ggml.c 496 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #if !defined(__riscv)
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #endif
  163. #endif
  164. #ifdef __F16C__
  165. #ifdef _MSC_VER
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  168. #else
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  171. #endif
  172. #elif defined(__POWER9_VECTOR__)
  173. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  174. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  175. /* the inline asm below is about 12% faster than the lookup method */
  176. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  177. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  178. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  179. register float f;
  180. register double d;
  181. __asm__(
  182. "mtfprd %0,%2\n"
  183. "xscvhpdp %0,%0\n"
  184. "frsp %1,%0\n" :
  185. /* temp */ "=d"(d),
  186. /* out */ "=f"(f):
  187. /* in */ "r"(h));
  188. return f;
  189. }
  190. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  191. register double d;
  192. register ggml_fp16_t r;
  193. __asm__( /* xscvdphp can work on double or single precision */
  194. "xscvdphp %0,%2\n"
  195. "mffprd %1,%0\n" :
  196. /* temp */ "=d"(d),
  197. /* out */ "=r"(r):
  198. /* in */ "f"(f));
  199. return r;
  200. }
  201. #else
  202. // FP16 <-> FP32
  203. // ref: https://github.com/Maratyszcza/FP16
  204. static inline float fp32_from_bits(uint32_t w) {
  205. union {
  206. uint32_t as_bits;
  207. float as_value;
  208. } fp32;
  209. fp32.as_bits = w;
  210. return fp32.as_value;
  211. }
  212. static inline uint32_t fp32_to_bits(float f) {
  213. union {
  214. float as_value;
  215. uint32_t as_bits;
  216. } fp32;
  217. fp32.as_value = f;
  218. return fp32.as_bits;
  219. }
  220. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  221. const uint32_t w = (uint32_t) h << 16;
  222. const uint32_t sign = w & UINT32_C(0x80000000);
  223. const uint32_t two_w = w + w;
  224. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  225. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  226. const float exp_scale = 0x1.0p-112f;
  227. #else
  228. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  229. #endif
  230. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  231. const uint32_t magic_mask = UINT32_C(126) << 23;
  232. const float magic_bias = 0.5f;
  233. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  234. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  235. const uint32_t result = sign |
  236. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  237. return fp32_from_bits(result);
  238. }
  239. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  240. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  241. const float scale_to_inf = 0x1.0p+112f;
  242. const float scale_to_zero = 0x1.0p-110f;
  243. #else
  244. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  245. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  246. #endif
  247. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  248. const uint32_t w = fp32_to_bits(f);
  249. const uint32_t shl1_w = w + w;
  250. const uint32_t sign = w & UINT32_C(0x80000000);
  251. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  252. if (bias < UINT32_C(0x71000000)) {
  253. bias = UINT32_C(0x71000000);
  254. }
  255. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  256. const uint32_t bits = fp32_to_bits(base);
  257. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  258. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  259. const uint32_t nonsign = exp_bits + mantissa_bits;
  260. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  261. }
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  264. #endif // __F16C__
  265. #endif // __ARM_NEON
  266. //
  267. // global data
  268. //
  269. // precomputed gelu table for f16 (128 KB)
  270. static ggml_fp16_t table_gelu_f16[1 << 16];
  271. // precomputed silu table for f16 (128 KB)
  272. static ggml_fp16_t table_silu_f16[1 << 16];
  273. // precomputed exp table for f16 (128 KB)
  274. static ggml_fp16_t table_exp_f16[1 << 16];
  275. // precomputed f32 table for f16 (256 KB)
  276. static float table_f32_f16[1 << 16];
  277. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  278. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  279. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  280. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  281. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  282. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  283. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  284. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  285. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  286. // precomputed tables for expanding 8bits to 8 bytes:
  287. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  288. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  289. #endif
  290. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  291. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  292. // This is also true for POWER9.
  293. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  294. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  295. uint16_t s;
  296. memcpy(&s, &f, sizeof(uint16_t));
  297. return table_f32_f16[s];
  298. }
  299. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  300. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  301. #endif
  302. // note: do not use these inside ggml.c
  303. // these are meant to be used via the ggml.h API
  304. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  305. return (float) GGML_FP16_TO_FP32(x);
  306. }
  307. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  308. return GGML_FP32_TO_FP16(x);
  309. }
  310. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  311. for (size_t i = 0; i < n; i++) {
  312. y[i] = GGML_FP16_TO_FP32(x[i]);
  313. }
  314. }
  315. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  316. size_t i = 0;
  317. #if defined(__F16C__)
  318. for (; i + 7 < n; i += 8) {
  319. __m256 x_vec = _mm256_loadu_ps(x + i);
  320. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  321. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  322. }
  323. for(; i + 3 < n; i += 4) {
  324. __m128 x_vec = _mm_loadu_ps(x + i);
  325. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  326. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  327. }
  328. #endif
  329. for (; i < n; i++) {
  330. y[i] = GGML_FP32_TO_FP16(x[i]);
  331. }
  332. }
  333. //
  334. // timing
  335. //
  336. #if defined(_MSC_VER) || defined(__MINGW32__)
  337. static int64_t timer_freq;
  338. void ggml_time_init(void) {
  339. LARGE_INTEGER frequency;
  340. QueryPerformanceFrequency(&frequency);
  341. timer_freq = frequency.QuadPart;
  342. }
  343. int64_t ggml_time_ms(void) {
  344. LARGE_INTEGER t;
  345. QueryPerformanceCounter(&t);
  346. return (t.QuadPart * 1000) / timer_freq;
  347. }
  348. int64_t ggml_time_us(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceCounter(&t);
  351. return (t.QuadPart * 1000000) / timer_freq;
  352. }
  353. #else
  354. void ggml_time_init(void) {}
  355. int64_t ggml_time_ms(void) {
  356. struct timespec ts;
  357. clock_gettime(CLOCK_MONOTONIC, &ts);
  358. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  359. }
  360. int64_t ggml_time_us(void) {
  361. struct timespec ts;
  362. clock_gettime(CLOCK_MONOTONIC, &ts);
  363. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  364. }
  365. #endif
  366. int64_t ggml_cycles(void) {
  367. return clock();
  368. }
  369. int64_t ggml_cycles_per_ms(void) {
  370. return CLOCKS_PER_SEC/1000;
  371. }
  372. #ifdef GGML_PERF
  373. #define ggml_perf_time_ms() ggml_time_ms()
  374. #define ggml_perf_time_us() ggml_time_us()
  375. #define ggml_perf_cycles() ggml_cycles()
  376. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  377. #else
  378. #define ggml_perf_time_ms() 0
  379. #define ggml_perf_time_us() 0
  380. #define ggml_perf_cycles() 0
  381. #define ggml_perf_cycles_per_ms() 0
  382. #endif
  383. //
  384. // cache line
  385. //
  386. #if defined(__cpp_lib_hardware_interference_size)
  387. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  388. #else
  389. #if defined(__POWER9_VECTOR__)
  390. #define CACHE_LINE_SIZE 128
  391. #else
  392. #define CACHE_LINE_SIZE 64
  393. #endif
  394. #endif
  395. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  396. //
  397. // quantization
  398. //
  399. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  400. // multiply int8_t, add results pairwise twice
  401. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  402. // Get absolute values of x vectors
  403. const __m128i ax = _mm_sign_epi8(x, x);
  404. // Sign the values of the y vectors
  405. const __m128i sy = _mm_sign_epi8(y, x);
  406. // Perform multiplication and create 16-bit values
  407. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  408. const __m128i ones = _mm_set1_epi16(1);
  409. return _mm_madd_epi16(ones, dot);
  410. }
  411. #if __AVX__ || __AVX2__ || __AVX512F__
  412. // horizontally add 8 floats
  413. static inline float hsum_float_8(const __m256 x) {
  414. __m128 res = _mm256_extractf128_ps(x, 1);
  415. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  416. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  417. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  418. return _mm_cvtss_f32(res);
  419. }
  420. // horizontally add 8 int32_t
  421. static inline int hsum_i32_8(const __m256i a) {
  422. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  423. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  424. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  425. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  426. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  427. }
  428. // horizontally add 4 int32_t
  429. static inline int hsum_i32_4(const __m128i a) {
  430. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  431. const __m128i sum64 = _mm_add_epi32(hi64, a);
  432. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  433. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  434. }
  435. #if defined(__AVX2__) || defined(__AVX512F__)
  436. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  437. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  438. uint32_t x32;
  439. memcpy(&x32, x, sizeof(uint32_t));
  440. const __m256i shuf_mask = _mm256_set_epi64x(
  441. 0x0303030303030303, 0x0202020202020202,
  442. 0x0101010101010101, 0x0000000000000000);
  443. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  444. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  445. bytes = _mm256_or_si256(bytes, bit_mask);
  446. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  447. }
  448. // Unpack 32 4-bit fields into 32 bytes
  449. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  450. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  451. {
  452. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  453. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  454. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  455. return _mm256_and_si256(lowMask, bytes);
  456. }
  457. // add int16_t pairwise and return as float vector
  458. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  459. const __m256i ones = _mm256_set1_epi16(1);
  460. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  461. return _mm256_cvtepi32_ps(summed_pairs);
  462. }
  463. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  464. #if __AVXVNNI__
  465. const __m256i zero = _mm256_setzero_si256();
  466. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  467. return _mm256_cvtepi32_ps(summed_pairs);
  468. #else
  469. // Perform multiplication and create 16-bit values
  470. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  471. return sum_i16_pairs_float(dot);
  472. #endif
  473. }
  474. // multiply int8_t, add results pairwise twice and return as float vector
  475. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  476. #if __AVXVNNIINT8__
  477. const __m256i zero = _mm256_setzero_si256();
  478. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  479. return _mm256_cvtepi32_ps(summed_pairs);
  480. #else
  481. // Get absolute values of x vectors
  482. const __m256i ax = _mm256_sign_epi8(x, x);
  483. // Sign the values of the y vectors
  484. const __m256i sy = _mm256_sign_epi8(y, x);
  485. return mul_sum_us8_pairs_float(ax, sy);
  486. #endif
  487. }
  488. static inline __m128i packNibbles( __m256i bytes )
  489. {
  490. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  491. #if __AVX512F__
  492. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  493. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  494. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  495. #else
  496. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  497. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  498. __m256i low = _mm256_and_si256( lowByte, bytes );
  499. high = _mm256_srli_epi16( high, 4 );
  500. bytes = _mm256_or_si256( low, high );
  501. // Compress uint16_t lanes into bytes
  502. __m128i r0 = _mm256_castsi256_si128( bytes );
  503. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  504. return _mm_packus_epi16( r0, r1 );
  505. #endif
  506. }
  507. #elif defined(__AVX__)
  508. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  509. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  510. uint32_t x32;
  511. memcpy(&x32, x, sizeof(uint32_t));
  512. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  513. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  514. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  515. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  516. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  517. bytesl = _mm_or_si128(bytesl, bit_mask);
  518. bytesh = _mm_or_si128(bytesh, bit_mask);
  519. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  520. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  521. return _mm256_set_m128i(bytesh, bytesl);
  522. }
  523. // Unpack 32 4-bit fields into 32 bytes
  524. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  525. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  526. {
  527. // Load 16 bytes from memory
  528. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  529. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  530. const __m128i lowMask = _mm_set1_epi8(0xF);
  531. tmpl = _mm_and_si128(lowMask, tmpl);
  532. tmph = _mm_and_si128(lowMask, tmph);
  533. return _mm256_set_m128i(tmph, tmpl);
  534. }
  535. // add int16_t pairwise and return as float vector
  536. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  537. const __m128i ones = _mm_set1_epi16(1);
  538. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  539. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  540. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  541. return _mm256_cvtepi32_ps(summed_pairs);
  542. }
  543. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  544. const __m128i axl = _mm256_castsi256_si128(ax);
  545. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  546. const __m128i syl = _mm256_castsi256_si128(sy);
  547. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  548. // Perform multiplication and create 16-bit values
  549. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  550. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  551. return sum_i16_pairs_float(doth, dotl);
  552. }
  553. // multiply int8_t, add results pairwise twice and return as float vector
  554. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  555. const __m128i xl = _mm256_castsi256_si128(x);
  556. const __m128i xh = _mm256_extractf128_si256(x, 1);
  557. const __m128i yl = _mm256_castsi256_si128(y);
  558. const __m128i yh = _mm256_extractf128_si256(y, 1);
  559. // Get absolute values of x vectors
  560. const __m128i axl = _mm_sign_epi8(xl, xl);
  561. const __m128i axh = _mm_sign_epi8(xh, xh);
  562. // Sign the values of the y vectors
  563. const __m128i syl = _mm_sign_epi8(yl, xl);
  564. const __m128i syh = _mm_sign_epi8(yh, xh);
  565. // Perform multiplication and create 16-bit values
  566. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  567. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  568. return sum_i16_pairs_float(doth, dotl);
  569. }
  570. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  571. {
  572. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  573. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  574. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  575. __m128i low = _mm_and_si128( lowByte, bytes1 );
  576. high = _mm_srli_epi16( high, 4 );
  577. bytes1 = _mm_or_si128( low, high );
  578. high = _mm_andnot_si128( lowByte, bytes2 );
  579. low = _mm_and_si128( lowByte, bytes2 );
  580. high = _mm_srli_epi16( high, 4 );
  581. bytes2 = _mm_or_si128( low, high );
  582. return _mm_packus_epi16( bytes1, bytes2);
  583. }
  584. #endif
  585. #elif defined(__SSSE3__)
  586. // horizontally add 4x4 floats
  587. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  588. __m128 res_0 =_mm_hadd_ps(a, b);
  589. __m128 res_1 =_mm_hadd_ps(c, d);
  590. __m128 res =_mm_hadd_ps(res_0, res_1);
  591. res =_mm_hadd_ps(res, res);
  592. res =_mm_hadd_ps(res, res);
  593. return _mm_cvtss_f32(res);
  594. }
  595. #endif // __AVX__ || __AVX2__ || __AVX512F__
  596. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  597. #if defined(__ARM_NEON)
  598. #if !defined(__aarch64__)
  599. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  600. return
  601. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  602. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  603. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  604. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  605. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  606. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  607. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  608. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  609. }
  610. inline static int16_t vaddvq_s8(int8x16_t v) {
  611. return
  612. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  613. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  614. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  615. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  616. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  617. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  618. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  619. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  620. }
  621. inline static int32_t vaddvq_s16(int16x8_t v) {
  622. return
  623. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  624. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  625. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  626. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  627. }
  628. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  629. return
  630. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  631. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  632. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  633. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  634. }
  635. inline static int32_t vaddvq_s32(int32x4_t v) {
  636. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  637. }
  638. inline static float vaddvq_f32(float32x4_t v) {
  639. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  640. }
  641. inline static float vminvq_f32(float32x4_t v) {
  642. return
  643. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  644. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  645. }
  646. inline static float vmaxvq_f32(float32x4_t v) {
  647. return
  648. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  649. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  650. }
  651. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  652. int32x4_t res;
  653. res[0] = roundf(vgetq_lane_f32(v, 0));
  654. res[1] = roundf(vgetq_lane_f32(v, 1));
  655. res[2] = roundf(vgetq_lane_f32(v, 2));
  656. res[3] = roundf(vgetq_lane_f32(v, 3));
  657. return res;
  658. }
  659. #endif
  660. #endif
  661. #define QK4_0 32
  662. typedef struct {
  663. ggml_fp16_t d; // delta
  664. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  665. } block_q4_0;
  666. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  667. #define QK4_1 32
  668. typedef struct {
  669. ggml_fp16_t d; // delta
  670. ggml_fp16_t m; // min
  671. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  672. } block_q4_1;
  673. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  674. #define QK5_0 32
  675. typedef struct {
  676. ggml_fp16_t d; // delta
  677. uint8_t qh[4]; // 5-th bit of quants
  678. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  679. } block_q5_0;
  680. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  681. #define QK5_1 32
  682. typedef struct {
  683. ggml_fp16_t d; // delta
  684. ggml_fp16_t m; // min
  685. uint8_t qh[4]; // 5-th bit of quants
  686. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  687. } block_q5_1;
  688. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  689. #define QK8_0 32
  690. typedef struct {
  691. ggml_fp16_t d; // delta
  692. int8_t qs[QK8_0]; // quants
  693. } block_q8_0;
  694. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  695. #define QK8_1 32
  696. typedef struct {
  697. float d; // delta
  698. float s; // d * sum(qs[i])
  699. int8_t qs[QK8_1]; // quants
  700. } block_q8_1;
  701. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  702. // reference implementation for deterministic creation of model files
  703. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  704. static const int qk = QK4_0;
  705. assert(k % qk == 0);
  706. const int nb = k / qk;
  707. for (int i = 0; i < nb; i++) {
  708. float amax = 0.0f; // absolute max
  709. float max = 0.0f;
  710. for (int j = 0; j < qk; j++) {
  711. const float v = x[i*qk + j];
  712. if (amax < fabsf(v)) {
  713. amax = fabsf(v);
  714. max = v;
  715. }
  716. }
  717. const float d = max / -8;
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].d = GGML_FP32_TO_FP16(d);
  720. for (int j = 0; j < qk/2; ++j) {
  721. const float x0 = x[i*qk + 0 + j]*id;
  722. const float x1 = x[i*qk + qk/2 + j]*id;
  723. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  724. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  725. y[i].qs[j] = xi0;
  726. y[i].qs[j] |= xi1 << 4;
  727. }
  728. }
  729. }
  730. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  731. quantize_row_q4_0_reference(x, y, k);
  732. }
  733. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  734. const int qk = QK4_1;
  735. assert(k % qk == 0);
  736. const int nb = k / qk;
  737. for (int i = 0; i < nb; i++) {
  738. float min = FLT_MAX;
  739. float max = -FLT_MAX;
  740. for (int j = 0; j < qk; j++) {
  741. const float v = x[i*qk + j];
  742. if (v < min) min = v;
  743. if (v > max) max = v;
  744. }
  745. const float d = (max - min) / ((1 << 4) - 1);
  746. const float id = d ? 1.0f/d : 0.0f;
  747. y[i].d = GGML_FP32_TO_FP16(d);
  748. y[i].m = GGML_FP32_TO_FP16(min);
  749. for (int j = 0; j < qk/2; ++j) {
  750. const float x0 = (x[i*qk + 0 + j] - min)*id;
  751. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  752. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  753. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  754. y[i].qs[j] = xi0;
  755. y[i].qs[j] |= xi1 << 4;
  756. }
  757. }
  758. }
  759. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  760. quantize_row_q4_1_reference(x, y, k);
  761. }
  762. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  763. static const int qk = QK5_0;
  764. assert(k % qk == 0);
  765. const int nb = k / qk;
  766. for (int i = 0; i < nb; i++) {
  767. float amax = 0.0f; // absolute max
  768. float max = 0.0f;
  769. for (int j = 0; j < qk; j++) {
  770. const float v = x[i*qk + j];
  771. if (amax < fabsf(v)) {
  772. amax = fabsf(v);
  773. max = v;
  774. }
  775. }
  776. const float d = max / -16;
  777. const float id = d ? 1.0f/d : 0.0f;
  778. y[i].d = GGML_FP32_TO_FP16(d);
  779. uint32_t qh = 0;
  780. for (int j = 0; j < qk/2; ++j) {
  781. const float x0 = x[i*qk + 0 + j]*id;
  782. const float x1 = x[i*qk + qk/2 + j]*id;
  783. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  784. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  785. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  786. // get the 5-th bit and store it in qh at the right position
  787. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  788. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  789. }
  790. memcpy(&y[i].qh, &qh, sizeof(qh));
  791. }
  792. }
  793. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  794. quantize_row_q5_0_reference(x, y, k);
  795. }
  796. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  797. const int qk = QK5_1;
  798. assert(k % qk == 0);
  799. const int nb = k / qk;
  800. for (int i = 0; i < nb; i++) {
  801. float min = FLT_MAX;
  802. float max = -FLT_MAX;
  803. for (int j = 0; j < qk; j++) {
  804. const float v = x[i*qk + j];
  805. if (v < min) min = v;
  806. if (v > max) max = v;
  807. }
  808. const float d = (max - min) / ((1 << 5) - 1);
  809. const float id = d ? 1.0f/d : 0.0f;
  810. y[i].d = GGML_FP32_TO_FP16(d);
  811. y[i].m = GGML_FP32_TO_FP16(min);
  812. uint32_t qh = 0;
  813. for (int j = 0; j < qk/2; ++j) {
  814. const float x0 = (x[i*qk + 0 + j] - min)*id;
  815. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  816. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  817. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  818. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  819. // get the 5-th bit and store it in qh at the right position
  820. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  821. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  822. }
  823. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  824. }
  825. }
  826. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  827. quantize_row_q5_1_reference(x, y, k);
  828. }
  829. // reference implementation for deterministic creation of model files
  830. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  831. assert(k % QK8_0 == 0);
  832. const int nb = k / QK8_0;
  833. for (int i = 0; i < nb; i++) {
  834. float amax = 0.0f; // absolute max
  835. for (int j = 0; j < QK8_0; j++) {
  836. const float v = x[i*QK8_0 + j];
  837. amax = MAX(amax, fabsf(v));
  838. }
  839. const float d = amax / ((1 << 7) - 1);
  840. const float id = d ? 1.0f/d : 0.0f;
  841. y[i].d = GGML_FP32_TO_FP16(d);
  842. for (int j = 0; j < QK8_0; ++j) {
  843. const float x0 = x[i*QK8_0 + j]*id;
  844. y[i].qs[j] = roundf(x0);
  845. }
  846. }
  847. }
  848. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  849. assert(QK8_0 == 32);
  850. assert(k % QK8_0 == 0);
  851. const int nb = k / QK8_0;
  852. block_q8_0 * restrict y = vy;
  853. #if defined(__ARM_NEON)
  854. for (int i = 0; i < nb; i++) {
  855. float32x4_t srcv [8];
  856. float32x4_t asrcv[8];
  857. float32x4_t amaxv[8];
  858. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  859. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  860. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  861. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  862. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  863. const float amax = vmaxvq_f32(amaxv[0]);
  864. const float d = amax / ((1 << 7) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = GGML_FP32_TO_FP16(d);
  867. for (int j = 0; j < 8; j++) {
  868. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  869. const int32x4_t vi = vcvtnq_s32_f32(v);
  870. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  871. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  872. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  873. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  874. }
  875. }
  876. #elif defined(__wasm_simd128__)
  877. for (int i = 0; i < nb; i++) {
  878. v128_t srcv [8];
  879. v128_t asrcv[8];
  880. v128_t amaxv[8];
  881. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  882. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  883. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  884. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  885. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  886. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  887. wasm_f32x4_extract_lane(amaxv[0], 1)),
  888. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  889. wasm_f32x4_extract_lane(amaxv[0], 3)));
  890. const float d = amax / ((1 << 7) - 1);
  891. const float id = d ? 1.0f/d : 0.0f;
  892. y[i].d = GGML_FP32_TO_FP16(d);
  893. for (int j = 0; j < 8; j++) {
  894. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  895. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  896. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  897. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  898. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  899. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  900. }
  901. }
  902. #elif defined(__AVX2__) || defined(__AVX__)
  903. for (int i = 0; i < nb; i++) {
  904. // Load elements into 4 AVX vectors
  905. __m256 v0 = _mm256_loadu_ps( x );
  906. __m256 v1 = _mm256_loadu_ps( x + 8 );
  907. __m256 v2 = _mm256_loadu_ps( x + 16 );
  908. __m256 v3 = _mm256_loadu_ps( x + 24 );
  909. x += 32;
  910. // Compute max(abs(e)) for the block
  911. const __m256 signBit = _mm256_set1_ps( -0.0f );
  912. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  914. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  915. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  916. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  917. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  918. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  919. const float maxScalar = _mm_cvtss_f32( max4 );
  920. // Quantize these floats
  921. const float d = maxScalar / 127.f;
  922. y[i].d = GGML_FP32_TO_FP16(d);
  923. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  924. const __m256 mul = _mm256_set1_ps( id );
  925. // Apply the multiplier
  926. v0 = _mm256_mul_ps( v0, mul );
  927. v1 = _mm256_mul_ps( v1, mul );
  928. v2 = _mm256_mul_ps( v2, mul );
  929. v3 = _mm256_mul_ps( v3, mul );
  930. // Round to nearest integer
  931. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  932. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  933. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  934. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  935. // Convert floats to integers
  936. __m256i i0 = _mm256_cvtps_epi32( v0 );
  937. __m256i i1 = _mm256_cvtps_epi32( v1 );
  938. __m256i i2 = _mm256_cvtps_epi32( v2 );
  939. __m256i i3 = _mm256_cvtps_epi32( v3 );
  940. #if defined(__AVX2__)
  941. // Convert int32 to int16
  942. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  943. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  944. // Convert int16 to int8
  945. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  946. // We got our precious signed bytes, but the order is now wrong
  947. // These AVX2 pack instructions process 16-byte pieces independently
  948. // The following instruction is fixing the order
  949. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  950. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  951. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  952. #else
  953. // Since we don't have in AVX some necessary functions,
  954. // we split the registers in half and call AVX2 analogs from SSE
  955. __m128i ni0 = _mm256_castsi256_si128( i0 );
  956. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  957. __m128i ni2 = _mm256_castsi256_si128( i1 );
  958. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  959. __m128i ni4 = _mm256_castsi256_si128( i2 );
  960. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  961. __m128i ni6 = _mm256_castsi256_si128( i3 );
  962. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  963. // Convert int32 to int16
  964. ni0 = _mm_packs_epi32( ni0, ni1 );
  965. ni2 = _mm_packs_epi32( ni2, ni3 );
  966. ni4 = _mm_packs_epi32( ni4, ni5 );
  967. ni6 = _mm_packs_epi32( ni6, ni7 );
  968. // Convert int16 to int8
  969. ni0 = _mm_packs_epi16( ni0, ni2 );
  970. ni4 = _mm_packs_epi16( ni4, ni6 );
  971. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  972. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  973. #endif
  974. }
  975. #else
  976. // scalar
  977. quantize_row_q8_0_reference(x, y, k);
  978. #endif
  979. }
  980. // reference implementation for deterministic creation of model files
  981. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  982. assert(QK8_1 == 32);
  983. assert(k % QK8_1 == 0);
  984. const int nb = k / QK8_1;
  985. for (int i = 0; i < nb; i++) {
  986. float amax = 0.0f; // absolute max
  987. for (int j = 0; j < QK8_1; j++) {
  988. const float v = x[i*QK8_1 + j];
  989. amax = MAX(amax, fabsf(v));
  990. }
  991. const float d = amax / ((1 << 7) - 1);
  992. const float id = d ? 1.0f/d : 0.0f;
  993. y[i].d = d;
  994. int sum = 0;
  995. for (int j = 0; j < QK8_1/2; ++j) {
  996. const float v0 = x[i*QK8_1 + j]*id;
  997. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  998. y[i].qs[ j] = roundf(v0);
  999. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1000. sum += y[i].qs[ j];
  1001. sum += y[i].qs[QK8_1/2 + j];
  1002. }
  1003. y[i].s = sum*d;
  1004. }
  1005. }
  1006. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1007. assert(k % QK8_1 == 0);
  1008. const int nb = k / QK8_1;
  1009. block_q8_1 * restrict y = vy;
  1010. #if defined(__ARM_NEON)
  1011. for (int i = 0; i < nb; i++) {
  1012. float32x4_t srcv [8];
  1013. float32x4_t asrcv[8];
  1014. float32x4_t amaxv[8];
  1015. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1016. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1017. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1018. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1019. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1020. const float amax = vmaxvq_f32(amaxv[0]);
  1021. const float d = amax / ((1 << 7) - 1);
  1022. const float id = d ? 1.0f/d : 0.0f;
  1023. y[i].d = d;
  1024. int32x4_t accv = vdupq_n_s32(0);
  1025. for (int j = 0; j < 8; j++) {
  1026. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1027. const int32x4_t vi = vcvtnq_s32_f32(v);
  1028. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1029. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1030. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1031. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1032. accv = vaddq_s32(accv, vi);
  1033. }
  1034. y[i].s = d * vaddvq_s32(accv);
  1035. }
  1036. #elif defined(__wasm_simd128__)
  1037. for (int i = 0; i < nb; i++) {
  1038. v128_t srcv [8];
  1039. v128_t asrcv[8];
  1040. v128_t amaxv[8];
  1041. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1042. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1043. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1044. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1045. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1046. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1047. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1048. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1049. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1050. const float d = amax / ((1 << 7) - 1);
  1051. const float id = d ? 1.0f/d : 0.0f;
  1052. y[i].d = d;
  1053. v128_t accv = wasm_i32x4_splat(0);
  1054. for (int j = 0; j < 8; j++) {
  1055. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1056. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1057. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1058. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1059. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1060. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1061. accv = wasm_i32x4_add(accv, vi);
  1062. }
  1063. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1064. wasm_i32x4_extract_lane(accv, 1) +
  1065. wasm_i32x4_extract_lane(accv, 2) +
  1066. wasm_i32x4_extract_lane(accv, 3));
  1067. }
  1068. #elif defined(__AVX2__) || defined(__AVX__)
  1069. for (int i = 0; i < nb; i++) {
  1070. // Load elements into 4 AVX vectors
  1071. __m256 v0 = _mm256_loadu_ps( x );
  1072. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1073. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1074. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1075. x += 32;
  1076. // Compute max(abs(e)) for the block
  1077. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1078. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1079. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1080. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1081. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1082. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1083. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1084. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1085. const float maxScalar = _mm_cvtss_f32( max4 );
  1086. // Quantize these floats
  1087. const float d = maxScalar / 127.f;
  1088. y[i].d = d;
  1089. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1090. const __m256 mul = _mm256_set1_ps( id );
  1091. // Apply the multiplier
  1092. v0 = _mm256_mul_ps( v0, mul );
  1093. v1 = _mm256_mul_ps( v1, mul );
  1094. v2 = _mm256_mul_ps( v2, mul );
  1095. v3 = _mm256_mul_ps( v3, mul );
  1096. // Round to nearest integer
  1097. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1098. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1099. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1100. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1101. // Convert floats to integers
  1102. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1103. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1104. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1105. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1106. #if defined(__AVX2__)
  1107. // Compute the sum of the quants and set y[i].s
  1108. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1109. // Convert int32 to int16
  1110. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1111. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1112. // Convert int16 to int8
  1113. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1114. // We got our precious signed bytes, but the order is now wrong
  1115. // These AVX2 pack instructions process 16-byte pieces independently
  1116. // The following instruction is fixing the order
  1117. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1118. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1119. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1120. #else
  1121. // Since we don't have in AVX some necessary functions,
  1122. // we split the registers in half and call AVX2 analogs from SSE
  1123. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1124. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1125. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1126. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1127. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1128. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1129. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1130. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1131. // Compute the sum of the quants and set y[i].s
  1132. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1133. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1134. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1135. // Convert int32 to int16
  1136. ni0 = _mm_packs_epi32( ni0, ni1 );
  1137. ni2 = _mm_packs_epi32( ni2, ni3 );
  1138. ni4 = _mm_packs_epi32( ni4, ni5 );
  1139. ni6 = _mm_packs_epi32( ni6, ni7 );
  1140. // Convert int16 to int8
  1141. ni0 = _mm_packs_epi16( ni0, ni2 );
  1142. ni4 = _mm_packs_epi16( ni4, ni6 );
  1143. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1144. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1145. #endif
  1146. }
  1147. #else
  1148. // scalar
  1149. quantize_row_q8_1_reference(x, y, k);
  1150. #endif
  1151. }
  1152. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1153. static const int qk = QK4_0;
  1154. assert(k % qk == 0);
  1155. const int nb = k / qk;
  1156. for (int i = 0; i < nb; i++) {
  1157. const float d = GGML_FP16_TO_FP32(x[i].d);
  1158. for (int j = 0; j < qk/2; ++j) {
  1159. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1160. const int x1 = (x[i].qs[j] >> 4) - 8;
  1161. y[i*qk + j + 0 ] = x0*d;
  1162. y[i*qk + j + qk/2] = x1*d;
  1163. }
  1164. }
  1165. }
  1166. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1167. static const int qk = QK4_1;
  1168. assert(k % qk == 0);
  1169. const int nb = k / qk;
  1170. for (int i = 0; i < nb; i++) {
  1171. const float d = GGML_FP16_TO_FP32(x[i].d);
  1172. const float m = GGML_FP16_TO_FP32(x[i].m);
  1173. for (int j = 0; j < qk/2; ++j) {
  1174. const int x0 = (x[i].qs[j] & 0x0F);
  1175. const int x1 = (x[i].qs[j] >> 4);
  1176. y[i*qk + j + 0 ] = x0*d + m;
  1177. y[i*qk + j + qk/2] = x1*d + m;
  1178. }
  1179. }
  1180. }
  1181. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1182. static const int qk = QK5_0;
  1183. assert(k % qk == 0);
  1184. const int nb = k / qk;
  1185. for (int i = 0; i < nb; i++) {
  1186. const float d = GGML_FP16_TO_FP32(x[i].d);
  1187. uint32_t qh;
  1188. memcpy(&qh, x[i].qh, sizeof(qh));
  1189. for (int j = 0; j < qk/2; ++j) {
  1190. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1191. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1192. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1193. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1194. y[i*qk + j + 0 ] = x0*d;
  1195. y[i*qk + j + qk/2] = x1*d;
  1196. }
  1197. }
  1198. }
  1199. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1200. static const int qk = QK5_1;
  1201. assert(k % qk == 0);
  1202. const int nb = k / qk;
  1203. for (int i = 0; i < nb; i++) {
  1204. const float d = GGML_FP16_TO_FP32(x[i].d);
  1205. const float m = GGML_FP16_TO_FP32(x[i].m);
  1206. uint32_t qh;
  1207. memcpy(&qh, x[i].qh, sizeof(qh));
  1208. for (int j = 0; j < qk/2; ++j) {
  1209. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1210. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1211. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1212. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1213. y[i*qk + j + 0 ] = x0*d + m;
  1214. y[i*qk + j + qk/2] = x1*d + m;
  1215. }
  1216. }
  1217. }
  1218. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1219. static const int qk = QK8_0;
  1220. assert(k % qk == 0);
  1221. const int nb = k / qk;
  1222. const block_q8_0 * restrict x = vx;
  1223. for (int i = 0; i < nb; i++) {
  1224. const float d = GGML_FP16_TO_FP32(x[i].d);
  1225. for (int j = 0; j < qk; ++j) {
  1226. y[i*qk + j] = x[i].qs[j]*d;
  1227. }
  1228. }
  1229. }
  1230. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1231. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1234. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1235. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1236. [GGML_TYPE_Q4_0] = {
  1237. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1238. .quantize_row_q = quantize_row_q4_0,
  1239. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1240. .quantize_row_q_dot = quantize_row_q8_0,
  1241. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1242. .vec_dot_type = GGML_TYPE_Q8_0,
  1243. },
  1244. [GGML_TYPE_Q4_1] = {
  1245. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1246. .quantize_row_q = quantize_row_q4_1,
  1247. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1248. .quantize_row_q_dot = quantize_row_q8_1,
  1249. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1250. .vec_dot_type = GGML_TYPE_Q8_1,
  1251. },
  1252. [GGML_TYPE_Q5_0] = {
  1253. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1254. .quantize_row_q = quantize_row_q5_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1258. .vec_dot_type = GGML_TYPE_Q8_0,
  1259. },
  1260. [GGML_TYPE_Q5_1] = {
  1261. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1262. .quantize_row_q = quantize_row_q5_1,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_1,
  1265. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1266. .vec_dot_type = GGML_TYPE_Q8_1,
  1267. },
  1268. [GGML_TYPE_Q8_0] = {
  1269. .dequantize_row_q = dequantize_row_q8_0,
  1270. .quantize_row_q = quantize_row_q8_0,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_0,
  1273. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1274. .vec_dot_type = GGML_TYPE_Q8_0,
  1275. },
  1276. [GGML_TYPE_Q8_1] = {
  1277. .dequantize_row_q = NULL, // TODO
  1278. .quantize_row_q = quantize_row_q8_1,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_1,
  1281. .vec_dot_q = NULL, // TODO
  1282. .vec_dot_type = GGML_TYPE_Q8_1,
  1283. },
  1284. };
  1285. // For internal test use
  1286. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1287. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1288. return quantize_fns[i];
  1289. }
  1290. //
  1291. // simd mappings
  1292. //
  1293. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1294. // we then implement the fundamental computation operations below using only these macros
  1295. // adding support for new architectures requires to define the corresponding SIMD macros
  1296. //
  1297. // GGML_F32_STEP / GGML_F16_STEP
  1298. // number of elements to process in a single step
  1299. //
  1300. // GGML_F32_EPR / GGML_F16_EPR
  1301. // number of elements to fit in a single register
  1302. //
  1303. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1304. #define GGML_SIMD
  1305. // F32 NEON
  1306. #define GGML_F32_STEP 16
  1307. #define GGML_F32_EPR 4
  1308. #define GGML_F32x4 float32x4_t
  1309. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1310. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1311. #define GGML_F32x4_LOAD vld1q_f32
  1312. #define GGML_F32x4_STORE vst1q_f32
  1313. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1314. #define GGML_F32x4_ADD vaddq_f32
  1315. #define GGML_F32x4_MUL vmulq_f32
  1316. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1317. #define GGML_F32x4_REDUCE(res, x) \
  1318. { \
  1319. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1320. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1321. } \
  1322. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1323. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1324. } \
  1325. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1326. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1327. } \
  1328. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1329. }
  1330. #define GGML_F32_VEC GGML_F32x4
  1331. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1332. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1333. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1334. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1335. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1336. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1337. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1338. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1339. // F16 NEON
  1340. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1341. #define GGML_F16_STEP 32
  1342. #define GGML_F16_EPR 8
  1343. #define GGML_F16x8 float16x8_t
  1344. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1345. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1346. #define GGML_F16x8_LOAD vld1q_f16
  1347. #define GGML_F16x8_STORE vst1q_f16
  1348. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1349. #define GGML_F16x8_ADD vaddq_f16
  1350. #define GGML_F16x8_MUL vmulq_f16
  1351. #define GGML_F16x8_REDUCE(res, x) \
  1352. { \
  1353. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1354. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1355. } \
  1356. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1357. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1358. } \
  1359. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1360. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1361. } \
  1362. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1363. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1364. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1365. }
  1366. #define GGML_F16_VEC GGML_F16x8
  1367. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1368. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1369. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1370. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1371. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1372. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1373. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1374. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1375. #else
  1376. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1377. // and take advantage of the vcvt_ functions to convert to/from FP16
  1378. #define GGML_F16_STEP 16
  1379. #define GGML_F16_EPR 4
  1380. #define GGML_F32Cx4 float32x4_t
  1381. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1382. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1383. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1384. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1385. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1386. #define GGML_F32Cx4_ADD vaddq_f32
  1387. #define GGML_F32Cx4_MUL vmulq_f32
  1388. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1389. #define GGML_F16_VEC GGML_F32Cx4
  1390. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1391. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1392. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1393. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1394. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1395. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1396. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1397. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1398. #endif
  1399. #elif defined(__AVX__)
  1400. #define GGML_SIMD
  1401. // F32 AVX
  1402. #define GGML_F32_STEP 32
  1403. #define GGML_F32_EPR 8
  1404. #define GGML_F32x8 __m256
  1405. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1406. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1407. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1408. #define GGML_F32x8_STORE _mm256_storeu_ps
  1409. #if defined(__FMA__)
  1410. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1411. #else
  1412. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1413. #endif
  1414. #define GGML_F32x8_ADD _mm256_add_ps
  1415. #define GGML_F32x8_MUL _mm256_mul_ps
  1416. #define GGML_F32x8_REDUCE(res, x) \
  1417. { \
  1418. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1419. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1420. } \
  1421. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1422. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1423. } \
  1424. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1425. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1426. } \
  1427. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1428. _mm256_extractf128_ps(x[0], 1)); \
  1429. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1430. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1431. }
  1432. // TODO: is this optimal ?
