arg.cpp 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202
  1. #include "gguf.h" // for reading GGUF splits
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "chat.h"
  7. // fix problem with std::min and std::max
  8. #if defined(_WIN32)
  9. #define WIN32_LEAN_AND_MEAN
  10. #ifndef NOMINMAX
  11. # define NOMINMAX
  12. #endif
  13. #include <windows.h>
  14. #endif
  15. #include <algorithm>
  16. #include <climits>
  17. #include <cstdarg>
  18. #include <filesystem>
  19. #include <fstream>
  20. #include <regex>
  21. #include <set>
  22. #include <string>
  23. #include <thread>
  24. #include <vector>
  25. //#define LLAMA_USE_CURL
  26. #if defined(LLAMA_USE_CURL)
  27. #include <curl/curl.h>
  28. #include <curl/easy.h>
  29. #include <future>
  30. #endif
  31. #include "json-schema-to-grammar.h"
  32. using json = nlohmann::ordered_json;
  33. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  34. this->examples = std::move(examples);
  35. return *this;
  36. }
  37. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  38. this->excludes = std::move(excludes);
  39. return *this;
  40. }
  41. common_arg & common_arg::set_env(const char * env) {
  42. help = help + "\n(env: " + env + ")";
  43. this->env = env;
  44. return *this;
  45. }
  46. common_arg & common_arg::set_sparam() {
  47. is_sparam = true;
  48. return *this;
  49. }
  50. bool common_arg::in_example(enum llama_example ex) {
  51. return examples.find(ex) != examples.end();
  52. }
  53. bool common_arg::is_exclude(enum llama_example ex) {
  54. return excludes.find(ex) != excludes.end();
  55. }
  56. bool common_arg::get_value_from_env(std::string & output) {
  57. if (env == nullptr) return false;
  58. char * value = std::getenv(env);
  59. if (value) {
  60. output = value;
  61. return true;
  62. }
  63. return false;
  64. }
  65. bool common_arg::has_value_from_env() {
  66. return env != nullptr && std::getenv(env);
  67. }
  68. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  69. std::vector<std::string> result;
  70. std::istringstream iss(input);
  71. std::string line;
  72. auto add_line = [&](const std::string& l) {
  73. if (l.length() <= max_char_per_line) {
  74. result.push_back(l);
  75. } else {
  76. std::istringstream line_stream(l);
  77. std::string word, current_line;
  78. while (line_stream >> word) {
  79. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  80. if (!current_line.empty()) result.push_back(current_line);
  81. current_line = word;
  82. } else {
  83. current_line += (!current_line.empty() ? " " : "") + word;
  84. }
  85. }
  86. if (!current_line.empty()) result.push_back(current_line);
  87. }
  88. };
  89. while (std::getline(iss, line)) {
  90. add_line(line);
  91. }
  92. return result;
  93. }
  94. std::string common_arg::to_string() {
  95. // params for printing to console
  96. const static int n_leading_spaces = 40;
  97. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  98. std::string leading_spaces(n_leading_spaces, ' ');
  99. std::ostringstream ss;
  100. for (const auto arg : args) {
  101. if (arg == args.front()) {
  102. if (args.size() == 1) {
  103. ss << arg;
  104. } else {
  105. // first arg is usually abbreviation, we need padding to make it more beautiful
  106. auto tmp = std::string(arg) + ", ";
  107. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  108. ss << tmp << spaces;
  109. }
  110. } else {
  111. ss << arg << (arg != args.back() ? ", " : "");
  112. }
  113. }
  114. if (value_hint) ss << " " << value_hint;
  115. if (value_hint_2) ss << " " << value_hint_2;
  116. if (ss.tellp() > n_leading_spaces - 3) {
  117. // current line is too long, add new line
  118. ss << "\n" << leading_spaces;
  119. } else {
  120. // padding between arg and help, same line
  121. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  122. }
  123. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  124. for (const auto & line : help_lines) {
  125. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  126. }
  127. return ss.str();
  128. }
  129. //
  130. // downloader
  131. //
  132. struct common_hf_file_res {
  133. std::string repo; // repo name with ":tag" removed
  134. std::string ggufFile;
  135. std::string mmprojFile;
  136. };
  137. #ifdef LLAMA_USE_CURL
  138. #ifdef __linux__
  139. #include <linux/limits.h>
  140. #elif defined(_WIN32)
  141. # if !defined(PATH_MAX)
  142. # define PATH_MAX MAX_PATH
  143. # endif
  144. #elif defined(_AIX)
  145. #include <sys/limits.h>
  146. #else
  147. #include <sys/syslimits.h>
  148. #endif
  149. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  150. //
  151. // CURL utils
  152. //
  153. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  154. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  155. struct curl_slist_ptr {
  156. struct curl_slist * ptr = nullptr;
  157. ~curl_slist_ptr() {
  158. if (ptr) {
  159. curl_slist_free_all(ptr);
  160. }
  161. }
  162. };
  163. #define CURL_MAX_RETRY 3
  164. #define CURL_RETRY_DELAY_SECONDS 2
  165. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
  166. int remaining_attempts = max_attempts;
  167. while (remaining_attempts > 0) {
  168. LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  169. CURLcode res = curl_easy_perform(curl);
  170. if (res == CURLE_OK) {
  171. return true;
  172. }
  173. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  174. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  175. remaining_attempts--;
  176. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  177. }
  178. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  179. return false;
  180. }
  181. // download one single file from remote URL to local path
  182. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
  183. // Initialize libcurl
  184. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  185. curl_slist_ptr http_headers;
  186. if (!curl) {
  187. LOG_ERR("%s: error initializing libcurl\n", __func__);
  188. return false;
  189. }
  190. bool force_download = false;
  191. // Set the URL, allow to follow http redirection
  192. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  193. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  194. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  195. // Check if hf-token or bearer-token was specified
  196. if (!bearer_token.empty()) {
  197. std::string auth_header = "Authorization: Bearer " + bearer_token;
  198. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  199. }
  200. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  201. #if defined(_WIN32)
  202. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  203. // operating system. Currently implemented under MS-Windows.
  204. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  205. #endif
  206. // Check if the file already exists locally
  207. auto file_exists = std::filesystem::exists(path);
  208. // If the file exists, check its JSON metadata companion file.
  209. std::string metadata_path = path + ".json";
  210. nlohmann::json metadata;
  211. std::string etag;
  212. std::string last_modified;
  213. if (file_exists) {
  214. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  215. std::ifstream metadata_in(metadata_path);
  216. if (metadata_in.good()) {
  217. try {
  218. metadata_in >> metadata;
  219. LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  220. if (metadata.contains("url") && metadata.at("url").is_string()) {
  221. auto previous_url = metadata.at("url").get<std::string>();
  222. if (previous_url != url) {
  223. LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  224. return false;
  225. }
  226. }
  227. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  228. etag = metadata.at("etag");
  229. }
  230. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  231. last_modified = metadata.at("lastModified");
  232. }
  233. } catch (const nlohmann::json::exception & e) {
  234. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  235. return false;
  236. }
  237. }
  238. } else {
  239. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  240. }
  241. // Send a HEAD request to retrieve the etag and last-modified headers
  242. struct common_load_model_from_url_headers {
  243. std::string etag;
  244. std::string last_modified;
  245. };
  246. common_load_model_from_url_headers headers;
  247. {
  248. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  249. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  250. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  251. static std::regex header_regex("([^:]+): (.*)\r\n");
  252. static std::regex etag_regex("ETag", std::regex_constants::icase);
  253. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  254. std::string header(buffer, n_items);
  255. std::smatch match;
  256. if (std::regex_match(header, match, header_regex)) {
  257. const std::string & key = match[1];
  258. const std::string & value = match[2];
  259. if (std::regex_match(key, match, etag_regex)) {
  260. headers->etag = value;
  261. } else if (std::regex_match(key, match, last_modified_regex)) {
  262. headers->last_modified = value;
  263. }
  264. }
  265. return n_items;
  266. };
  267. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  268. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  269. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  270. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  271. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  272. if (!was_perform_successful) {
  273. return false;
  274. }
  275. long http_code = 0;
  276. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  277. if (http_code != 200) {
  278. // HEAD not supported, we don't know if the file has changed
  279. // force trigger downloading
  280. force_download = true;
  281. LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  282. }
  283. }
  284. bool should_download = !file_exists || force_download;
  285. if (!should_download) {
  286. if (!etag.empty() && etag != headers.etag) {
  287. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  288. should_download = true;
  289. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  290. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  291. should_download = true;
  292. }
  293. }
  294. if (should_download) {
  295. std::string path_temporary = path + ".downloadInProgress";
  296. if (file_exists) {
  297. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  298. if (remove(path.c_str()) != 0) {
  299. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  300. return false;
  301. }
  302. }
  303. // Set the output file
  304. struct FILE_deleter {
  305. void operator()(FILE * f) const {
  306. fclose(f);
  307. }
  308. };
  309. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  310. if (!outfile) {
  311. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  312. return false;
  313. }
  314. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  315. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  316. return fwrite(data, size, nmemb, (FILE *)fd);
  317. };
  318. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  319. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  320. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  321. // display download progress
  322. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  323. // helper function to hide password in URL
  324. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  325. std::size_t protocol_pos = url.find("://");
  326. if (protocol_pos == std::string::npos) {
  327. return url; // Malformed URL
  328. }
  329. std::size_t at_pos = url.find('@', protocol_pos + 3);
  330. if (at_pos == std::string::npos) {
  331. return url; // No password in URL
  332. }
  333. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  334. };
  335. // start the download
  336. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  337. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  338. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  339. if (!was_perform_successful) {
  340. return false;
  341. }
  342. long http_code = 0;
  343. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  344. if (http_code < 200 || http_code >= 400) {
  345. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  346. return false;
  347. }
  348. // Causes file to be closed explicitly here before we rename it.
  349. outfile.reset();
  350. // Write the updated JSON metadata file.
