size"]
  4516. proj_scale_factor = (image_size // patch_size) // n_per_side
  4517. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4518. # we only need to write this if it's not the default value
  4519. # in this case, we are converting a test model
  4520. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4521. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4522. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4523. if "input_projection" in name:
  4524. return gguf.GGMLQuantizationType.F16
  4525. if ".embeddings." in name:
  4526. return gguf.GGMLQuantizationType.F32
  4527. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4528. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4529. del bid # unused
  4530. if "vision_model.head." in name:
  4531. return [] # skip redundant tensors for tinygemma3
  4532. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4533. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4534. # process vision tensors
  4535. name = name.replace("_weight", ".weight")
  4536. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4537. # the other norm values are part of SigLIP model, and they are already correct
  4538. # ref code: Gemma3RMSNorm
  4539. if "soft_emb_norm.weight" in name:
  4540. logger.info(f"Correcting norm value for '{name}'")
  4541. data_torch = data_torch + 1
  4542. return [(self.map_tensor_name(name), data_torch)]
  4543. return [] # skip other tensors
  4544. @ModelBase.register("Gemma3nForConditionalGeneration")
  4545. class Gemma3NModel(Gemma3Model):
  4546. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4547. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4548. _altup_proj: list[Tensor] = []
  4549. _altup_unembd: list[Tensor] = []
  4550. def __init__(self, *args, **kwargs):
  4551. super().__init__(*args, **kwargs)
  4552. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4553. self._altup_proj = [
  4554. torch.Tensor(), # to be replaced
  4555. torch.Tensor(), # to be replaced
  4556. torch.Tensor(), # to be replaced
  4557. ]
  4558. self._altup_unembd = [
  4559. torch.Tensor(), # to be replaced
  4560. torch.Tensor(), # to be replaced
  4561. torch.Tensor(), # to be replaced
  4562. ]
  4563. def set_vocab(self):
  4564. super().set_vocab()
  4565. def set_gguf_parameters(self):
  4566. super().set_gguf_parameters()
  4567. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4568. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4569. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4570. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4571. activation_sparsity_scale = []
  4572. for s in self.hparams["activation_sparsity_pattern"]:
  4573. normal_dist = torch.distributions.normal.Normal(0, 1)
  4574. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4575. activation_sparsity_scale.append(std_multiplier.item())
  4576. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4577. sliding_window_pattern = []
  4578. for t in self.hparams["layer_types"]:
  4579. sliding_window_pattern.append(t == "sliding_attention")
  4580. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4581. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4582. has_all = all(m.numel() > 0 for m in matrices)
  4583. if not has_all:
  4584. return None
  4585. else:
  4586. return torch.stack(matrices, dim=0)
  4587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4588. if name.endswith("_scale"):
  4589. name = name + ".weight"
  4590. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4591. if "language_model." not in name:
  4592. return [] # skip non-language model tensors
  4593. if "altup_unembed_projections" in name:
  4594. data_torch = data_torch.to(device="cpu")
  4595. if ".0." in name:
  4596. self._altup_unembd[0] = data_torch
  4597. elif ".1." in name:
  4598. self._altup_unembd[1] = data_torch
  4599. elif ".2." in name:
  4600. self._altup_unembd[2] = data_torch
  4601. else:
  4602. raise ValueError(f"Unknown name: {name}")
  4603. out = self._stack_matrices(self._altup_unembd)
  4604. if out is not None:
  4605. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4606. else:
  4607. return []
  4608. if "altup_projections" in name:
  4609. data_torch = data_torch.to(device="cpu")
  4610. if ".0." in name:
  4611. self._altup_proj[0] = data_torch
  4612. elif ".1." in name:
  4613. self._altup_proj[1] = data_torch
  4614. elif ".2." in name:
  4615. self._altup_proj[2] = data_torch
  4616. else:
  4617. raise ValueError(f"Unknown name: {name}")
  4618. out = self._stack_matrices(self._altup_proj)
  4619. if out is not None:
  4620. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4621. else:
  4622. return []
  4623. return super().modify_tensors(data_torch, name, bid)
  4624. @ModelBase.register("Starcoder2ForCausalLM")
  4625. class StarCoder2Model(TextModel):
  4626. model_arch = gguf.MODEL_ARCH.STARCODER2
  4627. @ModelBase.register("Rwkv6ForCausalLM")
  4628. class Rwkv6Model(TextModel):
  4629. model_arch = gguf.MODEL_ARCH.RWKV6
  4630. def set_vocab(self):
  4631. self._set_vocab_rwkv_world()
  4632. def set_gguf_parameters(self):
  4633. block_count = self.hparams["num_hidden_layers"]
  4634. head_size = self.hparams["head_size"]
  4635. hidden_size = self.hparams["hidden_size"]
  4636. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4637. rescale_every_n_layers = self.hparams["rescale_every"]
  4638. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4639. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4640. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4641. # RWKV isn't context limited
  4642. self.gguf_writer.add_context_length(1048576)
  4643. self.gguf_writer.add_embedding_length(hidden_size)
  4644. self.gguf_writer.add_block_count(block_count)
  4645. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4646. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4647. self.gguf_writer.add_wkv_head_size(head_size)
  4648. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4649. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4650. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4651. self.gguf_writer.add_file_type(self.ftype)
  4652. # required by llama.cpp, unused
  4653. self.gguf_writer.add_head_count(0)
  4654. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4656. new_name = self.map_tensor_name(name)
  4657. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4658. new_name += ".weight"
  4659. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4660. data_torch = data_torch.transpose(0, 1)
  4661. if new_name.endswith("time_mix_w2.weight"):
  4662. data_torch = data_torch.permute(0, 2, 1)
  4663. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4664. data_torch = data_torch.squeeze()
  4665. try:
  4666. rescale_every_n_layers = self.hparams["rescale_every"]
  4667. if rescale_every_n_layers > 0:
  4668. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4669. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4670. except KeyError:
  4671. pass
  4672. # concat time_mix_lerp weights to reduce some cpu overhead
  4673. # also reduces the number of tensors in the model
  4674. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4675. try:
  4676. self.lerp_weights[bid][new_name] = data_torch
  4677. except KeyError:
  4678. self.lerp_weights[bid] = {new_name: data_torch}
  4679. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4680. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4681. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4682. yield (new_name, data)
  4683. return
  4684. yield (new_name, data_torch)
  4685. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4686. class RWKV6Qwen2Model(Rwkv6Model):
  4687. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4688. def set_vocab(self):
  4689. try:
  4690. self._set_vocab_sentencepiece()
  4691. except FileNotFoundError:
  4692. self._set_vocab_gpt2()
  4693. def set_gguf_parameters(self):
  4694. block_count = self.hparams["num_hidden_layers"]
  4695. num_attention_heads = self.hparams["num_attention_heads"]
  4696. num_key_value_heads = self.hparams["num_key_value_heads"]
  4697. hidden_size = self.hparams["hidden_size"]
  4698. head_size = hidden_size // num_attention_heads
  4699. rms_norm_eps = self.hparams["rms_norm_eps"]
  4700. intermediate_size = self.hparams["intermediate_size"]
  4701. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4702. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4703. # RWKV isn't context limited
  4704. self.gguf_writer.add_context_length(1048576)
  4705. self.gguf_writer.add_embedding_length(hidden_size)
  4706. self.gguf_writer.add_block_count(block_count)
  4707. self.gguf_writer.add_wkv_head_size(head_size)
  4708. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4709. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4710. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4711. self.gguf_writer.add_file_type(self.ftype)
  4712. # special parameters for time_mixing in RWKV6QWEN2
  4713. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4714. self.gguf_writer.add_token_shift_count(1)
  4715. # RWKV6QWEN2 use grouped key/value like GQA
  4716. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4717. # required by llama.cpp, unused
  4718. self.gguf_writer.add_head_count(0)
  4719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4720. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4721. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4722. data = data.view(5, -1, data.shape[-1])
  4723. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4724. # permute them here to avoid code changes
  4725. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4726. if "w2" in new_name:
  4727. data = data.view(5, -1, data.shape[-1])
  4728. yield (new_name, data)
  4729. continue
  4730. yield (new_name, data)
  4731. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4732. class Rwkv7Model(TextModel):
  4733. model_arch = gguf.MODEL_ARCH.RWKV7
  4734. def set_vocab(self):
  4735. self._set_vocab_rwkv_world()
  4736. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4737. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4738. def set_gguf_parameters(self):
  4739. block_count = self.hparams["num_hidden_layers"]
  4740. try:
  4741. head_size = self.hparams["head_size"]
  4742. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4743. except KeyError:
  4744. head_size = self.hparams["head_dim"]
  4745. layer_norm_eps = self.hparams["norm_eps"]
  4746. hidden_size = self.hparams["hidden_size"]
  4747. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4748. # ICLR: In-Context-Learning-Rate
  4749. try:
  4750. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4751. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4752. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4753. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4754. except KeyError:
  4755. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4756. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4757. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4758. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4759. # RWKV isn't context limited
  4760. self.gguf_writer.add_context_length(1048576)
  4761. self.gguf_writer.add_embedding_length(hidden_size)
  4762. self.gguf_writer.add_block_count(block_count)
  4763. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4764. self.gguf_writer.add_wkv_head_size(head_size)
  4765. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4766. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4767. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4768. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4769. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4770. self.gguf_writer.add_file_type(self.ftype)
  4771. # required by llama.cpp, unused
  4772. self.gguf_writer.add_head_count(0)
  4773. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4774. lora_needs_transpose: bool = True
  4775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4776. # unify tensor names here to make life easier
  4777. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4778. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4779. name = name.replace("time_mixer.", "")
  4780. # lora layer names in fla-hub's impl
  4781. if "_lora.lora" in name:
  4782. self.lora_needs_transpose = False
  4783. name = name.replace("_lora.lora.0.weight", "1.weight")
  4784. name = name.replace("_lora.lora.2.weight", "2.weight")
  4785. name = name.replace("_lora.lora.2.bias", "0.weight")
  4786. name = name.replace("feed_forward_norm", "ln2")
  4787. name = name.replace("g_norm", "ln_x")
  4788. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4789. # some models have dummy v0/v1/v2 on first layer while others don't
  4790. # ignore them all since they are not used
  4791. return
  4792. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4793. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4794. if bid is not None and "attention.x_" in name:
  4795. if "attention.x_x" in name:
  4796. # already concatenated
  4797. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4798. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4799. yield (new_name, data)
  4800. else:
  4801. try:
  4802. self.lerp_weights[bid][name] = data_torch
  4803. except KeyError:
  4804. self.lerp_weights[bid] = {name: data_torch}
  4805. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4806. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4807. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4808. yield (new_name, data)
  4809. return
  4810. else:
  4811. data_torch = data_torch.squeeze()
  4812. new_name = self.map_tensor_name(name)
  4813. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4814. new_name += ".weight"
  4815. if self.lora_needs_transpose and any(
  4816. new_name.endswith(t) for t in [
  4817. "time_mix_w1.weight", "time_mix_w2.weight",
  4818. "time_mix_a1.weight", "time_mix_a2.weight",
  4819. "time_mix_v1.weight", "time_mix_v2.weight",
  4820. "time_mix_g1.weight", "time_mix_g2.weight",
  4821. ]
  4822. ):
  4823. data_torch = data_torch.transpose(0, 1)
  4824. if 'r_k' in new_name:
  4825. data_torch = data_torch.flatten()
  4826. if bid == 0 and "time_mix_a" in new_name:
  4827. # dummy v0/v1/v2 on first layer
  4828. # easist way to make llama happy
  4829. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4830. yield (new_name, data_torch)
  4831. @ModelBase.register("RwkvHybridForCausalLM")
  4832. class ARwkv7Model(Rwkv7Model):
  4833. model_arch = gguf.MODEL_ARCH.ARWKV7
  4834. def set_vocab(self):
  4835. try:
  4836. self._set_vocab_sentencepiece()
  4837. except FileNotFoundError:
  4838. self._set_vocab_gpt2()
  4839. def set_gguf_parameters(self):
  4840. block_count = self.hparams["num_hidden_layers"]
  4841. hidden_size = self.hparams["hidden_size"]
  4842. head_size = self.hparams["head_size"]
  4843. rms_norm_eps = self.hparams["rms_norm_eps"]
  4844. intermediate_size = self.hparams["intermediate_size"]
  4845. wkv_has_gate = self.hparams["wkv_has_gate"]
  4846. assert self.hparams["wkv_version"] == 7
  4847. # ICLR: In-Context-Learning-Rate
  4848. lora_rank_decay = 64
  4849. lora_rank_iclr = 64
  4850. lora_rank_value_residual_mix = 32
  4851. lora_rank_gate = 128 if wkv_has_gate else 0
  4852. # RWKV isn't context limited
  4853. self.gguf_writer.add_context_length(1048576)
  4854. self.gguf_writer.add_embedding_length(hidden_size)
  4855. self.gguf_writer.add_block_count(block_count)
  4856. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4857. self.gguf_writer.add_wkv_head_size(head_size)
  4858. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4859. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4860. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4861. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4862. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4863. self.gguf_writer.add_file_type(self.ftype)
  4864. self.gguf_writer.add_token_shift_count(1)
  4865. # required by llama.cpp, unused
  4866. self.gguf_writer.add_head_count(0)
  4867. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4868. class MambaModel(TextModel):
  4869. model_arch = gguf.MODEL_ARCH.MAMBA
  4870. def __init__(self, dir_model: Path, *args, **kwargs):
  4871. # Avoid using AutoConfig for hparams
  4872. hparams = kwargs.pop("hparams", None)
  4873. if hparams is None:
  4874. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4875. hparams = json.load(f)
  4876. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4877. def set_vocab(self):
  4878. vocab_size = self.hparams["vocab_size"]
  4879. # Round vocab size to next multiple of 8
  4880. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4881. # pad using ceiling division
  4882. # ref: https://stackoverflow.com/a/17511341/22827863
  4883. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4884. self.hparams["vocab_size"] = vocab_size
  4885. if (self.dir_model / "tokenizer.json").is_file():
  4886. self._set_vocab_gpt2()
  4887. elif (self.dir_model / "tokenizer.model").is_file():
  4888. self._set_vocab_sentencepiece()
  4889. else:
  4890. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4891. self._set_vocab_builtin("gpt-neox", vocab_size)
  4892. def set_gguf_parameters(self):
  4893. d_model = self.find_hparam(["hidden_size", "d_model"])
  4894. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4895. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4896. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4897. # ceiling division
  4898. # ref: https://stackoverflow.com/a/17511341/22827863
  4899. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4900. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4901. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4902. use_dt_b_c_norm = False
  4903. # For falconmamba we do apply RMS norm on B / DT and C layers
  4904. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4905. use_dt_b_c_norm = True
  4906. # Fail early for models which don't have a block expansion factor of 2
  4907. assert d_inner == 2 * d_model
  4908. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4909. self.gguf_writer.add_embedding_length(d_model)
  4910. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4911. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4912. self.gguf_writer.add_block_count(self.block_count)
  4913. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4914. self.gguf_writer.add_ssm_inner_size(d_inner)
  4915. self.gguf_writer.add_ssm_state_size(d_state)
  4916. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4917. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4918. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4919. self.gguf_writer.add_file_type(self.ftype)
  4920. _tok_embd = None
  4921. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4922. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4923. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4924. new_name = self.map_tensor_name(name)
  4925. if name.endswith(".A_log"):
  4926. logger.debug("A_log --> A ==> " + new_name)
  4927. data_torch = -torch.exp(data_torch)
  4928. # [4 1 8192 1] -> [4 8192 1 1]
  4929. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4930. data_torch = data_torch.squeeze()
  4931. # assuming token_embd.weight is seen before output.weight
  4932. if self._tok_embd is not None and new_name == output_name:
  4933. if torch.equal(self._tok_embd, data_torch):
  4934. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4935. return []
  4936. elif new_name == tok_embd_name:
  4937. self._tok_embd = data_torch
  4938. return [(new_name, data_torch)]
  4939. @ModelBase.register("Mamba2ForCausalLM")
  4940. class Mamba2Model(TextModel):
  4941. model_arch = gguf.MODEL_ARCH.MAMBA2
  4942. def __init__(self, dir_model: Path, *args, **kwargs):
  4943. # Avoid using AutoConfig for hparams
  4944. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4945. hparams = kwargs.pop("hparams", None)
  4946. if hparams is None:
  4947. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4948. hparams = json.load(f)
  4949. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4950. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4951. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4952. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4953. def set_vocab(self):
  4954. vocab_size = self.hparams["vocab_size"]
  4955. # Round vocab size to next multiple of 16
  4956. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4957. # pad using ceiling division
  4958. # ref: https://stackoverflow.com/a/17511341/22827863
  4959. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4960. self.hparams["vocab_size"] = vocab_size
  4961. if (self.dir_model / "tokenizer.model").is_file():
  4962. self._set_vocab_sentencepiece()
  4963. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4964. # mamba-codestral
  4965. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4966. elif (self.dir_model / "tokenizer.json").is_file():
  4967. self._set_vocab_gpt2()
  4968. else:
  4969. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4970. self._set_vocab_builtin("gpt-neox", vocab_size)
  4971. def set_gguf_parameters(self):
  4972. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4973. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4974. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4975. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4976. # Fail early for models which don't have a block expansion factor of 2
  4977. # TODO: does this really matter?
