llama-memory-hybrid.cpp 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. #include "llama-memory-hybrid.h"
  2. #include "llama-impl.h"
  3. #include "llama-model.h"
  4. #include "llama-context.h"
  5. //
  6. // llama_memory_hybrid
  7. //
  8. llama_memory_hybrid::llama_memory_hybrid(
  9. const llama_model & model,
  10. /* attn */
  11. ggml_type type_k,
  12. ggml_type type_v,
  13. bool v_trans,
  14. uint32_t kv_size,
  15. uint32_t n_pad,
  16. uint32_t n_swa,
  17. llama_swa_type swa_type,
  18. /* recurrent */
  19. ggml_type type_r,
  20. ggml_type type_s,
  21. uint32_t rs_size,
  22. /* common */
  23. uint32_t n_seq_max,
  24. bool offload,
  25. bool unified,
  26. /* layer filters */
  27. layer_filter_cb && filter_attn,
  28. layer_filter_cb && filter_recr) :
  29. hparams(model.hparams),
  30. mem_attn(new llama_kv_cache_unified(
  31. model,
  32. filter_attn == nullptr ?
  33. [&](int32_t il) { return !hparams.is_recurrent(il); }
  34. : filter_attn,
  35. type_k,
  36. type_v,
  37. v_trans,
  38. offload,
  39. unified,
  40. kv_size,
  41. n_seq_max,
  42. n_pad,
  43. n_swa,
  44. swa_type
  45. )),
  46. mem_recr(new llama_memory_recurrent(
  47. model,
  48. filter_recr == nullptr ?
  49. [&](int32_t il) { return hparams.is_recurrent(il); }
  50. : filter_recr,
  51. type_r,
  52. type_s,
  53. offload,
  54. rs_size,
  55. n_seq_max
  56. )) {}
  57. llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
  58. do {
  59. balloc.split_reset();
  60. // follow the recurrent pattern for creating the ubatch splits
  61. std::vector<llama_ubatch> ubatches;
  62. while (true) {
  63. llama_ubatch ubatch;
  64. if (embd_all) {
  65. // if all tokens are output, split by sequence
  66. ubatch = balloc.split_seq(n_ubatch);
  67. } else {
  68. ubatch = balloc.split_equal(n_ubatch, false);
  69. }
  70. if (ubatch.n_tokens == 0) {
  71. break;
  72. }
  73. ubatches.push_back(std::move(ubatch)); // NOLINT
  74. }
  75. if (balloc.get_n_used() < balloc.get_n_tokens()) {
  76. // failed to find a suitable split
  77. break;
  78. }
  79. // prepare the recurrent batches first
  80. if (!mem_recr->prepare(ubatches)) {
  81. // TODO: will the recurrent cache be in an undefined context at this point?
  82. LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
  83. return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
  84. }
  85. // prepare the attention cache
  86. auto heads_attn = mem_attn->prepare(ubatches);
  87. if (heads_attn.empty()) {
  88. LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
  89. return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
  90. }
  91. return std::make_unique<llama_memory_hybrid_context>(
  92. this, std::move(heads_attn), std::move(ubatches));
  93. } while(false);
  94. return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
  95. }
  96. llama_memory_context_ptr llama_memory_hybrid::init_full() {
  97. return std::make_unique<llama_memory_hybrid_context>(this);
  98. }
  99. llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
  100. return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
  101. }
  102. bool llama_memory_hybrid::get_can_shift() const {
  103. // Shifting is trivially supported for recurrent
  104. return mem_attn->get_can_shift();
  105. }
  106. void llama_memory_hybrid::clear(bool data) {
  107. mem_attn->clear(data);
  108. mem_recr->clear(data);
  109. }
  110. bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  111. // Try removing from the recurrent cache first since it may fail. If it does
  112. // fail, the cache will not have been mutated.
  113. if (!mem_recr->seq_rm(seq_id, p0, p1)) {
  114. return false;
  115. }
  116. return mem_attn->seq_rm(seq_id, p0, p1);
  117. }
  118. void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  119. mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
  120. mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
  121. }
  122. void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
  123. mem_attn->seq_keep(seq_id);
  124. mem_recr->seq_keep(seq_id);
  125. }
  126. void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
  127. mem_attn->seq_add(seq_id, p0, p1, shift);
  128. mem_recr->seq_add(seq_id, p0, p1, shift);
  129. }
  130. void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  131. mem_attn->seq_div(seq_id, p0, p1, d);
  132. mem_recr->seq_div(seq_id, p0, p1, d);
  133. }
  134. llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
  135. // the min of the total cache is the max of the two caches' min values
  136. return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
  137. }
  138. llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
  139. // the max of the total cache is the min of the two caches' max values
  140. return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
  141. }
  142. void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
  143. GGML_UNUSED(flags);
  144. mem_attn->state_write(io, seq_id);
  145. mem_recr->state_write(io, seq_id);
  146. }
  147. void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
  148. GGML_UNUSED(flags);
  149. mem_attn->state_read(io, seq_id);
  150. mem_recr->state_read(io, seq_id);
  151. }
  152. llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const {
  153. return mem_attn.get();
  154. }
  155. llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
  156. return mem_recr.get();
  157. }
  158. llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
  159. llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
  160. ctx_attn(mem->get_mem_attn()->init_full()),
  161. ctx_recr(mem->get_mem_recr()->init_full()),
  162. status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
  163. }
  164. llama_memory_hybrid_context::llama_memory_hybrid_context(
  165. llama_memory_hybrid * mem,
  166. llama_context * lctx,
  167. bool optimize) :
  168. ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
  169. ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
  170. status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
  171. }
  172. llama_memory_hybrid_context::llama_memory_hybrid_context(
  173. llama_memory_hybrid * mem,
  174. slot_info_vec_t sinfos_attn,
  175. std::vector<llama_ubatch> ubatches) :
  176. ubatches(std::move(ubatches)),
  177. // note: here we copy the ubatches. not sure if this is ideal
  178. ctx_attn(new llama_kv_cache_unified_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
  179. ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
  180. status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
  181. }
  182. bool llama_memory_hybrid_context::next() {
  183. assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
  184. ctx_attn->next();
  185. ctx_recr->next();
  186. if (++i_next >= ubatches.size()) {
  187. return false;
  188. }
  189. return true;
  190. }
  191. bool llama_memory_hybrid_context::apply() {
  192. assert(!llama_memory_status_is_fail(status));
  193. bool res = true;
  194. res = res & ctx_attn->apply();
  195. res = res & ctx_recr->apply();
  196. return res;
  197. }
  198. llama_memory_status llama_memory_hybrid_context::get_status() const {
  199. return status;
  200. }
  201. const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
  202. assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
  203. return ubatches[i_next];
  204. }
  205. const llama_kv_cache_unified_context * llama_memory_hybrid_context::get_attn() const {
  206. return static_cast<const llama_kv_cache_unified_context *>(ctx_attn.get());
  207. }
  208. const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
  209. return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
  210. }