  351. metadata.update({
  352. {"url", url},
  353. {"etag", headers.etag},
  354. {"lastModified", headers.last_modified}
  355. });
  356. std::ofstream(metadata_path) << metadata.dump(4);
  357. LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  358. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  359. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  360. return false;
  361. }
  362. }
  363. return true;
  364. }
  365. // download multiple files from remote URLs to local paths
  366. // the input is a vector of pairs <url, path>
  367. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
  368. // Prepare download in parallel
  369. std::vector<std::future<bool>> futures_download;
  370. for (auto const & item : urls) {
  371. futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
  372. return common_download_file_single(it.first, it.second, bearer_token);
  373. }, item));
  374. }
  375. // Wait for all downloads to complete
  376. for (auto & f : futures_download) {
  377. if (!f.get()) {
  378. return false;
  379. }
  380. }
  381. return true;
  382. }
  383. static bool common_download_model(
  384. const common_params_model & model,
  385. const std::string & bearer_token) {
  386. // Basic validation of the model.url
  387. if (model.url.empty()) {
  388. LOG_ERR("%s: invalid model url\n", __func__);
  389. return false;
  390. }
  391. if (!common_download_file_single(model.url, model.path, bearer_token)) {
  392. return false;
  393. }
  394. // check for additional GGUFs split to download
  395. int n_split = 0;
  396. {
  397. struct gguf_init_params gguf_params = {
  398. /*.no_alloc = */ true,
  399. /*.ctx = */ NULL,
  400. };
  401. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  402. if (!ctx_gguf) {
  403. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  404. return false;
  405. }
  406. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  407. if (key_n_split >= 0) {
  408. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  409. }
  410. gguf_free(ctx_gguf);
  411. }
  412. if (n_split > 1) {
  413. char split_prefix[PATH_MAX] = {0};
  414. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  415. // Verify the first split file format
  416. // and extract split URL and PATH prefixes
  417. {
  418. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  419. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  420. return false;
  421. }
  422. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  423. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  424. return false;
  425. }
  426. }
  427. std::vector<std::pair<std::string, std::string>> urls;
  428. for (int idx = 1; idx < n_split; idx++) {
  429. char split_path[PATH_MAX] = {0};
  430. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  431. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  432. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  433. if (std::string(split_path) == model.path) {
  434. continue; // skip the already downloaded file
  435. }
  436. urls.push_back({split_url, split_path});
  437. }
  438. // Download in parallel
  439. common_download_file_multiple(urls, bearer_token);
  440. }
  441. return true;
  442. }
  443. /**
  444. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  445. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  446. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  447. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  448. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  449. *
  450. * Return pair of <repo, file> (with "repo" already having tag removed)
  451. *
  452. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  453. */
  454. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
  455. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  456. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  457. std::string hf_repo = parts[0];
  458. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  459. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  460. }
  461. // fetch model info from Hugging Face Hub API
  462. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  463. curl_slist_ptr http_headers;
  464. std::string res_str;
  465. std::string model_endpoint = get_model_endpoint();
  466. std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
  467. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  468. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  469. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  470. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  471. static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
  472. return size * nmemb;
  473. };
  474. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  475. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
  476. #if defined(_WIN32)
  477. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  478. #endif
  479. if (!bearer_token.empty()) {
  480. std::string auth_header = "Authorization: Bearer " + bearer_token;
  481. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  482. }
  483. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  484. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  485. http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
  486. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  487. CURLcode res = curl_easy_perform(curl.get());
  488. if (res != CURLE_OK) {
  489. throw std::runtime_error("error: cannot make GET request to HF API");
  490. }
  491. long res_code;
  492. std::string ggufFile = "";
  493. std::string mmprojFile = "";
  494. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  495. if (res_code == 200) {
  496. // extract ggufFile.rfilename in json, using regex
  497. {
  498. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  499. std::smatch match;
  500. if (std::regex_search(res_str, match, pattern)) {
  501. ggufFile = match[1].str();
  502. }
  503. }
  504. // extract mmprojFile.rfilename in json, using regex
  505. {
  506. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  507. std::smatch match;
  508. if (std::regex_search(res_str, match, pattern)) {
  509. mmprojFile = match[1].str();
  510. }
  511. }
  512. } else if (res_code == 401) {
  513. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  514. } else {
  515. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  516. }
  517. // check response
  518. if (ggufFile.empty()) {
  519. throw std::runtime_error("error: model does not have ggufFile");
  520. }
  521. return { hf_repo, ggufFile, mmprojFile };
  522. }
  523. #else
  524. static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
  525. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  526. return false;
  527. }
  528. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
  529. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  530. return false;
  531. }
  532. static bool common_download_model(
  533. const common_params_model &,
  534. const std::string &) {
  535. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  536. return false;
  537. }
  538. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
  539. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  540. return {};
  541. }
  542. #endif // LLAMA_USE_CURL
  543. //
  544. // utils
  545. //
  546. static void common_params_handle_model(
  547. struct common_params_model & model,
  548. const std::string & bearer_token,
  549. const std::string & model_path_default,
  550. bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
  551. // handle pre-fill default model path and url based on hf_repo and hf_file
  552. {
  553. if (!model.hf_repo.empty()) {
  554. // short-hand to avoid specifying --hf-file -> default it to --model
  555. if (model.hf_file.empty()) {
  556. if (model.path.empty()) {
  557. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
  558. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  559. exit(1); // built without CURL, error message already printed
  560. }
  561. model.hf_repo = auto_detected.repo;
  562. model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
  563. } else {
  564. model.hf_file = model.path;
  565. }
  566. }
  567. std::string model_endpoint = get_model_endpoint();
  568. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  569. // make sure model path is present (for caching purposes)
  570. if (model.path.empty()) {
  571. // this is to avoid different repo having same file name, or same file name in different subdirs
  572. std::string filename = model.hf_repo + "_" + model.hf_file;
  573. // to make sure we don't have any slashes in the filename
  574. string_replace_all(filename, "/", "_");
  575. model.path = fs_get_cache_file(filename);
  576. }
  577. } else if (!model.url.empty()) {
  578. if (model.path.empty()) {
  579. auto f = string_split<std::string>(model.url, '#').front();
  580. f = string_split<std::string>(f, '?').front();
  581. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  582. }
  583. } else if (model.path.empty()) {
  584. model.path = model_path_default;
  585. }
  586. }
  587. // then, download it if needed
  588. if (!model.url.empty()) {
  589. bool ok = common_download_model(model, bearer_token);
  590. if (!ok) {
  591. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  592. exit(1);
  593. }
  594. }
  595. }
  596. const std::vector<ggml_type> kv_cache_types = {
  597. GGML_TYPE_F32,
  598. GGML_TYPE_F16,
  599. GGML_TYPE_BF16,
  600. GGML_TYPE_Q8_0,
  601. GGML_TYPE_Q4_0,
  602. GGML_TYPE_Q4_1,
  603. GGML_TYPE_IQ4_NL,
  604. GGML_TYPE_Q5_0,
  605. GGML_TYPE_Q5_1,
  606. };
  607. static ggml_type kv_cache_type_from_str(const std::string & s) {
  608. for (const auto & type : kv_cache_types) {
  609. if (ggml_type_name(type) == s) {
  610. return type;
  611. }
  612. }
  613. throw std::runtime_error("Unsupported cache type: " + s);
  614. }
  615. static std::string get_all_kv_cache_types() {
  616. std::ostringstream msg;
  617. for (const auto & type : kv_cache_types) {
  618. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  619. }
  620. return msg.str();
  621. }
  622. //
  623. // CLI argument parsing functions
  624. //
  625. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  626. std::string arg;
  627. const std::string arg_prefix = "--";
  628. common_params & params = ctx_arg.params;
  629. std::unordered_map<std::string, common_arg *> arg_to_options;
  630. for (auto & opt : ctx_arg.options) {
  631. for (const auto & arg : opt.args) {
  632. arg_to_options[arg] = &opt;
  633. }
  634. }
  635. // handle environment variables
  636. for (auto & opt : ctx_arg.options) {
  637. std::string value;
  638. if (opt.get_value_from_env(value)) {
  639. try {
  640. if (opt.handler_void && (value == "1" || value == "true")) {
  641. opt.handler_void(params);
  642. }
  643. if (opt.handler_int) {
  644. opt.handler_int(params, std::stoi(value));
  645. }
  646. if (opt.handler_string) {
  647. opt.handler_string(params, value);
  648. continue;
  649. }
  650. } catch (std::exception & e) {
  651. throw std::invalid_argument(string_format(
  652. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  653. }
  654. }
  655. }
  656. // handle command line arguments
  657. auto check_arg = [&](int i) {
  658. if (i+1 >= argc) {
  659. throw std::invalid_argument("expected value for argument");
  660. }
  661. };
  662. for (int i = 1; i < argc; i++) {
  663. const std::string arg_prefix = "--";
  664. std::string arg = argv[i];
  665. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  666. std::replace(arg.begin(), arg.end(), '_', '-');
  667. }
  668. if (arg_to_options.find(arg) == arg_to_options.end()) {
  669. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  670. }
  671. auto opt = *arg_to_options[arg];
  672. if (opt.has_value_from_env()) {
  673. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  674. }
  675. try {
  676. if (opt.handler_void) {
  677. opt.handler_void(params);
  678. continue;
  679. }
  680. // arg with single value
  681. check_arg(i);
  682. std::string val = argv[++i];
  683. if (opt.handler_int) {
  684. opt.handler_int(params, std::stoi(val));
  685. continue;
  686. }
  687. if (opt.handler_string) {
  688. opt.handler_string(params, val);
  689. continue;
  690. }
  691. // arg with 2 values
  692. check_arg(i);
  693. std::string val2 = argv[++i];
  694. if (opt.handler_str_str) {
  695. opt.handler_str_str(params, val, val2);
  696. continue;
  697. }
  698. } catch (std::exception & e) {
  699. throw std::invalid_argument(string_format(
  700. "error while handling argument \"%s\": %s\n\n"
  701. "usage:\n%s\n\nto show complete usage, run with -h",
  702. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  703. }
  704. }
  705. postprocess_cpu_params(params.cpuparams, nullptr);
  706. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  707. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  708. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  709. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  710. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  711. }
  712. common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
  713. common_params_handle_model(params.speculative.model, params.hf_token, "");
  714. common_params_handle_model(params.vocoder.model, params.hf_token, "");
  715. // allow --mmproj to be set from -hf
  716. // assuming that mmproj is always in the same repo as text model
  717. if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
  718. params.mmproj.hf_repo = params.model.hf_repo;
  719. }
  720. common_params_handle_model(params.mmproj, params.hf_token, "", true);
  721. if (params.escape) {
  722. string_process_escapes(params.prompt);
  723. string_process_escapes(params.input_prefix);
  724. string_process_escapes(params.input_suffix);
  725. for (auto & antiprompt : params.antiprompt) {
  726. string_process_escapes(antiprompt);
  727. }
  728. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  729. string_process_escapes(seq_breaker);
  730. }
  731. }
  732. if (!params.kv_overrides.empty()) {
  733. params.kv_overrides.emplace_back();
  734. params.kv_overrides.back().key[0] = 0;
  735. }
  736. if (!params.tensor_buft_overrides.empty()) {
  737. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  738. }
  739. if (params.reranking && params.embedding) {
  740. throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
  741. }
  742. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  743. throw std::runtime_error(string_format(
  744. "error: the supplied chat template is not supported: %s%s\n",
  745. params.chat_template.c_str(),
  746. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  747. ));
  748. }
  749. return true;
  750. }
  751. static void common_params_print_usage(common_params_context & ctx_arg) {
  752. auto print_options = [](std::vector<common_arg *> & options) {
  753. for (common_arg * opt : options) {
  754. printf("%s", opt->to_string().c_str());
  755. }
  756. };