  4978. # skip the assertion for FalconH1 Model
  4979. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4980. assert self.d_inner == 2 * self.d_model
  4981. assert self.d_inner % head_dim == 0
  4982. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4983. self.gguf_writer.add_embedding_length(self.d_model)
  4984. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4985. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4986. self.gguf_writer.add_block_count(self.block_count)
  4987. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4988. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4989. self.gguf_writer.add_ssm_state_size(d_state)
  4990. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4991. self.gguf_writer.add_ssm_group_count(self.n_group)
  4992. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4993. self.gguf_writer.add_file_type(self.ftype)
  4994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4995. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4996. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4997. name = name.removeprefix("model.")
  4998. if name.endswith(".dt_bias"):
  4999. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5000. new_name = self.map_tensor_name(name)
  5001. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5002. data_torch = data_torch.squeeze()
  5003. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5004. gguf.MODEL_TENSOR.SSM_A,
  5005. gguf.MODEL_TENSOR.SSM_D,
  5006. ]):
  5007. # unsqueeze A to use similar shape semantics as Mamba-1
  5008. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5009. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5010. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5011. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5012. if name.endswith(".A_log"):
  5013. logger.debug("A_log --> A ==> " + new_name)
  5014. data_torch = -torch.exp(data_torch)
  5015. yield (new_name, data_torch)
  5016. @ModelBase.register("JambaForCausalLM")
  5017. class JambaModel(TextModel):
  5018. model_arch = gguf.MODEL_ARCH.JAMBA
  5019. def set_vocab(self):
  5020. if (self.dir_model / "tokenizer.model").is_file():
  5021. self._set_vocab_sentencepiece()
  5022. else:
  5023. self._set_vocab_llama_hf()
  5024. self.gguf_writer.add_add_space_prefix(False)
  5025. def set_gguf_parameters(self):
  5026. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5027. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5028. d_inner = self.hparams["mamba_expand"] * d_model
  5029. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5030. # ceiling division
  5031. # ref: https://stackoverflow.com/a/17511341/22827863
  5032. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5033. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5034. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5035. n_kv_head = self.hparams["num_key_value_heads"]
  5036. attn_offset = self.hparams["attn_layer_offset"]
  5037. attn_period = self.hparams["attn_layer_period"]
  5038. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5039. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5040. ]
  5041. self.gguf_writer.add_block_count(self.block_count)
  5042. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5043. self.gguf_writer.add_embedding_length(d_model)
  5044. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5045. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5046. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5047. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5048. self.gguf_writer.add_ssm_inner_size(d_inner)
  5049. self.gguf_writer.add_ssm_state_size(d_state)
  5050. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5051. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5052. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5053. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5054. self.gguf_writer.add_file_type(self.ftype)
  5055. _experts: list[dict[str, Tensor]] | None = None
  5056. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5057. # Mini-Jamba
  5058. name = name.replace(".moe.", ".feed_forward.")
  5059. if bid is not None:
  5060. moe_offset = self.hparams["expert_layer_offset"]
  5061. moe_period = self.hparams["expert_layer_period"]
  5062. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5063. name = name.replace(".experts.0.", ".")
  5064. # process the experts separately
  5065. if ".feed_forward.experts." in name:
  5066. n_experts = self.hparams["num_experts"]
  5067. assert bid is not None
  5068. if self._experts is None:
  5069. self._experts = [{} for _ in range(self.block_count)]
  5070. self._experts[bid][name] = data_torch
  5071. if len(self._experts[bid]) >= n_experts * 3:
  5072. # merge the experts into a single 3d tensor
  5073. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5074. datas: list[Tensor] = []
  5075. for xid in range(n_experts):
  5076. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5077. datas.append(self._experts[bid][ename])
  5078. del self._experts[bid][ename]
  5079. data_torch = torch.stack(datas, dim=0)
  5080. # using the same merged name as qwen2moe
  5081. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5082. new_name = self.map_tensor_name(merged_name)
  5083. yield new_name, data_torch
  5084. return
  5085. new_name = self.map_tensor_name(name)
  5086. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5087. data_torch = data_torch.squeeze()
  5088. if name.endswith(".A_log"):
  5089. logger.debug("A_log --> A ==> " + new_name)
  5090. data_torch = -torch.exp(data_torch)
  5091. yield (new_name, data_torch)
  5092. def prepare_tensors(self):
  5093. super().prepare_tensors()
  5094. if self._experts is not None:
  5095. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5096. experts = [k for d in self._experts for k in d.keys()]
  5097. if len(experts) > 0:
  5098. raise ValueError(f"Unprocessed experts: {experts}")
  5099. @ModelBase.register("CohereForCausalLM")
  5100. class CommandR2Model(TextModel):
  5101. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5102. def __init__(self, *args, **kwargs):
  5103. super().__init__(*args, **kwargs)
  5104. # max_position_embeddings = 8192 in config.json but model was actually
  5105. # trained on 128k context length
  5106. # aya-23 models don't have model_max_length specified
  5107. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5108. def set_gguf_parameters(self):
  5109. super().set_gguf_parameters()
  5110. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5111. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5112. @ModelBase.register("Cohere2ForCausalLM")
  5113. class Cohere2Model(TextModel):
  5114. model_arch = gguf.MODEL_ARCH.COHERE2
  5115. def set_gguf_parameters(self):
  5116. super().set_gguf_parameters()
  5117. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5118. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5119. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5120. rotary_pct = self.hparams["rotary_pct"]
  5121. hidden_size = self.hparams["hidden_size"]
  5122. num_attention_heads = self.hparams["num_attention_heads"]
  5123. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5124. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5125. @ModelBase.register("OlmoForCausalLM")
  5126. @ModelBase.register("OLMoForCausalLM")
  5127. class OlmoModel(TextModel):
  5128. model_arch = gguf.MODEL_ARCH.OLMO
  5129. def set_gguf_parameters(self):
  5130. super().set_gguf_parameters()
  5131. self.gguf_writer.add_layer_norm_eps(1e-5)
  5132. clip_qkv = self.hparams.get("clip_qkv")
  5133. if clip_qkv is not None:
  5134. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5135. # Same as super class, but permuting q_proj, k_proj
  5136. # Copied from: LlamaModel
  5137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5138. del bid # unused
  5139. n_head = self.hparams["num_attention_heads"]
  5140. n_kv_head = self.hparams.get("num_key_value_heads")
  5141. if name.endswith("q_proj.weight"):
  5142. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5143. if name.endswith("k_proj.weight"):
  5144. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5145. return [(self.map_tensor_name(name), data_torch)]
  5146. @ModelBase.register("SeedOssForCausalLM")
  5147. class SeedOssModel(TextModel):
  5148. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5149. @ModelBase.register("Olmo2ForCausalLM")
  5150. @ModelBase.register("Olmo3ForCausalLM")
  5151. class Olmo2Model(TextModel):
  5152. model_arch = gguf.MODEL_ARCH.OLMO2
  5153. def set_gguf_parameters(self):
  5154. super().set_gguf_parameters()
  5155. rope_scaling = self.hparams.get("rope_scaling") or {}
  5156. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5157. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5158. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5159. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5160. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5161. if "sliding_window" in self.hparams:
  5162. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5163. sliding_window_pattern = []
  5164. if "layer_types" in self.hparams:
  5165. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5166. else:
  5167. # Olmo2 does not use sliding window attention.
  5168. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5169. for i in range(self.hparams["num_hidden_layers"]):
  5170. sliding_window_pattern.append((i + 1) % 4 != 0)
  5171. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5172. @ModelBase.register("OlmoeForCausalLM")
  5173. class OlmoeModel(TextModel):
  5174. model_arch = gguf.MODEL_ARCH.OLMOE
  5175. def set_gguf_parameters(self):
  5176. super().set_gguf_parameters()
  5177. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5178. if (n_experts := self.hparams.get("num_experts")) is not None:
  5179. self.gguf_writer.add_expert_count(n_experts)
  5180. _experts: list[dict[str, Tensor]] | None = None
  5181. # Copied from: Qwen2MoeModel
  5182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5183. # process the experts separately
  5184. if name.find("experts") != -1:
  5185. n_experts = self.hparams["num_experts"]
  5186. assert bid is not None
  5187. if self._experts is None:
  5188. self._experts = [{} for _ in range(self.block_count)]
  5189. self._experts[bid][name] = data_torch
  5190. if len(self._experts[bid]) >= n_experts * 3:
  5191. tensors: list[tuple[str, Tensor]] = []
  5192. # merge the experts into a single 3d tensor
  5193. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5194. datas: list[Tensor] = []
  5195. for xid in range(n_experts):
  5196. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5197. datas.append(self._experts[bid][ename])
  5198. del self._experts[bid][ename]
  5199. data_torch = torch.stack(datas, dim=0)
  5200. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5201. new_name = self.map_tensor_name(merged_name)
  5202. tensors.append((new_name, data_torch))
  5203. return tensors
  5204. else:
  5205. return []
  5206. return [(self.map_tensor_name(name), data_torch)]
  5207. # Copied from: Qwen2MoeModel
  5208. def prepare_tensors(self):
  5209. super().prepare_tensors()
  5210. if self._experts is not None:
  5211. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5212. experts = [k for d in self._experts for k in d.keys()]
  5213. if len(experts) > 0:
  5214. raise ValueError(f"Unprocessed experts: {experts}")
  5215. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5216. class JinaBertV2Model(BertModel):
  5217. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5218. def set_vocab(self):
  5219. tokenizer_class = 'BertTokenizer'
  5220. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5221. tokenizer_class = json.load(f)['tokenizer_class']
  5222. if tokenizer_class == 'BertTokenizer':
  5223. super().set_vocab()
  5224. elif tokenizer_class == 'RobertaTokenizer':
  5225. self._set_vocab_gpt2()
  5226. self.gguf_writer.add_token_type_count(2)
  5227. else:
  5228. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5229. @ModelBase.register("OpenELMForCausalLM")
  5230. class OpenELMModel(TextModel):
  5231. model_arch = gguf.MODEL_ARCH.OPENELM
  5232. @staticmethod
  5233. def _make_divisible(v: float | int, divisor: int) -> int:
  5234. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5235. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5236. # Make sure that round down does not go down by more than 10%.
  5237. if new_v < 0.9 * v:
  5238. new_v += divisor
  5239. return new_v
  5240. def __init__(self, *args, **kwargs):
  5241. super().__init__(*args, **kwargs)
  5242. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5243. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5244. self._n_embd: int = self.hparams["model_dim"]
  5245. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5246. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5247. self._ffn_dims: list[int] = [
  5248. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5249. for multiplier in ffn_multipliers
  5250. ]
  5251. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5252. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5253. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5254. def set_vocab(self):
  5255. try:
  5256. self._set_vocab_sentencepiece()
  5257. except FileNotFoundError:
  5258. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5259. def set_gguf_parameters(self):
  5260. n_embd = self._n_embd
  5261. head_dim = self.hparams["head_dim"]
  5262. rot_pct = 1.0
  5263. assert self.block_count == len(self._num_kv_heads)
  5264. assert self.block_count == len(self._num_query_heads)
  5265. assert self.block_count == len(self._ffn_dims)
  5266. self.gguf_writer.add_block_count(self.block_count)
  5267. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5268. self.gguf_writer.add_embedding_length(n_embd)
  5269. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5270. self.gguf_writer.add_head_count(self._num_query_heads)
  5271. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5272. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5273. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5274. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5275. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5276. self.gguf_writer.add_key_length(head_dim)
  5277. self.gguf_writer.add_value_length(head_dim)
  5278. self.gguf_writer.add_file_type(self.ftype)
  5279. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5280. if "n_layers" in keys:
  5281. return self.hparams["num_transformer_layers"]
  5282. return super().find_hparam(keys, optional)
  5283. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5284. # split ff
  5285. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5286. ff_dim = self._ffn_dims[bid]
  5287. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5288. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5289. return
  5290. yield (self.map_tensor_name(name), data_torch)
  5291. @ModelBase.register("ArcticForCausalLM")
  5292. class ArcticModel(TextModel):
  5293. model_arch = gguf.MODEL_ARCH.ARCTIC
  5294. def set_vocab(self):
  5295. # The reason for using a custom implementation here is that the
  5296. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5297. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5298. from sentencepiece import SentencePieceProcessor
  5299. tokenizer_path = self.dir_model / 'tokenizer.model'
  5300. if not tokenizer_path.is_file():
  5301. logger.error(f'Error: Missing {tokenizer_path}')
  5302. sys.exit(1)
  5303. # Read the whole vocabulary from the tokenizer.model file
  5304. tokenizer = SentencePieceProcessor()
  5305. tokenizer.LoadFromFile(str(tokenizer_path))
  5306. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5307. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5308. scores: list[float] = [-10000.0] * vocab_size
  5309. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5310. for token_id in range(tokenizer.vocab_size()):
  5311. piece = tokenizer.IdToPiece(token_id)
  5312. text = piece.encode("utf-8")
  5313. score = tokenizer.GetScore(token_id)
  5314. toktype = SentencePieceTokenTypes.NORMAL
  5315. if tokenizer.IsUnknown(token_id):
  5316. toktype = SentencePieceTokenTypes.UNKNOWN
  5317. elif tokenizer.IsControl(token_id):
  5318. toktype = SentencePieceTokenTypes.CONTROL
  5319. elif tokenizer.IsUnused(token_id):
  5320. toktype = SentencePieceTokenTypes.UNUSED
  5321. elif tokenizer.IsByte(token_id):
  5322. toktype = SentencePieceTokenTypes.BYTE
  5323. tokens[token_id] = text
  5324. scores[token_id] = score
  5325. toktypes[token_id] = toktype
  5326. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5327. # of information about added/redefined tokens and modify them accordingly.