  1433. #define GGML_F32_VEC GGML_F32x8
  1434. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1435. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1436. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1437. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1438. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1439. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1440. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1441. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1442. // F16 AVX
  1443. #define GGML_F16_STEP 32
  1444. #define GGML_F16_EPR 8
  1445. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1446. #define GGML_F32Cx8 __m256
  1447. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1448. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1449. #if defined(__F16C__)
  1450. // the _mm256_cvt intrinsics require F16C
  1451. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1452. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1453. #else
  1454. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1455. float tmp[8];
  1456. for (int i = 0; i < 8; i++) {
  1457. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1458. }
  1459. return _mm256_loadu_ps(tmp);
  1460. }
  1461. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1462. float arr[8];
  1463. _mm256_storeu_ps(arr, y);
  1464. for (int i = 0; i < 8; i++)
  1465. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1466. }
  1467. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1468. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1469. #endif
  1470. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1471. #define GGML_F32Cx8_ADD _mm256_add_ps
  1472. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1473. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1474. #define GGML_F16_VEC GGML_F32Cx8
  1475. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1476. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1477. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1478. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1479. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1480. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1481. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1482. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1483. #elif defined(__POWER9_VECTOR__)
  1484. #define GGML_SIMD
  1485. // F32 POWER9
  1486. #define GGML_F32_STEP 32
  1487. #define GGML_F32_EPR 4
  1488. #define GGML_F32x4 vector float
  1489. #define GGML_F32x4_ZERO 0.0f
  1490. #define GGML_F32x4_SET1 vec_splats
  1491. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1492. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1493. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1494. #define GGML_F32x4_ADD vec_add
  1495. #define GGML_F32x4_MUL vec_mul
  1496. #define GGML_F32x4_REDUCE(res, x) \
  1497. { \
  1498. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1499. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1500. } \
  1501. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1502. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1503. } \
  1504. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1505. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1506. } \
  1507. res = vec_extract(x[0], 0) + \
  1508. vec_extract(x[0], 1) + \
  1509. vec_extract(x[0], 2) + \
  1510. vec_extract(x[0], 3); \
  1511. }
  1512. #define GGML_F32_VEC GGML_F32x4
  1513. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1514. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1515. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1516. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1517. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1518. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1519. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1520. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1521. // F16 POWER9
  1522. #define GGML_F16_STEP GGML_F32_STEP
  1523. #define GGML_F16_EPR GGML_F32_EPR
  1524. #define GGML_F16_VEC GGML_F32x4
  1525. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1526. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1527. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1528. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1529. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1530. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1531. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1532. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1533. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1534. #define GGML_F16_VEC_STORE(p, r, i) \
  1535. if (i & 0x1) \
  1536. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1537. r[i - GGML_ENDIAN_BYTE(0)]), \
  1538. 0, p - GGML_F16_EPR)
  1539. #elif defined(__wasm_simd128__)
  1540. #define GGML_SIMD
  1541. // F32 WASM
  1542. #define GGML_F32_STEP 16
  1543. #define GGML_F32_EPR 4
  1544. #define GGML_F32x4 v128_t
  1545. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1546. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1547. #define GGML_F32x4_LOAD wasm_v128_load
  1548. #define GGML_F32x4_STORE wasm_v128_store
  1549. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1550. #define GGML_F32x4_ADD wasm_f32x4_add
  1551. #define GGML_F32x4_MUL wasm_f32x4_mul
  1552. #define GGML_F32x4_REDUCE(res, x) \
  1553. { \
  1554. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1555. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1556. } \
  1557. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1558. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1559. } \
  1560. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1561. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1562. } \
  1563. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1564. wasm_f32x4_extract_lane(x[0], 1) + \
  1565. wasm_f32x4_extract_lane(x[0], 2) + \
  1566. wasm_f32x4_extract_lane(x[0], 3); \
  1567. }
  1568. #define GGML_F32_VEC GGML_F32x4
  1569. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1570. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1571. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1572. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1573. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1574. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1575. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1576. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1577. // F16 WASM
  1578. #define GGML_F16_STEP 16
  1579. #define GGML_F16_EPR 4
  1580. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1581. float tmp[4];
  1582. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1583. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1584. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1585. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1586. return wasm_v128_load(tmp);
  1587. }
  1588. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1589. float tmp[4];
  1590. wasm_v128_store(tmp, x);
  1591. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1592. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1593. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1594. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1595. }
  1596. #define GGML_F16x4 v128_t
  1597. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1598. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1599. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1600. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1601. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1602. #define GGML_F16x4_ADD wasm_f32x4_add
  1603. #define GGML_F16x4_MUL wasm_f32x4_mul
  1604. #define GGML_F16x4_REDUCE(res, x) \
  1605. { \
  1606. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1607. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1608. } \
  1609. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1610. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1611. } \
  1612. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1613. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1614. } \
  1615. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1616. wasm_f32x4_extract_lane(x[0], 1) + \
  1617. wasm_f32x4_extract_lane(x[0], 2) + \
  1618. wasm_f32x4_extract_lane(x[0], 3); \
  1619. }
  1620. #define GGML_F16_VEC GGML_F16x4
  1621. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1622. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1623. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1624. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1625. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1626. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1627. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1628. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1629. #elif defined(__SSE3__)
  1630. #define GGML_SIMD
  1631. // F32 SSE
  1632. #define GGML_F32_STEP 32
  1633. #define GGML_F32_EPR 4
  1634. #define GGML_F32x4 __m128
  1635. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1636. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1637. #define GGML_F32x4_LOAD _mm_loadu_ps
  1638. #define GGML_F32x4_STORE _mm_storeu_ps
  1639. #if defined(__FMA__)
  1640. // TODO: Does this work?
  1641. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1642. #else
  1643. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1644. #endif
  1645. #define GGML_F32x4_ADD _mm_add_ps
  1646. #define GGML_F32x4_MUL _mm_mul_ps
  1647. #define GGML_F32x4_REDUCE(res, x) \
  1648. { \
  1649. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1650. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1651. } \
  1652. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1653. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1654. } \
  1655. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1656. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1657. } \
  1658. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1659. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1660. }
  1661. // TODO: is this optimal ?
  1662. #define GGML_F32_VEC GGML_F32x4
  1663. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1664. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1665. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1666. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1667. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1668. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1669. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1670. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1671. // F16 SSE
  1672. #define GGML_F16_STEP 32
  1673. #define GGML_F16_EPR 4
  1674. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1675. float tmp[4];
  1676. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1677. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1678. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1679. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1680. return _mm_loadu_ps(tmp);
  1681. }
  1682. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1683. float arr[4];
  1684. _mm_storeu_ps(arr, y);
  1685. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1686. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1687. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1688. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1689. }
  1690. #define GGML_F32Cx4 __m128
  1691. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1692. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1693. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1694. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1695. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1696. #define GGML_F32Cx4_ADD _mm_add_ps
  1697. #define GGML_F32Cx4_MUL _mm_mul_ps
  1698. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1699. #define GGML_F16_VEC GGML_F32Cx4
  1700. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1701. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1702. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1703. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1704. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1705. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1706. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1707. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1708. #endif
  1709. // GGML_F32_ARR / GGML_F16_ARR
  1710. // number of registers to use per step
  1711. #ifdef GGML_SIMD
  1712. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1713. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1714. #endif
  1715. //
  1716. // fundamental operations
  1717. //
  1718. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1719. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1720. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1721. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1722. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1723. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1724. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1725. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1726. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1727. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1728. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1729. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1730. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1731. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1732. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1733. #ifdef GGML_SIMD
  1734. float sumf = 0.0f;
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1744. }
  1745. }
  1746. // reduce sum0..sum3 to sum0
  1747. GGML_F32_VEC_REDUCE(sumf, sum);
  1748. // leftovers
  1749. for (int i = np; i < n; ++i) {
  1750. sumf += x[i]*y[i];
  1751. }
  1752. #else
  1753. // scalar
  1754. ggml_float sumf = 0.0;
  1755. for (int i = 0; i < n; ++i) {
  1756. sumf += (ggml_float)(x[i]*y[i]);
  1757. }
  1758. #endif
  1759. *s = sumf;
  1760. }
  1761. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1762. ggml_float sumf = 0.0;
  1763. #if defined(GGML_SIMD)
  1764. const int np = (n & ~(GGML_F16_STEP - 1));
  1765. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1766. GGML_F16_VEC ax[GGML_F16_ARR];
  1767. GGML_F16_VEC ay[GGML_F16_ARR];
  1768. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1769. for (int j = 0; j < GGML_F16_ARR; j++) {
  1770. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1771. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1772. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1773. }
  1774. }
  1775. // reduce sum0..sum3 to sum0
  1776. GGML_F16_VEC_REDUCE(sumf, sum);
  1777. // leftovers
  1778. for (int i = np; i < n; ++i) {
  1779. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1780. }
  1781. #else
  1782. for (int i = 0; i < n; ++i) {
  1783. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1784. }
  1785. #endif
  1786. *s = sumf;
  1787. }
  1788. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1789. const int qk = QK8_0;
  1790. const int nb = n / qk;
  1791. assert(n % qk == 0);
  1792. assert(nb % 2 == 0);
  1793. const block_q4_0 * restrict x = vx;
  1794. const block_q8_0 * restrict y = vy;
  1795. #if defined(__ARM_NEON)
  1796. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1797. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1798. for (int i = 0; i < nb; i += 2) {
  1799. const block_q4_0 * restrict x0 = &x[i + 0];
  1800. const block_q4_0 * restrict x1 = &x[i + 1];
  1801. const block_q8_0 * restrict y0 = &y[i + 0];
  1802. const block_q8_0 * restrict y1 = &y[i + 1];
  1803. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1804. const int8x16_t s8b = vdupq_n_s8(0x8);
  1805. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1806. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1807. // 4-bit -> 8-bit
  1808. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1809. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1810. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1811. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1812. // sub 8
  1813. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1814. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1815. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1816. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1817. // load y
  1818. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1819. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1820. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1821. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1822. #if defined(__ARM_FEATURE_DOTPROD)
  1823. // dot product into int32x4_t
  1824. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1825. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1826. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1827. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1828. #else
  1829. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1830. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1831. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1832. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1833. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1834. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1835. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1836. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1837. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1838. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1839. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1840. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1841. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1842. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1843. #endif
  1844. }
  1845. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1846. #elif defined(__AVX2__)
  1847. // Initialize accumulator with zeros
  1848. __m256 acc = _mm256_setzero_ps();
  1849. // Main loop
  1850. for (int i = 0; i < nb; ++i) {
  1851. /* Compute combined scale for the block */
  1852. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1853. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1854. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1855. const __m256i off = _mm256_set1_epi8( 8 );
  1856. bx = _mm256_sub_epi8( bx, off );
  1857. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1858. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1859. /* Multiply q with scale and accumulate */
  1860. acc = _mm256_fmadd_ps( d, q, acc );
  1861. }
  1862. *s = hsum_float_8(acc);
  1863. #elif defined(__AVX__)
  1864. // Initialize accumulator with zeros
  1865. __m256 acc = _mm256_setzero_ps();
  1866. // Main loop
  1867. for (int i = 0; i < nb; ++i) {
  1868. // Compute combined scale for the block
  1869. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1870. const __m128i lowMask = _mm_set1_epi8(0xF);
  1871. const __m128i off = _mm_set1_epi8(8);
  1872. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1873. __m128i bx = _mm_and_si128(lowMask, tmp);
  1874. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1875. bx = _mm_sub_epi8(bx, off);
  1876. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1877. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1878. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1879. bx = _mm_sub_epi8(bx, off);
  1880. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1881. // Convert int32_t to float
  1882. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1883. // Apply the scale, and accumulate
  1884. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1885. }
  1886. *s = hsum_float_8(acc);
  1887. #elif defined(__SSSE3__)
  1888. // set constants
  1889. const __m128i lowMask = _mm_set1_epi8(0xF);
  1890. const __m128i off = _mm_set1_epi8(8);
  1891. // Initialize accumulator with zeros
  1892. __m128 acc_0 = _mm_setzero_ps();
  1893. __m128 acc_1 = _mm_setzero_ps();
  1894. __m128 acc_2 = _mm_setzero_ps();
  1895. __m128 acc_3 = _mm_setzero_ps();
  1896. // First round without accumulation
  1897. {
  1898. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1899. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1900. // Compute combined scale for the block 0 and 1
  1901. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1902. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1903. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1904. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1905. bx_0 = _mm_sub_epi8(bx_0, off);
  1906. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1907. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1908. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1909. bx_1 = _mm_sub_epi8(bx_1, off);
  1910. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1911. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1912. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1913. // Compute combined scale for the block 2 and 3
  1914. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1915. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1916. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1917. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1918. bx_2 = _mm_sub_epi8(bx_2, off);
  1919. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1920. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1921. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1922. bx_3 = _mm_sub_epi8(bx_3, off);
  1923. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1924. // Convert int32_t to float
  1925. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1926. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1927. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1928. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1929. // Apply the scale
  1930. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1931. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1932. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1933. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1934. }
  1935. // Main loop
  1936. for (int i = 2; i < nb; i+=2) {
  1937. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1938. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1939. // Compute combined scale for the block 0 and 1
  1940. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1941. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1942. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1943. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1944. bx_0 = _mm_sub_epi8(bx_0, off);
  1945. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1946. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1947. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1948. bx_1 = _mm_sub_epi8(bx_1, off);
  1949. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1950. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1951. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1952. // Compute combined scale for the block 2 and 3
  1953. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1954. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1955. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1956. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1957. bx_2 = _mm_sub_epi8(bx_2, off);
  1958. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1959. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1960. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1961. bx_3 = _mm_sub_epi8(bx_3, off);
  1962. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1963. // Convert int32_t to float
  1964. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1965. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1966. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1967. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1968. // Apply the scale
  1969. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1970. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1971. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1972. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1973. // Acummulate
  1974. acc_0 = _mm_add_ps(p0_d, acc_0);
  1975. acc_1 = _mm_add_ps(p1_d, acc_1);
  1976. acc_2 = _mm_add_ps(p2_d, acc_2);
  1977. acc_3 = _mm_add_ps(p3_d, acc_3);
  1978. }
  1979. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1980. #else
  1981. // scalar
  1982. float sumf = 0.0;
  1983. for (int i = 0; i < nb; i++) {
  1984. int sumi = 0;
  1985. for (int j = 0; j < qk/2; ++j) {
  1986. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1987. const int v1 = (x[i].qs[j] >> 4) - 8;
  1988. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1989. }
  1990. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1991. }
  1992. *s = sumf;
  1993. #endif
  1994. }
  1995. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1996. const int qk = QK8_1;
  1997. const int nb = n / qk;
  1998. assert(n % qk == 0);
  1999. assert(nb % 2 == 0);
  2000. const block_q4_1 * restrict x = vx;
  2001. const block_q8_1 * restrict y = vy;
  2002. // TODO: add WASM SIMD
  2003. #if defined(__ARM_NEON)
  2004. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2005. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2006. float summs = 0;
  2007. for (int i = 0; i < nb; i += 2) {
  2008. const block_q4_1 * restrict x0 = &x[i + 0];
  2009. const block_q4_1 * restrict x1 = &x[i + 1];
  2010. const block_q8_1 * restrict y0 = &y[i + 0];
  2011. const block_q8_1 * restrict y1 = &y[i + 1];
  2012. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2013. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2014. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2015. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2016. // 4-bit -> 8-bit
  2017. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2018. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2019. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2020. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2021. // load y
  2022. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2023. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2024. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2025. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2026. #if defined(__ARM_FEATURE_DOTPROD)
  2027. // dot product into int32x4_t
  2028. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2029. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2030. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2031. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2032. #else
  2033. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2034. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2035. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2036. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2037. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2038. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2039. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2040. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2041. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2042. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2043. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2044. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2045. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2046. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2047. #endif
  2048. }
  2049. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2050. #elif defined(__AVX2__) || defined(__AVX__)
  2051. // Initialize accumulator with zeros
  2052. __m256 acc = _mm256_setzero_ps();
  2053. float summs = 0;
  2054. // Main loop
  2055. for (int i = 0; i < nb; ++i) {
  2056. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2057. const float d1 = y[i].d;
  2058. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2059. const __m256 d0v = _mm256_set1_ps( d0 );
  2060. const __m256 d1v = _mm256_set1_ps( d1 );
  2061. // Compute combined scales
  2062. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2063. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2064. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2065. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2066. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2067. // Accumulate d0*d1*x*y
  2068. #if defined(__AVX2__)
  2069. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2070. #else
  2071. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2072. #endif
  2073. }
  2074. *s = hsum_float_8(acc) + summs;
  2075. #else
  2076. // scalar
  2077. float sumf = 0.0;
  2078. for (int i = 0; i < nb; i++) {
  2079. int sumi = 0;
  2080. for (int j = 0; j < qk/2; ++j) {
  2081. const int v0 = (x[i].qs[j] & 0x0F);
  2082. const int v1 = (x[i].qs[j] >> 4);
  2083. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2084. }
  2085. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2086. }
  2087. *s = sumf;
  2088. #endif
  2089. }
  2090. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2091. const int qk = QK8_0;
  2092. const int nb = n / qk;
  2093. assert(n % qk == 0);
  2094. assert(nb % 2 == 0);
  2095. assert(qk == QK5_0);
  2096. const block_q5_0 * restrict x = vx;
  2097. const block_q8_0 * restrict y = vy;
  2098. #if defined(__ARM_NEON)
  2099. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2100. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2101. uint32_t qh0;
  2102. uint32_t qh1;
  2103. uint64_t tmp0[4];
  2104. uint64_t tmp1[4];
  2105. for (int i = 0; i < nb; i += 2) {
  2106. const block_q5_0 * restrict x0 = &x[i];
  2107. const block_q5_0 * restrict x1 = &x[i + 1];
  2108. const block_q8_0 * restrict y0 = &y[i];
  2109. const block_q8_0 * restrict y1 = &y[i + 1];
  2110. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2111. // extract the 5th bit via lookup table ((!b) << 4)
  2112. memcpy(&qh0, x0->qh, sizeof(qh0));
  2113. memcpy(&qh1, x1->qh, sizeof(qh1));
  2114. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2115. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2116. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2117. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2118. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2119. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2120. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2121. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2122. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2123. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2124. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2125. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2126. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2127. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2128. // 4-bit -> 8-bit
  2129. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2130. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2131. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2132. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2133. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2134. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2135. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2136. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2137. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2138. // load y
  2139. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2140. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2141. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2142. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2143. #if defined(__ARM_FEATURE_DOTPROD)
  2144. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2145. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2146. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2147. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2148. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2149. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2150. #else
  2151. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2152. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2153. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2154. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2155. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2156. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2157. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2158. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2159. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2160. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2161. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2162. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2163. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2164. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2165. #endif
  2166. }
  2167. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2168. #elif defined(__wasm_simd128__)
  2169. v128_t sumv = wasm_f32x4_splat(0.0f);
  2170. uint32_t qh;
  2171. uint64_t tmp[4];
  2172. // TODO: check if unrolling this is better
  2173. for (int i = 0; i < nb; ++i) {
  2174. const block_q5_0 * restrict x0 = &x[i];
  2175. const block_q8_0 * restrict y0 = &y[i];
  2176. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2177. // extract the 5th bit
  2178. memcpy(&qh, x0->qh, sizeof(qh));
  2179. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2180. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2181. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2182. tmp[3] = table_b2b_1[(qh >> 24) ];
  2183. const v128_t qhl = wasm_v128_load(tmp + 0);
  2184. const v128_t qhh = wasm_v128_load(tmp + 2);
  2185. const v128_t v0 = wasm_v128_load(x0->qs);
  2186. // 4-bit -> 8-bit
  2187. const v128_t v0l = wasm_v128_and (v0, m4b);
  2188. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2189. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2190. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2191. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2192. // load y
  2193. const v128_t v1l = wasm_v128_load(y0->qs);
  2194. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2195. // int8x16 -> int16x8
  2196. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2197. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2198. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2199. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2200. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2201. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2202. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2203. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2204. // dot product
  2205. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2206. wasm_i32x4_add(
  2207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2208. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2209. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2210. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2211. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2212. }
  2213. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2214. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2215. #elif defined(__AVX2__)
  2216. // Initialize accumulator with zeros
  2217. __m256 acc = _mm256_setzero_ps();
  2218. // Main loop
  2219. for (int i = 0; i < nb; i++) {
  2220. /* Compute combined scale for the block */
  2221. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2222. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2223. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2224. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2225. bx = _mm256_or_si256(bx, bxhi);
  2226. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2227. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2228. /* Multiply q with scale and accumulate */
  2229. acc = _mm256_fmadd_ps(d, q, acc);
  2230. }
  2231. *s = hsum_float_8(acc);
  2232. #elif defined(__AVX__)
  2233. // Initialize accumulator with zeros
  2234. __m256 acc = _mm256_setzero_ps();
  2235. __m128i mask = _mm_set1_epi8((char)0xF0);
  2236. // Main loop
  2237. for (int i = 0; i < nb; i++) {
  2238. /* Compute combined scale for the block */
  2239. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2240. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2241. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2242. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2243. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2244. bxhil = _mm_andnot_si128(bxhil, mask);
  2245. bxhih = _mm_andnot_si128(bxhih, mask);
  2246. __m128i bxl = _mm256_castsi256_si128(bx);
  2247. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2248. bxl = _mm_or_si128(bxl, bxhil);
  2249. bxh = _mm_or_si128(bxh, bxhih);
  2250. bx = _mm256_set_m128i(bxh, bxl);
  2251. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2252. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2253. /* Multiply q with scale and accumulate */
  2254. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2255. }
  2256. *s = hsum_float_8(acc);
  2257. #else
  2258. // scalar
  2259. float sumf = 0.0;
  2260. for (int i = 0; i < nb; i++) {
  2261. uint32_t qh;
  2262. memcpy(&qh, x[i].qh, sizeof(qh));
  2263. int sumi = 0;
  2264. for (int j = 0; j < qk/2; ++j) {
  2265. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2266. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2267. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2268. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2269. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2270. }
  2271. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2272. }
  2273. *s = sumf;
  2274. #endif
  2275. }
  2276. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2277. const int qk = QK8_1;
  2278. const int nb = n / qk;
  2279. assert(n % qk == 0);
  2280. assert(nb % 2 == 0);
  2281. assert(qk == QK5_1);
  2282. const block_q5_1 * restrict x = vx;
  2283. const block_q8_1 * restrict y = vy;
  2284. #if defined(__ARM_NEON)
  2285. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2286. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2287. float summs0 = 0.0f;
  2288. float summs1 = 0.0f;
  2289. uint32_t qh0;
  2290. uint32_t qh1;
  2291. uint64_t tmp0[4];
  2292. uint64_t tmp1[4];
  2293. for (int i = 0; i < nb; i += 2) {
  2294. const block_q5_1 * restrict x0 = &x[i];
  2295. const block_q5_1 * restrict x1 = &x[i + 1];
  2296. const block_q8_1 * restrict y0 = &y[i];
  2297. const block_q8_1 * restrict y1 = &y[i + 1];
  2298. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2299. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2300. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2301. // extract the 5th bit via lookup table ((b) << 4)
  2302. memcpy(&qh0, x0->qh, sizeof(qh0));
  2303. memcpy(&qh1, x1->qh, sizeof(qh1));
  2304. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2305. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2306. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2307. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2308. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2309. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2310. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2311. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2312. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2313. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2314. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2315. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2316. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2317. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2318. // 4-bit -> 8-bit
  2319. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2320. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2321. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2322. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2323. // add high bit
  2324. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2325. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2326. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2327. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2328. // load y
  2329. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2330. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2331. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2332. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2333. #if defined(__ARM_FEATURE_DOTPROD)
  2334. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2335. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2336. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2338. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2339. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2340. #else
  2341. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2342. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2343. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2344. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2345. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2346. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2347. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2348. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2349. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2350. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2351. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2352. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2353. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2354. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2355. #endif
  2356. }
  2357. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2358. #elif defined(__wasm_simd128__)
  2359. v128_t sumv = wasm_f32x4_splat(0.0f);
  2360. float summs = 0.0f;
  2361. uint32_t qh;
  2362. uint64_t tmp[4];
  2363. // TODO: check if unrolling this is better
  2364. for (int i = 0; i < nb; ++i) {
  2365. const block_q5_1 * restrict x0 = &x[i];
  2366. const block_q8_1 * restrict y0 = &y[i];
  2367. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2368. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2369. // extract the 5th bit
  2370. memcpy(&qh, x0->qh, sizeof(qh));
  2371. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2372. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2373. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2374. tmp[3] = table_b2b_0[(qh >> 24) ];
  2375. const v128_t qhl = wasm_v128_load(tmp + 0);
  2376. const v128_t qhh = wasm_v128_load(tmp + 2);
  2377. const v128_t v0 = wasm_v128_load(x0->qs);
  2378. // 4-bit -> 8-bit
  2379. const v128_t v0l = wasm_v128_and (v0, m4b);
  2380. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2381. // add high bit
  2382. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2383. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2384. // load y
  2385. const v128_t v1l = wasm_v128_load(y0->qs);
  2386. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2387. // int8x16 -> int16x8
  2388. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2389. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2390. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2391. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2392. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2393. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2394. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2395. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2396. // dot product
  2397. sumv = wasm_f32x4_add(sumv,
  2398. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2400. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2401. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2402. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2403. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2404. }
  2405. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2406. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2407. #elif defined(__AVX2__)
  2408. // Initialize accumulator with zeros
  2409. __m256 acc = _mm256_setzero_ps();
  2410. float summs = 0.0f;
  2411. // Main loop
  2412. for (int i = 0; i < nb; i++) {
  2413. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2414. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2415. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2416. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2417. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2418. bx = _mm256_or_si256(bx, bxhi);
  2419. const __m256 dy = _mm256_set1_ps(y[i].d);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2422. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2423. }
  2424. *s = hsum_float_8(acc) + summs;
  2425. #elif defined(__AVX__)
  2426. // Initialize accumulator with zeros
  2427. __m256 acc = _mm256_setzero_ps();
  2428. __m128i mask = _mm_set1_epi8(0x10);
  2429. float summs = 0.0f;
  2430. // Main loop
  2431. for (int i = 0; i < nb; i++) {
  2432. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2433. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2434. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2435. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2436. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2437. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2438. bxhil = _mm_and_si128(bxhil, mask);
  2439. bxhih = _mm_and_si128(bxhih, mask);
  2440. __m128i bxl = _mm256_castsi256_si128(bx);
  2441. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2442. bxl = _mm_or_si128(bxl, bxhil);
  2443. bxh = _mm_or_si128(bxh, bxhih);
  2444. bx = _mm256_set_m128i(bxh, bxl);
  2445. const __m256 dy = _mm256_set1_ps(y[i].d);
  2446. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2447. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2448. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2449. }
  2450. *s = hsum_float_8(acc) + summs;
  2451. #else
  2452. // scalar
  2453. float sumf = 0.0;
  2454. for (int i = 0; i < nb; i++) {
  2455. uint32_t qh;
  2456. memcpy(&qh, x[i].qh, sizeof(qh));
  2457. int sumi = 0;
  2458. for (int j = 0; j < qk/2; ++j) {
  2459. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2460. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2461. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2462. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2463. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2464. }
  2465. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2466. }
  2467. *s = sumf;
  2468. #endif
  2469. }
  2470. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2471. const int qk = QK8_0;
  2472. const int nb = n / qk;
  2473. assert(n % qk == 0);
  2474. assert(nb % 2 == 0);
  2475. const block_q8_0 * restrict x = vx;
  2476. const block_q8_0 * restrict y = vy;
  2477. #if defined(__ARM_NEON)
  2478. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2479. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2480. for (int i = 0; i < nb; i += 2) {
  2481. const block_q8_0 * restrict x0 = &x[i + 0];
  2482. const block_q8_0 * restrict x1 = &x[i + 1];
  2483. const block_q8_0 * restrict y0 = &y[i + 0];
  2484. const block_q8_0 * restrict y1 = &y[i + 1];
  2485. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2486. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2487. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2488. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2489. // load y
  2490. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2491. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2492. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2493. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2494. #if defined(__ARM_FEATURE_DOTPROD)
  2495. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2496. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2497. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2498. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2499. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2500. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2501. #else
  2502. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2503. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2504. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2505. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2506. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2507. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2508. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2509. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2510. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2511. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2512. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2513. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2514. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2515. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2516. #endif
  2517. }
  2518. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2519. #elif defined(__AVX2__) || defined(__AVX__)
  2520. // Initialize accumulator with zeros
  2521. __m256 acc = _mm256_setzero_ps();
  2522. // Main loop
  2523. for (int i = 0; i < nb; ++i) {
  2524. // Compute combined scale for the block
  2525. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2526. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2527. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2528. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2529. // Multiply q with scale and accumulate
  2530. #if defined(__AVX2__)
  2531. acc = _mm256_fmadd_ps( d, q, acc );
  2532. #else
  2533. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2534. #endif
  2535. }
  2536. *s = hsum_float_8(acc);
  2537. #else
  2538. // scalar
  2539. float sumf = 0.0;
  2540. for (int i = 0; i < nb; i++) {
  2541. int sumi = 0;
  2542. for (int j = 0; j < qk; j++) {
  2543. sumi += x[i].qs[j]*y[i].qs[j];
  2544. }
  2545. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2546. }
  2547. *s = sumf;
  2548. #endif
  2549. }
  2550. // compute GGML_VEC_DOT_UNROLL dot products at once
  2551. // xs - x row stride in bytes
  2552. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2553. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2554. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2555. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2556. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2557. }
  2558. #if defined(GGML_SIMD)
  2559. const int np = (n & ~(GGML_F16_STEP - 1));
  2560. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2561. GGML_F16_VEC ax[GGML_F16_ARR];
  2562. GGML_F16_VEC ay[GGML_F16_ARR];
  2563. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2564. for (int j = 0; j < GGML_F16_ARR; j++) {
  2565. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2566. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2567. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2568. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2569. }
  2570. }
  2571. }
  2572. // reduce sum0..sum3 to sum0
  2573. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2574. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2575. }
  2576. // leftovers
  2577. for (int i = np; i < n; ++i) {
  2578. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2579. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2580. }
  2581. }
  2582. #else
  2583. for (int i = 0; i < n; ++i) {
  2584. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2585. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2586. }
  2587. }
  2588. #endif
  2589. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2590. s[i] = sumf[i];
  2591. }
  2592. }
  2593. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2594. #if defined(GGML_SIMD)
  2595. const int np = (n & ~(GGML_F32_STEP - 1));
  2596. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2597. GGML_F32_VEC ax[GGML_F32_ARR];
  2598. GGML_F32_VEC ay[GGML_F32_ARR];
  2599. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2600. for (int j = 0; j < GGML_F32_ARR; j++) {
  2601. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2602. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2603. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2604. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2605. }
  2606. }
  2607. // leftovers
  2608. for (int i = np; i < n; ++i) {
  2609. y[i] += x[i]*v;
  2610. }
  2611. #else
  2612. // scalar
  2613. for (int i = 0; i < n; ++i) {
  2614. y[i] += x[i]*v;
  2615. }
  2616. #endif
  2617. }
  2618. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2619. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2620. #if defined(GGML_SIMD)
  2621. const int np = (n & ~(GGML_F32_STEP - 1));
  2622. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2623. GGML_F32_VEC ay[GGML_F32_ARR];
  2624. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2625. for (int j = 0; j < GGML_F32_ARR; j++) {
  2626. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2627. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2628. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2629. }
  2630. }
  2631. // leftovers
  2632. for (int i = np; i < n; ++i) {
  2633. y[i] *= v;
  2634. }
  2635. #else
  2636. // scalar
  2637. for (int i = 0; i < n; ++i) {
  2638. y[i] *= v;
  2639. }
  2640. #endif
  2641. }
  2642. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2643. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2644. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2645. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2646. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2647. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2648. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2649. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2650. static const float GELU_COEF_A = 0.044715f;
  2651. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2652. inline static float ggml_gelu_f32(float x) {
  2653. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2654. }
  2655. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2656. const uint16_t * i16 = (const uint16_t *) x;
  2657. for (int i = 0; i < n; ++i) {
  2658. y[i] = table_gelu_f16[i16[i]];
  2659. }
  2660. }
  2661. #ifdef GGML_GELU_FP16
  2662. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2663. uint16_t t;
  2664. for (int i = 0; i < n; ++i) {
  2665. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2666. memcpy(&t, &fp16, sizeof(uint16_t));
  2667. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2668. }
  2669. }
  2670. #else
  2671. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2672. for (int i = 0; i < n; ++i) {
  2673. y[i] = ggml_gelu_f32(x[i]);
  2674. }
  2675. }
  2676. #endif
  2677. // Sigmoid Linear Unit (SiLU) function
  2678. inline static float ggml_silu_f32(float x) {
  2679. return x/(1.0f + expf(-x));
  2680. }
  2681. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2682. // const uint16_t * i16 = (const uint16_t *) x;
  2683. // for (int i = 0; i < n; ++i) {
  2684. // y[i] = table_silu_f16[i16[i]];
  2685. // }
  2686. //}
  2687. #ifdef GGML_SILU_FP16
  2688. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2689. uint16_t t;
  2690. for (int i = 0; i < n; ++i) {
  2691. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2692. memcpy(&t, &fp16, sizeof(uint16_t));
  2693. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2694. }
  2695. }
  2696. #else
  2697. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2698. for (int i = 0; i < n; ++i) {
  2699. y[i] = ggml_silu_f32(x[i]);
  2700. }
  2701. }
  2702. #endif
  2703. inline static float ggml_silu_backward_f32(float x, float dy) {
  2704. const float s = 1.0f/(1.0f + expf(-x));
  2705. return dy*s*(1.0f + x*(1.0f - s));
  2706. }
  2707. #ifdef GGML_SILU_FP16
  2708. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2709. for (int i = 0; i < n; ++i) {
  2710. // we did not use x[i] to compute forward silu but its f16 equivalent
  2711. // take derivative at f16 of x[i]:
  2712. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2713. float usedx = GGML_FP16_TO_FP32(fp16);
  2714. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2715. }
  2716. }
  2717. #else
  2718. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2719. for (int i = 0; i < n; ++i) {
  2720. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2721. }
  2722. }
  2723. #endif
  2724. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2725. #ifndef GGML_USE_ACCELERATE
  2726. ggml_float sum = 0.0;
  2727. for (int i = 0; i < n; ++i) {
  2728. sum += (ggml_float)x[i];
  2729. }
  2730. *s = sum;
  2731. #else
  2732. vDSP_sve(x, 1, s, n);
  2733. #endif
  2734. }
  2735. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2736. ggml_float sum = 0.0;
  2737. for (int i = 0; i < n; ++i) {
  2738. sum += (ggml_float)x[i];
  2739. }
  2740. *s = sum;
  2741. }
  2742. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2743. #ifndef GGML_USE_ACCELERATE
  2744. float max = -INFINITY;
  2745. for (int i = 0; i < n; ++i) {
  2746. max = MAX(max, x[i]);
  2747. }
  2748. *s = max;
  2749. #else
  2750. vDSP_maxv(x, 1, s, n);
  2751. #endif
  2752. }
  2753. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2754. ggml_vec_norm_f32(n, s, x);
  2755. *s = 1.f/(*s);
  2756. }
  2757. //
  2758. // logging
  2759. //
  2760. #if (GGML_DEBUG >= 1)
  2761. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2762. #else
  2763. #define GGML_PRINT_DEBUG(...)