  757. std::vector<common_arg *> common_options;
  758. std::vector<common_arg *> sparam_options;
  759. std::vector<common_arg *> specific_options;
  760. for (auto & opt : ctx_arg.options) {
  761. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  762. if (opt.is_sparam) {
  763. sparam_options.push_back(&opt);
  764. } else if (opt.in_example(ctx_arg.ex)) {
  765. specific_options.push_back(&opt);
  766. } else {
  767. common_options.push_back(&opt);
  768. }
  769. }
  770. printf("----- common params -----\n\n");
  771. print_options(common_options);
  772. printf("\n\n----- sampling params -----\n\n");
  773. print_options(sparam_options);
  774. // TODO: maybe convert enum llama_example to string
  775. printf("\n\n----- example-specific params -----\n\n");
  776. print_options(specific_options);
  777. }
  778. static void common_params_print_completion(common_params_context & ctx_arg) {
  779. std::vector<common_arg *> common_options;
  780. std::vector<common_arg *> sparam_options;
  781. std::vector<common_arg *> specific_options;
  782. for (auto & opt : ctx_arg.options) {
  783. if (opt.is_sparam) {
  784. sparam_options.push_back(&opt);
  785. } else if (opt.in_example(ctx_arg.ex)) {
  786. specific_options.push_back(&opt);
  787. } else {
  788. common_options.push_back(&opt);
  789. }
  790. }
  791. printf("_llama_completions() {\n");
  792. printf(" local cur prev opts\n");
  793. printf(" COMPREPLY=()\n");
  794. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  795. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  796. printf(" opts=\"");
  797. auto print_options = [](const std::vector<common_arg *> & options) {
  798. for (const common_arg * opt : options) {
  799. for (const char * arg : opt->args) {
  800. printf("%s ", arg);
  801. }
  802. }
  803. };
  804. print_options(common_options);
  805. print_options(sparam_options);
  806. print_options(specific_options);
  807. printf("\"\n\n");
  808. printf(" case \"$prev\" in\n");
  809. printf(" --model)\n");
  810. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  811. printf(" return 0\n");
  812. printf(" ;;\n");
  813. printf(" --grammar-file)\n");
  814. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  815. printf(" return 0\n");
  816. printf(" ;;\n");
  817. printf(" --chat-template-file)\n");
  818. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  819. printf(" return 0\n");
  820. printf(" ;;\n");
  821. printf(" *)\n");
  822. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  823. printf(" return 0\n");
  824. printf(" ;;\n");
  825. printf(" esac\n");
  826. printf("}\n\n");
  827. std::set<std::string> executables = {
  828. "llama-batched",
  829. "llama-batched-bench",
  830. "llama-bench",
  831. "llama-cli",
  832. "llama-convert-llama2c-to-ggml",
  833. "llama-cvector-generator",
  834. "llama-embedding",
  835. "llama-eval-callback",
  836. "llama-export-lora",
  837. "llama-gbnf-validator",
  838. "llama-gen-docs",
  839. "llama-gguf",
  840. "llama-gguf-hash",
  841. "llama-gguf-split",
  842. "llama-gritlm",
  843. "llama-imatrix",
  844. "llama-infill",
  845. "llama-mtmd-cli",
  846. "llama-llava-clip-quantize-cli",
  847. "llama-lookahead",
  848. "llama-lookup",
  849. "llama-lookup-create",
  850. "llama-lookup-merge",
  851. "llama-lookup-stats",
  852. "llama-parallel",
  853. "llama-passkey",
  854. "llama-perplexity",
  855. "llama-q8dot",
  856. "llama-quantize",
  857. "llama-quantize-stats",
  858. "llama-qwen2vl-cli",
  859. "llama-retrieval",
  860. "llama-run",
  861. "llama-save-load-state",
  862. "llama-server",
  863. "llama-simple",
  864. "llama-simple-chat",
  865. "llama-speculative",
  866. "llama-speculative-simple",
  867. "llama-tokenize",
  868. "llama-tts",
  869. "llama-vdot"
  870. };
  871. for (const auto& exe : executables) {
  872. printf("complete -F _llama_completions %s\n", exe.c_str());
  873. }
  874. }
  875. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  876. std::vector<ggml_backend_dev_t> devices;
  877. auto dev_names = string_split<std::string>(value, ',');
  878. if (dev_names.empty()) {
  879. throw std::invalid_argument("no devices specified");
  880. }
  881. if (dev_names.size() == 1 && dev_names[0] == "none") {
  882. devices.push_back(nullptr);
  883. } else {
  884. for (const auto & device : dev_names) {
  885. auto * dev = ggml_backend_dev_by_name(device.c_str());
  886. if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
  887. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  888. }
  889. devices.push_back(dev);
  890. }
  891. devices.push_back(nullptr);
  892. }
  893. return devices;
  894. }
  895. static void add_rpc_devices(std::string servers) {
  896. auto rpc_servers = string_split<std::string>(servers, ',');
  897. if (rpc_servers.empty()) {
  898. throw std::invalid_argument("no RPC servers specified");
  899. }
  900. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  901. if (!rpc_reg) {
  902. throw std::invalid_argument("failed to find RPC backend");
  903. }
  904. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  905. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  906. if (!ggml_backend_rpc_add_device_fn) {
  907. throw std::invalid_argument("failed to find RPC device add function");
  908. }
  909. for (const auto & server : rpc_servers) {
  910. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  911. if (dev) {
  912. ggml_backend_device_register(dev);
  913. } else {
  914. throw std::invalid_argument("failed to register RPC device");
  915. }
  916. }
  917. }
  918. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  919. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  920. const common_params params_org = ctx_arg.params; // the example can modify the default params
  921. try {
  922. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  923. ctx_arg.params = params_org;
  924. return false;
  925. }
  926. if (ctx_arg.params.usage) {
  927. common_params_print_usage(ctx_arg);
  928. if (ctx_arg.print_usage) {
  929. ctx_arg.print_usage(argc, argv);
  930. }
  931. exit(0);
  932. }
  933. if (ctx_arg.params.completion) {
  934. common_params_print_completion(ctx_arg);
  935. exit(0);
  936. }
  937. } catch (const std::invalid_argument & ex) {
  938. fprintf(stderr, "%s\n", ex.what());
  939. ctx_arg.params = params_org;
  940. return false;
  941. }
  942. return true;
  943. }
  944. static std::string list_builtin_chat_templates() {
  945. std::vector<const char *> supported_tmpl;
  946. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  947. supported_tmpl.resize(res);
  948. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  949. std::ostringstream msg;
  950. for (auto & tmpl : supported_tmpl) {
  951. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  952. }
  953. return msg.str();
  954. }
  955. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  956. // load dynamic backends
  957. ggml_backend_load_all();
  958. common_params_context ctx_arg(params);
  959. ctx_arg.print_usage = print_usage;
  960. ctx_arg.ex = ex;
  961. std::string sampler_type_chars;
  962. std::string sampler_type_names;
  963. for (const auto & sampler : params.sampling.samplers) {
  964. sampler_type_chars += common_sampler_type_to_chr(sampler);
  965. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  966. }
  967. sampler_type_names.pop_back();
  968. /**
  969. * filter options by example
  970. * rules:
  971. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  972. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  973. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  974. */
  975. auto add_opt = [&](common_arg arg) {
  976. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  977. ctx_arg.options.push_back(std::move(arg));
  978. }
  979. };
  980. add_opt(common_arg(
  981. {"-h", "--help", "--usage"},
  982. "print usage and exit",
  983. [](common_params & params) {
  984. params.usage = true;
  985. }
  986. ));
  987. add_opt(common_arg(
  988. {"--version"},
  989. "show version and build info",
  990. [](common_params &) {
  991. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  992. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  993. exit(0);
  994. }
  995. ));
  996. add_opt(common_arg(
  997. {"--completion-bash"},
  998. "print source-able bash completion script for llama.cpp",
  999. [](common_params & params) {
  1000. params.completion = true;
  1001. }
  1002. ));
  1003. add_opt(common_arg(
  1004. {"--verbose-prompt"},
  1005. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  1006. [](common_params & params) {
  1007. params.verbose_prompt = true;
  1008. }
  1009. ));
  1010. add_opt(common_arg(
  1011. {"--no-display-prompt"},
  1012. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1013. [](common_params & params) {
  1014. params.display_prompt = false;
  1015. }
  1016. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1017. add_opt(common_arg(
  1018. {"-co", "--color"},
  1019. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1020. [](common_params & params) {
  1021. params.use_color = true;
  1022. }
  1023. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1024. add_opt(common_arg(
  1025. {"-t", "--threads"}, "N",
  1026. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1027. [](common_params & params, int value) {
  1028. params.cpuparams.n_threads = value;
  1029. if (params.cpuparams.n_threads <= 0) {
  1030. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1031. }
  1032. }
  1033. ).set_env("LLAMA_ARG_THREADS"));
  1034. add_opt(common_arg(
  1035. {"-tb", "--threads-batch"}, "N",
  1036. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1037. [](common_params & params, int value) {
  1038. params.cpuparams_batch.n_threads = value;
  1039. if (params.cpuparams_batch.n_threads <= 0) {
  1040. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1041. }
  1042. }
  1043. ));
  1044. add_opt(common_arg(
  1045. {"-C", "--cpu-mask"}, "M",
  1046. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1047. [](common_params & params, const std::string & mask) {
  1048. params.cpuparams.mask_valid = true;
  1049. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1050. throw std::invalid_argument("invalid cpumask");
  1051. }
  1052. }
  1053. ));
  1054. add_opt(common_arg(
  1055. {"-Cr", "--cpu-range"}, "lo-hi",
  1056. "range of CPUs for affinity. Complements --cpu-mask",
  1057. [](common_params & params, const std::string & range) {
  1058. params.cpuparams.mask_valid = true;
  1059. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1060. throw std::invalid_argument("invalid range");
  1061. }
  1062. }
  1063. ));
  1064. add_opt(common_arg(
  1065. {"--cpu-strict"}, "<0|1>",
  1066. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1067. [](common_params & params, const std::string & value) {
  1068. params.cpuparams.strict_cpu = std::stoul(value);
  1069. }
  1070. ));
  1071. add_opt(common_arg(
  1072. {"--prio"}, "N",
  1073. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
  1074. [](common_params & params, int prio) {
  1075. if (prio < 0 || prio > 3) {
  1076. throw std::invalid_argument("invalid value");
  1077. }
  1078. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1079. }
  1080. ));
  1081. add_opt(common_arg(
  1082. {"--poll"}, "<0...100>",
  1083. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1084. [](common_params & params, const std::string & value) {
  1085. params.cpuparams.poll = std::stoul(value);
  1086. }
  1087. ));
  1088. add_opt(common_arg(
  1089. {"-Cb", "--cpu-mask-batch"}, "M",
  1090. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1091. [](common_params & params, const std::string & mask) {
  1092. params.cpuparams_batch.mask_valid = true;
  1093. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1094. throw std::invalid_argument("invalid cpumask");
  1095. }
  1096. }
  1097. ));
  1098. add_opt(common_arg(
  1099. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1100. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1101. [](common_params & params, const std::string & range) {
  1102. params.cpuparams_batch.mask_valid = true;
  1103. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1104. throw std::invalid_argument("invalid range");
  1105. }
  1106. }
  1107. ));
  1108. add_opt(common_arg(
  1109. {"--cpu-strict-batch"}, "<0|1>",
  1110. "use strict CPU placement (default: same as --cpu-strict)",
  1111. [](common_params & params, int value) {
  1112. params.cpuparams_batch.strict_cpu = value;
  1113. }
  1114. ));
  1115. add_opt(common_arg(
  1116. {"--prio-batch"}, "N",
  1117. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1118. [](common_params & params, int prio) {
  1119. if (prio < 0 || prio > 3) {
  1120. throw std::invalid_argument("invalid value");
  1121. }
  1122. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1123. }
  1124. ));
  1125. add_opt(common_arg(
  1126. {"--poll-batch"}, "<0|1>",
  1127. "use polling to wait for work (default: same as --poll)",
  1128. [](common_params & params, int value) {
  1129. params.cpuparams_batch.poll = value;
  1130. }
  1131. ));
  1132. add_opt(common_arg(
  1133. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1134. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1135. [](common_params & params, const std::string & value) {
  1136. params.lookup_cache_static = value;
  1137. }
  1138. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1139. add_opt(common_arg(
  1140. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1141. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1142. [](common_params & params, const std::string & value) {
  1143. params.lookup_cache_dynamic = value;
  1144. }
  1145. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1146. add_opt(common_arg(
  1147. {"-c", "--ctx-size"}, "N",
  1148. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1149. [](common_params & params, int value) {
  1150. params.n_ctx = value;
  1151. }
  1152. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1153. add_opt(common_arg(
  1154. {"-n", "--predict", "--n-predict"}, "N",
  1155. string_format(
  1156. ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
  1157. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1158. : "number of tokens to predict (default: %d, -1 = infinity)",
  1159. params.n_predict),
  1160. [](common_params & params, int value) {
  1161. params.n_predict = value;
  1162. }
  1163. ).set_env("LLAMA_ARG_N_PREDICT"));
  1164. add_opt(common_arg(
  1165. {"-b", "--batch-size"}, "N",
  1166. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1167. [](common_params & params, int value) {
  1168. params.n_batch = value;
  1169. }
  1170. ).set_env("LLAMA_ARG_BATCH"));
  1171. add_opt(common_arg(
  1172. {"-ub", "--ubatch-size"}, "N",
  1173. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1174. [](common_params & params, int value) {
  1175. params.n_ubatch = value;
  1176. }
  1177. ).set_env("LLAMA_ARG_UBATCH"));
