| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- /*
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
- #ifndef CANN_ACL_TENSOR_H
- #define CANN_ACL_TENSOR_H
- #include <algorithm>
- #include <cstring>
- #include <aclnn/aclnn_base.h>
- #include "common.h"
- /**
- * @brief Maps a ggml_type to its corresponding aclDataType.
- *
- * @details This function takes a ggml_type as input and returns the corresponding
- * aclDataType. It supports mapping for various ggml_types. If the input type
- * does not match any of the predefined ggml_types, the function returns
- * ACL_DT_UNDEFINED.
- *
- * @param type The ggml_type to be mapped.
- * @return The corresponding aclDataType. If the input type is not recognized,
- * ACL_DT_UNDEFINED is returned.
- */
- aclDataType ggml_cann_type_mapping(ggml_type type);
- /**
- * @brief Creates an ACL tensor from a ggml_tensor with optional shape.
- *
- * @details This function creates an ACL tensor based on the properties of the
- * provided ggml_tensor. It supports customer shape by adjusting dimensions
- * and strides accordingly. If customer shape is applied, additional
- * dimensions and strides are calculated based on the provided parameters.
- *
- * @param tensor Pointer to the ggml_tensor to be converted to ACL tensor.
- * @param ne Pointer to an array containing dimensions. Defaults to nullptr
- * if no customer shape is applied.
- * @param nb Pointer to an array containing strides. Defaults to nullptr
- * if no customer shape is applied.
- * @param dims Number of dimensions in the tensor. Defaults to 0 if no customer
- * shape is applied.
- * @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
- * @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
- * @return Pointer to the created ACL tensor.
- */
- aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
- int64_t * ne = nullptr,
- size_t * nb = nullptr,
- int64_t dims = 0,
- aclFormat format = ACL_FORMAT_ND,
- size_t offset = 0);
- /**
- * @brief Template for creating an ACL tensor from provided parameters. typename TYPE
- * should be size_t or float.
- *
- * @details This function creates an ACL tensor using the provided data pointer,
- * data type, dimensions, strides, format, offset, and additional parameters.
- * It calculates necessary dimensions and strides based on the provided ne and nb
- * arrays, adjusting them for the ACL tensor creation. The ACL storage length
- * is also calculated based on the provided dimensions and strides.
- *
- * @param data_ptr Pointer to the data buffer for the ACL tensor.
- * @param dtype ACL data type of the tensor.
- * @param type_size Size of each element in the tensor data buffer.
- * @param ne Pointer to an array containing tensor dimensions.
- * @param nb Pointer to an array containing tensor strides.
- * @param dims Number of dimensions of the tensor.
- * @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
- * @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
- * @return Pointer to the created ACL tensor.
- */
- template <typename TYPE>
- aclTensor * ggml_cann_create_tensor(void * data_ptr,
- aclDataType dtype,
- TYPE type_size,
- int64_t * ne,
- TYPE * nb,
- int64_t dims,
- aclFormat format = ACL_FORMAT_ND,
- size_t offset = 0) {
- int64_t tmp_ne[GGML_MAX_DIMS * 2];
- int64_t tmp_stride[GGML_MAX_DIMS * 2];
- memcpy(tmp_ne, ne, dims * sizeof(int64_t));
- for (int i = 0; i < dims; i++) {
- tmp_stride[i] = nb[i] / type_size;
- }
- int64_t acl_storage_len = 1;
- for (int i = 0; i < dims; i++) {
- acl_storage_len += (tmp_ne[i] - 1) * tmp_stride[i];
- }
- std::reverse(tmp_ne, tmp_ne + dims);
- std::reverse(tmp_stride, tmp_stride + dims);
- aclTensor * acl_tensor =
- aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr);
- return acl_tensor;
- }
- /**
- * @brief Checks if tensors require broadcasting based on their shapes.
- *
- * @details This function determines if two ggml_tensors need to be broadcasted for
- * element-wise operations. Broadcasting is necessary if the shapes of the
- * tensors are not identical and no dimension in either tensor equals 1.
- *
- * @param t0 Pointer to the first ggml_tensor.
- * @param t1 Pointer to the second ggml_tensor.
- * @return True if broadcasting is needed, False otherwise.
- *
- * @remarks This function iterates over the dimensions of t0 and t1. It checks if each
- * dimension in t1 differs from t0's corresponding dimension and is not equal
- * to 1. If such a dimension is found, broadcasting is required to align t1
- * with t0 for element-wise operations.
- */
- bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1);
- /**
- * @brief Computes broadcast shapes and strides for two ggml_tensors.
- *
- * @details This function calculates the broadcast shapes and strides for two ggml_tensors,
- * following the broadcasting rules similar to numpy. It adjusts dimensions and
- * strides to ensure compatibility for element-wise operations where one tensor
- * can be broadcasted to match the shape of another tensor.