  5328. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5329. if tokenizer_config_file.is_file():
  5330. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5331. tokenizer_config_json = json.load(f)
  5332. if "added_tokens_decoder" in tokenizer_config_json:
  5333. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5334. for token_id, token_json in added_tokens_decoder.items():
  5335. token_id = int(token_id)
  5336. if token_id >= vocab_size:
  5337. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5338. continue
  5339. token_content = token_json["content"]
  5340. token_type = SentencePieceTokenTypes.USER_DEFINED
  5341. token_score = -10000.0
  5342. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5343. # Set the score to 0.0 as in the original tokenizer.model
  5344. if ("special" in token_json) and token_json["special"]:
  5345. if token_content == tokenizer_config_json["unk_token"]:
  5346. token_type = SentencePieceTokenTypes.UNKNOWN
  5347. else:
  5348. token_type = SentencePieceTokenTypes.CONTROL
  5349. token_score = 0.0
  5350. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5351. tokens[token_id] = token_content.encode("utf-8")
  5352. toktypes[token_id] = token_type
  5353. scores[token_id] = token_score
  5354. self.gguf_writer.add_tokenizer_model("llama")
  5355. self.gguf_writer.add_tokenizer_pre("default")
  5356. self.gguf_writer.add_token_list(tokens)
  5357. self.gguf_writer.add_token_scores(scores)
  5358. self.gguf_writer.add_token_types(toktypes)
  5359. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5360. special_vocab.add_to_gguf(self.gguf_writer)
  5361. def set_gguf_parameters(self):
  5362. super().set_gguf_parameters()
  5363. hparams = self.hparams
  5364. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5365. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5366. _experts: list[dict[str, Tensor]] | None = None
  5367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5368. n_head = self.hparams["num_attention_heads"]
  5369. n_kv_head = self.hparams.get("num_key_value_heads")
  5370. if name.endswith("q_proj.weight"):
  5371. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5372. if name.endswith("k_proj.weight"):
  5373. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5374. # process the experts separately
  5375. if name.find("block_sparse_moe.experts") != -1:
  5376. n_experts = self.hparams["num_local_experts"]
  5377. assert bid is not None
  5378. if self._experts is None:
  5379. self._experts = [{} for _ in range(self.block_count)]
  5380. self._experts[bid][name] = data_torch
  5381. if len(self._experts[bid]) >= n_experts * 3:
  5382. tensors: list[tuple[str, Tensor]] = []
  5383. # merge the experts into a single 3d tensor
  5384. for wid in ["w1", "w2", "w3"]:
  5385. datas: list[Tensor] = []
  5386. for xid in range(n_experts):
  5387. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5388. datas.append(self._experts[bid][ename])
  5389. del self._experts[bid][ename]
  5390. data_torch = torch.stack(datas, dim=0)
  5391. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5392. new_name = self.map_tensor_name(merged_name)
  5393. tensors.append((new_name, data_torch))
  5394. return tensors
  5395. else:
  5396. return []
  5397. return [(self.map_tensor_name(name), data_torch)]
  5398. def prepare_tensors(self):
  5399. super().prepare_tensors()
  5400. if self._experts is not None:
  5401. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5402. experts = [k for d in self._experts for k in d.keys()]
  5403. if len(experts) > 0:
  5404. raise ValueError(f"Unprocessed experts: {experts}")
  5405. @ModelBase.register("DeepseekForCausalLM")
  5406. class DeepseekModel(TextModel):
  5407. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5408. def set_vocab(self):
  5409. try:
  5410. self._set_vocab_sentencepiece()
  5411. except FileNotFoundError:
  5412. self._set_vocab_gpt2()
  5413. def set_gguf_parameters(self):
  5414. super().set_gguf_parameters()
  5415. hparams = self.hparams
  5416. if (rope_dim := hparams.get("head_dim")) is None:
  5417. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5418. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5419. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5420. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5421. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5422. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5423. self.gguf_writer.add_expert_weights_scale(1.0)
  5424. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5425. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5426. _experts: list[dict[str, Tensor]] | None = None
  5427. @staticmethod
  5428. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5429. if n_head_kv is not None and n_head != n_head_kv:
  5430. n_head = n_head_kv
  5431. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5432. .swapaxes(1, 2)
  5433. .reshape(weights.shape))
  5434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5435. n_head = self.hparams["num_attention_heads"]
  5436. n_kv_head = self.hparams.get("num_key_value_heads")
  5437. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5438. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5439. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5440. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5441. # process the experts separately
  5442. if name.find("mlp.experts") != -1:
  5443. n_experts = self.hparams["n_routed_experts"]
  5444. assert bid is not None
  5445. if self._experts is None:
  5446. self._experts = [{} for _ in range(self.block_count)]
  5447. self._experts[bid][name] = data_torch
  5448. if len(self._experts[bid]) >= n_experts * 3:
  5449. tensors: list[tuple[str, Tensor]] = []
  5450. # merge the experts into a single 3d tensor
  5451. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5452. datas: list[Tensor] = []
  5453. for xid in range(n_experts):
  5454. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5455. datas.append(self._experts[bid][ename])
  5456. del self._experts[bid][ename]
  5457. data_torch = torch.stack(datas, dim=0)
  5458. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5459. new_name = self.map_tensor_name(merged_name)
  5460. tensors.append((new_name, data_torch))
  5461. return tensors
  5462. else:
  5463. return []
  5464. return [(self.map_tensor_name(name), data_torch)]
  5465. def prepare_tensors(self):
  5466. super().prepare_tensors()
  5467. if self._experts is not None:
  5468. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5469. experts = [k for d in self._experts for k in d.keys()]
  5470. if len(experts) > 0:
  5471. raise ValueError(f"Unprocessed experts: {experts}")
  5472. @ModelBase.register(
  5473. "DeepseekV2ForCausalLM",
  5474. "DeepseekV3ForCausalLM",
  5475. "KimiVLForConditionalGeneration",
  5476. )
  5477. class DeepseekV2Model(TextModel):
  5478. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5479. def set_vocab(self):
  5480. try:
  5481. self._set_vocab_gpt2()
  5482. return
  5483. except Exception:
  5484. pass
  5485. from transformers import AutoTokenizer
  5486. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5487. tokpre = self.get_vocab_base_pre(tokenizer)
  5488. if tokpre == "kimi-k2":
  5489. # Build merges list using the approach similar to HunYuanMoE
  5490. merges = []
  5491. vocab = {}
  5492. mergeable_ranks = tokenizer.model._mergeable_ranks
  5493. for token, rank in mergeable_ranks.items():
  5494. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5495. if len(token) == 1:
  5496. continue
  5497. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5498. if len(merged) == 2:
  5499. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5500. # Build token list
  5501. vocab_size = self.hparams["vocab_size"]
  5502. special_tokens = tokenizer.special_tokens
  5503. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5504. tokens: list[str] = []
  5505. toktypes: list[int] = []
  5506. for i in range(vocab_size):
  5507. if i not in reverse_vocab:
  5508. tokens.append(f"[PAD{i}]")
  5509. toktypes.append(gguf.TokenType.UNUSED)
  5510. else:
  5511. token = reverse_vocab[i]
  5512. tokens.append(token)
  5513. if i in special_tokens.values():
  5514. toktypes.append(gguf.TokenType.CONTROL)
  5515. else:
  5516. toktypes.append(gguf.TokenType.NORMAL)
  5517. self.gguf_writer.add_tokenizer_model("gpt2")
  5518. self.gguf_writer.add_tokenizer_pre(tokpre)
  5519. self.gguf_writer.add_token_list(tokens)
  5520. self.gguf_writer.add_token_types(toktypes)
  5521. self.gguf_writer.add_token_merges(merges)
  5522. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5523. special_vocab.add_to_gguf(self.gguf_writer)
  5524. else:
  5525. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5526. def set_gguf_parameters(self):
  5527. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5528. self.hparams["num_key_value_heads"] = 1
  5529. super().set_gguf_parameters()
  5530. hparams = self.hparams
  5531. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5532. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5533. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5534. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5535. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5536. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5537. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5538. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5539. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5540. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5541. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5542. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5543. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5544. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5545. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5546. if hparams["scoring_func"] == "sigmoid":
  5547. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5548. elif hparams["scoring_func"] == "softmax":
  5549. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5550. else:
  5551. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5552. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5553. rope_scaling = self.hparams.get("rope_scaling") or {}
  5554. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5555. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5556. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5557. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5558. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5559. _experts: list[dict[str, Tensor]] | None = None
  5560. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5561. # skip vision tensors and remove "language_model." for Kimi-VL
  5562. if "vision_tower" in name or "multi_modal_projector" in name:
  5563. return []
  5564. if name.startswith("language_model."):
  5565. name = name.replace("language_model.", "")
  5566. # rename e_score_correction_bias tensors
  5567. if name.endswith("e_score_correction_bias"):
  5568. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5569. # skip Multi-Token Prediction (MTP) layers
  5570. block_count = self.hparams["num_hidden_layers"]
  5571. match = re.match(r"model.layers.(\d+)", name)
  5572. if match and int(match.group(1)) >= block_count:
  5573. return []
  5574. # process the experts separately
  5575. if name.find("mlp.experts") != -1:
  5576. n_experts = self.hparams["n_routed_experts"]
  5577. assert bid is not None
  5578. if self._experts is None:
  5579. self._experts = [{} for _ in range(self.block_count)]
  5580. self._experts[bid][name] = data_torch
  5581. if len(self._experts[bid]) >= n_experts * 3:
  5582. tensors: list[tuple[str, Tensor]] = []
  5583. # merge the experts into a single 3d tensor
  5584. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5585. datas: list[Tensor] = []
  5586. for xid in range(n_experts):
  5587. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5588. datas.append(self._experts[bid][ename])
  5589. del self._experts[bid][ename]
  5590. data_torch = torch.stack(datas, dim=0)
  5591. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5592. new_name = self.map_tensor_name(merged_name)
  5593. tensors.append((new_name, data_torch))
  5594. return tensors
  5595. else:
  5596. return []
  5597. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5598. if name.endswith("kv_b_proj.weight"):
  5599. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5600. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5601. n_head_kv = self.hparams["num_key_value_heads"]
  5602. v_head_dim = self.hparams["v_head_dim"]
  5603. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5604. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5605. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5606. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5607. k_b = k_b.transpose(1, 2)
  5608. return [
  5609. (self.map_tensor_name(name_kb), k_b),
  5610. (self.map_tensor_name(name_vb), v_b)
  5611. ]
  5612. return [(self.map_tensor_name(name), data_torch)]
  5613. def prepare_tensors(self):
  5614. super().prepare_tensors()
  5615. if self._experts is not None:
  5616. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5617. experts = [k for d in self._experts for k in d.keys()]
  5618. if len(experts) > 0:
  5619. raise ValueError(f"Unprocessed experts: {experts}")
  5620. @ModelBase.register("Dots1ForCausalLM")
  5621. class Dots1Model(Qwen2MoeModel):
  5622. model_arch = gguf.MODEL_ARCH.DOTS1
  5623. def __init__(self, *args, **kwargs):
  5624. super().__init__(*args, **kwargs)
  5625. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5626. def set_gguf_parameters(self):
  5627. super().set_gguf_parameters()
  5628. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5629. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5630. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5631. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5632. if self.hparams["scoring_func"] == "noaux_tc":
  5633. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5634. else:
  5635. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5637. if name.endswith("e_score_correction_bias"):
  5638. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5639. if "shared_experts" in name:
  5640. return [(self.map_tensor_name(name), data_torch)]
  5641. return super().modify_tensors(data_torch, name, bid)
  5642. @ModelBase.register("PLMForCausalLM")
  5643. class PLMModel(TextModel):
  5644. model_arch = gguf.MODEL_ARCH.PLM
  5645. def set_vocab(self):
  5646. self._set_vocab_gpt2()
  5647. def set_gguf_parameters(self):
  5648. super().set_gguf_parameters()
  5649. hparams = self.hparams
  5650. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5651. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5652. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5653. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5654. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5656. return [(self.map_tensor_name(name), data_torch)]
  5657. def prepare_tensors(self):
  5658. super().prepare_tensors()
  5659. @ModelBase.register("T5WithLMHeadModel")
  5660. @ModelBase.register("T5ForConditionalGeneration")
  5661. @ModelBase.register("MT5ForConditionalGeneration")
  5662. @ModelBase.register("UMT5ForConditionalGeneration")
  5663. class T5Model(TextModel):
  5664. model_arch = gguf.MODEL_ARCH.T5
  5665. def __init__(self, *args, **kwargs):
  5666. super().__init__(*args, **kwargs)
  5667. self.shared_token_embeddings_found = False
  5668. def set_vocab(self):
  5669. # to avoid TypeError: Descriptors cannot be created directly
  5670. # exception when importing sentencepiece_model_pb2
  5671. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5672. from sentencepiece import SentencePieceProcessor
  5673. from sentencepiece import sentencepiece_model_pb2 as model
  5674. tokenizer_path = self.dir_model / 'tokenizer.model'
  5675. # many older models use spiece.model tokenizer model filename
  5676. if not tokenizer_path.is_file():
  5677. tokenizer_path = self.dir_model / 'spiece.model'
  5678. if not tokenizer_path.is_file():
  5679. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5680. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5681. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5682. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5683. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5684. # assure the tokenizer model file name is correct
  5685. assert tokenizer_path.name == 'tokenizer.model'
  5686. return self._set_vocab_sentencepiece()
  5687. else:
  5688. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5689. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5690. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5691. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5692. tokenizer = SentencePieceProcessor()
  5693. tokenizer.LoadFromFile(str(tokenizer_path))
  5694. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5695. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5696. scores: list[float] = [-10000.0] * vocab_size
  5697. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5698. for token_id in range(tokenizer.vocab_size()):
  5699. piece = tokenizer.IdToPiece(token_id)
  5700. text = piece.encode("utf-8")
  5701. score = tokenizer.GetScore(token_id)
  5702. toktype = SentencePieceTokenTypes.NORMAL
  5703. if tokenizer.IsUnknown(token_id):
  5704. toktype = SentencePieceTokenTypes.UNKNOWN
  5705. elif tokenizer.IsControl(token_id):
  5706. toktype = SentencePieceTokenTypes.CONTROL
  5707. elif tokenizer.IsUnused(token_id):
  5708. toktype = SentencePieceTokenTypes.UNUSED
  5709. elif tokenizer.IsByte(token_id):
  5710. toktype = SentencePieceTokenTypes.BYTE
  5711. tokens[token_id] = text
  5712. scores[token_id] = score
  5713. toktypes[token_id] = toktype
  5714. added_tokens_file = self.dir_model / 'added_tokens.json'
  5715. if added_tokens_file.is_file():
  5716. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5717. added_tokens_json = json.load(f)
  5718. for key in added_tokens_json:
  5719. token_id = added_tokens_json[key]
  5720. if token_id >= vocab_size:
  5721. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5722. continue
  5723. tokens[token_id] = key.encode("utf-8")
  5724. scores[token_id] = -1000.0
  5725. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5726. if vocab_size > len(tokens):
  5727. pad_count = vocab_size - len(tokens)
  5728. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5729. for i in range(1, pad_count + 1):
  5730. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5731. scores.append(-1000.0)
  5732. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5733. self.gguf_writer.add_tokenizer_model("t5")
  5734. self.gguf_writer.add_tokenizer_pre("default")
  5735. self.gguf_writer.add_token_list(tokens)
  5736. self.gguf_writer.add_token_scores(scores)
  5737. self.gguf_writer.add_token_types(toktypes)
  5738. self.gguf_writer.add_add_space_prefix(add_prefix)
  5739. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5740. if precompiled_charsmap:
  5741. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5742. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5743. special_vocab.add_to_gguf(self.gguf_writer)
  5744. def set_gguf_parameters(self):
  5745. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5746. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5747. n_ctx = 512
  5748. self.gguf_writer.add_context_length(n_ctx)
  5749. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5750. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5751. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5752. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5753. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5754. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5755. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5756. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5757. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5758. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5759. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5760. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5761. self.gguf_writer.add_file_type(self.ftype)
  5762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5763. del bid # unused
  5764. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5765. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5766. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5767. # and decoder and ignore the remaining ones.