  2764. #endif
  2765. #if (GGML_DEBUG >= 5)
  2766. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2767. #else
  2768. #define GGML_PRINT_DEBUG_5(...)
  2769. #endif
  2770. #if (GGML_DEBUG >= 10)
  2771. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2772. #else
  2773. #define GGML_PRINT_DEBUG_10(...)
  2774. #endif
  2775. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2776. //
  2777. // data types
  2778. //
  2779. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2780. [GGML_TYPE_F32] = 1,
  2781. [GGML_TYPE_F16] = 1,
  2782. [GGML_TYPE_Q4_0] = QK4_0,
  2783. [GGML_TYPE_Q4_1] = QK4_1,
  2784. [GGML_TYPE_Q5_0] = QK5_0,
  2785. [GGML_TYPE_Q5_1] = QK5_1,
  2786. [GGML_TYPE_Q8_0] = QK8_0,
  2787. [GGML_TYPE_Q8_1] = QK8_1,
  2788. [GGML_TYPE_I8] = 1,
  2789. [GGML_TYPE_I16] = 1,
  2790. [GGML_TYPE_I32] = 1,
  2791. };
  2792. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2793. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2794. [GGML_TYPE_F32] = sizeof(float),
  2795. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2796. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2797. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2798. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2799. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2800. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2801. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2802. [GGML_TYPE_I8] = sizeof(int8_t),
  2803. [GGML_TYPE_I16] = sizeof(int16_t),
  2804. [GGML_TYPE_I32] = sizeof(int32_t),
  2805. };
  2806. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2807. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2808. [GGML_TYPE_F32] = "f32",
  2809. [GGML_TYPE_F16] = "f16",
  2810. [GGML_TYPE_Q4_0] = "q4_0",
  2811. [GGML_TYPE_Q4_1] = "q4_1",
  2812. [GGML_TYPE_Q5_0] = "q5_0",
  2813. [GGML_TYPE_Q5_1] = "q5_1",
  2814. [GGML_TYPE_Q8_0] = "q8_0",
  2815. [GGML_TYPE_Q8_1] = "q8_1",
  2816. [GGML_TYPE_I8] = "i8",
  2817. [GGML_TYPE_I16] = "i16",
  2818. [GGML_TYPE_I32] = "i32",
  2819. };
  2820. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2821. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2822. [GGML_TYPE_F32] = false,
  2823. [GGML_TYPE_F16] = false,
  2824. [GGML_TYPE_Q4_0] = true,
  2825. [GGML_TYPE_Q4_1] = true,
  2826. [GGML_TYPE_Q5_0] = true,
  2827. [GGML_TYPE_Q5_1] = true,
  2828. [GGML_TYPE_Q8_0] = true,
  2829. [GGML_TYPE_Q8_1] = true,
  2830. [GGML_TYPE_I8] = false,
  2831. [GGML_TYPE_I16] = false,
  2832. [GGML_TYPE_I32] = false,
  2833. };
  2834. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2835. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2836. "NONE",
  2837. "DUP",
  2838. "ADD",
  2839. "ADD1",
  2840. "ACC",
  2841. "SUB",
  2842. "MUL",
  2843. "DIV",
  2844. "SQR",
  2845. "SQRT",
  2846. "LOG",
  2847. "SUM",
  2848. "SUM_ROWS",
  2849. "MEAN",
  2850. "REPEAT",
  2851. "ABS",
  2852. "SGN",
  2853. "NEG",
  2854. "STEP",
  2855. "RELU",
  2856. "GELU",
  2857. "SILU",
  2858. "SILU_BACK",
  2859. "NORM",
  2860. "RMS_NORM",
  2861. "RMS_NORM_BACK",
  2862. "MUL_MAT",
  2863. "SCALE",
  2864. "SET",
  2865. "CPY",
  2866. "CONT",
  2867. "RESHAPE",
  2868. "VIEW",
  2869. "PERMUTE",
  2870. "TRANSPOSE",
  2871. "GET_ROWS",
  2872. "GET_ROWS_BACK",
  2873. "DIAG",
  2874. "DIAG_MASK_INF",
  2875. "DIAG_MASK_ZERO",
  2876. "SOFT_MAX",
  2877. "ROPE",
  2878. "ROPE_BACK",
  2879. "ALIBI",
  2880. "CLAMP",
  2881. "CONV_1D_1S",
  2882. "CONV_1D_2S",
  2883. "FLASH_ATTN",
  2884. "FLASH_FF",
  2885. "MAP_UNARY",
  2886. "MAP_BINARY",
  2887. };
  2888. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2889. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2890. "none",
  2891. "x",
  2892. "x+y",
  2893. "x+y",
  2894. "view(x,nb,offset)+=y->x",
  2895. "x-y",
  2896. "x*y",
  2897. "x/y",
  2898. "x^2",
  2899. "√x",
  2900. "log(x)",
  2901. "Σx",
  2902. "Σx_k",
  2903. "Σx/n",
  2904. "repeat(x)",
  2905. "abs(x)",
  2906. "sgn(x)",
  2907. "-x",
  2908. "step(x)",
  2909. "relu(x)",
  2910. "gelu(x)",
  2911. "silu(x)",
  2912. "silu_back(x)",
  2913. "norm(x)",
  2914. "rms_norm(x)",
  2915. "rms_norm_back(x)",
  2916. "X*Y",
  2917. "x*v",
  2918. "y-\\>view(x)",
  2919. "x-\\>y",
  2920. "cont(x)",
  2921. "reshape(x)",
  2922. "view(x)",
  2923. "permute(x)",
  2924. "transpose(x)",
  2925. "get_rows(x)",
  2926. "get_rows_back(x)",
  2927. "diag(x)",
  2928. "diag_mask_inf(x)",
  2929. "diag_mask_zero(x)",
  2930. "soft_max(x)",
  2931. "rope(x)",
  2932. "rope_back(x)",
  2933. "alibi(x)",
  2934. "clamp(x)",
  2935. "conv_1d_1s(x)",
  2936. "conv_1d_2s(x)",
  2937. "flash_attn(x)",
  2938. "flash_ff(x)",
  2939. "f(x)",
  2940. "f(x,y)",
  2941. };
  2942. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2943. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2944. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2945. //
  2946. // ggml context
  2947. //
  2948. struct ggml_context {
  2949. size_t mem_size;
  2950. void * mem_buffer;
  2951. bool mem_buffer_owned;
  2952. bool no_alloc;
  2953. int n_objects;
  2954. struct ggml_object * objects_begin;
  2955. struct ggml_object * objects_end;
  2956. struct ggml_scratch scratch;
  2957. struct ggml_scratch scratch_save;
  2958. };
  2959. struct ggml_context_container {
  2960. bool used;
  2961. struct ggml_context context;
  2962. };
  2963. //
  2964. // compute types
  2965. //
  2966. enum ggml_task_type {
  2967. GGML_TASK_INIT = 0,
  2968. GGML_TASK_COMPUTE,
  2969. GGML_TASK_FINALIZE,
  2970. };
  2971. struct ggml_compute_params {
  2972. enum ggml_task_type type;
  2973. int ith, nth;
  2974. // work buffer for all threads
  2975. size_t wsize;
  2976. void * wdata;
  2977. };
  2978. //
  2979. // ggml state
  2980. //
  2981. struct ggml_state {
  2982. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2983. };
  2984. // global state
  2985. static struct ggml_state g_state;
  2986. static atomic_int g_state_barrier = 0;
  2987. // barrier via spin lock
  2988. inline static void ggml_critical_section_start(void) {
  2989. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2990. while (processing > 0) {
  2991. // wait for other threads to finish
  2992. atomic_fetch_sub(&g_state_barrier, 1);
  2993. sched_yield(); // TODO: reconsider this
  2994. processing = atomic_fetch_add(&g_state_barrier, 1);
  2995. }
  2996. }
  2997. // TODO: make this somehow automatically executed
  2998. // some sort of "sentry" mechanism
  2999. inline static void ggml_critical_section_end(void) {
  3000. atomic_fetch_sub(&g_state_barrier, 1);
  3001. }
  3002. ////////////////////////////////////////////////////////////////////////////////
  3003. void ggml_print_object(const struct ggml_object * obj) {
  3004. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3005. obj->offs, obj->size, (const void *) obj->next);
  3006. }
  3007. void ggml_print_objects(const struct ggml_context * ctx) {
  3008. struct ggml_object * obj = ctx->objects_begin;
  3009. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3010. while (obj != NULL) {
  3011. ggml_print_object(obj);
  3012. obj = obj->next;
  3013. }
  3014. GGML_PRINT("%s: --- end ---\n", __func__);
  3015. }
  3016. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3018. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3019. }
  3020. int ggml_nrows(const struct ggml_tensor * tensor) {
  3021. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3022. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3023. }
  3024. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3026. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3027. }
  3028. int ggml_blck_size(enum ggml_type type) {
  3029. return GGML_BLCK_SIZE[type];
  3030. }
  3031. size_t ggml_type_size(enum ggml_type type) {
  3032. return GGML_TYPE_SIZE[type];
  3033. }
  3034. float ggml_type_sizef(enum ggml_type type) {
  3035. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3036. }
  3037. const char * ggml_type_name(enum ggml_type type) {
  3038. return GGML_TYPE_NAME[type];
  3039. }
  3040. const char * ggml_op_name(enum ggml_op op) {
  3041. return GGML_OP_NAME[op];
  3042. }
  3043. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3044. return GGML_TYPE_SIZE[tensor->type];
  3045. }
  3046. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3047. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3048. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3049. }
  3050. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3051. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3052. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3053. }
  3054. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3055. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3056. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3057. }
  3058. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3060. return
  3061. (t0->ne[0] == t1->ne[0]) &&
  3062. (t0->ne[2] == t1->ne[2]) &&
  3063. (t0->ne[3] == t1->ne[3]);
  3064. }
  3065. bool ggml_is_quantized(enum ggml_type type) {
  3066. return GGML_IS_QUANTIZED[type];
  3067. }
  3068. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3069. enum ggml_type wtype = GGML_TYPE_COUNT;
  3070. switch (ftype) {
  3071. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3072. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3073. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3074. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3075. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3076. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3077. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3078. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3079. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3080. }
  3081. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3082. return wtype;
  3083. }
  3084. size_t ggml_tensor_overhead(void) {
  3085. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3086. }
  3087. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3088. return tensor->nb[0] > tensor->nb[1];
  3089. }
  3090. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3092. return
  3093. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3094. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3095. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3096. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3097. }
  3098. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3099. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3100. return
  3101. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3102. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3103. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3104. }
  3105. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3106. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3107. return
  3108. (t0->ne[0] == t1->ne[0] ) &&
  3109. (t0->ne[1] == t1->ne[1] ) &&
  3110. (t0->ne[2] == t1->ne[2] ) &&
  3111. (t0->ne[3] == t1->ne[3] );
  3112. }
  3113. // check if t1 can be represented as a repeatition of t0
  3114. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3115. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3116. return
  3117. (t1->ne[0]%t0->ne[0] == 0) &&
  3118. (t1->ne[1]%t0->ne[1] == 0) &&
  3119. (t1->ne[2]%t0->ne[2] == 0) &&
  3120. (t1->ne[3]%t0->ne[3] == 0);
  3121. }
  3122. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3123. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3124. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3125. }
  3126. static inline int ggml_up32(int n) {
  3127. return (n + 31) & ~31;
  3128. }
  3129. //static inline int ggml_up64(int n) {
  3130. // return (n + 63) & ~63;
  3131. //}
  3132. static inline int ggml_up(int n, int m) {
  3133. // assert m is a power of 2
  3134. GGML_ASSERT((m & (m - 1)) == 0);
  3135. return (n + m - 1) & ~(m - 1);
  3136. }
  3137. // assert that pointer is aligned to GGML_MEM_ALIGN
  3138. #define ggml_assert_aligned(ptr) \
  3139. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3140. ////////////////////////////////////////////////////////////////////////////////
  3141. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3142. // make this function thread safe
  3143. ggml_critical_section_start();
  3144. static bool is_first_call = true;
  3145. if (is_first_call) {
  3146. // initialize time system (required on Windows)
  3147. ggml_time_init();
  3148. // initialize GELU, SILU and EXP F32 tables
  3149. {
  3150. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3151. ggml_fp16_t ii;
  3152. for (int i = 0; i < (1 << 16); ++i) {
  3153. uint16_t ui = i;
  3154. memcpy(&ii, &ui, sizeof(ii));
  3155. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3156. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3157. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3158. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3159. }
  3160. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3161. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3162. }
  3163. // initialize g_state
  3164. {
  3165. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3166. g_state = (struct ggml_state) {
  3167. /*.contexts =*/ { { 0 } },
  3168. };
  3169. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3170. g_state.contexts[i].used = false;
  3171. }
  3172. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3173. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3174. }
  3175. #if defined(GGML_USE_CUBLAS)
  3176. ggml_init_cublas();
  3177. #elif defined(GGML_USE_CLBLAST)
  3178. ggml_cl_init();
  3179. #endif
  3180. is_first_call = false;
  3181. }
  3182. // find non-used context in g_state
  3183. struct ggml_context * ctx = NULL;
  3184. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3185. if (!g_state.contexts[i].used) {
  3186. g_state.contexts[i].used = true;
  3187. ctx = &g_state.contexts[i].context;
  3188. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3189. break;
  3190. }
  3191. }
  3192. if (ctx == NULL) {
  3193. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3194. ggml_critical_section_end();
  3195. return NULL;
  3196. }
  3197. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3198. *ctx = (struct ggml_context) {
  3199. /*.mem_size =*/ mem_size,
  3200. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3201. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3202. /*.no_alloc =*/ params.no_alloc,
  3203. /*.n_objects =*/ 0,
  3204. /*.objects_begin =*/ NULL,
  3205. /*.objects_end =*/ NULL,
  3206. /*.scratch =*/ { 0, 0, NULL, },
  3207. /*.scratch_save =*/ { 0, 0, NULL, },
  3208. };
  3209. GGML_ASSERT(ctx->mem_buffer != NULL);
  3210. ggml_assert_aligned(ctx->mem_buffer);
  3211. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3212. ggml_critical_section_end();
  3213. return ctx;
  3214. }
  3215. void ggml_free(struct ggml_context * ctx) {
  3216. // make this function thread safe
  3217. ggml_critical_section_start();
  3218. bool found = false;
  3219. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3220. if (&g_state.contexts[i].context == ctx) {
  3221. g_state.contexts[i].used = false;
  3222. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3223. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3224. if (ctx->mem_buffer_owned) {
  3225. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3226. }
  3227. found = true;
  3228. break;
  3229. }
  3230. }
  3231. if (!found) {
  3232. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3233. }
  3234. ggml_critical_section_end();
  3235. }
  3236. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3237. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3238. }
  3239. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3240. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3241. ctx->scratch = scratch;
  3242. return result;
  3243. }
  3244. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3245. ctx->no_alloc = no_alloc;
  3246. }
  3247. // IMPORTANT:
  3248. // when creating "opt" tensors, always save and load the scratch buffer
  3249. // this is an error prone process, but it is necessary to support inplace
  3250. // operators when using scratch buffers
  3251. // TODO: implement a better way
  3252. void ggml_scratch_save(struct ggml_context * ctx) {
  3253. ctx->scratch_save = ctx->scratch;
  3254. ctx->scratch.data = NULL;
  3255. }
  3256. void ggml_scratch_load(struct ggml_context * ctx) {
  3257. ctx->scratch = ctx->scratch_save;
  3258. }
  3259. ////////////////////////////////////////////////////////////////////////////////
  3260. struct ggml_tensor * ggml_new_tensor_impl(
  3261. struct ggml_context * ctx,
  3262. enum ggml_type type,
  3263. int n_dims,
  3264. const int64_t* ne,
  3265. void* data) {
  3266. // always insert objects at the end of the context's memory pool
  3267. struct ggml_object * obj_cur = ctx->objects_end;
  3268. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3269. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3270. const size_t cur_end = cur_offs + cur_size;
  3271. size_t size_needed = 0;
  3272. if (data == NULL && !ctx->no_alloc) {
  3273. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3274. for (int i = 1; i < n_dims; i++) {
  3275. size_needed *= ne[i];
  3276. }
  3277. // align to GGML_MEM_ALIGN
  3278. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3279. }
  3280. char * const mem_buffer = ctx->mem_buffer;
  3281. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3282. if (ctx->scratch.data == NULL || data != NULL) {
  3283. size_needed += GGML_TENSOR_SIZE;
  3284. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3285. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3286. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3287. assert(false);
  3288. return NULL;
  3289. }
  3290. *obj_new = (struct ggml_object) {
  3291. .offs = cur_end + GGML_OBJECT_SIZE,
  3292. .size = size_needed,
  3293. .next = NULL,
  3294. };
  3295. } else {
  3296. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3297. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3298. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3299. assert(false);
  3300. return NULL;
  3301. }
  3302. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3303. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3304. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3305. assert(false);
  3306. return NULL;
  3307. }
  3308. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3309. *obj_new = (struct ggml_object) {
  3310. .offs = cur_end + GGML_OBJECT_SIZE,
  3311. .size = GGML_TENSOR_SIZE,
  3312. .next = NULL,
  3313. };
  3314. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3315. ctx->scratch.offs += size_needed;
  3316. }
  3317. if (obj_cur != NULL) {
  3318. obj_cur->next = obj_new;
  3319. } else {
  3320. // this is the first object in this context
  3321. ctx->objects_begin = obj_new;
  3322. }
  3323. ctx->objects_end = obj_new;
  3324. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3325. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3326. ggml_assert_aligned(result);
  3327. *result = (struct ggml_tensor) {
  3328. /*.type =*/ type,
  3329. /*.backend =*/ GGML_BACKEND_CPU,
  3330. /*.n_dims =*/ n_dims,
  3331. /*.ne =*/ { 1, 1, 1, 1 },
  3332. /*.nb =*/ { 0, 0, 0, 0 },
  3333. /*.op =*/ GGML_OP_NONE,
  3334. /*.is_param =*/ false,
  3335. /*.grad =*/ NULL,
  3336. /*.src0 =*/ NULL,
  3337. /*.src1 =*/ NULL,
  3338. /*.opt =*/ { NULL },
  3339. /*.n_tasks =*/ 0,
  3340. /*.perf_runs =*/ 0,
  3341. /*.perf_cycles =*/ 0,
  3342. /*.perf_time_us =*/ 0,
  3343. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3344. /*.name =*/ { 0 },
  3345. /*.pad =*/ { 0 },
  3346. };
  3347. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3348. //ggml_assert_aligned(result->data);
  3349. for (int i = 0; i < n_dims; i++) {
  3350. result->ne[i] = ne[i];
  3351. }
  3352. result->nb[0] = GGML_TYPE_SIZE[type];
  3353. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3354. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3355. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3356. }
  3357. ctx->n_objects++;
  3358. return result;
  3359. }
  3360. struct ggml_tensor * ggml_new_tensor(
  3361. struct ggml_context * ctx,
  3362. enum ggml_type type,
  3363. int n_dims,
  3364. const int64_t * ne) {
  3365. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3366. }
  3367. struct ggml_tensor * ggml_new_tensor_1d(
  3368. struct ggml_context * ctx,
  3369. enum ggml_type type,
  3370. int64_t ne0) {
  3371. return ggml_new_tensor(ctx, type, 1, &ne0);
  3372. }
  3373. struct ggml_tensor * ggml_new_tensor_2d(
  3374. struct ggml_context * ctx,
  3375. enum ggml_type type,
  3376. int64_t ne0,
  3377. int64_t ne1) {
  3378. const int64_t ne[2] = { ne0, ne1 };
  3379. return ggml_new_tensor(ctx, type, 2, ne);
  3380. }
  3381. struct ggml_tensor * ggml_new_tensor_3d(
  3382. struct ggml_context * ctx,
  3383. enum ggml_type type,
  3384. int64_t ne0,
  3385. int64_t ne1,
  3386. int64_t ne2) {
  3387. const int64_t ne[3] = { ne0, ne1, ne2 };
  3388. return ggml_new_tensor(ctx, type, 3, ne);
  3389. }
  3390. struct ggml_tensor * ggml_new_tensor_4d(
  3391. struct ggml_context * ctx,
  3392. enum ggml_type type,
  3393. int64_t ne0,
  3394. int64_t ne1,
  3395. int64_t ne2,
  3396. int64_t ne3) {
  3397. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3398. return ggml_new_tensor(ctx, type, 4, ne);
  3399. }
  3400. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3401. ggml_scratch_save(ctx);
  3402. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3403. ggml_scratch_load(ctx);
  3404. ggml_set_i32(result, value);
  3405. return result;
  3406. }
  3407. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3408. ggml_scratch_save(ctx);
  3409. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3410. ggml_scratch_load(ctx);
  3411. ggml_set_f32(result, value);
  3412. return result;
  3413. }
  3414. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3415. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3416. }
  3417. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3418. memset(tensor->data, 0, ggml_nbytes(tensor));
  3419. return tensor;
  3420. }
  3421. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3422. const int n = ggml_nrows(tensor);
  3423. const int nc = tensor->ne[0];
  3424. const size_t n1 = tensor->nb[1];
  3425. char * const data = tensor->data;
  3426. switch (tensor->type) {
  3427. case GGML_TYPE_I8:
  3428. {
  3429. assert(tensor->nb[0] == sizeof(int8_t));
  3430. for (int i = 0; i < n; i++) {
  3431. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3432. }
  3433. } break;
  3434. case GGML_TYPE_I16:
  3435. {
  3436. assert(tensor->nb[0] == sizeof(int16_t));
  3437. for (int i = 0; i < n; i++) {
  3438. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3439. }
  3440. } break;
  3441. case GGML_TYPE_I32:
  3442. {
  3443. assert(tensor->nb[0] == sizeof(int32_t));
  3444. for (int i = 0; i < n; i++) {
  3445. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3446. }
  3447. } break;
  3448. case GGML_TYPE_F16:
  3449. {
  3450. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3451. for (int i = 0; i < n; i++) {
  3452. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3453. }
  3454. } break;
  3455. case GGML_TYPE_F32:
  3456. {
  3457. assert(tensor->nb[0] == sizeof(float));
  3458. for (int i = 0; i < n; i++) {
  3459. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3460. }
  3461. } break;
  3462. default:
  3463. {
  3464. GGML_ASSERT(false);
  3465. } break;
  3466. }
  3467. return tensor;
  3468. }
  3469. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3470. const int n = ggml_nrows(tensor);
  3471. const int nc = tensor->ne[0];
  3472. const size_t n1 = tensor->nb[1];
  3473. char * const data = tensor->data;
  3474. switch (tensor->type) {
  3475. case GGML_TYPE_I8:
  3476. {
  3477. assert(tensor->nb[0] == sizeof(int8_t));
  3478. for (int i = 0; i < n; i++) {
  3479. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3480. }
  3481. } break;
  3482. case GGML_TYPE_I16:
  3483. {
  3484. assert(tensor->nb[0] == sizeof(int16_t));
  3485. for (int i = 0; i < n; i++) {
  3486. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3487. }
  3488. } break;
  3489. case GGML_TYPE_I32:
  3490. {
  3491. assert(tensor->nb[0] == sizeof(int32_t));
  3492. for (int i = 0; i < n; i++) {
  3493. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3494. }
  3495. } break;
  3496. case GGML_TYPE_F16:
  3497. {
  3498. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3499. for (int i = 0; i < n; i++) {
  3500. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3501. }
  3502. } break;
  3503. case GGML_TYPE_F32:
  3504. {
  3505. assert(tensor->nb[0] == sizeof(float));
  3506. for (int i = 0; i < n; i++) {
  3507. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3508. }
  3509. } break;
  3510. default:
  3511. {
  3512. GGML_ASSERT(false);
  3513. } break;
  3514. }
  3515. return tensor;
  3516. }
  3517. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3518. switch (tensor->type) {
  3519. case GGML_TYPE_I8:
  3520. {
  3521. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3522. return ((int8_t *)(tensor->data))[i];
  3523. } break;
  3524. case GGML_TYPE_I16:
  3525. {
  3526. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3527. return ((int16_t *)(tensor->data))[i];
  3528. } break;
  3529. case GGML_TYPE_I32:
  3530. {
  3531. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3532. return ((int32_t *)(tensor->data))[i];
  3533. } break;
  3534. case GGML_TYPE_F16:
  3535. {
  3536. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3537. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3538. } break;
  3539. case GGML_TYPE_F32:
  3540. {
  3541. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3542. return ((float *)(tensor->data))[i];
  3543. } break;
  3544. default:
  3545. {
  3546. GGML_ASSERT(false);
  3547. } break;
  3548. }
  3549. return 0.0f;
  3550. }
  3551. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3552. switch (tensor->type) {
  3553. case GGML_TYPE_I8:
  3554. {
  3555. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3556. ((int8_t *)(tensor->data))[i] = value;
  3557. } break;
  3558. case GGML_TYPE_I16:
  3559. {
  3560. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3561. ((int16_t *)(tensor->data))[i] = value;
  3562. } break;
  3563. case GGML_TYPE_I32:
  3564. {
  3565. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3566. ((int32_t *)(tensor->data))[i] = value;
  3567. } break;
  3568. case GGML_TYPE_F16:
  3569. {
  3570. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3571. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3572. } break;
  3573. case GGML_TYPE_F32:
  3574. {
  3575. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3576. ((float *)(tensor->data))[i] = value;
  3577. } break;
  3578. default:
  3579. {
  3580. GGML_ASSERT(false);
  3581. } break;
  3582. }
  3583. }
  3584. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3585. switch (tensor->type) {
  3586. case GGML_TYPE_I8:
  3587. {
  3588. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3589. return ((int8_t *)(tensor->data))[i];
  3590. } break;
  3591. case GGML_TYPE_I16:
  3592. {
  3593. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3594. return ((int16_t *)(tensor->data))[i];
  3595. } break;
  3596. case GGML_TYPE_I32:
  3597. {
  3598. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3599. return ((int32_t *)(tensor->data))[i];
  3600. } break;
  3601. case GGML_TYPE_F16:
  3602. {
  3603. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3604. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3605. } break;
  3606. case GGML_TYPE_F32:
  3607. {
  3608. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3609. return ((float *)(tensor->data))[i];
  3610. } break;
  3611. default:
  3612. {
  3613. GGML_ASSERT(false);
  3614. } break;
  3615. }
  3616. return 0.0f;
  3617. }
  3618. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3619. switch (tensor->type) {
  3620. case GGML_TYPE_I8:
  3621. {
  3622. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3623. ((int8_t *)(tensor->data))[i] = value;
  3624. } break;
  3625. case GGML_TYPE_I16:
  3626. {
  3627. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3628. ((int16_t *)(tensor->data))[i] = value;
  3629. } break;
  3630. case GGML_TYPE_I32:
  3631. {
  3632. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3633. ((int32_t *)(tensor->data))[i] = value;
  3634. } break;
  3635. case GGML_TYPE_F16:
  3636. {
  3637. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3638. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3639. } break;
  3640. case GGML_TYPE_F32:
  3641. {
  3642. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3643. ((float *)(tensor->data))[i] = value;
  3644. } break;
  3645. default:
  3646. {
  3647. GGML_ASSERT(false);
  3648. } break;
  3649. }
  3650. }
  3651. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3652. return tensor->data;
  3653. }
  3654. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3655. assert(tensor->type == GGML_TYPE_F32);
  3656. return (float *)(tensor->data);
  3657. }
  3658. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3659. return tensor->name;
  3660. }
  3661. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3662. strncpy(tensor->name, name, sizeof(tensor->name));
  3663. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3664. }
  3665. struct ggml_tensor * ggml_view_tensor(
  3666. struct ggml_context * ctx,
  3667. const struct ggml_tensor * src) {
  3668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3669. result->nb[0] = src->nb[0];
  3670. result->nb[1] = src->nb[1];
  3671. result->nb[2] = src->nb[2];
  3672. result->nb[3] = src->nb[3];
  3673. return result;
  3674. }
  3675. ////////////////////////////////////////////////////////////////////////////////
  3676. // ggml_dup
  3677. struct ggml_tensor * ggml_dup_impl(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a,
  3680. bool inplace) {
  3681. bool is_node = false;
  3682. if (!inplace && (a->grad)) {
  3683. is_node = true;
  3684. }
  3685. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3686. result->op = GGML_OP_DUP;
  3687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3688. result->src0 = a;
  3689. result->src1 = NULL;
  3690. return result;
  3691. }
  3692. struct ggml_tensor * ggml_dup(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a) {
  3695. return ggml_dup_impl(ctx, a, false);
  3696. }
  3697. struct ggml_tensor * ggml_dup_inplace(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a) {
  3700. return ggml_dup_impl(ctx, a, true);
  3701. }
  3702. // ggml_add
  3703. struct ggml_tensor * ggml_add_impl(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. struct ggml_tensor * b,
  3707. bool inplace) {
  3708. GGML_ASSERT(ggml_are_same_shape(a, b));
  3709. bool is_node = false;
  3710. if (!inplace && (a->grad || b->grad)) {
  3711. is_node = true;
  3712. }
  3713. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3714. result->op = GGML_OP_ADD;
  3715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3716. result->src0 = a;
  3717. result->src1 = b;
  3718. return result;
  3719. }
  3720. struct ggml_tensor * ggml_add(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a,
  3723. struct ggml_tensor * b) {
  3724. return ggml_add_impl(ctx, a, b, false);
  3725. }
  3726. struct ggml_tensor * ggml_add_inplace(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. struct ggml_tensor * b) {
  3730. return ggml_add_impl(ctx, a, b, true);
  3731. }
  3732. // ggml_add1
  3733. struct ggml_tensor * ggml_add1_impl(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a,
  3736. struct ggml_tensor * b,
  3737. bool inplace) {
  3738. GGML_ASSERT(ggml_is_scalar(b));
  3739. GGML_ASSERT(ggml_is_padded_1d(a));
  3740. bool is_node = false;
  3741. if (!inplace && (a->grad || b->grad)) {
  3742. is_node = true;
  3743. }
  3744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3745. result->op = GGML_OP_ADD1;
  3746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3747. result->src0 = a;
  3748. result->src1 = b;
  3749. return result;
  3750. }
  3751. struct ggml_tensor * ggml_add1(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b) {
  3755. return ggml_add1_impl(ctx, a, b, false);
  3756. }
  3757. struct ggml_tensor * ggml_add1_inplace(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. struct ggml_tensor * b) {
  3761. return ggml_add1_impl(ctx, a, b, true);
  3762. }
  3763. // ggml_acc
  3764. struct ggml_tensor * ggml_acc_impl(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a,
  3767. struct ggml_tensor * b,
  3768. size_t nb1,
  3769. size_t nb2,
  3770. size_t nb3,
  3771. size_t offset,
  3772. bool inplace) {
  3773. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3774. GGML_ASSERT(ggml_is_contiguous(a));
  3775. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3776. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3777. bool is_node = false;
  3778. if (!inplace && (a->grad || b->grad)) {
  3779. is_node = true;
  3780. }
  3781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3782. ggml_scratch_save(ctx);
  3783. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3784. ((int32_t *) c->data)[0] = nb1;
  3785. ((int32_t *) c->data)[1] = nb2;
  3786. ((int32_t *) c->data)[2] = nb3;
  3787. ((int32_t *) c->data)[3] = offset;
  3788. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3789. ggml_scratch_load(ctx);
  3790. result->op = GGML_OP_ACC;
  3791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3792. result->src0 = a;
  3793. result->src1 = b;
  3794. result->opt[0] = c;
  3795. return result;
  3796. }
  3797. struct ggml_tensor * ggml_acc(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. struct ggml_tensor * b,
  3801. size_t nb1,
  3802. size_t nb2,
  3803. size_t nb3,
  3804. size_t offset) {
  3805. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3806. }
  3807. struct ggml_tensor * ggml_acc_inplace(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. struct ggml_tensor * b,
  3811. size_t nb1,
  3812. size_t nb2,
  3813. size_t nb3,
  3814. size_t offset) {
  3815. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3816. }
  3817. // ggml_sub
  3818. struct ggml_tensor * ggml_sub_impl(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b,
  3822. bool inplace) {
  3823. GGML_ASSERT(ggml_are_same_shape(a, b));
  3824. bool is_node = false;
  3825. if (!inplace && (a->grad || b->grad)) {
  3826. is_node = true;
  3827. }
  3828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3829. result->op = GGML_OP_SUB;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src0 = a;
  3832. result->src1 = b;
  3833. return result;
  3834. }
  3835. struct ggml_tensor * ggml_sub(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * a,
  3838. struct ggml_tensor * b) {
  3839. return ggml_sub_impl(ctx, a, b, false);
  3840. }
  3841. struct ggml_tensor * ggml_sub_inplace(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a,
  3844. struct ggml_tensor * b) {
  3845. return ggml_sub_impl(ctx, a, b, true);
  3846. }
  3847. // ggml_mul
  3848. struct ggml_tensor * ggml_mul_impl(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b,
  3852. bool inplace) {
  3853. // TODO: support less-strict constraint
  3854. // GGML_ASSERT(ggml_can_repeat(b, a));
  3855. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3856. bool is_node = false;
  3857. if (!inplace && (a->grad || b->grad)) {
  3858. // TODO: support backward pass for broadcasting
  3859. GGML_ASSERT(ggml_are_same_shape(a, b));
  3860. is_node = true;
  3861. }
  3862. if (inplace) {
  3863. GGML_ASSERT(is_node == false);
  3864. }
  3865. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3866. result->op = GGML_OP_MUL;
  3867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3868. result->src0 = a;
  3869. result->src1 = b;
  3870. return result;
  3871. }
  3872. struct ggml_tensor * ggml_mul(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. struct ggml_tensor * b) {
  3876. return ggml_mul_impl(ctx, a, b, false);
  3877. }
  3878. struct ggml_tensor * ggml_mul_inplace(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * a,
  3881. struct ggml_tensor * b) {
  3882. return ggml_mul_impl(ctx, a, b, true);
  3883. }
  3884. // ggml_div
  3885. struct ggml_tensor * ggml_div_impl(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. struct ggml_tensor * b,
  3889. bool inplace) {
  3890. GGML_ASSERT(ggml_are_same_shape(a, b));
  3891. bool is_node = false;
  3892. if (!inplace && (a->grad || b->grad)) {
  3893. is_node = true;
  3894. }
  3895. if (inplace) {
  3896. GGML_ASSERT(is_node == false);
  3897. }
  3898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3899. result->op = GGML_OP_DIV;
  3900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3901. result->src0 = a;
  3902. result->src1 = b;
  3903. return result;
  3904. }
  3905. struct ggml_tensor * ggml_div(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a,
  3908. struct ggml_tensor * b) {
  3909. return ggml_div_impl(ctx, a, b, false);
  3910. }
  3911. struct ggml_tensor * ggml_div_inplace(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b) {
  3915. return ggml_div_impl(ctx, a, b, true);
  3916. }
  3917. // ggml_sqr
  3918. struct ggml_tensor * ggml_sqr_impl(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a,
  3921. bool inplace) {
  3922. bool is_node = false;
  3923. if (!inplace && (a->grad)) {
  3924. is_node = true;
  3925. }
  3926. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3927. result->op = GGML_OP_SQR;
  3928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3929. result->src0 = a;
  3930. result->src1 = NULL;
  3931. return result;
  3932. }
  3933. struct ggml_tensor * ggml_sqr(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a) {
  3936. return ggml_sqr_impl(ctx, a, false);
  3937. }
  3938. struct ggml_tensor * ggml_sqr_inplace(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a) {
  3941. return ggml_sqr_impl(ctx, a, true);
  3942. }
  3943. // ggml_sqrt
  3944. struct ggml_tensor * ggml_sqrt_impl(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. bool inplace) {
  3948. bool is_node = false;
  3949. if (!inplace && (a->grad)) {
  3950. is_node = true;
  3951. }
  3952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3953. result->op = GGML_OP_SQRT;
  3954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3955. result->src0 = a;
  3956. result->src1 = NULL;
  3957. return result;
  3958. }
  3959. struct ggml_tensor * ggml_sqrt(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a) {
  3962. return ggml_sqrt_impl(ctx, a, false);
  3963. }
  3964. struct ggml_tensor * ggml_sqrt_inplace(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a) {
  3967. return ggml_sqrt_impl(ctx, a, true);
  3968. }
  3969. // ggml_log
  3970. struct ggml_tensor * ggml_log_impl(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. bool inplace) {
  3974. bool is_node = false;
  3975. if (!inplace && (a->grad)) {
  3976. is_node = true;
  3977. }
  3978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3979. result->op = GGML_OP_LOG;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src0 = a;
  3982. result->src1 = NULL;
  3983. return result;
  3984. }
  3985. struct ggml_tensor * ggml_log(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a) {
  3988. return ggml_log_impl(ctx, a, false);
  3989. }
  3990. struct ggml_tensor * ggml_log_inplace(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a) {
  3993. return ggml_log_impl(ctx, a, true);
  3994. }
  3995. // ggml_sum
  3996. struct ggml_tensor * ggml_sum(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a) {
  3999. bool is_node = false;
  4000. if (a->grad) {
  4001. is_node = true;
  4002. }
  4003. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4004. result->op = GGML_OP_SUM;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src0 = a;
  4007. result->src1 = NULL;
  4008. return result;
  4009. }
  4010. // ggml_sum_rows
  4011. struct ggml_tensor * ggml_sum_rows(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. bool is_node = false;
  4015. if (a->grad) {
  4016. is_node = true;
  4017. }
  4018. int64_t ne[4] = {1,1,1,1};
  4019. for (int i=1; i<a->n_dims; ++i) {
  4020. ne[i] = a->ne[i];
  4021. }
  4022. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4023. result->op = GGML_OP_SUM_ROWS;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = NULL;
  4027. return result;
  4028. }
  4029. // ggml_mean
  4030. struct ggml_tensor * ggml_mean(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. bool is_node = false;
  4034. if (a->grad) {
  4035. GGML_ASSERT(false); // TODO: implement
  4036. is_node = true;
  4037. }
  4038. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4039. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4040. result->op = GGML_OP_MEAN;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src0 = a;
  4043. result->src1 = NULL;
  4044. return result;
  4045. }
  4046. // ggml_repeat
  4047. struct ggml_tensor * ggml_repeat(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b) {
  4051. GGML_ASSERT(ggml_can_repeat(a, b));
  4052. bool is_node = false;
  4053. if (a->grad) {
  4054. is_node = true;
  4055. }
  4056. if (ggml_are_same_shape(a, b) && !is_node) {
  4057. return a;
  4058. }
  4059. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4060. result->op = GGML_OP_REPEAT;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = b;
  4064. return result;
  4065. }
  4066. // ggml_abs
  4067. struct ggml_tensor * ggml_abs_impl(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. bool inplace) {
  4071. bool is_node = false;
  4072. if (!inplace && (a->grad)) {
  4073. is_node = true;
  4074. }
  4075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4076. result->op = GGML_OP_ABS;
  4077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4078. result->src0 = a;
  4079. result->src1 = NULL;
  4080. return result;
  4081. }
  4082. struct ggml_tensor * ggml_abs(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a) {
  4085. return ggml_abs_impl(ctx, a, false);
  4086. }
  4087. struct ggml_tensor * ggml_abs_inplace(
  4088. struct ggml_context * ctx,
  4089. struct ggml_tensor * a) {
  4090. return ggml_abs_impl(ctx, a, true);
  4091. }
  4092. // ggml_sgn
  4093. struct ggml_tensor * ggml_sgn_impl(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. bool inplace) {
  4097. bool is_node = false;
  4098. if (!inplace && (a->grad)) {
  4099. is_node = true;
  4100. }
  4101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4102. result->op = GGML_OP_SGN;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src0 = a;
  4105. result->src1 = NULL;
  4106. return result;
  4107. }
  4108. struct ggml_tensor * ggml_sgn(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a) {
  4111. return ggml_sgn_impl(ctx, a, false);
  4112. }
  4113. struct ggml_tensor * ggml_sgn_inplace(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a) {
  4116. return ggml_sgn_impl(ctx, a, true);
  4117. }
  4118. // ggml_neg
  4119. struct ggml_tensor * ggml_neg_impl(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a,
  4122. bool inplace) {
  4123. bool is_node = false;
  4124. if (!inplace && (a->grad)) {
  4125. is_node = true;
  4126. }
  4127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4128. result->op = GGML_OP_NEG;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = NULL;
  4132. return result;
  4133. }
  4134. struct ggml_tensor * ggml_neg(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a) {
  4137. return ggml_neg_impl(ctx, a, false);
  4138. }
  4139. struct ggml_tensor * ggml_neg_inplace(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a) {
  4142. return ggml_neg_impl(ctx, a, true);
  4143. }
  4144. // ggml_step
  4145. struct ggml_tensor * ggml_step_impl(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. bool inplace) {
  4149. bool is_node = false;
  4150. if (!inplace && (a->grad)) {
  4151. is_node = true;
  4152. }
  4153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4154. result->op = GGML_OP_STEP;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src0 = a;
  4157. result->src1 = NULL;
  4158. return result;
  4159. }
  4160. struct ggml_tensor * ggml_step(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_step_impl(ctx, a, false);
  4164. }
  4165. struct ggml_tensor * ggml_step_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a) {
  4168. return ggml_step_impl(ctx, a, true);
  4169. }
  4170. // ggml_relu
  4171. struct ggml_tensor * ggml_relu_impl(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. bool inplace) {
  4175. bool is_node = false;
  4176. if (!inplace && (a->grad)) {
  4177. is_node = true;
  4178. }
  4179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4180. result->op = GGML_OP_RELU;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src0 = a;
  4183. result->src1 = NULL;
  4184. return result;
  4185. }
  4186. struct ggml_tensor * ggml_relu(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_relu_impl(ctx, a, false);
  4190. }
  4191. struct ggml_tensor * ggml_relu_inplace(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. return ggml_relu_impl(ctx, a, true);
  4195. }
  4196. // ggml_gelu
  4197. struct ggml_tensor * ggml_gelu_impl(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. bool inplace) {
  4201. bool is_node = false;
  4202. if (!inplace && (a->grad)) {
  4203. is_node = true;
  4204. }
  4205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4206. result->op = GGML_OP_GELU;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src0 = a;
  4209. result->src1 = NULL;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_gelu(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_gelu_impl(ctx, a, false);
  4216. }
  4217. struct ggml_tensor * ggml_gelu_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_gelu_impl(ctx, a, true);
  4221. }
  4222. // ggml_silu
  4223. struct ggml_tensor * ggml_silu_impl(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. bool inplace) {
  4227. bool is_node = false;
  4228. if (!inplace && (a->grad)) {
  4229. is_node = true;
  4230. }
  4231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. result->op = GGML_OP_SILU;
  4233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4234. result->src0 = a;
  4235. result->src1 = NULL;
  4236. return result;
  4237. }
  4238. struct ggml_tensor * ggml_silu(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_silu_impl(ctx, a, false);
  4242. }
  4243. struct ggml_tensor * ggml_silu_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a) {
  4246. return ggml_silu_impl(ctx, a, true);
  4247. }
  4248. // ggml_silu_back
  4249. struct ggml_tensor * ggml_silu_back(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. struct ggml_tensor * b) {
  4253. bool is_node = false;
  4254. if (a->grad || b->grad) {
  4255. // TODO: implement backward
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_SILU_BACK;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = b;
  4263. return result;
  4264. }
  4265. // ggml_norm
  4266. struct ggml_tensor * ggml_norm_impl(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. bool inplace) {
  4270. bool is_node = false;
  4271. if (!inplace && (a->grad)) {
  4272. GGML_ASSERT(false); // TODO: implement backward
  4273. is_node = true;
  4274. }
  4275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4276. result->op = GGML_OP_NORM;
  4277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4278. result->src0 = a;
  4279. result->src1 = NULL; // TODO: maybe store epsilon here?