  1178. add_opt(common_arg(
  1179. {"--keep"}, "N",
  1180. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1181. [](common_params & params, int value) {
  1182. params.n_keep = value;
  1183. }
  1184. ));
  1185. add_opt(common_arg(
  1186. {"--no-context-shift"},
  1187. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1188. [](common_params & params) {
  1189. params.ctx_shift = false;
  1190. }
  1191. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1192. add_opt(common_arg(
  1193. {"--chunks"}, "N",
  1194. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1195. [](common_params & params, int value) {
  1196. params.n_chunks = value;
  1197. }
  1198. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1199. add_opt(common_arg(
  1200. {"-fa", "--flash-attn"},
  1201. string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
  1202. [](common_params & params) {
  1203. params.flash_attn = true;
  1204. }
  1205. ).set_env("LLAMA_ARG_FLASH_ATTN"));
  1206. add_opt(common_arg(
  1207. {"-p", "--prompt"}, "PROMPT",
  1208. "prompt to start generation with; for system message, use -sys",
  1209. [](common_params & params, const std::string & value) {
  1210. params.prompt = value;
  1211. }
  1212. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1213. add_opt(common_arg(
  1214. {"-sys", "--system-prompt"}, "PROMPT",
  1215. "system prompt to use with model (if applicable, depending on chat template)",
  1216. [](common_params & params, const std::string & value) {
  1217. params.system_prompt = value;
  1218. }
  1219. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1220. add_opt(common_arg(
  1221. {"--no-perf"},
  1222. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1223. [](common_params & params) {
  1224. params.no_perf = true;
  1225. params.sampling.no_perf = true;
  1226. }
  1227. ).set_env("LLAMA_ARG_NO_PERF"));
  1228. add_opt(common_arg(
  1229. {"-f", "--file"}, "FNAME",
  1230. "a file containing the prompt (default: none)",
  1231. [](common_params & params, const std::string & value) {
  1232. std::ifstream file(value);
  1233. if (!file) {
  1234. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1235. }
  1236. // store the external file name in params
  1237. params.prompt_file = value;
  1238. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  1239. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1240. params.prompt.pop_back();
  1241. }
  1242. }
  1243. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1244. add_opt(common_arg(
  1245. {"-sysf", "--system-prompt-file"}, "FNAME",
  1246. "a file containing the system prompt (default: none)",
  1247. [](common_params & params, const std::string & value) {
  1248. std::ifstream file(value);
  1249. if (!file) {
  1250. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1251. }
  1252. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.system_prompt));
  1253. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1254. params.system_prompt.pop_back();
  1255. }
  1256. }
  1257. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1258. add_opt(common_arg(
  1259. {"--in-file"}, "FNAME",
  1260. "an input file (repeat to specify multiple files)",
  1261. [](common_params & params, const std::string & value) {
  1262. std::ifstream file(value);
  1263. if (!file) {
  1264. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1265. }
  1266. params.in_files.push_back(value);
  1267. }
  1268. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1269. add_opt(common_arg(
  1270. {"-bf", "--binary-file"}, "FNAME",
  1271. "binary file containing the prompt (default: none)",
  1272. [](common_params & params, const std::string & value) {
  1273. std::ifstream file(value, std::ios::binary);
  1274. if (!file) {
  1275. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1276. }
  1277. // store the external file name in params
  1278. params.prompt_file = value;
  1279. std::ostringstream ss;
  1280. ss << file.rdbuf();
  1281. params.prompt = ss.str();
  1282. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1283. }
  1284. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1285. add_opt(common_arg(
  1286. {"-e", "--escape"},
  1287. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1288. [](common_params & params) {
  1289. params.escape = true;
  1290. }
  1291. ));
  1292. add_opt(common_arg(
  1293. {"--no-escape"},
  1294. "do not process escape sequences",
  1295. [](common_params & params) {
  1296. params.escape = false;
  1297. }
  1298. ));
  1299. add_opt(common_arg(
  1300. {"-ptc", "--print-token-count"}, "N",
  1301. string_format("print token count every N tokens (default: %d)", params.n_print),
  1302. [](common_params & params, int value) {
  1303. params.n_print = value;
  1304. }
  1305. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1306. add_opt(common_arg(
  1307. {"--prompt-cache"}, "FNAME",
  1308. "file to cache prompt state for faster startup (default: none)",
  1309. [](common_params & params, const std::string & value) {
  1310. params.path_prompt_cache = value;
  1311. }
  1312. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1313. add_opt(common_arg(
  1314. {"--prompt-cache-all"},
  1315. "if specified, saves user input and generations to cache as well\n",
  1316. [](common_params & params) {
  1317. params.prompt_cache_all = true;
  1318. }
  1319. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1320. add_opt(common_arg(
  1321. {"--prompt-cache-ro"},
  1322. "if specified, uses the prompt cache but does not update it",
  1323. [](common_params & params) {
  1324. params.prompt_cache_ro = true;
  1325. }
  1326. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1327. add_opt(common_arg(
  1328. {"-r", "--reverse-prompt"}, "PROMPT",
  1329. "halt generation at PROMPT, return control in interactive mode\n",
  1330. [](common_params & params, const std::string & value) {
  1331. params.antiprompt.emplace_back(value);
  1332. }
  1333. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1334. add_opt(common_arg(
  1335. {"-sp", "--special"},
  1336. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1337. [](common_params & params) {
  1338. params.special = true;
  1339. }
  1340. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1341. add_opt(common_arg(
  1342. {"-cnv", "--conversation"},
  1343. "run in conversation mode:\n"
  1344. "- does not print special tokens and suffix/prefix\n"
  1345. "- interactive mode is also enabled\n"
  1346. "(default: auto enabled if chat template is available)",
  1347. [](common_params & params) {
  1348. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1349. }
  1350. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1351. add_opt(common_arg(
  1352. {"-no-cnv", "--no-conversation"},
  1353. "force disable conversation mode (default: false)",
  1354. [](common_params & params) {
  1355. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1356. }
  1357. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1358. add_opt(common_arg(
  1359. {"-st", "--single-turn"},
  1360. "run conversation for a single turn only, then exit when done\n"
  1361. "will not be interactive if first turn is predefined with --prompt\n"
  1362. "(default: false)",
  1363. [](common_params & params) {
  1364. params.single_turn = true;
  1365. }
  1366. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1367. add_opt(common_arg(
  1368. {"-i", "--interactive"},
  1369. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1370. [](common_params & params) {
  1371. params.interactive = true;
  1372. }
  1373. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1374. add_opt(common_arg(
  1375. {"-if", "--interactive-first"},
  1376. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1377. [](common_params & params) {
  1378. params.interactive_first = true;
  1379. }
  1380. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1381. add_opt(common_arg(
  1382. {"-mli", "--multiline-input"},
  1383. "allows you to write or paste multiple lines without ending each in '\\'",
  1384. [](common_params & params) {
  1385. params.multiline_input = true;
  1386. }
  1387. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1388. add_opt(common_arg(
  1389. {"--in-prefix-bos"},
  1390. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1391. [](common_params & params) {
  1392. params.input_prefix_bos = true;
  1393. params.enable_chat_template = false;
  1394. }
  1395. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1396. add_opt(common_arg(
  1397. {"--in-prefix"}, "STRING",
  1398. "string to prefix user inputs with (default: empty)",
  1399. [](common_params & params, const std::string & value) {
  1400. params.input_prefix = value;
  1401. params.enable_chat_template = false;
  1402. }
  1403. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1404. add_opt(common_arg(
  1405. {"--in-suffix"}, "STRING",
  1406. "string to suffix after user inputs with (default: empty)",
  1407. [](common_params & params, const std::string & value) {
  1408. params.input_suffix = value;
  1409. params.enable_chat_template = false;
  1410. }
  1411. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1412. add_opt(common_arg(
  1413. {"--no-warmup"},
  1414. "skip warming up the model with an empty run",
  1415. [](common_params & params) {
  1416. params.warmup = false;
  1417. }
  1418. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
  1419. add_opt(common_arg(
  1420. {"--spm-infill"},
  1421. string_format(
  1422. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1423. params.spm_infill ? "enabled" : "disabled"
  1424. ),
  1425. [](common_params & params) {
  1426. params.spm_infill = true;
  1427. }
  1428. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
  1429. add_opt(common_arg(
  1430. {"--samplers"}, "SAMPLERS",
  1431. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1432. [](common_params & params, const std::string & value) {
  1433. const auto sampler_names = string_split<std::string>(value, ';');
  1434. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1435. }
  1436. ).set_sparam());
  1437. add_opt(common_arg(
  1438. {"-s", "--seed"}, "SEED",
  1439. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1440. [](common_params & params, const std::string & value) {
  1441. params.sampling.seed = std::stoul(value);
  1442. }
  1443. ).set_sparam());
  1444. add_opt(common_arg(
  1445. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1446. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1447. [](common_params & params, const std::string & value) {
  1448. params.sampling.samplers = common_sampler_types_from_chars(value);
  1449. }
  1450. ).set_sparam());
  1451. add_opt(common_arg(
  1452. {"--ignore-eos"},
  1453. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1454. [](common_params & params) {
  1455. params.sampling.ignore_eos = true;
  1456. }
  1457. ).set_sparam());
  1458. add_opt(common_arg(
  1459. {"--temp"}, "N",
  1460. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1461. [](common_params & params, const std::string & value) {
  1462. params.sampling.temp = std::stof(value);
  1463. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1464. }
  1465. ).set_sparam());
  1466. add_opt(common_arg(
  1467. {"--top-k"}, "N",
  1468. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1469. [](common_params & params, int value) {
  1470. params.sampling.top_k = value;
  1471. }
  1472. ).set_sparam());
  1473. add_opt(common_arg(
  1474. {"--top-p"}, "N",
  1475. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1476. [](common_params & params, const std::string & value) {
  1477. params.sampling.top_p = std::stof(value);
  1478. }
  1479. ).set_sparam());
  1480. add_opt(common_arg(
  1481. {"--min-p"}, "N",
  1482. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1483. [](common_params & params, const std::string & value) {
  1484. params.sampling.min_p = std::stof(value);
  1485. }
  1486. ).set_sparam());
  1487. add_opt(common_arg(
  1488. {"--top-nsigma"}, "N",
  1489. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1490. [](common_params & params, const std::string & value) {
  1491. params.sampling.top_n_sigma = std::stof(value);
  1492. }
  1493. ).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
  1494. add_opt(common_arg(
  1495. {"--xtc-probability"}, "N",
  1496. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1497. [](common_params & params, const std::string & value) {
  1498. params.sampling.xtc_probability = std::stof(value);
  1499. }
  1500. ).set_sparam());
  1501. add_opt(common_arg(
  1502. {"--xtc-threshold"}, "N",
  1503. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1504. [](common_params & params, const std::string & value) {
  1505. params.sampling.xtc_threshold = std::stof(value);
  1506. }
  1507. ).set_sparam());
  1508. add_opt(common_arg(
  1509. {"--typical"}, "N",
  1510. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1511. [](common_params & params, const std::string & value) {
  1512. params.sampling.typ_p = std::stof(value);
  1513. }
  1514. ).set_sparam());
  1515. add_opt(common_arg(
  1516. {"--repeat-last-n"}, "N",
  1517. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1518. [](common_params & params, int value) {
  1519. if (value < -1) {
  1520. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1521. }
  1522. params.sampling.penalty_last_n = value;
  1523. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1524. }
  1525. ).set_sparam());
  1526. add_opt(common_arg(
  1527. {"--repeat-penalty"}, "N",
  1528. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1529. [](common_params & params, const std::string & value) {
  1530. params.sampling.penalty_repeat = std::stof(value);
  1531. }
  1532. ).set_sparam());
  1533. add_opt(common_arg(
  1534. {"--presence-penalty"}, "N",
  1535. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1536. [](common_params & params, const std::string & value) {
  1537. params.sampling.penalty_present = std::stof(value);
  1538. }
  1539. ).set_sparam());
  1540. add_opt(common_arg(
  1541. {"--frequency-penalty"}, "N",
  1542. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1543. [](common_params & params, const std::string & value) {
  1544. params.sampling.penalty_freq = std::stof(value);
  1545. }
  1546. ).set_sparam());
  1547. add_opt(common_arg(
  1548. {"--dry-multiplier"}, "N",
  1549. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1550. [](common_params & params, const std::string & value) {
  1551. params.sampling.dry_multiplier = std::stof(value);
  1552. }
  1553. ).set_sparam());
  1554. add_opt(common_arg(
  1555. {"--dry-base"}, "N",
  1556. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1557. [](common_params & params, const std::string & value) {
  1558. float potential_base = std::stof(value);
  1559. if (potential_base >= 1.0f)
  1560. {
  1561. params.sampling.dry_base = potential_base;
  1562. }
  1563. }
  1564. ).set_sparam());
  1565. add_opt(common_arg(
