| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733 |
- // Defines CLOCK_MONOTONIC on Linux
- #define _GNU_SOURCE
- #include "ggml.h"
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <malloc.h> // using malloc.h with MSC/MINGW
- #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
- #include <alloca.h>
- #endif
- #include <assert.h>
- #include <errno.h>
- #include <time.h>
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <inttypes.h>
- #include <stdio.h>
- #include <float.h>
- #include <limits.h>
- // if C99 - static_assert is noop
- // ref: https://stackoverflow.com/a/53923785/4039976
- #ifndef static_assert
- #define static_assert(cond, msg) struct global_scope_noop_trick
- #endif
- #if defined(_WIN32)
- #include <windows.h>
- typedef volatile LONG atomic_int;
- typedef atomic_int atomic_bool;
- static void atomic_store(atomic_int* ptr, LONG val) {
- InterlockedExchange(ptr, val);
- }
- static LONG atomic_load(atomic_int* ptr) {
- return InterlockedCompareExchange(ptr, 0, 0);
- }
- static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
- }
- static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
- return atomic_fetch_add(ptr, -(dec));
- }
- typedef HANDLE pthread_t;
- typedef DWORD thread_ret_t;
- static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
- (void) unused;
- HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
- if (handle == NULL)
- {
- return EAGAIN;
- }
- *out = handle;
- return 0;
- }
- static int pthread_join(pthread_t thread, void* unused) {
- (void) unused;
- return (int) WaitForSingleObject(thread, INFINITE);
- }
- static int sched_yield (void) {
- Sleep (0);
- return 0;
- }
- #else
- #include <pthread.h>
- #include <stdatomic.h>
- typedef void* thread_ret_t;
- #endif
- // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
- #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
- #ifndef __FMA__
- #define __FMA__
- #endif
- #ifndef __F16C__
- #define __F16C__
- #endif
- #ifndef __SSE3__
- #define __SSE3__
- #endif
- #endif
- #ifdef __HAIKU__
- #define static_assert(cond, msg) _Static_assert(cond, msg)
- #endif
- /*#define GGML_PERF*/
- #define GGML_DEBUG 0
- #define GGML_GELU_FP16
- #define GGML_SILU_FP16
- #define GGML_SOFT_MAX_UNROLL 4
- #define GGML_VEC_DOT_UNROLL 2
- #ifdef GGML_USE_ACCELERATE
- // uncomment to use vDSP for soft max computation
- // note: not sure if it is actually faster
- //#define GGML_SOFT_MAX_ACCELERATE
- #endif
- #if UINTPTR_MAX == 0xFFFFFFFF
- #define GGML_MEM_ALIGN 4
- #else
- #define GGML_MEM_ALIGN 16
- #endif
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
- #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
- #else
- inline static void* ggml_aligned_malloc(size_t size) {
- void* aligned_memory = NULL;
- int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
- if (result != 0) {
- // Handle allocation failure
- return NULL;
- }
- return aligned_memory;
- }
- #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
- #define GGML_ALIGNED_FREE(ptr) free(ptr)
- #endif
- #define UNUSED(x) (void)(x)
- #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
- #if defined(GGML_USE_ACCELERATE)
- #include <Accelerate/Accelerate.h>
- #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
- #include "ggml-opencl.h"
- #endif
- #elif defined(GGML_USE_OPENBLAS)
- #include <cblas.h>
- #elif defined(GGML_USE_CUBLAS)
- #include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- #include "ggml-opencl.h"
- #endif
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- // floating point type used to accumulate sums
- typedef double ggml_float;
- // 16-bit float
- // on Arm, we use __fp16
- // on x86, we use uint16_t
- #ifdef __ARM_NEON
- // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
- //
- // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
- //
- #include <arm_neon.h>
- #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
- #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
- #define GGML_FP16_TO_FP32(x) ((float) (x))
- #define GGML_FP32_TO_FP16(x) (x)
- #else
- #ifdef __wasm_simd128__
- #include <wasm_simd128.h>
- #else
- #ifdef __POWER9_VECTOR__
- #include <altivec.h>
- #undef bool
- #define bool _Bool
- #else
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <intrin.h>
- #else
- #if !defined(__riscv)
- #include <immintrin.h>
- #endif
- #endif
- #endif
- #endif
- #ifdef __F16C__
- #ifdef _MSC_VER
- #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
- #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
- #else
- #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
- #endif
- #elif defined(__POWER9_VECTOR__)
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- /* the inline asm below is about 12% faster than the lookup method */
- #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- register float f;
- register double d;
- __asm__(
- "mtfprd %0,%2\n"
- "xscvhpdp %0,%0\n"
- "frsp %1,%0\n" :
- /* temp */ "=d"(d),
- /* out */ "=f"(f):
- /* in */ "r"(h));
- return f;
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- register double d;
- register ggml_fp16_t r;
- __asm__( /* xscvdphp can work on double or single precision */
- "xscvdphp %0,%2\n"
- "mffprd %1,%0\n" :
- /* temp */ "=d"(d),
- /* out */ "=r"(r):
- /* in */ "f"(f));
- return r;
- }
- #else
- // FP16 <-> FP32
- // ref: https://github.com/Maratyszcza/FP16
- static inline float fp32_from_bits(uint32_t w) {
- union {
- uint32_t as_bits;
- float as_value;
- } fp32;
- fp32.as_bits = w;
- return fp32.as_value;
- }
- static inline uint32_t fp32_to_bits(float f) {
- union {
- float as_value;
- uint32_t as_bits;
- } fp32;
- fp32.as_value = f;
- return fp32.as_bits;
- }
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- const uint32_t w = (uint32_t) h << 16;
- const uint32_t sign = w & UINT32_C(0x80000000);
- const uint32_t two_w = w + w;
- const uint32_t exp_offset = UINT32_C(0xE0) << 23;
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float exp_scale = 0x1.0p-112f;
- #else
- const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
- #endif
- const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
- const uint32_t magic_mask = UINT32_C(126) << 23;
- const float magic_bias = 0.5f;
- const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
- const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
- const uint32_t result = sign |
- (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
- return fp32_from_bits(result);
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float scale_to_inf = 0x1.0p+112f;
- const float scale_to_zero = 0x1.0p-110f;
- #else
- const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
- const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
- #endif
- float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
- const uint32_t w = fp32_to_bits(f);
- const uint32_t shl1_w = w + w;
- const uint32_t sign = w & UINT32_C(0x80000000);
- uint32_t bias = shl1_w & UINT32_C(0xFF000000);
- if (bias < UINT32_C(0x71000000)) {
- bias = UINT32_C(0x71000000);
- }
- base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
- const uint32_t bits = fp32_to_bits(base);
- const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
- const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
- const uint32_t nonsign = exp_bits + mantissa_bits;
- return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
- }
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- #endif // __F16C__
- #endif // __ARM_NEON
- //
- // global data
- //
- // precomputed gelu table for f16 (128 KB)
- static ggml_fp16_t table_gelu_f16[1 << 16];
- // precomputed silu table for f16 (128 KB)
- static ggml_fp16_t table_silu_f16[1 << 16];
- // precomputed exp table for f16 (128 KB)
- static ggml_fp16_t table_exp_f16[1 << 16];
- // precomputed f32 table for f16 (256 KB)
- static float table_f32_f16[1 << 16];
- #if defined(__ARM_NEON) || defined(__wasm_simd128__)
- #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
- #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
- #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
- #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
- #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
- #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
- #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
- #define B8(c,s ) B7(c,s, c), B7(c,s, s)
- // precomputed tables for expanding 8bits to 8 bytes:
- static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
- static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
- #endif
- // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
- // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
- // This is also true for POWER9.
- #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
- inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
- uint16_t s;
- memcpy(&s, &f, sizeof(uint16_t));
- return table_f32_f16[s];
- }
- #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- #endif
- // note: do not use these inside ggml.c
- // these are meant to be used via the ggml.h API
- float ggml_fp16_to_fp32(ggml_fp16_t x) {
- return (float) GGML_FP16_TO_FP32(x);
- }
- ggml_fp16_t ggml_fp32_to_fp16(float x) {
- return GGML_FP32_TO_FP16(x);
- }
- void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
- for (size_t i = 0; i < n; i++) {
- y[i] = GGML_FP16_TO_FP32(x[i]);
- }
- }
- void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
- size_t i = 0;
- #if defined(__F16C__)
- for (; i + 7 < n; i += 8) {
- __m256 x_vec = _mm256_loadu_ps(x + i);
- __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storeu_si128((__m128i *)(y + i), y_vec);
- }
- for(; i + 3 < n; i += 4) {
- __m128 x_vec = _mm_loadu_ps(x + i);
- __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storel_epi64((__m128i *)(y + i), y_vec);
- }
- #endif
- for (; i < n; i++) {
- y[i] = GGML_FP32_TO_FP16(x[i]);
- }
- }
- //
- // timing
- //
- #if defined(_MSC_VER) || defined(__MINGW32__)
- static int64_t timer_freq;
- void ggml_time_init(void) {
- LARGE_INTEGER frequency;
- QueryPerformanceFrequency(&frequency);
- timer_freq = frequency.QuadPart;
- }
- int64_t ggml_time_ms(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return (t.QuadPart * 1000) / timer_freq;
- }
- int64_t ggml_time_us(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return (t.QuadPart * 1000000) / timer_freq;
- }
- #else
- void ggml_time_init(void) {}
- int64_t ggml_time_ms(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
- }
- int64_t ggml_time_us(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
- }
- #endif
- int64_t ggml_cycles(void) {
- return clock();
- }
- int64_t ggml_cycles_per_ms(void) {
- return CLOCKS_PER_SEC/1000;
- }
- #ifdef GGML_PERF
- #define ggml_perf_time_ms() ggml_time_ms()
- #define ggml_perf_time_us() ggml_time_us()
- #define ggml_perf_cycles() ggml_cycles()
- #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
- #else
- #define ggml_perf_time_ms() 0
- #define ggml_perf_time_us() 0
- #define ggml_perf_cycles() 0
- #define ggml_perf_cycles_per_ms() 0
- #endif
- //
- // cache line
- //
- #if defined(__cpp_lib_hardware_interference_size)
- #define CACHE_LINE_SIZE hardware_destructive_interference_size
- #else
- #if defined(__POWER9_VECTOR__)
- #define CACHE_LINE_SIZE 128
- #else
- #define CACHE_LINE_SIZE 64
- #endif
- #endif
- static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
- //
- // quantization
- //
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
- // multiply int8_t, add results pairwise twice
- static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
- // Get absolute values of x vectors
- const __m128i ax = _mm_sign_epi8(x, x);
- // Sign the values of the y vectors
- const __m128i sy = _mm_sign_epi8(y, x);
- // Perform multiplication and create 16-bit values
- const __m128i dot = _mm_maddubs_epi16(ax, sy);
- const __m128i ones = _mm_set1_epi16(1);
- return _mm_madd_epi16(ones, dot);
- }
- #if __AVX__ || __AVX2__ || __AVX512F__
- // horizontally add 8 floats
- static inline float hsum_float_8(const __m256 x) {
- __m128 res = _mm256_extractf128_ps(x, 1);
- res = _mm_add_ps(res, _mm256_castps256_ps128(x));
- res = _mm_add_ps(res, _mm_movehl_ps(res, res));
- res = _mm_add_ss(res, _mm_movehdup_ps(res));
- return _mm_cvtss_f32(res);
- }
- // horizontally add 8 int32_t
- static inline int hsum_i32_8(const __m256i a) {
- const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
- const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
- const __m128i sum64 = _mm_add_epi32(hi64, sum128);
- const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
- return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
- }
- // horizontally add 4 int32_t
- static inline int hsum_i32_4(const __m128i a) {
- const __m128i hi64 = _mm_unpackhi_epi64(a, a);
- const __m128i sum64 = _mm_add_epi32(hi64, a);
- const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
- return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
- }
- #if defined(__AVX2__) || defined(__AVX512F__)
- // spread 32 bits to 32 bytes { 0x00, 0xFF }
- static inline __m256i bytes_from_bits_32(const uint8_t * x) {
- uint32_t x32;
- memcpy(&x32, x, sizeof(uint32_t));
- const __m256i shuf_mask = _mm256_set_epi64x(
- 0x0303030303030303, 0x0202020202020202,
- 0x0101010101010101, 0x0000000000000000);
- __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
- const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
- bytes = _mm256_or_si256(bytes, bit_mask);
- return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
- }
- // Unpack 32 4-bit fields into 32 bytes
- // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
- static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
- {
- const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
- const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
- const __m256i lowMask = _mm256_set1_epi8( 0xF );
- return _mm256_and_si256(lowMask, bytes);
- }
- // add int16_t pairwise and return as float vector
- static inline __m256 sum_i16_pairs_float(const __m256i x) {
- const __m256i ones = _mm256_set1_epi16(1);
- const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
- return _mm256_cvtepi32_ps(summed_pairs);
- }
- static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
- #if __AVXVNNI__
- const __m256i zero = _mm256_setzero_si256();
- const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
- return _mm256_cvtepi32_ps(summed_pairs);
- #else
- // Perform multiplication and create 16-bit values
- const __m256i dot = _mm256_maddubs_epi16(ax, sy);
- return sum_i16_pairs_float(dot);
- #endif
- }
- // multiply int8_t, add results pairwise twice and return as float vector
- static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
- #if __AVXVNNIINT8__
- const __m256i zero = _mm256_setzero_si256();
- const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
- return _mm256_cvtepi32_ps(summed_pairs);
- #else
- // Get absolute values of x vectors
- const __m256i ax = _mm256_sign_epi8(x, x);
- // Sign the values of the y vectors
- const __m256i sy = _mm256_sign_epi8(y, x);
- return mul_sum_us8_pairs_float(ax, sy);
- #endif
- }
- static inline __m128i packNibbles( __m256i bytes )
- {
- // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
- #if __AVX512F__
- const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
- bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
- return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
- #else
- const __m256i lowByte = _mm256_set1_epi16( 0xFF );
- __m256i high = _mm256_andnot_si256( lowByte, bytes );
- __m256i low = _mm256_and_si256( lowByte, bytes );
- high = _mm256_srli_epi16( high, 4 );
- bytes = _mm256_or_si256( low, high );
- // Compress uint16_t lanes into bytes
- __m128i r0 = _mm256_castsi256_si128( bytes );
- __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
- return _mm_packus_epi16( r0, r1 );
- #endif
- }
- #elif defined(__AVX__)
- // spread 32 bits to 32 bytes { 0x00, 0xFF }
- static inline __m256i bytes_from_bits_32(const uint8_t * x) {
- uint32_t x32;
- memcpy(&x32, x, sizeof(uint32_t));
- const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
- const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
- __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
- __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
- const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
- bytesl = _mm_or_si128(bytesl, bit_mask);
- bytesh = _mm_or_si128(bytesh, bit_mask);
- bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
- bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
- return _mm256_set_m128i(bytesh, bytesl);
- }
- // Unpack 32 4-bit fields into 32 bytes
- // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
- static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
- {
- // Load 16 bytes from memory
- __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
- __m128i tmph = _mm_srli_epi16(tmpl, 4);
- const __m128i lowMask = _mm_set1_epi8(0xF);
- tmpl = _mm_and_si128(lowMask, tmpl);
- tmph = _mm_and_si128(lowMask, tmph);
- return _mm256_set_m128i(tmph, tmpl);
- }
- // add int16_t pairwise and return as float vector
- static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
- const __m128i ones = _mm_set1_epi16(1);
- const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
- const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
- const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
- return _mm256_cvtepi32_ps(summed_pairs);
- }
- static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
- const __m128i axl = _mm256_castsi256_si128(ax);
- const __m128i axh = _mm256_extractf128_si256(ax, 1);
- const __m128i syl = _mm256_castsi256_si128(sy);
- const __m128i syh = _mm256_extractf128_si256(sy, 1);
- // Perform multiplication and create 16-bit values
- const __m128i dotl = _mm_maddubs_epi16(axl, syl);
- const __m128i doth = _mm_maddubs_epi16(axh, syh);
- return sum_i16_pairs_float(doth, dotl);
- }
- // multiply int8_t, add results pairwise twice and return as float vector
- static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
- const __m128i xl = _mm256_castsi256_si128(x);
- const __m128i xh = _mm256_extractf128_si256(x, 1);
- const __m128i yl = _mm256_castsi256_si128(y);
- const __m128i yh = _mm256_extractf128_si256(y, 1);
- // Get absolute values of x vectors
- const __m128i axl = _mm_sign_epi8(xl, xl);
- const __m128i axh = _mm_sign_epi8(xh, xh);
- // Sign the values of the y vectors
- const __m128i syl = _mm_sign_epi8(yl, xl);
- const __m128i syh = _mm_sign_epi8(yh, xh);
- // Perform multiplication and create 16-bit values
- const __m128i dotl = _mm_maddubs_epi16(axl, syl);
- const __m128i doth = _mm_maddubs_epi16(axh, syh);
- return sum_i16_pairs_float(doth, dotl);
- }
- static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
- {
- // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
- const __m128i lowByte = _mm_set1_epi16( 0xFF );
- __m128i high = _mm_andnot_si128( lowByte, bytes1 );
- __m128i low = _mm_and_si128( lowByte, bytes1 );
- high = _mm_srli_epi16( high, 4 );
- bytes1 = _mm_or_si128( low, high );
- high = _mm_andnot_si128( lowByte, bytes2 );
- low = _mm_and_si128( lowByte, bytes2 );
- high = _mm_srli_epi16( high, 4 );
- bytes2 = _mm_or_si128( low, high );
- return _mm_packus_epi16( bytes1, bytes2);
- }
- #endif
- #elif defined(__SSSE3__)
- // horizontally add 4x4 floats
- static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
- __m128 res_0 =_mm_hadd_ps(a, b);
- __m128 res_1 =_mm_hadd_ps(c, d);
- __m128 res =_mm_hadd_ps(res_0, res_1);
- res =_mm_hadd_ps(res, res);
- res =_mm_hadd_ps(res, res);
- return _mm_cvtss_f32(res);
- }
- #endif // __AVX__ || __AVX2__ || __AVX512F__
- #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
- #if defined(__ARM_NEON)
- #if !defined(__aarch64__)
- inline static uint16_t vaddvq_u8(uint8x16_t v) {
- return
- (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
- (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
- (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
- (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
- (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
- (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
- (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
- (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
- }
- inline static int16_t vaddvq_s8(int8x16_t v) {
- return
- (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
- (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
- (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
- (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
- (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
- (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
- (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
- (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
- }
- inline static int32_t vaddvq_s16(int16x8_t v) {
- return
- (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
- (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
- (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
- (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
- }
- inline static uint32_t vaddvq_u16(uint16x8_t v) {
- return
- (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
- (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
- (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
- (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
- }
- inline static int32_t vaddvq_s32(int32x4_t v) {
- return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
- }
- inline static float vaddvq_f32(float32x4_t v) {
- return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
- }
- inline static float vminvq_f32(float32x4_t v) {
- return
- MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
- MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
- }
- inline static float vmaxvq_f32(float32x4_t v) {
- return
- MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
- MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
- }
- inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
- int32x4_t res;
- res[0] = roundf(vgetq_lane_f32(v, 0));
- res[1] = roundf(vgetq_lane_f32(v, 1));
- res[2] = roundf(vgetq_lane_f32(v, 2));
- res[3] = roundf(vgetq_lane_f32(v, 3));
- return res;
- }
- #endif
- #endif
