utils.hpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. #pragma once
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include "common/base64.hpp"
  6. // increase max payload length to allow use of larger context size
  7. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  8. // disable Nagle's algorithm
  9. #define CPPHTTPLIB_TCP_NODELAY true
  10. #include "httplib.h"
  11. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  12. #define JSON_ASSERT GGML_ASSERT
  13. #include "json.hpp"
  14. #include "chat.h"
  15. #include <random>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <memory>
  20. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
  21. using json = nlohmann::ordered_json;
  22. #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  23. #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  24. #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  25. #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  26. #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  27. #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  28. #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  29. #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  30. #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  31. #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  32. #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  33. #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  34. template <typename T>
  35. static T json_value(const json & body, const std::string & key, const T & default_value) {
  36. // Fallback null to default value
  37. if (body.contains(key) && !body.at(key).is_null()) {
  38. try {
  39. return body.at(key);
  40. } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
  41. LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
  42. return default_value;
  43. }
  44. } else {
  45. return default_value;
  46. }
  47. }
  48. const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
  49. //
  50. // tokenizer and input processing utils
  51. //
  52. static bool json_is_array_of_numbers(const json & data) {
  53. if (data.is_array()) {
  54. for (const auto & e : data) {
  55. if (!e.is_number_integer()) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. return false;
  62. }
  63. // is array having BOTH numbers & strings?
  64. static bool json_is_array_of_mixed_numbers_strings(const json & data) {
  65. bool seen_string = false;
  66. bool seen_number = false;
  67. if (data.is_array()) {
  68. for (const auto & e : data) {
  69. seen_string |= e.is_string();
  70. seen_number |= e.is_number_integer();
  71. if (seen_number && seen_string) {
  72. return true;
  73. }
  74. }
  75. }
  76. return false;
  77. }
  78. // get value by path(key1 / key2)
  79. static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
  80. json result = json::object();
  81. for (const std::string & path : paths) {
  82. json current = js;
  83. const auto keys = string_split<std::string>(path, /*separator*/ '/');
  84. bool valid_path = true;
  85. for (const std::string & k : keys) {
  86. if (valid_path && current.is_object() && current.contains(k)) {
  87. current = current[k];
  88. } else {
  89. valid_path = false;
  90. }
  91. }
  92. if (valid_path) {
  93. result[path] = current;
  94. }
  95. }
  96. return result;
  97. }
  98. /**
  99. * this handles 2 cases:
  100. * - only string, example: "string"
  101. * - mixed string and tokens, example: [12, 34, "string", 56, 78]
  102. */
  103. static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
  104. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  105. // or the first element of the json_prompt array is a string.
  106. llama_tokens prompt_tokens;
  107. if (json_prompt.is_array()) {
  108. bool first = true;
  109. for (const auto & p : json_prompt) {
  110. if (p.is_string()) {
  111. auto s = p.template get<std::string>();
  112. llama_tokens p;
  113. if (first) {
  114. p = common_tokenize(vocab, s, add_special, parse_special);
  115. first = false;
  116. } else {
  117. p = common_tokenize(vocab, s, false, parse_special);
  118. }
  119. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  120. } else {
  121. if (first) {
  122. first = false;
  123. }
  124. prompt_tokens.push_back(p.template get<llama_token>());