  4280. return result;
  4281. }
  4282. struct ggml_tensor * ggml_norm(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_norm_impl(ctx, a, false);
  4286. }
  4287. struct ggml_tensor * ggml_norm_inplace(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a) {
  4290. return ggml_norm_impl(ctx, a, true);
  4291. }
  4292. struct ggml_tensor * ggml_rms_norm_impl(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. bool inplace) {
  4296. bool is_node = false;
  4297. if (!inplace && (a->grad)) {
  4298. is_node = true;
  4299. }
  4300. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4301. result->op = GGML_OP_RMS_NORM;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src0 = a;
  4304. result->src1 = NULL; // TODO: maybe store epsilon here?
  4305. return result;
  4306. }
  4307. struct ggml_tensor * ggml_rms_norm(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a) {
  4310. return ggml_rms_norm_impl(ctx, a, false);
  4311. }
  4312. struct ggml_tensor * ggml_rms_norm_inplace(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a) {
  4315. return ggml_rms_norm_impl(ctx, a, true);
  4316. }
  4317. struct ggml_tensor * ggml_rms_norm_back(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. struct ggml_tensor * b) {
  4321. bool is_node = false;
  4322. if (a->grad) {
  4323. // TODO: implement backward
  4324. is_node = true;
  4325. }
  4326. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4327. result->op = GGML_OP_RMS_NORM_BACK;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src0 = a;
  4330. result->src1 = b;
  4331. return result;
  4332. }
  4333. // ggml_mul_mat
  4334. struct ggml_tensor * ggml_mul_mat(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b) {
  4338. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4339. GGML_ASSERT(!ggml_is_transposed(a));
  4340. bool is_node = false;
  4341. if (a->grad || b->grad) {
  4342. is_node = true;
  4343. }
  4344. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4345. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4346. result->op = GGML_OP_MUL_MAT;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src0 = a;
  4349. result->src1 = b;
  4350. return result;
  4351. }
  4352. // ggml_scale
  4353. struct ggml_tensor * ggml_scale_impl(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a,
  4356. struct ggml_tensor * b,
  4357. bool inplace) {
  4358. GGML_ASSERT(ggml_is_scalar(b));
  4359. GGML_ASSERT(ggml_is_padded_1d(a));
  4360. bool is_node = false;
  4361. if (!inplace && (a->grad || b->grad)) {
  4362. is_node = true;
  4363. }
  4364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4365. result->op = GGML_OP_SCALE;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src0 = a;
  4368. result->src1 = b;
  4369. return result;
  4370. }
  4371. struct ggml_tensor * ggml_scale(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b) {
  4375. return ggml_scale_impl(ctx, a, b, false);
  4376. }
  4377. struct ggml_tensor * ggml_scale_inplace(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. struct ggml_tensor * b) {
  4381. return ggml_scale_impl(ctx, a, b, true);
  4382. }
  4383. // ggml_set
  4384. struct ggml_tensor * ggml_set_impl(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a,
  4387. struct ggml_tensor * b,
  4388. size_t nb1,
  4389. size_t nb2,
  4390. size_t nb3,
  4391. size_t offset,
  4392. bool inplace) {
  4393. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4394. bool is_node = false;
  4395. if (!inplace && (a->grad || b->grad)) {
  4396. is_node = true;
  4397. }
  4398. // make a view of the destination
  4399. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4400. ggml_scratch_save(ctx);
  4401. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4402. (( int32_t * ) c->data)[0] = nb1;
  4403. (( int32_t * ) c->data)[1] = nb2;
  4404. (( int32_t * ) c->data)[2] = nb3;
  4405. (( int32_t * ) c->data)[3] = offset;
  4406. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4407. ggml_scratch_load(ctx);
  4408. result->op = GGML_OP_SET;
  4409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4410. result->src0 = a;
  4411. result->src1 = b;
  4412. result->opt[0] = c;
  4413. return result;
  4414. }
  4415. struct ggml_tensor * ggml_set(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b,
  4419. size_t nb1,
  4420. size_t nb2,
  4421. size_t nb3,
  4422. size_t offset) {
  4423. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4424. }
  4425. struct ggml_tensor * ggml_set_inplace(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. struct ggml_tensor * b,
  4429. size_t nb1,
  4430. size_t nb2,
  4431. size_t nb3,
  4432. size_t offset) {
  4433. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4434. }
  4435. struct ggml_tensor * ggml_set_1d(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. struct ggml_tensor * b,
  4439. size_t offset) {
  4440. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4441. }
  4442. struct ggml_tensor * ggml_set_1d_inplace(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * b,
  4446. size_t offset) {
  4447. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4448. }
  4449. struct ggml_tensor * ggml_set_2d(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a,
  4452. struct ggml_tensor * b,
  4453. size_t nb1,
  4454. size_t offset) {
  4455. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4456. }
  4457. struct ggml_tensor * ggml_set_2d_inplace(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. struct ggml_tensor * b,
  4461. size_t nb1,
  4462. size_t offset) {
  4463. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4464. }
  4465. // ggml_cpy
  4466. struct ggml_tensor * ggml_cpy_impl(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b,
  4470. bool inplace) {
  4471. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4472. bool is_node = false;
  4473. if (!inplace && (a->grad || b->grad)) {
  4474. is_node = true;
  4475. }
  4476. // make a view of the destination
  4477. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4478. result->op = GGML_OP_CPY;
  4479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4480. result->src0 = a;
  4481. result->src1 = b;
  4482. return result;
  4483. }
  4484. struct ggml_tensor * ggml_cpy(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a,
  4487. struct ggml_tensor * b) {
  4488. return ggml_cpy_impl(ctx, a, b, false);
  4489. }
  4490. struct ggml_tensor * ggml_cpy_inplace(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b) {
  4494. return ggml_cpy_impl(ctx, a, b, true);
  4495. }
  4496. // ggml_cont
  4497. struct ggml_tensor * ggml_cont_impl(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. bool inplace) {
  4501. bool is_node = false;
  4502. if (!inplace && a->grad) {
  4503. is_node = true;
  4504. }
  4505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4506. result->op = GGML_OP_CONT;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src0 = a;
  4509. result->src1 = NULL;
  4510. return result;
  4511. }
  4512. struct ggml_tensor * ggml_cont(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a) {
  4515. return ggml_cont_impl(ctx, a, false);
  4516. }
  4517. struct ggml_tensor * ggml_cont_inplace(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a) {
  4520. return ggml_cont_impl(ctx, a, true);
  4521. }
  4522. // ggml_reshape
  4523. struct ggml_tensor * ggml_reshape(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. struct ggml_tensor * b) {
  4527. GGML_ASSERT(ggml_is_contiguous(a));
  4528. GGML_ASSERT(ggml_is_contiguous(b));
  4529. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4530. bool is_node = false;
  4531. if (a->grad) {
  4532. is_node = true;
  4533. }
  4534. if (b->grad) {
  4535. // gradient propagation is not supported
  4536. //GGML_ASSERT(false);
  4537. }
  4538. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4539. result->op = GGML_OP_RESHAPE;
  4540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4541. result->src0 = a;
  4542. result->src1 = NULL;
  4543. return result;
  4544. }
  4545. struct ggml_tensor * ggml_reshape_1d(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. int64_t ne0) {
  4549. GGML_ASSERT(ggml_is_contiguous(a));
  4550. GGML_ASSERT(ggml_nelements(a) == ne0);
  4551. bool is_node = false;
  4552. if (a->grad) {
  4553. is_node = true;
  4554. }
  4555. const int64_t ne[1] = { ne0 };
  4556. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4557. result->op = GGML_OP_RESHAPE;
  4558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4559. result->src0 = a;
  4560. result->src1 = NULL;
  4561. return result;
  4562. }
  4563. struct ggml_tensor * ggml_reshape_2d(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. int64_t ne0,
  4567. int64_t ne1) {
  4568. GGML_ASSERT(ggml_is_contiguous(a));
  4569. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4570. bool is_node = false;
  4571. if (a->grad) {
  4572. is_node = true;
  4573. }
  4574. const int64_t ne[2] = { ne0, ne1 };
  4575. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4576. result->op = GGML_OP_RESHAPE;
  4577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4578. result->src0 = a;
  4579. result->src1 = NULL;
  4580. return result;
  4581. }
  4582. struct ggml_tensor * ggml_reshape_3d(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. int64_t ne0,
  4586. int64_t ne1,
  4587. int64_t ne2) {
  4588. GGML_ASSERT(ggml_is_contiguous(a));
  4589. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4590. bool is_node = false;
  4591. if (a->grad) {
  4592. is_node = true;
  4593. }
  4594. const int64_t ne[3] = { ne0, ne1, ne2 };
  4595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4596. result->op = GGML_OP_RESHAPE;
  4597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4598. result->src0 = a;
  4599. result->src1 = NULL;
  4600. return result;
  4601. }
  4602. struct ggml_tensor * ggml_reshape_4d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. int64_t ne0,
  4606. int64_t ne1,
  4607. int64_t ne2,
  4608. int64_t ne3) {
  4609. GGML_ASSERT(ggml_is_contiguous(a));
  4610. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4611. bool is_node = false;
  4612. if (a->grad) {
  4613. is_node = true;
  4614. }
  4615. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4616. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4617. result->op = GGML_OP_RESHAPE;
  4618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4619. result->src0 = a;
  4620. result->src1 = NULL;
  4621. return result;
  4622. }
  4623. // ggml_view_1d
  4624. struct ggml_tensor * ggml_view_1d(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. int64_t ne0,
  4628. size_t offset) {
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. is_node = true;
  4632. }
  4633. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4634. result->op = GGML_OP_VIEW;
  4635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4636. result->src0 = a;
  4637. result->src1 = NULL;
  4638. if (is_node) {
  4639. memcpy(result->padding, &offset, sizeof(offset));
  4640. }
  4641. return result;
  4642. }
  4643. // ggml_view_2d
  4644. struct ggml_tensor * ggml_view_2d(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a,
  4647. int64_t ne0,
  4648. int64_t ne1,
  4649. size_t nb1,
  4650. size_t offset) {
  4651. bool is_node = false;
  4652. if (a->grad) {
  4653. is_node = true;
  4654. }
  4655. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4656. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4657. result->nb[1] = nb1;
  4658. result->nb[2] = result->nb[1]*ne1;
  4659. result->nb[3] = result->nb[2];
  4660. result->op = GGML_OP_VIEW;
  4661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4662. result->src0 = a;
  4663. result->src1 = NULL;
  4664. if (is_node) {
  4665. memcpy(result->padding, &offset, sizeof(offset));
  4666. }
  4667. return result;
  4668. }
  4669. // ggml_view_3d
  4670. struct ggml_tensor * ggml_view_3d(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a,
  4673. int64_t ne0,
  4674. int64_t ne1,
  4675. int64_t ne2,
  4676. size_t nb1,
  4677. size_t nb2,
  4678. size_t offset) {
  4679. bool is_node = false;
  4680. if (a->grad) {
  4681. is_node = true;
  4682. }
  4683. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4684. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4685. result->nb[1] = nb1;
  4686. result->nb[2] = nb2;
  4687. result->nb[3] = result->nb[2]*ne2;
  4688. result->op = GGML_OP_VIEW;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src0 = a;
  4691. result->src1 = NULL;
  4692. if (is_node) {
  4693. memcpy(result->padding, &offset, sizeof(offset));
  4694. }
  4695. return result;
  4696. }
  4697. // ggml_view_4d
  4698. struct ggml_tensor * ggml_view_4d(
  4699. struct ggml_context * ctx,
  4700. struct ggml_tensor * a,
  4701. int64_t ne0,
  4702. int64_t ne1,
  4703. int64_t ne2,
  4704. int64_t ne3,
  4705. size_t nb1,
  4706. size_t nb2,
  4707. size_t nb3,
  4708. size_t offset) {
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. is_node = true;
  4712. }
  4713. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4714. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4715. result->nb[1] = nb1;
  4716. result->nb[2] = nb2;
  4717. result->nb[3] = nb3;
  4718. result->op = GGML_OP_VIEW;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src0 = a;
  4721. result->src1 = NULL;
  4722. if (is_node) {
  4723. memcpy(result->padding, &offset, sizeof(offset));
  4724. }
  4725. return result;
  4726. }
  4727. // ggml_permute
  4728. struct ggml_tensor * ggml_permute(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. int axis0,
  4732. int axis1,
  4733. int axis2,
  4734. int axis3) {
  4735. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4736. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4737. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4738. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4739. GGML_ASSERT(axis0 != axis1);
  4740. GGML_ASSERT(axis0 != axis2);
  4741. GGML_ASSERT(axis0 != axis3);
  4742. GGML_ASSERT(axis1 != axis2);
  4743. GGML_ASSERT(axis1 != axis3);
  4744. GGML_ASSERT(axis2 != axis3);
  4745. bool is_node = false;
  4746. if (a->grad) {
  4747. is_node = true;
  4748. }
  4749. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4750. int ne[GGML_MAX_DIMS];
  4751. int nb[GGML_MAX_DIMS];
  4752. ne[axis0] = a->ne[0];
  4753. ne[axis1] = a->ne[1];
  4754. ne[axis2] = a->ne[2];
  4755. ne[axis3] = a->ne[3];
  4756. nb[axis0] = a->nb[0];
  4757. nb[axis1] = a->nb[1];
  4758. nb[axis2] = a->nb[2];
  4759. nb[axis3] = a->nb[3];
  4760. result->ne[0] = ne[0];
  4761. result->ne[1] = ne[1];
  4762. result->ne[2] = ne[2];
  4763. result->ne[3] = ne[3];
  4764. result->nb[0] = nb[0];
  4765. result->nb[1] = nb[1];
  4766. result->nb[2] = nb[2];
  4767. result->nb[3] = nb[3];
  4768. result->op = GGML_OP_PERMUTE;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src0 = a;
  4771. result->src1 = NULL;
  4772. if (is_node) {
  4773. result->padding[0] = axis0;
  4774. result->padding[1] = axis1;
  4775. result->padding[2] = axis2;
  4776. result->padding[3] = axis3;
  4777. }
  4778. return result;
  4779. }
  4780. // ggml_transpose
  4781. struct ggml_tensor * ggml_transpose(
  4782. struct ggml_context * ctx,
  4783. struct ggml_tensor * a) {
  4784. bool is_node = false;
  4785. if (a->grad) {
  4786. is_node = true;
  4787. }
  4788. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4789. result->ne[0] = a->ne[1];
  4790. result->ne[1] = a->ne[0];
  4791. result->nb[0] = a->nb[1];
  4792. result->nb[1] = a->nb[0];
  4793. result->op = GGML_OP_TRANSPOSE;
  4794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4795. result->src0 = a;
  4796. result->src1 = NULL;
  4797. return result;
  4798. }
  4799. // ggml_get_rows
  4800. struct ggml_tensor * ggml_get_rows(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. struct ggml_tensor * b) {
  4804. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4805. bool is_node = false;
  4806. if (a->grad || b->grad) {
  4807. is_node = true;
  4808. }
  4809. // TODO: implement non F32 return
  4810. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4811. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4812. result->op = GGML_OP_GET_ROWS;
  4813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4814. result->src0 = a;
  4815. result->src1 = b;
  4816. return result;
  4817. }
  4818. // ggml_get_rows_back
  4819. struct ggml_tensor * ggml_get_rows_back(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b,
  4823. struct ggml_tensor * c) {
  4824. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4825. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4826. bool is_node = false;
  4827. if (a->grad || b->grad) {
  4828. is_node = true;
  4829. }
  4830. // TODO: implement non F32 return
  4831. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4832. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4833. result->op = GGML_OP_GET_ROWS_BACK;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src0 = a;
  4836. result->src1 = b;
  4837. result->opt[0] = c;
  4838. return result;
  4839. }
  4840. // ggml_diag
  4841. struct ggml_tensor * ggml_diag(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a) {
  4844. GGML_ASSERT(a->ne[1] == 1);
  4845. bool is_node = false;
  4846. if (a->grad) {
  4847. is_node = true;
  4848. }
  4849. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4850. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4851. result->op = GGML_OP_DIAG;
  4852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4853. result->src0 = a;
  4854. result->src1 = NULL;
  4855. return result;
  4856. }
  4857. // ggml_diag_mask_inf
  4858. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. int n_past,
  4862. bool inplace) {
  4863. bool is_node = false;
  4864. if (a->grad) {
  4865. is_node = true;
  4866. }
  4867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4868. ggml_scratch_save(ctx);
  4869. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4870. ((int32_t *) b->data)[0] = n_past;
  4871. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4872. ggml_scratch_load(ctx);
  4873. result->op = GGML_OP_DIAG_MASK_INF;
  4874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4875. result->src0 = a;
  4876. result->src1 = b;
  4877. return result;
  4878. }
  4879. struct ggml_tensor * ggml_diag_mask_inf(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. int n_past) {
  4883. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4884. }
  4885. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. int n_past) {
  4889. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4890. }
  4891. // ggml_diag_mask_zero
  4892. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. int n_past,
  4896. bool inplace) {
  4897. bool is_node = false;
  4898. if (a->grad) {
  4899. is_node = true;
  4900. }
  4901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4902. ggml_scratch_save(ctx);
  4903. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4904. ggml_set_name(b, "n_past, inplace");
  4905. ((int32_t *) b->data)[0] = n_past;
  4906. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4907. ggml_scratch_load(ctx);
  4908. result->op = GGML_OP_DIAG_MASK_ZERO;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src0 = a;
  4911. result->src1 = b;
  4912. return result;
  4913. }
  4914. struct ggml_tensor * ggml_diag_mask_zero(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. int n_past) {
  4918. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4919. }
  4920. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. int n_past) {
  4924. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4925. }
  4926. // ggml_soft_max
  4927. struct ggml_tensor * ggml_soft_max_impl(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. bool inplace) {
  4931. bool is_node = false;
  4932. if (a->grad) {
  4933. is_node = true;
  4934. }
  4935. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4936. result->op = GGML_OP_SOFT_MAX;
  4937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4938. result->src0 = a;
  4939. result->src1 = NULL;
  4940. return result;
  4941. }
  4942. struct ggml_tensor * ggml_soft_max(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a) {
  4945. return ggml_soft_max_impl(ctx, a, false);
  4946. }
  4947. struct ggml_tensor * ggml_soft_max_inplace(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a) {
  4950. return ggml_soft_max_impl(ctx, a, true);
  4951. }
  4952. // ggml_rope
  4953. struct ggml_tensor * ggml_rope_impl(
  4954. struct ggml_context * ctx,
  4955. struct ggml_tensor * a,
  4956. int n_past,
  4957. int n_dims,
  4958. int mode,
  4959. bool inplace) {
  4960. GGML_ASSERT(n_past >= 0);
  4961. bool is_node = false;
  4962. if (!inplace && a->grad) {
  4963. is_node = true;
  4964. }
  4965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4966. ggml_scratch_save(ctx);
  4967. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4968. ((int32_t *) b->data)[0] = n_past;
  4969. ((int32_t *) b->data)[1] = n_dims;
  4970. ((int32_t *) b->data)[2] = mode;
  4971. ggml_scratch_load(ctx);
  4972. result->op = GGML_OP_ROPE;
  4973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4974. result->src0 = a;
  4975. result->src1 = b;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_rope(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. int n_past,
  4982. int n_dims,
  4983. int mode) {
  4984. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4985. }
  4986. struct ggml_tensor * ggml_rope_inplace(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a,
  4989. int n_past,
  4990. int n_dims,
  4991. int mode) {
  4992. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4993. }
  4994. // ggml_rope_back
  4995. struct ggml_tensor * ggml_rope_back(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. int n_past,
  4999. int n_dims,
  5000. int mode) {
  5001. GGML_ASSERT(n_past >= 0);
  5002. bool is_node = false;
  5003. if (a->grad) {
  5004. GGML_ASSERT(false); // TODO: implement backward
  5005. is_node = true;
  5006. }
  5007. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5008. ggml_scratch_save(ctx);
  5009. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5010. ggml_set_name(b, "n_past, n_dims, mode");
  5011. ((int32_t *) b->data)[0] = n_past;
  5012. ((int32_t *) b->data)[1] = n_dims;
  5013. ((int32_t *) b->data)[2] = mode;
  5014. ggml_scratch_load(ctx);
  5015. result->op = GGML_OP_ROPE_BACK;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src0 = a;
  5018. result->src1 = b;
  5019. return result;
  5020. }
  5021. // ggml_alibi
  5022. struct ggml_tensor * ggml_alibi(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. int n_past,
  5026. int n_head,
  5027. float bias_max) {
  5028. GGML_ASSERT(n_past >= 0);
  5029. bool is_node = false;
  5030. if (a->grad) {
  5031. GGML_ASSERT(false); // TODO: implement backward
  5032. is_node = true;
  5033. }
  5034. // TODO: when implement backward, fix this:
  5035. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5036. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5037. ggml_scratch_save(ctx);
  5038. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5039. ((int32_t *) b->data)[0] = n_past;
  5040. ((int32_t *) b->data)[1] = n_head;
  5041. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5042. (((float *) b->data)[2]) = bias_max;
  5043. ggml_scratch_load(ctx);
  5044. result->op = GGML_OP_ALIBI;
  5045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5046. result->src0 = a;
  5047. result->src1 = b;
  5048. return result;
  5049. }
  5050. // ggml_clamp
  5051. struct ggml_tensor * ggml_clamp(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. float min,
  5055. float max) {
  5056. bool is_node = false;
  5057. if (a->grad) {
  5058. GGML_ASSERT(false); // TODO: implement backward
  5059. is_node = true;
  5060. }
  5061. // TODO: when implement backward, fix this:
  5062. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5063. ggml_scratch_save(ctx);
  5064. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5065. ((float *) b->data)[0] = min;
  5066. ((float *) b->data)[1] = max;
  5067. ggml_scratch_load(ctx);
  5068. result->op = GGML_OP_CLAMP;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src0 = a;
  5071. result->src1 = b;
  5072. return result;
  5073. }
  5074. // ggml_conv_1d_1s
  5075. struct ggml_tensor * ggml_conv_1d_1s(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. struct ggml_tensor * b) {
  5079. GGML_ASSERT(ggml_is_matrix(b));
  5080. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5081. GGML_ASSERT(a->ne[3] == 1);
  5082. bool is_node = false;
  5083. if (a->grad || b->grad) {
  5084. GGML_ASSERT(false); // TODO: implement backward
  5085. is_node = true;
  5086. }
  5087. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5088. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5089. result->op = GGML_OP_CONV_1D_1S;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src0 = a;
  5092. result->src1 = b;
  5093. return result;
  5094. }
  5095. // ggml_conv_1d_2s
  5096. struct ggml_tensor * ggml_conv_1d_2s(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. struct ggml_tensor * b) {
  5100. GGML_ASSERT(ggml_is_matrix(b));
  5101. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5102. GGML_ASSERT(a->ne[3] == 1);
  5103. bool is_node = false;
  5104. if (a->grad || b->grad) {
  5105. GGML_ASSERT(false); // TODO: implement backward
  5106. is_node = true;
  5107. }
  5108. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5109. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5110. result->op = GGML_OP_CONV_1D_2S;
  5111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5112. result->src0 = a;
  5113. result->src1 = b;
  5114. return result;
  5115. }
  5116. // ggml_flash_attn
  5117. struct ggml_tensor * ggml_flash_attn(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * q,
  5120. struct ggml_tensor * k,
  5121. struct ggml_tensor * v,
  5122. bool masked) {
  5123. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5124. // TODO: check if vT can be multiplied by (k*qT)
  5125. bool is_node = false;
  5126. if (q->grad || k->grad || v->grad) {
  5127. GGML_ASSERT(false); // TODO: implement backward
  5128. is_node = true;
  5129. }
  5130. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5131. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5132. result->op = GGML_OP_FLASH_ATTN;
  5133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5134. result->src0 = q;
  5135. result->src1 = k;
  5136. result->opt[0] = v;
  5137. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5138. return result;
  5139. }
  5140. // ggml_flash_ff
  5141. struct ggml_tensor * ggml_flash_ff(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a,
  5144. struct ggml_tensor * b0,
  5145. struct ggml_tensor * b1,
  5146. struct ggml_tensor * c0,
  5147. struct ggml_tensor * c1) {
  5148. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5149. // TODO: more checks
  5150. bool is_node = false;
  5151. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5152. GGML_ASSERT(false); // TODO: implement backward
  5153. is_node = true;
  5154. }
  5155. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5156. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5157. result->op = GGML_OP_FLASH_FF;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src0 = a;
  5160. result->src1 = b0;
  5161. result->opt[0] = b1;
  5162. result->opt[1] = c0;
  5163. result->opt[2] = c1;
  5164. return result;
  5165. }
  5166. // ggml_map_unary
  5167. struct ggml_tensor * ggml_map_unary_impl_f32(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. const ggml_unary_op_f32_t fun,
  5171. bool inplace) {
  5172. bool is_node = false;
  5173. if (!inplace && a->grad) {
  5174. is_node = true;
  5175. }
  5176. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5177. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5178. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5179. result->op = GGML_OP_MAP_UNARY;
  5180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5181. result->src0 = a;
  5182. result->opt[0] = addr_tensor;
  5183. return result;
  5184. }
  5185. struct ggml_tensor * ggml_map_unary_f32(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. const ggml_unary_op_f32_t fun) {
  5189. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5190. }
  5191. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * a,
  5194. const ggml_unary_op_f32_t fun) {
  5195. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5196. }
  5197. // ggml_map_binary
  5198. struct ggml_tensor * ggml_map_binary_impl_f32(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. struct ggml_tensor * b,
  5202. const ggml_binary_op_f32_t fun,
  5203. bool inplace) {
  5204. GGML_ASSERT(ggml_are_same_shape(a, b));
  5205. bool is_node = false;
  5206. if (!inplace && (a->grad || b->grad)) {
  5207. is_node = true;
  5208. }
  5209. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5210. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5211. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5212. result->op = GGML_OP_MAP_BINARY;
  5213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5214. result->src0 = a;
  5215. result->src1 = b;
  5216. result->opt[0] = addr_tensor;
  5217. return result;
  5218. }
  5219. struct ggml_tensor * ggml_map_binary_f32(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. struct ggml_tensor * b,
  5223. const ggml_binary_op_f32_t fun) {
  5224. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5225. }
  5226. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. const ggml_binary_op_f32_t fun) {
  5231. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5232. }
  5233. ////////////////////////////////////////////////////////////////////////////////
  5234. void ggml_set_param(
  5235. struct ggml_context * ctx,
  5236. struct ggml_tensor * tensor) {
  5237. tensor->is_param = true;
  5238. GGML_ASSERT(tensor->grad == NULL);
  5239. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5240. }
  5241. // ggml_compute_forward_dup
  5242. static void ggml_compute_forward_dup_same_cont(
  5243. const struct ggml_compute_params * params,
  5244. const struct ggml_tensor * src0,
  5245. struct ggml_tensor * dst) {
  5246. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5247. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5248. GGML_ASSERT(src0->type == dst->type);
  5249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5250. return;
  5251. }
  5252. const size_t nb00 = src0->nb[0];
  5253. const size_t nb0 = dst->nb[0];
  5254. const int ith = params->ith; // thread index
  5255. const int nth = params->nth; // number of threads
  5256. // parallelize by elements
  5257. const int ne = ggml_nelements(dst);
  5258. const int dr = (ne + nth - 1) / nth;
  5259. const int ie0 = dr * ith;
  5260. const int ie1 = MIN(ie0 + dr, ne);
  5261. if (ie0 < ie1) {
  5262. memcpy(
  5263. ((char *) dst->data + ie0*nb0),
  5264. ((char *) src0->data + ie0*nb00),
  5265. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5266. }
  5267. }
  5268. static void ggml_compute_forward_dup_f16(
  5269. const struct ggml_compute_params * params,
  5270. const struct ggml_tensor * src0,
  5271. struct ggml_tensor * dst) {
  5272. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5274. return;
  5275. }
  5276. const int64_t ne00 = src0->ne[0];
  5277. const int64_t ne01 = src0->ne[1];
  5278. const int64_t ne02 = src0->ne[2];
  5279. const int64_t ne03 = src0->ne[3];
  5280. const int64_t ne0 = dst->ne[0];
  5281. const int64_t ne1 = dst->ne[1];
  5282. const int64_t ne2 = dst->ne[2];
  5283. const int64_t ne3 = dst->ne[3];
  5284. const size_t nb00 = src0->nb[0];
  5285. const size_t nb01 = src0->nb[1];
  5286. const size_t nb02 = src0->nb[2];
  5287. const size_t nb03 = src0->nb[3];
  5288. const size_t nb0 = dst->nb[0];
  5289. const size_t nb1 = dst->nb[1];
  5290. const size_t nb2 = dst->nb[2];
  5291. const size_t nb3 = dst->nb[3];
  5292. const int ith = params->ith; // thread index
  5293. const int nth = params->nth; // number of threads
  5294. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5295. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5296. return;
  5297. }
  5298. // parallelize by rows
  5299. const int nr = ne01;
  5300. // number of rows per thread
  5301. const int dr = (nr + nth - 1) / nth;
  5302. // row range for this thread
  5303. const int ir0 = dr * ith;
  5304. const int ir1 = MIN(ir0 + dr, nr);
  5305. if (src0->type == dst->type &&
  5306. ne00 == ne0 &&
  5307. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5308. // copy by rows
  5309. const size_t rs = ne00*nb00;
  5310. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5311. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5312. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5313. memcpy(
  5314. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5315. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5316. rs);
  5317. }
  5318. }
  5319. }
  5320. return;
  5321. }
  5322. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5323. if (ggml_is_contiguous(dst)) {
  5324. if (nb00 == sizeof(ggml_fp16_t)) {
  5325. if (dst->type == GGML_TYPE_F16) {
  5326. size_t id = 0;
  5327. const size_t rs = ne00 * nb00;
  5328. char * dst_ptr = (char *) dst->data;
  5329. for (int i03 = 0; i03 < ne03; i03++) {
  5330. for (int i02 = 0; i02 < ne02; i02++) {
  5331. id += rs * ir0;
  5332. for (int i01 = ir0; i01 < ir1; i01++) {
  5333. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5334. memcpy(dst_ptr + id, src0_ptr, rs);
  5335. id += rs;
  5336. }
  5337. id += rs * (ne01 - ir1);
  5338. }
  5339. }
  5340. } else if (dst->type == GGML_TYPE_F32) {
  5341. size_t id = 0;
  5342. float * dst_ptr = (float *) dst->data;
  5343. for (int i03 = 0; i03 < ne03; i03++) {
  5344. for (int i02 = 0; i02 < ne02; i02++) {
  5345. id += ne00 * ir0;
  5346. for (int i01 = ir0; i01 < ir1; i01++) {
  5347. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5348. for (int i00 = 0; i00 < ne00; i00++) {
  5349. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5350. id++;
  5351. }
  5352. }
  5353. id += ne00 * (ne01 - ir1);
  5354. }
  5355. }
  5356. } else if (ggml_is_quantized(dst->type)) {