  1566. {"--dry-allowed-length"}, "N",
  1567. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1568. [](common_params & params, int value) {
  1569. params.sampling.dry_allowed_length = value;
  1570. }
  1571. ).set_sparam());
  1572. add_opt(common_arg(
  1573. {"--dry-penalty-last-n"}, "N",
  1574. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1575. [](common_params & params, int value) {
  1576. if (value < -1) {
  1577. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1578. }
  1579. params.sampling.dry_penalty_last_n = value;
  1580. }
  1581. ).set_sparam());
  1582. add_opt(common_arg(
  1583. {"--dry-sequence-breaker"}, "STRING",
  1584. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1585. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1586. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1587. params.sampling.dry_sequence_breakers.end(),
  1588. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1589. [](const std::string& a, const std::string& b) {
  1590. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1591. return a + ", '" + formatted_b + "'";
  1592. }).c_str()),
  1593. [](common_params & params, const std::string & value) {
  1594. static bool defaults_cleared = false;
  1595. if (!defaults_cleared) {
  1596. params.sampling.dry_sequence_breakers.clear();
  1597. defaults_cleared = true;
  1598. }
  1599. if (value == "none") {
  1600. params.sampling.dry_sequence_breakers.clear();
  1601. } else {
  1602. params.sampling.dry_sequence_breakers.emplace_back(value);
  1603. }
  1604. }
  1605. ).set_sparam());
  1606. add_opt(common_arg(
  1607. {"--dynatemp-range"}, "N",
  1608. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1609. [](common_params & params, const std::string & value) {
  1610. params.sampling.dynatemp_range = std::stof(value);
  1611. }
  1612. ).set_sparam());
  1613. add_opt(common_arg(
  1614. {"--dynatemp-exp"}, "N",
  1615. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1616. [](common_params & params, const std::string & value) {
  1617. params.sampling.dynatemp_exponent = std::stof(value);
  1618. }
  1619. ).set_sparam());
  1620. add_opt(common_arg(
  1621. {"--mirostat"}, "N",
  1622. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1623. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1624. [](common_params & params, int value) {
  1625. params.sampling.mirostat = value;
  1626. }
  1627. ).set_sparam());
  1628. add_opt(common_arg(
  1629. {"--mirostat-lr"}, "N",
  1630. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1631. [](common_params & params, const std::string & value) {
  1632. params.sampling.mirostat_eta = std::stof(value);
  1633. }
  1634. ).set_sparam());
  1635. add_opt(common_arg(
  1636. {"--mirostat-ent"}, "N",
  1637. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1638. [](common_params & params, const std::string & value) {
  1639. params.sampling.mirostat_tau = std::stof(value);
  1640. }
  1641. ).set_sparam());
  1642. add_opt(common_arg(
  1643. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1644. "modifies the likelihood of token appearing in the completion,\n"
  1645. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1646. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1647. [](common_params & params, const std::string & value) {
  1648. std::stringstream ss(value);
  1649. llama_token key;
  1650. char sign;
  1651. std::string value_str;
  1652. try {
  1653. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1654. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1655. params.sampling.logit_bias.push_back({key, bias});
  1656. } else {
  1657. throw std::invalid_argument("invalid input format");
  1658. }
  1659. } catch (const std::exception&) {
  1660. throw std::invalid_argument("invalid input format");
  1661. }
  1662. }
  1663. ).set_sparam());
  1664. add_opt(common_arg(
  1665. {"--grammar"}, "GRAMMAR",
  1666. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1667. [](common_params & params, const std::string & value) {
  1668. params.sampling.grammar = value;
  1669. }
  1670. ).set_sparam());
  1671. add_opt(common_arg(
  1672. {"--grammar-file"}, "FNAME",
  1673. "file to read grammar from",
  1674. [](common_params & params, const std::string & value) {
  1675. std::ifstream file(value);
  1676. if (!file) {
  1677. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1678. }
  1679. std::copy(
  1680. std::istreambuf_iterator<char>(file),
  1681. std::istreambuf_iterator<char>(),
  1682. std::back_inserter(params.sampling.grammar)
  1683. );
  1684. }
  1685. ).set_sparam());
  1686. add_opt(common_arg(
  1687. {"-j", "--json-schema"}, "SCHEMA",
  1688. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1689. [](common_params & params, const std::string & value) {
  1690. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1691. }
  1692. ).set_sparam());
  1693. add_opt(common_arg(
  1694. {"--pooling"}, "{none,mean,cls,last,rank}",
  1695. "pooling type for embeddings, use model default if unspecified",
  1696. [](common_params & params, const std::string & value) {
  1697. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1698. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1699. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1700. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1701. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1702. else { throw std::invalid_argument("invalid value"); }
  1703. }
  1704. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1705. add_opt(common_arg(
  1706. {"--attention"}, "{causal,non-causal}",
  1707. "attention type for embeddings, use model default if unspecified",
  1708. [](common_params & params, const std::string & value) {
  1709. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1710. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1711. else { throw std::invalid_argument("invalid value"); }
  1712. }
  1713. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1714. add_opt(common_arg(
  1715. {"--rope-scaling"}, "{none,linear,yarn}",
  1716. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1717. [](common_params & params, const std::string & value) {
  1718. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1719. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1720. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1721. else { throw std::invalid_argument("invalid value"); }
  1722. }
  1723. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1724. add_opt(common_arg(
  1725. {"--rope-scale"}, "N",
  1726. "RoPE context scaling factor, expands context by a factor of N",
  1727. [](common_params & params, const std::string & value) {
  1728. params.rope_freq_scale = 1.0f / std::stof(value);
  1729. }
  1730. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1731. add_opt(common_arg(
  1732. {"--rope-freq-base"}, "N",
  1733. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1734. [](common_params & params, const std::string & value) {
  1735. params.rope_freq_base = std::stof(value);
  1736. }
  1737. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1738. add_opt(common_arg(
  1739. {"--rope-freq-scale"}, "N",
  1740. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1741. [](common_params & params, const std::string & value) {
  1742. params.rope_freq_scale = std::stof(value);
  1743. }
  1744. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1745. add_opt(common_arg(
  1746. {"--yarn-orig-ctx"}, "N",
  1747. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1748. [](common_params & params, int value) {
  1749. params.yarn_orig_ctx = value;
  1750. }
  1751. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1752. add_opt(common_arg(
  1753. {"--yarn-ext-factor"}, "N",
  1754. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1755. [](common_params & params, const std::string & value) {
  1756. params.yarn_ext_factor = std::stof(value);
  1757. }
  1758. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1759. add_opt(common_arg(
  1760. {"--yarn-attn-factor"}, "N",
  1761. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1762. [](common_params & params, const std::string & value) {
  1763. params.yarn_attn_factor = std::stof(value);
  1764. }
  1765. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1766. add_opt(common_arg(
  1767. {"--yarn-beta-slow"}, "N",
  1768. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1769. [](common_params & params, const std::string & value) {
  1770. params.yarn_beta_slow = std::stof(value);
  1771. }
  1772. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1773. add_opt(common_arg(
  1774. {"--yarn-beta-fast"}, "N",
  1775. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1776. [](common_params & params, const std::string & value) {
  1777. params.yarn_beta_fast = std::stof(value);
  1778. }
  1779. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1780. add_opt(common_arg(
  1781. {"-gan", "--grp-attn-n"}, "N",
  1782. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1783. [](common_params & params, int value) {
  1784. params.grp_attn_n = value;
  1785. }
  1786. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  1787. add_opt(common_arg(
  1788. {"-gaw", "--grp-attn-w"}, "N",
  1789. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1790. [](common_params & params, int value) {
  1791. params.grp_attn_w = value;
  1792. }
  1793. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  1794. add_opt(common_arg(
  1795. {"-dkvc", "--dump-kv-cache"},
  1796. "verbose print of the KV cache",
  1797. [](common_params & params) {
  1798. params.dump_kv_cache = true;
  1799. }
  1800. ));
  1801. add_opt(common_arg(
  1802. {"-nkvo", "--no-kv-offload"},
  1803. "disable KV offload",
  1804. [](common_params & params) {
  1805. params.no_kv_offload = true;
  1806. }
  1807. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  1808. add_opt(common_arg(
  1809. {"-ctk", "--cache-type-k"}, "TYPE",
  1810. string_format(
  1811. "KV cache data type for K\n"
  1812. "allowed values: %s\n"
  1813. "(default: %s)",
  1814. get_all_kv_cache_types().c_str(),
  1815. ggml_type_name(params.cache_type_k)
  1816. ),
  1817. [](common_params & params, const std::string & value) {
  1818. params.cache_type_k = kv_cache_type_from_str(value);
  1819. }
  1820. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1821. add_opt(common_arg(
  1822. {"-ctv", "--cache-type-v"}, "TYPE",
  1823. string_format(
  1824. "KV cache data type for V\n"
  1825. "allowed values: %s\n"
  1826. "(default: %s)",
  1827. get_all_kv_cache_types().c_str(),
  1828. ggml_type_name(params.cache_type_v)
  1829. ),
  1830. [](common_params & params, const std::string & value) {
  1831. params.cache_type_v = kv_cache_type_from_str(value);
  1832. }
  1833. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1834. add_opt(common_arg(
  1835. {"--perplexity", "--all-logits"},
  1836. string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
  1837. [](common_params & params) {
  1838. params.logits_all = true;
  1839. }
  1840. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1841. add_opt(common_arg(
  1842. {"--hellaswag"},
  1843. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1844. [](common_params & params) {
  1845. params.hellaswag = true;
  1846. }
  1847. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1848. add_opt(common_arg(
  1849. {"--hellaswag-tasks"}, "N",
  1850. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1851. [](common_params & params, int value) {
  1852. params.hellaswag_tasks = value;
  1853. }
  1854. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1855. add_opt(common_arg(
  1856. {"--winogrande"},
  1857. "compute Winogrande score over random tasks from datafile supplied with -f",
  1858. [](common_params & params) {
  1859. params.winogrande = true;
  1860. }
  1861. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1862. add_opt(common_arg(
  1863. {"--winogrande-tasks"}, "N",
  1864. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1865. [](common_params & params, int value) {
  1866. params.winogrande_tasks = value;
  1867. }
  1868. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1869. add_opt(common_arg(
  1870. {"--multiple-choice"},
  1871. "compute multiple choice score over random tasks from datafile supplied with -f",
  1872. [](common_params & params) {
  1873. params.multiple_choice = true;
  1874. }
  1875. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1876. add_opt(common_arg(
  1877. {"--multiple-choice-tasks"}, "N",
  1878. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1879. [](common_params & params, int value) {
  1880. params.multiple_choice_tasks = value;
  1881. }
  1882. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1883. add_opt(common_arg(
  1884. {"--kl-divergence"},
  1885. "computes KL-divergence to logits provided via --kl-divergence-base",
  1886. [](common_params & params) {
  1887. params.kl_divergence = true;
  1888. }
  1889. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1890. add_opt(common_arg(
  1891. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1892. "set logits file",
  1893. [](common_params & params, const std::string & value) {
  1894. params.logits_file = value;
  1895. }
  1896. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1897. add_opt(common_arg(
  1898. {"--ppl-stride"}, "N",
  1899. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  1900. [](common_params & params, int value) {
  1901. params.ppl_stride = value;
  1902. }
  1903. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1904. add_opt(common_arg(
  1905. {"--ppl-output-type"}, "<0|1>",
  1906. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  1907. [](common_params & params, int value) {
  1908. params.ppl_output_type = value;
  1909. }
  1910. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1911. add_opt(common_arg(
  1912. {"-dt", "--defrag-thold"}, "N",
  1913. string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
  1914. [](common_params & params, const std::string & value) {
  1915. params.defrag_thold = std::stof(value);
  1916. }
  1917. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  1918. add_opt(common_arg(
  1919. {"-np", "--parallel"}, "N",
  1920. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  1921. [](common_params & params, int value) {
  1922. params.n_parallel = value;
  1923. }
  1924. ).set_env("LLAMA_ARG_N_PARALLEL"));
  1925. add_opt(common_arg(
  1926. {"-ns", "--sequences"}, "N",
  1927. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  1928. [](common_params & params, int value) {
  1929. params.n_sequences = value;
  1930. }
  1931. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  1932. add_opt(common_arg(
  1933. {"-cb", "--cont-batching"},
  1934. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  1935. [](common_params & params) {
  1936. params.cont_batching = true;
  1937. }
  1938. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  1939. add_opt(common_arg(