  125. }
  126. }
  127. } else {
  128. auto s = json_prompt.template get<std::string>();
  129. prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
  130. }
  131. return prompt_tokens;
  132. }
  133. /**
  134. * break the input "prompt" object into multiple prompt if needed, then tokenize them
  135. * this supports these cases:
  136. * - "prompt": "string"
  137. * - "prompt": [12, 34, 56]
  138. * - "prompt": [12, 34, "string", 56, 78]
  139. * and multiple prompts (multi-tasks):
  140. * - "prompt": ["string1", "string2"]
  141. * - "prompt": ["string1", [12, 34, 56]]
  142. * - "prompt": [[12, 34, 56], [78, 90, 12]]
  143. * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
  144. */
  145. static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
  146. std::vector<llama_tokens> result;
  147. if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
  148. // string or mixed
  149. result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
  150. } else if (json_is_array_of_numbers(json_prompt)) {
  151. // array of tokens
  152. result.push_back(json_prompt.get<llama_tokens>());
  153. } else if (json_prompt.is_array()) {
  154. // array of prompts
  155. result.reserve(json_prompt.size());
  156. for (const auto & p : json_prompt) {
  157. if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
  158. result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
  159. } else if (json_is_array_of_numbers(p)) {
  160. // array of tokens
  161. result.push_back(p.get<llama_tokens>());
  162. } else {
  163. throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
  164. }
  165. }
  166. } else {
  167. throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
  168. }
  169. if (result.empty()) {
  170. throw std::runtime_error("\"prompt\" must not be empty");
  171. }
  172. return result;
  173. }
  174. // return the last index of character that can form a valid string
  175. // if the last character is potentially cut in half, return the index before the cut
  176. // if validate_utf8(text) == text.size(), then the whole text is valid utf8
  177. static size_t validate_utf8(const std::string& text) {
  178. size_t len = text.size();
  179. if (len == 0) return 0;
  180. // Check the last few bytes to see if a multi-byte character is cut off
  181. for (size_t i = 1; i <= 4 && i <= len; ++i) {
  182. unsigned char c = text[len - i];
  183. // Check for start of a multi-byte sequence from the end
  184. if ((c & 0xE0) == 0xC0) {
  185. // 2-byte character start: 110xxxxx
  186. // Needs at least 2 bytes
  187. if (i < 2) return len - i;
  188. } else if ((c & 0xF0) == 0xE0) {
  189. // 3-byte character start: 1110xxxx
  190. // Needs at least 3 bytes
  191. if (i < 3) return len - i;
  192. } else if ((c & 0xF8) == 0xF0) {
  193. // 4-byte character start: 11110xxx
  194. // Needs at least 4 bytes
  195. if (i < 4) return len - i;
  196. }
  197. }
  198. // If no cut-off multi-byte character is found, return full length
  199. return len;
  200. }
  201. //
  202. // template utils
  203. //
  204. // format rerank task: [BOS]query[EOS][SEP]doc[EOS]
  205. static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
  206. llama_tokens result;
  207. result.reserve(doc.size() + query.size() + 4);
  208. result.push_back(llama_vocab_bos(vocab));
  209. result.insert(result.end(), query.begin(), query.end());
  210. result.push_back(llama_vocab_eos(vocab));
  211. result.push_back(llama_vocab_sep(vocab));
  212. result.insert(result.end(), doc.begin(), doc.end());
  213. result.push_back(llama_vocab_eos(vocab));
  214. return result;
  215. }
  216. // format infill task
  217. static llama_tokens format_infill(
  218. const llama_vocab * vocab,
  219. const json & input_prefix,
  220. const json & input_suffix,
  221. const json & input_extra,
  222. const int n_batch,
  223. const int n_predict,
  224. const int n_ctx,
  225. const bool spm_infill,
  226. const llama_tokens & tokens_prompt
  227. ) {
  228. // TODO: optimize this block by reducing memory allocations and movement
  229. // use FIM repo-level pattern:
  230. // ref: https://arxiv.org/pdf/2409.12186
  231. //
  232. // [FIM_REP]myproject
  233. // [FIM_SEP]filename0
  234. // extra chunk 0
  235. // [FIM_SEP]filename1
  236. // extra chunk 1
  237. // ...