- *
- * @param src0 Pointer to the first ggml_tensor.
- * @param src1 Pointer to the second ggml_tensor.
- * @param bcast_ne_src0 Output array to store broadcasted dimensions for src0.
- * @param bcast_ne_src1 Output array to store broadcasted dimensions for src1.
- * @param bcast_nb_src0 Output array to store broadcasted strides for src0.
- * @param bcast_nb_src1 Output array to store broadcasted strides for src1.
- * @return Number of dimensions in the broadcasted shape.
- *
- * @pre ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
- * to match src0.
- *
- * @remarks This function iterates over the dimensions of src0 and src1, calculating the
- * necessary broadcast dimensions and strides. If a dimension requires broadcasting
- * (i.e., its size in src1 is smaller than in src0), an additional dimension is
- * added with size calculated to match src0's dimension. This adjustment ensures
- * that src1 can be element-wise broadcasted to src0's shape.
- *
- * How it works:
- *
- * if dim0 has padding.
- * a -> (2, 2) padding = 2
- * a: [[1, 2, *, *]
- * [2, 3, *, *]]
- * nb = (8, 4, 2)
- *
- * if a should bcast with b -> (2, 4)
- * b' -> (2, 2, 2)
- * b : [[1, 2, 3, 4, *, *]
- * [5, 6, 7, 8, *, *]]
- * nb = (12, 6, 1)
- *
- * after bcast:
- * a' -> (2, 1, 2)
- * a': [[[1, 2], *, *]
- * [[2, 3], *, *]]
- * nb = (8, 4, 2, 1)
- *
- * b' : [[[1, 2], [3, 4], *, *]
- * [[5, 6], [7, 8], *, *]]
- * nb = (12, 6, 2, 1)
- * \endcode
- *
- * dim1 in a inserted dim, should add nb for dim1,
- * and all other nb moves to next in order.
- */
- int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
- const ggml_tensor * src1,
- int64_t * bcast_ne_src0,
- int64_t * bcast_ne_src1,
- size_t * bcast_nb_src0,
- size_t * bcast_nb_src1);
- // Bcast macro to avoid duplicate code.
- #define BCAST_SHAPE(src0, src1) \
- int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
- int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
- size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
- size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
- int64_t bcast_dims = ggml_cann_get_bcast_shape(src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, \
- bcast_##src0##_nb, bcast_##src1##_nb);
- #define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
- /**
- * @brief Calculates broadcast shapes for matrix multiplication.
- *
- * @details This function computes the broadcast shapes required for matrix multiplication
- * based on the input, weight, and destination tensor shapes. It ensures that the
- * dimensions of weight tensors are expanded appropriately to satisfy matrix
- * multiplication broadcast rules.
- *
- * @param input_ne Array containing the dimensions of the input tensor.
- * @param weight_ne Array containing the dimensions of the weight tensor.
- * @param dst_ne Array containing the dimensions of the destination tensor.
- * @param input_nb Array containing the strides of the input tensor.
- * @param weight_nb Array containing the strides of the weight tensor.
- * @param dst_nb Array containing the strides of the destination tensor.
- * @param bcast_input_ne Output array for broadcasted input tensor dimensions.
- * @param bcast_weight_ne Output array for broadcasted weight tensor dimensions.
- * @param bcast_dst_ne Output array for broadcasted destination tensor dimensions.
- * @param bcast_input_nb Output array for broadcasted input tensor strides.
- * @param bcast_weight_nb Output array for broadcasted weight tensor strides.
- * @param bcast_dst_nb Output array for broadcasted destination tensor strides.
- * @return The number of dimensions in the broadcasted tensors.
- *
- * @remarks This function iterates over the tensor dimensions and calculates the broadcast
- * shapes needed for matrix multiplication. It ensures that dimensions where
- * weight tensor requires expansion are appropriately handled to conform with
- * broadcasting rules.
- * @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
- * before cast dim.
- * @sa ggml_cann_get_bcast_shape
- */
- int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
- const int64_t * weight_ne,
- const int64_t * dst_ne,
- const size_t * input_nb,
- const size_t * weight_nb,
- const size_t * dst_nb,
- int64_t * bcast_input_ne,
- int64_t * bcast_weight_ne,
- int64_t * bcast_dst_ne,
- size_t * bcast_input_nb,
- size_t * bcast_weight_nb,
- size_t * bcast_dst_nb);
- // Bcast macro to avoid duplicate code.
- #define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
- int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
- int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
- int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
- size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
- size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
- size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
- int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
- input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, bcast_##input##_ne, bcast_##weight##_ne, \
- bcast_##dst##_ne, bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
- #define BCAST_MUL_MAT_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
- #endif // CANN_ACL_TENSOR_H
|