  5768. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5769. if not self.shared_token_embeddings_found:
  5770. name = "shared.weight"
  5771. self.shared_token_embeddings_found = True
  5772. else:
  5773. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5774. return []
  5775. return [(self.map_tensor_name(name), data_torch)]
  5776. @ModelBase.register("T5EncoderModel")
  5777. class T5EncoderModel(TextModel):
  5778. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5779. def __init__(self, *args, **kwargs):
  5780. super().__init__(*args, **kwargs)
  5781. self.shared_token_embeddings_found = False
  5782. def set_vocab(self):
  5783. # to avoid TypeError: Descriptors cannot be created directly
  5784. # exception when importing sentencepiece_model_pb2
  5785. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5786. from sentencepiece import SentencePieceProcessor
  5787. from sentencepiece import sentencepiece_model_pb2 as model
  5788. tokenizer_path = self.dir_model / 'tokenizer.model'
  5789. # many older models use spiece.model tokenizer model filename
  5790. if not tokenizer_path.is_file():
  5791. tokenizer_path = self.dir_model / 'spiece.model'
  5792. if not tokenizer_path.is_file():
  5793. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5794. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5795. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5796. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5797. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5798. # assure the tokenizer model file name is correct
  5799. assert tokenizer_path.name == 'tokenizer.model'
  5800. return self._set_vocab_sentencepiece()
  5801. else:
  5802. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5803. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5804. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5805. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5806. tokenizer = SentencePieceProcessor()
  5807. tokenizer.LoadFromFile(str(tokenizer_path))
  5808. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5809. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5810. scores: list[float] = [-10000.0] * vocab_size
  5811. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5812. for token_id in range(tokenizer.vocab_size()):
  5813. piece = tokenizer.IdToPiece(token_id)
  5814. text = piece.encode("utf-8")
  5815. score = tokenizer.GetScore(token_id)
  5816. toktype = SentencePieceTokenTypes.NORMAL
  5817. if tokenizer.IsUnknown(token_id):
  5818. toktype = SentencePieceTokenTypes.UNKNOWN
  5819. elif tokenizer.IsControl(token_id):
  5820. toktype = SentencePieceTokenTypes.CONTROL
  5821. elif tokenizer.IsUnused(token_id):
  5822. toktype = SentencePieceTokenTypes.UNUSED
  5823. elif tokenizer.IsByte(token_id):
  5824. toktype = SentencePieceTokenTypes.BYTE
  5825. tokens[token_id] = text
  5826. scores[token_id] = score
  5827. toktypes[token_id] = toktype
  5828. added_tokens_file = self.dir_model / 'added_tokens.json'
  5829. if added_tokens_file.is_file():
  5830. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5831. added_tokens_json = json.load(f)
  5832. for key in added_tokens_json:
  5833. token_id = added_tokens_json[key]
  5834. if token_id >= vocab_size:
  5835. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5836. continue
  5837. tokens[token_id] = key.encode("utf-8")
  5838. scores[token_id] = -1000.0
  5839. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5840. if vocab_size > len(tokens):
  5841. pad_count = vocab_size - len(tokens)
  5842. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5843. for i in range(1, pad_count + 1):
  5844. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5845. scores.append(-1000.0)
  5846. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5847. self.gguf_writer.add_tokenizer_model("t5")
  5848. self.gguf_writer.add_tokenizer_pre("default")
  5849. self.gguf_writer.add_token_list(tokens)
  5850. self.gguf_writer.add_token_scores(scores)
  5851. self.gguf_writer.add_token_types(toktypes)
  5852. self.gguf_writer.add_add_space_prefix(add_prefix)
  5853. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5854. if precompiled_charsmap:
  5855. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5856. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5857. special_vocab.add_to_gguf(self.gguf_writer)
  5858. def set_gguf_parameters(self):
  5859. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5860. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5861. n_ctx = 512
  5862. self.gguf_writer.add_context_length(n_ctx)
  5863. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5864. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5865. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5866. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5867. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5868. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5869. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5870. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5871. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5872. self.gguf_writer.add_file_type(self.ftype)
  5873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5874. del bid # unused
  5875. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5876. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5877. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5878. # and decoder and ignore the remaining ones.
  5879. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5880. if not self.shared_token_embeddings_found:
  5881. name = "shared.weight"
  5882. self.shared_token_embeddings_found = True
  5883. else:
  5884. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5885. return []
  5886. return [(self.map_tensor_name(name), data_torch)]
  5887. @ModelBase.register("JAISLMHeadModel")
  5888. class JaisModel(TextModel):
  5889. model_arch = gguf.MODEL_ARCH.JAIS
  5890. def __init__(self, *args, **kwargs):
  5891. super().__init__(*args, **kwargs)
  5892. # SwigLU activation
  5893. assert self.hparams["activation_function"] == "swiglu"
  5894. # ALiBi position embedding
  5895. assert self.hparams["position_embedding_type"] == "alibi"
  5896. # Embeddings scale
  5897. self.embeddings_scale = 1.0
  5898. if 'mup_embeddings_scale' in self.hparams:
  5899. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5900. elif 'embeddings_scale' in self.hparams:
  5901. self.embeddings_scale = self.hparams['embeddings_scale']
  5902. else:
  5903. assert False
  5904. self.width_scale = 1.0
  5905. if 'mup_output_alpha' in self.hparams:
  5906. assert 'mup_width_scale' in self.hparams
  5907. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5908. elif 'width_scale' in self.hparams:
  5909. self.width_scale = self.hparams['width_scale']
  5910. else:
  5911. assert False
  5912. self.max_alibi_bias = 8.0
  5913. def set_vocab(self):
  5914. self._set_vocab_gpt2()
  5915. def set_gguf_parameters(self):
  5916. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5917. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5918. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5919. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5920. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5921. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5922. self.gguf_writer.add_file_type(self.ftype)
  5923. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5924. del bid # unused
  5925. tensors: list[tuple[str, Tensor]] = []
  5926. # we don't need these
  5927. if name.endswith((".attn.bias")):
  5928. return tensors
  5929. if name.endswith(("relative_pe.slopes")):
  5930. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5931. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5932. # but Jais's PyTorch model simply precalculates the slope values and places them
  5933. # in relative_pes.slopes
  5934. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5935. first_val = float(data_torch[0].item())
  5936. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5937. return tensors
  5938. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5939. data_torch = data_torch.transpose(1, 0)
  5940. new_name = self.map_tensor_name(name)
  5941. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5942. tensors.append((new_name, data_torch * self.embeddings_scale))
  5943. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5944. tensors.append((new_name, data_torch * self.width_scale))
  5945. else:
  5946. tensors.append((new_name, data_torch))
  5947. return tensors
  5948. def prepare_tensors(self):
  5949. super().prepare_tensors()
  5950. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5951. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5952. class Glm4Model(TextModel):
  5953. model_arch = gguf.MODEL_ARCH.GLM4
  5954. def set_vocab(self):
  5955. from transformers import AutoTokenizer
  5956. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5957. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5958. tokens, toktypes, tokpre = self.get_vocab_base()
  5959. self.gguf_writer.add_tokenizer_model("gpt2")
  5960. self.gguf_writer.add_tokenizer_pre(tokpre)
  5961. self.gguf_writer.add_token_list(tokens)
  5962. self.gguf_writer.add_token_types(toktypes)
  5963. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5964. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5965. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5966. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5967. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5968. special_vocab.add_to_gguf(self.gguf_writer)
  5969. def set_gguf_parameters(self):
  5970. super().set_gguf_parameters()
  5971. if (rope_dim := self.hparams.get("head_dim")) is None:
  5972. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5973. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5974. rope_scaling = self.hparams.get("rope_scaling") or {}
  5975. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5976. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5977. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5978. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5980. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5981. return []
  5982. elif name.startswith("model.language_model."):
  5983. name = name.replace("language_model.", "") # for Glm4v
  5984. return super().modify_tensors(data_torch, name, bid)
  5985. @ModelBase.register("Glm4MoeForCausalLM")
  5986. class Glm4MoeModel(TextModel):
  5987. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5988. def __init__(self, *args, **kwargs):
  5989. super().__init__(*args, **kwargs)
  5990. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5991. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5992. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5993. def set_vocab(self):
  5994. from transformers import AutoTokenizer
  5995. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5996. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5997. tokens, toktypes, tokpre = self.get_vocab_base()
  5998. self.gguf_writer.add_tokenizer_model("gpt2")
  5999. self.gguf_writer.add_tokenizer_pre(tokpre)
  6000. self.gguf_writer.add_token_list(tokens)
  6001. self.gguf_writer.add_token_types(toktypes)
  6002. # Special tokens
  6003. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6004. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6005. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6006. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6007. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6008. # Patch broken chat template
  6009. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  6010. special_vocab.chat_template = special_vocab.chat_template.replace(
  6011. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  6012. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  6013. special_vocab.add_to_gguf(self.gguf_writer)
  6014. def set_gguf_parameters(self):
  6015. super().set_gguf_parameters()
  6016. if (rope_dim := self.hparams.get("head_dim")) is None:
  6017. rope_dim = (
  6018. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6019. )
  6020. self.gguf_writer.add_rope_dimension_count(
  6021. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6022. )
  6023. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6024. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6025. self.gguf_writer.add_expert_count(n_routed_experts)
  6026. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6027. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6028. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6029. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6030. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6031. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6032. # Expert gating function (sigmoid for GLM4_MOE)
  6033. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6034. # Routed scaling factor
  6035. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6036. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6037. # Normalise topk probabilities
  6038. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6039. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6040. # NextN/MTP prediction layers
  6041. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6042. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6043. _experts: list[dict[str, Tensor]] | None = None
  6044. def modify_tensors(
  6045. self, data_torch: Tensor, name: str, bid: int | None
  6046. ) -> Iterable[tuple[str, Tensor]]:
  6047. if name.startswith("model.visual."): # ignore visual part
  6048. return []
  6049. elif name.startswith("model.language_model."):
  6050. name = name.replace("language_model.", "") # for multimodal variants
  6051. # Handle main token embedding (but not layer-specific NextN embeddings)
  6052. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6053. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6054. # Handle routed experts
  6055. if name.find("mlp.experts") != -1:
  6056. n_experts = self.hparams["n_routed_experts"]
  6057. assert bid is not None
  6058. if self._experts is None:
  6059. self._experts = [{} for _ in range(self.block_count)]
  6060. self._experts[bid][name] = data_torch
  6061. if len(self._experts[bid]) >= n_experts * 3:
  6062. tensors: list[tuple[str, Tensor]] = []
  6063. # merge the experts into a single 3d tensor
  6064. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6065. datas: list[Tensor] = []
  6066. for xid in range(n_experts):
  6067. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6068. datas.append(self._experts[bid][ename])
  6069. del self._experts[bid][ename]
  6070. data_torch = torch.stack(datas, dim=0)
  6071. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6072. new_name = self.map_tensor_name(merged_name)
  6073. tensors.append((new_name, data_torch))
  6074. return tensors
  6075. else:
  6076. return []
  6077. if name.endswith("e_score_correction_bias"):
  6078. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6079. new_name = self.map_tensor_name(name)
  6080. return [(new_name, data_torch)]
  6081. def prepare_tensors(self):
  6082. super().prepare_tensors()
  6083. if self._experts is not None:
  6084. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6085. experts = [k for d in self._experts for k in d.keys()]
  6086. if len(experts) > 0:
  6087. raise ValueError(f"Unprocessed experts: {experts}")
  6088. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6089. class ChatGLMModel(TextModel):
  6090. model_arch = gguf.MODEL_ARCH.CHATGLM
  6091. def set_vocab_chatglm3(self):
  6092. dir_model = self.dir_model
  6093. hparams = self.hparams
  6094. tokens: list[bytes] = []
  6095. toktypes: list[int] = []
  6096. scores: list[float] = []
  6097. from transformers import AutoTokenizer
  6098. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6099. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6100. assert max(tokenizer.get_vocab().values()) < vocab_size
  6101. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6102. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6103. for token_id in range(vocab_size):
  6104. piece = tokenizer._convert_id_to_token(token_id)
  6105. if token_id == 0:
  6106. piece = "<unk>"
  6107. elif token_id == 1:
  6108. piece = "<bos>"
  6109. elif token_id == 2:
  6110. piece = "<eos>"
  6111. text = piece.encode("utf-8")
  6112. score = 0.0
  6113. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6114. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6115. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6116. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6117. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6118. if piece in special_tokens:
  6119. toktype = SentencePieceTokenTypes.CONTROL
  6120. elif len(piece) == 0:
  6121. text = f"[PAD{token_id}]".encode("utf-8")
  6122. toktype = SentencePieceTokenTypes.UNUSED
  6123. else:
  6124. toktype = SentencePieceTokenTypes.USER_DEFINED
  6125. tokens.append(text)
  6126. scores.append(score)
  6127. toktypes.append(toktype)
  6128. continue
  6129. toktype = SentencePieceTokenTypes.NORMAL
  6130. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6131. toktype = SentencePieceTokenTypes.UNKNOWN
  6132. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6133. toktype = SentencePieceTokenTypes.CONTROL
  6134. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6135. toktype = SentencePieceTokenTypes.UNUSED
  6136. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6137. toktype = SentencePieceTokenTypes.BYTE
  6138. tokens.append(text)
  6139. scores.append(score)
  6140. toktypes.append(toktype)
  6141. self.gguf_writer.add_tokenizer_model("llama")
  6142. # glm3 needs prefix and suffix formatted as:
  6143. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6144. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6145. self.gguf_writer.add_token_list(tokens)
  6146. self.gguf_writer.add_token_scores(scores)
  6147. self.gguf_writer.add_token_types(toktypes)
  6148. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6149. special_vocab.add_to_gguf(self.gguf_writer)
  6150. @staticmethod
  6151. def token_bytes_to_string(b):
  6152. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6153. byte_encoder = bytes_to_unicode()
  6154. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6155. @staticmethod
  6156. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6157. parts = [bytes([b]) for b in token]
  6158. while True:
  6159. min_idx = None
  6160. min_rank = None
  6161. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6162. rank = mergeable_ranks.get(pair[0] + pair[1])
  6163. if rank is not None and (min_rank is None or rank < min_rank):
  6164. min_idx = i
  6165. min_rank = rank
  6166. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6167. break
  6168. assert min_idx is not None
  6169. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6170. return parts
  6171. def set_vocab(self):
  6172. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6173. self.set_vocab_chatglm3()
  6174. return
  6175. dir_model = self.dir_model
  6176. hparams = self.hparams
  6177. tokens: list[str] = []
  6178. toktypes: list[int] = []
  6179. from transformers import AutoTokenizer
  6180. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6181. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6182. assert max(tokenizer.get_vocab().values()) < vocab_size
  6183. tokens, toktypes, tokpre = self.get_vocab_base()
  6184. self.gguf_writer.add_tokenizer_model("gpt2")
  6185. self.gguf_writer.add_tokenizer_pre(tokpre)
  6186. self.gguf_writer.add_token_list(tokens)
  6187. self.gguf_writer.add_token_types(toktypes)
  6188. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6189. # only add special tokens when they were not already loaded from config.json
  6190. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6191. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6192. # this one is usually not in config.json anyway
  6193. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6194. special_vocab.add_to_gguf(self.gguf_writer)
  6195. def set_gguf_parameters(self):
  6196. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6197. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6198. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6199. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6200. self.gguf_writer.add_embedding_length(n_embed)
  6201. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6202. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6203. self.gguf_writer.add_head_count(n_head)
  6204. self.gguf_writer.add_head_count_kv(n_head_kv)
  6205. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6206. self.gguf_writer.add_file_type(self.ftype)
  6207. if "attention_dim" in self.hparams:
  6208. rope_dim = self.hparams["attention_dim"]
  6209. else:
  6210. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6211. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6212. self.gguf_writer.add_add_bos_token(False)
  6213. rope_freq = 10000
  6214. if "rope_ratio" in self.hparams:
  6215. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6216. self.gguf_writer.add_rope_freq_base(rope_freq)
  6217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6218. del bid # unused
  6219. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6220. return []
  6221. name = name.removeprefix("transformer.")