  1940. {"-nocb", "--no-cont-batching"},
  1941. "disable continuous batching",
  1942. [](common_params & params) {
  1943. params.cont_batching = false;
  1944. }
  1945. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  1946. add_opt(common_arg(
  1947. {"--mmproj"}, "FILE",
  1948. "path to a multimodal projector file for LLaVA. see examples/llava/README.md",
  1949. [](common_params & params, const std::string & value) {
  1950. params.mmproj.path = value;
  1951. }
  1952. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  1953. add_opt(common_arg(
  1954. {"--mmproj-url"}, "URL",
  1955. "URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
  1956. [](common_params & params, const std::string & value) {
  1957. params.mmproj.url = value;
  1958. }
  1959. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  1960. add_opt(common_arg(
  1961. {"--image"}, "FILE",
  1962. "path to an image file. use with multimodal models. Specify multiple times for batching",
  1963. [](common_params & params, const std::string & value) {
  1964. params.image.emplace_back(value);
  1965. }
  1966. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  1967. if (llama_supports_rpc()) {
  1968. add_opt(common_arg(
  1969. {"--rpc"}, "SERVERS",
  1970. "comma separated list of RPC servers",
  1971. [](common_params & params, const std::string & value) {
  1972. add_rpc_devices(value);
  1973. GGML_UNUSED(params);
  1974. }
  1975. ).set_env("LLAMA_ARG_RPC"));
  1976. }
  1977. add_opt(common_arg(
  1978. {"--mlock"},
  1979. "force system to keep model in RAM rather than swapping or compressing",
  1980. [](common_params & params) {
  1981. params.use_mlock = true;
  1982. }
  1983. ).set_env("LLAMA_ARG_MLOCK"));
  1984. add_opt(common_arg(
  1985. {"--no-mmap"},
  1986. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  1987. [](common_params & params) {
  1988. params.use_mmap = false;
  1989. }
  1990. ).set_env("LLAMA_ARG_NO_MMAP"));
  1991. add_opt(common_arg(
  1992. {"--numa"}, "TYPE",
  1993. "attempt optimizations that help on some NUMA systems\n"
  1994. "- distribute: spread execution evenly over all nodes\n"
  1995. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  1996. "- numactl: use the CPU map provided by numactl\n"
  1997. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  1998. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  1999. [](common_params & params, const std::string & value) {
  2000. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2001. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2002. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2003. else { throw std::invalid_argument("invalid value"); }
  2004. }
  2005. ).set_env("LLAMA_ARG_NUMA"));
  2006. add_opt(common_arg(
  2007. {"-dev", "--device"}, "<dev1,dev2,..>",
  2008. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2009. "use --list-devices to see a list of available devices",
  2010. [](common_params & params, const std::string & value) {
  2011. params.devices = parse_device_list(value);
  2012. }
  2013. ).set_env("LLAMA_ARG_DEVICE"));
  2014. add_opt(common_arg(
  2015. {"--list-devices"},
  2016. "print list of available devices and exit",
  2017. [](common_params &) {
  2018. std::vector<ggml_backend_dev_t> rpc_devices;
  2019. std::vector<ggml_backend_dev_t> all_devices;
  2020. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2021. auto * dev = ggml_backend_dev_get(i);
  2022. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  2023. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  2024. if (ggml_backend_reg_name(reg) == std::string("RPC")) {
  2025. rpc_devices.push_back(dev);
  2026. } else {
  2027. all_devices.push_back(dev);
  2028. }
  2029. }
  2030. }
  2031. // insert RPC devices in front
  2032. all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
  2033. printf("Available devices:\n");
  2034. for (size_t i = 0; i < all_devices.size(); ++i) {
  2035. auto * dev = all_devices[i];
  2036. size_t free, total;
  2037. ggml_backend_dev_memory(dev, &free, &total);
  2038. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2039. }
  2040. exit(0);
  2041. }
  2042. ));
  2043. add_opt(common_arg(
  2044. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  2045. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2046. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  2047. if (buft_list.empty()) {
  2048. // enumerate all the devices and add their buffer types to the list
  2049. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2050. auto * dev = ggml_backend_dev_get(i);
  2051. auto * buft = ggml_backend_dev_buffer_type(dev);
  2052. if (buft) {
  2053. buft_list[ggml_backend_buft_name(buft)] = buft;
  2054. }
  2055. }
  2056. }
  2057. for (const auto & override : string_split<std::string>(value, ',')) {
  2058. std::string::size_type pos = override.find('=');
  2059. if (pos == std::string::npos) {
  2060. throw std::invalid_argument("invalid value");
  2061. }
  2062. std::string tensor_name = override.substr(0, pos);
  2063. std::string buffer_type = override.substr(pos + 1);
  2064. if (buft_list.find(buffer_type) == buft_list.end()) {
  2065. printf("Available buffer types:\n");
  2066. for (const auto & it : buft_list) {
  2067. printf(" %s\n", ggml_backend_buft_name(it.second));
  2068. }
  2069. throw std::invalid_argument("unknown buffer type");
  2070. }
  2071. // FIXME: this leaks memory
  2072. params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
  2073. }
  2074. }
  2075. ));
  2076. add_opt(common_arg(
  2077. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2078. "number of layers to store in VRAM",
  2079. [](common_params & params, int value) {
  2080. params.n_gpu_layers = value;
  2081. if (!llama_supports_gpu_offload()) {
  2082. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2083. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2084. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2085. }
  2086. }
  2087. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2088. add_opt(common_arg(
  2089. {"-sm", "--split-mode"}, "{none,layer,row}",
  2090. "how to split the model across multiple GPUs, one of:\n"
  2091. "- none: use one GPU only\n"
  2092. "- layer (default): split layers and KV across GPUs\n"
  2093. "- row: split rows across GPUs",
  2094. [](common_params & params, const std::string & value) {
  2095. std::string arg_next = value;
  2096. if (arg_next == "none") {
  2097. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2098. } else if (arg_next == "layer") {
  2099. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2100. } else if (arg_next == "row") {
  2101. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2102. } else {
  2103. throw std::invalid_argument("invalid value");
  2104. }
  2105. if (!llama_supports_gpu_offload()) {
  2106. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2107. }
  2108. }
  2109. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2110. add_opt(common_arg(
  2111. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2112. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2113. [](common_params & params, const std::string & value) {
  2114. std::string arg_next = value;
  2115. // split string by , and /
  2116. const std::regex regex{ R"([,/]+)" };
  2117. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2118. std::vector<std::string> split_arg{ it, {} };
  2119. if (split_arg.size() >= llama_max_devices()) {
  2120. throw std::invalid_argument(
  2121. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2122. );
  2123. }
  2124. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2125. if (i < split_arg.size()) {
  2126. params.tensor_split[i] = std::stof(split_arg[i]);
  2127. } else {
  2128. params.tensor_split[i] = 0.0f;
  2129. }
  2130. }
  2131. if (!llama_supports_gpu_offload()) {
  2132. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2133. }
  2134. }
  2135. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2136. add_opt(common_arg(
  2137. {"-mg", "--main-gpu"}, "INDEX",
  2138. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2139. [](common_params & params, int value) {
  2140. params.main_gpu = value;
  2141. if (!llama_supports_gpu_offload()) {
  2142. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2143. }
  2144. }
  2145. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2146. add_opt(common_arg(
  2147. {"--check-tensors"},
  2148. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2149. [](common_params & params) {
  2150. params.check_tensors = true;
  2151. }
  2152. ));
  2153. add_opt(common_arg(
  2154. {"--override-kv"}, "KEY=TYPE:VALUE",
  2155. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2156. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2157. [](common_params & params, const std::string & value) {
  2158. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2159. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2160. }
  2161. }
  2162. ));
  2163. add_opt(common_arg(
  2164. {"--lora"}, "FNAME",
  2165. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2166. [](common_params & params, const std::string & value) {
  2167. params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
  2168. }
  2169. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2170. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2171. add_opt(common_arg(
  2172. {"--lora-scaled"}, "FNAME", "SCALE",
  2173. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2174. [](common_params & params, const std::string & fname, const std::string & scale) {
  2175. params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
  2176. }
  2177. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2178. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2179. add_opt(common_arg(
  2180. {"--control-vector"}, "FNAME",
  2181. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2182. [](common_params & params, const std::string & value) {
  2183. params.control_vectors.push_back({ 1.0f, value, });
  2184. }
  2185. ));
  2186. add_opt(common_arg(
  2187. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2188. "add a control vector with user defined scaling SCALE\n"
  2189. "note: this argument can be repeated to add multiple scaled control vectors",
  2190. [](common_params & params, const std::string & fname, const std::string & scale) {
  2191. params.control_vectors.push_back({ std::stof(scale), fname });
  2192. }
  2193. ));
  2194. add_opt(common_arg(
  2195. {"--control-vector-layer-range"}, "START", "END",
  2196. "layer range to apply the control vector(s) to, start and end inclusive",
  2197. [](common_params & params, const std::string & start, const std::string & end) {
  2198. params.control_vector_layer_start = std::stoi(start);
  2199. params.control_vector_layer_end = std::stoi(end);
  2200. }
  2201. ));
  2202. add_opt(common_arg(
  2203. {"-a", "--alias"}, "STRING",
  2204. "set alias for model name (to be used by REST API)",
  2205. [](common_params & params, const std::string & value) {
  2206. params.model_alias = value;
  2207. }
  2208. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2209. add_opt(common_arg(
  2210. {"-m", "--model"}, "FNAME",
  2211. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2212. ? std::string("model path from which to load base model")
  2213. : string_format(
  2214. "model path (default: `models/$filename` with filename from `--hf-file` "
  2215. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2216. ),
  2217. [](common_params & params, const std::string & value) {
  2218. params.model.path = value;
  2219. }
  2220. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2221. add_opt(common_arg(
  2222. {"-mu", "--model-url"}, "MODEL_URL",
  2223. "model download url (default: unused)",
  2224. [](common_params & params, const std::string & value) {
  2225. params.model.url = value;
  2226. }
  2227. ).set_env("LLAMA_ARG_MODEL_URL"));
  2228. add_opt(common_arg(
  2229. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2230. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2231. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2232. "(default: unused)",
  2233. [](common_params & params, const std::string & value) {
  2234. params.model.hf_repo = value;
  2235. }
  2236. ).set_env("LLAMA_ARG_HF_REPO"));
  2237. add_opt(common_arg(
  2238. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2239. "Same as --hf-repo, but for the draft model (default: unused)",
  2240. [](common_params & params, const std::string & value) {
  2241. params.speculative.model.hf_repo = value;
  2242. }
  2243. ).set_env("LLAMA_ARG_HFD_REPO"));
  2244. add_opt(common_arg(
  2245. {"-hff", "--hf-file"}, "FILE",
  2246. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2247. [](common_params & params, const std::string & value) {
  2248. params.model.hf_file = value;
  2249. }
  2250. ).set_env("LLAMA_ARG_HF_FILE"));
  2251. add_opt(common_arg(
  2252. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2253. "Hugging Face model repository for the vocoder model (default: unused)",
  2254. [](common_params & params, const std::string & value) {
  2255. params.vocoder.model.hf_repo = value;
  2256. }
  2257. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2258. add_opt(common_arg(
  2259. {"-hffv", "--hf-file-v"}, "FILE",
  2260. "Hugging Face model file for the vocoder model (default: unused)",
  2261. [](common_params & params, const std::string & value) {
  2262. params.vocoder.model.hf_file = value;
  2263. }
  2264. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2265. add_opt(common_arg(
  2266. {"-hft", "--hf-token"}, "TOKEN",
  2267. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2268. [](common_params & params, const std::string & value) {
  2269. params.hf_token = value;
  2270. }
  2271. ).set_env("HF_TOKEN"));
  2272. add_opt(common_arg(
  2273. {"--context-file"}, "FNAME",
  2274. "file to load context from (repeat to specify multiple files)",
  2275. [](common_params & params, const std::string & value) {
  2276. std::ifstream file(value, std::ios::binary);
  2277. if (!file) {
  2278. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2279. }
  2280. params.context_files.push_back(value);
  2281. }
  2282. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2283. add_opt(common_arg(
  2284. {"--chunk-size"}, "N",
  2285. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2286. [](common_params & params, int value) {
  2287. params.chunk_size = value;
  2288. }
  2289. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2290. add_opt(common_arg(
  2291. {"--chunk-separator"}, "STRING",
  2292. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2293. [](common_params & params, const std::string & value) {
  2294. params.chunk_separator = value;
  2295. }
  2296. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2297. add_opt(common_arg(
  2298. {"--junk"}, "N",
  2299. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2300. [](common_params & params, int value) {
