| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373 |
- #pragma once
- #include "llama-batch.h"
- #include "llama-graph.h"
- #include "llama-kv-cells.h"
- #include "llama-memory.h"
- #include <unordered_map>
- #include <vector>
- struct llama_cparams;
- struct llama_hparams;
- struct llama_model;
- struct llama_context;
- //
- // llama_kv_cache
- //
- class llama_kv_cache : public llama_memory_i {
- public:
- static uint32_t get_padding(const llama_cparams & cparams);
- struct stream_copy_info {
- bool empty() const {
- assert(ssrc.size() == sdst.size());
- return ssrc.empty();
- }
- std::vector<uint32_t> ssrc;
- std::vector<uint32_t> sdst;
- };
- // for each ubatch, create a slot_info that contains information about where the ubatch should be inserted in the
- // KV cells. for example, cell indices for each token, such that: token[i] -> goes to cells[idxs[i]]
- struct slot_info {
- // data for ggml_set_rows
- using idx_vec_t = std::vector<uint32_t>;
- // number of streams: ns = s1 - s0 + 1
- uint32_t s0;
- uint32_t s1;
- std::vector<llama_seq_id> strm; // [ns]
- std::vector<idx_vec_t> idxs; // [ns]
- uint32_t head() const {
- GGML_ASSERT(idxs.size() == 1);
- GGML_ASSERT(!idxs[0].empty());
- return idxs[0][0];
- }
- void resize(size_t n) {
- strm.resize(n);
- idxs.resize(n);
- }
- size_t size() const {
- GGML_ASSERT(idxs.size() == strm.size());
- GGML_ASSERT(!idxs.empty());
- return idxs[0].size();
- }
- size_t n_stream() const {
- return strm.size();
- }
- bool empty() const {
- return idxs.empty();
- }
- void clear() {
- idxs.clear();
- }
- };
- using slot_info_vec_t = std::vector<slot_info>;
- llama_kv_cache(
- const llama_model & model,
- ggml_type type_k,
- ggml_type type_v,
- bool v_trans,
- bool offload,
- bool unified,
- uint32_t kv_size,
- uint32_t n_seq_max,
- uint32_t n_pad,
- uint32_t n_swa,
- llama_swa_type swa_type,
- const layer_filter_cb & filter,
- const layer_reuse_cb & reuse);
- ~llama_kv_cache() = default;
- //
- // llama_memory_i
- //
- llama_memory_context_ptr init_batch(
- llama_batch_allocr & balloc,
- uint32_t n_ubatch,
- bool embd_all) override;
- llama_memory_context_ptr init_full() override;
- llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) override;
- bool get_can_shift() const override;
- void clear(bool data) override;
- bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
- void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
- void seq_keep(llama_seq_id seq_id) override;
- void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
- void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
- llama_pos seq_pos_min(llama_seq_id seq_id) const override;
- llama_pos seq_pos_max(llama_seq_id seq_id) const override;
- // state write/load
- void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
- void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) override;
- //
- // llama_kv_cache specific API
- //
- uint32_t get_size() const;
- uint32_t get_n_stream() const;
- bool get_has_shift() const;
- //
- // graph_build API
- //
- uint32_t get_n_kv(const slot_info & sinfo) const;
- // get views of the current state of the cache
- ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const;
- ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const;
- // store k_cur and v_cur in the cache based on the provided head location
- ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const;
- ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const;
- //
- // preparation API
- //
- // find places for the provided ubatches in the cache, returns the slot infos
- // return empty vector on failure
- slot_info_vec_t prepare(const std::vector<llama_ubatch> & ubatches);
- bool update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info);
- // find a slot of kv cells that can hold the ubatch
- // if cont == true, then the slot must be continuous
- // return empty slot_info on failure
- slot_info find_slot(const llama_ubatch & ubatch, bool cont) const;
- // emplace the ubatch context into slot: [sinfo.idxs[0...ubatch.n_tokens - 1]]
- void apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch);
- //
- // input API
- //
- ggml_tensor * build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;
- ggml_tensor * build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;
- void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const;
- void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const;
- void set_input_k_shift(ggml_tensor * dst) const;
- void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
- void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
- private:
- const llama_model & model;
- const llama_hparams & hparams;
- struct kv_layer {
- // layer index in the model
- // note: can be different from the layer index in the KV cache
- uint32_t il;
- ggml_tensor * k;
- ggml_tensor * v;
- std::vector<ggml_tensor *> k_stream;
- std::vector<ggml_tensor *> v_stream;