  5357. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5358. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5359. size_t id = 0;
  5360. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5361. char * dst_ptr = (char *) dst->data;
  5362. for (int i03 = 0; i03 < ne03; i03++) {
  5363. for (int i02 = 0; i02 < ne02; i02++) {
  5364. id += rs * ir0;
  5365. for (int i01 = ir0; i01 < ir1; i01++) {
  5366. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5367. for (int i00 = 0; i00 < ne00; i00++) {
  5368. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5369. }
  5370. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5371. id += rs;
  5372. }
  5373. id += rs * (ne01 - ir1);
  5374. }
  5375. }
  5376. } else {
  5377. GGML_ASSERT(false); // TODO: implement
  5378. }
  5379. } else {
  5380. //printf("%s: this is not optimal - fix me\n", __func__);
  5381. if (dst->type == GGML_TYPE_F32) {
  5382. size_t id = 0;
  5383. float * dst_ptr = (float *) dst->data;
  5384. for (int i03 = 0; i03 < ne03; i03++) {
  5385. for (int i02 = 0; i02 < ne02; i02++) {
  5386. id += ne00 * ir0;
  5387. for (int i01 = ir0; i01 < ir1; i01++) {
  5388. for (int i00 = 0; i00 < ne00; i00++) {
  5389. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5390. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5391. id++;
  5392. }
  5393. }
  5394. id += ne00 * (ne01 - ir1);
  5395. }
  5396. }
  5397. } else if (dst->type == GGML_TYPE_F16) {
  5398. size_t id = 0;
  5399. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5400. for (int i03 = 0; i03 < ne03; i03++) {
  5401. for (int i02 = 0; i02 < ne02; i02++) {
  5402. id += ne00 * ir0;
  5403. for (int i01 = ir0; i01 < ir1; i01++) {
  5404. for (int i00 = 0; i00 < ne00; i00++) {
  5405. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5406. dst_ptr[id] = *src0_ptr;
  5407. id++;
  5408. }
  5409. }
  5410. id += ne00 * (ne01 - ir1);
  5411. }
  5412. }
  5413. } else {
  5414. GGML_ASSERT(false); // TODO: implement
  5415. }
  5416. }
  5417. return;
  5418. }
  5419. // dst counters
  5420. int64_t i10 = 0;
  5421. int64_t i11 = 0;
  5422. int64_t i12 = 0;
  5423. int64_t i13 = 0;
  5424. if (dst->type == GGML_TYPE_F16) {
  5425. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5426. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5427. i10 += ne00 * ir0;
  5428. while (i10 >= ne0) {
  5429. i10 -= ne0;
  5430. if (++i11 == ne1) {
  5431. i11 = 0;
  5432. if (++i12 == ne2) {
  5433. i12 = 0;
  5434. if (++i13 == ne3) {
  5435. i13 = 0;
  5436. }
  5437. }
  5438. }
  5439. }
  5440. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5441. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5442. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5443. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5444. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5445. if (++i10 == ne00) {
  5446. i10 = 0;
  5447. if (++i11 == ne01) {
  5448. i11 = 0;
  5449. if (++i12 == ne02) {
  5450. i12 = 0;
  5451. if (++i13 == ne03) {
  5452. i13 = 0;
  5453. }
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. i10 += ne00 * (ne01 - ir1);
  5460. while (i10 >= ne0) {
  5461. i10 -= ne0;
  5462. if (++i11 == ne1) {
  5463. i11 = 0;
  5464. if (++i12 == ne2) {
  5465. i12 = 0;
  5466. if (++i13 == ne3) {
  5467. i13 = 0;
  5468. }
  5469. }
  5470. }
  5471. }
  5472. }
  5473. }
  5474. } else if (dst->type == GGML_TYPE_F32) {
  5475. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5476. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5477. i10 += ne00 * ir0;
  5478. while (i10 >= ne0) {
  5479. i10 -= ne0;
  5480. if (++i11 == ne1) {
  5481. i11 = 0;
  5482. if (++i12 == ne2) {
  5483. i12 = 0;
  5484. if (++i13 == ne3) {
  5485. i13 = 0;
  5486. }
  5487. }
  5488. }
  5489. }
  5490. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5491. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5492. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5493. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5494. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5495. if (++i10 == ne0) {
  5496. i10 = 0;
  5497. if (++i11 == ne1) {
  5498. i11 = 0;
  5499. if (++i12 == ne2) {
  5500. i12 = 0;
  5501. if (++i13 == ne3) {
  5502. i13 = 0;
  5503. }
  5504. }
  5505. }
  5506. }
  5507. }
  5508. }
  5509. i10 += ne00 * (ne01 - ir1);
  5510. while (i10 >= ne0) {
  5511. i10 -= ne0;
  5512. if (++i11 == ne1) {
  5513. i11 = 0;
  5514. if (++i12 == ne2) {
  5515. i12 = 0;
  5516. if (++i13 == ne3) {
  5517. i13 = 0;
  5518. }
  5519. }
  5520. }
  5521. }
  5522. }
  5523. }
  5524. } else {
  5525. GGML_ASSERT(false); // TODO: implement
  5526. }
  5527. }
  5528. static void ggml_compute_forward_dup_f32(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. struct ggml_tensor * dst) {
  5532. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5534. return;
  5535. }
  5536. const int64_t ne00 = src0->ne[0];
  5537. const int64_t ne01 = src0->ne[1];
  5538. const int64_t ne02 = src0->ne[2];
  5539. const int64_t ne03 = src0->ne[3];
  5540. const int64_t ne0 = dst->ne[0];
  5541. const int64_t ne1 = dst->ne[1];
  5542. const int64_t ne2 = dst->ne[2];
  5543. const int64_t ne3 = dst->ne[3];
  5544. const size_t nb00 = src0->nb[0];
  5545. const size_t nb01 = src0->nb[1];
  5546. const size_t nb02 = src0->nb[2];
  5547. const size_t nb03 = src0->nb[3];
  5548. const size_t nb0 = dst->nb[0];
  5549. const size_t nb1 = dst->nb[1];
  5550. const size_t nb2 = dst->nb[2];
  5551. const size_t nb3 = dst->nb[3];
  5552. const int ith = params->ith; // thread index
  5553. const int nth = params->nth; // number of threads
  5554. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5555. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5556. return;
  5557. }
  5558. // parallelize by rows
  5559. const int nr = ne01;
  5560. // number of rows per thread
  5561. const int dr = (nr + nth - 1) / nth;
  5562. // row range for this thread
  5563. const int ir0 = dr * ith;
  5564. const int ir1 = MIN(ir0 + dr, nr);
  5565. if (src0->type == dst->type &&
  5566. ne00 == ne0 &&
  5567. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5568. // copy by rows
  5569. const size_t rs = ne00*nb00;
  5570. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5571. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5572. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5573. memcpy(
  5574. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5575. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5576. rs);
  5577. }
  5578. }
  5579. }
  5580. return;
  5581. }
  5582. if (ggml_is_contiguous(dst)) {
  5583. // TODO: simplify
  5584. if (nb00 == sizeof(float)) {
  5585. if (dst->type == GGML_TYPE_F32) {
  5586. size_t id = 0;
  5587. const size_t rs = ne00 * nb00;
  5588. char * dst_ptr = (char *) dst->data;
  5589. for (int i03 = 0; i03 < ne03; i03++) {
  5590. for (int i02 = 0; i02 < ne02; i02++) {
  5591. id += rs * ir0;
  5592. for (int i01 = ir0; i01 < ir1; i01++) {
  5593. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5594. memcpy(dst_ptr + id, src0_ptr, rs);
  5595. id += rs;
  5596. }
  5597. id += rs * (ne01 - ir1);
  5598. }
  5599. }
  5600. } else if (dst->type == GGML_TYPE_F16) {
  5601. size_t id = 0;
  5602. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5603. for (int i03 = 0; i03 < ne03; i03++) {
  5604. for (int i02 = 0; i02 < ne02; i02++) {
  5605. id += ne00 * ir0;
  5606. for (int i01 = ir0; i01 < ir1; i01++) {
  5607. for (int i00 = 0; i00 < ne00; i00++) {
  5608. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5609. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5610. id++;
  5611. }
  5612. }
  5613. id += ne00 * (ne01 - ir1);
  5614. }
  5615. }
  5616. } else if (ggml_is_quantized(dst->type)) {
  5617. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5618. size_t id = 0;
  5619. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5620. char * dst_ptr = (char *) dst->data;
  5621. for (int i03 = 0; i03 < ne03; i03++) {
  5622. for (int i02 = 0; i02 < ne02; i02++) {
  5623. id += rs * ir0;
  5624. for (int i01 = ir0; i01 < ir1; i01++) {
  5625. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5626. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5627. id += rs;
  5628. }
  5629. id += rs * (ne01 - ir1);
  5630. }
  5631. }
  5632. } else {
  5633. GGML_ASSERT(false); // TODO: implement
  5634. }
  5635. } else {
  5636. //printf("%s: this is not optimal - fix me\n", __func__);
  5637. if (dst->type == GGML_TYPE_F32) {
  5638. size_t id = 0;
  5639. float * dst_ptr = (float *) dst->data;
  5640. for (int i03 = 0; i03 < ne03; i03++) {
  5641. for (int i02 = 0; i02 < ne02; i02++) {
  5642. id += ne00 * ir0;
  5643. for (int i01 = ir0; i01 < ir1; i01++) {
  5644. for (int i00 = 0; i00 < ne00; i00++) {
  5645. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5646. dst_ptr[id] = *src0_ptr;
  5647. id++;
  5648. }
  5649. }
  5650. id += ne00 * (ne01 - ir1);
  5651. }
  5652. }
  5653. } else if (dst->type == GGML_TYPE_F16) {
  5654. size_t id = 0;
  5655. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5656. for (int i03 = 0; i03 < ne03; i03++) {
  5657. for (int i02 = 0; i02 < ne02; i02++) {
  5658. id += ne00 * ir0;
  5659. for (int i01 = ir0; i01 < ir1; i01++) {
  5660. for (int i00 = 0; i00 < ne00; i00++) {
  5661. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5662. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5663. id++;
  5664. }
  5665. }
  5666. id += ne00 * (ne01 - ir1);
  5667. }
  5668. }
  5669. } else {
  5670. GGML_ASSERT(false); // TODO: implement
  5671. }
  5672. }
  5673. return;
  5674. }
  5675. // dst counters
  5676. int64_t i10 = 0;
  5677. int64_t i11 = 0;
  5678. int64_t i12 = 0;
  5679. int64_t i13 = 0;
  5680. if (dst->type == GGML_TYPE_F32) {
  5681. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5682. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5683. i10 += ne00 * ir0;
  5684. while (i10 >= ne0) {
  5685. i10 -= ne0;
  5686. if (++i11 == ne1) {
  5687. i11 = 0;
  5688. if (++i12 == ne2) {
  5689. i12 = 0;
  5690. if (++i13 == ne3) {
  5691. i13 = 0;
  5692. }
  5693. }
  5694. }
  5695. }
  5696. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5698. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5699. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5700. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5701. if (++i10 == ne0) {
  5702. i10 = 0;
  5703. if (++i11 == ne1) {
  5704. i11 = 0;
  5705. if (++i12 == ne2) {
  5706. i12 = 0;
  5707. if (++i13 == ne3) {
  5708. i13 = 0;
  5709. }
  5710. }
  5711. }
  5712. }
  5713. }
  5714. }
  5715. i10 += ne00 * (ne01 - ir1);
  5716. while (i10 >= ne0) {
  5717. i10 -= ne0;
  5718. if (++i11 == ne1) {
  5719. i11 = 0;
  5720. if (++i12 == ne2) {
  5721. i12 = 0;
  5722. if (++i13 == ne3) {
  5723. i13 = 0;
  5724. }
  5725. }
  5726. }
  5727. }
  5728. }
  5729. }
  5730. } else if (dst->type == GGML_TYPE_F16) {
  5731. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5732. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5733. i10 += ne00 * ir0;
  5734. while (i10 >= ne0) {
  5735. i10 -= ne0;
  5736. if (++i11 == ne1) {
  5737. i11 = 0;
  5738. if (++i12 == ne2) {
  5739. i12 = 0;
  5740. if (++i13 == ne3) {
  5741. i13 = 0;
  5742. }
  5743. }
  5744. }
  5745. }
  5746. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5747. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5748. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5749. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5750. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5751. if (++i10 == ne0) {
  5752. i10 = 0;
  5753. if (++i11 == ne1) {
  5754. i11 = 0;
  5755. if (++i12 == ne2) {
  5756. i12 = 0;
  5757. if (++i13 == ne3) {
  5758. i13 = 0;
  5759. }
  5760. }
  5761. }
  5762. }
  5763. }
  5764. }
  5765. i10 += ne00 * (ne01 - ir1);
  5766. while (i10 >= ne0) {
  5767. i10 -= ne0;
  5768. if (++i11 == ne1) {
  5769. i11 = 0;
  5770. if (++i12 == ne2) {
  5771. i12 = 0;
  5772. if (++i13 == ne3) {
  5773. i13 = 0;
  5774. }
  5775. }
  5776. }
  5777. }
  5778. }
  5779. }
  5780. } else {
  5781. GGML_ASSERT(false); // TODO: implement
  5782. }
  5783. }
  5784. static void ggml_compute_forward_dup(
  5785. const struct ggml_compute_params * params,
  5786. const struct ggml_tensor * src0,
  5787. struct ggml_tensor * dst) {
  5788. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5789. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5790. return;
  5791. }
  5792. switch (src0->type) {
  5793. case GGML_TYPE_F16:
  5794. {
  5795. ggml_compute_forward_dup_f16(params, src0, dst);
  5796. } break;
  5797. case GGML_TYPE_F32:
  5798. {
  5799. ggml_compute_forward_dup_f32(params, src0, dst);
  5800. } break;
  5801. default:
  5802. {
  5803. GGML_ASSERT(false);
  5804. } break;
  5805. }
  5806. }
  5807. // ggml_compute_forward_add
  5808. static void ggml_compute_forward_add_f32(
  5809. const struct ggml_compute_params * params,
  5810. const struct ggml_tensor * src0,
  5811. const struct ggml_tensor * src1,
  5812. struct ggml_tensor * dst) {
  5813. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5815. return;
  5816. }
  5817. const int ith = params->ith;
  5818. const int nth = params->nth;
  5819. const int nr = ggml_nrows(src0);
  5820. const int64_t ne0 = src0->ne[0];
  5821. const int64_t ne1 = src0->ne[1];
  5822. const int64_t ne2 = src0->ne[2];
  5823. const size_t nb00 = src0->nb[0];
  5824. const size_t nb01 = src0->nb[1];
  5825. const size_t nb02 = src0->nb[2];
  5826. const size_t nb03 = src0->nb[3];
  5827. const size_t nb10 = src1->nb[0];
  5828. const size_t nb11 = src1->nb[1];
  5829. const size_t nb12 = src1->nb[2];
  5830. const size_t nb13 = src1->nb[3];
  5831. const size_t nb0 = dst->nb[0];
  5832. const size_t nb1 = dst->nb[1];
  5833. const size_t nb2 = dst->nb[2];
  5834. const size_t nb3 = dst->nb[3];
  5835. GGML_ASSERT( nb0 == sizeof(float));
  5836. GGML_ASSERT(nb00 == sizeof(float));
  5837. // rows per thread
  5838. const int dr = (nr + nth - 1)/nth;
  5839. // row range for this thread
  5840. const int ir0 = dr*ith;
  5841. const int ir1 = MIN(ir0 + dr, nr);
  5842. if (nb10 == sizeof(float)) {
  5843. for (int ir = ir0; ir < ir1; ++ir) {
  5844. // src0, src1 and dst are same shape => same indices
  5845. const int i3 = ir/(ne2*ne1);
  5846. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5847. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5848. #ifdef GGML_USE_ACCELERATE
  5849. vDSP_vadd(
  5850. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5851. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5852. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5853. ne0);
  5854. #else
  5855. ggml_vec_add_f32(ne0,
  5856. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5857. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5858. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5859. #endif
  5860. // }
  5861. // }
  5862. }
  5863. } else {
  5864. // src1 is not contiguous
  5865. for (int ir = ir0; ir < ir1; ++ir) {
  5866. // src0, src1 and dst are same shape => same indices
  5867. const int i3 = ir/(ne2*ne1);
  5868. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5869. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5870. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5871. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5872. for (int i0 = 0; i0 < ne0; i0++) {
  5873. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5874. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5875. }
  5876. }
  5877. }
  5878. }
  5879. static void ggml_compute_forward_add_f16_f32(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. const struct ggml_tensor * src1,
  5883. struct ggml_tensor * dst) {
  5884. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5886. return;
  5887. }
  5888. const int ith = params->ith;
  5889. const int nth = params->nth;
  5890. const int nr = ggml_nrows(src0);
  5891. const int64_t ne0 = src0->ne[0];
  5892. const int64_t ne1 = src0->ne[1];
  5893. const int64_t ne2 = src0->ne[2];
  5894. const size_t nb00 = src0->nb[0];
  5895. const size_t nb01 = src0->nb[1];
  5896. const size_t nb02 = src0->nb[2];
  5897. const size_t nb03 = src0->nb[3];
  5898. const size_t nb10 = src1->nb[0];
  5899. const size_t nb11 = src1->nb[1];
  5900. const size_t nb12 = src1->nb[2];
  5901. const size_t nb13 = src1->nb[3];
  5902. const size_t nb0 = dst->nb[0];
  5903. const size_t nb1 = dst->nb[1];
  5904. const size_t nb2 = dst->nb[2];
  5905. const size_t nb3 = dst->nb[3];
  5906. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5907. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5908. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5909. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5910. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5911. // rows per thread
  5912. const int dr = (nr + nth - 1)/nth;
  5913. // row range for this thread
  5914. const int ir0 = dr*ith;
  5915. const int ir1 = MIN(ir0 + dr, nr);
  5916. if (nb10 == sizeof(float)) {
  5917. for (int ir = ir0; ir < ir1; ++ir) {
  5918. // src0, src1 and dst are same shape => same indices
  5919. const int i3 = ir/(ne2*ne1);
  5920. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5921. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5922. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5923. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5924. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5925. for (int i = 0; i < ne0; i++) {
  5926. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5927. }
  5928. }
  5929. }
  5930. else {
  5931. // src1 is not contiguous
  5932. GGML_ASSERT(false);
  5933. }
  5934. }
  5935. static void ggml_compute_forward_add_f16_f16(
  5936. const struct ggml_compute_params * params,
  5937. const struct ggml_tensor * src0,
  5938. const struct ggml_tensor * src1,
  5939. struct ggml_tensor * dst) {
  5940. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5942. return;
  5943. }
  5944. const int ith = params->ith;
  5945. const int nth = params->nth;
  5946. const int nr = ggml_nrows(src0);
  5947. const int64_t ne0 = src0->ne[0];
  5948. const int64_t ne1 = src0->ne[1];
  5949. const int64_t ne2 = src0->ne[2];
  5950. const size_t nb00 = src0->nb[0];
  5951. const size_t nb01 = src0->nb[1];
  5952. const size_t nb02 = src0->nb[2];
  5953. const size_t nb03 = src0->nb[3];
  5954. const size_t nb10 = src1->nb[0];
  5955. const size_t nb11 = src1->nb[1];
  5956. const size_t nb12 = src1->nb[2];
  5957. const size_t nb13 = src1->nb[3];
  5958. const size_t nb0 = dst->nb[0];
  5959. const size_t nb1 = dst->nb[1];
  5960. const size_t nb2 = dst->nb[2];
  5961. const size_t nb3 = dst->nb[3];
  5962. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5963. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5964. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5965. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5966. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5967. // rows per thread
  5968. const int dr = (nr + nth - 1)/nth;
  5969. // row range for this thread
  5970. const int ir0 = dr*ith;
  5971. const int ir1 = MIN(ir0 + dr, nr);
  5972. if (nb10 == sizeof(ggml_fp16_t)) {
  5973. for (int ir = ir0; ir < ir1; ++ir) {
  5974. // src0, src1 and dst are same shape => same indices
  5975. const int i3 = ir/(ne2*ne1);
  5976. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5977. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5978. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5979. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5980. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5981. for (int i = 0; i < ne0; i++) {
  5982. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5983. }
  5984. }
  5985. }
  5986. else {
  5987. // src1 is not contiguous
  5988. GGML_ASSERT(false);
  5989. }
  5990. }
  5991. static void ggml_compute_forward_add_q_f32(
  5992. const struct ggml_compute_params * params,
  5993. const struct ggml_tensor * src0,
  5994. const struct ggml_tensor * src1,
  5995. struct ggml_tensor * dst) {
  5996. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5998. return;
  5999. }
  6000. const int nr = ggml_nrows(src0);
  6001. const int64_t ne00 = src0->ne[0];
  6002. const int64_t ne01 = src0->ne[1];
  6003. const int64_t ne02 = src0->ne[2];
  6004. //const int64_t ne03 = src0->ne[3];
  6005. const size_t nb00 = src0->nb[0];
  6006. const size_t nb01 = src0->nb[1];
  6007. const size_t nb02 = src0->nb[2];
  6008. const size_t nb03 = src0->nb[3];
  6009. const size_t nb10 = src1->nb[0];
  6010. const size_t nb11 = src1->nb[1];
  6011. const size_t nb12 = src1->nb[2];
  6012. const size_t nb13 = src1->nb[3];
  6013. const size_t nb0 = dst->nb[0];
  6014. const size_t nb1 = dst->nb[1];
  6015. const size_t nb2 = dst->nb[2];
  6016. const size_t nb3 = dst->nb[3];
  6017. const int ith = params->ith;
  6018. const int nth = params->nth;
  6019. const enum ggml_type type = src0->type;
  6020. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6021. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6022. // we don't support permuted src0 or src1
  6023. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6024. GGML_ASSERT(nb10 == sizeof(float));
  6025. // dst cannot be transposed or permuted
  6026. GGML_ASSERT(nb0 <= nb1);
  6027. GGML_ASSERT(nb1 <= nb2);
  6028. GGML_ASSERT(nb2 <= nb3);
  6029. GGML_ASSERT(ggml_is_quantized(src0->type));
  6030. GGML_ASSERT(dst->type == src0->type);
  6031. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6032. // rows per thread
  6033. const int dr = (nr + nth - 1)/nth;
  6034. // row range for this thread
  6035. const int ir0 = dr*ith;
  6036. const int ir1 = MIN(ir0 + dr, nr);
  6037. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6038. for (int ir = ir0; ir < ir1; ++ir) {
  6039. // src0 indices
  6040. const int i03 = ir/(ne02*ne01);
  6041. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6042. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6043. // src1 and dst are same shape as src0 => same indices
  6044. const int i13 = i03;
  6045. const int i12 = i02;
  6046. const int i11 = i01;
  6047. const int i3 = i03;
  6048. const int i2 = i02;
  6049. const int i1 = i01;
  6050. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6051. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6052. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6053. assert(ne00 % 32 == 0);
  6054. // unquantize row from src0 to temp buffer
  6055. dequantize_row_q(src0_row, wdata, ne00);
  6056. // add src1
  6057. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6058. // quantize row to dst
  6059. quantize_row_q(wdata, dst_row, ne00);
  6060. }
  6061. }
  6062. static void ggml_compute_forward_add(
  6063. const struct ggml_compute_params * params,
  6064. const struct ggml_tensor * src0,
  6065. const struct ggml_tensor * src1,
  6066. struct ggml_tensor * dst) {
  6067. switch (src0->type) {
  6068. case GGML_TYPE_F32:
  6069. {
  6070. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6071. } break;
  6072. case GGML_TYPE_F16:
  6073. {
  6074. if (src1->type == GGML_TYPE_F16) {
  6075. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6076. }
  6077. else if (src1->type == GGML_TYPE_F32) {
  6078. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6079. }
  6080. else {
  6081. GGML_ASSERT(false);
  6082. }
  6083. } break;
  6084. case GGML_TYPE_Q4_0:
  6085. case GGML_TYPE_Q4_1:
  6086. case GGML_TYPE_Q5_0:
  6087. case GGML_TYPE_Q5_1:
  6088. case GGML_TYPE_Q8_0:
  6089. {
  6090. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6091. } break;
  6092. default:
  6093. {
  6094. GGML_ASSERT(false);
  6095. } break;
  6096. }
  6097. }
  6098. // ggml_compute_forward_add1
  6099. static void ggml_compute_forward_add1_f32(
  6100. const struct ggml_compute_params * params,
  6101. const struct ggml_tensor * src0,
  6102. const struct ggml_tensor * src1,
  6103. struct ggml_tensor * dst) {
  6104. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6105. GGML_ASSERT(ggml_is_scalar(src1));
  6106. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6107. return;
  6108. }
  6109. const int ith = params->ith;
  6110. const int nth = params->nth;
  6111. const int nr = ggml_nrows(src0);
  6112. const int64_t ne0 = src0->ne[0];
  6113. const int64_t ne1 = src0->ne[1];
  6114. const int64_t ne2 = src0->ne[2];
  6115. const size_t nb00 = src0->nb[0];
  6116. const size_t nb01 = src0->nb[1];
  6117. const size_t nb02 = src0->nb[2];
  6118. const size_t nb03 = src0->nb[3];
  6119. const size_t nb0 = dst->nb[0];
  6120. const size_t nb1 = dst->nb[1];
  6121. const size_t nb2 = dst->nb[2];
  6122. const size_t nb3 = dst->nb[3];
  6123. GGML_ASSERT( nb0 == sizeof(float));
  6124. GGML_ASSERT(nb00 == sizeof(float));
  6125. // rows per thread
  6126. const int dr = (nr + nth - 1)/nth;
  6127. // row range for this thread
  6128. const int ir0 = dr*ith;
  6129. const int ir1 = MIN(ir0 + dr, nr);
  6130. for (int ir = ir0; ir < ir1; ++ir) {
  6131. // src0 and dst are same shape => same indices
  6132. const int i3 = ir/(ne2*ne1);
  6133. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6134. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6135. #ifdef GGML_USE_ACCELERATE
  6136. UNUSED(ggml_vec_add1_f32);
  6137. vDSP_vadd(
  6138. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6139. (float *) ((char *) src1->data), 0,
  6140. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6141. ne0);
  6142. #else
  6143. ggml_vec_add1_f32(ne0,
  6144. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6145. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6146. *(float *) src1->data);
  6147. #endif
  6148. }
  6149. }
  6150. static void ggml_compute_forward_add1_f16_f32(
  6151. const struct ggml_compute_params * params,
  6152. const struct ggml_tensor * src0,
  6153. const struct ggml_tensor * src1,
  6154. struct ggml_tensor * dst) {
  6155. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6156. GGML_ASSERT(ggml_is_scalar(src1));
  6157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6158. return;
  6159. }
  6160. // scalar to add
  6161. const float v = *(float *) src1->data;
  6162. const int ith = params->ith;
  6163. const int nth = params->nth;
  6164. const int nr = ggml_nrows(src0);
  6165. const int64_t ne0 = src0->ne[0];
  6166. const int64_t ne1 = src0->ne[1];
  6167. const int64_t ne2 = src0->ne[2];
  6168. const size_t nb00 = src0->nb[0];
  6169. const size_t nb01 = src0->nb[1];
  6170. const size_t nb02 = src0->nb[2];
  6171. const size_t nb03 = src0->nb[3];
  6172. const size_t nb0 = dst->nb[0];
  6173. const size_t nb1 = dst->nb[1];
  6174. const size_t nb2 = dst->nb[2];
  6175. const size_t nb3 = dst->nb[3];
  6176. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6177. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6178. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6179. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6180. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6181. // rows per thread
  6182. const int dr = (nr + nth - 1)/nth;
  6183. // row range for this thread
  6184. const int ir0 = dr*ith;
  6185. const int ir1 = MIN(ir0 + dr, nr);
  6186. for (int ir = ir0; ir < ir1; ++ir) {
  6187. // src0 and dst are same shape => same indices
  6188. const int i3 = ir/(ne2*ne1);
  6189. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6190. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6191. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6192. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6193. for (int i = 0; i < ne0; i++) {
  6194. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6195. }
  6196. }
  6197. }
  6198. static void ggml_compute_forward_add1_f16_f16(
  6199. const struct ggml_compute_params * params,
  6200. const struct ggml_tensor * src0,
  6201. const struct ggml_tensor * src1,
  6202. struct ggml_tensor * dst) {
  6203. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6204. GGML_ASSERT(ggml_is_scalar(src1));
  6205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6206. return;
  6207. }
  6208. // scalar to add
  6209. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6210. const int ith = params->ith;
  6211. const int nth = params->nth;
  6212. const int nr = ggml_nrows(src0);
  6213. const int64_t ne0 = src0->ne[0];
  6214. const int64_t ne1 = src0->ne[1];
  6215. const int64_t ne2 = src0->ne[2];
  6216. const size_t nb00 = src0->nb[0];
  6217. const size_t nb01 = src0->nb[1];
  6218. const size_t nb02 = src0->nb[2];
  6219. const size_t nb03 = src0->nb[3];
  6220. const size_t nb0 = dst->nb[0];
  6221. const size_t nb1 = dst->nb[1];
  6222. const size_t nb2 = dst->nb[2];
  6223. const size_t nb3 = dst->nb[3];
  6224. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6225. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6226. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6227. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6228. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6229. // rows per thread
  6230. const int dr = (nr + nth - 1)/nth;
  6231. // row range for this thread
  6232. const int ir0 = dr*ith;
  6233. const int ir1 = MIN(ir0 + dr, nr);
  6234. for (int ir = ir0; ir < ir1; ++ir) {
  6235. // src0 and dst are same shape => same indices
  6236. const int i3 = ir/(ne2*ne1);
  6237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6239. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6240. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6241. for (int i = 0; i < ne0; i++) {
  6242. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6243. }
  6244. }
  6245. }
  6246. static void ggml_compute_forward_add1_q_f32(
  6247. const struct ggml_compute_params * params,
  6248. const struct ggml_tensor * src0,
  6249. const struct ggml_tensor * src1,
  6250. struct ggml_tensor * dst) {
  6251. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6252. GGML_ASSERT(ggml_is_scalar(src1));
  6253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6254. return;
  6255. }
  6256. // scalar to add
  6257. const float v = *(float *) src1->data;
  6258. const int ith = params->ith;
  6259. const int nth = params->nth;
  6260. const int nr = ggml_nrows(src0);
  6261. const int64_t ne0 = src0->ne[0];
  6262. const int64_t ne1 = src0->ne[1];
  6263. const int64_t ne2 = src0->ne[2];
  6264. const size_t nb00 = src0->nb[0];
  6265. const size_t nb01 = src0->nb[1];
  6266. const size_t nb02 = src0->nb[2];
  6267. const size_t nb03 = src0->nb[3];
  6268. const size_t nb0 = dst->nb[0];
  6269. const size_t nb1 = dst->nb[1];
  6270. const size_t nb2 = dst->nb[2];
  6271. const size_t nb3 = dst->nb[3];
  6272. const enum ggml_type type = src0->type;
  6273. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6274. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6275. // we don't support permuted src0
  6276. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6277. // dst cannot be transposed or permuted
  6278. GGML_ASSERT(nb0 <= nb1);
  6279. GGML_ASSERT(nb1 <= nb2);
  6280. GGML_ASSERT(nb2 <= nb3);
  6281. GGML_ASSERT(ggml_is_quantized(src0->type));
  6282. GGML_ASSERT(dst->type == src0->type);
  6283. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6284. // rows per thread
  6285. const int dr = (nr + nth - 1)/nth;
  6286. // row range for this thread
  6287. const int ir0 = dr*ith;
  6288. const int ir1 = MIN(ir0 + dr, nr);
  6289. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6290. for (int ir = ir0; ir < ir1; ++ir) {
  6291. // src0 and dst are same shape => same indices
  6292. const int i3 = ir/(ne2*ne1);
  6293. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6294. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6295. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6296. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6297. assert(ne0 % 32 == 0);
  6298. // unquantize row from src0 to temp buffer
  6299. dequantize_row_q(src0_row, wdata, ne0);
  6300. // add src1
  6301. ggml_vec_acc1_f32(ne0, wdata, v);
  6302. // quantize row to dst
  6303. quantize_row_q(wdata, dst_row, ne0);
  6304. }
  6305. }
  6306. static void ggml_compute_forward_add1(
  6307. const struct ggml_compute_params * params,
  6308. const struct ggml_tensor * src0,
  6309. const struct ggml_tensor * src1,
  6310. struct ggml_tensor * dst) {
  6311. switch (src0->type) {
  6312. case GGML_TYPE_F32:
  6313. {
  6314. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6315. } break;
  6316. case GGML_TYPE_F16:
  6317. {
  6318. if (src1->type == GGML_TYPE_F16) {
  6319. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6320. }
  6321. else if (src1->type == GGML_TYPE_F32) {
  6322. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6323. }
  6324. else {
  6325. GGML_ASSERT(false);
  6326. }
  6327. } break;
  6328. case GGML_TYPE_Q4_0:
  6329. case GGML_TYPE_Q4_1:
  6330. case GGML_TYPE_Q5_0:
  6331. case GGML_TYPE_Q5_1:
  6332. case GGML_TYPE_Q8_0:
  6333. case GGML_TYPE_Q8_1:
  6334. {
  6335. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6336. } break;
  6337. default:
  6338. {
  6339. GGML_ASSERT(false);
  6340. } break;
  6341. }
  6342. }
  6343. // ggml_compute_forward_acc
  6344. static void ggml_compute_forward_acc_f32(
  6345. const struct ggml_compute_params * params,
  6346. const struct ggml_tensor * src0,
  6347. const struct ggml_tensor * src1,
  6348. const struct ggml_tensor * opt0,
  6349. struct ggml_tensor * dst) {
  6350. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6351. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6352. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6353. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6354. // view src0 and dst with these strides and data offset inbytes during acc
  6355. // nb0 is implicitely element_size because src0 and dst are contiguous
  6356. size_t nb1 = ((int32_t *) opt0->data)[0];
  6357. size_t nb2 = ((int32_t *) opt0->data)[1];
  6358. size_t nb3 = ((int32_t *) opt0->data)[2];
  6359. size_t offset = ((int32_t *) opt0->data)[3];
  6360. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6361. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6362. // memcpy needs to be synchronized across threads to avoid race conditions.