  2301. params.n_junk = value;
  2302. }
  2303. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2304. add_opt(common_arg(
  2305. {"--pos"}, "N",
  2306. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2307. [](common_params & params, int value) {
  2308. params.i_pos = value;
  2309. }
  2310. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2311. add_opt(common_arg(
  2312. {"-o", "--output", "--output-file"}, "FNAME",
  2313. string_format("output file (default: '%s')", params.out_file.c_str()),
  2314. [](common_params & params, const std::string & value) {
  2315. params.out_file = value;
  2316. }
  2317. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
  2318. add_opt(common_arg(
  2319. {"-ofreq", "--output-frequency"}, "N",
  2320. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2321. [](common_params & params, int value) {
  2322. params.n_out_freq = value;
  2323. }
  2324. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2325. add_opt(common_arg(
  2326. {"--save-frequency"}, "N",
  2327. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2328. [](common_params & params, int value) {
  2329. params.n_save_freq = value;
  2330. }
  2331. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2332. add_opt(common_arg(
  2333. {"--process-output"},
  2334. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2335. [](common_params & params) {
  2336. params.process_output = true;
  2337. }
  2338. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2339. add_opt(common_arg(
  2340. {"--no-ppl"},
  2341. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2342. [](common_params & params) {
  2343. params.compute_ppl = false;
  2344. }
  2345. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2346. add_opt(common_arg(
  2347. {"--chunk", "--from-chunk"}, "N",
  2348. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2349. [](common_params & params, int value) {
  2350. params.i_chunk = value;
  2351. }
  2352. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2353. add_opt(common_arg(
  2354. {"-pps"},
  2355. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2356. [](common_params & params) {
  2357. params.is_pp_shared = true;
  2358. }
  2359. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2360. add_opt(common_arg(
  2361. {"-npp"}, "n0,n1,...",
  2362. "number of prompt tokens",
  2363. [](common_params & params, const std::string & value) {
  2364. auto p = string_split<int>(value, ',');
  2365. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2366. }
  2367. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2368. add_opt(common_arg(
  2369. {"-ntg"}, "n0,n1,...",
  2370. "number of text generation tokens",
  2371. [](common_params & params, const std::string & value) {
  2372. auto p = string_split<int>(value, ',');
  2373. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2374. }
  2375. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2376. add_opt(common_arg(
  2377. {"-npl"}, "n0,n1,...",
  2378. "number of parallel prompts",
  2379. [](common_params & params, const std::string & value) {
  2380. auto p = string_split<int>(value, ',');
  2381. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2382. }
  2383. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2384. add_opt(common_arg(
  2385. {"--embd-normalize"}, "N",
  2386. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2387. [](common_params & params, int value) {
  2388. params.embd_normalize = value;
  2389. }
  2390. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2391. add_opt(common_arg(
  2392. {"--embd-output-format"}, "FORMAT",
  2393. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2394. [](common_params & params, const std::string & value) {
  2395. params.embd_out = value;
  2396. }
  2397. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2398. add_opt(common_arg(
  2399. {"--embd-separator"}, "STRING",
  2400. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2401. [](common_params & params, const std::string & value) {
  2402. params.embd_sep = value;
  2403. }
  2404. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2405. add_opt(common_arg(
  2406. {"--host"}, "HOST",
  2407. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2408. [](common_params & params, const std::string & value) {
  2409. params.hostname = value;
  2410. }
  2411. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2412. add_opt(common_arg(
  2413. {"--port"}, "PORT",
  2414. string_format("port to listen (default: %d)", params.port),
  2415. [](common_params & params, int value) {
  2416. params.port = value;
  2417. }
  2418. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2419. add_opt(common_arg(
  2420. {"--path"}, "PATH",
  2421. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2422. [](common_params & params, const std::string & value) {
  2423. params.public_path = value;
  2424. }
  2425. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2426. add_opt(common_arg(
  2427. {"--no-webui"},
  2428. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2429. [](common_params & params) {
  2430. params.webui = false;
  2431. }
  2432. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2433. add_opt(common_arg(
  2434. {"--embedding", "--embeddings"},
  2435. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2436. [](common_params & params) {
  2437. params.embedding = true;
  2438. }
  2439. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2440. add_opt(common_arg(
  2441. {"--reranking", "--rerank"},
  2442. string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
  2443. [](common_params & params) {
  2444. params.reranking = true;
  2445. }
  2446. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2447. add_opt(common_arg(
  2448. {"--api-key"}, "KEY",
  2449. "API key to use for authentication (default: none)",
  2450. [](common_params & params, const std::string & value) {
  2451. params.api_keys.push_back(value);
  2452. }
  2453. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2454. add_opt(common_arg(
  2455. {"--api-key-file"}, "FNAME",
  2456. "path to file containing API keys (default: none)",
  2457. [](common_params & params, const std::string & value) {
  2458. std::ifstream key_file(value);
  2459. if (!key_file) {
  2460. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2461. }
  2462. std::string key;
  2463. while (std::getline(key_file, key)) {
  2464. if (!key.empty()) {
  2465. params.api_keys.push_back(key);
  2466. }
  2467. }
  2468. key_file.close();
  2469. }
  2470. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2471. add_opt(common_arg(
  2472. {"--ssl-key-file"}, "FNAME",
  2473. "path to file a PEM-encoded SSL private key",
  2474. [](common_params & params, const std::string & value) {
  2475. params.ssl_file_key = value;
  2476. }
  2477. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2478. add_opt(common_arg(
  2479. {"--ssl-cert-file"}, "FNAME",
  2480. "path to file a PEM-encoded SSL certificate",
  2481. [](common_params & params, const std::string & value) {
  2482. params.ssl_file_cert = value;
  2483. }
  2484. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2485. add_opt(common_arg(
  2486. {"-to", "--timeout"}, "N",
  2487. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2488. [](common_params & params, int value) {
  2489. params.timeout_read = value;
  2490. params.timeout_write = value;
  2491. }
  2492. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2493. add_opt(common_arg(
  2494. {"--threads-http"}, "N",
  2495. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2496. [](common_params & params, int value) {
  2497. params.n_threads_http = value;
  2498. }
  2499. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2500. add_opt(common_arg(
  2501. {"--cache-reuse"}, "N",
  2502. string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
  2503. [](common_params & params, int value) {
  2504. params.n_cache_reuse = value;
  2505. }
  2506. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2507. add_opt(common_arg(
  2508. {"--metrics"},
  2509. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2510. [](common_params & params) {
  2511. params.endpoint_metrics = true;
  2512. }
  2513. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2514. add_opt(common_arg(
  2515. {"--slots"},
  2516. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2517. [](common_params & params) {
  2518. params.endpoint_slots = true;
  2519. }
  2520. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2521. add_opt(common_arg(
  2522. {"--props"},
  2523. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2524. [](common_params & params) {
  2525. params.endpoint_props = true;
  2526. }
  2527. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2528. add_opt(common_arg(
  2529. {"--no-slots"},
  2530. "disables slots monitoring endpoint",
  2531. [](common_params & params) {
  2532. params.endpoint_slots = false;
  2533. }
  2534. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2535. add_opt(common_arg(
  2536. {"--slot-save-path"}, "PATH",
  2537. "path to save slot kv cache (default: disabled)",
  2538. [](common_params & params, const std::string & value) {
  2539. params.slot_save_path = value;
  2540. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2541. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2542. params.slot_save_path += DIRECTORY_SEPARATOR;
  2543. }
  2544. }
  2545. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2546. add_opt(common_arg(
  2547. {"--jinja"},
  2548. "use jinja template for chat (default: disabled)",
  2549. [](common_params & params) {
  2550. params.use_jinja = true;
  2551. }
  2552. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2553. add_opt(common_arg(
  2554. {"--reasoning-format"}, "FORMAT",
  2555. "reasoning format (default: deepseek; allowed values: deepseek, none)\n"
  2556. "controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
  2557. "only supported for non-streamed responses",
  2558. [](common_params & params, const std::string & value) {
  2559. /**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
  2560. else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
  2561. else { std::invalid_argument("invalid value"); }
  2562. }
  2563. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2564. add_opt(common_arg(
  2565. {"--chat-template"}, "JINJA_TEMPLATE",
  2566. string_format(
  2567. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2568. "if suffix/prefix are specified, template will be disabled\n"
  2569. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2570. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2571. ),
  2572. [](common_params & params, const std::string & value) {
  2573. params.chat_template = value;
  2574. }
  2575. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_LLAVA}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2576. add_opt(common_arg(
  2577. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2578. string_format(
  2579. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2580. "if suffix/prefix are specified, template will be disabled\n"
  2581. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2582. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2583. ),
  2584. [](common_params & params, const std::string & value) {
  2585. std::ifstream file(value);
  2586. if (!file) {
  2587. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2588. }
  2589. std::copy(
  2590. std::istreambuf_iterator<char>(file),
  2591. std::istreambuf_iterator<char>(),
  2592. std::back_inserter(params.chat_template));
  2593. }
  2594. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2595. add_opt(common_arg(
  2596. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2597. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2598. [](common_params & params, const std::string & value) {
  2599. params.slot_prompt_similarity = std::stof(value);
  2600. }
  2601. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2602. add_opt(common_arg(
  2603. {"--lora-init-without-apply"},
  2604. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2605. [](common_params & params) {
  2606. params.lora_init_without_apply = true;
  2607. }
  2608. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2609. add_opt(common_arg(
  2610. {"--simple-io"},
  2611. "use basic IO for better compatibility in subprocesses and limited consoles",
  2612. [](common_params & params) {
  2613. params.simple_io = true;
  2614. }
  2615. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  2616. add_opt(common_arg(
  2617. {"--positive-file"}, "FNAME",
  2618. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2619. [](common_params & params, const std::string & value) {
  2620. params.cvector_positive_file = value;
  2621. }
  2622. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2623. add_opt(common_arg(
  2624. {"--negative-file"}, "FNAME",
  2625. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2626. [](common_params & params, const std::string & value) {
  2627. params.cvector_negative_file = value;
  2628. }
  2629. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2630. add_opt(common_arg(
  2631. {"--pca-batch"}, "N",
  2632. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2633. [](common_params & params, int value) {
  2634. params.n_pca_batch = value;
  2635. }
  2636. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2637. add_opt(common_arg(
  2638. {"--pca-iter"}, "N",
  2639. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2640. [](common_params & params, int value) {
  2641. params.n_pca_iterations = value;
  2642. }
  2643. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2644. add_opt(common_arg(
  2645. {"--method"}, "{pca, mean}",
  2646. "dimensionality reduction method to be used (default: pca)",
  2647. [](common_params & params, const std::string & value) {
  2648. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2649. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2650. else { throw std::invalid_argument("invalid value"); }
  2651. }
  2652. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2653. add_opt(common_arg(
  2654. {"--output-format"}, "{md,jsonl}",
  2655. "output format for batched-bench results (default: md)",
  2656. [](common_params & params, const std::string & value) {
  2657. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2658. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2659. else { std::invalid_argument("invalid value"); }
  2660. }
  2661. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2662. add_opt(common_arg(
  2663. {"--log-disable"},
  2664. "Log disable",
  2665. [](common_params &) {
  2666. common_log_pause(common_log_main());
  2667. }
  2668. ));
  2669. add_opt(common_arg(
  2670. {"--log-file"}, "FNAME",
  2671. "Log to file",
  2672. [](common_params &, const std::string & value) {
  2673. common_log_set_file(common_log_main(), value.c_str());
  2674. }
  2675. ));