  6222. return [(self.map_tensor_name(name), data_torch)]
  6223. @ModelBase.register("NemotronForCausalLM")
  6224. class NemotronModel(TextModel):
  6225. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6226. def set_vocab(self):
  6227. self._set_vocab_sentencepiece()
  6228. self.gguf_writer.add_pad_token_id(0)
  6229. self.gguf_writer.add_unk_token_id(1)
  6230. def set_gguf_parameters(self):
  6231. super().set_gguf_parameters()
  6232. hparams = self.hparams
  6233. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6234. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6235. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6236. # * Partial RoPE
  6237. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6238. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6239. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6240. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6241. # * RopeScaling for Nemotron
  6242. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6243. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6244. else:
  6245. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6246. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6248. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6249. # model.layers.{l}.input_layernorm.weight
  6250. # model.layers.{l}.post_attention_layernorm.weight
  6251. # model.norm.weight
  6252. if name.endswith("norm.weight"):
  6253. data_torch = data_torch + 1
  6254. return [(self.map_tensor_name(name), data_torch)]
  6255. @ModelBase.register("ExaoneForCausalLM")
  6256. class ExaoneModel(TextModel):
  6257. model_arch = gguf.MODEL_ARCH.EXAONE
  6258. def set_gguf_parameters(self):
  6259. hparams = self.hparams
  6260. assert (hparams["activation_function"] == "silu")
  6261. max_position_embeddings = hparams["max_position_embeddings"]
  6262. embed_dim = hparams["hidden_size"]
  6263. num_heads = hparams["num_attention_heads"]
  6264. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6265. layer_norm_eps = hparams["layer_norm_epsilon"]
  6266. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6267. num_layers = hparams["num_layers"]
  6268. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6269. # attention_dropout_rate = hparams["attention_dropout"]
  6270. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6271. # embed_dropout_rate = hparams["embed_dropout"]
  6272. self.gguf_writer.add_embedding_length(embed_dim)
  6273. self.gguf_writer.add_head_count(num_heads)
  6274. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6275. self.gguf_writer.add_context_length(max_position_embeddings)
  6276. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6277. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6278. self.gguf_writer.add_block_count(num_layers)
  6279. self.gguf_writer.add_file_type(self.ftype)
  6280. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6281. self.gguf_writer.add_rope_freq_base(rope_theta)
  6282. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6283. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6284. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6285. rope_scaling = self.hparams.get("rope_scaling") or {}
  6286. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6287. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6288. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6289. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6290. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6291. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6292. base = self.hparams.get("rope_theta", 10000.0)
  6293. if (dim := self.hparams.get("head_dim")) is None:
  6294. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6295. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6296. factor = rope_scaling.get("factor", 8.0)
  6297. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6298. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6299. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6300. low_freq_wavelen = old_context_len / low_freq_factor
  6301. high_freq_wavelen = old_context_len / high_freq_factor
  6302. assert low_freq_wavelen != high_freq_wavelen
  6303. rope_factors = []
  6304. for freq in freqs:
  6305. wavelen = 2 * math.pi / freq
  6306. if wavelen < high_freq_wavelen:
  6307. rope_factors.append(1)
  6308. elif wavelen > low_freq_wavelen:
  6309. rope_factors.append(factor)
  6310. else:
  6311. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6312. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6313. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6314. @ModelBase.register("Exaone4ForCausalLM")
  6315. class Exaone4Model(TextModel):
  6316. model_arch = gguf.MODEL_ARCH.EXAONE4
  6317. def set_vocab(self):
  6318. tokens, toktypes, tokpre = self.get_vocab_base()
  6319. self.gguf_writer.add_tokenizer_model("gpt2")
  6320. self.gguf_writer.add_tokenizer_pre(tokpre)
  6321. self.gguf_writer.add_token_list(tokens)
  6322. self.gguf_writer.add_token_types(toktypes)
  6323. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6324. special_vocab.add_to_gguf(self.gguf_writer)
  6325. def set_gguf_parameters(self):
  6326. super().set_gguf_parameters()
  6327. hparams = self.hparams
  6328. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6329. if hparams.get("sliding_window") is not None:
  6330. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6331. if "layer_types" in hparams:
  6332. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6333. elif "sliding_window_pattern" in hparams:
  6334. sliding_window_pattern = []
  6335. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6336. for i in range(hparams["num_hidden_layers"]):
  6337. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6338. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6339. for i in range(hparams["num_hidden_layers"]):
  6340. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6341. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6342. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6343. rope_scaling = self.hparams.get("rope_scaling") or {}
  6344. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6345. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6346. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6347. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6348. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6349. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6350. base = self.hparams.get("rope_theta", 10_000.0)
  6351. if (dim := self.hparams.get("head_dim")) is None:
  6352. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6353. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6354. factor = rope_scaling.get("factor", 16.0)
  6355. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6356. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6357. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6358. low_freq_wavelen = old_context_len / low_freq_factor
  6359. high_freq_wavelen = old_context_len / high_freq_factor
  6360. rope_factors = []
  6361. for freq in freqs:
  6362. wavelen = 2 * math.pi / freq
  6363. if wavelen < high_freq_wavelen:
  6364. rope_factors.append(1)
  6365. elif wavelen > low_freq_wavelen:
  6366. rope_factors.append(factor)
  6367. else:
  6368. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6369. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6370. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6371. @ModelBase.register("GraniteForCausalLM")
  6372. class GraniteModel(LlamaModel):
  6373. """Conversion for IBM's GraniteForCausalLM"""
  6374. model_arch = gguf.MODEL_ARCH.GRANITE
  6375. def set_gguf_parameters(self):
  6376. """Granite uses standard llama parameters with the following differences:
  6377. - No head_dim support
  6378. - New multiplier params:
  6379. - attention_scale
  6380. - embedding_scale
  6381. - residual_scale
  6382. - logits_scaling
  6383. """
  6384. if head_dim := self.hparams.pop("head_dim", None):
  6385. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6386. super().set_gguf_parameters()
  6387. # NOTE: Convert _multiplier params to _scale params for naming
  6388. # consistency
  6389. if attention_scale := self.hparams.get("attention_multiplier"):
  6390. self.gguf_writer.add_attention_scale(attention_scale)
  6391. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6392. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6393. self.gguf_writer.add_embedding_scale(embedding_scale)
  6394. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6395. if residual_scale := self.hparams.get("residual_multiplier"):
  6396. self.gguf_writer.add_residual_scale(residual_scale)
  6397. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6398. if logits_scale := self.hparams.get("logits_scaling"):
  6399. self.gguf_writer.add_logit_scale(logits_scale)
  6400. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6401. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6402. class GraniteMoeModel(GraniteModel):
  6403. """Conversion for IBM's GraniteMoeForCausalLM"""
  6404. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6405. def set_gguf_parameters(self):
  6406. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6407. - shared_intermediate_size
  6408. """
  6409. super().set_gguf_parameters()
  6410. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6411. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6412. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6414. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6415. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6416. the hidden size that is then split during forward. To keep compatibility
  6417. with existing mixtral support, we pull them apart here.
  6418. """
  6419. if name.endswith("block_sparse_moe.input_linear.weight"):
  6420. ffn_dim = self.hparams["intermediate_size"]
  6421. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6422. gate, up = data_torch.split(ffn_dim, dim=-2)
  6423. return [
  6424. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6425. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6426. ]
  6427. has_experts = bool(self.hparams.get('num_local_experts'))
  6428. if name.endswith("shared_mlp.input_linear.weight"):
  6429. ffn_dim = self.hparams["shared_intermediate_size"]
  6430. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6431. gate, up = data_torch.split(ffn_dim, dim=-2)
  6432. if has_experts:
  6433. return [
  6434. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6435. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6436. ]
  6437. return [
  6438. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6439. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6440. ]
  6441. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6442. return [
  6443. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6444. ]
  6445. return super().modify_tensors(data_torch, name, bid)
  6446. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6447. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6448. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6449. layers and optionally uses MoE w/ a shared expert"""
  6450. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6451. undo_permute = True
  6452. def __init__(self, *args, **kwargs):
  6453. # Hybrid mamba models use a prefix for the mamba-specific params.
  6454. # TODO: Extend this if the prefix(es) need to be configurable
  6455. self.hparam_prefixes = ["mamba"]
  6456. super().__init__(*args, **kwargs)
  6457. # Lists of which layers use ssm vs attention
  6458. self._attn_layers = self.get_attn_layers()
  6459. self._ssm_layers = [
  6460. i for i in range(self.block_count)
  6461. if i not in self._attn_layers
  6462. ]
  6463. # There are some models in this family that are non-hybrid, but keep the
  6464. # same parent class by setting all layers to "attention." If this is the
  6465. # case, the model architecture needs to be updated to a standard
  6466. # "granite" or "granitemoe" model
  6467. if not self._ssm_layers:
  6468. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6469. new_arch = (
  6470. gguf.MODEL_ARCH.GRANITE_MOE
  6471. if has_experts else
  6472. gguf.MODEL_ARCH.GRANITE
  6473. )
  6474. self.model_arch = new_arch
  6475. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6476. self.gguf_writer.add_architecture()
  6477. # n_group and d_inner are used during reshape_tensors for mamba2
  6478. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6479. # disambiguate with top-level head_dim
  6480. # NOTE 2: If needed for future models, this can be isolated in a method
  6481. # to separate the prefix setting and teh keys used
  6482. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6483. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6484. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6485. def get_attn_layers(self):
  6486. # Explicit list of layer type names
  6487. if layer_types := self.hparams.get("layer_types"):
  6488. return [
  6489. i for i, typ in enumerate(layer_types)
  6490. if typ == "attention"
  6491. ]
  6492. # Layer types indicated by index or period
  6493. attn_layers = self.hparams.get("attn_layer_indices", [])
  6494. if not attn_layers:
  6495. attn_period = self.hparams.get("attn_layer_period")
  6496. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6497. attn_offset = self.hparams.get("attn_layer_offset")
  6498. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6499. attn_layers = [
  6500. i for i in range(self.block_count)
  6501. if i % attn_period == attn_offset
  6502. ]
  6503. return attn_layers
  6504. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6505. prefixed = []
  6506. for pfx in self.hparam_prefixes:
  6507. prefixed.extend(
  6508. "_".join([pfx, k])
  6509. for k in keys
  6510. )
  6511. keys = list(keys) + prefixed
  6512. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6513. def modify_tensors(
  6514. self, data_torch: Tensor, name: str, bid: int | None
  6515. ) -> Iterable[tuple[str, Tensor]]:
  6516. if (
  6517. name.endswith("block_sparse_moe.input_linear.weight")
  6518. or "shared_mlp" in name
  6519. ):
  6520. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6521. # Determine whether this is a mamba layer or an attention layer
  6522. if bid in self._ssm_layers:
  6523. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6524. elif bid in self._attn_layers:
  6525. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6526. return [(self.map_tensor_name(name), data_torch)]
  6527. def set_gguf_parameters(self):
  6528. """This method merges params from both parents and some that are
  6529. specific to this model. The result is some duplication of how the params
  6530. get set. The following warnings are expected during conversion:
  6531. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6532. WARNING:Duplicated key name 'granitehybrid.context_length'
  6533. """
  6534. GraniteMoeModel.set_gguf_parameters(self)
  6535. ## Mamba mixer params ##
  6536. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6537. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6538. self.gguf_writer.add_ssm_group_count(self.n_group)
  6539. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6540. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6541. # in llama.cpp
  6542. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6543. ## Attention params ##
  6544. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6545. head_count_kv_vec = [
  6546. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6547. ]
  6548. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6549. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6550. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6551. ## If Bamba or non-hybrid, use rope, otherwise don't
  6552. use_rope = (
  6553. "BambaForCausalLM" in self.hparams["architectures"]
  6554. or not self._ssm_layers
  6555. )
  6556. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6557. if not use_rope:
  6558. self.gguf_writer.add_context_length(2**20)
  6559. ## Validation ##
  6560. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6561. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6562. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6563. def set_vocab(self):
  6564. self.hparams["pad_vocab_size_multiple"] = 8
  6565. Mamba2Model.set_vocab(self)
  6566. @ModelBase.register("NemotronHForCausalLM")
  6567. class NemotronHModel(GraniteHybridModel):
  6568. """Hybrid mamba2/attention model from NVIDIA"""
  6569. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6570. def __init__(self, *args, **kwargs):
  6571. super().__init__(*args, **kwargs)
  6572. # Save the top-level head_dim for later
  6573. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6574. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6575. # Don't use expand to calculate d_inner
  6576. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6577. # Update the ssm / attn / mlp layers
  6578. # M: Mamba2, *: Attention, -: MLP
  6579. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6580. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6581. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6582. def get_attn_layers(self):
  6583. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6584. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6585. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6586. def set_gguf_parameters(self):
  6587. super().set_gguf_parameters()
  6588. self.gguf_writer.add_key_length(self.head_dim)
  6589. self.gguf_writer.add_value_length(self.head_dim)
  6590. # Set feed_forward_length
  6591. # NOTE: This will trigger an override warning. This is preferrable to
  6592. # duplicating all the parent logic
  6593. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6594. self.gguf_writer.add_feed_forward_length([
  6595. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6596. ])
  6597. def set_vocab(self):
  6598. super().set_vocab()
  6599. # The tokenizer _does_ add a BOS token (via post_processor type
  6600. # TemplateProcessing) but does not set add_bos_token to true in the
  6601. # config, so we need to explicitly override it here.