  6363. // => do it in INIT phase
  6364. memcpy(
  6365. ((char *) dst->data),
  6366. ((char *) src0->data),
  6367. ggml_nbytes(dst));
  6368. }
  6369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6370. return;
  6371. }
  6372. const int ith = params->ith;
  6373. const int nth = params->nth;
  6374. const int nr = ggml_nrows(src1);
  6375. const int nc = src1->ne[0];
  6376. const int64_t ne10 = src1->ne[0];
  6377. const int64_t ne11 = src1->ne[1];
  6378. const int64_t ne12 = src1->ne[2];
  6379. const int64_t ne13 = src1->ne[3];
  6380. const size_t nb10 = src1->nb[0];
  6381. const size_t nb11 = src1->nb[1];
  6382. const size_t nb12 = src1->nb[2];
  6383. const size_t nb13 = src1->nb[3];
  6384. // src0 and dst as viewed during acc
  6385. const size_t nb0 = ggml_element_size(src0);
  6386. const size_t nb00 = nb0;
  6387. const size_t nb01 = nb1;
  6388. const size_t nb02 = nb2;
  6389. const size_t nb03 = nb3;
  6390. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6391. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6392. GGML_ASSERT(nb10 == sizeof(float));
  6393. // rows per thread
  6394. const int dr = (nr + nth - 1)/nth;
  6395. // row range for this thread
  6396. const int ir0 = dr*ith;
  6397. const int ir1 = MIN(ir0 + dr, nr);
  6398. for (int ir = ir0; ir < ir1; ++ir) {
  6399. // src0 and dst are viewed with shape of src1 and offset
  6400. // => same indices
  6401. const int i3 = ir/(ne12*ne11);
  6402. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6403. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6404. #ifdef GGML_USE_ACCELERATE
  6405. vDSP_vadd(
  6406. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6407. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6408. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6409. #else
  6410. ggml_vec_add_f32(nc,
  6411. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6412. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6413. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6414. #endif
  6415. }
  6416. }
  6417. static void ggml_compute_forward_acc(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. const struct ggml_tensor * src1,
  6421. const struct ggml_tensor * opt0,
  6422. struct ggml_tensor * dst) {
  6423. switch (src0->type) {
  6424. case GGML_TYPE_F32:
  6425. {
  6426. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6427. } break;
  6428. case GGML_TYPE_F16:
  6429. case GGML_TYPE_Q4_0:
  6430. case GGML_TYPE_Q4_1:
  6431. case GGML_TYPE_Q5_0:
  6432. case GGML_TYPE_Q5_1:
  6433. case GGML_TYPE_Q8_0:
  6434. case GGML_TYPE_Q8_1:
  6435. default:
  6436. {
  6437. GGML_ASSERT(false);
  6438. } break;
  6439. }
  6440. }
  6441. // ggml_compute_forward_sub
  6442. static void ggml_compute_forward_sub_f32(
  6443. const struct ggml_compute_params * params,
  6444. const struct ggml_tensor * src0,
  6445. const struct ggml_tensor * src1,
  6446. struct ggml_tensor * dst) {
  6447. assert(params->ith == 0);
  6448. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6450. return;
  6451. }
  6452. const int nr = ggml_nrows(src0);
  6453. const int64_t ne0 = src0->ne[0];
  6454. const int64_t ne1 = src0->ne[1];
  6455. const int64_t ne2 = src0->ne[2];
  6456. const size_t nb00 = src0->nb[0];
  6457. const size_t nb01 = src0->nb[1];
  6458. const size_t nb02 = src0->nb[2];
  6459. const size_t nb03 = src0->nb[3];
  6460. const size_t nb10 = src1->nb[0];
  6461. const size_t nb11 = src1->nb[1];
  6462. const size_t nb12 = src1->nb[2];
  6463. const size_t nb13 = src1->nb[3];
  6464. const size_t nb0 = dst->nb[0];
  6465. const size_t nb1 = dst->nb[1];
  6466. const size_t nb2 = dst->nb[2];
  6467. const size_t nb3 = dst->nb[3];
  6468. GGML_ASSERT( nb0 == sizeof(float));
  6469. GGML_ASSERT(nb00 == sizeof(float));
  6470. if (nb10 == sizeof(float)) {
  6471. for (int ir = 0; ir < nr; ++ir) {
  6472. // src0, src1 and dst are same shape => same indices
  6473. const int i3 = ir/(ne2*ne1);
  6474. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6475. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6476. #ifdef GGML_USE_ACCELERATE
  6477. vDSP_vsub(
  6478. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6479. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6480. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6481. ne0);
  6482. #else
  6483. ggml_vec_sub_f32(ne0,
  6484. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6485. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6486. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6487. #endif
  6488. // }
  6489. // }
  6490. }
  6491. } else {
  6492. // src1 is not contiguous
  6493. for (int ir = 0; ir < nr; ++ir) {
  6494. // src0, src1 and dst are same shape => same indices
  6495. const int i3 = ir/(ne2*ne1);
  6496. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6497. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6498. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6499. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6500. for (int i0 = 0; i0 < ne0; i0++) {
  6501. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6502. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6503. }
  6504. }
  6505. }
  6506. }
  6507. static void ggml_compute_forward_sub(
  6508. const struct ggml_compute_params * params,
  6509. const struct ggml_tensor * src0,
  6510. const struct ggml_tensor * src1,
  6511. struct ggml_tensor * dst) {
  6512. switch (src0->type) {
  6513. case GGML_TYPE_F32:
  6514. {
  6515. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6516. } break;
  6517. default:
  6518. {
  6519. GGML_ASSERT(false);
  6520. } break;
  6521. }
  6522. }
  6523. // ggml_compute_forward_mul
  6524. static void ggml_compute_forward_mul_f32(
  6525. const struct ggml_compute_params * params,
  6526. const struct ggml_tensor * src0,
  6527. const struct ggml_tensor * src1,
  6528. struct ggml_tensor * dst) {
  6529. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6530. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6531. return;
  6532. }
  6533. const int ith = params->ith;
  6534. const int nth = params->nth;
  6535. #ifdef GGML_USE_CUBLAS
  6536. if (src1->backend == GGML_BACKEND_CUDA) {
  6537. if (ith == 0) {
  6538. ggml_cuda_mul(src0, src1, dst);
  6539. }
  6540. return;
  6541. }
  6542. #endif
  6543. const int64_t nr = ggml_nrows(src0);
  6544. const int64_t ne00 = src0->ne[0];
  6545. const int64_t ne01 = src0->ne[1];
  6546. const int64_t ne02 = src0->ne[2];
  6547. const int64_t ne10 = src1->ne[0];
  6548. const int64_t ne11 = src1->ne[1];
  6549. const int64_t ne12 = src1->ne[2];
  6550. const int64_t ne13 = src1->ne[3];
  6551. const size_t nb00 = src0->nb[0];
  6552. const size_t nb01 = src0->nb[1];
  6553. const size_t nb02 = src0->nb[2];
  6554. const size_t nb03 = src0->nb[3];
  6555. const size_t nb10 = src1->nb[0];
  6556. const size_t nb11 = src1->nb[1];
  6557. const size_t nb12 = src1->nb[2];
  6558. const size_t nb13 = src1->nb[3];
  6559. const size_t nb0 = dst->nb[0];
  6560. const size_t nb1 = dst->nb[1];
  6561. const size_t nb2 = dst->nb[2];
  6562. const size_t nb3 = dst->nb[3];
  6563. GGML_ASSERT( nb0 == sizeof(float));
  6564. GGML_ASSERT(nb00 == sizeof(float));
  6565. GGML_ASSERT(ne00 == ne10);
  6566. if (nb10 == sizeof(float)) {
  6567. for (int64_t ir = ith; ir < nr; ir += nth) {
  6568. // src0 and dst are same shape => same indices
  6569. const int64_t i03 = ir/(ne02*ne01);
  6570. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6571. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6572. const int64_t i13 = i03 % ne13;
  6573. const int64_t i12 = i02 % ne12;
  6574. const int64_t i11 = i01 % ne11;
  6575. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6576. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6577. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6578. #ifdef GGML_USE_ACCELERATE
  6579. UNUSED(ggml_vec_mul_f32);
  6580. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6581. #else
  6582. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6583. #endif
  6584. // }
  6585. // }
  6586. }
  6587. } else {
  6588. // src1 is not contiguous
  6589. for (int64_t ir = ith; ir < nr; ir += nth) {
  6590. // src0 and dst are same shape => same indices
  6591. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6592. const int64_t i03 = ir/(ne02*ne01);
  6593. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6594. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6595. const int64_t i13 = i03 % ne13;
  6596. const int64_t i12 = i02 % ne12;
  6597. const int64_t i11 = i01 % ne11;
  6598. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6599. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6600. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6601. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6602. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6603. }
  6604. }
  6605. }
  6606. }
  6607. static void ggml_compute_forward_mul(
  6608. const struct ggml_compute_params * params,
  6609. const struct ggml_tensor * src0,
  6610. const struct ggml_tensor * src1,
  6611. struct ggml_tensor * dst) {
  6612. switch (src0->type) {
  6613. case GGML_TYPE_F32:
  6614. {
  6615. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6616. } break;
  6617. default:
  6618. {
  6619. GGML_ASSERT(false);
  6620. } break;
  6621. }
  6622. }
  6623. // ggml_compute_forward_div
  6624. static void ggml_compute_forward_div_f32(
  6625. const struct ggml_compute_params * params,
  6626. const struct ggml_tensor * src0,
  6627. const struct ggml_tensor * src1,
  6628. struct ggml_tensor * dst) {
  6629. assert(params->ith == 0);
  6630. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6632. return;
  6633. }
  6634. const int nr = ggml_nrows(src0);
  6635. const int64_t ne0 = src0->ne[0];
  6636. const int64_t ne1 = src0->ne[1];
  6637. const int64_t ne2 = src0->ne[2];
  6638. const size_t nb00 = src0->nb[0];
  6639. const size_t nb01 = src0->nb[1];
  6640. const size_t nb02 = src0->nb[2];
  6641. const size_t nb03 = src0->nb[3];
  6642. const size_t nb10 = src1->nb[0];
  6643. const size_t nb11 = src1->nb[1];
  6644. const size_t nb12 = src1->nb[2];
  6645. const size_t nb13 = src1->nb[3];
  6646. const size_t nb0 = dst->nb[0];
  6647. const size_t nb1 = dst->nb[1];
  6648. const size_t nb2 = dst->nb[2];
  6649. const size_t nb3 = dst->nb[3];
  6650. GGML_ASSERT( nb0 == sizeof(float));
  6651. GGML_ASSERT(nb00 == sizeof(float));
  6652. if (nb10 == sizeof(float)) {
  6653. for (int ir = 0; ir < nr; ++ir) {
  6654. // src0, src1 and dst are same shape => same indices
  6655. const int i3 = ir/(ne2*ne1);
  6656. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6657. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6658. #ifdef GGML_USE_ACCELERATE
  6659. vDSP_vdiv(
  6660. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6661. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6662. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6663. ne0);
  6664. #else
  6665. ggml_vec_div_f32(ne0,
  6666. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6667. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6668. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6669. #endif
  6670. // }
  6671. // }
  6672. }
  6673. } else {
  6674. // src1 is not contiguous
  6675. for (int ir = 0; ir < nr; ++ir) {
  6676. // src0, src1 and dst are same shape => same indices
  6677. const int i3 = ir/(ne2*ne1);
  6678. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6679. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6680. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6681. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6682. for (int i0 = 0; i0 < ne0; i0++) {
  6683. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6684. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6685. }
  6686. }
  6687. }
  6688. }
  6689. static void ggml_compute_forward_div(
  6690. const struct ggml_compute_params * params,
  6691. const struct ggml_tensor * src0,
  6692. const struct ggml_tensor * src1,
  6693. struct ggml_tensor * dst) {
  6694. switch (src0->type) {
  6695. case GGML_TYPE_F32:
  6696. {
  6697. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6698. } break;
  6699. default:
  6700. {
  6701. GGML_ASSERT(false);
  6702. } break;
  6703. }
  6704. }
  6705. // ggml_compute_forward_sqr
  6706. static void ggml_compute_forward_sqr_f32(
  6707. const struct ggml_compute_params * params,
  6708. const struct ggml_tensor * src0,
  6709. struct ggml_tensor * dst) {
  6710. assert(params->ith == 0);
  6711. assert(ggml_are_same_shape(src0, dst));
  6712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6713. return;
  6714. }
  6715. const int n = ggml_nrows(src0);
  6716. const int nc = src0->ne[0];
  6717. assert( dst->nb[0] == sizeof(float));
  6718. assert(src0->nb[0] == sizeof(float));
  6719. for (int i = 0; i < n; i++) {
  6720. ggml_vec_sqr_f32(nc,
  6721. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6722. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6723. }
  6724. }
  6725. static void ggml_compute_forward_sqr(
  6726. const struct ggml_compute_params * params,
  6727. const struct ggml_tensor * src0,
  6728. struct ggml_tensor * dst) {
  6729. switch (src0->type) {
  6730. case GGML_TYPE_F32:
  6731. {
  6732. ggml_compute_forward_sqr_f32(params, src0, dst);
  6733. } break;
  6734. default:
  6735. {
  6736. GGML_ASSERT(false);
  6737. } break;
  6738. }
  6739. }
  6740. // ggml_compute_forward_sqrt
  6741. static void ggml_compute_forward_sqrt_f32(
  6742. const struct ggml_compute_params * params,
  6743. const struct ggml_tensor * src0,
  6744. struct ggml_tensor * dst) {
  6745. assert(params->ith == 0);
  6746. assert(ggml_are_same_shape(src0, dst));
  6747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6748. return;
  6749. }
  6750. const int n = ggml_nrows(src0);
  6751. const int nc = src0->ne[0];
  6752. assert( dst->nb[0] == sizeof(float));
  6753. assert(src0->nb[0] == sizeof(float));
  6754. for (int i = 0; i < n; i++) {
  6755. ggml_vec_sqrt_f32(nc,
  6756. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6757. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6758. }
  6759. }
  6760. static void ggml_compute_forward_sqrt(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. struct ggml_tensor * dst) {
  6764. switch (src0->type) {
  6765. case GGML_TYPE_F32:
  6766. {
  6767. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6768. } break;
  6769. default:
  6770. {
  6771. GGML_ASSERT(false);
  6772. } break;
  6773. }
  6774. }
  6775. // ggml_compute_forward_log
  6776. static void ggml_compute_forward_log_f32(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. struct ggml_tensor * dst) {
  6780. GGML_ASSERT(params->ith == 0);
  6781. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6783. return;
  6784. }
  6785. const int n = ggml_nrows(src0);
  6786. const int nc = src0->ne[0];
  6787. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6788. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6789. for (int i = 0; i < n; i++) {
  6790. ggml_vec_log_f32(nc,
  6791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6793. }
  6794. }
  6795. static void ggml_compute_forward_log(
  6796. const struct ggml_compute_params * params,
  6797. const struct ggml_tensor * src0,
  6798. struct ggml_tensor * dst) {
  6799. switch (src0->type) {
  6800. case GGML_TYPE_F32:
  6801. {
  6802. ggml_compute_forward_log_f32(params, src0, dst);
  6803. } break;
  6804. default:
  6805. {
  6806. GGML_ASSERT(false);
  6807. } break;
  6808. }
  6809. }
  6810. // ggml_compute_forward_sum
  6811. static void ggml_compute_forward_sum_f32(
  6812. const struct ggml_compute_params * params,
  6813. const struct ggml_tensor * src0,
  6814. struct ggml_tensor * dst) {
  6815. assert(params->ith == 0);
  6816. assert(ggml_is_scalar(dst));
  6817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6818. return;
  6819. }
  6820. assert(ggml_is_scalar(dst));
  6821. assert(src0->nb[0] == sizeof(float));
  6822. const int64_t ne00 = src0->ne[0];
  6823. const int64_t ne01 = src0->ne[1];
  6824. const int64_t ne02 = src0->ne[2];
  6825. const int64_t ne03 = src0->ne[3];
  6826. const size_t nb01 = src0->nb[1];
  6827. const size_t nb02 = src0->nb[2];
  6828. const size_t nb03 = src0->nb[3];
  6829. ggml_float sum = 0;
  6830. ggml_float row_sum = 0;
  6831. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6832. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6833. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6834. ggml_vec_sum_ggf(ne00,
  6835. &row_sum,
  6836. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6837. sum += row_sum;
  6838. }
  6839. }
  6840. }
  6841. ((float *) dst->data)[0] = sum;
  6842. }
  6843. static void ggml_compute_forward_sum(
  6844. const struct ggml_compute_params * params,
  6845. const struct ggml_tensor * src0,
  6846. struct ggml_tensor * dst) {
  6847. switch (src0->type) {
  6848. case GGML_TYPE_F32:
  6849. {
  6850. ggml_compute_forward_sum_f32(params, src0, dst);
  6851. } break;
  6852. default:
  6853. {
  6854. GGML_ASSERT(false);
  6855. } break;
  6856. }
  6857. }
  6858. // ggml_compute_forward_sum_rows
  6859. static void ggml_compute_forward_sum_rows_f32(
  6860. const struct ggml_compute_params * params,
  6861. const struct ggml_tensor * src0,
  6862. struct ggml_tensor * dst) {
  6863. GGML_ASSERT(params->ith == 0);
  6864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6865. return;
  6866. }
  6867. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6868. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6869. const int64_t ne00 = src0->ne[0];
  6870. const int64_t ne01 = src0->ne[1];
  6871. const int64_t ne02 = src0->ne[2];
  6872. const int64_t ne03 = src0->ne[3];
  6873. const int64_t ne0 = dst->ne[0];
  6874. const int64_t ne1 = dst->ne[1];
  6875. const int64_t ne2 = dst->ne[2];
  6876. const int64_t ne3 = dst->ne[3];
  6877. GGML_ASSERT(ne0 == 1);
  6878. GGML_ASSERT(ne1 == ne01);
  6879. GGML_ASSERT(ne2 == ne02);
  6880. GGML_ASSERT(ne3 == ne03);
  6881. const size_t nb01 = src0->nb[1];
  6882. const size_t nb02 = src0->nb[2];
  6883. const size_t nb03 = src0->nb[3];
  6884. const size_t nb1 = dst->nb[1];
  6885. const size_t nb2 = dst->nb[2];
  6886. const size_t nb3 = dst->nb[3];
  6887. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6888. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6889. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6890. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6891. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6892. float row_sum = 0;
  6893. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6894. dst_row[0] = row_sum;
  6895. }
  6896. }
  6897. }
  6898. }
  6899. static void ggml_compute_forward_sum_rows(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. struct ggml_tensor * dst) {
  6903. switch (src0->type) {
  6904. case GGML_TYPE_F32:
  6905. {
  6906. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6907. } break;
  6908. default:
  6909. {
  6910. GGML_ASSERT(false);
  6911. } break;
  6912. }
  6913. }
  6914. // ggml_compute_forward_mean
  6915. static void ggml_compute_forward_mean_f32(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. assert(params->ith == 0);
  6920. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6921. return;
  6922. }
  6923. assert(src0->nb[0] == sizeof(float));
  6924. const int64_t ne00 = src0->ne[0];
  6925. const int64_t ne01 = src0->ne[1];
  6926. const int64_t ne02 = src0->ne[2];
  6927. const int64_t ne03 = src0->ne[3];
  6928. const size_t nb01 = src0->nb[1];
  6929. const size_t nb02 = src0->nb[2];
  6930. const size_t nb03 = src0->nb[3];
  6931. const int64_t ne0 = dst->ne[0];
  6932. const int64_t ne1 = dst->ne[1];
  6933. const int64_t ne2 = dst->ne[2];
  6934. const int64_t ne3 = dst->ne[3];
  6935. assert(ne0 == 1);
  6936. assert(ne1 == ne01);
  6937. assert(ne2 == ne02);
  6938. assert(ne3 == ne03);
  6939. UNUSED(ne0);
  6940. UNUSED(ne1);
  6941. UNUSED(ne2);
  6942. UNUSED(ne3);
  6943. const size_t nb1 = dst->nb[1];
  6944. const size_t nb2 = dst->nb[2];
  6945. const size_t nb3 = dst->nb[3];
  6946. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6947. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6948. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6949. ggml_vec_sum_f32(ne00,
  6950. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6951. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6952. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6953. }
  6954. }
  6955. }
  6956. }
  6957. static void ggml_compute_forward_mean(
  6958. const struct ggml_compute_params * params,
  6959. const struct ggml_tensor * src0,
  6960. struct ggml_tensor * dst) {
  6961. switch (src0->type) {
  6962. case GGML_TYPE_F32:
  6963. {
  6964. ggml_compute_forward_mean_f32(params, src0, dst);
  6965. } break;
  6966. default:
  6967. {
  6968. GGML_ASSERT(false);
  6969. } break;
  6970. }
  6971. }
  6972. // ggml_compute_forward_repeat
  6973. static void ggml_compute_forward_repeat_f32(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. struct ggml_tensor * dst) {
  6977. GGML_ASSERT(params->ith == 0);
  6978. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6979. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6980. return;
  6981. }
  6982. const int64_t ne0 = dst->ne[0];
  6983. const int64_t ne1 = dst->ne[1];
  6984. const int64_t ne2 = dst->ne[2];
  6985. const int64_t ne3 = dst->ne[3];
  6986. const int64_t ne00 = src0->ne[0];
  6987. const int64_t ne01 = src0->ne[1];
  6988. const int64_t ne02 = src0->ne[2];
  6989. const int64_t ne03 = src0->ne[3];
  6990. const size_t nb0 = dst->nb[0];
  6991. const size_t nb1 = dst->nb[1];
  6992. const size_t nb2 = dst->nb[2];
  6993. const size_t nb3 = dst->nb[3];
  6994. const size_t nb00 = src0->nb[0];
  6995. const size_t nb01 = src0->nb[1];
  6996. const size_t nb02 = src0->nb[2];
  6997. const size_t nb03 = src0->nb[3];
  6998. // guaranteed to be an integer due to the check in ggml_can_repeat
  6999. const int nr0 = (int)(ne0/ne00);
  7000. const int nr1 = (int)(ne1/ne01);
  7001. const int nr2 = (int)(ne2/ne02);
  7002. const int nr3 = (int)(ne3/ne03);
  7003. // TODO: support for transposed / permuted tensors
  7004. GGML_ASSERT(nb0 == sizeof(float));
  7005. GGML_ASSERT(nb00 == sizeof(float));
  7006. // TODO: maybe this is not optimal?
  7007. for (int i3 = 0; i3 < nr3; i3++) {
  7008. for (int k3 = 0; k3 < ne03; k3++) {
  7009. for (int i2 = 0; i2 < nr2; i2++) {
  7010. for (int k2 = 0; k2 < ne02; k2++) {
  7011. for (int i1 = 0; i1 < nr1; i1++) {
  7012. for (int k1 = 0; k1 < ne01; k1++) {
  7013. for (int i0 = 0; i0 < nr0; i0++) {
  7014. ggml_vec_cpy_f32(ne00,
  7015. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7016. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7017. }
  7018. }
  7019. }
  7020. }
  7021. }
  7022. }
  7023. }
  7024. }
  7025. static void ggml_compute_forward_repeat(
  7026. const struct ggml_compute_params * params,
  7027. const struct ggml_tensor * src0,
  7028. struct ggml_tensor * dst) {
  7029. switch (src0->type) {
  7030. case GGML_TYPE_F32:
  7031. {
  7032. ggml_compute_forward_repeat_f32(params, src0, dst);
  7033. } break;
  7034. default:
  7035. {
  7036. GGML_ASSERT(false);
  7037. } break;
  7038. }
  7039. }
  7040. // ggml_compute_forward_abs
  7041. static void ggml_compute_forward_abs_f32(
  7042. const struct ggml_compute_params * params,
  7043. const struct ggml_tensor * src0,
  7044. struct ggml_tensor * dst) {
  7045. assert(params->ith == 0);
  7046. assert(ggml_are_same_shape(src0, dst));
  7047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7048. return;
  7049. }
  7050. const int n = ggml_nrows(src0);
  7051. const int nc = src0->ne[0];
  7052. assert(dst->nb[0] == sizeof(float));
  7053. assert(src0->nb[0] == sizeof(float));
  7054. for (int i = 0; i < n; i++) {
  7055. ggml_vec_abs_f32(nc,
  7056. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7057. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7058. }
  7059. }
  7060. static void ggml_compute_forward_abs(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. struct ggml_tensor * dst) {
  7064. switch (src0->type) {
  7065. case GGML_TYPE_F32:
  7066. {
  7067. ggml_compute_forward_abs_f32(params, src0, dst);
  7068. } break;
  7069. default:
  7070. {
  7071. GGML_ASSERT(false);
  7072. } break;
  7073. }
  7074. }
  7075. // ggml_compute_forward_sgn
  7076. static void ggml_compute_forward_sgn_f32(
  7077. const struct ggml_compute_params * params,
  7078. const struct ggml_tensor * src0,
  7079. struct ggml_tensor * dst) {
  7080. assert(params->ith == 0);
  7081. assert(ggml_are_same_shape(src0, dst));
  7082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7083. return;
  7084. }
  7085. const int n = ggml_nrows(src0);
  7086. const int nc = src0->ne[0];
  7087. assert(dst->nb[0] == sizeof(float));
  7088. assert(src0->nb[0] == sizeof(float));
  7089. for (int i = 0; i < n; i++) {
  7090. ggml_vec_sgn_f32(nc,
  7091. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7092. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7093. }
  7094. }
  7095. static void ggml_compute_forward_sgn(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * src0,
  7098. struct ggml_tensor * dst) {
  7099. switch (src0->type) {
  7100. case GGML_TYPE_F32:
  7101. {
  7102. ggml_compute_forward_sgn_f32(params, src0, dst);
  7103. } break;
  7104. default:
  7105. {
  7106. GGML_ASSERT(false);
  7107. } break;
  7108. }
  7109. }
  7110. // ggml_compute_forward_neg
  7111. static void ggml_compute_forward_neg_f32(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. struct ggml_tensor * dst) {
  7115. assert(params->ith == 0);
  7116. assert(ggml_are_same_shape(src0, dst));
  7117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7118. return;
  7119. }
  7120. const int n = ggml_nrows(src0);
  7121. const int nc = src0->ne[0];
  7122. assert(dst->nb[0] == sizeof(float));
  7123. assert(src0->nb[0] == sizeof(float));
  7124. for (int i = 0; i < n; i++) {
  7125. ggml_vec_neg_f32(nc,
  7126. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7127. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7128. }
  7129. }
  7130. static void ggml_compute_forward_neg(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. struct ggml_tensor * dst) {
  7134. switch (src0->type) {
  7135. case GGML_TYPE_F32:
  7136. {
  7137. ggml_compute_forward_neg_f32(params, src0, dst);
  7138. } break;
  7139. default:
  7140. {
  7141. GGML_ASSERT(false);
  7142. } break;
  7143. }
  7144. }
  7145. // ggml_compute_forward_step
  7146. static void ggml_compute_forward_step_f32(
  7147. const struct ggml_compute_params * params,
  7148. const struct ggml_tensor * src0,
  7149. struct ggml_tensor * dst) {
  7150. assert(params->ith == 0);
  7151. assert(ggml_are_same_shape(src0, dst));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. const int n = ggml_nrows(src0);
  7156. const int nc = src0->ne[0];
  7157. assert(dst->nb[0] == sizeof(float));
  7158. assert(src0->nb[0] == sizeof(float));
  7159. for (int i = 0; i < n; i++) {
  7160. ggml_vec_step_f32(nc,
  7161. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7162. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7163. }
  7164. }
  7165. static void ggml_compute_forward_step(
  7166. const struct ggml_compute_params * params,
  7167. const struct ggml_tensor * src0,
  7168. struct ggml_tensor * dst) {
  7169. switch (src0->type) {
  7170. case GGML_TYPE_F32:
  7171. {
  7172. ggml_compute_forward_step_f32(params, src0, dst);
  7173. } break;
  7174. default:
  7175. {
  7176. GGML_ASSERT(false);
  7177. } break;
  7178. }
  7179. }
  7180. // ggml_compute_forward_relu
  7181. static void ggml_compute_forward_relu_f32(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. struct ggml_tensor * dst) {
  7185. assert(params->ith == 0);
  7186. assert(ggml_are_same_shape(src0, dst));
  7187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7188. return;
  7189. }
  7190. const int n = ggml_nrows(src0);
  7191. const int nc = src0->ne[0];
  7192. assert(dst->nb[0] == sizeof(float));
  7193. assert(src0->nb[0] == sizeof(float));
  7194. for (int i = 0; i < n; i++) {
  7195. ggml_vec_relu_f32(nc,
  7196. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7197. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7198. }
  7199. }
  7200. static void ggml_compute_forward_relu(
  7201. const struct ggml_compute_params * params,
  7202. const struct ggml_tensor * src0,
  7203. struct ggml_tensor * dst) {
  7204. switch (src0->type) {
  7205. case GGML_TYPE_F32:
  7206. {
  7207. ggml_compute_forward_relu_f32(params, src0, dst);
  7208. } break;
  7209. default:
  7210. {
  7211. GGML_ASSERT(false);
  7212. } break;
  7213. }
  7214. }
  7215. // ggml_compute_forward_gelu
  7216. static void ggml_compute_forward_gelu_f32(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. struct ggml_tensor * dst) {
  7220. GGML_ASSERT(ggml_is_contiguous(src0));
  7221. GGML_ASSERT(ggml_is_contiguous(dst));
  7222. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. const int ith = params->ith;
  7227. const int nth = params->nth;
  7228. const int nc = src0->ne[0];
  7229. const int nr = ggml_nrows(src0);
  7230. // rows per thread
  7231. const int dr = (nr + nth - 1)/nth;
  7232. // row range for this thread
  7233. const int ir0 = dr*ith;
  7234. const int ir1 = MIN(ir0 + dr, nr);
  7235. for (int i1 = ir0; i1 < ir1; i1++) {
  7236. ggml_vec_gelu_f32(nc,
  7237. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7238. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7239. #ifndef NDEBUG
  7240. for (int k = 0; k < nc; k++) {
  7241. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7242. UNUSED(x);
  7243. assert(!isnan(x));
  7244. assert(!isinf(x));
  7245. }
  7246. #endif
  7247. }
  7248. }
  7249. static void ggml_compute_forward_gelu(
  7250. const struct ggml_compute_params * params,
  7251. const struct ggml_tensor * src0,
  7252. struct ggml_tensor * dst) {
  7253. switch (src0->type) {
  7254. case GGML_TYPE_F32:
  7255. {
  7256. ggml_compute_forward_gelu_f32(params, src0, dst);
  7257. } break;
  7258. default:
  7259. {
  7260. GGML_ASSERT(false);
  7261. } break;
  7262. }
  7263. //printf("XXXXXXXX gelu\n");
  7264. }
  7265. // ggml_compute_forward_silu
  7266. static void ggml_compute_forward_silu_f32(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. struct ggml_tensor * dst) {
  7270. GGML_ASSERT(ggml_is_contiguous(src0));
  7271. GGML_ASSERT(ggml_is_contiguous(dst));
  7272. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7274. return;
  7275. }
  7276. const int ith = params->ith;
  7277. const int nth = params->nth;
  7278. const int nc = src0->ne[0];
  7279. const int nr = ggml_nrows(src0);
  7280. // rows per thread
  7281. const int dr = (nr + nth - 1)/nth;
  7282. // row range for this thread
  7283. const int ir0 = dr*ith;
  7284. const int ir1 = MIN(ir0 + dr, nr);
  7285. for (int i1 = ir0; i1 < ir1; i1++) {
  7286. ggml_vec_silu_f32(nc,
  7287. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7288. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7289. #ifndef NDEBUG
  7290. for (int k = 0; k < nc; k++) {
  7291. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7292. UNUSED(x);
  7293. assert(!isnan(x));
  7294. assert(!isinf(x));
  7295. }
  7296. #endif
  7297. }
  7298. }
  7299. static void ggml_compute_forward_silu(
  7300. const struct ggml_compute_params * params,
  7301. const struct ggml_tensor * src0,
  7302. struct ggml_tensor * dst) {
  7303. switch (src0->type) {
  7304. case GGML_TYPE_F32:
  7305. {
  7306. ggml_compute_forward_silu_f32(params, src0, dst);
  7307. } break;
  7308. default:
  7309. {
  7310. GGML_ASSERT(false);
  7311. } break;
  7312. }
  7313. }
  7314. // ggml_compute_forward_silu_back
  7315. static void ggml_compute_forward_silu_back_f32(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. const struct ggml_tensor * grad,
  7319. struct ggml_tensor * dst) {
  7320. GGML_ASSERT(ggml_is_contiguous(grad));
  7321. GGML_ASSERT(ggml_is_contiguous(src0));
  7322. GGML_ASSERT(ggml_is_contiguous(dst));
  7323. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7324. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7325. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7326. return;
  7327. }
  7328. const int ith = params->ith;
  7329. const int nth = params->nth;
  7330. const int nc = src0->ne[0];
  7331. const int nr = ggml_nrows(src0);
  7332. // rows per thread
  7333. const int dr = (nr + nth - 1)/nth;
  7334. // row range for this thread
  7335. const int ir0 = dr*ith;
  7336. const int ir1 = MIN(ir0 + dr, nr);
  7337. for (int i1 = ir0; i1 < ir1; i1++) {
  7338. ggml_vec_silu_backward_f32(nc,
  7339. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7340. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7341. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7342. #ifndef NDEBUG
  7343. for (int k = 0; k < nc; k++) {
  7344. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7345. UNUSED(x);
  7346. assert(!isnan(x));
  7347. assert(!isinf(x));
  7348. }
  7349. #endif
  7350. }
  7351. }
  7352. static void ggml_compute_forward_silu_back(
  7353. const struct ggml_compute_params * params,
  7354. const struct ggml_tensor * src0,
  7355. const struct ggml_tensor * grad,
  7356. struct ggml_tensor * dst) {
  7357. switch (src0->type) {
  7358. case GGML_TYPE_F32:
  7359. {
  7360. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7361. } break;
  7362. default:
  7363. {
  7364. GGML_ASSERT(false);
  7365. } break;
  7366. }
  7367. }
  7368. // ggml_compute_forward_norm
  7369. static void ggml_compute_forward_norm_f32(
  7370. const struct ggml_compute_params * params,
  7371. const struct ggml_tensor * src0,
  7372. struct ggml_tensor * dst) {
  7373. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7375. return;
  7376. }
  7377. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7378. const int ith = params->ith;
  7379. const int nth = params->nth;
  7380. const int64_t ne00 = src0->ne[0];
  7381. const int64_t ne01 = src0->ne[1];
  7382. const int64_t ne02 = src0->ne[2];
  7383. const int64_t ne03 = src0->ne[3];
  7384. const size_t nb01 = src0->nb[1];
  7385. const size_t nb02 = src0->nb[2];
  7386. const size_t nb03 = src0->nb[3];
  7387. const size_t nb1 = dst->nb[1];
  7388. const size_t nb2 = dst->nb[2];
  7389. const size_t nb3 = dst->nb[3];
  7390. const float eps = 1e-5f; // TODO: make this a parameter
  7391. // TODO: optimize
  7392. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7394. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7395. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7396. ggml_float sum = 0.0;
  7397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7398. sum += (ggml_float)x[i00];
  7399. }
  7400. float mean = sum/ne00;
  7401. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7402. ggml_float sum2 = 0.0;
  7403. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7404. float v = x[i00] - mean;
  7405. y[i00] = v;
  7406. sum2 += (ggml_float)(v*v);
  7407. }
  7408. float variance = sum2/ne00;
  7409. const float scale = 1.0f/sqrtf(variance + eps);
  7410. ggml_vec_scale_f32(ne00, y, scale);
  7411. }
  7412. }
  7413. }
  7414. }
  7415. static void ggml_compute_forward_norm(
  7416. const struct ggml_compute_params * params,
  7417. const struct ggml_tensor * src0,
  7418. struct ggml_tensor * dst) {
  7419. switch (src0->type) {
  7420. case GGML_TYPE_F32:
  7421. {
  7422. ggml_compute_forward_norm_f32(params, src0, dst);
  7423. } break;
  7424. default:
  7425. {
  7426. GGML_ASSERT(false);
  7427. } break;
  7428. }
  7429. }
  7430. static void ggml_compute_forward_rms_norm_f32(
  7431. const struct ggml_compute_params * params,
  7432. const struct ggml_tensor * src0,
  7433. struct ggml_tensor * dst) {
  7434. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7436. return;
  7437. }
  7438. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7439. const int ith = params->ith;
  7440. const int nth = params->nth;
  7441. const int64_t ne00 = src0->ne[0];
  7442. const int64_t ne01 = src0->ne[1];
  7443. const int64_t ne02 = src0->ne[2];
  7444. const int64_t ne03 = src0->ne[3];
  7445. const size_t nb01 = src0->nb[1];
  7446. const size_t nb02 = src0->nb[2];
  7447. const size_t nb03 = src0->nb[3];
  7448. const size_t nb1 = dst->nb[1];
  7449. const size_t nb2 = dst->nb[2];
  7450. const size_t nb3 = dst->nb[3];
  7451. const float eps = 1e-6f; // TODO: make this a parameter
  7452. // TODO: optimize
  7453. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7454. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7455. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7456. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7457. ggml_float sum = 0.0;
  7458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7459. sum += (ggml_float)(x[i00] * x[i00]);
  7460. }
  7461. float mean = sum/ne00;
  7462. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7463. memcpy(y, x, ne00 * sizeof(float));
  7464. // for (int i00 = 0; i00 < ne00; i00++) {
  7465. // y[i00] = x[i00];
  7466. // }
  7467. const float scale = 1.0f/sqrtf(mean + eps);
  7468. ggml_vec_scale_f32(ne00, y, scale);
  7469. }
  7470. }
  7471. }
  7472. }
  7473. static void ggml_compute_forward_rms_norm(
  7474. const struct ggml_compute_params * params,
  7475. const struct ggml_tensor * src0,
  7476. struct ggml_tensor * dst) {
  7477. switch (src0->type) {
  7478. case GGML_TYPE_F32:
  7479. {
  7480. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7481. } break;
  7482. default:
  7483. {
  7484. GGML_ASSERT(false);
  7485. } break;
  7486. }
  7487. }
  7488. static void ggml_compute_forward_rms_norm_back_f32(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. const struct ggml_tensor * src1,
  7492. struct ggml_tensor * dst) {
  7493. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7495. return;
  7496. }
  7497. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7498. const int ith = params->ith;
  7499. const int nth = params->nth;
  7500. const int64_t ne00 = src0->ne[0];
  7501. const int64_t ne01 = src0->ne[1];
  7502. const int64_t ne02 = src0->ne[2];
  7503. const int64_t ne03 = src0->ne[3];
  7504. const size_t nb01 = src0->nb[1];
  7505. const size_t nb02 = src0->nb[2];
  7506. const size_t nb03 = src0->nb[3];
  7507. const size_t nb11 = src1->nb[1];
  7508. const size_t nb12 = src1->nb[2];
  7509. const size_t nb13 = src1->nb[3];
  7510. const size_t nb1 = dst->nb[1];
  7511. const size_t nb2 = dst->nb[2];
  7512. const size_t nb3 = dst->nb[3];
  7513. const float eps = 1e-6f; // TODO: make this a parameter
  7514. // TODO: optimize
  7515. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7516. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7517. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7518. // src1 is same shape as src0 => same indices
  7519. const int64_t i11 = i01;
  7520. const int64_t i12 = i02;
  7521. const int64_t i13 = i03;
  7522. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7523. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7524. ggml_float sum_xx = 0.0;
  7525. ggml_float sum_xdz = 0.0;
  7526. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7527. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7528. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7529. }
  7530. //const float mean = (float)(sum_xx)/ne00;
  7531. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7532. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7533. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7534. // we could cache rms from forward pass to improve performance.