- #define QK4_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- typedef struct {
- ggml_fp16_t d; // delta
- ggml_fp16_t m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- typedef struct {
- ggml_fp16_t d; // delta
- ggml_fp16_t m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define QK8_1 32
- typedef struct {
- float d; // delta
- float s; // d * sum(qs[i])
- int8_t qs[QK8_1]; // quants
- } block_q8_1;
- static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
- // reference implementation for deterministic creation of model files
- static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
- static const int qk = QK4_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- float max = 0.0f;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- max = v;
- }
- }
- const float d = max / -8;
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = x[i*qk + 0 + j]*id;
- const float x1 = x[i*qk + qk/2 + j]*id;
- const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
- y[i].qs[j] = xi0;
- y[i].qs[j] |= xi1 << 4;
- }
- }
- }
- static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
- quantize_row_q4_0_reference(x, y, k);
- }
- static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
- const int qk = QK4_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float min = FLT_MAX;
- float max = -FLT_MAX;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (v < min) min = v;
- if (v > max) max = v;
- }
- const float d = (max - min) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- y[i].m = GGML_FP32_TO_FP16(min);
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = (x[i*qk + 0 + j] - min)*id;
- const float x1 = (x[i*qk + qk/2 + j] - min)*id;
- const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
- y[i].qs[j] = xi0;
- y[i].qs[j] |= xi1 << 4;
- }
- }
- }
- static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
- quantize_row_q4_1_reference(x, y, k);
- }
- static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
- static const int qk = QK5_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- float max = 0.0f;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- max = v;
- }
- }
- const float d = max / -16;
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- uint32_t qh = 0;
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = x[i*qk + 0 + j]*id;
- const float x1 = x[i*qk + qk/2 + j]*id;
- const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
- const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
- y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
- // get the 5-th bit and store it in qh at the right position
- qh |= ((xi0 & 0x10) >> 4) << (j + 0);
- qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
- }
- memcpy(&y[i].qh, &qh, sizeof(qh));
- }
- }
- static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
- quantize_row_q5_0_reference(x, y, k);
- }
- static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
- const int qk = QK5_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float min = FLT_MAX;
- float max = -FLT_MAX;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (v < min) min = v;
- if (v > max) max = v;
- }
- const float d = (max - min) / ((1 << 5) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- y[i].m = GGML_FP32_TO_FP16(min);
- uint32_t qh = 0;
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = (x[i*qk + 0 + j] - min)*id;
- const float x1 = (x[i*qk + qk/2 + j] - min)*id;
- const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
- const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
- y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
- // get the 5-th bit and store it in qh at the right position
- qh |= ((xi0 & 0x10) >> 4) << (j + 0);
- qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
- }
- memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
- }
- }
- static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
- quantize_row_q5_1_reference(x, y, k);
- }
- // reference implementation for deterministic creation of model files
- static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- const float v = x[i*QK8_0 + j];
- amax = MAX(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = x[i*QK8_0 + j]*id;
- y[i].qs[j] = roundf(x0);
- }
- }
- }
- static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
- assert(QK8_0 == 32);
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- for (int i = 0; i < nb; i++) {
- float32x4_t srcv [8];
- float32x4_t asrcv[8];
- float32x4_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
- const float amax = vmaxvq_f32(amaxv[0]);
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < 8; j++) {
- const float32x4_t v = vmulq_n_f32(srcv[j], id);
- const int32x4_t vi = vcvtnq_s32_f32(v);
- y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
- y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
- y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
- y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
- }
- }
- #elif defined(__wasm_simd128__)
- for (int i = 0; i < nb; i++) {
- v128_t srcv [8];
- v128_t asrcv[8];
- v128_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
- const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
- wasm_f32x4_extract_lane(amaxv[0], 1)),
- MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
- wasm_f32x4_extract_lane(amaxv[0], 3)));
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < 8; j++) {
- const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
- const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
- y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
- y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
- y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
- y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
- }
- }
- #elif defined(__AVX2__) || defined(__AVX__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max(abs(e)) for the block
- const __m256 signBit = _mm256_set1_ps( -0.0f );
- __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Quantize these floats
- const float d = maxScalar / 127.f;
- y[i].d = GGML_FP32_TO_FP16(d);
- const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
- const __m256 mul = _mm256_set1_ps( id );
- // Apply the multiplier
- v0 = _mm256_mul_ps( v0, mul );
- v1 = _mm256_mul_ps( v1, mul );
- v2 = _mm256_mul_ps( v2, mul );
- v3 = _mm256_mul_ps( v3, mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- #if defined(__AVX2__)
- // Convert int32 to int16
- i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
- i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
- // Convert int16 to int8
- i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
- // We got our precious signed bytes, but the order is now wrong
- // These AVX2 pack instructions process 16-byte pieces independently
- // The following instruction is fixing the order
- const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
- i0 = _mm256_permutevar8x32_epi32( i0, perm );
- _mm256_storeu_si256((__m256i *)y[i].qs, i0);
- #else
- // Since we don't have in AVX some necessary functions,
- // we split the registers in half and call AVX2 analogs from SSE
- __m128i ni0 = _mm256_castsi256_si128( i0 );
- __m128i ni1 = _mm256_extractf128_si256( i0, 1);
- __m128i ni2 = _mm256_castsi256_si128( i1 );
- __m128i ni3 = _mm256_extractf128_si256( i1, 1);
- __m128i ni4 = _mm256_castsi256_si128( i2 );
- __m128i ni5 = _mm256_extractf128_si256( i2, 1);
- __m128i ni6 = _mm256_castsi256_si128( i3 );
- __m128i ni7 = _mm256_extractf128_si256( i3, 1);
- // Convert int32 to int16
- ni0 = _mm_packs_epi32( ni0, ni1 );
- ni2 = _mm_packs_epi32( ni2, ni3 );
- ni4 = _mm_packs_epi32( ni4, ni5 );
- ni6 = _mm_packs_epi32( ni6, ni7 );
- // Convert int16 to int8
- ni0 = _mm_packs_epi16( ni0, ni2 );
- ni4 = _mm_packs_epi16( ni4, ni6 );
- _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
- _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
- #endif
- }
- #else
- // scalar
- quantize_row_q8_0_reference(x, y, k);
- #endif
- }
- // reference implementation for deterministic creation of model files
- static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
- assert(QK8_1 == 32);
- assert(k % QK8_1 == 0);
- const int nb = k / QK8_1;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_1; j++) {
- const float v = x[i*QK8_1 + j];
- amax = MAX(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- int sum = 0;
- for (int j = 0; j < QK8_1/2; ++j) {
- const float v0 = x[i*QK8_1 + j]*id;
- const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
- y[i].qs[ j] = roundf(v0);
- y[i].qs[QK8_1/2 + j] = roundf(v1);
- sum += y[i].qs[ j];
- sum += y[i].qs[QK8_1/2 + j];
- }
- y[i].s = sum*d;
- }
- }
- static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK8_1 == 0);
- const int nb = k / QK8_1;
- block_q8_1 * restrict y = vy;
- #if defined(__ARM_NEON)
- for (int i = 0; i < nb; i++) {
- float32x4_t srcv [8];
- float32x4_t asrcv[8];
- float32x4_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
- const float amax = vmaxvq_f32(amaxv[0]);
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- int32x4_t accv = vdupq_n_s32(0);
- for (int j = 0; j < 8; j++) {
- const float32x4_t v = vmulq_n_f32(srcv[j], id);
- const int32x4_t vi = vcvtnq_s32_f32(v);
- y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
- y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
- y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
- y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
- accv = vaddq_s32(accv, vi);
- }
- y[i].s = d * vaddvq_s32(accv);
- }
- #elif defined(__wasm_simd128__)
- for (int i = 0; i < nb; i++) {
- v128_t srcv [8];
- v128_t asrcv[8];
- v128_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
- const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
- wasm_f32x4_extract_lane(amaxv[0], 1)),
- MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
- wasm_f32x4_extract_lane(amaxv[0], 3)));
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- v128_t accv = wasm_i32x4_splat(0);
- for (int j = 0; j < 8; j++) {
- const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
- const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
- y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
- y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
- y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
- y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
- accv = wasm_i32x4_add(accv, vi);
- }
- y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
- wasm_i32x4_extract_lane(accv, 1) +
- wasm_i32x4_extract_lane(accv, 2) +
- wasm_i32x4_extract_lane(accv, 3));
- }
- #elif defined(__AVX2__) || defined(__AVX__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max(abs(e)) for the block
- const __m256 signBit = _mm256_set1_ps( -0.0f );
- __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Quantize these floats
- const float d = maxScalar / 127.f;
- y[i].d = d;
- const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
- const __m256 mul = _mm256_set1_ps( id );
- // Apply the multiplier
- v0 = _mm256_mul_ps( v0, mul );
- v1 = _mm256_mul_ps( v1, mul );
- v2 = _mm256_mul_ps( v2, mul );
- v3 = _mm256_mul_ps( v3, mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- #if defined(__AVX2__)
- // Compute the sum of the quants and set y[i].s
- y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
- // Convert int32 to int16
- i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
- i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
- // Convert int16 to int8
- i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
- // We got our precious signed bytes, but the order is now wrong
- // These AVX2 pack instructions process 16-byte pieces independently
- // The following instruction is fixing the order
- const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
- i0 = _mm256_permutevar8x32_epi32( i0, perm );
- _mm256_storeu_si256((__m256i *)y[i].qs, i0);
- #else
- // Since we don't have in AVX some necessary functions,
- // we split the registers in half and call AVX2 analogs from SSE
- __m128i ni0 = _mm256_castsi256_si128( i0 );
- __m128i ni1 = _mm256_extractf128_si256( i0, 1);
- __m128i ni2 = _mm256_castsi256_si128( i1 );
- __m128i ni3 = _mm256_extractf128_si256( i1, 1);
- __m128i ni4 = _mm256_castsi256_si128( i2 );
- __m128i ni5 = _mm256_extractf128_si256( i2, 1);
- __m128i ni6 = _mm256_castsi256_si128( i3 );
- __m128i ni7 = _mm256_extractf128_si256( i3, 1);
- // Compute the sum of the quants and set y[i].s
- const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
- const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
- y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
- // Convert int32 to int16
- ni0 = _mm_packs_epi32( ni0, ni1 );
- ni2 = _mm_packs_epi32( ni2, ni3 );
- ni4 = _mm_packs_epi32( ni4, ni5 );
- ni6 = _mm_packs_epi32( ni6, ni7 );
- // Convert int16 to int8
- ni0 = _mm_packs_epi16( ni0, ni2 );
- ni4 = _mm_packs_epi16( ni4, ni6 );
- _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
- _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
- #endif
- }
- #else
- // scalar
- quantize_row_q8_1_reference(x, y, k);
- #endif
- }
- static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
- static const int qk = QK4_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- for (int j = 0; j < qk/2; ++j) {
- const int x0 = (x[i].qs[j] & 0x0F) - 8;
- const int x1 = (x[i].qs[j] >> 4) - 8;
- y[i*qk + j + 0 ] = x0*d;
- y[i*qk + j + qk/2] = x1*d;
- }
- }
- }
- static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
- static const int qk = QK4_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- const float m = GGML_FP16_TO_FP32(x[i].m);
- for (int j = 0; j < qk/2; ++j) {
- const int x0 = (x[i].qs[j] & 0x0F);
- const int x1 = (x[i].qs[j] >> 4);
- y[i*qk + j + 0 ] = x0*d + m;
- y[i*qk + j + qk/2] = x1*d + m;
- }
- }
- }
- static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
- static const int qk = QK5_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
- const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
- const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
- y[i*qk + j + 0 ] = x0*d;
- y[i*qk + j + qk/2] = x1*d;
- }
- }
- }
- static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
- static const int qk = QK5_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- const float m = GGML_FP16_TO_FP32(x[i].m);
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
- const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
- const int x1 = (x[i].qs[j] >> 4) | xh_1;
- y[i*qk + j + 0 ] = x0*d + m;
- y[i*qk + j + qk/2] = x1*d + m;
- }
- }
- }
- static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
- static const int qk = QK8_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- const block_q8_0 * restrict x = vx;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- for (int j = 0; j < qk; ++j) {
- y[i*qk + j] = x[i].qs[j]*d;
- }
- }
- }
- static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
- [GGML_TYPE_Q4_0] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
- .quantize_row_q = quantize_row_q4_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
- .quantize_row_q_dot = quantize_row_q8_0,
- .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- },
- [GGML_TYPE_Q4_1] = {
- .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
- .quantize_row_q = quantize_row_q4_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
- [GGML_TYPE_Q5_0] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
- .quantize_row_q = quantize_row_q5_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
- .quantize_row_q_dot = quantize_row_q8_0,
- .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- },
- [GGML_TYPE_Q5_1] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
- .quantize_row_q = quantize_row_q5_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
- [GGML_TYPE_Q8_0] = {
- .dequantize_row_q = dequantize_row_q8_0,
- .quantize_row_q = quantize_row_q8_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
- .quantize_row_q_dot = quantize_row_q8_0,
- .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- },
- [GGML_TYPE_Q8_1] = {
- .dequantize_row_q = NULL, // TODO
- .quantize_row_q = quantize_row_q8_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = NULL, // TODO
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
- };
- // For internal test use
- quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
- GGML_ASSERT(i < GGML_TYPE_COUNT);
- return quantize_fns[i];
- }
- //
- // simd mappings
- //
- // we define a common set of C macros which map to specific intrinsics based on the current architecture
- // we then implement the fundamental computation operations below using only these macros
- // adding support for new architectures requires to define the corresponding SIMD macros
- //
- // GGML_F32_STEP / GGML_F16_STEP
- // number of elements to process in a single step
- //
- // GGML_F32_EPR / GGML_F16_EPR
- // number of elements to fit in a single register
- //
- #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
- #define GGML_SIMD
- // F32 NEON
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 float32x4_t
- #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32x4_LOAD vld1q_f32
- #define GGML_F32x4_STORE vst1q_f32
- #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32x4_ADD vaddq_f32
- #define GGML_F32x4_MUL vmulq_f32
- #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
- } \
- res = GGML_F32x4_REDUCE_ONE(x[0]); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 NEON
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- #define GGML_F16x8 float16x8_t
- #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
- #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
- #define GGML_F16x8_LOAD vld1q_f16
- #define GGML_F16x8_STORE vst1q_f16
- #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
- #define GGML_F16x8_ADD vaddq_f16
- #define GGML_F16x8_MUL vmulq_f16
- #define GGML_F16x8_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
- x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
- x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
- x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
- } \
- const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
- const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
- res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
- }
- #define GGML_F16_VEC GGML_F16x8
- #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x8_FMA
- #define GGML_F16_VEC_ADD GGML_F16x8_ADD
- #define GGML_F16_VEC_MUL GGML_F16x8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
- #else
- // if FP16 vector arithmetic is not supported, we use FP32 instead
- // and take advantage of the vcvt_ functions to convert to/from FP16
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- #define GGML_F32Cx4 float32x4_t
- #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
- #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
- #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32Cx4_ADD vaddq_f32
- #define GGML_F32Cx4_MUL vmulq_f32
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- #elif defined(__AVX__)
- #define GGML_SIMD
- // F32 AVX
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 8
- #define GGML_F32x8 __m256
- #define GGML_F32x8_ZERO _mm256_setzero_ps()
- #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
- #define GGML_F32x8_LOAD _mm256_loadu_ps
- #define GGML_F32x8_STORE _mm256_storeu_ps
- #if defined(__FMA__)
- #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
- #endif
- #define GGML_F32x8_ADD _mm256_add_ps
- #define GGML_F32x8_MUL _mm256_mul_ps
- #define GGML_F32x8_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
- } \
- const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
- _mm256_extractf128_ps(x[0], 1)); \
- const __m128 t1 = _mm_hadd_ps(t0, t0); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x8
- #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x8_STORE
- #define GGML_F32_VEC_FMA GGML_F32x8_FMA
- #define GGML_F32_VEC_ADD GGML_F32x8_ADD
- #define GGML_F32_VEC_MUL GGML_F32x8_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
- // F16 AVX
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- // F16 arithmetic is not supported by AVX, so we use F32 instead
- #define GGML_F32Cx8 __m256
- #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
- #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
- #if defined(__F16C__)
- // the _mm256_cvt intrinsics require F16C
- #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
- #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
- #else
- static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
- float tmp[8];
- for (int i = 0; i < 8; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
- return _mm256_loadu_ps(tmp);
- }
- static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
- float arr[8];
- _mm256_storeu_ps(arr, y);
- for (int i = 0; i < 8; i++)
- x[i] = GGML_FP32_TO_FP16(arr[i]);
- }
- #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
- #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
- #endif
- #define GGML_F32Cx8_FMA GGML_F32x8_FMA
- #define GGML_F32Cx8_ADD _mm256_add_ps
- #define GGML_F32Cx8_MUL _mm256_mul_ps
- #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
- #define GGML_F16_VEC GGML_F32Cx8
- #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
- #elif defined(__POWER9_VECTOR__)
- #define GGML_SIMD
- // F32 POWER9
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 vector float
- #define GGML_F32x4_ZERO 0.0f
- #define GGML_F32x4_SET1 vec_splats
- #define GGML_F32x4_LOAD(p) vec_xl(0, p)
- #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
- #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
- #define GGML_F32x4_ADD vec_add
- #define GGML_F32x4_MUL vec_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = vec_add(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = vec_add(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = vec_add(x[8*i], x[8*i+4]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 POWER9
- #define GGML_F16_STEP GGML_F32_STEP
- #define GGML_F16_EPR GGML_F32_EPR
- #define GGML_F16_VEC GGML_F32x4
- #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F16_VEC_FMA GGML_F32x4_FMA
- #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
- // Use vec_xl, not vec_ld, in case the load address is not aligned.