  6602. self.gguf_writer.add_add_bos_token(True)
  6603. @ModelBase.register("BailingMoeForCausalLM")
  6604. class BailingMoeModel(TextModel):
  6605. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6606. def set_vocab(self):
  6607. self._set_vocab_gpt2()
  6608. def set_gguf_parameters(self):
  6609. super().set_gguf_parameters()
  6610. hparams = self.hparams
  6611. if (rope_dim := hparams.get("head_dim")) is None:
  6612. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6613. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6614. rope_scaling = self.hparams.get("rope_scaling") or {}
  6615. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6616. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6617. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6618. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6619. else:
  6620. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6621. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6622. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6623. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6624. self.gguf_writer.add_expert_weights_scale(1.0)
  6625. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6626. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6627. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6628. _experts: list[dict[str, Tensor]] | None = None
  6629. @staticmethod
  6630. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6631. if n_head_kv is not None and n_head != n_head_kv:
  6632. n_head = n_head_kv
  6633. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6634. .swapaxes(1, 2)
  6635. .reshape(weights.shape))
  6636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6637. n_head = self.hparams["num_attention_heads"]
  6638. n_kv_head = self.hparams.get("num_key_value_heads")
  6639. n_embd = self.hparams["hidden_size"]
  6640. if (head_dim := self.hparams.get("head_dim")) is None:
  6641. head_dim = n_embd // n_head
  6642. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6643. if name.endswith("attention.dense.weight"):
  6644. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6645. elif name.endswith("query_key_value.weight"):
  6646. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6647. return [
  6648. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6649. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6650. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6651. ]
  6652. elif name.find("mlp.experts") != -1:
  6653. n_experts = self.hparams["num_experts"]
  6654. assert bid is not None
  6655. tensors: list[tuple[str, Tensor]] = []
  6656. if self._experts is None:
  6657. self._experts = [{} for _ in range(self.block_count)]
  6658. self._experts[bid][name] = data_torch
  6659. if len(self._experts[bid]) >= n_experts * 3:
  6660. # merge the experts into a single 3d tensor
  6661. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6662. datas: list[Tensor] = []
  6663. for xid in range(n_experts):
  6664. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6665. datas.append(self._experts[bid][ename])
  6666. del self._experts[bid][ename]
  6667. data_torch = torch.stack(datas, dim=0)
  6668. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6669. new_name = self.map_tensor_name(merged_name)
  6670. tensors.append((new_name, data_torch))
  6671. return tensors
  6672. new_name = self.map_tensor_name(name)
  6673. if new_name == output_name and self.hparams.get("norm_head"):
  6674. data_torch = data_torch.float()
  6675. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6676. return [(new_name, data_torch)]
  6677. def prepare_tensors(self):
  6678. super().prepare_tensors()
  6679. if self._experts is not None:
  6680. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6681. experts = [k for d in self._experts for k in d.keys()]
  6682. if len(experts) > 0:
  6683. raise ValueError(f"Unprocessed experts: {experts}")
  6684. @ModelBase.register("BailingMoeV2ForCausalLM")
  6685. class BailingMoeV2Model(TextModel):
  6686. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  6687. def __init__(self, *args, **kwargs):
  6688. super().__init__(*args, **kwargs)
  6689. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  6690. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  6691. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6692. def set_vocab(self):
  6693. self._set_vocab_gpt2()
  6694. def set_gguf_parameters(self):
  6695. super().set_gguf_parameters()
  6696. hparams = self.hparams
  6697. if (rope_dim := hparams.get("head_dim")) is None:
  6698. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6699. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6700. rope_scaling = self.hparams.get("rope_scaling") or {}
  6701. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6702. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6703. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6704. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6705. else:
  6706. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6707. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6708. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6709. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6710. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  6711. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  6712. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6713. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6714. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6715. if hparams["score_function"] == "sigmoid":
  6716. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6717. elif hparams["score_function"] == "softmax":
  6718. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6719. else:
  6720. raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
  6721. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6722. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  6723. _experts: list[dict[str, Tensor]] | None = None
  6724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6725. if "mlp.experts" in name:
  6726. n_experts = self.hparams["num_experts"]
  6727. assert bid is not None
  6728. tensors: list[tuple[str, Tensor]] = []
  6729. if self._experts is None:
  6730. self._experts = [{} for _ in range(self.block_count)]
  6731. self._experts[bid][name] = data_torch
  6732. if len(self._experts[bid]) >= n_experts * 3:
  6733. # merge the experts into a single 3d tensor
  6734. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6735. datas: list[Tensor] = []
  6736. for xid in range(n_experts):
  6737. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6738. datas.append(self._experts[bid][ename])
  6739. del self._experts[bid][ename]
  6740. data_torch = torch.stack(datas, dim=0)
  6741. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6742. new_name = self.map_tensor_name(merged_name)
  6743. tensors.append((new_name, data_torch))
  6744. return tensors
  6745. if name.endswith(".expert_bias"):
  6746. name = name.replace(".expert_bias", ".expert_bias.bias")
  6747. return [(self.map_tensor_name(name), data_torch)]
  6748. def prepare_tensors(self):
  6749. super().prepare_tensors()
  6750. if self._experts is not None:
  6751. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6752. experts = [k for d in self._experts for k in d.keys()]
  6753. if len(experts) > 0:
  6754. raise ValueError(f"Unprocessed experts: {experts}")
  6755. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6756. class GroveMoeModel(TextModel):
  6757. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6758. def set_gguf_parameters(self):
  6759. super().set_gguf_parameters()
  6760. if (n_experts := self.hparams.get("num_experts")) is not None:
  6761. self.gguf_writer.add_expert_count(n_experts)
  6762. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6763. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6764. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6765. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6766. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6767. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6768. self.gguf_writer.add_experts_per_group(2)
  6769. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6770. self.gguf_writer.add_expert_group_scale(0.05)
  6771. # YaRN is not enabled by default
  6772. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6773. rope_scaling = self.hparams.get("rope_scaling") or {}
  6774. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6775. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6776. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6777. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6778. _experts: list[dict[str, Tensor]] | None = None
  6779. _chunk_experts: list[dict[str, Tensor]] | None = None
  6780. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6781. if name.endswith(".expert_bias"):
  6782. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  6783. return []
  6784. # process the experts separately
  6785. if name.find("chunk_experts") != -1:
  6786. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  6787. assert bid is not None
  6788. if self._chunk_experts is None:
  6789. self._chunk_experts = [{} for _ in range(self.block_count)]
  6790. self._chunk_experts[bid][name] = data_torch
  6791. if len(self._chunk_experts[bid]) >= n_experts * 3:
  6792. tensors: list[tuple[str, Tensor]] = []
  6793. # merge the experts into a single 3d tensor
  6794. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6795. datas: list[Tensor] = []
  6796. for xid in range(n_experts):
  6797. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  6798. datas.append(self._chunk_experts[bid][ename])
  6799. del self._chunk_experts[bid][ename]
  6800. data_torch = torch.stack(datas, dim=0)
  6801. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  6802. new_name = self.map_tensor_name(merged_name)
  6803. tensors.append((new_name, data_torch))
  6804. return tensors
  6805. else:
  6806. return []
  6807. elif name.find("experts") != -1:
  6808. n_experts = self.hparams["num_experts"]
  6809. assert bid is not None
  6810. if self._experts is None:
  6811. self._experts = [{} for _ in range(self.block_count)]
  6812. self._experts[bid][name] = data_torch
  6813. if len(self._experts[bid]) >= n_experts * 3:
  6814. tensors: list[tuple[str, Tensor]] = []
  6815. # merge the experts into a single 3d tensor
  6816. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6817. datas: list[Tensor] = []
  6818. for xid in range(n_experts):
  6819. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6820. datas.append(self._experts[bid][ename])
  6821. del self._experts[bid][ename]
  6822. data_torch = torch.stack(datas, dim=0)
  6823. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6824. new_name = self.map_tensor_name(merged_name)
  6825. tensors.append((new_name, data_torch))
  6826. return tensors
  6827. else:
  6828. return []
  6829. return [(self.map_tensor_name(name), data_torch)]
  6830. def prepare_tensors(self):
  6831. super().prepare_tensors()
  6832. if self._chunk_experts is not None:
  6833. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6834. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  6835. if len(chunk_experts) > 0:
  6836. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  6837. if self._experts is not None:
  6838. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6839. experts = [k for d in self._experts for k in d.keys()]
  6840. if len(experts) > 0:
  6841. raise ValueError(f"Unprocessed experts: {experts}")
  6842. @ModelBase.register("ChameleonForConditionalGeneration")
  6843. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6844. class ChameleonModel(TextModel):
  6845. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6846. def set_gguf_parameters(self):
  6847. super().set_gguf_parameters()
  6848. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6849. def set_vocab(self):
  6850. self._set_vocab_gpt2()
  6851. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6852. # ignore image tokenizer for now
  6853. # TODO: remove this once image support is implemented for Chameleon
  6854. if name.startswith("model.vqmodel"):
  6855. return []
  6856. n_head = self.hparams["num_attention_heads"]
  6857. n_kv_head = self.hparams.get("num_key_value_heads")
  6858. hidden_dim = self.hparams.get("hidden_size")
  6859. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6860. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6861. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6862. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6863. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6864. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6865. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6866. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6867. return [(self.map_tensor_name(name), data_torch)]
  6868. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6869. @staticmethod
  6870. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6871. head_dim = hidden_dim // n_heads
  6872. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6873. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6874. return data_torch
  6875. @ModelBase.register("UltravoxModel")
  6876. class UltravoxModel(TextModel):
  6877. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6878. def __init__(self, *args, **kwargs):
  6879. super().__init__(*args, **kwargs)
  6880. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6881. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6882. class WhisperEncoderModel(MmprojModel):
  6883. has_vision_encoder = False # no vision encoder
  6884. has_audio_encoder = True
  6885. def __init__(self, *args, **kwargs):
  6886. super().__init__(*args, **kwargs)
  6887. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6888. self.hparams["hidden_size"] = self.hparams["d_model"]
  6889. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6890. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6891. def set_gguf_parameters(self):
  6892. super().set_gguf_parameters()
  6893. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6894. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6895. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6896. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6897. if ".conv" in name and ".weight" in name:
  6898. return gguf.GGMLQuantizationType.F16
  6899. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6900. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6901. del bid # unused
  6902. if name.startswith("language_model."):
  6903. # skip language model tensors
  6904. return []
  6905. # prevent clash naming with vision tensors
  6906. if name.startswith("multi_modal_projector"):
  6907. name = "audio." + name
  6908. if "conv1.bias" in name or "conv2.bias" in name:
  6909. # transpose conv1 and conv2 bias
  6910. data_torch = data_torch.unsqueeze(-1)
  6911. return [(self.map_tensor_name(name), data_torch)]
  6912. @ModelBase.register("UltravoxModel")
  6913. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6914. has_vision_encoder = False # no vision encoder
  6915. has_audio_encoder = True
  6916. def set_gguf_parameters(self):
  6917. super().set_gguf_parameters()
  6918. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6919. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6920. @ModelBase.register("VoxtralForConditionalGeneration")
  6921. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6922. has_vision_encoder = False # no vision encoder
  6923. has_audio_encoder = True
  6924. def set_gguf_parameters(self):
  6925. super().set_gguf_parameters()
  6926. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6927. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6928. @ModelBase.register("FalconH1ForCausalLM")
  6929. class FalconH1Model(Mamba2Model):
  6930. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6931. def __init__(self, *args, **kwargs):
  6932. # Set the hparam prefixes for Falcon Mamba2
  6933. self.hparam_prefixes = ["mamba"]
  6934. # Initialize the base Mamba2Model
  6935. super().__init__(*args, **kwargs)
  6936. # Use Llama conversion for attention
  6937. self._transformer_model_class = LlamaModel
  6938. # n_group and d_inner are used during reshape_tensors for mamba2
  6939. self.n_group = self.find_hparam(["n_groups"])
  6940. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6941. self.d_head = self.find_hparam(["d_head"])
  6942. # Initialize any Falcon Mamba2 specific attributes
  6943. self.has_attention = True # Falcon Mamba2 has attention components
  6944. # Load Falcon-H1 multipliers from hyperparameters
  6945. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6946. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6947. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6948. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6949. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6950. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6951. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6952. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6953. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6954. prefixed = []
  6955. for pfx in self.hparam_prefixes:
  6956. prefixed.extend(
  6957. "_".join([pfx, k])
  6958. for k in keys
  6959. )
  6960. keys = list(keys) + prefixed
  6961. return super().find_hparam(keys, *args, **kwargs)
  6962. def set_vocab(self):
  6963. self._set_vocab_gpt2()
  6964. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6965. tensors = list(super().modify_tensors(data_torch, name, bid))
  6966. tensor = tensors[0][1]
  6967. if "down_proj" in name:
  6968. tensor = tensor * self.mlp_multipliers[1]
  6969. elif "gate_proj" in name:
  6970. tensor = tensor * self.mlp_multipliers[0]
  6971. elif "k_proj" in name:
  6972. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6973. elif "q_proj" in name:
  6974. tensor = tensor * self.attention_in_multiplier
  6975. elif "v_proj" in name:
  6976. tensor = tensor * self.attention_in_multiplier
  6977. elif "o_proj" in name:
  6978. tensor = tensor * self.attention_out_multiplier
  6979. elif "out_proj" in name:
  6980. tensor = tensor * self.ssm_out_multiplier
  6981. elif "in_proj" in name:
  6982. tensor = tensor * self.ssm_in_multiplier
  6983. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6984. intermediate_size = self.hparams["mamba_d_ssm"]
  6985. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6986. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6987. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6988. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6989. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6990. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6991. elif "lm_head" in name:
  6992. tensor = tensor * self.hparams["lm_head_multiplier"]
  6993. elif "embed_tokens" in name:
  6994. tensor = tensor * self.hparams["embedding_multiplier"]
  6995. elif "mamba.norm" in name:
  6996. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6997. tensors = [(tensors[0][0], tensor)]
  6998. return tensors
  6999. def set_gguf_parameters(self):
  7000. super().set_gguf_parameters()
  7001. ## General Params ##
  7002. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7003. # Override some Mamba2 defaults
  7004. self.gguf_writer.add_block_count(self.block_count)
  7005. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7006. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7007. ## Attention params ##
  7008. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7009. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7010. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7011. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7012. ## Validation ##
  7013. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7014. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7015. # Add any other Falcon Mamba2 specific configuration
  7016. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7017. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7018. class HunYuanMoEModel(TextModel):
  7019. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7020. def set_vocab(self):
  7021. from transformers import AutoTokenizer
  7022. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7023. # 1. Get the pre-tokenizer identifier hash
  7024. tokpre = self.get_vocab_base_pre(tokenizer)
  7025. # 2. Reverse-engineer the merges list from mergeable_ranks
  7026. merges = []
  7027. vocab = {}
  7028. mergeable_ranks = tokenizer.mergeable_ranks
  7029. for token, rank in mergeable_ranks.items():
  7030. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7031. if len(token) == 1:
  7032. continue
  7033. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7034. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7035. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7036. # 3. Generate the tokens and toktypes lists
  7037. vocab_size = self.hparams["vocab_size"]
  7038. assert tokenizer.vocab_size == vocab_size
  7039. special_tokens = tokenizer.special_tokens