  7535. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7536. //const float rms = sqrtf(mean_eps);
  7537. const float rrms = 1.0f / sqrtf(mean_eps);
  7538. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7539. {
  7540. // z = rms_norm(x)
  7541. //
  7542. // rms_norm(src0) =
  7543. // scale(
  7544. // src0,
  7545. // div(
  7546. // 1,
  7547. // sqrt(
  7548. // add(
  7549. // scale(
  7550. // sum(
  7551. // sqr(
  7552. // src0)),
  7553. // (1.0/N)),
  7554. // eps))));
  7555. // postorder:
  7556. // ## op args grad
  7557. // 00 param src0 grad[#00]
  7558. // 01 const 1
  7559. // 02 sqr (#00) grad[#02]
  7560. // 03 sum (#02) grad[#03]
  7561. // 04 const 1/N
  7562. // 05 scale (#03, #04) grad[#05]
  7563. // 06 const eps
  7564. // 07 add (#05, #06) grad[#07]
  7565. // 08 sqrt (#07) grad[#08]
  7566. // 09 div (#01,#08) grad[#09]
  7567. // 10 scale (#00,#09) grad[#10]
  7568. //
  7569. // backward pass, given grad[#10]
  7570. // #10: scale
  7571. // grad[#00] += scale(grad[#10],#09)
  7572. // grad[#09] += sum(mul(grad[#10],#00))
  7573. // #09: div
  7574. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7575. // #08: sqrt
  7576. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7577. // #07: add
  7578. // grad[#05] += grad[#07]
  7579. // #05: scale
  7580. // grad[#03] += scale(grad[#05],#04)
  7581. // #03: sum
  7582. // grad[#02] += repeat(grad[#03], #02)
  7583. // #02:
  7584. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7585. //
  7586. // substitute and simplify:
  7587. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7588. // grad[#02] = repeat(grad[#03], #02)
  7589. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7590. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7591. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7592. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7593. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7594. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7595. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7596. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7597. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7598. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7599. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7600. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7601. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7602. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7603. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7604. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7605. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7606. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7607. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7608. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7609. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7610. // a = b*c + d*e
  7611. // a = b*c*f/f + d*e*f/f
  7612. // a = (b*c*f + d*e*f)*(1/f)
  7613. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7614. // a = (b + d*e/c)*c
  7615. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7616. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7617. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7618. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7619. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7620. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7621. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7622. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7623. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7624. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7625. }
  7626. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7627. // post-order:
  7628. // dx := x
  7629. // dx := scale(dx,-mean_xdz/mean_eps)
  7630. // dx := add(dx, dz)
  7631. // dx := scale(dx, rrms)
  7632. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7633. ggml_vec_cpy_f32 (ne00, dx, x);
  7634. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7635. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7636. ggml_vec_acc_f32 (ne00, dx, dz);
  7637. ggml_vec_scale_f32(ne00, dx, rrms);
  7638. }
  7639. }
  7640. }
  7641. }
  7642. static void ggml_compute_forward_rms_norm_back(
  7643. const struct ggml_compute_params * params,
  7644. const struct ggml_tensor * src0,
  7645. const struct ggml_tensor * src1,
  7646. struct ggml_tensor * dst) {
  7647. switch (src0->type) {
  7648. case GGML_TYPE_F32:
  7649. {
  7650. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7651. } break;
  7652. default:
  7653. {
  7654. GGML_ASSERT(false);
  7655. } break;
  7656. }
  7657. }
  7658. // ggml_compute_forward_mul_mat
  7659. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7660. // helper function to determine if it is better to use BLAS or not
  7661. // for large matrices, BLAS is faster
  7662. static bool ggml_compute_forward_mul_mat_use_blas(
  7663. const struct ggml_tensor * src0,
  7664. const struct ggml_tensor * src1,
  7665. struct ggml_tensor * dst) {
  7666. //const int64_t ne00 = src0->ne[0];
  7667. //const int64_t ne01 = src0->ne[1];
  7668. const int64_t ne10 = src1->ne[0];
  7669. const int64_t ne0 = dst->ne[0];
  7670. const int64_t ne1 = dst->ne[1];
  7671. // TODO: find the optimal values for these
  7672. if (ggml_is_contiguous(src0) &&
  7673. ggml_is_contiguous(src1) &&
  7674. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7675. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7676. return true;
  7677. }
  7678. return false;
  7679. }
  7680. #endif
  7681. static void ggml_compute_forward_mul_mat_f32(
  7682. const struct ggml_compute_params * params,
  7683. const struct ggml_tensor * src0,
  7684. const struct ggml_tensor * src1,
  7685. struct ggml_tensor * dst) {
  7686. int64_t t0 = ggml_perf_time_us();
  7687. UNUSED(t0);
  7688. const int64_t ne00 = src0->ne[0];
  7689. const int64_t ne01 = src0->ne[1];
  7690. const int64_t ne02 = src0->ne[2];
  7691. const int64_t ne03 = src0->ne[3];
  7692. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7693. const int64_t ne10 = src1->ne[0];
  7694. #endif
  7695. const int64_t ne11 = src1->ne[1];
  7696. #ifndef NDEBUG
  7697. const int64_t ne12 = src1->ne[2];
  7698. const int64_t ne13 = src1->ne[3];
  7699. const int64_t ne0 = dst->ne[0];
  7700. const int64_t ne1 = dst->ne[1];
  7701. const int64_t ne2 = dst->ne[2];
  7702. const int64_t ne3 = dst->ne[3];
  7703. const int nb00 = src0->nb[0];
  7704. #endif
  7705. const int nb01 = src0->nb[1];
  7706. const int nb02 = src0->nb[2];
  7707. const int nb03 = src0->nb[3];
  7708. #ifndef NDEBUG
  7709. const int nb10 = src1->nb[0];
  7710. #endif
  7711. const int nb11 = src1->nb[1];
  7712. const int nb12 = src1->nb[2];
  7713. const int nb13 = src1->nb[3];
  7714. const int nb0 = dst->nb[0];
  7715. const int nb1 = dst->nb[1];
  7716. const int nb2 = dst->nb[2];
  7717. const int nb3 = dst->nb[3];
  7718. const int ith = params->ith;
  7719. const int nth = params->nth;
  7720. assert(ne02 == ne12);
  7721. assert(ne03 == ne13);
  7722. assert(ne2 == ne12);
  7723. assert(ne3 == ne13);
  7724. // we don't support permuted src0 or src1
  7725. assert(nb00 == sizeof(float));
  7726. assert(nb10 == sizeof(float));
  7727. // dst cannot be transposed or permuted
  7728. assert(nb0 == sizeof(float));
  7729. assert(nb0 <= nb1);
  7730. assert(nb1 <= nb2);
  7731. assert(nb2 <= nb3);
  7732. assert(ne0 == ne01);
  7733. assert(ne1 == ne11);
  7734. assert(ne2 == ne02);
  7735. assert(ne3 == ne03);
  7736. // nb01 >= nb00 - src0 is not transposed
  7737. // compute by src0 rows
  7738. #if defined(GGML_USE_CUBLAS)
  7739. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7740. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7741. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7742. }
  7743. return;
  7744. }
  7745. #elif defined(GGML_USE_CLBLAST)
  7746. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7747. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7748. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7749. }
  7750. return;
  7751. }
  7752. #endif
  7753. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7754. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7755. if (params->ith != 0) {
  7756. return;
  7757. }
  7758. if (params->type == GGML_TASK_INIT) {
  7759. return;
  7760. }
  7761. if (params->type == GGML_TASK_FINALIZE) {
  7762. return;
  7763. }
  7764. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7765. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7766. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7767. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7768. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7769. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7770. ne11, ne01, ne10,
  7771. 1.0f, y, ne10,
  7772. x, ne00,
  7773. 0.0f, d, ne01);
  7774. }
  7775. }
  7776. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7777. return;
  7778. }
  7779. #endif
  7780. if (params->type == GGML_TASK_INIT) {
  7781. return;
  7782. }
  7783. if (params->type == GGML_TASK_FINALIZE) {
  7784. return;
  7785. }
  7786. // parallelize by src0 rows using ggml_vec_dot_f32
  7787. // total rows in src0
  7788. const int nr = ne01*ne02*ne03;
  7789. // rows per thread
  7790. const int dr = (nr + nth - 1)/nth;
  7791. // row range for this thread
  7792. const int ir0 = dr*ith;
  7793. const int ir1 = MIN(ir0 + dr, nr);
  7794. for (int ir = ir0; ir < ir1; ++ir) {
  7795. // src0 indices
  7796. const int i03 = ir/(ne02*ne01);
  7797. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7798. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7799. for (int64_t ic = 0; ic < ne11; ++ic) {
  7800. // src1 indices
  7801. const int i13 = i03;
  7802. const int i12 = i02;
  7803. const int i11 = ic;
  7804. // dst indices
  7805. const int i0 = i01;
  7806. const int i1 = i11;
  7807. const int i2 = i02;
  7808. const int i3 = i03;
  7809. ggml_vec_dot_f32(ne00,
  7810. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7811. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7812. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7813. }
  7814. }
  7815. //int64_t t1 = ggml_perf_time_us();
  7816. //static int64_t acc = 0;
  7817. //acc += t1 - t0;
  7818. //if (t1 - t0 > 10) {
  7819. // printf("\n");
  7820. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7821. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7822. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7823. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7824. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7825. //}
  7826. }
  7827. static void ggml_compute_forward_mul_mat_f16_f32(
  7828. const struct ggml_compute_params * params,
  7829. const struct ggml_tensor * src0,
  7830. const struct ggml_tensor * src1,
  7831. struct ggml_tensor * dst) {
  7832. int64_t t0 = ggml_perf_time_us();
  7833. UNUSED(t0);
  7834. const int64_t ne00 = src0->ne[0];
  7835. const int64_t ne01 = src0->ne[1];
  7836. const int64_t ne02 = src0->ne[2];
  7837. const int64_t ne03 = src0->ne[3];
  7838. const int64_t ne10 = src1->ne[0];
  7839. const int64_t ne11 = src1->ne[1];
  7840. const int64_t ne12 = src1->ne[2];
  7841. const int64_t ne13 = src1->ne[3];
  7842. const int64_t ne0 = dst->ne[0];
  7843. const int64_t ne1 = dst->ne[1];
  7844. const int64_t ne2 = dst->ne[2];
  7845. const int64_t ne3 = dst->ne[3];
  7846. //const int64_t ne = ne0*ne1*ne2*ne3;
  7847. const int nb00 = src0->nb[0];
  7848. const int nb01 = src0->nb[1];
  7849. const int nb02 = src0->nb[2];
  7850. const int nb03 = src0->nb[3];
  7851. const int nb10 = src1->nb[0];
  7852. const int nb11 = src1->nb[1];
  7853. const int nb12 = src1->nb[2];
  7854. const int nb13 = src1->nb[3];
  7855. const int nb0 = dst->nb[0];
  7856. const int nb1 = dst->nb[1];
  7857. const int nb2 = dst->nb[2];
  7858. const int nb3 = dst->nb[3];
  7859. const int ith = params->ith;
  7860. const int nth = params->nth;
  7861. GGML_ASSERT(ne02 == ne12);
  7862. GGML_ASSERT(ne03 == ne13);
  7863. GGML_ASSERT(ne2 == ne12);
  7864. GGML_ASSERT(ne3 == ne13);
  7865. // TODO: we don't support permuted src0
  7866. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7867. // dst cannot be transposed or permuted
  7868. GGML_ASSERT(nb0 == sizeof(float));
  7869. GGML_ASSERT(nb0 <= nb1);
  7870. GGML_ASSERT(nb1 <= nb2);
  7871. GGML_ASSERT(nb2 <= nb3);
  7872. GGML_ASSERT(ne0 == ne01);
  7873. GGML_ASSERT(ne1 == ne11);
  7874. GGML_ASSERT(ne2 == ne02);
  7875. GGML_ASSERT(ne3 == ne03);
  7876. // nb01 >= nb00 - src0 is not transposed
  7877. // compute by src0 rows
  7878. #if defined(GGML_USE_CUBLAS)
  7879. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7880. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7881. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7882. }
  7883. return;
  7884. }
  7885. #elif defined(GGML_USE_CLBLAST)
  7886. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7887. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7888. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7889. }
  7890. return;
  7891. }
  7892. #endif
  7893. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7894. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7895. GGML_ASSERT(nb10 == sizeof(float));
  7896. if (params->ith != 0) {
  7897. return;
  7898. }
  7899. if (params->type == GGML_TASK_INIT) {
  7900. return;
  7901. }
  7902. if (params->type == GGML_TASK_FINALIZE) {
  7903. return;
  7904. }
  7905. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7907. float * const wdata = params->wdata;
  7908. {
  7909. size_t id = 0;
  7910. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7911. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7912. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7913. }
  7914. }
  7915. assert(id*sizeof(float) <= params->wsize);
  7916. }
  7917. const float * x = wdata;
  7918. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7919. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7920. // zT = y * xT
  7921. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7922. ne11, ne01, ne10,
  7923. 1.0f, y, ne10,
  7924. x, ne00,
  7925. 0.0f, d, ne01);
  7926. }
  7927. }
  7928. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7929. return;
  7930. }
  7931. #endif
  7932. if (params->type == GGML_TASK_INIT) {
  7933. ggml_fp16_t * const wdata = params->wdata;
  7934. size_t id = 0;
  7935. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7936. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7937. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7938. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7939. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7940. }
  7941. }
  7942. }
  7943. }
  7944. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7945. return;
  7946. }
  7947. if (params->type == GGML_TASK_FINALIZE) {
  7948. return;
  7949. }
  7950. // fp16 -> half the size, so divide by 2
  7951. // TODO: do not support transposed src1
  7952. assert(nb10/2 == sizeof(ggml_fp16_t));
  7953. // parallelize by src0 rows using ggml_vec_dot_f16
  7954. // total rows in src0
  7955. const int nr = ne01*ne02*ne03;
  7956. // rows per thread
  7957. const int dr = (nr + nth - 1)/nth;
  7958. // row range for this thread
  7959. const int ir0 = dr*ith;
  7960. const int ir1 = MIN(ir0 + dr, nr);
  7961. ggml_fp16_t * wdata = params->wdata;
  7962. for (int ir = ir0; ir < ir1; ++ir) {
  7963. // src0 indices
  7964. const int i03 = ir/(ne02*ne01);
  7965. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7966. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7967. const int i13 = i03;
  7968. const int i12 = i02;
  7969. const int i0 = i01;
  7970. const int i2 = i02;
  7971. const int i3 = i03;
  7972. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7973. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7974. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7975. for (int64_t ic = 0; ic < ne11; ++ic) {
  7976. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7977. }
  7978. }
  7979. //int64_t t1 = ggml_time_us();
  7980. //static int64_t acc = 0;
  7981. //acc += t1 - t0;
  7982. //if (t1 - t0 > 10) {
  7983. // printf("\n");
  7984. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7985. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7986. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7987. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7988. //}
  7989. }
  7990. static void ggml_compute_forward_mul_mat_q_f32(
  7991. const struct ggml_compute_params * params,
  7992. const struct ggml_tensor * src0,
  7993. const struct ggml_tensor * src1,
  7994. struct ggml_tensor * dst) {
  7995. int64_t t0 = ggml_perf_time_us();
  7996. UNUSED(t0);
  7997. const int64_t ne00 = src0->ne[0];
  7998. const int64_t ne01 = src0->ne[1];
  7999. const int64_t ne02 = src0->ne[2];
  8000. const int64_t ne03 = src0->ne[3];
  8001. const int64_t ne10 = src1->ne[0];
  8002. const int64_t ne11 = src1->ne[1];
  8003. const int64_t ne12 = src1->ne[2];
  8004. const int64_t ne13 = src1->ne[3];
  8005. const int64_t ne0 = dst->ne[0];
  8006. const int64_t ne1 = dst->ne[1];
  8007. const int64_t ne2 = dst->ne[2];
  8008. const int64_t ne3 = dst->ne[3];
  8009. const int nb00 = src0->nb[0];
  8010. const int nb01 = src0->nb[1];
  8011. const int nb02 = src0->nb[2];
  8012. const int nb03 = src0->nb[3];
  8013. const int nb10 = src1->nb[0];
  8014. const int nb11 = src1->nb[1];
  8015. const int nb12 = src1->nb[2];
  8016. const int nb13 = src1->nb[3];
  8017. const int nb0 = dst->nb[0];
  8018. const int nb1 = dst->nb[1];
  8019. const int nb2 = dst->nb[2];
  8020. const int nb3 = dst->nb[3];
  8021. const int ith = params->ith;
  8022. const int nth = params->nth;
  8023. GGML_ASSERT(ne02 == ne12);
  8024. GGML_ASSERT(ne03 == ne13);
  8025. GGML_ASSERT(ne2 == ne12);
  8026. GGML_ASSERT(ne3 == ne13);
  8027. const enum ggml_type type = src0->type;
  8028. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8029. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8030. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8031. // we don't support permuted src0 or src1
  8032. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8033. GGML_ASSERT(nb10 == sizeof(float));
  8034. // dst cannot be transposed or permuted
  8035. GGML_ASSERT(nb0 == sizeof(float));
  8036. GGML_ASSERT(nb0 <= nb1);
  8037. GGML_ASSERT(nb1 <= nb2);
  8038. GGML_ASSERT(nb2 <= nb3);
  8039. GGML_ASSERT(ne0 == ne01);
  8040. GGML_ASSERT(ne1 == ne11);
  8041. GGML_ASSERT(ne2 == ne02);
  8042. GGML_ASSERT(ne3 == ne03);
  8043. // nb01 >= nb00 - src0 is not transposed
  8044. // compute by src0 rows
  8045. #if defined(GGML_USE_CUBLAS)
  8046. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8047. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8048. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8049. }
  8050. return;
  8051. }
  8052. #elif defined(GGML_USE_CLBLAST)
  8053. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8054. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8055. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8056. }
  8057. return;
  8058. }
  8059. #endif
  8060. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8061. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8062. if (params->ith != 0) {
  8063. return;
  8064. }
  8065. if (params->type == GGML_TASK_INIT) {
  8066. return;
  8067. }
  8068. if (params->type == GGML_TASK_FINALIZE) {
  8069. return;
  8070. }
  8071. float * const wdata = params->wdata;
  8072. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8075. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8076. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8077. {
  8078. size_t id = 0;
  8079. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8080. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8081. id += ne00;
  8082. }
  8083. assert(id*sizeof(float) <= params->wsize);
  8084. }
  8085. const float * x = wdata;
  8086. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8087. ne11, ne01, ne10,
  8088. 1.0f, y, ne10,
  8089. x, ne00,
  8090. 0.0f, d, ne01);
  8091. }
  8092. }
  8093. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8094. return;
  8095. }
  8096. #endif
  8097. if (params->type == GGML_TASK_INIT) {
  8098. char * wdata = params->wdata;
  8099. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8100. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8101. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8102. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8103. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8104. wdata += row_size;
  8105. }
  8106. }
  8107. }
  8108. return;
  8109. }
  8110. if (params->type == GGML_TASK_FINALIZE) {
  8111. return;
  8112. }
  8113. // parallelize by src0 rows using ggml_vec_dot_q
  8114. // total rows in src0
  8115. const int nr = ne01*ne02*ne03;
  8116. // rows per thread
  8117. const int dr = (nr + nth - 1)/nth;
  8118. // row range for this thread
  8119. const int ir0 = dr*ith;
  8120. const int ir1 = MIN(ir0 + dr, nr);
  8121. void * wdata = params->wdata;
  8122. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8123. for (int ir = ir0; ir < ir1; ++ir) {
  8124. // src0 indices
  8125. const int i03 = ir/(ne02*ne01);
  8126. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8127. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8128. const int i13 = i03;
  8129. const int i12 = i02;
  8130. const int i0 = i01;
  8131. const int i2 = i02;
  8132. const int i3 = i03;
  8133. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8134. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8135. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8136. assert(ne00 % 32 == 0);
  8137. for (int64_t ic = 0; ic < ne11; ++ic) {
  8138. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8139. }
  8140. }
  8141. //int64_t t1 = ggml_time_us();
  8142. //static int64_t acc = 0;
  8143. //acc += t1 - t0;
  8144. //if (t1 - t0 > 10) {
  8145. // printf("\n");
  8146. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8147. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8148. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8149. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8150. //}
  8151. }
  8152. static void ggml_compute_forward_mul_mat(
  8153. const struct ggml_compute_params * params,
  8154. const struct ggml_tensor * src0,
  8155. const struct ggml_tensor * src1,
  8156. struct ggml_tensor * dst) {
  8157. switch (src0->type) {
  8158. case GGML_TYPE_Q4_0:
  8159. case GGML_TYPE_Q4_1:
  8160. case GGML_TYPE_Q5_0:
  8161. case GGML_TYPE_Q5_1:
  8162. case GGML_TYPE_Q8_0:
  8163. case GGML_TYPE_Q8_1:
  8164. {
  8165. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8166. } break;
  8167. case GGML_TYPE_F16:
  8168. {
  8169. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8170. } break;
  8171. case GGML_TYPE_F32:
  8172. {
  8173. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8174. } break;
  8175. default:
  8176. {
  8177. GGML_ASSERT(false);
  8178. } break;
  8179. }
  8180. }
  8181. // ggml_compute_forward_scale
  8182. static void ggml_compute_forward_scale_f32(
  8183. const struct ggml_compute_params * params,
  8184. const struct ggml_tensor * src0,
  8185. const struct ggml_tensor * src1,
  8186. struct ggml_tensor * dst) {
  8187. GGML_ASSERT(ggml_is_contiguous(src0));
  8188. GGML_ASSERT(ggml_is_contiguous(dst));
  8189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8190. GGML_ASSERT(ggml_is_scalar(src1));
  8191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8192. return;
  8193. }
  8194. // scale factor
  8195. const float v = *(float *) src1->data;
  8196. const int ith = params->ith;
  8197. const int nth = params->nth;
  8198. const int nc = src0->ne[0];
  8199. const int nr = ggml_nrows(src0);
  8200. // rows per thread
  8201. const int dr = (nr + nth - 1)/nth;
  8202. // row range for this thread
  8203. const int ir0 = dr*ith;
  8204. const int ir1 = MIN(ir0 + dr, nr);
  8205. const size_t nb01 = src0->nb[1];
  8206. const size_t nb1 = dst->nb[1];
  8207. for (int i1 = ir0; i1 < ir1; i1++) {
  8208. if (dst->data != src0->data) {
  8209. // src0 is same shape as dst => same indices
  8210. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8211. }
  8212. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8213. }
  8214. }
  8215. static void ggml_compute_forward_scale(
  8216. const struct ggml_compute_params * params,
  8217. const struct ggml_tensor * src0,
  8218. const struct ggml_tensor * src1,
  8219. struct ggml_tensor * dst) {
  8220. switch (src0->type) {
  8221. case GGML_TYPE_F32:
  8222. {
  8223. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8224. } break;
  8225. default:
  8226. {
  8227. GGML_ASSERT(false);
  8228. } break;
  8229. }
  8230. }
  8231. // ggml_compute_forward_set
  8232. static void ggml_compute_forward_set_f32(
  8233. const struct ggml_compute_params * params,
  8234. const struct ggml_tensor * src0,
  8235. const struct ggml_tensor * src1,
  8236. const struct ggml_tensor * opt0,
  8237. struct ggml_tensor * dst) {
  8238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8239. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8240. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8241. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8242. // view src0 and dst with these strides and data offset inbytes during set
  8243. // nb0 is implicitely element_size because src0 and dst are contiguous
  8244. size_t nb1 = ((int32_t *) opt0->data)[0];
  8245. size_t nb2 = ((int32_t *) opt0->data)[1];
  8246. size_t nb3 = ((int32_t *) opt0->data)[2];
  8247. size_t offset = ((int32_t *) opt0->data)[3];
  8248. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8249. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8250. // memcpy needs to be synchronized across threads to avoid race conditions.
  8251. // => do it in INIT phase
  8252. memcpy(
  8253. ((char *) dst->data),
  8254. ((char *) src0->data),
  8255. ggml_nbytes(dst));
  8256. }
  8257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8258. return;
  8259. }
  8260. const int ith = params->ith;
  8261. const int nth = params->nth;
  8262. const int nr = ggml_nrows(src1);
  8263. const int nc = src1->ne[0];
  8264. const int64_t ne10 = src1->ne[0];
  8265. const int64_t ne11 = src1->ne[1];
  8266. const int64_t ne12 = src1->ne[2];
  8267. const int64_t ne13 = src1->ne[3];
  8268. const size_t nb10 = src1->nb[0];
  8269. const size_t nb11 = src1->nb[1];
  8270. const size_t nb12 = src1->nb[2];
  8271. const size_t nb13 = src1->nb[3];
  8272. // src0 and dst as viewed during set
  8273. const size_t nb0 = ggml_element_size(src0);
  8274. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8275. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8276. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8277. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8278. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8279. GGML_ASSERT(nb10 == sizeof(float));
  8280. // rows per thread
  8281. const int dr = (nr + nth - 1)/nth;
  8282. // row range for this thread
  8283. const int ir0 = dr*ith;
  8284. const int ir1 = MIN(ir0 + dr, nr);
  8285. for (int ir = ir0; ir < ir1; ++ir) {
  8286. // src0 and dst are viewed with shape of src1 and offset
  8287. // => same indices
  8288. const int i3 = ir/(ne12*ne11);
  8289. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8290. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8291. ggml_vec_cpy_f32(nc,
  8292. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8293. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8294. }
  8295. }
  8296. static void ggml_compute_forward_set(
  8297. const struct ggml_compute_params * params,
  8298. const struct ggml_tensor * src0,
  8299. const struct ggml_tensor * src1,
  8300. const struct ggml_tensor * opt0,
  8301. struct ggml_tensor * dst) {
  8302. switch (src0->type) {
  8303. case GGML_TYPE_F32:
  8304. {
  8305. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8306. } break;
  8307. case GGML_TYPE_F16:
  8308. case GGML_TYPE_Q4_0:
  8309. case GGML_TYPE_Q4_1:
  8310. case GGML_TYPE_Q5_0:
  8311. case GGML_TYPE_Q5_1:
  8312. case GGML_TYPE_Q8_0:
  8313. case GGML_TYPE_Q8_1:
  8314. default:
  8315. {
  8316. GGML_ASSERT(false);
  8317. } break;
  8318. }
  8319. }
  8320. // ggml_compute_forward_cpy
  8321. static void ggml_compute_forward_cpy(
  8322. const struct ggml_compute_params * params,
  8323. const struct ggml_tensor * src0,
  8324. struct ggml_tensor * dst) {
  8325. ggml_compute_forward_dup(params, src0, dst);
  8326. }
  8327. // ggml_compute_forward_cont
  8328. static void ggml_compute_forward_cont(
  8329. const struct ggml_compute_params * params,
  8330. const struct ggml_tensor * src0,
  8331. struct ggml_tensor * dst) {
  8332. ggml_compute_forward_dup(params, src0, dst);
  8333. }
  8334. // ggml_compute_forward_reshape
  8335. static void ggml_compute_forward_reshape(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. struct ggml_tensor * dst) {
  8339. // NOP
  8340. UNUSED(params);
  8341. UNUSED(src0);
  8342. UNUSED(dst);
  8343. }
  8344. // ggml_compute_forward_view
  8345. static void ggml_compute_forward_view(
  8346. const struct ggml_compute_params * params,
  8347. const struct ggml_tensor * src0) {
  8348. // NOP
  8349. UNUSED(params);
  8350. UNUSED(src0);
  8351. }
  8352. // ggml_compute_forward_permute
  8353. static void ggml_compute_forward_permute(
  8354. const struct ggml_compute_params * params,
  8355. const struct ggml_tensor * src0) {
  8356. // NOP
  8357. UNUSED(params);
  8358. UNUSED(src0);
  8359. }
  8360. // ggml_compute_forward_transpose
  8361. static void ggml_compute_forward_transpose(
  8362. const struct ggml_compute_params * params,
  8363. const struct ggml_tensor * src0) {
  8364. // NOP
  8365. UNUSED(params);
  8366. UNUSED(src0);
  8367. }
  8368. // ggml_compute_forward_get_rows
  8369. static void ggml_compute_forward_get_rows_q(
  8370. const struct ggml_compute_params * params,
  8371. const struct ggml_tensor * src0,
  8372. const struct ggml_tensor * src1,
  8373. struct ggml_tensor * dst) {
  8374. assert(params->ith == 0);
  8375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8376. return;
  8377. }
  8378. const int nc = src0->ne[0];
  8379. const int nr = ggml_nelements(src1);
  8380. const enum ggml_type type = src0->type;
  8381. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8382. assert( dst->ne[0] == nc);
  8383. assert( dst->ne[1] == nr);
  8384. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8385. for (int i = 0; i < nr; ++i) {
  8386. const int r = ((int32_t *) src1->data)[i];
  8387. dequantize_row_q(
  8388. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8389. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8390. }
  8391. }
  8392. static void ggml_compute_forward_get_rows_f16(
  8393. const struct ggml_compute_params * params,
  8394. const struct ggml_tensor * src0,
  8395. const struct ggml_tensor * src1,
  8396. struct ggml_tensor * dst) {
  8397. assert(params->ith == 0);
  8398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8399. return;
  8400. }
  8401. const int nc = src0->ne[0];
  8402. const int nr = ggml_nelements(src1);
  8403. assert( dst->ne[0] == nc);
  8404. assert( dst->ne[1] == nr);
  8405. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8406. for (int i = 0; i < nr; ++i) {
  8407. const int r = ((int32_t *) src1->data)[i];
  8408. for (int j = 0; j < nc; ++j) {
  8409. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8410. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8411. }
  8412. }
  8413. }
  8414. static void ggml_compute_forward_get_rows_f32(
  8415. const struct ggml_compute_params * params,
  8416. const struct ggml_tensor * src0,
  8417. const struct ggml_tensor * src1,
  8418. struct ggml_tensor * dst) {
  8419. assert(params->ith == 0);
  8420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8421. return;
  8422. }
  8423. const int nc = src0->ne[0];
  8424. const int nr = ggml_nelements(src1);
  8425. assert( dst->ne[0] == nc);
  8426. assert( dst->ne[1] == nr);
  8427. assert(src0->nb[0] == sizeof(float));
  8428. for (int i = 0; i < nr; ++i) {
  8429. const int r = ((int32_t *) src1->data)[i];
  8430. ggml_vec_cpy_f32(nc,
  8431. (float *) ((char *) dst->data + i*dst->nb[1]),
  8432. (float *) ((char *) src0->data + r*src0->nb[1]));
  8433. }
  8434. }
  8435. static void ggml_compute_forward_get_rows(
  8436. const struct ggml_compute_params * params,
  8437. const struct ggml_tensor * src0,
  8438. const struct ggml_tensor * src1,
  8439. struct ggml_tensor * dst) {
  8440. switch (src0->type) {
  8441. case GGML_TYPE_Q4_0:
  8442. case GGML_TYPE_Q4_1:
  8443. case GGML_TYPE_Q5_0:
  8444. case GGML_TYPE_Q5_1:
  8445. case GGML_TYPE_Q8_0:
  8446. case GGML_TYPE_Q8_1:
  8447. {
  8448. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8449. } break;
  8450. case GGML_TYPE_F16:
  8451. {
  8452. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8453. } break;
  8454. case GGML_TYPE_F32:
  8455. {
  8456. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8457. } break;
  8458. default:
  8459. {
  8460. GGML_ASSERT(false);
  8461. } break;
  8462. }
  8463. //static bool first = true;
  8464. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8465. //if (first) {
  8466. // first = false;
  8467. //} else {
  8468. // for (int k = 0; k < dst->ne[1]; ++k) {
  8469. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8470. // for (int i = 0; i < 16; ++i) {
  8471. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8472. // }
  8473. // printf("\n");
  8474. // }
  8475. // printf("\n");
  8476. // }
  8477. // printf("\n");
  8478. // exit(0);
  8479. //}
  8480. }
  8481. // ggml_compute_forward_get_rows_back
  8482. static void ggml_compute_forward_get_rows_back_f32_f16(
  8483. const struct ggml_compute_params * params,
  8484. const struct ggml_tensor * src0,
  8485. const struct ggml_tensor * src1,
  8486. const struct ggml_tensor * opt0,
  8487. struct ggml_tensor * dst) {
  8488. GGML_ASSERT(params->ith == 0);
  8489. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8490. GGML_ASSERT(ggml_is_contiguous(opt0));
  8491. GGML_ASSERT(ggml_is_contiguous(dst));
  8492. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8494. return;
  8495. }
  8496. const int nc = src0->ne[0];
  8497. const int nr = ggml_nelements(src1);
  8498. GGML_ASSERT( dst->ne[0] == nc);
  8499. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8500. for (int i = 0; i < nr; ++i) {
  8501. const int r = ((int32_t *) src1->data)[i];
  8502. for (int j = 0; j < nc; ++j) {
  8503. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8504. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8505. }
  8506. }
  8507. }
  8508. static void ggml_compute_forward_get_rows_back_f32(
  8509. const struct ggml_compute_params * params,
  8510. const struct ggml_tensor * src0,
  8511. const struct ggml_tensor * src1,
  8512. const struct ggml_tensor * opt0,
  8513. struct ggml_tensor * dst) {
  8514. GGML_ASSERT(params->ith == 0);
  8515. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8516. GGML_ASSERT(ggml_is_contiguous(opt0));
  8517. GGML_ASSERT(ggml_is_contiguous(dst));
  8518. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8520. return;
  8521. }
  8522. const int nc = src0->ne[0];
  8523. const int nr = ggml_nelements(src1);
  8524. GGML_ASSERT( dst->ne[0] == nc);
  8525. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8526. for (int i = 0; i < nr; ++i) {
  8527. const int r = ((int32_t *) src1->data)[i];
  8528. ggml_vec_add_f32(nc,
  8529. (float *) ((char *) dst->data + r*dst->nb[1]),
  8530. (float *) ((char *) dst->data + r*dst->nb[1]),
  8531. (float *) ((char *) src0->data + i*src0->nb[1]));
  8532. }
  8533. }
  8534. static void ggml_compute_forward_get_rows_back(
  8535. const struct ggml_compute_params * params,
  8536. const struct ggml_tensor * src0,
  8537. const struct ggml_tensor * src1,
  8538. const struct ggml_tensor * opt0,
  8539. struct ggml_tensor * dst) {
  8540. switch (src0->type) {
  8541. case GGML_TYPE_F16:
  8542. {
  8543. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8544. } break;
  8545. case GGML_TYPE_F32:
  8546. {
  8547. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8548. } break;
  8549. default:
  8550. {
  8551. GGML_ASSERT(false);
  8552. } break;
  8553. }
  8554. //static bool first = true;
  8555. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8556. //if (first) {
  8557. // first = false;
  8558. //} else {
  8559. // for (int k = 0; k < dst->ne[1]; ++k) {
  8560. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8561. // for (int i = 0; i < 16; ++i) {
  8562. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8563. // }
  8564. // printf("\n");
  8565. // }
  8566. // printf("\n");
  8567. // }
  8568. // printf("\n");
  8569. // exit(0);
  8570. //}
  8571. }
  8572. // ggml_compute_forward_diag
  8573. static void ggml_compute_forward_diag_f32(
  8574. const struct ggml_compute_params * params,
  8575. const struct ggml_tensor * src0,
  8576. struct ggml_tensor * dst) {
  8577. GGML_ASSERT(params->ith == 0);
  8578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8579. return;
  8580. }
  8581. // TODO: handle transposed/permuted matrices
  8582. const int ne00 = src0->ne[0];
  8583. const int ne01 = src0->ne[1];
  8584. const int ne02 = src0->ne[2];
  8585. const int ne03 = src0->ne[3];
  8586. const int ne0 = dst->ne[0];
  8587. const int ne1 = dst->ne[1];
  8588. const int ne2 = dst->ne[2];
  8589. const int ne3 = dst->ne[3];
  8590. GGML_ASSERT(ne00 == ne0);
  8591. GGML_ASSERT(ne00 == ne1);
  8592. GGML_ASSERT(ne01 == 1);
  8593. GGML_ASSERT(ne02 == ne2);
  8594. GGML_ASSERT(ne03 == ne3);
  8595. const int nb00 = src0->nb[0];
  8596. //const int nb01 = src0->nb[1];
  8597. const int nb02 = src0->nb[2];
  8598. const int nb03 = src0->nb[3];
  8599. const int nb0 = dst->nb[0];
  8600. const int nb1 = dst->nb[1];
  8601. const int nb2 = dst->nb[2];
  8602. const int nb3 = dst->nb[3];
  8603. GGML_ASSERT(nb00 == sizeof(float));
  8604. GGML_ASSERT(nb0 == sizeof(float));
  8605. for (int i3 = 0; i3 < ne3; i3++) {
  8606. for (int i2 = 0; i2 < ne2; i2++) {
  8607. for (int i1 = 0; i1 < ne1; i1++) {
  8608. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8609. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8610. for (int i0 = 0; i0 < i1; i0++) {
  8611. d[i0] = 0;
  8612. }
  8613. d[i1] = s[i1];
  8614. for (int i0 = i1+1; i0 < ne0; i0++) {
  8615. d[i0] = 0;
  8616. }
  8617. }
  8618. }
  8619. }
  8620. }
  8621. static void ggml_compute_forward_diag(
  8622. const struct ggml_compute_params * params,
  8623. const struct ggml_tensor * src0,
  8624. struct ggml_tensor * dst) {
  8625. switch (src0->type) {
  8626. case GGML_TYPE_F32:
  8627. {
  8628. ggml_compute_forward_diag_f32(params, src0, dst);
  8629. } break;
  8630. default:
  8631. {
  8632. GGML_ASSERT(false);
  8633. } break;
  8634. }
  8635. }
  8636. // ggml_compute_forward_diag_mask_inf
  8637. static void ggml_compute_forward_diag_mask_f32(
  8638. const struct ggml_compute_params * params,
  8639. const struct ggml_tensor * src0,
  8640. const struct ggml_tensor * src1,
  8641. struct ggml_tensor * dst,
  8642. const float value) {
  8643. assert(src1->type == GGML_TYPE_I32);
  8644. assert(ggml_nelements(src1) == 2);
  8645. const int ith = params->ith;
  8646. const int nth = params->nth;
  8647. const int n_past = ((int32_t *) src1->data)[0];
  8648. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8649. assert(n_past >= 0);
  8650. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8651. // memcpy needs to be synchronized across threads to avoid race conditions.