- #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
- vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
- vec_extract_fp32_from_shortl(vec_xl(0, p))
- #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
- #define GGML_F16_VEC_STORE(p, r, i) \
- if (i & 0x1) \
- vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
- r[i - GGML_ENDIAN_BYTE(0)]), \
- 0, p - GGML_F16_EPR)
- #elif defined(__wasm_simd128__)
- #define GGML_SIMD
- // F32 WASM
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 v128_t
- #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F32x4_LOAD wasm_v128_load
- #define GGML_F32x4_STORE wasm_v128_store
- #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
- #define GGML_F32x4_ADD wasm_f32x4_add
- #define GGML_F32x4_MUL wasm_f32x4_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 WASM
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(p[0]);
- tmp[1] = GGML_FP16_TO_FP32(p[1]);
- tmp[2] = GGML_FP16_TO_FP32(p[2]);
- tmp[3] = GGML_FP16_TO_FP32(p[3]);
- return wasm_v128_load(tmp);
- }
- inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
- float tmp[4];
- wasm_v128_store(tmp, x);
- p[0] = GGML_FP32_TO_FP16(tmp[0]);
- p[1] = GGML_FP32_TO_FP16(tmp[1]);
- p[2] = GGML_FP32_TO_FP16(tmp[2]);
- p[3] = GGML_FP32_TO_FP16(tmp[3]);
- }
- #define GGML_F16x4 v128_t
- #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
- #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
- #define GGML_F16x4_FMA GGML_F32x4_FMA
- #define GGML_F16x4_ADD wasm_f32x4_add
- #define GGML_F16x4_MUL wasm_f32x4_mul
- #define GGML_F16x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
- x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
- x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
- x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F16_VEC GGML_F16x4
- #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x4_FMA
- #define GGML_F16_VEC_ADD GGML_F16x4_ADD
- #define GGML_F16_VEC_MUL GGML_F16x4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
- #elif defined(__SSE3__)
- #define GGML_SIMD
- // F32 SSE
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 __m128
- #define GGML_F32x4_ZERO _mm_setzero_ps()
- #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32x4_LOAD _mm_loadu_ps
- #define GGML_F32x4_STORE _mm_storeu_ps
- #if defined(__FMA__)
- // TODO: Does this work?
- #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
- #endif
- #define GGML_F32x4_ADD _mm_add_ps
- #define GGML_F32x4_MUL _mm_mul_ps
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
- } \
- const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 SSE
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 4
- static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
- return _mm_loadu_ps(tmp);
- }
- static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
- float arr[4];
- _mm_storeu_ps(arr, y);
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
- }
- #define GGML_F32Cx4 __m128
- #define GGML_F32Cx4_ZERO _mm_setzero_ps()
- #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
- #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
- #define GGML_F32Cx4_FMA GGML_F32x4_FMA
- #define GGML_F32Cx4_ADD _mm_add_ps
- #define GGML_F32Cx4_MUL _mm_mul_ps
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- // GGML_F32_ARR / GGML_F16_ARR
- // number of registers to use per step
- #ifdef GGML_SIMD
- #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
- #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
- #endif
- //
- // fundamental operations
- //
- inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
- inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
- inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
- inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
- inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
- inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
- inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
- inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
- inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
- inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
- #ifdef GGML_SIMD
- float sumf = 0.0f;
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
- #else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
- #endif
- *s = sumf;
- }
- inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
- ggml_float sumf = 0.0;
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #endif
- *s = sumf;
- }
- static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_0;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(nb % 2 == 0);
- const block_q4_0 * restrict x = vx;
- const block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- for (int i = 0; i < nb; i += 2) {
- const block_q4_0 * restrict x0 = &x[i + 0];
- const block_q4_0 * restrict x1 = &x[i + 1];
- const block_q8_0 * restrict y0 = &y[i + 0];
- const block_q8_0 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- const int8x16_t s8b = vdupq_n_s8(0x8);
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // sub 8
- const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
- const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
- const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
- const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- // dot product into int32x4_t
- const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
- const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- /* Compute combined scale for the block */
- const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
- const __m256i off = _mm256_set1_epi8( 8 );
- bx = _mm256_sub_epi8( bx, off );
- __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- /* Multiply q with scale and accumulate */
- acc = _mm256_fmadd_ps( d, q, acc );
- }
- *s = hsum_float_8(acc);
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- // Compute combined scale for the block
- const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
- const __m128i lowMask = _mm_set1_epi8(0xF);
- const __m128i off = _mm_set1_epi8(8);
- const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
- __m128i bx = _mm_and_si128(lowMask, tmp);
- __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
- bx = _mm_sub_epi8(bx, off);
- const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
- bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
- by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
- bx = _mm_sub_epi8(bx, off);
- const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
- // Convert int32_t to float
- __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
- // Apply the scale, and accumulate
- acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
- }
- *s = hsum_float_8(acc);
- #elif defined(__SSSE3__)
- // set constants
- const __m128i lowMask = _mm_set1_epi8(0xF);
- const __m128i off = _mm_set1_epi8(8);
- // Initialize accumulator with zeros
- __m128 acc_0 = _mm_setzero_ps();
- __m128 acc_1 = _mm_setzero_ps();
- __m128 acc_2 = _mm_setzero_ps();
- __m128 acc_3 = _mm_setzero_ps();
- // First round without accumulation
- {
- _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 0 and 1
- const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
- const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
- __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
- __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
- bx_0 = _mm_sub_epi8(bx_0, off);
- const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
- __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
- __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
- bx_1 = _mm_sub_epi8(bx_1, off);
- const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
- _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 2 and 3
- const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
- const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
- __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
- __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
- bx_2 = _mm_sub_epi8(bx_2, off);
- const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
- __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
- __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
- bx_3 = _mm_sub_epi8(bx_3, off);
- const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
- // Convert int32_t to float
- __m128 p0 = _mm_cvtepi32_ps(i32_0);
- __m128 p1 = _mm_cvtepi32_ps(i32_1);
- __m128 p2 = _mm_cvtepi32_ps(i32_2);
- __m128 p3 = _mm_cvtepi32_ps(i32_3);
- // Apply the scale
- acc_0 = _mm_mul_ps( d_0_1, p0 );
- acc_1 = _mm_mul_ps( d_0_1, p1 );
- acc_2 = _mm_mul_ps( d_2_3, p2 );
- acc_3 = _mm_mul_ps( d_2_3, p3 );
- }
- // Main loop
- for (int i = 2; i < nb; i+=2) {
- _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 0 and 1
- const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
- const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
- __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
- __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
- bx_0 = _mm_sub_epi8(bx_0, off);
- const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
- __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
- __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
- bx_1 = _mm_sub_epi8(bx_1, off);
- const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
- _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 2 and 3
- const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
- const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
- __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
- __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
- bx_2 = _mm_sub_epi8(bx_2, off);
- const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
- __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
- __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
- bx_3 = _mm_sub_epi8(bx_3, off);
- const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
- // Convert int32_t to float
- __m128 p0 = _mm_cvtepi32_ps(i32_0);
- __m128 p1 = _mm_cvtepi32_ps(i32_1);
- __m128 p2 = _mm_cvtepi32_ps(i32_2);
- __m128 p3 = _mm_cvtepi32_ps(i32_3);
- // Apply the scale
- __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
- __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
- __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
- __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
- // Acummulate
- acc_0 = _mm_add_ps(p0_d, acc_0);
- acc_1 = _mm_add_ps(p1_d, acc_1);
- acc_2 = _mm_add_ps(p2_d, acc_2);
- acc_3 = _mm_add_ps(p3_d, acc_3);
- }
- *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const int v0 = (x[i].qs[j] & 0x0F) - 8;
- const int v1 = (x[i].qs[j] >> 4) - 8;
- sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
- }
- sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_1;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(nb % 2 == 0);
- const block_q4_1 * restrict x = vx;
- const block_q8_1 * restrict y = vy;
- // TODO: add WASM SIMD
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- float summs = 0;
- for (int i = 0; i < nb; i += 2) {
- const block_q4_1 * restrict x0 = &x[i + 0];
- const block_q4_1 * restrict x1 = &x[i + 1];
- const block_q8_1 * restrict y0 = &y[i + 0];
- const block_q8_1 * restrict y1 = &y[i + 1];
- summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- // dot product into int32x4_t
- const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
- const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
- #elif defined(__AVX2__) || defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- float summs = 0;
- // Main loop
- for (int i = 0; i < nb; ++i) {
- const float d0 = GGML_FP16_TO_FP32(x[i].d);
- const float d1 = y[i].d;
- summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- const __m256 d0v = _mm256_set1_ps( d0 );
- const __m256 d1v = _mm256_set1_ps( d1 );
- // Compute combined scales
- const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
- // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
- const __m256i bx = bytes_from_nibbles_32(x[i].qs);
- const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
- const __m256 xy = mul_sum_us8_pairs_float(bx, by);
- // Accumulate d0*d1*x*y
- #if defined(__AVX2__)
- acc = _mm256_fmadd_ps( d0d1, xy, acc );
- #else
- acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
- #endif
- }
- *s = hsum_float_8(acc) + summs;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const int v0 = (x[i].qs[j] & 0x0F);
- const int v1 = (x[i].qs[j] >> 4);
- sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
- }
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_0;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(nb % 2 == 0);
- assert(qk == QK5_0);
- const block_q5_0 * restrict x = vx;
- const block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- uint32_t qh0;
- uint32_t qh1;
- uint64_t tmp0[4];
- uint64_t tmp1[4];
- for (int i = 0; i < nb; i += 2) {
- const block_q5_0 * restrict x0 = &x[i];
- const block_q5_0 * restrict x1 = &x[i + 1];
- const block_q8_0 * restrict y0 = &y[i];
- const block_q8_0 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- // extract the 5th bit via lookup table ((!b) << 4)
- memcpy(&qh0, x0->qh, sizeof(qh0));
- memcpy(&qh1, x1->qh, sizeof(qh1));
- tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
- tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
- tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
- tmp0[3] = table_b2b_1[(qh0 >> 24) ];
- tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
- tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
- tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
- tmp1[3] = table_b2b_1[(qh1 >> 24) ];
- const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
- const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
- const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
- const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
- const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
- const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
- const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
- const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
- vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
- vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
- #elif defined(__wasm_simd128__)
- v128_t sumv = wasm_f32x4_splat(0.0f);
- uint32_t qh;
- uint64_t tmp[4];
- // TODO: check if unrolling this is better
- for (int i = 0; i < nb; ++i) {
- const block_q5_0 * restrict x0 = &x[i];
- const block_q8_0 * restrict y0 = &y[i];
- const v128_t m4b = wasm_i8x16_splat(0x0F);
- // extract the 5th bit
- memcpy(&qh, x0->qh, sizeof(qh));
- tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
- tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
- tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
- tmp[3] = table_b2b_1[(qh >> 24) ];
- const v128_t qhl = wasm_v128_load(tmp + 0);
- const v128_t qhh = wasm_v128_load(tmp + 2);
- const v128_t v0 = wasm_v128_load(x0->qs);
- // 4-bit -> 8-bit
- const v128_t v0l = wasm_v128_and (v0, m4b);
- const v128_t v0h = wasm_u8x16_shr(v0, 4);
- // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
- const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
- const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
- // load y
- const v128_t v1l = wasm_v128_load(y0->qs);
- const v128_t v1h = wasm_v128_load(y0->qs + 16);
- // int8x16 -> int16x8
- const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
- const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
- const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
- const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
- const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
- const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
- const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
- const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
- // dot product
- sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
- wasm_i32x4_add(
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
- wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
- wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
- wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
- }
- *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
- wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; i++) {
- /* Compute combined scale for the block */
- const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- __m256i bxhi = bytes_from_bits_32(x[i].qh);
- bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
- bx = _mm256_or_si256(bx, bxhi);
- __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- /* Multiply q with scale and accumulate */
- acc = _mm256_fmadd_ps(d, q, acc);
- }
- *s = hsum_float_8(acc);
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- __m128i mask = _mm_set1_epi8((char)0xF0);
- // Main loop
- for (int i = 0; i < nb; i++) {
- /* Compute combined scale for the block */
- const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- const __m256i bxhi = bytes_from_bits_32(x[i].qh);
- __m128i bxhil = _mm256_castsi256_si128(bxhi);
- __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
- bxhil = _mm_andnot_si128(bxhil, mask);
- bxhih = _mm_andnot_si128(bxhih, mask);
- __m128i bxl = _mm256_castsi256_si128(bx);
- __m128i bxh = _mm256_extractf128_si256(bx, 1);
- bxl = _mm_or_si128(bxl, bxhil);
- bxh = _mm_or_si128(bxh, bxhih);
- bx = _mm256_set_m128i(bxh, bxl);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- /* Multiply q with scale and accumulate */
- acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
- }
- *s = hsum_float_8(acc);
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
- const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
- const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
- sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
- }
- sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_1;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(nb % 2 == 0);
- assert(qk == QK5_1);
- const block_q5_1 * restrict x = vx;
- const block_q8_1 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- float summs0 = 0.0f;
- float summs1 = 0.0f;
- uint32_t qh0;
- uint32_t qh1;
- uint64_t tmp0[4];
- uint64_t tmp1[4];
- for (int i = 0; i < nb; i += 2) {
- const block_q5_1 * restrict x0 = &x[i];
- const block_q5_1 * restrict x1 = &x[i + 1];
- const block_q8_1 * restrict y0 = &y[i];
- const block_q8_1 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
- summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
- // extract the 5th bit via lookup table ((b) << 4)
- memcpy(&qh0, x0->qh, sizeof(qh0));
- memcpy(&qh1, x1->qh, sizeof(qh1));
- tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
- tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
- tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
- tmp0[3] = table_b2b_0[(qh0 >> 24) ];
- tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
- tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
- tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
- tmp1[3] = table_b2b_0[(qh1 >> 24) ];
- const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
- const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
- const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
- const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // add high bit
- const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
- const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
- const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
- const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
- vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
- vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
- #elif defined(__wasm_simd128__)
- v128_t sumv = wasm_f32x4_splat(0.0f);
- float summs = 0.0f;
- uint32_t qh;
- uint64_t tmp[4];
- // TODO: check if unrolling this is better
- for (int i = 0; i < nb; ++i) {
- const block_q5_1 * restrict x0 = &x[i];
- const block_q8_1 * restrict y0 = &y[i];
- summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
- const v128_t m4b = wasm_i8x16_splat(0x0F);
- // extract the 5th bit
- memcpy(&qh, x0->qh, sizeof(qh));
- tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
- tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
- tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
- tmp[3] = table_b2b_0[(qh >> 24) ];
- const v128_t qhl = wasm_v128_load(tmp + 0);
- const v128_t qhh = wasm_v128_load(tmp + 2);
- const v128_t v0 = wasm_v128_load(x0->qs);
- // 4-bit -> 8-bit
- const v128_t v0l = wasm_v128_and (v0, m4b);
- const v128_t v0h = wasm_u8x16_shr(v0, 4);
- // add high bit
- const v128_t v0lf = wasm_v128_or(v0l, qhl);
- const v128_t v0hf = wasm_v128_or(v0h, qhh);
- // load y
- const v128_t v1l = wasm_v128_load(y0->qs);
- const v128_t v1h = wasm_v128_load(y0->qs + 16);
- // int8x16 -> int16x8
- const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
- const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
- const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
- const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
- const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
- const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
- const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
- const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
- // dot product
- sumv = wasm_f32x4_add(sumv,
- wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
- wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
- wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
- wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
- }
- *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
- wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- float summs = 0.0f;
- // Main loop
- for (int i = 0; i < nb; i++) {
- const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
- summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- __m256i bxhi = bytes_from_bits_32(x[i].qh);
- bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
- bx = _mm256_or_si256(bx, bxhi);
- const __m256 dy = _mm256_set1_ps(y[i].d);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_us8_pairs_float(bx, by);
- acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
- }
- *s = hsum_float_8(acc) + summs;
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- __m128i mask = _mm_set1_epi8(0x10);
- float summs = 0.0f;
- // Main loop
- for (int i = 0; i < nb; i++) {
- const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
- summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- const __m256i bxhi = bytes_from_bits_32(x[i].qh);
- __m128i bxhil = _mm256_castsi256_si128(bxhi);
- __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
- bxhil = _mm_and_si128(bxhil, mask);
- bxhih = _mm_and_si128(bxhih, mask);
- __m128i bxl = _mm256_castsi256_si128(bx);
- __m128i bxh = _mm256_extractf128_si256(bx, 1);
- bxl = _mm_or_si128(bxl, bxhil);
- bxh = _mm_or_si128(bxh, bxhih);
- bx = _mm256_set_m128i(bxh, bxl);
- const __m256 dy = _mm256_set1_ps(y[i].d);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_us8_pairs_float(bx, by);
- acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
- }
- *s = hsum_float_8(acc) + summs;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
- const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
- const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
- sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
- }
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_0;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(nb % 2 == 0);
- const block_q8_0 * restrict x = vx;
- const block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- for (int i = 0; i < nb; i += 2) {
- const block_q8_0 * restrict x0 = &x[i + 0];
- const block_q8_0 * restrict x1 = &x[i + 1];
- const block_q8_0 * restrict y0 = &y[i + 0];
- const block_q8_0 * restrict y1 = &y[i + 1];
- const int8x16_t x0_0 = vld1q_s8(x0->qs);
- const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
- const int8x16_t x1_0 = vld1q_s8(x1->qs);
- const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
- // load y
- const int8x16_t y0_0 = vld1q_s8(y0->qs);
- const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
- const int8x16_t y1_0 = vld1q_s8(y1->qs);
- const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
- vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
- vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #else
- const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
- const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
- const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
- const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
- const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
- const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
- const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
- const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
- const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
- const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
- const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
- const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
- #elif defined(__AVX2__) || defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- // Compute combined scale for the block
- const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
- __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
- __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- // Multiply q with scale and accumulate
- #if defined(__AVX2__)
- acc = _mm256_fmadd_ps( d, q, acc );
- #else
- acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
- #endif
- }
- *s = hsum_float_8(acc);
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- int sumi = 0;
- for (int j = 0; j < qk; j++) {
- sumi += x[i].qs[j]*y[i].qs[j];
- }
- sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
- }
- *s = sumf;
- #endif
- }
- // compute GGML_VEC_DOT_UNROLL dot products at once
- // xs - x row stride in bytes
- inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
- ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
- ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
- }
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
- sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
- }
- }
- }
- // reduce sum0..sum3 to sum0
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #else
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #endif
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- s[i] = sumf[i];
- }
- }
- inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #endif
- }
- //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
- inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] *= v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] *= v;
- }
- #endif
- }
- inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
- inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
- inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
- inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
- inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
- inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
- inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
- inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
- static const float GELU_COEF_A = 0.044715f;
- static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- inline static float ggml_gelu_f32(float x) {
- return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
- }
- inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = table_gelu_f16[i16[i]];
- }
- }
- #ifdef GGML_GELU_FP16
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_f32(x[i]);
- }
- }
- #endif
- // Sigmoid Linear Unit (SiLU) function
- inline static float ggml_silu_f32(float x) {
- return x/(1.0f + expf(-x));
- }
- //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- // const uint16_t * i16 = (const uint16_t *) x;
- // for (int i = 0; i < n; ++i) {
- // y[i] = table_silu_f16[i16[i]];
- // }
- //}
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
- }
- #endif
- inline static float ggml_silu_backward_f32(float x, float dy) {
- const float s = 1.0f/(1.0f + expf(-x));
- return dy*s*(1.0f + x*(1.0f - s));
- }
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- // we did not use x[i] to compute forward silu but its f16 equivalent
- // take derivative at f16 of x[i]:
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- float usedx = GGML_FP16_TO_FP32(fp16);
- dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
- }
- }
- #else
- inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
- }
- }
- #endif
- inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- #else
- vDSP_sve(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- }
- inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- float max = -INFINITY;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- }
- *s = max;
- #else
- vDSP_maxv(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
- ggml_vec_norm_f32(n, s, x);
- *s = 1.f/(*s);
- }
- //
- // logging
- //
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- //
- // data types
- //
- static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = 1,
- [GGML_TYPE_F16] = 1,
- [GGML_TYPE_Q4_0] = QK4_0,
- [GGML_TYPE_Q4_1] = QK4_1,
- [GGML_TYPE_Q5_0] = QK5_0,
- [GGML_TYPE_Q5_1] = QK5_1,
- [GGML_TYPE_Q8_0] = QK8_0,
- [GGML_TYPE_Q8_1] = QK8_1,
- [GGML_TYPE_I8] = 1,
- [GGML_TYPE_I16] = 1,
- [GGML_TYPE_I32] = 1,
- };
- static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
- static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = sizeof(float),
- [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
- [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
- [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
- [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
- [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
- [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
- [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
- [GGML_TYPE_I8] = sizeof(int8_t),
- [GGML_TYPE_I16] = sizeof(int16_t),
- [GGML_TYPE_I32] = sizeof(int32_t),
- };
- static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
- static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = "f32",
- [GGML_TYPE_F16] = "f16",
- [GGML_TYPE_Q4_0] = "q4_0",
- [GGML_TYPE_Q4_1] = "q4_1",
- [GGML_TYPE_Q5_0] = "q5_0",
- [GGML_TYPE_Q5_1] = "q5_1",
- [GGML_TYPE_Q8_0] = "q8_0",
- [GGML_TYPE_Q8_1] = "q8_1",
- [GGML_TYPE_I8] = "i8",
- [GGML_TYPE_I16] = "i16",
- [GGML_TYPE_I32] = "i32",
- };
- static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
- static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = false,
- [GGML_TYPE_F16] = false,
- [GGML_TYPE_Q4_0] = true,
- [GGML_TYPE_Q4_1] = true,
- [GGML_TYPE_Q5_0] = true,
- [GGML_TYPE_Q5_1] = true,
- [GGML_TYPE_Q8_0] = true,
- [GGML_TYPE_Q8_1] = true,
- [GGML_TYPE_I8] = false,
- [GGML_TYPE_I16] = false,
- [GGML_TYPE_I32] = false,
- };
- static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
- static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "NONE",
- "DUP",
- "ADD",
- "ADD1",
- "ACC",
- "SUB",
- "MUL",
- "DIV",
- "SQR",
- "SQRT",
- "LOG",
- "SUM",
- "SUM_ROWS",
- "MEAN",
- "REPEAT",
- "ABS",
- "SGN",
- "NEG",
- "STEP",
- "RELU",
- "GELU",
- "SILU",
- "SILU_BACK",
- "NORM",
- "RMS_NORM",
- "RMS_NORM_BACK",
- "MUL_MAT",
- "SCALE",
- "SET",
- "CPY",
- "CONT",
- "RESHAPE",
- "VIEW",
- "PERMUTE",
- "TRANSPOSE",
- "GET_ROWS",
- "GET_ROWS_BACK",
- "DIAG",
- "DIAG_MASK_INF",
- "DIAG_MASK_ZERO",
- "SOFT_MAX",
- "ROPE",
- "ROPE_BACK",
- "ALIBI",
- "CLAMP",
- "CONV_1D_1S",
- "CONV_1D_2S",
- "FLASH_ATTN",
- "FLASH_FF",
- "MAP_UNARY",
- "MAP_BINARY",
- };
- static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
- static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
- "x",
- "x+y",
- "x+y",
- "view(x,nb,offset)+=y->x",
- "x-y",
- "x*y",
- "x/y",
- "x^2",
- "√x",
- "log(x)",
- "Σx",
- "Σx_k",
- "Σx/n",
- "repeat(x)",
- "abs(x)",
- "sgn(x)",
- "-x",
- "step(x)",
- "relu(x)",
- "gelu(x)",
- "silu(x)",
- "silu_back(x)",
- "norm(x)",
- "rms_norm(x)",
- "rms_norm_back(x)",
- "X*Y",
- "x*v",
- "y-\\>view(x)",
- "x-\\>y",
- "cont(x)",
- "reshape(x)",
- "view(x)",
- "permute(x)",
- "transpose(x)",
- "get_rows(x)",
- "get_rows_back(x)",
- "diag(x)",
- "diag_mask_inf(x)",
- "diag_mask_zero(x)",
- "soft_max(x)",
- "rope(x)",
- "rope_back(x)",
- "alibi(x)",
- "clamp(x)",
- "conv_1d_1s(x)",
- "conv_1d_2s(x)",
- "flash_attn(x)",
- "flash_ff(x)",
- "f(x)",
- "f(x,y)",
- };
- static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
- static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
- static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
- //
- // ggml context
- //
- struct ggml_context {
- size_t mem_size;
- void * mem_buffer;
- bool mem_buffer_owned;
- bool no_alloc;
- int n_objects;
- struct ggml_object * objects_begin;
- struct ggml_object * objects_end;
- struct ggml_scratch scratch;
- struct ggml_scratch scratch_save;
- };
- struct ggml_context_container {
- bool used;
- struct ggml_context context;
- };
- //
- // compute types
- //
- enum ggml_task_type {
- GGML_TASK_INIT = 0,
- GGML_TASK_COMPUTE,
- GGML_TASK_FINALIZE,
- };
- struct ggml_compute_params {
- enum ggml_task_type type;
- int ith, nth;
- // work buffer for all threads
- size_t wsize;
- void * wdata;
- };
- //
- // ggml state
- //
- struct ggml_state {
- struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
- };
- // global state
- static struct ggml_state g_state;
- static atomic_int g_state_barrier = 0;
- // barrier via spin lock
- inline static void ggml_critical_section_start(void) {
- int processing = atomic_fetch_add(&g_state_barrier, 1);
- while (processing > 0) {
- // wait for other threads to finish
- atomic_fetch_sub(&g_state_barrier, 1);
- sched_yield(); // TODO: reconsider this
- processing = atomic_fetch_add(&g_state_barrier, 1);
- }
- }
- // TODO: make this somehow automatically executed
- // some sort of "sentry" mechanism
- inline static void ggml_critical_section_end(void) {
- atomic_fetch_sub(&g_state_barrier, 1);
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_print_object(const struct ggml_object * obj) {
- GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
- obj->offs, obj->size, (const void *) obj->next);
- }
- void ggml_print_objects(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
- while (obj != NULL) {
- ggml_print_object(obj);
- obj = obj->next;
- }
- GGML_PRINT("%s: --- end ---\n", __func__);
- }
- int64_t ggml_nelements(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- int ggml_nrows(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- size_t ggml_nbytes(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
- }
- int ggml_blck_size(enum ggml_type type) {
- return GGML_BLCK_SIZE[type];
- }
- size_t ggml_type_size(enum ggml_type type) {
- return GGML_TYPE_SIZE[type];
- }
- float ggml_type_sizef(enum ggml_type type) {
- return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
- }
- const char * ggml_type_name(enum ggml_type type) {
- return GGML_TYPE_NAME[type];
- }
- const char * ggml_op_name(enum ggml_op op) {
- return GGML_OP_NAME[op];
- }
- size_t ggml_element_size(const struct ggml_tensor * tensor) {
- return GGML_TYPE_SIZE[tensor->type];
- }
- static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0]) &&
- (t0->ne[2] == t1->ne[2]) &&
- (t0->ne[3] == t1->ne[3]);
- }
- bool ggml_is_quantized(enum ggml_type type) {
- return GGML_IS_QUANTIZED[type];
- }
- enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
- enum ggml_type wtype = GGML_TYPE_COUNT;
- switch (ftype) {
- case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
- case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
- case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
- case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
- case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
- case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
- case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
- case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
- case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
- }
- GGML_ASSERT(wtype != GGML_TYPE_COUNT);
- return wtype;
- }
- size_t ggml_tensor_overhead(void) {
- return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
- }
- static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
- return tensor->nb[0] > tensor->nb[1];
- }
- static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
- tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0] ) &&
- (t0->ne[1] == t1->ne[1] ) &&
- (t0->ne[2] == t1->ne[2] ) &&
- (t0->ne[3] == t1->ne[3] );
- }
- // check if t1 can be represented as a repeatition of t0
- static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t1->ne[0]%t0->ne[0] == 0) &&
- (t1->ne[1]%t0->ne[1] == 0) &&
- (t1->ne[2]%t0->ne[2] == 0) &&
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
- }
- static inline int ggml_up32(int n) {
- return (n + 31) & ~31;
- }
- //static inline int ggml_up64(int n) {
- // return (n + 63) & ~63;
- //}
- static inline int ggml_up(int n, int m) {
- // assert m is a power of 2
- GGML_ASSERT((m & (m - 1)) == 0);
- return (n + m - 1) & ~(m - 1);
- }
- // assert that pointer is aligned to GGML_MEM_ALIGN
- #define ggml_assert_aligned(ptr) \
- GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_context * ggml_init(struct ggml_init_params params) {
- // make this function thread safe
- ggml_critical_section_start();
- static bool is_first_call = true;
- if (is_first_call) {
- // initialize time system (required on Windows)
- ggml_time_init();
- // initialize GELU, SILU and EXP F32 tables
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- ggml_fp16_t ii;
- for (int i = 0; i < (1 << 16); ++i) {
- uint16_t ui = i;
- memcpy(&ii, &ui, sizeof(ii));
- const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
- table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
- table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
- table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- // initialize g_state
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- g_state = (struct ggml_state) {
- /*.contexts =*/ { { 0 } },
- };
- for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
- g_state.contexts[i].used = false;
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- #if defined(GGML_USE_CUBLAS)
- ggml_init_cublas();
- #elif defined(GGML_USE_CLBLAST)
- ggml_cl_init();
- #endif
- is_first_call = false;
- }
- // find non-used context in g_state
- struct ggml_context * ctx = NULL;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (!g_state.contexts[i].used) {
- g_state.contexts[i].used = true;
- ctx = &g_state.contexts[i].context;
- GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
- break;
- }
- }
- if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
- ggml_critical_section_end();
- return NULL;
- }
- const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
- *ctx = (struct ggml_context) {
- /*.mem_size =*/ mem_size,
- /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
- /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
- /*.no_alloc =*/ params.no_alloc,
- /*.n_objects =*/ 0,
- /*.objects_begin =*/ NULL,
- /*.objects_end =*/ NULL,
- /*.scratch =*/ { 0, 0, NULL, },
- /*.scratch_save =*/ { 0, 0, NULL, },
- };
- GGML_ASSERT(ctx->mem_buffer != NULL);
- ggml_assert_aligned(ctx->mem_buffer);
- GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
- ggml_critical_section_end();
- return ctx;
- }
- void ggml_free(struct ggml_context * ctx) {
- // make this function thread safe
- ggml_critical_section_start();
- bool found = false;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (&g_state.contexts[i].context == ctx) {
- g_state.contexts[i].used = false;
- GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
- __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
- if (ctx->mem_buffer_owned) {
- GGML_ALIGNED_FREE(ctx->mem_buffer);
- }
- found = true;
- break;
- }
- }
- if (!found) {
- GGML_PRINT_DEBUG("%s: context not found\n", __func__);
- }
- ggml_critical_section_end();
- }
- size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
- }
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
- const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
- ctx->scratch = scratch;
- return result;
- }
- void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
- ctx->no_alloc = no_alloc;
- }
- // IMPORTANT:
- // when creating "opt" tensors, always save and load the scratch buffer
- // this is an error prone process, but it is necessary to support inplace
- // operators when using scratch buffers
- // TODO: implement a better way
- void ggml_scratch_save(struct ggml_context * ctx) {
- ctx->scratch_save = ctx->scratch;
- ctx->scratch.data = NULL;
- }
- void ggml_scratch_load(struct ggml_context * ctx) {
- ctx->scratch = ctx->scratch_save;
- }
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_tensor * ggml_new_tensor_impl(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t* ne,
- void* data) {
- // always insert objects at the end of the context's memory pool
- struct ggml_object * obj_cur = ctx->objects_end;
- const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
- const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
- const size_t cur_end = cur_offs + cur_size;
- size_t size_needed = 0;
- if (data == NULL && !ctx->no_alloc) {
- size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
- for (int i = 1; i < n_dims; i++) {
- size_needed *= ne[i];
- }
- // align to GGML_MEM_ALIGN
- size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
- }
- char * const mem_buffer = ctx->mem_buffer;
- struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
- if (ctx->scratch.data == NULL || data != NULL) {
- size_needed += GGML_TENSOR_SIZE;
- if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
- assert(false);
- return NULL;
- }
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = size_needed,
- .next = NULL,
- };
- } else {
- if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
- GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
- __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
- assert(false);
- return NULL;
- }
- if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
- assert(false);
- return NULL;
- }
- data = (char * const) ctx->scratch.data + ctx->scratch.offs;
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = GGML_TENSOR_SIZE,
- .next = NULL,
- };
- //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
- ctx->scratch.offs += size_needed;
- }
- if (obj_cur != NULL) {
- obj_cur->next = obj_new;
- } else {
- // this is the first object in this context
- ctx->objects_begin = obj_new;
- }
- ctx->objects_end = obj_new;
- //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
- struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
- ggml_assert_aligned(result);
- *result = (struct ggml_tensor) {
- /*.type =*/ type,
- /*.backend =*/ GGML_BACKEND_CPU,
- /*.n_dims =*/ n_dims,
- /*.ne =*/ { 1, 1, 1, 1 },
- /*.nb =*/ { 0, 0, 0, 0 },
- /*.op =*/ GGML_OP_NONE,
- /*.is_param =*/ false,
- /*.grad =*/ NULL,
- /*.src0 =*/ NULL,
- /*.src1 =*/ NULL,
- /*.opt =*/ { NULL },
- /*.n_tasks =*/ 0,
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
- /*.name =*/ { 0 },
- /*.pad =*/ { 0 },
- };
- // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
- //ggml_assert_aligned(result->data);
- for (int i = 0; i < n_dims; i++) {
- result->ne[i] = ne[i];
- }
- result->nb[0] = GGML_TYPE_SIZE[type];
- result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
- }
- ctx->n_objects++;
- return result;
- }
- struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
- return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
- }
- struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0) {
- return ggml_new_tensor(ctx, type, 1, &ne0);
- }
- struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1) {
- const int64_t ne[2] = { ne0, ne1 };
- return ggml_new_tensor(ctx, type, 2, ne);
- }
- struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- return ggml_new_tensor(ctx, type, 3, ne);
- }
- struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- return ggml_new_tensor(ctx, type, 4, ne);
- }
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- ggml_scratch_save(ctx);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- ggml_scratch_load(ctx);
- ggml_set_i32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- ggml_scratch_save(ctx);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_scratch_load(ctx);
- ggml_set_f32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
- return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
- }
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- memset(tensor->data, 0, ggml_nbytes(tensor));
- return tensor;
- }
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return 0.0f;
- }
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return 0.0f;
- }
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- void * ggml_get_data(const struct ggml_tensor * tensor) {
- return tensor->data;
- }
- float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
- assert(tensor->type == GGML_TYPE_F32);
- return (float *)(tensor->data);
- }
- const char * ggml_get_name(const struct ggml_tensor * tensor) {
- return tensor->name;
- }
- void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
- strncpy(tensor->name, name, sizeof(tensor->name));
- tensor->name[sizeof(tensor->name) - 1] = '\0';
- }
- struct ggml_tensor * ggml_view_tensor(
- struct ggml_context * ctx,
- const struct ggml_tensor * src) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
- result->nb[0] = src->nb[0];
- result->nb[1] = src->nb[1];
- result->nb[2] = src->nb[2];
- result->nb[3] = src->nb[3];
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // ggml_dup
- struct ggml_tensor * ggml_dup_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DUP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, true);
- }
- // ggml_add
- struct ggml_tensor * ggml_add_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, true);
- }
- // ggml_add1
- struct ggml_tensor * ggml_add1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, true);
- }
- // ggml_acc
- struct ggml_tensor * ggml_acc_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- GGML_ASSERT(b->type == GGML_TYPE_F32);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
- ((int32_t *) c->data)[0] = nb1;
- ((int32_t *) c->data)[1] = nb2;
- ((int32_t *) c->data)[2] = nb3;
- ((int32_t *) c->data)[3] = offset;
- ((int32_t *) c->data)[4] = inplace ? 1 : 0;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_ACC;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- result->opt[0] = c;
- return result;
- }
- struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- // ggml_sub
- struct ggml_tensor * ggml_sub_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SUB;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, true);
- }
- // ggml_mul
- struct ggml_tensor * ggml_mul_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- // TODO: support less-strict constraint
- // GGML_ASSERT(ggml_can_repeat(b, a));
- GGML_ASSERT(ggml_can_repeat_rows(b, a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(is_node == false);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MUL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, true);
- }
- // ggml_div
- struct ggml_tensor * ggml_div_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(is_node == false);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DIV;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, true);
- }
- // ggml_sqr
- struct ggml_tensor * ggml_sqr_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQR;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, true);
- }
- // ggml_sqrt
- struct ggml_tensor * ggml_sqrt_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQRT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, true);
- }
- // ggml_log
- struct ggml_tensor * ggml_log_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_LOG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, true);
- }
- // ggml_sum
- struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_SUM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_sum_rows
- struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- int64_t ne[4] = {1,1,1,1};
- for (int i=1; i<a->n_dims; ++i) {
- ne[i] = a->ne[i];
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
- result->op = GGML_OP_SUM_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_mean
- struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
- int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
- result->op = GGML_OP_MEAN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_repeat
- struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(a, b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (ggml_are_same_shape(a, b) && !is_node) {
- return a;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
- result->op = GGML_OP_REPEAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_abs
- struct ggml_tensor * ggml_abs_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ABS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_abs_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_abs_impl(ctx, a, true);
- }
- // ggml_sgn
- struct ggml_tensor * ggml_sgn_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SGN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sgn_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sgn_impl(ctx, a, true);
- }
- // ggml_neg
- struct ggml_tensor * ggml_neg_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_NEG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_neg_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_neg_impl(ctx, a, true);
- }
- // ggml_step
- struct ggml_tensor * ggml_step_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_STEP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_step_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_step_impl(ctx, a, true);
- }
- // ggml_relu
- struct ggml_tensor * ggml_relu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_RELU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_relu_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_relu_impl(ctx, a, true);
- }
- // ggml_gelu
- struct ggml_tensor * ggml_gelu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_GELU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_gelu_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_gelu_impl(ctx, a, true);
- }
- // ggml_silu
- struct ggml_tensor * ggml_silu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SILU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_silu_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_silu_impl(ctx, a, true);
- }
- // ggml_silu_back
- struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- bool is_node = false;
- if (a->grad || b->grad) {
- // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SILU_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_norm
- struct ggml_tensor * ggml_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store epsilon here?