- };
- bool v_trans = true; // the value tensor is transposed
- const uint32_t n_seq_max = 1;
- const uint32_t n_stream = 1;
- // required padding
- const uint32_t n_pad = 1;
- // SWA
- const uint32_t n_swa = 0;
- // env: LLAMA_KV_CACHE_DEBUG
- int debug = 0;
- // this is the SWA type of the cache - not to be confused with the model SWA type
- const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
- std::vector<ggml_context_ptr> ctxs;
- std::vector<ggml_backend_buffer_ptr> bufs;
- // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
- // note: this is not part of the KV state and it's only used to speed-up the find_slot() method
- std::vector<uint32_t> v_heads;
- std::vector<llama_kv_cells> v_cells;
- // maps from a sequence id to a stream id
- std::vector<uint32_t> seq_to_stream;
- // pending stream copies that will be applied during the next update
- stream_copy_info sc_info;
- std::vector<kv_layer> layers;
- // model layer id -> KV cache layer id
- std::unordered_map<int32_t, int32_t> map_layer_ids;
- size_t total_size() const;
- size_t size_k_bytes() const;
- size_t size_v_bytes() const;
- bool is_masked_swa(llama_pos p0, llama_pos p1) const;
- ggml_tensor * build_rope_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_tensor * cur,
- ggml_tensor * shift,
- ggml_tensor * factors,
- float freq_base,
- float freq_scale) const;
- ggml_cgraph * build_graph_shift(
- llm_graph_result * res,
- llama_context * lctx) const;
- struct cell_ranges_t {
- uint32_t strm;
- std::vector<std::pair<uint32_t, uint32_t>> data; // ranges, from inclusive, to exclusive
- };
- void state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id = -1) const;
- void state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const;
- bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
- bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count);
- };
- class llama_kv_cache_context : public llama_memory_context_i {
- public:
- // some shorthands
- using slot_info_vec_t = llama_kv_cache::slot_info_vec_t;
- using stream_copy_info = llama_kv_cache::stream_copy_info;
- // used for errors
- llama_kv_cache_context(llama_memory_status status);
- // used to create a full-cache context
- llama_kv_cache_context(
- llama_kv_cache * kv);
- // used to create an update context
- llama_kv_cache_context(
- llama_kv_cache * kv,
- llama_context * lctx,
- bool do_shift,
- stream_copy_info sc_info);
- // used to create a batch procesing context from a batch
- llama_kv_cache_context(
- llama_kv_cache * kv,
- slot_info_vec_t sinfos,
- std::vector<llama_ubatch> ubatches);
- virtual ~llama_kv_cache_context();
- //
- // llama_memory_context_i
- //
- bool next() override;
- bool apply() override;
- llama_memory_status get_status() const override;
- const llama_ubatch & get_ubatch() const override;
- //
- // llama_kv_cache_context specific API
- //
- uint32_t get_n_kv() const;
- // get views of the current state of the cache
- ggml_tensor * get_k(ggml_context * ctx, int32_t il) const;
- ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;
- // store k_cur and v_cur in the cache based on the provided head location
- // note: the heads in k_cur and v_cur should be layed out contiguously in memory
- // - k_cur [n_embd_head_k, n_head_k, n_tokens]
- // - k_idxs [n_tokens]
- // - v_cur [n_embd_head_v, n_head_v, n_tokens]
- // - v_idxs [n_tokens] or [n_tokens*n_embd_v_gqa] depending if V cache is transposed
- ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const;
- ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const;
- // create destination indices for each head of the current batch for where it would be written in the KV cache
- // the indices address the global KV cache (not per stream) - this is not relevant for the user of this API, but
- // helps understand the implementation logic of cpy_k and cpy_v
- ggml_tensor * build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;
- ggml_tensor * build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;
- void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const;
- void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const;
- void set_input_k_shift (ggml_tensor * dst) const;
- void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
- void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
- private:
- llama_memory_status status;
- llama_kv_cache * kv;
- llama_context * lctx;
- //
- // update context
- //
- bool do_shift = false;
- stream_copy_info sc_info;
- //
- // batch processing context
- //
- // the index of the cur ubatch to process
- size_t i_cur = 0;
- slot_info_vec_t sinfos;
- std::vector<llama_ubatch> ubatches;
- //
- // data needed for building the compute graph for the current ubatch:
- //
- // a heuristic, to avoid attending the full cache if it is not yet utilized
- // as the cache gets filled, the benefit from this heuristic disappears
- int32_t n_kv;
- };
|