  238. // [FIM_SEP]filename
  239. // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
  240. //
  241. llama_tokens extra_tokens;
  242. extra_tokens.reserve(n_ctx);
  243. auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
  244. auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
  245. if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
  246. // TODO: make project name an input
  247. static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
  248. extra_tokens.push_back(llama_vocab_fim_rep(vocab));
  249. extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
  250. }
  251. for (const auto & chunk : input_extra) {
  252. // { "text": string, "filename": string }
  253. const std::string text = json_value(chunk, "text", std::string());
  254. const std::string filename = json_value(chunk, "filename", std::string("tmp"));
  255. if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
  256. const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
  257. extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
  258. extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  259. } else {
  260. // chunk separator in binary form to avoid confusing the AI
  261. static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
  262. static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
  263. extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
  264. }
  265. const auto chunk_tokens = common_tokenize(vocab, text, false, false);
  266. extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
  267. }
  268. if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
  269. // TODO: current filename
  270. static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
  271. extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
  272. extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  273. }
  274. // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
  275. const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
  276. const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
  277. SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
  278. // fill the rest of the context with extra chunks
  279. const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
  280. tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
  281. tokens_suffix.resize(n_suffix_take);
  282. tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
  283. tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
  284. tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
  285. auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
  286. auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
  287. if (llama_vocab_get_add_bos(vocab)) {
  288. embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
  289. }
  290. SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
  291. // put the extra context before the FIM prefix
  292. embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
  293. embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
  294. embd_inp.push_back(llama_vocab_fim_mid(vocab));
  295. return embd_inp;
  296. }
  297. //
  298. // base64 utils (TODO: move to common in the future)
  299. //
  300. static const std::string base64_chars =
  301. "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  302. "abcdefghijklmnopqrstuvwxyz"
  303. "0123456789+/";
  304. static inline bool is_base64(uint8_t c) {
  305. return (isalnum(c) || (c == '+') || (c == '/'));
  306. }
  307. static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
  308. int i = 0;
  309. int j = 0;
  310. int in_ = 0;
  311. int in_len = encoded_string.size();
  312. uint8_t char_array_4[4];
  313. uint8_t char_array_3[3];
  314. std::vector<uint8_t> ret;
  315. while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
  316. char_array_4[i++] = encoded_string[in_]; in_++;
  317. if (i == 4) {
  318. for (i = 0; i < 4; i++) {
  319. char_array_4[i] = base64_chars.find(char_array_4[i]);
  320. }
  321. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  322. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  323. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  324. for (i = 0; (i < 3); i++) {
  325. ret.push_back(char_array_3[i]);
  326. }
  327. i = 0;
  328. }
  329. }
  330. if (i) {
  331. for (j = i; j < 4; j++) {
  332. char_array_4[j] = 0;
  333. }
  334. for (j = 0; j < 4; j++) {
  335. char_array_4[j] = base64_chars.find(char_array_4[j]);
  336. }
  337. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  338. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  339. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  340. for (j = 0; j < i - 1; j++) {
  341. ret.push_back(char_array_3[j]);
  342. }
  343. }
  344. return ret;
  345. }
  346. //
  347. // random string / id
  348. //
  349. static std::string random_string() {
  350. static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
  351. std::random_device rd;
  352. std::mt19937 generator(rd());
  353. std::string result(32, ' ');