- return result;
- }
- struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_norm_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_norm_impl(ctx, a, true);
- }
- struct ggml_tensor * ggml_rms_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_RMS_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store epsilon here?
- return result;
- }
- struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_rms_norm_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_rms_norm_impl(ctx, a, true);
- }
- struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- bool is_node = false;
- if (a->grad) {
- // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_RMS_NORM_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_mul_mat
- struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
- result->op = GGML_OP_MUL_MAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_scale
- struct ggml_tensor * ggml_scale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SCALE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_scale_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_scale_impl(ctx, a, b, true);
- }
- // ggml_set
- struct ggml_tensor * ggml_set_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
- (( int32_t * ) c->data)[0] = nb1;
- (( int32_t * ) c->data)[1] = nb2;
- (( int32_t * ) c->data)[2] = nb3;
- (( int32_t * ) c->data)[3] = offset;
- (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_SET;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- result->opt[0] = c;
- return result;
- }
- struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
- }
- struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
- }
- // ggml_cpy
- struct ggml_tensor * ggml_cpy_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = ggml_view_tensor(ctx, b);
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_cpy_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b, true);
- }
- // ggml_cont
- struct ggml_tensor * ggml_cont_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_cont_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a, true);
- }
- // ggml_reshape
- struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(b));
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (b->grad) {
- // gradient propagation is not supported
- //GGML_ASSERT(false);
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[1] = { ne0 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_view_1d
- struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
- return result;
- }
- // ggml_view_2d
- struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1,
- size_t offset) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
- result->nb[1] = nb1;
- result->nb[2] = result->nb[1]*ne1;
- result->nb[3] = result->nb[2];
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
- return result;
- }
- // ggml_view_3d
- struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1,
- size_t nb2,
- size_t offset) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = result->nb[2]*ne2;
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
- return result;
- }
- // ggml_view_4d
- struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = nb3;
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
- return result;
- }
- // ggml_permute
- struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3) {
- GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
- GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
- GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
- GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
- GGML_ASSERT(axis0 != axis1);
- GGML_ASSERT(axis0 != axis2);
- GGML_ASSERT(axis0 != axis3);
- GGML_ASSERT(axis1 != axis2);
- GGML_ASSERT(axis1 != axis3);
- GGML_ASSERT(axis2 != axis3);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- int ne[GGML_MAX_DIMS];
- int nb[GGML_MAX_DIMS];
- ne[axis0] = a->ne[0];
- ne[axis1] = a->ne[1];
- ne[axis2] = a->ne[2];
- ne[axis3] = a->ne[3];
- nb[axis0] = a->nb[0];
- nb[axis1] = a->nb[1];
- nb[axis2] = a->nb[2];
- nb[axis3] = a->nb[3];
- result->ne[0] = ne[0];
- result->ne[1] = ne[1];
- result->ne[2] = ne[2];
- result->ne[3] = ne[3];
- result->nb[0] = nb[0];
- result->nb[1] = nb[1];
- result->nb[2] = nb[2];
- result->nb[3] = nb[3];
- result->op = GGML_OP_PERMUTE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- if (is_node) {
- result->padding[0] = axis0;
- result->padding[1] = axis1;
- result->padding[2] = axis2;
- result->padding[3] = axis3;
- }
- return result;
- }
- // ggml_transpose
- struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- result->ne[0] = a->ne[1];
- result->ne[1] = a->ne[0];
- result->nb[0] = a->nb[1];
- result->nb[1] = a->nb[0];
- result->op = GGML_OP_TRANSPOSE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_get_rows
- struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
- result->op = GGML_OP_GET_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_get_rows_back
- struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
- result->op = GGML_OP_GET_ROWS_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- result->opt[0] = c;
- return result;
- }
- // ggml_diag
- struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(a->ne[1] == 1);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
- result->op = GGML_OP_DIAG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_diag_mask_inf
- struct ggml_tensor * ggml_diag_mask_inf_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
- ((int32_t *) b->data)[0] = n_past;
- ((int32_t *) b->data)[1] = inplace ? 1 : 0;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_DIAG_MASK_INF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
- }
- // ggml_diag_mask_zero
- struct ggml_tensor * ggml_diag_mask_zero_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
- ggml_set_name(b, "n_past, inplace");
- ((int32_t *) b->data)[0] = n_past;
- ((int32_t *) b->data)[1] = inplace ? 1 : 0;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_DIAG_MASK_ZERO;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
- }
- // ggml_soft_max
- struct ggml_tensor * ggml_soft_max_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SOFT_MAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, true);
- }
- // ggml_rope
- struct ggml_tensor * ggml_rope_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- bool inplace) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
- ((int32_t *) b->data)[0] = n_past;
- ((int32_t *) b->data)[1] = n_dims;
- ((int32_t *) b->data)[2] = mode;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_ROPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
- }
- struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
- }
- // ggml_rope_back
- struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
- ggml_set_name(b, "n_past, n_dims, mode");
- ((int32_t *) b->data)[0] = n_past;
- ((int32_t *) b->data)[1] = n_dims;
- ((int32_t *) b->data)[2] = mode;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_ROPE_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_alibi
- struct ggml_tensor * ggml_alibi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_head,
- float bias_max) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
- ((int32_t *) b->data)[0] = n_past;
- ((int32_t *) b->data)[1] = n_head;
- GGML_ASSERT(sizeof(float) == sizeof(int32_t));
- (((float *) b->data)[2]) = bias_max;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_ALIBI;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_clamp
- struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
- ((float *) b->data)[0] = min;
- ((float *) b->data)[1] = max;
- ggml_scratch_load(ctx);
- result->op = GGML_OP_CLAMP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_conv_1d_1s
- struct ggml_tensor * ggml_conv_1d_1s(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- result->op = GGML_OP_CONV_1D_1S;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_conv_1d_2s
- struct ggml_tensor * ggml_conv_1d_2s(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- result->op = GGML_OP_CONV_1D_2S;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_flash_attn
- struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- bool is_node = false;
- if (q->grad || k->grad || v->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
- result->op = GGML_OP_FLASH_ATTN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = q;
- result->src1 = k;
- result->opt[0] = v;
- result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
- return result;
- }
- // ggml_flash_ff
- struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1) {
- GGML_ASSERT(ggml_can_mul_mat(b0, a));
- // TODO: more checks
- bool is_node = false;
- if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
- result->op = GGML_OP_FLASH_FF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b0;
- result->opt[0] = b1;
- result->opt[1] = c0;
- result->opt[2] = c1;
- return result;
- }
- // ggml_map_unary
- struct ggml_tensor * ggml_map_unary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
- *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
- struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MAP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->opt[0] = addr_tensor;
- return result;
- }
- struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, false);
- }
- struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, true);
- }
- // ggml_map_binary
- struct ggml_tensor * ggml_map_binary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
- *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
- struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MAP_BINARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- result->opt[0] = addr_tensor;
- return result;
- }
- struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
- }
- struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor) {
- tensor->is_param = true;
- GGML_ASSERT(tensor->grad == NULL);
- tensor->grad = ggml_dup_tensor(ctx, tensor);
- }
- // ggml_compute_forward_dup
- static void ggml_compute_forward_dup_same_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(src0->type == dst->type);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const size_t nb00 = src0->nb[0];
- const size_t nb0 = dst->nb[0];
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by elements
- const int ne = ggml_nelements(dst);
- const int dr = (ne + nth - 1) / nth;
- const int ie0 = dr * ith;
- const int ie1 = MIN(ie0 + dr, ne);
- if (ie0 < ie1) {
- memcpy(
- ((char *) dst->data + ie0*nb0),
- ((char *) src0->data + ie0*nb00),
- (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
- }
- }
- static void ggml_compute_forward_dup_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_is_quantized(dst->type)) {
- quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- }
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (nb00 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_is_quantized(dst->type)) {
- quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- quantize_row_q(src0_ptr, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(float));
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add
- static void ggml_compute_forward_add_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(float)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_add_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_add_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(float)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
- }
- static void ggml_compute_forward_add_f16_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(ggml_fp16_t)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
- }
- static void ggml_compute_forward_add_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- // src1 and dst are same shape as src0 => same indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = i01;
- const int i3 = i03;
- const int i2 = i02;
- const int i1 = i01;
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
- void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
- assert(ne00 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne00);
- // add src1
- ggml_vec_acc_f32(ne00, wdata, src1_row);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne00);
- }
- }
- static void ggml_compute_forward_add(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- {
- ggml_compute_forward_add_q_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add1
- static void ggml_compute_forward_add1_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_add1_f32);
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data), 0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_add1_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- *(float *) src1->data);
- #endif
- }
- }
- static void ggml_compute_forward_add1_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_f16_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
- // we don't support permuted src0
- GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
- void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
- assert(ne0 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne0);
- // add src1
- ggml_vec_acc1_f32(ne0, wdata, v);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne0);
- }
- }
- static void ggml_compute_forward_add1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add1_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- {
- ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_acc
- static void ggml_compute_forward_acc_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(opt0->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(opt0) == 5);
- // view src0 and dst with these strides and data offset inbytes during acc
- // nb0 is implicitely element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) opt0->data)[0];
- size_t nb2 = ((int32_t *) opt0->data)[1];
- size_t nb3 = ((int32_t *) opt0->data)[2];
- size_t offset = ((int32_t *) opt0->data)[3];
- bool inplace = (bool) ((int32_t *) opt0->data)[4];
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- // src0 and dst as viewed during acc
- const size_t nb0 = ggml_element_size(src0);
- const size_t nb00 = nb0;
- const size_t nb01 = nb1;
- const size_t nb02 = nb2;
- const size_t nb03 = nb3;
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
- #else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- }
- }
- static void ggml_compute_forward_acc(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sub
- static void ggml_compute_forward_sub_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vsub(
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_sub_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_sub(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sub_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul
- static void ggml_compute_forward_mul_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- #ifdef GGML_USE_CUBLAS
- if (src1->backend == GGML_BACKEND_CUDA) {
- if (ith == 0) {
- ggml_cuda_mul(src0, src1, dst);
- }
- return;
- }
- #endif
- const int64_t nr = ggml_nrows(src0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(ne00 == ne10);
- if (nb10 == sizeof(float)) {
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_mul_f32);
- vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
- #else
- ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- for (int64_t i0 = 0; i0 < ne00; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
- }
- }
- }
- }
- static void ggml_compute_forward_mul(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_div
- static void ggml_compute_forward_div_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vdiv(
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_div_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
- }
- }
- }
- }
- static void ggml_compute_forward_div(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_div_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqr
- static void ggml_compute_forward_sqr_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqr_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqr(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqr_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqrt
- static void ggml_compute_forward_sqrt_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqrt_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqrt(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqrt_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_log
- static void ggml_compute_forward_log_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_log_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_log(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_log_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum
- static void ggml_compute_forward_sum_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- ggml_float sum = 0;
- ggml_float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_ggf(ne00,
- &row_sum,
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- sum += row_sum;
- }
- }
- }
- ((float *) dst->data)[0] = sum;
- }
- static void ggml_compute_forward_sum(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum_rows
- static void ggml_compute_forward_sum_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(dst->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- GGML_ASSERT(ne0 == 1);
- GGML_ASSERT(ne1 == ne01);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- for (int64_t i3 = 0; i3 < ne03; i3++) {
- for (int64_t i2 = 0; i2 < ne02; i2++) {
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
- float row_sum = 0;
- ggml_vec_sum_f32(ne00, &row_sum, src_row);
- dst_row[0] = row_sum;
- }
- }
- }
- }
- static void ggml_compute_forward_sum_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_rows_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mean
- static void ggml_compute_forward_mean_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- UNUSED(ne0);
- UNUSED(ne1);
- UNUSED(ne2);
- UNUSED(ne3);
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
- }
- static void ggml_compute_forward_mean(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_repeat
- static void ggml_compute_forward_repeat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_cpy_f32(ne00,
- (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
- (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_abs
- static void ggml_compute_forward_abs_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_abs_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_abs(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_abs_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sgn
- static void ggml_compute_forward_sgn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sgn_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sgn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sgn_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_neg
- static void ggml_compute_forward_neg_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_neg_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_neg(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_neg_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_step
- static void ggml_compute_forward_step_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_step_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_step(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_step_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_relu
- static void ggml_compute_forward_relu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_relu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_relu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_gelu
- static void ggml_compute_forward_gelu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //printf("XXXXXXXX gelu\n");
- }
- // ggml_compute_forward_silu
- static void ggml_compute_forward_silu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_silu_back
- static void ggml_compute_forward_silu_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * grad,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(grad));
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src0, grad));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])),
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * grad,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_norm
- static void ggml_compute_forward_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const float eps = 1e-5f; // TODO: make this a parameter
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_rms_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const float eps = 1e-6f; // TODO: make this a parameter
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
- const float scale = 1.0f/sqrtf(mean + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_rms_norm_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const float eps = 1e-6f; // TODO: make this a parameter
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- // src1 is same shape as src0 => same indices
- const int64_t i11 = i01;
- const int64_t i12 = i02;
- const int64_t i13 = i03;
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
- ggml_float sum_xx = 0.0;
- ggml_float sum_xdz = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum_xx += (ggml_float)(x[i00] * x[i00]);
- sum_xdz += (ggml_float)(x[i00] * dz[i00]);
- }
- //const float mean = (float)(sum_xx)/ne00;
- const float mean_eps = (float)(sum_xx)/ne00 + eps;
- const float sum_eps = (float)(sum_xx) + eps*ne00;
- //const float mean_xdz = (float)(sum_xdz)/ne00;
- // we could cache rms from forward pass to improve performance.
- // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
- //const float rms = sqrtf(mean_eps);
- const float rrms = 1.0f / sqrtf(mean_eps);
- //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
- {
- // z = rms_norm(x)
- //
- // rms_norm(src0) =
- // scale(
- // src0,
- // div(
- // 1,
- // sqrt(
- // add(
- // scale(
- // sum(
- // sqr(
- // src0)),
- // (1.0/N)),
- // eps))));
- // postorder:
- // ## op args grad
- // 00 param src0 grad[#00]
- // 01 const 1
- // 02 sqr (#00) grad[#02]
- // 03 sum (#02) grad[#03]
- // 04 const 1/N
- // 05 scale (#03, #04) grad[#05]
- // 06 const eps
- // 07 add (#05, #06) grad[#07]
- // 08 sqrt (#07) grad[#08]
- // 09 div (#01,#08) grad[#09]
- // 10 scale (#00,#09) grad[#10]
- //
- // backward pass, given grad[#10]
- // #10: scale
- // grad[#00] += scale(grad[#10],#09)
- // grad[#09] += sum(mul(grad[#10],#00))
- // #09: div
- // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
- // #08: sqrt
- // grad[#07] += mul(grad[#08], div(0.5, #08))
- // #07: add
- // grad[#05] += grad[#07]
- // #05: scale
- // grad[#03] += scale(grad[#05],#04)
- // #03: sum
- // grad[#02] += repeat(grad[#03], #02)
- // #02:
- // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
- //
- // substitute and simplify:
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#02] = repeat(grad[#03], #02)
- // grad[#02] = repeat(scale(grad[#05],#04), #02)
- // grad[#02] = repeat(scale(grad[#07],#04), #02)
- // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
- // a = b*c + d*e
- // a = b*c*f/f + d*e*f/f
- // a = (b*c*f + d*e*f)*(1/f)
- // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
- // a = (b + d*e/c)*c
- // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
- // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
- // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
- // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
- // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
- // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
- // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- }
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // post-order:
- // dx := x
- // dx := scale(dx,-mean_xdz/mean_eps)
- // dx := add(dx, dz)
- // dx := scale(dx, rrms)
- float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_vec_cpy_f32 (ne00, dx, x);
- // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
- ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
- ggml_vec_acc_f32 (ne00, dx, dz);
- ggml_vec_scale_f32(ne00, dx, rrms);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul_mat
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- // helper function to determine if it is better to use BLAS or not
- // for large matrices, BLAS is faster
- static bool ggml_compute_forward_mul_mat_use_blas(
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- //const int64_t ne00 = src0->ne[0];
- //const int64_t ne01 = src0->ne[1];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
- return true;
- }
- return false;
- }
- #endif
- static void ggml_compute_forward_mul_mat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- const int64_t ne10 = src1->ne[0];
- #endif
- const int64_t ne11 = src1->ne[1];
- #ifndef NDEBUG
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const int nb00 = src0->nb[0];
- #endif
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- #ifndef NDEBUG
- const int nb10 = src1->nb[0];
- #endif
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- assert(ne02 == ne12);
- assert(ne03 == ne13);
- assert(ne2 == ne12);
- assert(ne3 == ne13);
- // we don't support permuted src0 or src1
- assert(nb00 == sizeof(float));
- assert(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- assert(nb0 == sizeof(float));
- assert(nb0 <= nb1);
- assert(nb1 <= nb2);
- assert(nb2 <= nb3);
- assert(ne0 == ne01);
- assert(ne1 == ne11);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_CUBLAS)
- if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #elif defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by src0 rows using ggml_vec_dot_f32
- // total rows in src0
- const int nr = ne01*ne02*ne03;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- for (int64_t ic = 0; ic < ne11; ++ic) {
- // src1 indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = ic;
- // dst indices
- const int i0 = i01;
- const int i1 = i11;
- const int i2 = i02;
- const int i3 = i03;
- ggml_vec_dot_f32(ne00,
- (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
- (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
- }
- }
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_mul_mat_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // TODO: we don't support permuted src0
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_CUBLAS)
- if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #elif defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- float * const wdata = params->wdata;
- {
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- for (int64_t i00 = 0; i00 < ne00; ++i00) {
- wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
- }
- }
- assert(id*sizeof(float) <= params->wsize);
- }
- const float * x = wdata;
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- // zT = y * xT
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- ggml_fp16_t * const wdata = params->wdata;
- size_t id = 0;
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
- }
- }
- }
- }
- GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // fp16 -> half the size, so divide by 2
- // TODO: do not support transposed src1
- assert(nb10/2 == sizeof(ggml_fp16_t));
- // parallelize by src0 rows using ggml_vec_dot_f16
- // total rows in src0
- const int nr = ne01*ne02*ne03;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- ggml_fp16_t * wdata = params->wdata;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int i13 = i03;
- const int i12 = i02;
- const int i0 = i01;
- const int i2 = i02;
- const int i3 = i03;
- ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
- float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
- for (int64_t ic = 0; ic < ne11; ++ic) {
- ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
- }
- }
- //int64_t t1 = ggml_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_mul_mat_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- const enum ggml_type type = src0->type;
- quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
- vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
- enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_CUBLAS)
- if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #elif defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float * const wdata = params->wdata;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- {
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
- id += ne00;
- }
- assert(id*sizeof(float) <= params->wsize);
- }
- const float * x = wdata;
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- char * wdata = params->wdata;
- const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- wdata += row_size;
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by src0 rows using ggml_vec_dot_q
- // total rows in src0
- const int nr = ne01*ne02*ne03;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- void * wdata = params->wdata;
- const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int i13 = i03;
- const int i12 = i02;
- const int i0 = i01;
- const int i2 = i02;
- const int i3 = i03;
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
- float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
- assert(ne00 % 32 == 0);
- for (int64_t ic = 0; ic < ne11; ++ic) {
- vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
- }
- }
- //int64_t t1 = ggml_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- {
- ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_scale
- static void ggml_compute_forward_scale_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scale factor
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const size_t nb01 = src0->nb[1];
- const size_t nb1 = dst->nb[1];
- for (int i1 = ir0; i1 < ir1; i1++) {
- if (dst->data != src0->data) {
- // src0 is same shape as dst => same indices
- memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
- }
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
- }
- }
- static void ggml_compute_forward_scale(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_set
- static void ggml_compute_forward_set_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(opt0->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(opt0) == 5);
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitely element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) opt0->data)[0];
- size_t nb2 = ((int32_t *) opt0->data)[1];
- size_t nb3 = ((int32_t *) opt0->data)[2];
- size_t offset = ((int32_t *) opt0->data)[3];
- bool inplace = (bool) ((int32_t *) opt0->data)[4];
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb12 = src1->nb[2];
- const size_t nb13 = src1->nb[3];
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
- }
- static void ggml_compute_forward_set(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_cpy
- static void ggml_compute_forward_cpy(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_cont
- static void ggml_compute_forward_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_reshape
- static void ggml_compute_forward_reshape(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- UNUSED(dst);
- }
- // ggml_compute_forward_view
- static void ggml_compute_forward_view(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_permute
- static void ggml_compute_forward_permute(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_transpose
- static void ggml_compute_forward_transpose(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_get_rows
- static void ggml_compute_forward_get_rows_q(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- dequantize_row_q(
- (const void *) ((char *) src0->data + r*src0->nb[1]),
- (float *) ((char *) dst->data + i*dst->nb[1]), nc);
- }
- }
- static void ggml_compute_forward_get_rows_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i*dst->nb[1]),
- (float *) ((char *) src0->data + r*src0->nb[1]));
- }
- }
- static void ggml_compute_forward_get_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- {
- ggml_compute_forward_get_rows_q(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_get_rows_back
- static void ggml_compute_forward_get_rows_back_f32_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(opt0, dst));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- ggml_compute_forward_dup_same_cont(params, opt0, dst);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(opt0, dst));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- ggml_compute_forward_dup_same_cont(params, opt0, dst);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) src0->data + i*src0->nb[1]));
- }
- }
- static void ggml_compute_forward_get_rows_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_diag
- static void ggml_compute_forward_diag_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int ne2 = dst->ne[2];
- const int ne3 = dst->ne[3];
- GGML_ASSERT(ne00 == ne0);
- GGML_ASSERT(ne00 == ne1);
- GGML_ASSERT(ne01 == 1);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne3);
- const int nb00 = src0->nb[0];
- //const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = 0; i1 < ne1; i1++) {
- float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
- for (int i0 = 0; i0 < i1; i0++) {
- d[i0] = 0;
- }
- d[i1] = s[i1];
- for (int i0 = i1+1; i0 < ne0; i0++) {
- d[i0] = 0;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_diag_mask_inf
- static void ggml_compute_forward_diag_mask_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const float value) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
- const int ith = params->ith;
- const int nth = params->nth;
- const int n_past = ((int32_t *) src1->data)[0];
- const bool inplace = (bool)((int32_t *) src1->data)[1];
- assert(n_past >= 0);
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int k = 0; k < nz; k++) {
- for (int j = ith; j < nr; j += nth) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag_mask_inf(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_diag_mask_zero(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_soft_max
- static void ggml_compute_forward_soft_max_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(sp[i]));
- }
- #endif
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, sp);
- ggml_float sum = 0.0;
- uint16_t scvt;
- for (int i = 0; i < nc; i++) {
- if (sp[i] == -INFINITY) {
- dp[i] = 0.0f;
- } else {
- // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
- ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
- sum += (ggml_float)val;
- dp[i] = val;
- }
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(nc, dp, sum);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dp[i]));
- assert(!isinf(dp[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_soft_max(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_alibi
- static void ggml_compute_forward_alibi_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_head = ((int32_t *) src1->data)[1];
- const float max_bias = ((float *) src1->data)[2];
- assert(n_past >= 0);
- const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int ne1 = src0->ne[1]; // seq_len_without_past
- //const int ne2 = src0->ne[2]; // n_head -> this is k
- //const int ne3 = src0->ne[3]; // 1 -> bsz
- const int n = ggml_nrows(src0);
- const int ne2_ne3 = n/ne1; // ne2*ne3
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- //const int nb3 = src0->nb[3];
- assert(nb0 == sizeof(float));
- assert(ne1 + n_past == ne0); (void) n_past;
- // add alibi to src0 (KQ_scaled)
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int i = 0; i < ne0; i++) {
- for (int j = 0; j < ne1; j++) {
- for (int k = 0; k < ne2_ne3; k++) {
- float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
- float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
- // TODO: k*nb2 or k*nb3
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- pdst[0] = (i-ne0+1) * m_k + src[0];
- }
- }
- }
- }
- static void ggml_compute_forward_alibi_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_head = ((int32_t *) src1->data)[1];
- const float max_bias = ((float *) src1->data)[2];
- assert(n_past >= 0);
- const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int ne1 = src0->ne[1]; // seq_len_without_past
- //const int ne2 = src0->ne[2]; // n_head -> this is k
- //const int ne3 = src0->ne[3]; // 1 -> bsz
- const int n = ggml_nrows(src0);
- const int ne2_ne3 = n/ne1; // ne2*ne3
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- //const int nb3 = src0->nb[3];
- assert(nb0 == sizeof(ggml_fp16_t));
- assert(ne1 + n_past == ne0); (void) n_past;
- // add alibi to src0 (KQ_scaled)
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int i = 0; i < ne0; i++) {
- for (int j = 0; j < ne1; j++) {
- for (int k = 0; k < ne2_ne3; k++) {
- ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
- float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
- // TODO: k*nb2 or k*nb3
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- // we return F32
- pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
- }
- }
- }
- }
- static void ggml_compute_forward_alibi(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_alibi_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_alibi_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_clamp
- static void ggml_compute_forward_clamp_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int min = ((float *) src1->data)[0];
- const int max = ((float *) src1->data)[1];
- const int ith = params->ith;
- const int nth = params->nth;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
- for (int i = 0; i < nc; i++) {
- dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
- }
- }
- }
- static void ggml_compute_forward_clamp(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_clamp_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope
- static void ggml_compute_forward_rope_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- assert(n_past >= 0);
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb00 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = (float)p;
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[1];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[1] = x0*sin_theta + x1*cos_theta;
- }
- } else {
- // TODO: this is probably wrong, but I can't figure it out ..
- // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- assert(n_past >= 0);
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = (float)p;
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[1]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- // TODO: this is probably wrong, but I can't figure it out ..
- // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope_back
- static void ggml_compute_forward_rope_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // y = rope(x, src1)
- // dx = rope_back(dy, src1)
- // src0 is dy, src1 contains options
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- assert(n_past >= 0);
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- assert(nb0 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = (float)p;
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = dy[0];
- const float dy1 = dy[1];
- dx[0] = dy0*cos_theta + dy1*sin_theta;
- dx[1] = - dy0*sin_theta + dy1*cos_theta;
- }
- } else {
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = dy[0];
- const float dy1 = dy[n_dims/2];
- dx[0] = dy0*cos_theta + dy1*sin_theta;
- dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_back_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // y = rope(x, src1)
- // dx = rope_back(dy, src1)
- // src0 is dy, src1 contains options
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- assert(n_past >= 0);
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- assert(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = (float)p;
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = GGML_FP16_TO_FP32(dy[0]);
- const float dy1 = GGML_FP16_TO_FP32(dy[1]);
- dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
- dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
- }
- } else {
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = GGML_FP16_TO_FP32(dy[0]);
- const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
- dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
- dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_1d_1s
- static void ggml_compute_forward_conv_1d_1s_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_1s_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_1s(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_1d_2s
- static void ggml_compute_forward_conv_1d_2s_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0/2] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_2s_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0/2] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_2s(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_attn
- static void ggml_compute_forward_flash_attn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t neq0 = q->ne[0];
- const int64_t neq1 = q->ne[1];
- const int64_t neq2 = q->ne[2];
- const int64_t neq3 = q->ne[3];
- const int64_t nek0 = k->ne[0];
- const int64_t nek1 = k->ne[1];
- //const int64_t nek2 = k->ne[2];
- //const int64_t nek3 = k->ne[3];
- //const int64_t nev0 = v->ne[0];
- const int64_t nev1 = v->ne[1];
- //const int64_t nev2 = v->ne[2];
- //const int64_t nev3 = v->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- const int nbk0 = k->nb[0];
- const int nbk1 = k->nb[1];
- const int nbk2 = k->nb[2];
- const int nbk3 = k->nb[3];
- const int nbq0 = q->nb[0];
- const int nbq1 = q->nb[1];
- const int nbq2 = q->nb[2];
- const int nbq3 = q->nb[3];
- const int nbv0 = v->nb[0];
- const int nbv1 = v->nb[1];
- const int nbv2 = v->nb[2];
- const int nbv3 = v->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL];
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f32(nek1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S);
- }
- }
- }
- static void ggml_compute_forward_flash_attn_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t neq0 = q->ne[0];
- const int64_t neq1 = q->ne[1];
- const int64_t neq2 = q->ne[2];
- const int64_t neq3 = q->ne[3];
- const int64_t nek0 = k->ne[0];
- const int64_t nek1 = k->ne[1];
- //const int64_t nek2 = k->ne[2];
- //const int64_t nek3 = k->ne[3];
- //const int64_t nev0 = v->ne[0];
- const int64_t nev1 = v->ne[1];
- //const int64_t nev2 = v->ne[2];
- //const int64_t nev3 = v->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- const int nbk0 = k->nb[0];
- const int nbk1 = k->nb[1];
- const int nbk2 = k->nb[2];
- const int nbk3 = k->nb[3];
- const int nbq0 = q->nb[0];
- const int nbq1 = q->nb[1];
- const int nbq2 = q->nb[2];
- const int nbq3 = q->nb[3];
- const int nbv0 = v->nb[0];
- const int nbv1 = v->nb[1];
- const int nbv2 = v->nb[2];
- const int nbv3 = v->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16(neq0,
- S + i1,
- (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- } else {
- for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16_unroll(neq0, nbk1,
- S + i1,
- ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL];
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f16(nek1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S16);
- }
- } else {
- for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f16_unroll(nek1, nbv1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S16);
- }
- }
- }
- }
- static void ggml_compute_forward_flash_attn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- switch (q->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_ff
- static void ggml_compute_forward_flash_ff_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a, // F16
- const struct ggml_tensor * b0, // F16 fc_w
- const struct ggml_tensor * b1, // F32 fc_b
- const struct ggml_tensor * c0, // F16 proj_w
- const struct ggml_tensor * c1, // F32 proj_b
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t nea0 = a->ne[0];
- const int64_t nea1 = a->ne[1];
- const int64_t nea2 = a->ne[2];
- const int64_t nea3 = a->ne[3];
- const int64_t neb00 = b0->ne[0];
- const int64_t neb01 = b0->ne[1];
- //const int64_t neb02 = b0->ne[2];
- //const int64_t neb03 = b0->ne[3];
- const int64_t neb10 = b1->ne[0];
- const int64_t neb11 = b1->ne[1];
- //const int64_t neb12 = b1->ne[2];
- //const int64_t neb13 = b1->ne[3];
- const int64_t nec00 = c0->ne[0];
- const int64_t nec01 = c0->ne[1];
- //const int64_t nec02 = c0->ne[2];
- //const int64_t nec03 = c0->ne[3];
- const int64_t nec10 = c1->ne[0];
- const int64_t nec11 = c1->ne[1];
- //const int64_t nec12 = c1->ne[2];
- //const int64_t nec13 = c1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- const int nba0 = a->nb[0];
- const int nba1 = a->nb[1];
- const int nba2 = a->nb[2];
- const int nba3 = a->nb[3];
- const int nbb00 = b0->nb[0];
- const int nbb01 = b0->nb[1];
- const int nbb02 = b0->nb[2];
- const int nbb03 = b0->nb[3];
- const int nbb10 = b1->nb[0];
- //const int nbb11 = b1->nb[1];
- //const int nbb12 = b1->nb[2];
- //const int nbb13 = b1->nb[3];
- const int nbc00 = c0->nb[0];
- const int nbc01 = c0->nb[1];
- const int nbc02 = c0->nb[2];
- const int nbc03 = c0->nb[3];
- const int nbc10 = c1->nb[0];
- //const int nbc11 = c1->nb[1];
- //const int nbc12 = c1->nb[2];
- //const int nbc13 = c1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = nea0;
- //const int64_t N = nea1;
- const int64_t M = neb01;
- GGML_ASSERT(ne0 == nea0);
- GGML_ASSERT(ne1 == nea1);
- GGML_ASSERT(ne2 == nea2);
- GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb10 == sizeof(float));
- GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbc10 == sizeof(float));
- GGML_ASSERT(neb00 == D);
- GGML_ASSERT(neb01 == M);
- GGML_ASSERT(neb10 == M);
- GGML_ASSERT(neb11 == 1);
- GGML_ASSERT(nec00 == M);
- GGML_ASSERT(nec01 == D);
- GGML_ASSERT(nec10 == D);
- GGML_ASSERT(nec11 == 1);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by a rows using ggml_vec_dot_f32
- // total rows in a
- const int nr = nea1*nea2*nea3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // a indices
- const int ia3 = ir/(nea2*nea1);
- const int ia2 = (ir - ia3*nea2*nea1)/nea1;
- const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
- float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
- for (int64_t ic = 0; ic < neb01; ++ic) {
- // b0 indices
- const int ib03 = ia3;
- const int ib02 = ia2;
- const int ib01 = ic;
- // S indices
- const int i1 = ib01;
- ggml_vec_dot_f16(nea0,
- S + i1,
- (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
- (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
- }
- ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
- //ggml_vec_gelu_f32(neb01, S, S);
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- ggml_vec_gelu_f16(neb01, S16, S16);
- {
- // dst indices
- const int i1 = ia1;
- const int i2 = ia2;
- const int i3 = ia3;
- for (int64_t ic = 0; ic < nec01; ++ic) {
- ggml_vec_dot_f16(neb01,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
- S16);
- }
- ggml_vec_add_f32(nec01,
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) c1->data);
- }
- }
- }
- static void ggml_compute_forward_flash_ff(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b0,
- const struct ggml_tensor * b1,
- const struct ggml_tensor * c0,
- const struct ggml_tensor * c1,
- struct ggml_tensor * dst) {
- switch (b0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(false); // TODO
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_unary