  7040. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7041. tokens: list[str] = []
  7042. toktypes: list[int] = []
  7043. for i in range(vocab_size):
  7044. if i not in reverse_vocab:
  7045. tokens.append(f"[PAD{i}]")
  7046. toktypes.append(gguf.TokenType.UNUSED)
  7047. else:
  7048. token = reverse_vocab[i]
  7049. tokens.append(token)
  7050. if i in special_tokens.values():
  7051. toktypes.append(gguf.TokenType.CONTROL)
  7052. else:
  7053. toktypes.append(gguf.TokenType.NORMAL)
  7054. # 4. Write all vocab-related fields to the GGUF writer
  7055. self.gguf_writer.add_tokenizer_model("gpt2")
  7056. self.gguf_writer.add_tokenizer_pre(tokpre)
  7057. self.gguf_writer.add_token_list(tokens)
  7058. self.gguf_writer.add_token_types(toktypes)
  7059. self.gguf_writer.add_token_merges(merges)
  7060. # 5. Add special tokens and chat templates
  7061. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7062. special_vocab.add_to_gguf(self.gguf_writer)
  7063. # FIX for BOS token: Overwrite incorrect id read from config.json
  7064. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7065. def set_gguf_parameters(self):
  7066. super().set_gguf_parameters()
  7067. hparams = self.hparams
  7068. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7069. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7070. moe_intermediate_size = hparams["moe_intermediate_size"]
  7071. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7072. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7073. moe_topk = hparams["moe_topk"]
  7074. assert all(topk == moe_topk[0] for topk in moe_topk)
  7075. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7076. moe_shared_expert = hparams["num_shared_expert"]
  7077. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7078. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7079. # Rope
  7080. rope_scaling = hparams.get("rope_scaling", {})
  7081. if rope_scaling.get("type") == "dynamic":
  7082. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7083. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7084. alpha = rope_scaling.get("alpha", 1000)
  7085. base = hparams.get("rope_theta", 10000.0)
  7086. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7087. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7088. self.gguf_writer.add_rope_freq_base(scaled_base)
  7089. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7090. self.gguf_writer.add_rope_scaling_factor(1)
  7091. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7092. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7093. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7094. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7095. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7096. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7097. _experts: list[dict[str, Tensor]] | None = None
  7098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7099. if name == "lm_head.weight":
  7100. if self.hparams.get("tie_word_embeddings", False):
  7101. logger.info("Skipping tied output layer 'lm_head.weight'")
  7102. return []
  7103. if name.find("mlp.experts") != -1:
  7104. n_experts = self.hparams["num_experts"]
  7105. assert bid is not None
  7106. if self._experts is None:
  7107. self._experts = [{} for _ in range(self.block_count)]
  7108. self._experts[bid][name] = data_torch
  7109. if len(self._experts[bid]) >= n_experts * 3:
  7110. # merge the experts into a single 3d tensor
  7111. tensors: list[tuple[str, Tensor]] = []
  7112. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7113. datas: list[Tensor] = []
  7114. for xid in range(n_experts):
  7115. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7116. datas.append(self._experts[bid][ename])
  7117. del self._experts[bid][ename]
  7118. data_torch = torch.stack(datas, dim=0)
  7119. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7120. new_name = self.map_tensor_name(merged_name)
  7121. tensors.append((new_name, data_torch))
  7122. return tensors
  7123. else:
  7124. return []
  7125. return [(self.map_tensor_name(name), data_torch)]
  7126. def prepare_tensors(self):
  7127. super().prepare_tensors()
  7128. if self._experts is not None:
  7129. experts = [k for d in self._experts for k in d.keys()]
  7130. if len(experts) > 0:
  7131. raise ValueError(f"Unprocessed experts: {experts}")
  7132. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7133. class LLaDAMoEModel(TextModel):
  7134. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7135. def set_gguf_parameters(self):
  7136. super().set_gguf_parameters()
  7137. if (n_experts := self.hparams.get("num_experts")) is not None:
  7138. self.gguf_writer.add_expert_count(n_experts)
  7139. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7140. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7141. # number of experts used per token (top-k)
  7142. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7143. self.gguf_writer.add_expert_used_count(n_experts_used)
  7144. self.gguf_writer.add_mask_token_id(156895)
  7145. self.gguf_writer.add_causal_attention(False)
  7146. self.gguf_writer.add_diffusion_shift_logits(False)
  7147. _experts: list[dict[str, Tensor]] | None = None
  7148. # Copied from: Qwen2MoeModel
  7149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7150. # process the experts separately
  7151. if name.find("experts") != -1:
  7152. n_experts = self.hparams["num_experts"]
  7153. assert bid is not None
  7154. if self._experts is None:
  7155. self._experts = [{} for _ in range(self.block_count)]
  7156. self._experts[bid][name] = data_torch
  7157. if len(self._experts[bid]) >= n_experts * 3:
  7158. tensors: list[tuple[str, Tensor]] = []
  7159. # merge the experts into a single 3d tensor
  7160. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7161. datas: list[Tensor] = []
  7162. for xid in range(n_experts):
  7163. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7164. datas.append(self._experts[bid][ename])
  7165. del self._experts[bid][ename]
  7166. data_torch = torch.stack(datas, dim=0)
  7167. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7168. new_name = self.map_tensor_name(merged_name)
  7169. tensors.append((new_name, data_torch))
  7170. return tensors
  7171. else:
  7172. return []
  7173. return [(self.map_tensor_name(name), data_torch)]
  7174. # Copied from: Qwen2MoeModel
  7175. def prepare_tensors(self):
  7176. super().prepare_tensors()
  7177. if self._experts is not None:
  7178. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7179. experts = [k for d in self._experts for k in d.keys()]
  7180. if len(experts) > 0:
  7181. raise ValueError(f"Unprocessed experts: {experts}")
  7182. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7183. class HunYuanModel(TextModel):
  7184. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7185. def set_vocab(self):
  7186. if (self.dir_model / "tokenizer.json").is_file():
  7187. self._set_vocab_gpt2()
  7188. else:
  7189. from transformers import AutoTokenizer
  7190. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7191. # 1. Get the pre-tokenizer identifier hash
  7192. tokpre = self.get_vocab_base_pre(tokenizer)
  7193. # 2. Reverse-engineer the merges list from mergeable_ranks
  7194. merges = []
  7195. vocab = {}
  7196. mergeable_ranks = tokenizer.mergeable_ranks
  7197. for token, rank in mergeable_ranks.items():
  7198. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7199. if len(token) == 1:
  7200. continue
  7201. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7202. if len(merged) == 2:
  7203. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7204. # 3. Generate the tokens and toktypes lists
  7205. vocab_size = self.hparams["vocab_size"]
  7206. assert tokenizer.vocab_size == vocab_size
  7207. special_tokens = tokenizer.special_tokens
  7208. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7209. tokens: list[str] = []
  7210. toktypes: list[int] = []
  7211. for i in range(vocab_size):
  7212. if i not in reverse_vocab:
  7213. tokens.append(f"[PAD{i}]")
  7214. toktypes.append(gguf.TokenType.UNUSED)
  7215. else:
  7216. token = reverse_vocab[i]
  7217. tokens.append(token)
  7218. if i in special_tokens.values():
  7219. toktypes.append(gguf.TokenType.CONTROL)
  7220. else:
  7221. toktypes.append(gguf.TokenType.NORMAL)
  7222. # 4. Write all vocab-related fields to the GGUF writer
  7223. self.gguf_writer.add_tokenizer_model("gpt2")
  7224. self.gguf_writer.add_tokenizer_pre(tokpre)
  7225. self.gguf_writer.add_token_list(tokens)
  7226. self.gguf_writer.add_token_types(toktypes)
  7227. self.gguf_writer.add_token_merges(merges)
  7228. # 5. Add special tokens and chat templates
  7229. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7230. special_vocab.add_to_gguf(self.gguf_writer)
  7231. # FIX for BOS token: Overwrite incorrect id read from config.json
  7232. if self.hparams['hidden_size'] == 4096:
  7233. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7234. def set_gguf_parameters(self):
  7235. super().set_gguf_parameters()
  7236. hparams = self.hparams
  7237. # Rope
  7238. rope_scaling = hparams.get("rope_scaling", {})
  7239. if rope_scaling.get("type") == "dynamic":
  7240. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7241. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7242. alpha = rope_scaling.get("alpha", 50)
  7243. base = hparams.get("rope_theta", 10000.0)
  7244. dim = hparams["head_dim"]
  7245. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7246. self.gguf_writer.add_rope_freq_base(scaled_base)
  7247. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7248. self.gguf_writer.add_rope_scaling_factor(1)
  7249. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7250. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7251. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7252. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7253. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7254. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7256. if name == "lm_head.weight":
  7257. if self.hparams.get("tie_word_embeddings", False):
  7258. logger.info("Skipping tied output layer 'lm_head.weight'")
  7259. return []
  7260. return [(self.map_tensor_name(name), data_torch)]
  7261. @ModelBase.register("SmolLM3ForCausalLM")
  7262. class SmolLM3Model(LlamaModel):
  7263. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7264. def set_vocab(self):
  7265. super().set_vocab()
  7266. # remove unsupported array slicing in chat template
  7267. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7268. from transformers import AutoTokenizer
  7269. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7270. if tokenizer.chat_template is not None:
  7271. chat_template = tokenizer.chat_template.replace("[:]", "")
  7272. self.gguf_writer.add_chat_template(chat_template)
  7273. @ModelBase.register("GptOssForCausalLM")
  7274. class GptOssModel(TextModel):
  7275. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7276. # TODO: remove once MXFP4 is supported more generally
  7277. def dequant_model(self):
  7278. quant_config = self.hparams.get("quantization_config")
  7279. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7280. return
  7281. return super().dequant_model()
  7282. def transform_nibble_layout(self, tensor):
  7283. assert tensor.dtype == torch.uint8
  7284. assert tensor.shape[-1] == 16
  7285. # swap nibbles
  7286. t_lo = tensor & 0x0F
  7287. t_hi = tensor & 0xF0
  7288. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7289. tensor = t_swapped
  7290. # transform aaaa...bbbb... to abababab...
  7291. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7292. # get a_
  7293. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7294. blk_a1 = (blk_a << 4).view(-1, 1)
  7295. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7296. # get _b
  7297. blk_b0 = (blk_b >> 4).view(-1, 1)
  7298. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7299. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7300. # swap once more
  7301. out = blk_a | blk_b
  7302. out_h = out & 0xF0
  7303. out_l = out & 0x0F
  7304. out = (out_h >> 4) | (out_l << 4)
  7305. return out
  7306. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7307. assert blocks.dtype == torch.uint8
  7308. assert scales.dtype == torch.uint8
  7309. scales = scales.unsqueeze(-1)
  7310. assert len(blocks.shape) == 4
  7311. assert len(scales.shape) == 4
  7312. blocks = self.transform_nibble_layout(blocks)
  7313. new_data = torch.concat((scales, blocks), dim=-1)
  7314. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7315. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7316. # flatten last dim
  7317. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7318. new_data = new_data.numpy()
  7319. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7320. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7321. blocks0: Tensor = torch.zeros(1)
  7322. blocks1: Tensor = torch.zeros(1)
  7323. # we assume that tensors are loaded in the correct order
  7324. for name, data_torch in self.get_tensors():
  7325. if "mlp.experts.down_proj_blocks" in name:
  7326. blocks0 = data_torch
  7327. elif "mlp.experts.down_proj_scales" in name:
  7328. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7329. self.repack_mxfp4(new_name, blocks0, data_torch)
  7330. elif "mlp.experts.gate_up_proj_blocks" in name:
  7331. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7332. elif "mlp.experts.gate_up_proj_scales" in name:
  7333. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7334. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7335. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7336. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7337. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7338. return []
  7339. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7340. del bid # unused
  7341. if "sinks" in name:
  7342. name += ".weight"
  7343. # correct naming for down_proj
  7344. if "down_proj" in name:
  7345. if name.endswith("_bias"):
  7346. name = name.replace("down_proj_bias", "down_proj.bias")
  7347. elif "_blocks" not in name and "_scales" not in name:
  7348. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7349. name = name.replace("down_proj", "down_proj.weight")
  7350. data_torch = data_torch.transpose(-1, -2)
  7351. else:
  7352. # otherwise, it should already be repacked to ggml MXFP4 format
  7353. return []
  7354. # split the gate_up into gate and up
  7355. if "gate_up_proj" in name:
  7356. if name.endswith("_bias"):
  7357. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7358. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7359. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7360. return [
  7361. (self.map_tensor_name(name_gate), gate_proj_bias),
  7362. (self.map_tensor_name(name_up), up_proj_bias)
  7363. ]
  7364. elif "_blocks" not in name and "_scales" not in name:
  7365. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7366. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7367. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7368. data_torch = data_torch.transpose(-1, -2)
  7369. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7370. return [
  7371. (self.map_tensor_name(name_gate), gate_proj_weight),
  7372. (self.map_tensor_name(name_up), up_proj_weight)
  7373. ]
  7374. else:
  7375. # otherwise, it should already be repacked to ggml MXFP4 format
  7376. return []
  7377. return [(self.map_tensor_name(name), data_torch)]
  7378. def set_vocab(self):
  7379. self._set_vocab_gpt2()
  7380. def set_gguf_parameters(self):
  7381. super().set_gguf_parameters()
  7382. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7383. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7384. rope_scaling = self.hparams.get("rope_scaling") or {}
  7385. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7386. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7387. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7388. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7389. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7390. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7391. class LFM2Model(TextModel):
  7392. model_arch = gguf.MODEL_ARCH.LFM2
  7393. def _add_feed_forward_length(self):
  7394. ff_dim = self.hparams["block_ff_dim"]
  7395. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7396. ff_dim = self.hparams["block_ff_dim"]
  7397. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7398. multiple_of = self.hparams["block_multiple_of"]
  7399. if auto_adjust_ff_dim:
  7400. ff_dim = int(2 * ff_dim / 3)
  7401. # custom dim factor multiplier
  7402. if ffn_dim_multiplier is not None:
  7403. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7404. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7405. self.gguf_writer.add_feed_forward_length(ff_dim)
  7406. def set_gguf_parameters(self):
  7407. # set num_key_value_heads only for attention layers
  7408. self.hparams["num_key_value_heads"] = [
  7409. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7410. for layer_type in self.hparams["layer_types"]
  7411. ]
  7412. super().set_gguf_parameters()
  7413. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7414. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7415. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7416. self._add_feed_forward_length()
  7417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7418. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7419. if is_vision_tensor:
  7420. # skip vision tensors
  7421. return []
  7422. name = name.replace("language_model.", "")
  7423. # conv op requires 2d tensor
  7424. if 'conv.conv' in name:
  7425. data_torch = data_torch.squeeze(1)
  7426. return [(self.map_tensor_name(name), data_torch)]
  7427. @ModelBase.register("Lfm2MoeForCausalLM")
  7428. class LFM2MoeModel(TextModel):
  7429. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7430. def set_gguf_parameters(self):
  7431. # set num_key_value_heads only for attention layers
  7432. self.hparams["num_key_value_heads"] = [
  7433. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7434. for layer_type in self.hparams["layer_types"]
  7435. ]
  7436. super().set_gguf_parameters()
  7437. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7438. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7439. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7440. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7441. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7442. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7443. # cache for experts weights for merging
  7444. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7445. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7446. # conv op requires 2d tensor
  7447. if 'conv.conv' in name:
  7448. data_torch = data_torch.squeeze(1)
  7449. if name.endswith(".expert_bias"):
  7450. name = name.replace(".expert_bias", ".expert_bias.bias")
  7451. # merge expert weights
  7452. if 'experts' in name:
  7453. n_experts = self.hparams["num_experts"]
  7454. assert bid is not None
  7455. expert_cache = self._experts_cache.setdefault(bid, {})
  7456. expert_cache[name] = data_torch
  7457. expert_weights = ["w1", "w2", "w3"]
  7458. # not enough expert weights to merge
  7459. if len(expert_cache) < n_experts * len(expert_weights):
  7460. return []
  7461. tensors: list[tuple[str, Tensor]] = []
  7462. for w_name in expert_weights:
  7463. datas: list[Tensor] = []
  7464. for xid in range(n_experts):
  7465. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7466. datas.append(expert_cache[ename])
  7467. del expert_cache[ename]
  7468. data_torch = torch.stack(datas, dim=0)
  7469. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7470. new_name = self.map_tensor_name(merged_name)
  7471. tensors.append((new_name, data_torch))
  7472. del self._experts_cache[bid]
  7473. return tensors
  7474. return [(self.map_tensor_name(name), data_torch)]
  7475. def prepare_tensors(self):
  7476. super().prepare_tensors()
  7477. assert not self._experts_cache
  7478. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7479. class LFM2VLModel(MmprojModel):
  7480. def __init__(self, *args, **kwargs):
  7481. super().__init__(*args, **kwargs)
  7482. assert self.hparams_vision is not None
  7483. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7484. self.hparams_vision["image_size"] = 256
  7485. def set_gguf_parameters(self):
  7486. super().set_gguf_parameters()
  7487. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7488. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7489. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7490. self.gguf_writer.add_vision_use_gelu(True)
  7491. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7492. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7493. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7495. del bid # unused
  7496. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7497. if is_vision_tensor:
  7498. # remove "model." prefix
  7499. name = name.replace("model.vision_tower.", "vision_tower.")