  354. for (int i = 0; i < 32; ++i) {
  355. result[i] = str[generator() % str.size()];
  356. }
  357. return result;
  358. }
  359. static std::string gen_chatcmplid() {
  360. return "chatcmpl-" + random_string();
  361. }
  362. static std::string gen_tool_call_id() {
  363. return random_string();
  364. }
  365. //
  366. // other common utils
  367. //
  368. static bool ends_with(const std::string & str, const std::string & suffix) {
  369. return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  370. }
  371. static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
  372. if (!text.empty() && !stop.empty()) {
  373. const char text_last_char = text.back();
  374. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
  375. if (stop[char_index] == text_last_char) {
  376. const std::string current_partial = stop.substr(0, char_index + 1);
  377. if (ends_with(text, current_partial)) {
  378. return text.size() - char_index - 1;
  379. }
  380. }
  381. }
  382. }
  383. return std::string::npos;
  384. }
  385. // TODO: reuse llama_detokenize
  386. template <class Iter>
  387. static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
  388. std::string ret;
  389. for (; begin != end; ++begin) {
  390. ret += common_token_to_piece(ctx, *begin);
  391. }
  392. return ret;
  393. }
  394. // format incomplete utf-8 multibyte character for output
  395. static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
  396. std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
  397. // if the size is 1 and first bit is 1, meaning it's a partial character
  398. // (size > 1 meaning it's already a known token)
  399. if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
  400. std::stringstream ss;
  401. ss << std::hex << (out[0] & 0xff);
  402. std::string res(ss.str());
  403. out = "byte: \\x" + res;
  404. }
  405. return out;
  406. }
  407. static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
  408. const std::string str =
  409. std::string(event) + ": " +
  410. data.dump(-1, ' ', false, json::error_handler_t::replace) +
  411. "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
  412. LOG_DBG("data stream, to_send: %s", str.c_str());
  413. return sink.write(str.c_str(), str.size());
  414. }
  415. //
  416. // OAI utils
  417. //
  418. static json oaicompat_completion_params_parse(const json & body) {
  419. json llama_params;
  420. if (!body.contains("prompt")) {
  421. throw std::runtime_error("\"prompt\" is required");
  422. }
  423. // Handle "stop" field
  424. if (body.contains("stop") && body.at("stop").is_string()) {
  425. llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
  426. } else {
  427. llama_params["stop"] = json_value(body, "stop", json::array());
  428. }
  429. // Handle "n" field
  430. int n_choices = json_value(body, "n", 1);
  431. if (n_choices != 1) {
  432. throw std::runtime_error("Only one completion choice is allowed");
  433. }
  434. // Handle "echo" field
  435. if (json_value(body, "echo", false)) {
  436. throw std::runtime_error("Only no echo is supported");
  437. }
  438. // Params supported by OAI but unsupported by llama.cpp
  439. static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
  440. for (const auto & param : unsupported_params) {
  441. if (body.contains(param)) {
  442. throw std::runtime_error("Unsupported param: " + param);
  443. }
  444. }
  445. // Copy remaining properties to llama_params
  446. for (const auto & item : body.items()) {
  447. // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
  448. if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
  449. llama_params[item.key()] = item.value();
  450. }
  451. }
  452. return llama_params;
  453. }
  454. static json oaicompat_completion_params_parse(
  455. const json & body, /* openai api json semantics */
  456. bool use_jinja,
  457. common_reasoning_format reasoning_format,
  458. const struct common_chat_templates * tmpls)
  459. {
  460. json llama_params;
  461. auto tools = json_value(body, "tools", json());
  462. auto stream = json_value(body, "stream", false);
  463. if (tools.is_array() && !tools.empty()) {
  464. if (stream) {
  465. throw std::runtime_error("Cannot use tools with stream");
  466. }
  467. if (!use_jinja) {
  468. throw std::runtime_error("tools param requires --jinja flag");
  469. }
  470. }
  471. if (!use_jinja) {
  472. if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) {
  473. throw std::runtime_error("Unsupported param: tool_choice");
  474. }
  475. }
  476. // Handle "stop" field
  477. if (body.contains("stop") && body.at("stop").is_string()) {
  478. llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
  479. } else {
  480. llama_params["stop"] = json_value(body, "stop", json::array());
  481. }
  482. auto json_schema = json_value(body, "json_schema", json());
  483. auto grammar = json_value(body, "grammar", std::string());
  484. if (!json_schema.is_null() && !grammar.empty()) {
  485. throw std::runtime_error("Cannot use both json_schema and grammar");