- static void ggml_compute_forward_map_unary_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_map_unary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_binary
- static void ggml_compute_forward_map_binary_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
- }
- static void ggml_compute_forward_map_binary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- /////////////////////////////////
- static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- GGML_ASSERT(params);
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- ggml_compute_forward_dup(params, tensor->src0, tensor);
- } break;
- case GGML_OP_ADD:
- {
- ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_ADD1:
- {
- ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_ACC:
- {
- ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
- } break;
- case GGML_OP_SUB:
- {
- ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_MUL:
- {
- ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_DIV:
- {
- ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SQR:
- {
- ggml_compute_forward_sqr(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SQRT:
- {
- ggml_compute_forward_sqrt(params, tensor->src0, tensor);
- } break;
- case GGML_OP_LOG:
- {
- ggml_compute_forward_log(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SUM:
- {
- ggml_compute_forward_sum(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SUM_ROWS:
- {
- ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
- } break;
- case GGML_OP_MEAN:
- {
- ggml_compute_forward_mean(params, tensor->src0, tensor);
- } break;
- case GGML_OP_REPEAT:
- {
- ggml_compute_forward_repeat(params, tensor->src0, tensor);
- } break;
- case GGML_OP_ABS:
- {
- ggml_compute_forward_abs(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SGN:
- {
- ggml_compute_forward_sgn(params, tensor->src0, tensor);
- } break;
- case GGML_OP_NEG:
- {
- ggml_compute_forward_neg(params, tensor->src0, tensor);
- } break;
- case GGML_OP_STEP:
- {
- ggml_compute_forward_step(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RELU:
- {
- ggml_compute_forward_relu(params, tensor->src0, tensor);
- } break;
- case GGML_OP_GELU:
- {
- ggml_compute_forward_gelu(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SILU:
- {
- ggml_compute_forward_silu(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SILU_BACK:
- {
- ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_NORM:
- {
- ggml_compute_forward_norm(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RMS_NORM:
- {
- ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SCALE:
- {
- ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SET:
- {
- ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
- } break;
- case GGML_OP_CPY:
- {
- ggml_compute_forward_cpy(params, tensor->src0, tensor);
- } break;
- case GGML_OP_CONT:
- {
- ggml_compute_forward_cont(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RESHAPE:
- {
- ggml_compute_forward_reshape(params, tensor->src0, tensor);
- } break;
- case GGML_OP_VIEW:
- {
- ggml_compute_forward_view(params, tensor->src0);
- } break;
- case GGML_OP_PERMUTE:
- {
- ggml_compute_forward_permute(params, tensor->src0);
- } break;
- case GGML_OP_TRANSPOSE:
- {
- ggml_compute_forward_transpose(params, tensor->src0);
- } break;
- case GGML_OP_GET_ROWS:
- {
- ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
- } break;
- case GGML_OP_DIAG:
- {
- ggml_compute_forward_diag(params, tensor->src0, tensor);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SOFT_MAX:
- {
- ggml_compute_forward_soft_max(params, tensor->src0, tensor);
- } break;
- case GGML_OP_ROPE:
- {
- ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_ROPE_BACK:
- {
- ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_ALIBI:
- {
- ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_CLAMP:
- {
- ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_CONV_1D_1S:
- {
- ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_CONV_1D_2S:
- {
- ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
- } break;
- case GGML_OP_FLASH_FF:
- {
- ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
- } break;
- case GGML_OP_MAP_UNARY:
- {
- const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
- ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
- }
- break;
- case GGML_OP_MAP_BINARY:
- {
- const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
- ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
- }
- break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
- struct ggml_tensor * src0 = tensor->src0;
- struct ggml_tensor * src1 = tensor->src1;
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_ADD:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_ADD1:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_add_impl(ctx,
- src1->grad,
- ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
- inplace);
- }
- } break;
- case GGML_OP_ACC:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
- GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
- const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
- const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
- const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
- const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
- struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- inplace);
- }
- } break;
- case GGML_OP_SUB:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_MUL:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx, src1, tensor->grad),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_mul(ctx, src0, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_DIV:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_div(ctx, tensor->grad, src1),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_sub_impl(ctx,
- src1->grad,
- ggml_mul(ctx,
- tensor->grad,
- ggml_div(ctx, tensor, src1)),
- inplace);
- }
- } break;
- case GGML_OP_SQR:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_mul(ctx, src0, tensor->grad),
- ggml_new_f32(ctx, 2.0f)),
- inplace);
- }
- } break;
- case GGML_OP_SQRT:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
- ggml_div(ctx,
- ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
- tensor)),
- inplace);
- }
- } break;
- case GGML_OP_LOG:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_div(ctx,
- tensor->grad,
- src0),
- inplace);
- }
- } break;
- case GGML_OP_SUM:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add1_impl(ctx,
- src0->grad,
- tensor->grad,
- inplace);
- }
- } break;
- case GGML_OP_SUM_ROWS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_repeat(ctx,
- tensor->grad,
- src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_MEAN:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_REPEAT:
- {
- // necessary for llama
- if (src0->grad) {
- GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
- const int nc = tensor->ne[0];
- const int nr = tensor->ne[1];
- const int nc0 = src0->ne[0];
- const int nr0 = src0->ne[1];
- const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
- // tensor->grad [nc,nr,1,1]
- // reshape [nc0,nc/nc0,nr0,nr/nr0]
- // permute [nc0,nr0,nc/nc0,nr/nr0]
- // substitute [nc0,nr0,ncr,nrr]
- // reshape [nc0*nr0,ncr*nrr,1,1]
- // transpose [ncr*nrr,nc0*nr0,1,1]
- // sum rows [1,nc0*nr0,1,1]
- // transpose [nc0*nr0,1,1]
- // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
- // add to src0->grad
- int64_t ne[4] = {nc0,ncr,nr0,nrr};
- struct ggml_tensor* F00 = tensor->grad;
- struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
- struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
- struct ggml_tensor* F03 = ggml_cont (ctx, F02);
- struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
- struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
- struct ggml_tensor* F06 = ggml_cont (ctx, F05);
- struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
- struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
- struct ggml_tensor* F09 = ggml_cont (ctx, F08);
- struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- F10,
- inplace);
- }
- } break;
- case GGML_OP_ABS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_sgn(ctx, src0),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_SGN:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_OP_NEG:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_STEP:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_OP_RELU:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_step(ctx, src0),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_GELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ALIBI:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CLAMP:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_SILU:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_silu_back(ctx, src0, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_SILU_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_RMS_NORM:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_rms_norm_back(ctx, src0, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_MUL_MAT:
- {
- // https://cs231n.github.io/optimization-2/#staged
- // # forward pass
- // s0 = np.random.randn(5, 10)
- // s1 = np.random.randn(10, 3)
- // t = s0.dot(s1)
- // # now suppose we had the gradient on t from above in the circuit
- // dt = np.random.randn(*t.shape) # same shape as t
- // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
- // ds1 = t.T.dot(dt)
- // tensor.shape [m,p]
- // src0.shape [n,m]
- // src1.shape [n,p]
- // necessary for llama
- if (src0->grad) {
- // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- // ds0 = dt.dot(s1.T)
- // ggml_out_prod(ctx, // [n,m]
- // src1, // [n,p]
- // tensor->grad), // [m,p]
- // for now just using A*B==(B.T*A.T).T
- ggml_cont(ctx, // [n,m]
- ggml_transpose(ctx, // [n,m]
- ggml_mul_mat(ctx, // [m,n]
- ggml_cont(ctx, // [p,m]
- ggml_transpose(ctx, // [p,m]
- tensor->grad)), // [m,p]
- ggml_cont(ctx, // [p,n]
- ggml_transpose(ctx, // [p,n]
- src1))))), // [n,p]
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- // ds1 = s0.T.dot(dt):
- ggml_mul_mat(ctx, // [n,p]
- ggml_cont(ctx, // [m,n]
- ggml_transpose(ctx, src0)), // [m,n]
- tensor->grad), // [m,p]
- inplace);
- }
- } break;
- case GGML_OP_SCALE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_scale_impl(ctx, tensor->grad, src1, false),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
- inplace);
- }
- } break;
- case GGML_OP_SET:
- {
- GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
- GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
- const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
- const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
- const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
- const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
- struct ggml_tensor * tensor_grad_view = NULL;
- if (src0->grad || src1->grad) {
- GGML_ASSERT(src0->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == src1->grad->type);
- tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- }
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_acc_impl(ctx,
- tensor->grad,
- ggml_neg(ctx, tensor_grad_view),
- nb1, nb2, nb3, offset, false),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- inplace);
- }
- } break;
- case GGML_OP_CPY:
- {
- // necessary for llama
- // cpy overwrites value of src1 by src0 and returns view(src1)
- // the overwriting is mathematically equivalent to:
- // tensor = src0 * 1 + src1 * 0
- if (src0->grad) {
- // dsrc0 = dtensor * 1
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- // dsrc1 = dtensor * 0 -> noop
- }
- } break;
- case GGML_OP_CONT:
- {
- // same as cpy
- if (src0->grad) {
- GGML_ASSERT(ggml_is_contiguous(src0->grad));
- GGML_ASSERT(ggml_is_contiguous(tensor->grad));
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_RESHAPE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_reshape(ctx, tensor->grad, src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_VIEW:
- {
- // necessary for llama
- if (src0->grad) {
- size_t offset;
- memcpy(&offset, tensor->padding, sizeof(offset));
- size_t nb1 = tensor->nb[1];
- size_t nb2 = tensor->nb[2];
- size_t nb3 = tensor->nb[3];
- if (src0->type != src0->grad->type) {
- // gradient is typically F32, but src0 could be other type
- size_t ng = ggml_element_size(src0->grad);
- size_t n0 = ggml_element_size(src0);
- GGML_ASSERT(offset % n0 == 0);
- GGML_ASSERT(nb1 % n0 == 0);
- GGML_ASSERT(nb2 % n0 == 0);
- GGML_ASSERT(nb3 % n0 == 0);
- offset = (offset / n0) * ng;
- nb1 = (nb1 / n0) * ng;
- nb2 = (nb2 / n0) * ng;
- nb3 = (nb3 / n0) * ng;
- }
- src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
- }
- } break;
- case GGML_OP_PERMUTE:
- {
- // necessary for llama
- if (src0->grad) {
- int axis0 = tensor->padding[0] & 0x3;
- int axis1 = tensor->padding[1] & 0x3;
- int axis2 = tensor->padding[2] & 0x3;
- int axis3 = tensor->padding[3] & 0x3;
- int axes_backward[4] = {0,0,0,0};
- axes_backward[axis0] = 0;
- axes_backward[axis1] = 1;
- axes_backward[axis2] = 2;
- axes_backward[axis3] = 3;
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_permute(ctx,
- tensor->grad,
- axes_backward[0],
- axes_backward[1],
- axes_backward[2],
- axes_backward[3]),
- inplace);
- }
- } break;
- case GGML_OP_TRANSPOSE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_transpose(ctx, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- // necessary for llama (only for tokenizer)
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
- inplace);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- // necessary for llama
- if (src0->grad) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
- const int n_past = ((int32_t *) src1->data)[0];
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- inplace);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- // necessary for llama
- if (src0->grad) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
- const int n_past = ((int32_t *) src1->data)[0];
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- inplace);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_SOFT_MAX:
- {
- // necessary for llama
- if (src0->grad) {
- // y = softmax(x)
- //
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.*y
- // dx = J * dy
- // dxk = sum(Jkj * dyk)
- int64_t ne2[4] = {
- tensor->ne[0],
- 1,
- tensor->ne[1]*tensor->ne[2],
- tensor->ne[3]
- };
- struct ggml_tensor * tensor2 = ggml_cont(ctx,
- ggml_reshape_4d(ctx,
- ggml_cont(ctx, tensor),
- ne2[0], ne2[1], ne2[2], ne2[3]));
- struct ggml_tensor * grad2 = ggml_cont(ctx,
- ggml_reshape_4d(ctx,
- ggml_cont(ctx, tensor->grad),
- ne2[0], ne2[1], ne2[2], ne2[3]));
- struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
- ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
- tensor2, // [ne0,1,ne1*ne2,ne3]
- 1, 0, 2, 3));
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad, // [ne0,ne1,ne2,ne3]
- ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
- ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
- ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
- ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
- tensor2), // [ne0,1,ne1*ne2,ne3]
- ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
- tensor2_t, // [1,ne0,ne1*ne2,ne3]
- tensor2_t)), // [1,ne0,ne1*ne2,ne3]
- grad2), // [ne0,1,ne1*ne2,ne3]
- src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_ROPE:
- {
- // necessary for llama
- if (src0->grad) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_rope_back(ctx,
- tensor->grad,
- n_past,
- n_dims,
- mode),
- inplace);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_ROPE_BACK:
- {
- if (src0->grad) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_rope(ctx,
- tensor->grad,
- n_past,
- n_dims,
- mode),
- inplace);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_CONV_1D_1S:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_1D_2S:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_FLASH_FF:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
- if (node->grad == NULL) {
- // this usually happens when we generate intermediate nodes from constants in the backward pass
- // it can also happen during forward pass, if the user performs computations with constants
- if (node->op != GGML_OP_NONE) {
- //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
- }
- }
- // check if already visited
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return;
- }
- }
- for (int i = 0; i < cgraph->n_leafs; i++) {
- if (cgraph->leafs[i] == node) {
- return;
- }
- }
- if (node->src0) {
- ggml_visit_parents(cgraph, node->src0);
- }
- if (node->src1) {
- ggml_visit_parents(cgraph, node->src1);
- }
- for (int i = 0; i < GGML_MAX_OPT; ++i) {
- if (node->opt[i]) {
- ggml_visit_parents(cgraph, node->opt[i]);
- }
- }
- if (node->op == GGML_OP_NONE && node->grad == NULL) {
- // reached a leaf node, not part of the gradient graph (e.g. a constant)
- GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
- if (strlen(node->name) == 0) {
- snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
- }
- cgraph->leafs[cgraph->n_leafs] = node;
- cgraph->n_leafs++;
- } else {
- GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
- if (strlen(node->name) == 0) {
- snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
- }
- cgraph->nodes[cgraph->n_nodes] = node;
- cgraph->grads[cgraph->n_nodes] = node->grad;
- cgraph->n_nodes++;
- }
- }
- static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
- if (!expand) {
- cgraph->n_nodes = 0;
- cgraph->n_leafs = 0;
- }
- const int n0 = cgraph->n_nodes;
- UNUSED(n0);
- ggml_visit_parents(cgraph, tensor);
- const int n_new = cgraph->n_nodes - n0;
- GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
- if (n_new > 0) {
- // the last added node should always be starting point
- GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
- }
- }
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- ggml_build_forward_impl(cgraph, tensor, true);
- }
- struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
- struct ggml_cgraph result = {
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
- /*.work_size =*/ 0,
- /*.work =*/ NULL,
- /*.nodes =*/ { NULL },
- /*.grads =*/ { NULL },
- /*.leafs =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
- ggml_build_forward_impl(&result, tensor, false);
- return result;
- }
- struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
- struct ggml_cgraph result = *gf;
- GGML_ASSERT(gf->n_nodes > 0);
- // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
- if (keep) {
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->grad) {
- node->grad = ggml_dup_tensor(ctx, node);
- gf->grads[i] = node->grad;
- }
- }
- }
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
- // because we detached the grad nodes from the original graph, we can afford inplace operations
- if (node->grad) {
- ggml_compute_backward(ctx, node, keep);
- }
- }
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->is_param) {
- GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
- ggml_build_forward_impl(&result, node->grad, true);
- }
- }
- return result;
- }
- //
- // thread data
- //
- // synchronization is done via busy loops
- // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
- //
- #ifdef __APPLE__
- //#include <os/lock.h>
- //
- //typedef os_unfair_lock ggml_lock_t;
- //
- //#define ggml_lock_init(x) UNUSED(x)
- //#define ggml_lock_destroy(x) UNUSED(x)
- //#define ggml_lock_lock os_unfair_lock_lock
- //#define ggml_lock_unlock os_unfair_lock_unlock
- //
- //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #define ggml_lock_lock(x) UNUSED(x)
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #else
- //typedef pthread_spinlock_t ggml_lock_t;
- //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
- //#define ggml_lock_destroy pthread_spin_destroy
- //#define ggml_lock_lock pthread_spin_lock
- //#define ggml_lock_unlock pthread_spin_unlock
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
- #define ggml_lock_lock(x) _mm_pause()
- #else
- #define ggml_lock_lock(x) UNUSED(x)
- #endif
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #endif
- struct ggml_compute_state_shared {
- ggml_lock_t spin;
- int n_threads;
- // synchronization primitives
- atomic_int n_ready;
- atomic_bool has_work;
- atomic_bool stop; // stop all threads
- };
- struct ggml_compute_state {
- ggml_thread_t thrd;
- struct ggml_compute_params params;
- struct ggml_tensor * node;
- struct ggml_compute_state_shared * shared;
- };
- static thread_ret_t ggml_graph_compute_thread(void * data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- const int n_threads = state->shared->n_threads;
- while (true) {
- if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
- atomic_store(&state->shared->has_work, false);
- } else {
- while (atomic_load(&state->shared->has_work)) {
- if (atomic_load(&state->shared->stop)) {
- return 0;
- }
- ggml_lock_lock (&state->shared->spin);
- ggml_lock_unlock(&state->shared->spin);
- }
- }
- atomic_fetch_sub(&state->shared->n_ready, 1);
- // wait for work
- while (!atomic_load(&state->shared->has_work)) {
- if (atomic_load(&state->shared->stop)) {
- return 0;
- }
- ggml_lock_lock (&state->shared->spin);
- ggml_lock_unlock(&state->shared->spin);
- }
- // check if we should stop
- if (atomic_load(&state->shared->stop)) {
- break;
- }
- if (state->node) {
- if (state->params.ith < state->params.nth) {
- ggml_compute_forward(&state->params, state->node);
- }
- state->node = NULL;
- } else {
- break;
- }
- }
- return 0;
- }
- void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
- const int n_threads = cgraph->n_threads;
- struct ggml_compute_state_shared state_shared = {
- /*.spin =*/ GGML_LOCK_INITIALIZER,
- /*.n_threads =*/ n_threads,
- /*.n_ready =*/ 0,
- /*.has_work =*/ false,
- /*.stop =*/ false,
- };
- struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
- // create thread pool
- if (n_threads > 1) {
- ggml_lock_init(&state_shared.spin);
- atomic_store(&state_shared.has_work, true);
- for (int j = 0; j < n_threads - 1; j++) {
- workers[j] = (struct ggml_compute_state) {
- .thrd = 0,
- .params = {
- .type = GGML_TASK_COMPUTE,
- .ith = j + 1,
- .nth = n_threads,
- .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- .wdata = cgraph->work ? cgraph->work->data : NULL,
- },
- .node = NULL,
- .shared = &state_shared,
- };
- int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- }
- // initialize tasks + work buffer
- {
- size_t work_size = 0;
- // thread scheduling for the different operations
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- if (ggml_is_quantized(node->type)) {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- if (ggml_is_quantized(node->src0->type)) {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_ACC:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- if (ggml_is_quantized(node->src0->type)) {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SUB:
- case GGML_OP_DIV:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_REPEAT:
- case GGML_OP_ABS:
- case GGML_OP_SGN:
- case GGML_OP_NEG:
- case GGML_OP_STEP:
- case GGML_OP_RELU:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_MUL:
- case GGML_OP_GELU:
- case GGML_OP_SILU:
- case GGML_OP_SILU_BACK:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_MUL_MAT:
- {
- node->n_tasks = n_threads;
- // TODO: use different scheduling for different matrix sizes
- //const int nr0 = ggml_nrows(node->src0);
- //const int nr1 = ggml_nrows(node->src1);
- //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
- //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
- size_t cur = 0;
- #if defined(GGML_USE_CUBLAS)
- if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
- }
- else
- #elif defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
- }
- else
- #endif
- if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- // here we need memory just for single 2D matrix from src0
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- } else {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
- }
- #else
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
- #endif
- } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
- cur = 0;
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1;
- }
- #endif
- } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1;
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- } else
- #endif
- {
- const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
- cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
- }
- } else {
- GGML_ASSERT(false);
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SCALE:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_SET:
- case GGML_OP_CONT:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS:
- case GGML_OP_GET_ROWS_BACK:
- case GGML_OP_DIAG:
- case GGML_OP_DIAG_MASK_ZERO:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_ALIBI:
- {
- node->n_tasks = 1; //TODO
- } break;
- case GGML_OP_CLAMP:
- {
- node->n_tasks = 1; //TODO
- } break;
- case GGML_OP_CONV_1D_1S:
- case GGML_OP_CONV_1D_2S:
- {
- node->n_tasks = n_threads;
- GGML_ASSERT(node->src0->ne[3] == 1);
- GGML_ASSERT(node->src1->ne[2] == 1);
- GGML_ASSERT(node->src1->ne[3] == 1);
- size_t cur = 0;
- const int nk = node->src0->ne[0];
- if (node->src0->type == GGML_TYPE_F16 &&
- node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(
- nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
- ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
- );
- } else if (node->src0->type == GGML_TYPE_F32 &&
- node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*(
- nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
- ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
- );
- } else {
- GGML_ASSERT(false);
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
- }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_FF:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