  2676. add_opt(common_arg(
  2677. {"--log-colors"},
  2678. "Enable colored logging",
  2679. [](common_params &) {
  2680. common_log_set_colors(common_log_main(), true);
  2681. }
  2682. ).set_env("LLAMA_LOG_COLORS"));
  2683. add_opt(common_arg(
  2684. {"-v", "--verbose", "--log-verbose"},
  2685. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2686. [](common_params & params) {
  2687. params.verbosity = INT_MAX;
  2688. common_log_set_verbosity_thold(INT_MAX);
  2689. }
  2690. ));
  2691. add_opt(common_arg(
  2692. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2693. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  2694. [](common_params & params, int value) {
  2695. params.verbosity = value;
  2696. common_log_set_verbosity_thold(value);
  2697. }
  2698. ).set_env("LLAMA_LOG_VERBOSITY"));
  2699. add_opt(common_arg(
  2700. {"--log-prefix"},
  2701. "Enable prefix in log messages",
  2702. [](common_params &) {
  2703. common_log_set_prefix(common_log_main(), true);
  2704. }
  2705. ).set_env("LLAMA_LOG_PREFIX"));
  2706. add_opt(common_arg(
  2707. {"--log-timestamps"},
  2708. "Enable timestamps in log messages",
  2709. [](common_params &) {
  2710. common_log_set_timestamps(common_log_main(), true);
  2711. }
  2712. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2713. // speculative parameters
  2714. add_opt(common_arg(
  2715. {"-td", "--threads-draft"}, "N",
  2716. "number of threads to use during generation (default: same as --threads)",
  2717. [](common_params & params, int value) {
  2718. params.speculative.cpuparams.n_threads = value;
  2719. if (params.speculative.cpuparams.n_threads <= 0) {
  2720. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2721. }
  2722. }
  2723. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2724. add_opt(common_arg(
  2725. {"-tbd", "--threads-batch-draft"}, "N",
  2726. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2727. [](common_params & params, int value) {
  2728. params.speculative.cpuparams_batch.n_threads = value;
  2729. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2730. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2731. }
  2732. }
  2733. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2734. add_opt(common_arg(
  2735. {"-Cd", "--cpu-mask-draft"}, "M",
  2736. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2737. [](common_params & params, const std::string & mask) {
  2738. params.speculative.cpuparams.mask_valid = true;
  2739. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2740. throw std::invalid_argument("invalid cpumask");
  2741. }
  2742. }
  2743. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2744. add_opt(common_arg(
  2745. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2746. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2747. [](common_params & params, const std::string & range) {
  2748. params.speculative.cpuparams.mask_valid = true;
  2749. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2750. throw std::invalid_argument("invalid range");
  2751. }
  2752. }
  2753. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2754. add_opt(common_arg(
  2755. {"--cpu-strict-draft"}, "<0|1>",
  2756. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  2757. [](common_params & params, int value) {
  2758. params.speculative.cpuparams.strict_cpu = value;
  2759. }
  2760. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2761. add_opt(common_arg(
  2762. {"--prio-draft"}, "N",
  2763. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  2764. [](common_params & params, int prio) {
  2765. if (prio < 0 || prio > 3) {
  2766. throw std::invalid_argument("invalid value");
  2767. }
  2768. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  2769. }
  2770. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2771. add_opt(common_arg(
  2772. {"--poll-draft"}, "<0|1>",
  2773. "Use polling to wait for draft model work (default: same as --poll])",
  2774. [](common_params & params, int value) {
  2775. params.speculative.cpuparams.poll = value;
  2776. }
  2777. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2778. add_opt(common_arg(
  2779. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  2780. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2781. [](common_params & params, const std::string & mask) {
  2782. params.speculative.cpuparams_batch.mask_valid = true;
  2783. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  2784. throw std::invalid_argument("invalid cpumask");
  2785. }
  2786. }
  2787. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2788. add_opt(common_arg(
  2789. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  2790. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  2791. [](common_params & params, const std::string & range) {
  2792. params.speculative.cpuparams_batch.mask_valid = true;
  2793. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  2794. throw std::invalid_argument("invalid cpumask");
  2795. }
  2796. }
  2797. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2798. add_opt(common_arg(
  2799. {"--cpu-strict-batch-draft"}, "<0|1>",
  2800. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  2801. [](common_params & params, int value) {
  2802. params.speculative.cpuparams_batch.strict_cpu = value;
  2803. }
  2804. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2805. add_opt(common_arg(
  2806. {"--prio-batch-draft"}, "N",
  2807. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  2808. [](common_params & params, int prio) {
  2809. if (prio < 0 || prio > 3) {
  2810. throw std::invalid_argument("invalid value");
  2811. }
  2812. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  2813. }
  2814. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2815. add_opt(common_arg(
  2816. {"--poll-batch-draft"}, "<0|1>",
  2817. "Use polling to wait for draft model work (default: --poll-draft)",
  2818. [](common_params & params, int value) {
  2819. params.speculative.cpuparams_batch.poll = value;
  2820. }
  2821. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2822. add_opt(common_arg(
  2823. {"--draft-max", "--draft", "--draft-n"}, "N",
  2824. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  2825. [](common_params & params, int value) {
  2826. params.speculative.n_max = value;
  2827. }
  2828. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  2829. add_opt(common_arg(
  2830. {"--draft-min", "--draft-n-min"}, "N",
  2831. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  2832. [](common_params & params, int value) {
  2833. params.speculative.n_min = value;
  2834. }
  2835. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  2836. add_opt(common_arg(
  2837. {"--draft-p-split"}, "P",
  2838. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  2839. [](common_params & params, const std::string & value) {
  2840. params.speculative.p_split = std::stof(value);
  2841. }
  2842. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  2843. add_opt(common_arg(
  2844. {"--draft-p-min"}, "P",
  2845. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  2846. [](common_params & params, const std::string & value) {
  2847. params.speculative.p_min = std::stof(value);
  2848. }
  2849. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  2850. add_opt(common_arg(
  2851. {"-cd", "--ctx-size-draft"}, "N",
  2852. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  2853. [](common_params & params, int value) {
  2854. params.speculative.n_ctx = value;
  2855. }
  2856. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  2857. add_opt(common_arg(
  2858. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  2859. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  2860. "use --list-devices to see a list of available devices",
  2861. [](common_params & params, const std::string & value) {
  2862. params.speculative.devices = parse_device_list(value);
  2863. }
  2864. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2865. add_opt(common_arg(
  2866. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  2867. "number of layers to store in VRAM for the draft model",
  2868. [](common_params & params, int value) {
  2869. params.speculative.n_gpu_layers = value;
  2870. if (!llama_supports_gpu_offload()) {
  2871. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  2872. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2873. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2874. }
  2875. }
  2876. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  2877. add_opt(common_arg(
  2878. {"-md", "--model-draft"}, "FNAME",
  2879. "draft model for speculative decoding (default: unused)",
  2880. [](common_params & params, const std::string & value) {
  2881. params.speculative.model.path = value;
  2882. }
  2883. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  2884. add_opt(common_arg(
  2885. {"-mv", "--model-vocoder"}, "FNAME",
  2886. "vocoder model for audio generation (default: unused)",
  2887. [](common_params & params, const std::string & value) {
  2888. params.vocoder.model.path = value;
  2889. }
  2890. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  2891. add_opt(common_arg(
  2892. {"--tts-use-guide-tokens"},
  2893. "Use guide tokens to improve TTS word recall",
  2894. [](common_params & params) {
  2895. params.vocoder.use_guide_tokens = true;
  2896. }
  2897. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  2898. add_opt(common_arg(
  2899. {"--tts-speaker-file"}, "FNAME",
  2900. "speaker file path for audio generation",
  2901. [](common_params & params, const std::string & value) {
  2902. params.vocoder.speaker_file = value;
  2903. }
  2904. ).set_examples({LLAMA_EXAMPLE_TTS}));
  2905. // model-specific
  2906. add_opt(common_arg(
  2907. {"--tts-oute-default"},
  2908. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  2909. [](common_params & params) {
  2910. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  2911. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  2912. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  2913. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  2914. }
  2915. ).set_examples({LLAMA_EXAMPLE_TTS}));
  2916. add_opt(common_arg(
  2917. {"--embd-bge-small-en-default"},
  2918. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  2919. [](common_params & params) {
  2920. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  2921. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  2922. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  2923. params.embd_normalize = 2;
  2924. params.n_ctx = 512;
  2925. params.verbose_prompt = true;
  2926. params.embedding = true;
  2927. }
  2928. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  2929. add_opt(common_arg(
  2930. {"--embd-e5-small-en-default"},
  2931. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  2932. [](common_params & params) {
  2933. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  2934. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  2935. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  2936. params.embd_normalize = 2;
  2937. params.n_ctx = 512;
  2938. params.verbose_prompt = true;
  2939. params.embedding = true;
  2940. }
  2941. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  2942. add_opt(common_arg(
  2943. {"--embd-gte-small-default"},
  2944. string_format("use default gte-small model (note: can download weights from the internet)"),
  2945. [](common_params & params) {
  2946. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  2947. params.model.hf_file = "gte-small-q8_0.gguf";
  2948. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  2949. params.embd_normalize = 2;
  2950. params.n_ctx = 512;
  2951. params.verbose_prompt = true;
  2952. params.embedding = true;
  2953. }
  2954. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  2955. add_opt(common_arg(
  2956. {"--fim-qwen-1.5b-default"},
  2957. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  2958. [](common_params & params) {
  2959. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  2960. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  2961. params.port = 8012;
  2962. params.n_gpu_layers = 99;
  2963. params.flash_attn = true;
  2964. params.n_ubatch = 1024;
  2965. params.n_batch = 1024;
  2966. params.n_ctx = 0;
  2967. params.n_cache_reuse = 256;
  2968. }
  2969. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2970. add_opt(common_arg(
  2971. {"--fim-qwen-3b-default"},
  2972. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  2973. [](common_params & params) {
  2974. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  2975. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  2976. params.port = 8012;
  2977. params.n_gpu_layers = 99;
  2978. params.flash_attn = true;
  2979. params.n_ubatch = 1024;
  2980. params.n_batch = 1024;
  2981. params.n_ctx = 0;
  2982. params.n_cache_reuse = 256;
  2983. }
  2984. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2985. add_opt(common_arg(
  2986. {"--fim-qwen-7b-default"},
  2987. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  2988. [](common_params & params) {
  2989. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  2990. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  2991. params.port = 8012;
  2992. params.n_gpu_layers = 99;
  2993. params.flash_attn = true;
  2994. params.n_ubatch = 1024;
  2995. params.n_batch = 1024;
  2996. params.n_ctx = 0;
  2997. params.n_cache_reuse = 256;
  2998. }
  2999. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3000. add_opt(common_arg(
  3001. {"--fim-qwen-7b-spec"},
  3002. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3003. [](common_params & params) {
  3004. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3005. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3006. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3007. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3008. params.speculative.n_gpu_layers = 99;
  3009. params.port = 8012;
  3010. params.n_gpu_layers = 99;
  3011. params.flash_attn = true;
  3012. params.n_ubatch = 1024;
  3013. params.n_batch = 1024;
  3014. params.n_ctx = 0;
  3015. params.n_cache_reuse = 256;
  3016. }
  3017. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3018. add_opt(common_arg(
  3019. {"--fim-qwen-14b-spec"},
  3020. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3021. [](common_params & params) {
  3022. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3023. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3024. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3025. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3026. params.speculative.n_gpu_layers = 99;
  3027. params.port = 8012;
  3028. params.n_gpu_layers = 99;
  3029. params.flash_attn = true;
  3030. params.n_ubatch = 1024;
  3031. params.n_batch = 1024;
  3032. params.n_ctx = 0;
  3033. params.n_cache_reuse = 256;
  3034. }
  3035. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3036. return ctx_arg;
  3037. }