  486. }
  487. // Handle "response_format" field
  488. if (body.contains("response_format")) {
  489. json response_format = json_value(body, "response_format", json::object());
  490. std::string response_type = json_value(response_format, "type", std::string());
  491. if (response_type == "json_object") {
  492. json_schema = json_value(response_format, "schema", json::object());
  493. } else if (response_type == "json_schema") {
  494. auto schema_wrapper = json_value(response_format, "json_schema", json::object());
  495. json_schema = json_value(schema_wrapper, "schema", json::object());
  496. } else if (!response_type.empty() && response_type != "text") {
  497. throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
  498. }
  499. }
  500. common_chat_templates_inputs inputs;
  501. inputs.messages = common_chat_msgs_parse_oaicompat(body.at("messages"));
  502. inputs.tools = common_chat_tools_parse_oaicompat(tools);
  503. inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(json_value(body, "tool_choice", std::string("auto")));
  504. inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
  505. inputs.grammar = grammar;
  506. inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
  507. inputs.use_jinja = use_jinja;
  508. inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
  509. inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
  510. inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
  511. if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) {
  512. throw std::runtime_error("Cannot use custom grammar constraints with tools.");
  513. }
  514. // Apply chat template to the list of messages
  515. auto chat_params = common_chat_templates_apply(tmpls, inputs);
  516. llama_params["chat_format"] = static_cast<int>(chat_params.format);
  517. llama_params["prompt"] = chat_params.prompt;
  518. if (!chat_params.grammar.empty()) {
  519. llama_params["grammar"] = chat_params.grammar;
  520. }
  521. llama_params["grammar_lazy"] = chat_params.grammar_lazy;
  522. auto grammar_triggers = json::array();
  523. for (const auto & trigger : chat_params.grammar_triggers) {
  524. grammar_triggers.push_back(trigger.to_json<json>());
  525. }
  526. llama_params["grammar_triggers"] = grammar_triggers;
  527. llama_params["preserved_tokens"] = chat_params.preserved_tokens;
  528. for (const auto & stop : chat_params.additional_stops) {
  529. llama_params["stop"].push_back(stop);
  530. }
  531. // Handle "n" field
  532. int n_choices = json_value(body, "n", 1);
  533. if (n_choices != 1) {
  534. throw std::runtime_error("Only one completion choice is allowed");
  535. }
  536. // Handle "logprobs" field
  537. // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
  538. if (json_value(body, "logprobs", false)) {
  539. llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
  540. } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
  541. throw std::runtime_error("top_logprobs requires logprobs to be set to true");
  542. }
  543. // Copy remaining properties to llama_params
  544. // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
  545. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
  546. for (const auto & item : body.items()) {
  547. // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
  548. if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
  549. llama_params[item.key()] = item.value();
  550. }
  551. }
  552. return llama_params;
  553. }
  554. static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
  555. json data = json::array();
  556. int32_t n_tokens = 0;
  557. int i = 0;
  558. for (const auto & elem : embeddings) {
  559. json embedding_obj;
  560. if (use_base64) {
  561. const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
  562. const char* data_ptr = reinterpret_cast<const char*>(vec.data());
  563. size_t data_size = vec.size() * sizeof(float);
  564. embedding_obj = {
  565. {"embedding", base64::encode(data_ptr, data_size)},
  566. {"index", i++},
  567. {"object", "embedding"},
  568. {"encoding_format", "base64"}
  569. };
  570. } else {
  571. embedding_obj = {
  572. {"embedding", json_value(elem, "embedding", json::array())},
  573. {"index", i++},
  574. {"object", "embedding"}
  575. };
  576. }
  577. data.push_back(embedding_obj);
  578. n_tokens += json_value(elem, "tokens_evaluated", 0);
  579. }
  580. json res = json {
  581. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  582. {"object", "list"},
  583. {"usage", json {
  584. {"prompt_tokens", n_tokens},
  585. {"total_tokens", n_tokens}
  586. }},
  587. {"data", data}
  588. };
  589. return res;
  590. }
  591. static json format_response_rerank(
  592. const json & request,
  593. const json & ranks,
  594. bool is_tei_format,
  595. std::vector<std::string> & texts) {
  596. json res;
  597. if (is_tei_format) {
  598. // TEI response format
  599. res = json::array();
  600. bool return_text = json_value(request, "return_text", false);