- }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_NONE:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- if (cgraph->work != NULL && work_size > cgraph->work_size) {
- GGML_ASSERT(false); // TODO: better handling
- }
- if (work_size > 0 && cgraph->work == NULL) {
- cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
- GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
- cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
- }
- }
- const int64_t perf_start_cycles = ggml_perf_cycles();
- const int64_t perf_start_time_us = ggml_perf_time_us();
- for (int i = 0; i < cgraph->n_nodes; i++) {
- GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
- struct ggml_tensor * node = cgraph->nodes[i];
- // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
- //if (node->grad == NULL && node->perf_runs > 0) {
- // continue;
- //}
- const int64_t perf_node_start_cycles = ggml_perf_cycles();
- const int64_t perf_node_start_time_us = ggml_perf_time_us();
- // INIT
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_INIT,
- /*.ith =*/ 0,
- /*.nth =*/ node->n_tasks,
- /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
- };
- ggml_compute_forward(¶ms, node);
- // COMPUTE
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- // launch thread pool
- for (int j = 0; j < n_threads - 1; j++) {
- workers[j].params = (struct ggml_compute_params) {
- .type = GGML_TASK_COMPUTE,
- .ith = j + 1,
- .nth = node->n_tasks,
- .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- .wdata = cgraph->work ? cgraph->work->data : NULL,
- };
- workers[j].node = node;
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) > 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_store(&state_shared.has_work, true);
- }
- params.type = GGML_TASK_COMPUTE;
- ggml_compute_forward(¶ms, node);
- // wait for thread pool
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) != 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- }
- // FINALIZE
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- // launch thread pool
- for (int j = 0; j < n_threads - 1; j++) {
- workers[j].params = (struct ggml_compute_params) {
- .type = GGML_TASK_FINALIZE,
- .ith = j + 1,
- .nth = node->n_tasks,
- .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- .wdata = cgraph->work ? cgraph->work->data : NULL,
- };
- workers[j].node = node;
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) > 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_store(&state_shared.has_work, true);
- }
- params.type = GGML_TASK_FINALIZE;
- ggml_compute_forward(¶ms, node);
- // wait for thread pool
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) != 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- }
- // performance stats (node)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
- node->perf_runs++;
- node->perf_cycles += perf_cycles_cur;
- node->perf_time_us += perf_time_us_cur;
- }
- }
- // join thread pool
- if (n_threads > 1) {
- atomic_store(&state_shared.stop, true);
- atomic_store(&state_shared.has_work, true);
- for (int j = 0; j < n_threads - 1; j++) {
- int rc = ggml_thread_join(workers[j].thrd, NULL);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- ggml_lock_destroy(&state_shared.spin);
- }
- // performance stats (graph)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
- cgraph->perf_runs++;
- cgraph->perf_cycles += perf_cycles_cur;
- cgraph->perf_time_us += perf_time_us_cur;
- GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
- __func__, cgraph->perf_runs,
- (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
- (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
- (double) perf_time_us_cur / 1000.0,
- (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
- }
- }
- void ggml_graph_reset(struct ggml_cgraph * cgraph) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * grad = cgraph->grads[i];
- if (grad) {
- ggml_set_zero(grad);
- }
- }
- }
- struct ggml_tensor * ggml_get_tensor_by_name(struct ggml_cgraph * cgraph, const char * name) {
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * leaf = cgraph->leafs[i];
- if (strcmp(leaf->name, name) == 0) {
- return leaf;
- }
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- if (strcmp(node->name, name) == 0) {
- return node;
- }
- }
- return NULL;
- }
- void ggml_graph_print(const struct ggml_cgraph * cgraph) {
- int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
- GGML_PRINT("=== GRAPH ===\n");
- GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
- GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
- GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
- i,
- node->ne[0], node->ne[1], node->ne[2],
- GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
- (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
- (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
- (double) node->perf_time_us / 1000.0,
- (double) node->perf_time_us / 1000.0 / node->perf_runs);
- }
- GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * node = cgraph->leafs[i];
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
- i,
- node->ne[0], node->ne[1],
- GGML_OP_NAME[node->op]);
- }
- for (int i = 0; i < GGML_OP_COUNT; i++) {
- if (perf_total_per_op_us[i] == 0) {
- continue;
- }
- GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
- }
- GGML_PRINT("========================================\n");
- }
- // check if node is part of the graph
- static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- if (cgraph == NULL) {
- return true;
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return true;
- }
- }
- return false;
- }
- static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * parent = cgraph->nodes[i];
- if (parent->grad == node) {
- return parent;
- }
- }
- return NULL;
- }
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
- char color[16];
- FILE * fp = fopen(filename, "w");
- GGML_ASSERT(fp);
- fprintf(fp, "digraph G {\n");
- fprintf(fp, " newrank = true;\n");
- fprintf(fp, " rankdir = LR;\n");
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- if (ggml_graph_get_parent(gb, node) != NULL) {
- continue;
- }
- if (node->is_param) {
- snprintf(color, sizeof(color), "yellow");
- } else if (node->grad) {
- if (ggml_graph_find(gf, node)) {
- snprintf(color, sizeof(color), "green");
- } else {
- snprintf(color, sizeof(color), "lightblue");
- }
- } else {
- snprintf(color, sizeof(color), "white");
- }
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s |", node->name);
- }
- if (node->n_dims == 2) {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
- } else {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
- }
- if (node->grad) {
- fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
- } else {
- fprintf(fp, "\"; ]\n");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- snprintf(color, sizeof(color), "pink");
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"<x>",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s | ", node->name);
- }
- if (ggml_nelements(node) == 1) {
- if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
- fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
- }
- else {
- fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
- }
- }
- else {
- fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
- }
- fprintf(fp, "\"; ]\n");
- }
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
- if (node->src0) {
- struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
- parent0 ? (void *) parent0 : (void *) node->src0,
- parent0 ? "g" : "x",
- parent ? (void *) parent : (void *) node,
- parent ? "g" : "x",
- parent ? "empty" : "vee",
- parent ? "dashed" : "solid");
- }
- if (node->src1) {
- struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
- parent1 ? (void *) parent1 : (void *) node->src1,
- parent1 ? "g" : "x",
- parent ? (void *) parent : (void *) node,
- parent ? "g" : "x",
- parent ? "empty" : "vee",
- parent ? "dashed" : "solid");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- if (node->src0) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
- (void *) node->src0, "x",
- (void *) node, "x");
- }
- if (node->src1) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
- (void *) node->src1, "x",
- (void *) node, "x");
- }
- }
- fprintf(fp, "}\n");
- fclose(fp);
- GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to set tensor from array
- for (int64_t j = 0; j < ne; ++j) {
- ggml_set_f32_1d(ps[p], j, x[i++]);
- }
- }
- }
- static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- x[i++] = ggml_get_f32_1d(ps[p], j);
- }
- }
- }
- static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
- }
- }
- }
- //
- // ADAM
- //
- // ref: https://arxiv.org/pdf/1412.6980.pdf
- //
- static enum ggml_opt_result ggml_opt_adam(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb) {
- GGML_ASSERT(ggml_is_scalar(f));
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- // constants
- const float alpha = params.adam.alpha;
- const float beta1 = params.adam.beta1;
- const float beta2 = params.adam.beta2;
- const float eps = params.adam.eps;
- float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
- float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
- float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
- float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
- float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
- float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
- float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
- float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
- // initialize
- ggml_vec_set_f32(nx, m, 0.0f);
- ggml_vec_set_f32(nx, v, 0.0f);
- // update view
- ggml_opt_get_params(np, ps, x);
- // compute the function value
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- float fx_prev = ggml_get_f32_1d(f, 0);
- if (pf) {
- pf[0] = fx_prev;
- }
- int n_no_improvement = 0;
- float fx_best = fx_prev;
- // run the optimizer
- for (int t = 0; t < params.adam.n_iter; ++t) {
- GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
- GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
- GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
- for (int i = 0; i < np; ++i) {
- GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
- ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
- }
- const int64_t t_start_wall = ggml_time_us();
- const int64_t t_start_cpu = ggml_cycles();
- UNUSED(t_start_wall);
- UNUSED(t_start_cpu);
- {
- // update the gradient
- ggml_opt_get_grad(np, ps, g1);
- // m_t = beta1*m_t-1 + (1 - beta1)*g_t
- ggml_vec_scale_f32(nx, m, beta1);
- ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
- // g2 = g1^2
- ggml_vec_sqr_f32 (nx, g2, g1);
- // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
- ggml_vec_scale_f32(nx, v, beta2);
- ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
- // m^hat = m_t / (1 - beta1^t)
- // v^hat = v_t / (1 - beta2^t)
- // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
- ggml_vec_cpy_f32 (nx, mh, m);
- ggml_vec_cpy_f32 (nx, vh, v);
- ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
- ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
- ggml_vec_sqrt_f32 (nx, vh, vh);
- ggml_vec_acc1_f32 (nx, vh, eps);
- ggml_vec_div_f32 (nx, mh, mh, vh);
- ggml_vec_sub_f32 (nx, x, x, mh);
- // update the parameters
- ggml_opt_set_params(np, ps, x);
- }
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- const float fx = ggml_get_f32_1d(f, 0);
- // check convergence
- if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
- GGML_PRINT_DEBUG("converged\n");
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= t) {
- const float rate = (pf[t%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[t%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx_best > fx) {
- fx_best = fx;
- n_no_improvement = 0;
- } else {
- ++n_no_improvement;
- if (n_no_improvement >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- fx_prev = fx;
- {
- const int64_t t_end_cpu = ggml_cycles();
- GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
- UNUSED(t_end_cpu);
- const int64_t t_end_wall = ggml_time_us();
- GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
- UNUSED(t_end_wall);
- }
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- //
- // L-BFGS
- //
- // the L-BFGS implementation below is based on the following implementation:
- //
- // https://github.com/chokkan/liblbfgs
- //
- struct ggml_lbfgs_iteration_data {
- float alpha;
- float ys;
- float * s;
- float * y;
- };
- static enum ggml_opt_result linesearch_backtracking(
- struct ggml_context * ctx,
- const struct ggml_opt_params * params,
- int nx,
- float * x,
- float * fx,
- float * g,
- float * d,
- float * step,
- const float * xp,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- const int np,
- struct ggml_tensor * ps[]) {
- int count = 0;
- float width = 0.0f;
- float dg = 0.0f;
- float finit = 0.0f;
- float dginit = 0.0f;
- float dgtest = 0.0f;
- const float dec = 0.5f;
- const float inc = 2.1f;
- if (*step <= 0.f) {
- return GGML_LINESEARCH_INVALID_PARAMETERS;
- }
- // compute the initial gradient in the search direction
- ggml_vec_dot_f32(nx, &dginit, g, d);
- // make sure that d points to a descent direction
- if (0 < dginit) {
- return GGML_LINESEARCH_FAIL;
- }
- // initialize local variables
- finit = *fx;
- dgtest = params->lbfgs.ftol*dginit;
- while (true) {
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_mad_f32(nx, x, d, *step);
- // evaluate the function and gradient values
- {
- ggml_opt_set_params(np, ps, x);
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- ggml_opt_get_grad(np, ps, g);
- *fx = ggml_get_f32_1d(f, 0);
- }
- ++count;
- if (*fx > finit + (*step)*dgtest) {
- width = dec;
- } else {
- // Armijo condition is satisfied
- if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
- return count;
- }
- ggml_vec_dot_f32(nx, &dg, g, d);
- // check the Wolfe condition
- if (dg < params->lbfgs.wolfe * dginit) {
- width = inc;
- } else {
- if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
- // regular Wolfe conditions
- return count;
- }
- if(dg > -params->lbfgs.wolfe*dginit) {
- width = dec;
- } else {
- // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
- return count;
- }
- return count;
- }
- }
- if (*step < params->lbfgs.min_step) {
- return GGML_LINESEARCH_MINIMUM_STEP;
- }
- if (*step > params->lbfgs.max_step) {
- return GGML_LINESEARCH_MAXIMUM_STEP;
- }
- if (params->lbfgs.max_linesearch <= count) {
- return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
- }
- (*step) *= width;
- }
- return GGML_LINESEARCH_FAIL;
- }
- static enum ggml_opt_result ggml_opt_lbfgs(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb) {
- if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
- params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
- if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
- return GGML_OPT_INVALID_WOLFE;
- }
- }
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
- const int m = params.lbfgs.m;
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
- float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
- float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
- float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
- float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
- float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
- float fx = 0.0f; // cost function value
- float xnorm = 0.0f; // ||x||
- float gnorm = 0.0f; // ||g||
- float step = 0.0f;
- // initialize x from the graph nodes
- ggml_opt_get_params(np, ps, x);
- // the L-BFGS memory
- struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
- for (int i = 0; i < m; ++i) {
- lm[i].alpha = 0.0f;
- lm[i].ys = 0.0f;
- lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
- lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
- }
- // evaluate the function value and its gradient
- {
- ggml_opt_set_params(np, ps, x);
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- ggml_opt_get_grad(np, ps, g);
- fx = ggml_get_f32_1d(f, 0);
- }
- if (pf) {
- pf[0] = fx;
- }
- float fx_best = fx;
- // search direction = -gradient
- ggml_vec_neg_f32(nx, d, g);
- // ||x||, ||g||
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- // already optimized
- if (gnorm/xnorm <= params.lbfgs.eps) {
- return GGML_OPT_OK;
- }
- // initial step
- ggml_vec_norm_inv_f32(nx, &step, d);
- int j = 0;
- int k = 1;
- int ls = 0;
- int end = 0;
- int bound = 0;
- int n_no_improvement = 0;
- float ys = 0.0f;
- float yy = 0.0f;
- float beta = 0.0f;
- while (true) {
- // store the current position and gradient vectors
- ggml_vec_cpy_f32(nx, xp, x);
- ggml_vec_cpy_f32(nx, gp, g);
- ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
- if (ls < 0) {
- // linesearch failed - go back to the previous point and return
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_cpy_f32(nx, g, gp);
- return ls;
- }
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- if (gnorm/xnorm <= params.lbfgs.eps) {
- // converged
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= k) {
- const float rate = (pf[k%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[k%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx < fx_best) {
- fx_best = fx;
- n_no_improvement = 0;
- } else {
- n_no_improvement++;
- if (n_no_improvement >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
- // reached the maximum number of iterations
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- // update vectors s and y:
- // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
- // y_{k+1} = g_{k+1} - g_{k}.
- //
- ggml_vec_sub_f32(nx, lm[end].s, x, xp);
- ggml_vec_sub_f32(nx, lm[end].y, g, gp);
- // compute scalars ys and yy:
- // ys = y^t \cdot s -> 1 / \rho.
- // yy = y^t \cdot y.
- //
- ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
- ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
- lm[end].ys = ys;
- // find new search direction
- // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
- bound = (m <= k) ? m : k;
- k++;
- end = (end + 1)%m;
- // initialize search direction with -g
- ggml_vec_neg_f32(nx, d, g);
- j = end;
- for (int i = 0; i < bound; ++i) {
- j = (j + m - 1) % m;
- // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
- ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
- lm[j].alpha /= lm[j].ys;
- // q_{i} = q_{i+1} - \alpha_{i} y_{i}
- ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
- }
- ggml_vec_scale_f32(nx, d, ys/yy);
- for (int i = 0; i < bound; ++i) {
- // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
- ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
- beta /= lm[j].ys;
- // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
- ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
- j = (j + 1)%m;
- }
- step = 1.0;
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
- struct ggml_opt_params result;
- switch (type) {
- case GGML_OPT_ADAM:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_ADAM,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 100,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .adam = {
- .n_iter = 10000,
- .alpha = 0.001f,
- .beta1 = 0.9f,
- .beta2 = 0.999f,
- .eps = 1e-8f,
- .eps_f = 1e-5f,
- .eps_g = 1e-3f,
- },
- };
- } break;
- case GGML_OPT_LBFGS:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_LBFGS,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 0,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .lbfgs = {
- .m = 6,
- .n_iter = 100,
- .max_linesearch = 20,
- .eps = 1e-5f,
- .ftol = 1e-4f,
- .wolfe = 0.9f,
- .min_step = 1e-20f,
- .max_step = 1e+20f,
- .linesearch = GGML_LINESEARCH_DEFAULT,
- },
- };
- } break;
- }
- return result;
- }
- enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f) {
- bool free_ctx = false;
- if (ctx == NULL) {
- struct ggml_init_params params_ctx = {
- .mem_size = 16*1024*1024,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
- ctx = ggml_init(params_ctx);
- if (ctx == NULL) {
- return GGML_OPT_NO_CONTEXT;
- }
- free_ctx = true;
- }
- enum ggml_opt_result result = GGML_OPT_OK;
- // build forward + backward compute graphs
- struct ggml_cgraph gf = ggml_build_forward (f);
- struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
- switch (params.type) {
- case GGML_OPT_ADAM:
- {
- result = ggml_opt_adam(ctx, params, f, &gf, &gb);
- } break;
- case GGML_OPT_LBFGS:
- {
- result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
- } break;
- }
- if (params.print_forward_graph) {
- ggml_graph_print (&gf);
- ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
- }
- if (params.print_backward_graph) {
- ggml_graph_print (&gb);
- ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
- }
- if (free_ctx) {
- ggml_free(ctx);
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_0 == 0);
- const int nb = k / QK4_0;
- for (int b = 0; b < n; b += k) {
- block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
- quantize_row_q4_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK4_0; j += 2) {
- const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[j/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK4_0*sizeof(block_q4_0));
- }
- size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_1 == 0);
- const int nb = k / QK4_1;
- for (int b = 0; b < n; b += k) {
- block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
- quantize_row_q4_1_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK4_1; j += 2) {
- const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[j/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK4_1*sizeof(block_q4_1));
- }
- size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK5_0 == 0);
- const int nb = k / QK5_0;
- for (int b = 0; b < n; b += k) {
- block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
- quantize_row_q5_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, &y[i].qh, sizeof(qh));
- for (int j = 0; j < QK5_0; j += 2) {
- const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
- // cast to 16 bins
- const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
- const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK5_0*sizeof(block_q5_0));
- }
- size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK5_1 == 0);
- const int nb = k / QK5_1;
- for (int b = 0; b < n; b += k) {
- block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
- quantize_row_q5_1_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, &y[i].qh, sizeof(qh));
- for (int j = 0; j < QK5_1; j += 2) {
- const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
- // cast to 16 bins
- const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
- const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK5_1*sizeof(block_q5_1));
- }
- size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- for (int b = 0; b < n; b += k) {
- block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
- quantize_row_q8_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK8_0; ++j) {
- const int8_t vi = y[i].qs[j];
- hist[vi/16 + 8]++;
- }
- }
- }
- return (n/QK8_0*sizeof(block_q8_0));
- }
- size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
- size_t result = 0;
- switch (type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(start % QK4_0 == 0);
- block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
- result = ggml_quantize_q4_0(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(start % QK4_1 == 0);
- block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
- result = ggml_quantize_q4_1(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q5_0:
- {
- GGML_ASSERT(start % QK5_0 == 0);
- block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
- result = ggml_quantize_q5_0(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q5_1:
- {
- GGML_ASSERT(start % QK5_1 == 0);
- block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
- result = ggml_quantize_q5_1(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q8_0:
- {
- GGML_ASSERT(start % QK8_0 == 0);
- block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
- result = ggml_quantize_q8_0(src + start, block, n, n, hist);
- } break;
- default:
- assert(false);
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- int ggml_cpu_has_avx(void) {
- #if defined(__AVX__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx2(void) {
- #if defined(__AVX2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512(void) {
- #if defined(__AVX512F__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vbmi(void) {
- #if defined(__AVX512VBMI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vnni(void) {
- #if defined(__AVX512VNNI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fma(void) {
- #if defined(__FMA__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_neon(void) {
- #if defined(__ARM_NEON)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_arm_fma(void) {
- #if defined(__ARM_FEATURE_FMA)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_f16c(void) {
- #if defined(__F16C__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fp16_va(void) {
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_wasm_simd(void) {
- #if defined(__wasm_simd128__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_blas(void) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_cublas(void) {
- #if defined(GGML_USE_CUBLAS)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_clblast(void) {
- #if defined(GGML_USE_CLBLAST)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_gpublas(void) {
- return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
- }
- int ggml_cpu_has_sse3(void) {
- #if defined(__SSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vsx(void) {
- #if defined(__POWER9_VECTOR__)
- return 1;
- #else
- return 0;
- #endif
- }
- ////////////////////////////////////////////////////////////////////////////////
|