  7500. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7501. if "patch_embedding.weight" in name:
  7502. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7503. return [(self.map_tensor_name(name), data_torch)]
  7504. return [] # skip other tensors
  7505. @ModelBase.register("SmallThinkerForCausalLM")
  7506. class SmallThinkerModel(TextModel):
  7507. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7508. def set_gguf_parameters(self):
  7509. super().set_gguf_parameters()
  7510. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7511. self.gguf_writer.add_expert_count(n_experts)
  7512. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7513. self.gguf_writer.add_expert_used_count(n_experts_used)
  7514. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7515. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7516. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7517. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7518. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7519. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7520. else:
  7521. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7522. # YaRN is not enabled by default
  7523. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7524. rope_scaling = self.hparams.get("rope_scaling") or {}
  7525. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7526. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7527. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7528. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7529. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7530. if sliding_window_layout:
  7531. for i in sliding_window_layout:
  7532. if i != 0:
  7533. sliding_window = self.hparams.get("sliding_window_size")
  7534. if sliding_window:
  7535. self.gguf_writer.add_sliding_window(sliding_window)
  7536. break
  7537. _experts: list[dict[str, Tensor]] | None = None
  7538. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7539. # process the experts separately
  7540. if name.find("experts") != -1:
  7541. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7542. assert bid is not None
  7543. if self._experts is None:
  7544. self._experts = [{} for _ in range(self.block_count)]
  7545. self._experts[bid][name] = data_torch
  7546. if len(self._experts[bid]) >= n_experts * 3:
  7547. tensors: list[tuple[str, Tensor]] = []
  7548. # merge the experts into a single 3d tensor
  7549. for w_name in ["down", "gate", "up"]:
  7550. datas: list[Tensor] = []
  7551. for xid in range(n_experts):
  7552. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7553. datas.append(self._experts[bid][ename])
  7554. del self._experts[bid][ename]
  7555. data_torch = torch.stack(datas, dim=0)
  7556. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7557. new_name = self.map_tensor_name(merged_name)
  7558. tensors.append((new_name, data_torch))
  7559. return tensors
  7560. else:
  7561. return []
  7562. return [(self.map_tensor_name(name), data_torch)]
  7563. def prepare_tensors(self):
  7564. super().prepare_tensors()
  7565. if self._experts is not None:
  7566. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7567. experts = [k for d in self._experts for k in d.keys()]
  7568. if len(experts) > 0:
  7569. raise ValueError(f"Unprocessed experts: {experts}")
  7570. @ModelBase.register("ApertusForCausalLM")
  7571. class ApertusModel(LlamaModel):
  7572. model_arch = gguf.MODEL_ARCH.APERTUS
  7573. undo_permute = False
  7574. _alpha_n = {}
  7575. _alpha_p = {}
  7576. _beta = {}
  7577. _eps = {}
  7578. def modify_tensors(self, data_torch, name, bid):
  7579. # Handle xIELU activation parameters
  7580. n_layers = self.hparams["num_hidden_layers"]
  7581. if name.endswith(".act_fn.alpha_n"):
  7582. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7583. if (len(self._alpha_n) == n_layers):
  7584. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7585. return []
  7586. if name.endswith(".act_fn.alpha_p"):
  7587. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7588. if (len(self._alpha_p) == n_layers):
  7589. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7590. return []
  7591. if name.endswith(".act_fn.beta"):
  7592. self._beta[bid] = data_torch.to("cpu").float().item()
  7593. if (len(self._beta) == n_layers):
  7594. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7595. return []
  7596. if name.endswith(".act_fn.eps"):
  7597. self._eps[bid] = data_torch.to("cpu").float().item()
  7598. if (len(self._eps) == n_layers):
  7599. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7600. return []
  7601. return super().modify_tensors(data_torch, name, bid)
  7602. class MistralModel(LlamaModel):
  7603. model_arch = gguf.MODEL_ARCH.LLAMA
  7604. model_name = "Mistral"
  7605. hf_arch = ""
  7606. is_mistral_format = True
  7607. undo_permute = False
  7608. @staticmethod
  7609. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7610. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7611. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7612. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7613. )
  7614. if vocab.tokenizer.version == TokenizerVersion.v1:
  7615. return "mistral-v1"
  7616. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7617. return "mistral-v3"
  7618. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7619. return "mistral-v3-tekken"
  7620. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7621. return "mistral-v7"
  7622. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7623. return "mistral-v7-tekken"
  7624. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7625. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7626. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7627. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7628. else:
  7629. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7630. if is_mistral_format:
  7631. err_message += (
  7632. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7633. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7634. )
  7635. raise ValueError(err_message)
  7636. template_path = templates_dir / template_file
  7637. if not template_path.exists():
  7638. raise FileNotFoundError(f"Template file not found: {template_path}")
  7639. with open(template_path, "r", encoding="utf-8") as f:
  7640. template = f.read()
  7641. return template
  7642. class PixtralModel(LlavaVisionModel):
  7643. model_name = "Pixtral"
  7644. hf_arch = ""
  7645. is_mistral_format = True
  7646. def set_gguf_parameters(self):
  7647. super().set_gguf_parameters()
  7648. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7649. self.gguf_writer.add_vision_attention_layernorm_eps(
  7650. self.find_hparam(["norm_eps"])
  7651. )
  7652. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7653. self.gguf_writer.add_vision_use_silu(True)
  7654. # spatial_merge_size
  7655. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7656. self.gguf_writer.add_vision_spatial_merge_size(
  7657. self.find_vparam(["spatial_merge_size"])
  7658. )
  7659. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7660. if name == "vision_language_adapter.w_in.weight":
  7661. return "mm.1.weight"
  7662. elif name == "vision_language_adapter.w_out.weight":
  7663. return "mm.2.weight"
  7664. return super().map_tensor_name(name, try_suffixes)
  7665. @ModelBase.register("LightOnOCRForConditionalGeneration")
  7666. class LightOnOCRVisionModel(LlavaVisionModel):
  7667. is_mistral_format = False
  7668. use_break_tok = False
  7669. def set_gguf_parameters(self):
  7670. super().set_gguf_parameters()
  7671. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  7672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  7673. name = name.replace("model.vision_encoder.", "vision_tower.")
  7674. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  7675. return super().modify_tensors(data_torch, name, bid)
  7676. @ModelBase.register("KimiVLForConditionalGeneration")
  7677. class KimiVLModel(MmprojModel):
  7678. def __init__(self, *args, **kwargs):
  7679. super().__init__(*args, **kwargs)
  7680. assert self.hparams_vision is not None
  7681. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7682. def set_gguf_parameters(self):
  7683. super().set_gguf_parameters()
  7684. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7685. self.gguf_writer.add_vision_use_gelu(True)
  7686. self.gguf_writer.add_vision_projector_scale_factor(2)
  7687. # eps is the same as pytorch's default value
  7688. assert self.hparams_vision is not None
  7689. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7691. del bid # unused
  7692. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7693. if is_vision_tensor:
  7694. if "pos_emb.weight" in name:
  7695. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7696. elif "wqkv" in name:
  7697. split_dim = 0 if "weight" in name else -1
  7698. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7699. return [
  7700. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7701. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7702. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7703. ]
  7704. return [(self.map_tensor_name(name), data_torch)]
  7705. return [] # skip other tensors
  7706. ###### CONVERSION LOGIC ######
  7707. # tree of lazy tensors
  7708. class LazyTorchTensor(gguf.LazyBase):
  7709. _tensor_type = torch.Tensor
  7710. # to keep the type-checker happy
  7711. dtype: torch.dtype
  7712. shape: torch.Size
  7713. # only used when converting a torch.Tensor to a np.ndarray
  7714. _dtype_map: dict[torch.dtype, type] = {
  7715. torch.float16: np.float16,
  7716. torch.float32: np.float32,
  7717. torch.uint8: np.uint8,
  7718. }
  7719. # used for safetensors slices
  7720. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7721. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7722. _dtype_str_map: dict[str, torch.dtype] = {
  7723. "F64": torch.float64,
  7724. "F32": torch.float32,
  7725. "BF16": torch.bfloat16,
  7726. "F16": torch.float16,
  7727. # "U64": torch.uint64,
  7728. "I64": torch.int64,
  7729. # "U32": torch.uint32,
  7730. "I32": torch.int32,
  7731. # "U16": torch.uint16,
  7732. "I16": torch.int16,
  7733. "U8": torch.uint8,
  7734. "I8": torch.int8,
  7735. "BOOL": torch.bool,
  7736. "F8_E4M3": torch.float8_e4m3fn,
  7737. "F8_E5M2": torch.float8_e5m2,
  7738. }
  7739. def numpy(self) -> gguf.LazyNumpyTensor:
  7740. dtype = self._dtype_map[self.dtype]
  7741. return gguf.LazyNumpyTensor(
  7742. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7743. args=(self,),
  7744. func=(lambda s: s.numpy())
  7745. )
  7746. @classmethod
  7747. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7748. return torch.empty(size=shape, dtype=dtype, device="meta")
  7749. @classmethod
  7750. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7751. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7752. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7753. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  7754. return cast(torch.Tensor, lazy)
  7755. @classmethod
  7756. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7757. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7758. shape = remote_tensor.shape
  7759. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7760. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7761. return cast(torch.Tensor, lazy)
  7762. @classmethod
  7763. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7764. del types # unused
  7765. if kwargs is None:
  7766. kwargs = {}
  7767. if func is torch.Tensor.numpy:
  7768. return args[0].numpy()
  7769. return cls._wrap_fn(func)(*args, **kwargs)
  7770. def parse_args() -> argparse.Namespace:
  7771. parser = argparse.ArgumentParser(
  7772. description="Convert a huggingface model to a GGML compatible file")
  7773. parser.add_argument(
  7774. "--vocab-only", action="store_true",
  7775. help="extract only the vocab",
  7776. )
  7777. parser.add_argument(
  7778. "--outfile", type=Path,
  7779. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7780. )
  7781. parser.add_argument(
  7782. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7783. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7784. )
  7785. parser.add_argument(
  7786. "--bigendian", action="store_true",
  7787. help="model is executed on big endian machine",
  7788. )
  7789. parser.add_argument(
  7790. "model", type=str,
  7791. help="directory containing model file or huggingface repository ID (if --remote)",
  7792. nargs="?",
  7793. )
  7794. parser.add_argument(
  7795. "--use-temp-file", action="store_true",
  7796. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7797. )
  7798. parser.add_argument(
  7799. "--no-lazy", action="store_true",
  7800. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7801. )
  7802. parser.add_argument(
  7803. "--model-name", type=str, default=None,
  7804. help="name of the model",
  7805. )
  7806. parser.add_argument(
  7807. "--verbose", action="store_true",
  7808. help="increase output verbosity",
  7809. )
  7810. parser.add_argument(
  7811. "--split-max-tensors", type=int, default=0,
  7812. help="max tensors in each split",
  7813. )
  7814. parser.add_argument(
  7815. "--split-max-size", type=str, default="0",
  7816. help="max size per split N(M|G)",
  7817. )
  7818. parser.add_argument(
  7819. "--dry-run", action="store_true",
  7820. help="only print out a split plan and exit, without writing any new files",
  7821. )
  7822. parser.add_argument(
  7823. "--no-tensor-first-split", action="store_true",
  7824. help="do not add tensors to the first split (disabled by default)"
  7825. )
  7826. parser.add_argument(
  7827. "--metadata", type=Path,
  7828. help="Specify the path for an authorship metadata override file"
  7829. )
  7830. parser.add_argument(
  7831. "--print-supported-models", action="store_true",
  7832. help="Print the supported models"
  7833. )
  7834. parser.add_argument(
  7835. "--remote", action="store_true",
  7836. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7837. )
  7838. parser.add_argument(
  7839. "--mmproj", action="store_true",
  7840. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7841. )
  7842. parser.add_argument(
  7843. "--mistral-format", action="store_true",
  7844. help="Whether the model is stored following the Mistral format.",
  7845. )
  7846. parser.add_argument(
  7847. "--disable-mistral-community-chat-template", action="store_true",
  7848. help=(
  7849. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7850. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7851. )
  7852. )
  7853. parser.add_argument(
  7854. "--sentence-transformers-dense-modules", action="store_true",
  7855. help=("Whether to include sentence-transformers dense modules."
  7856. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  7857. "Default these modules are not included.")
  7858. )
  7859. args = parser.parse_args()
  7860. if not args.print_supported_models and args.model is None:
  7861. parser.error("the following arguments are required: model")
  7862. return args
  7863. def split_str_to_n_bytes(split_str: str) -> int:
  7864. if split_str.endswith("K"):
  7865. n = int(split_str[:-1]) * 1000
  7866. elif split_str.endswith("M"):
  7867. n = int(split_str[:-1]) * 1000 * 1000
  7868. elif split_str.endswith("G"):
  7869. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7870. elif split_str.isnumeric():
  7871. n = int(split_str)
  7872. else:
  7873. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7874. if n < 0:
  7875. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7876. return n
  7877. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7878. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7879. # maybe we should fallback to text model's arch in that case, since not many models have both
  7880. text_config = hparams.get("text_config", {})
  7881. vision_config = hparams.get("vision_config", {})
  7882. arch = None
  7883. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7884. arch = arches[0]
  7885. elif "ssm_cfg" in hparams:
  7886. # For non-hf Mamba and Mamba2 models
  7887. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7888. # if "architectures" is found in the sub-config, use that instead
  7889. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7890. arch = text_config["architectures"][0]
  7891. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7892. arch = vision_config["architectures"][0]
  7893. if arch is None:
  7894. raise ValueError("Failed to detect model architecture")
  7895. return arch
  7896. def main() -> None:
  7897. args = parse_args()
  7898. if args.print_supported_models:
  7899. logger.error("Supported models:")
  7900. ModelBase.print_registered_models()
  7901. sys.exit(0)
  7902. if args.verbose:
  7903. logging.basicConfig(level=logging.DEBUG)
  7904. else:
  7905. logging.basicConfig(level=logging.INFO)
  7906. if args.remote:
  7907. hf_repo_id = args.model
  7908. from huggingface_hub import snapshot_download
  7909. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  7910. if args.sentence_transformers_dense_modules:
  7911. # include sentence-transformers dense modules safetensors files
  7912. allowed_patterns.append("*.safetensors")
  7913. local_dir = snapshot_download(
  7914. repo_id=hf_repo_id,
  7915. allow_patterns=allowed_patterns)
  7916. dir_model = Path(local_dir)
  7917. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7918. else:
  7919. hf_repo_id = None
  7920. dir_model = Path(args.model)
  7921. if not dir_model.is_dir():
  7922. logger.error(f'Error: {dir_model} is not a directory')
  7923. sys.exit(1)
  7924. ftype_map: dict[str, gguf.LlamaFileType] = {
  7925. "f32": gguf.LlamaFileType.ALL_F32,
  7926. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7927. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7928. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7929. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7930. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7931. "auto": gguf.LlamaFileType.GUESSED,
  7932. }
  7933. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7934. if args.use_temp_file and is_split:
  7935. logger.error("Error: Cannot use temp file when splitting")
  7936. sys.exit(1)
  7937. if args.outfile is not None:
  7938. fname_out = args.outfile
  7939. elif hf_repo_id:
  7940. # if remote, use the model ID as the output file name
  7941. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7942. else:
  7943. fname_out = dir_model
  7944. logger.info(f"Loading model: {dir_model.name}")
  7945. is_mistral_format = args.mistral_format
  7946. if is_mistral_format and not _mistral_common_installed:
  7947. raise ImportError(_mistral_import_error_msg)
  7948. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7949. with torch.inference_mode():
  7950. output_type = ftype_map[args.outtype]
  7951. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7952. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7953. if not is_mistral_format:
  7954. model_architecture = get_model_architecture(hparams, model_type)
  7955. logger.info(f"Model architecture: {model_architecture}")
  7956. try:
  7957. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7958. except NotImplementedError:
  7959. logger.error(f"Model {model_architecture} is not supported")
  7960. sys.exit(1)
  7961. elif args.mmproj:
  7962. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7963. model_class = PixtralModel
  7964. else:
  7965. model_class = MistralModel
  7966. model_instance = model_class(dir_model, output_type, fname_out,
  7967. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7968. eager=args.no_lazy,
  7969. metadata_override=args.metadata, model_name=args.model_name,
  7970. split_max_tensors=args.split_max_tensors,
  7971. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7972. small_first_shard=args.no_tensor_first_split,
  7973. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  7974. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  7975. )
  7976. if args.vocab_only:
  7977. logger.info("Exporting model vocab...")
  7978. model_instance.write_vocab()
  7979. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7980. else:
  7981. logger.info("Exporting model...")
  7982. model_instance.write()
  7983. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7984. logger.info(f"Model successfully exported to {out_path}")
  7985. if __name__ == '__main__':
  7986. main()