  601. for (const auto & rank : ranks) {
  602. int index = json_value(rank, "index", 0);
  603. json elem = json{
  604. {"index", index},
  605. {"score", json_value(rank, "score", 0.0)},
  606. };
  607. if (return_text) {
  608. elem["text"] = std::move(texts[index]);
  609. }
  610. res.push_back(elem);
  611. }
  612. } else {
  613. // Jina response format
  614. json results = json::array();
  615. int32_t n_tokens = 0;
  616. for (const auto & rank : ranks) {
  617. results.push_back(json{
  618. {"index", json_value(rank, "index", 0)},
  619. {"relevance_score", json_value(rank, "score", 0.0)},
  620. });
  621. n_tokens += json_value(rank, "tokens_evaluated", 0);
  622. }
  623. res = json{
  624. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  625. {"object", "list"},
  626. {"usage", json{
  627. {"prompt_tokens", n_tokens},
  628. {"total_tokens", n_tokens}
  629. }},
  630. {"results", results}
  631. };
  632. }
  633. return res;
  634. }
  635. static bool is_valid_utf8(const std::string & str) {
  636. const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
  637. const unsigned char* end = bytes + str.length();
  638. while (bytes < end) {
  639. if (*bytes <= 0x7F) {
  640. // 1-byte sequence (0xxxxxxx)
  641. bytes++;
  642. } else if ((*bytes & 0xE0) == 0xC0) {
  643. // 2-byte sequence (110xxxxx 10xxxxxx)
  644. if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
  645. return false;
  646. bytes += 2;
  647. } else if ((*bytes & 0xF0) == 0xE0) {
  648. // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
  649. if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
  650. return false;
  651. bytes += 3;
  652. } else if ((*bytes & 0xF8) == 0xF0) {
  653. // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
  654. if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
  655. (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
  656. return false;
  657. bytes += 4;
  658. } else {
  659. // Invalid UTF-8 lead byte
  660. return false;
  661. }
  662. }
  663. return true;
  664. }
  665. static json format_tokenizer_response(const json & tokens) {
  666. return json {
  667. {"tokens", tokens}
  668. };
  669. }
  670. static json format_detokenized_response(const std::string & content) {
  671. return json {
  672. {"content", content}
  673. };
  674. }
  675. static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
  676. json data = json::array();
  677. for (const auto & lb : logit_bias) {
  678. data.push_back(json{
  679. {"bias", lb.bias},
  680. {"token", lb.token},
  681. });
  682. }
  683. return data;
  684. }
  685. static std::string safe_json_to_str(const json & data) {
  686. return data.dump(-1, ' ', false, json::error_handler_t::replace);
  687. }
  688. static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
  689. std::vector<llama_token_data> cur;
  690. const auto * logits = llama_get_logits_ith(ctx, idx);
  691. const llama_model * model = llama_get_model(ctx);
  692. const llama_vocab * vocab = llama_model_get_vocab(model);
  693. const int n_vocab = llama_vocab_n_tokens(vocab);
  694. cur.resize(n_vocab);
  695. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  696. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  697. }
  698. // sort tokens by logits
  699. std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
  700. return a.logit > b.logit;
  701. });
  702. // apply softmax
  703. float max_l = cur[0].logit;
  704. float cum_sum = 0.0f;
  705. for (size_t i = 0; i < cur.size(); ++i) {
  706. float p = expf(cur[i].logit - max_l);
  707. cur[i].p = p;
  708. cum_sum += p;
  709. }
  710. for (size_t i = 0; i < cur.size(); ++i) {
  711. cur[i].p /= cum_sum;
  712. }
  713. return cur;
  714. }
  715. static bool are_lora_equal(
  716. const std::vector<common_adapter_lora_info> & l1,
  717. const std::vector<common_adapter_lora_info> & l2) {
  718. if (l1.size() != l2.size()) {
  719. return false;
  720. }
  721. for (size_t i = 0; i < l1.size(); ++i) {
  722. // we don't check lora.path to reduce the time complexity
  723. if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
  724. return false;
  725. }
  726. }
  727. return true;
  728. }
  729. // parse lora config from JSON request, returned a copy of lora_base with updated scale
  730. static std::vector<common_adapter_lora_info> parse_lora_request(
  731. const std::vector<common_adapter_lora_info> & lora_base,
  732. const json & data) {
  733. std::vector<common_adapter_lora_info> lora(lora_base);
  734. int max_idx = lora.size();
  735. // clear existing value
  736. for (auto & entry : lora) {
  737. entry.scale = 0.0f;
  738. }
  739. // set value
  740. for (const auto & entry : data) {
  741. int id = json_value(entry, "id", -1);
  742. float scale = json_value(entry, "scale", 0.0f);
  743. if (0 <= id && id < max_idx) {
  744. lora[id].scale = scale;
  745. } else {
  746. throw std::runtime_error("invalid adapter id");
  747. }
  748. }
  749. return lora;
  750. }