  8652. // => do it in INIT phase
  8653. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8654. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8655. memcpy(
  8656. ((char *) dst->data),
  8657. ((char *) src0->data),
  8658. ggml_nbytes(dst));
  8659. }
  8660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8661. return;
  8662. }
  8663. // TODO: handle transposed/permuted matrices
  8664. const int n = ggml_nrows(src0);
  8665. const int nc = src0->ne[0];
  8666. const int nr = src0->ne[1];
  8667. const int nz = n/nr;
  8668. assert( dst->nb[0] == sizeof(float));
  8669. assert(src0->nb[0] == sizeof(float));
  8670. for (int k = 0; k < nz; k++) {
  8671. for (int j = ith; j < nr; j += nth) {
  8672. for (int i = n_past; i < nc; i++) {
  8673. if (i > n_past + j) {
  8674. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8675. }
  8676. }
  8677. }
  8678. }
  8679. }
  8680. static void ggml_compute_forward_diag_mask_inf(
  8681. const struct ggml_compute_params * params,
  8682. const struct ggml_tensor * src0,
  8683. const struct ggml_tensor * src1,
  8684. struct ggml_tensor * dst) {
  8685. switch (src0->type) {
  8686. case GGML_TYPE_F32:
  8687. {
  8688. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8689. } break;
  8690. default:
  8691. {
  8692. GGML_ASSERT(false);
  8693. } break;
  8694. }
  8695. }
  8696. static void ggml_compute_forward_diag_mask_zero(
  8697. const struct ggml_compute_params * params,
  8698. const struct ggml_tensor * src0,
  8699. const struct ggml_tensor * src1,
  8700. struct ggml_tensor * dst) {
  8701. switch (src0->type) {
  8702. case GGML_TYPE_F32:
  8703. {
  8704. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8705. } break;
  8706. default:
  8707. {
  8708. GGML_ASSERT(false);
  8709. } break;
  8710. }
  8711. }
  8712. // ggml_compute_forward_soft_max
  8713. static void ggml_compute_forward_soft_max_f32(
  8714. const struct ggml_compute_params * params,
  8715. const struct ggml_tensor * src0,
  8716. struct ggml_tensor * dst) {
  8717. GGML_ASSERT(ggml_is_contiguous(src0));
  8718. GGML_ASSERT(ggml_is_contiguous(dst));
  8719. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8721. return;
  8722. }
  8723. // TODO: handle transposed/permuted matrices
  8724. const int ith = params->ith;
  8725. const int nth = params->nth;
  8726. const int nc = src0->ne[0];
  8727. const int nr = ggml_nrows(src0);
  8728. // rows per thread
  8729. const int dr = (nr + nth - 1)/nth;
  8730. // row range for this thread
  8731. const int ir0 = dr*ith;
  8732. const int ir1 = MIN(ir0 + dr, nr);
  8733. for (int i1 = ir0; i1 < ir1; i1++) {
  8734. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8735. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8736. #ifndef NDEBUG
  8737. for (int i = 0; i < nc; ++i) {
  8738. //printf("p[%d] = %f\n", i, p[i]);
  8739. assert(!isnan(sp[i]));
  8740. }
  8741. #endif
  8742. float max = -INFINITY;
  8743. ggml_vec_max_f32(nc, &max, sp);
  8744. ggml_float sum = 0.0;
  8745. uint16_t scvt;
  8746. for (int i = 0; i < nc; i++) {
  8747. if (sp[i] == -INFINITY) {
  8748. dp[i] = 0.0f;
  8749. } else {
  8750. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8751. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8752. memcpy(&scvt, &s, sizeof(scvt));
  8753. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8754. sum += (ggml_float)val;
  8755. dp[i] = val;
  8756. }
  8757. }
  8758. assert(sum > 0.0);
  8759. sum = 1.0/sum;
  8760. ggml_vec_scale_f32(nc, dp, sum);
  8761. #ifndef NDEBUG
  8762. for (int i = 0; i < nc; ++i) {
  8763. assert(!isnan(dp[i]));
  8764. assert(!isinf(dp[i]));
  8765. }
  8766. #endif
  8767. }
  8768. }
  8769. static void ggml_compute_forward_soft_max(
  8770. const struct ggml_compute_params * params,
  8771. const struct ggml_tensor * src0,
  8772. struct ggml_tensor * dst) {
  8773. switch (src0->type) {
  8774. case GGML_TYPE_F32:
  8775. {
  8776. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8777. } break;
  8778. default:
  8779. {
  8780. GGML_ASSERT(false);
  8781. } break;
  8782. }
  8783. }
  8784. // ggml_compute_forward_alibi
  8785. static void ggml_compute_forward_alibi_f32(
  8786. const struct ggml_compute_params * params,
  8787. const struct ggml_tensor * src0,
  8788. const struct ggml_tensor * src1,
  8789. struct ggml_tensor * dst) {
  8790. assert(params->ith == 0);
  8791. assert(src1->type == GGML_TYPE_I32);
  8792. assert(ggml_nelements(src1) == 3);
  8793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8794. return;
  8795. }
  8796. const int n_past = ((int32_t *) src1->data)[0];
  8797. const int n_head = ((int32_t *) src1->data)[1];
  8798. const float max_bias = ((float *) src1->data)[2];
  8799. assert(n_past >= 0);
  8800. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8801. const int ne1 = src0->ne[1]; // seq_len_without_past
  8802. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8803. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8804. const int n = ggml_nrows(src0);
  8805. const int ne2_ne3 = n/ne1; // ne2*ne3
  8806. const int nb0 = src0->nb[0];
  8807. const int nb1 = src0->nb[1];
  8808. const int nb2 = src0->nb[2];
  8809. //const int nb3 = src0->nb[3];
  8810. assert(nb0 == sizeof(float));
  8811. assert(ne1 + n_past == ne0); (void) n_past;
  8812. // add alibi to src0 (KQ_scaled)
  8813. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8814. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8815. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8816. for (int i = 0; i < ne0; i++) {
  8817. for (int j = 0; j < ne1; j++) {
  8818. for (int k = 0; k < ne2_ne3; k++) {
  8819. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8820. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8821. // TODO: k*nb2 or k*nb3
  8822. float m_k;
  8823. if (k < n_heads_log2_floor) {
  8824. m_k = powf(m0, k + 1);
  8825. } else {
  8826. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8827. }
  8828. pdst[0] = (i-ne0+1) * m_k + src[0];
  8829. }
  8830. }
  8831. }
  8832. }
  8833. static void ggml_compute_forward_alibi_f16(
  8834. const struct ggml_compute_params * params,
  8835. const struct ggml_tensor * src0,
  8836. const struct ggml_tensor * src1,
  8837. struct ggml_tensor * dst) {
  8838. assert(params->ith == 0);
  8839. assert(src1->type == GGML_TYPE_I32);
  8840. assert(ggml_nelements(src1) == 3);
  8841. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8842. return;
  8843. }
  8844. const int n_past = ((int32_t *) src1->data)[0];
  8845. const int n_head = ((int32_t *) src1->data)[1];
  8846. const float max_bias = ((float *) src1->data)[2];
  8847. assert(n_past >= 0);
  8848. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8849. const int ne1 = src0->ne[1]; // seq_len_without_past
  8850. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8851. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8852. const int n = ggml_nrows(src0);
  8853. const int ne2_ne3 = n/ne1; // ne2*ne3
  8854. const int nb0 = src0->nb[0];
  8855. const int nb1 = src0->nb[1];
  8856. const int nb2 = src0->nb[2];
  8857. //const int nb3 = src0->nb[3];
  8858. assert(nb0 == sizeof(ggml_fp16_t));
  8859. assert(ne1 + n_past == ne0); (void) n_past;
  8860. // add alibi to src0 (KQ_scaled)
  8861. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8862. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8863. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8864. for (int i = 0; i < ne0; i++) {
  8865. for (int j = 0; j < ne1; j++) {
  8866. for (int k = 0; k < ne2_ne3; k++) {
  8867. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8868. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8869. // TODO: k*nb2 or k*nb3
  8870. float m_k;
  8871. if (k < n_heads_log2_floor) {
  8872. m_k = powf(m0, k + 1);
  8873. } else {
  8874. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8875. }
  8876. // we return F32
  8877. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8878. }
  8879. }
  8880. }
  8881. }
  8882. static void ggml_compute_forward_alibi(
  8883. const struct ggml_compute_params * params,
  8884. const struct ggml_tensor * src0,
  8885. const struct ggml_tensor * src1,
  8886. struct ggml_tensor * dst) {
  8887. switch (src0->type) {
  8888. case GGML_TYPE_F16:
  8889. {
  8890. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8891. } break;
  8892. case GGML_TYPE_F32:
  8893. {
  8894. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8895. } break;
  8896. case GGML_TYPE_Q4_0:
  8897. case GGML_TYPE_Q4_1:
  8898. case GGML_TYPE_Q5_0:
  8899. case GGML_TYPE_Q5_1:
  8900. case GGML_TYPE_Q8_0:
  8901. case GGML_TYPE_Q8_1:
  8902. case GGML_TYPE_I8:
  8903. case GGML_TYPE_I16:
  8904. case GGML_TYPE_I32:
  8905. case GGML_TYPE_COUNT:
  8906. {
  8907. GGML_ASSERT(false);
  8908. } break;
  8909. }
  8910. }
  8911. // ggml_compute_forward_clamp
  8912. static void ggml_compute_forward_clamp_f32(
  8913. const struct ggml_compute_params * params,
  8914. const struct ggml_tensor * src0,
  8915. const struct ggml_tensor * src1,
  8916. struct ggml_tensor * dst) {
  8917. assert(params->ith == 0);
  8918. assert(src1->type == GGML_TYPE_I32);
  8919. assert(ggml_nelements(src1) == 2);
  8920. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8921. return;
  8922. }
  8923. const int min = ((float *) src1->data)[0];
  8924. const int max = ((float *) src1->data)[1];
  8925. const int ith = params->ith;
  8926. const int nth = params->nth;
  8927. const int n = ggml_nrows(src0);
  8928. const int nc = src0->ne[0];
  8929. const size_t nb00 = src0->nb[0];
  8930. const size_t nb01 = src0->nb[1];
  8931. const size_t nb0 = dst->nb[0];
  8932. const size_t nb1 = dst->nb[1];
  8933. GGML_ASSERT( nb0 == sizeof(float));
  8934. GGML_ASSERT(nb00 == sizeof(float));
  8935. for (int j = ith; j < n; j += nth) {
  8936. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8937. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8938. for (int i = 0; i < nc; i++) {
  8939. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8940. }
  8941. }
  8942. }
  8943. static void ggml_compute_forward_clamp(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0,
  8946. const struct ggml_tensor * src1,
  8947. struct ggml_tensor * dst) {
  8948. switch (src0->type) {
  8949. case GGML_TYPE_F32:
  8950. {
  8951. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  8952. } break;
  8953. case GGML_TYPE_F16:
  8954. case GGML_TYPE_Q4_0:
  8955. case GGML_TYPE_Q4_1:
  8956. case GGML_TYPE_Q5_0:
  8957. case GGML_TYPE_Q5_1:
  8958. case GGML_TYPE_Q8_0:
  8959. case GGML_TYPE_Q8_1:
  8960. case GGML_TYPE_I8:
  8961. case GGML_TYPE_I16:
  8962. case GGML_TYPE_I32:
  8963. case GGML_TYPE_COUNT:
  8964. {
  8965. GGML_ASSERT(false);
  8966. } break;
  8967. }
  8968. }
  8969. // ggml_compute_forward_rope
  8970. static void ggml_compute_forward_rope_f32(
  8971. const struct ggml_compute_params * params,
  8972. const struct ggml_tensor * src0,
  8973. const struct ggml_tensor * src1,
  8974. struct ggml_tensor * dst) {
  8975. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8976. GGML_ASSERT(ggml_nelements(src1) == 3);
  8977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8978. return;
  8979. }
  8980. const int n_past = ((int32_t *) src1->data)[0];
  8981. const int n_dims = ((int32_t *) src1->data)[1];
  8982. const int mode = ((int32_t *) src1->data)[2];
  8983. assert(n_past >= 0);
  8984. const size_t nb00 = src0->nb[0];
  8985. const size_t nb01 = src0->nb[1];
  8986. const size_t nb02 = src0->nb[2];
  8987. const size_t nb03 = src0->nb[3];
  8988. const int64_t ne0 = dst->ne[0];
  8989. const int64_t ne1 = dst->ne[1];
  8990. const int64_t ne2 = dst->ne[2];
  8991. const int64_t ne3 = dst->ne[3];
  8992. const size_t nb0 = dst->nb[0];
  8993. const size_t nb1 = dst->nb[1];
  8994. const size_t nb2 = dst->nb[2];
  8995. const size_t nb3 = dst->nb[3];
  8996. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8997. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8998. GGML_ASSERT(nb00 == sizeof(float));
  8999. const int ith = params->ith;
  9000. const int nth = params->nth;
  9001. const int nr = ggml_nrows(dst);
  9002. GGML_ASSERT(n_dims <= ne0);
  9003. GGML_ASSERT(n_dims % 2 == 0);
  9004. // rows per thread
  9005. const int dr = (nr + nth - 1)/nth;
  9006. // row range for this thread
  9007. const int ir0 = dr*ith;
  9008. const int ir1 = MIN(ir0 + dr, nr);
  9009. // row index used to determine which thread to use
  9010. int ir = 0;
  9011. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9012. const bool is_neox = mode & 2;
  9013. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9014. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9015. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9016. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9017. if (ir++ < ir0) continue;
  9018. if (ir > ir1) break;
  9019. float theta = (float)p;
  9020. if (!is_neox) {
  9021. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9022. const float cos_theta = cosf(theta);
  9023. const float sin_theta = sinf(theta);
  9024. theta *= theta_scale;
  9025. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9026. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9027. const float x0 = src[0];
  9028. const float x1 = src[1];
  9029. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9030. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9031. }
  9032. } else {
  9033. // TODO: this is probably wrong, but I can't figure it out ..
  9034. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9035. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9036. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9037. const float cos_theta = cosf(theta);
  9038. const float sin_theta = sinf(theta);
  9039. theta *= theta_scale;
  9040. const int64_t i0 = ib*n_dims + ic/2;
  9041. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9042. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9043. const float x0 = src[0];
  9044. const float x1 = src[n_dims/2];
  9045. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9046. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9047. }
  9048. }
  9049. }
  9050. }
  9051. }
  9052. }
  9053. }
  9054. static void ggml_compute_forward_rope_f16(
  9055. const struct ggml_compute_params * params,
  9056. const struct ggml_tensor * src0,
  9057. const struct ggml_tensor * src1,
  9058. struct ggml_tensor * dst) {
  9059. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9060. GGML_ASSERT(ggml_nelements(src1) == 3);
  9061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9062. return;
  9063. }
  9064. const int n_past = ((int32_t *) src1->data)[0];
  9065. const int n_dims = ((int32_t *) src1->data)[1];
  9066. const int mode = ((int32_t *) src1->data)[2];
  9067. assert(n_past >= 0);
  9068. const size_t nb00 = src0->nb[0];
  9069. const size_t nb01 = src0->nb[1];
  9070. const size_t nb02 = src0->nb[2];
  9071. const size_t nb03 = src0->nb[3];
  9072. const int64_t ne0 = dst->ne[0];
  9073. const int64_t ne1 = dst->ne[1];
  9074. const int64_t ne2 = dst->ne[2];
  9075. const int64_t ne3 = dst->ne[3];
  9076. const size_t nb0 = dst->nb[0];
  9077. const size_t nb1 = dst->nb[1];
  9078. const size_t nb2 = dst->nb[2];
  9079. const size_t nb3 = dst->nb[3];
  9080. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9081. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9082. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9083. const int ith = params->ith;
  9084. const int nth = params->nth;
  9085. const int nr = ggml_nrows(dst);
  9086. GGML_ASSERT(n_dims <= ne0);
  9087. GGML_ASSERT(n_dims % 2 == 0);
  9088. // rows per thread
  9089. const int dr = (nr + nth - 1)/nth;
  9090. // row range for this thread
  9091. const int ir0 = dr*ith;
  9092. const int ir1 = MIN(ir0 + dr, nr);
  9093. // row index used to determine which thread to use
  9094. int ir = 0;
  9095. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9096. const bool is_neox = mode & 2;
  9097. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9098. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9099. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9100. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9101. if (ir++ < ir0) continue;
  9102. if (ir > ir1) break;
  9103. float theta = (float)p;
  9104. if (!is_neox) {
  9105. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9106. const float cos_theta = cosf(theta);
  9107. const float sin_theta = sinf(theta);
  9108. theta *= theta_scale;
  9109. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9110. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9111. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9112. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9113. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9114. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9115. }
  9116. } else {
  9117. // TODO: this is probably wrong, but I can't figure it out ..
  9118. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9119. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9120. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9121. const float cos_theta = cosf(theta);
  9122. const float sin_theta = sinf(theta);
  9123. theta *= theta_scale;
  9124. const int64_t i0 = ib*n_dims + ic/2;
  9125. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9126. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9127. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9128. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9129. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9130. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9131. }
  9132. }
  9133. }
  9134. }
  9135. }
  9136. }
  9137. }
  9138. static void ggml_compute_forward_rope(
  9139. const struct ggml_compute_params * params,
  9140. const struct ggml_tensor * src0,
  9141. const struct ggml_tensor * src1,
  9142. struct ggml_tensor * dst) {
  9143. switch (src0->type) {
  9144. case GGML_TYPE_F16:
  9145. {
  9146. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9147. } break;
  9148. case GGML_TYPE_F32:
  9149. {
  9150. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9151. } break;
  9152. default:
  9153. {
  9154. GGML_ASSERT(false);
  9155. } break;
  9156. }
  9157. }
  9158. // ggml_compute_forward_rope_back
  9159. static void ggml_compute_forward_rope_back_f32(
  9160. const struct ggml_compute_params * params,
  9161. const struct ggml_tensor * src0,
  9162. const struct ggml_tensor * src1,
  9163. struct ggml_tensor * dst) {
  9164. assert(src1->type == GGML_TYPE_I32);
  9165. assert(ggml_nelements(src1) == 3);
  9166. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9167. return;
  9168. }
  9169. // y = rope(x, src1)
  9170. // dx = rope_back(dy, src1)
  9171. // src0 is dy, src1 contains options
  9172. const int n_past = ((int32_t *) src1->data)[0];
  9173. const int n_dims = ((int32_t *) src1->data)[1];
  9174. const int mode = ((int32_t *) src1->data)[2];
  9175. assert(n_past >= 0);
  9176. const size_t nb00 = src0->nb[0];
  9177. const size_t nb01 = src0->nb[1];
  9178. const size_t nb02 = src0->nb[2];
  9179. const size_t nb03 = src0->nb[3];
  9180. const int64_t ne0 = dst->ne[0];
  9181. const int64_t ne1 = dst->ne[1];
  9182. const int64_t ne2 = dst->ne[2];
  9183. const int64_t ne3 = dst->ne[3];
  9184. const size_t nb0 = dst->nb[0];
  9185. const size_t nb1 = dst->nb[1];
  9186. const size_t nb2 = dst->nb[2];
  9187. const size_t nb3 = dst->nb[3];
  9188. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9189. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9190. assert(nb0 == sizeof(float));
  9191. const int ith = params->ith;
  9192. const int nth = params->nth;
  9193. const int nr = ggml_nrows(dst);
  9194. // rows per thread
  9195. const int dr = (nr + nth - 1)/nth;
  9196. // row range for this thread
  9197. const int ir0 = dr*ith;
  9198. const int ir1 = MIN(ir0 + dr, nr);
  9199. // row index used to determine which thread to use
  9200. int ir = 0;
  9201. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9202. const bool is_neox = mode & 2;
  9203. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9204. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9205. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9206. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9207. if (ir++ < ir0) continue;
  9208. if (ir > ir1) break;
  9209. float theta = (float)p;
  9210. if (!is_neox) {
  9211. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9212. const float cos_theta = cosf(theta);
  9213. const float sin_theta = sinf(theta);
  9214. theta *= theta_scale;
  9215. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9216. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9217. const float dy0 = dy[0];
  9218. const float dy1 = dy[1];
  9219. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9220. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9221. }
  9222. } else {
  9223. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9224. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9225. const float cos_theta = cosf(theta);
  9226. const float sin_theta = sinf(theta);
  9227. theta *= theta_scale;
  9228. const int64_t i0 = ib*n_dims + ic/2;
  9229. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9230. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9231. const float dy0 = dy[0];
  9232. const float dy1 = dy[n_dims/2];
  9233. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9234. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9235. }
  9236. }
  9237. }
  9238. }
  9239. }
  9240. }
  9241. }
  9242. static void ggml_compute_forward_rope_back_f16(
  9243. const struct ggml_compute_params * params,
  9244. const struct ggml_tensor * src0,
  9245. const struct ggml_tensor * src1,
  9246. struct ggml_tensor * dst) {
  9247. assert(src1->type == GGML_TYPE_I32);
  9248. assert(ggml_nelements(src1) == 3);
  9249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9250. return;
  9251. }
  9252. // y = rope(x, src1)
  9253. // dx = rope_back(dy, src1)
  9254. // src0 is dy, src1 contains options
  9255. const int n_past = ((int32_t *) src1->data)[0];
  9256. const int n_dims = ((int32_t *) src1->data)[1];
  9257. const int mode = ((int32_t *) src1->data)[2];
  9258. assert(n_past >= 0);
  9259. const size_t nb00 = src0->nb[0];
  9260. const size_t nb01 = src0->nb[1];
  9261. const size_t nb02 = src0->nb[2];
  9262. const size_t nb03 = src0->nb[3];
  9263. const int64_t ne0 = dst->ne[0];
  9264. const int64_t ne1 = dst->ne[1];
  9265. const int64_t ne2 = dst->ne[2];
  9266. const int64_t ne3 = dst->ne[3];
  9267. const size_t nb0 = dst->nb[0];
  9268. const size_t nb1 = dst->nb[1];
  9269. const size_t nb2 = dst->nb[2];
  9270. const size_t nb3 = dst->nb[3];
  9271. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9272. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9273. assert(nb0 == sizeof(ggml_fp16_t));
  9274. const int ith = params->ith;
  9275. const int nth = params->nth;
  9276. const int nr = ggml_nrows(dst);
  9277. // rows per thread
  9278. const int dr = (nr + nth - 1)/nth;
  9279. // row range for this thread
  9280. const int ir0 = dr*ith;
  9281. const int ir1 = MIN(ir0 + dr, nr);
  9282. // row index used to determine which thread to use
  9283. int ir = 0;
  9284. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9285. const bool is_neox = mode & 2;
  9286. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9287. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9288. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9289. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9290. if (ir++ < ir0) continue;
  9291. if (ir > ir1) break;
  9292. float theta = (float)p;
  9293. if (!is_neox) {
  9294. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9295. const float cos_theta = cosf(theta);
  9296. const float sin_theta = sinf(theta);
  9297. theta *= theta_scale;
  9298. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9299. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9300. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9301. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9302. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9303. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9304. }
  9305. } else {
  9306. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9307. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9308. const float cos_theta = cosf(theta);
  9309. const float sin_theta = sinf(theta);
  9310. theta *= theta_scale;
  9311. const int64_t i0 = ib*n_dims + ic/2;
  9312. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9313. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9314. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9315. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9316. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9317. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9318. }
  9319. }
  9320. }
  9321. }
  9322. }
  9323. }
  9324. }
  9325. static void ggml_compute_forward_rope_back(
  9326. const struct ggml_compute_params * params,
  9327. const struct ggml_tensor * src0,
  9328. const struct ggml_tensor * src1,
  9329. struct ggml_tensor * dst) {
  9330. switch (src0->type) {
  9331. case GGML_TYPE_F16:
  9332. {
  9333. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9334. } break;
  9335. case GGML_TYPE_F32:
  9336. {
  9337. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9338. } break;
  9339. default:
  9340. {
  9341. GGML_ASSERT(false);
  9342. } break;
  9343. }
  9344. }
  9345. // ggml_compute_forward_conv_1d_1s
  9346. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9347. const struct ggml_compute_params * params,
  9348. const struct ggml_tensor * src0,
  9349. const struct ggml_tensor * src1,
  9350. struct ggml_tensor * dst) {
  9351. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9352. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9353. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9354. int64_t t0 = ggml_perf_time_us();
  9355. UNUSED(t0);
  9356. const int64_t ne00 = src0->ne[0];
  9357. const int64_t ne01 = src0->ne[1];
  9358. const int64_t ne02 = src0->ne[2];
  9359. //const int64_t ne03 = src0->ne[3];
  9360. const int64_t ne10 = src1->ne[0];
  9361. const int64_t ne11 = src1->ne[1];
  9362. //const int64_t ne12 = src1->ne[2];
  9363. //const int64_t ne13 = src1->ne[3];
  9364. //const int64_t ne0 = dst->ne[0];
  9365. //const int64_t ne1 = dst->ne[1];
  9366. //const int64_t ne2 = dst->ne[2];
  9367. //const int64_t ne3 = dst->ne[3];
  9368. //const int64_t ne = ne0*ne1*ne2*ne3;
  9369. const int nb00 = src0->nb[0];
  9370. const int nb01 = src0->nb[1];
  9371. const int nb02 = src0->nb[2];
  9372. //const int nb03 = src0->nb[3];
  9373. const int nb10 = src1->nb[0];
  9374. const int nb11 = src1->nb[1];
  9375. //const int nb12 = src1->nb[2];
  9376. //const int nb13 = src1->nb[3];
  9377. //const int nb0 = dst->nb[0];
  9378. const int nb1 = dst->nb[1];
  9379. //const int nb2 = dst->nb[2];
  9380. //const int nb3 = dst->nb[3];
  9381. const int ith = params->ith;
  9382. const int nth = params->nth;
  9383. const int nk = ne00;
  9384. const int nh = nk/2;
  9385. const int ew0 = ggml_up32(ne01);
  9386. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9387. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9388. GGML_ASSERT(nb10 == sizeof(float));
  9389. if (params->type == GGML_TASK_INIT) {
  9390. // TODO: fix this memset (wsize is overestimated)
  9391. memset(params->wdata, 0, params->wsize);
  9392. // prepare kernel data (src0)
  9393. {
  9394. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9395. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9396. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9397. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9398. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9399. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9400. dst_data[i00*ew0 + i01] = src[i00];
  9401. }
  9402. }
  9403. }
  9404. }
  9405. // prepare source data (src1)
  9406. {
  9407. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9408. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9409. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9410. ggml_fp16_t * dst_data = wdata;
  9411. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9412. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9413. }
  9414. }
  9415. }
  9416. return;
  9417. }
  9418. if (params->type == GGML_TASK_FINALIZE) {
  9419. return;
  9420. }
  9421. // total rows in dst
  9422. const int nr = ne02;
  9423. // rows per thread
  9424. const int dr = (nr + nth - 1)/nth;
  9425. // row range for this thread
  9426. const int ir0 = dr*ith;
  9427. const int ir1 = MIN(ir0 + dr, nr);
  9428. for (int i1 = ir0; i1 < ir1; i1++) {
  9429. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9430. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9431. dst_data[i0] = 0;
  9432. for (int k = -nh; k <= nh; k++) {
  9433. float v = 0.0f;
  9434. ggml_vec_dot_f16(ew0, &v,
  9435. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9436. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9437. dst_data[i0] += v;
  9438. }
  9439. }
  9440. }
  9441. }
  9442. static void ggml_compute_forward_conv_1d_1s_f32(
  9443. const struct ggml_compute_params * params,
  9444. const struct ggml_tensor * src0,
  9445. const struct ggml_tensor * src1,
  9446. struct ggml_tensor * dst) {
  9447. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9448. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9449. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9450. int64_t t0 = ggml_perf_time_us();
  9451. UNUSED(t0);
  9452. const int64_t ne00 = src0->ne[0];
  9453. const int64_t ne01 = src0->ne[1];
  9454. const int64_t ne02 = src0->ne[2];
  9455. //const int64_t ne03 = src0->ne[3];
  9456. const int64_t ne10 = src1->ne[0];
  9457. const int64_t ne11 = src1->ne[1];
  9458. //const int64_t ne12 = src1->ne[2];
  9459. //const int64_t ne13 = src1->ne[3];
  9460. //const int64_t ne0 = dst->ne[0];
  9461. //const int64_t ne1 = dst->ne[1];
  9462. //const int64_t ne2 = dst->ne[2];
  9463. //const int64_t ne3 = dst->ne[3];
  9464. //const int64_t ne = ne0*ne1*ne2*ne3;
  9465. const int nb00 = src0->nb[0];
  9466. const int nb01 = src0->nb[1];
  9467. const int nb02 = src0->nb[2];
  9468. //const int nb03 = src0->nb[3];
  9469. const int nb10 = src1->nb[0];
  9470. const int nb11 = src1->nb[1];
  9471. //const int nb12 = src1->nb[2];
  9472. //const int nb13 = src1->nb[3];
  9473. //const int nb0 = dst->nb[0];
  9474. const int nb1 = dst->nb[1];
  9475. //const int nb2 = dst->nb[2];
  9476. //const int nb3 = dst->nb[3];
  9477. const int ith = params->ith;
  9478. const int nth = params->nth;
  9479. const int nk = ne00;
  9480. const int nh = nk/2;
  9481. const int ew0 = ggml_up32(ne01);
  9482. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9483. GGML_ASSERT(nb00 == sizeof(float));
  9484. GGML_ASSERT(nb10 == sizeof(float));
  9485. if (params->type == GGML_TASK_INIT) {
  9486. // TODO: fix this memset (wsize is overestimated)
  9487. memset(params->wdata, 0, params->wsize);
  9488. // prepare kernel data (src0)
  9489. {
  9490. float * const wdata = (float *) params->wdata + 0;
  9491. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9492. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9493. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9494. float * dst_data = wdata + i02*ew0*ne00;
  9495. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9496. dst_data[i00*ew0 + i01] = src[i00];
  9497. }
  9498. }
  9499. }
  9500. }
  9501. // prepare source data (src1)
  9502. {
  9503. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9504. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9505. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9506. float * dst_data = wdata;
  9507. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9508. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9509. }
  9510. }
  9511. }
  9512. return;
  9513. }
  9514. if (params->type == GGML_TASK_FINALIZE) {
  9515. return;
  9516. }
  9517. // total rows in dst
  9518. const int nr = ne02;
  9519. // rows per thread
  9520. const int dr = (nr + nth - 1)/nth;
  9521. // row range for this thread
  9522. const int ir0 = dr*ith;
  9523. const int ir1 = MIN(ir0 + dr, nr);
  9524. for (int i1 = ir0; i1 < ir1; i1++) {
  9525. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9526. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9527. dst_data[i0] = 0;
  9528. for (int k = -nh; k <= nh; k++) {
  9529. float v = 0.0f;
  9530. ggml_vec_dot_f32(ew0, &v,
  9531. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9532. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9533. dst_data[i0] += v;
  9534. }
  9535. }
  9536. }
  9537. }
  9538. static void ggml_compute_forward_conv_1d_1s(
  9539. const struct ggml_compute_params * params,
  9540. const struct ggml_tensor * src0,
  9541. const struct ggml_tensor * src1,
  9542. struct ggml_tensor * dst) {
  9543. switch (src0->type) {
  9544. case GGML_TYPE_F16:
  9545. {
  9546. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9547. } break;
  9548. case GGML_TYPE_F32:
  9549. {
  9550. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9551. } break;
  9552. default:
  9553. {
  9554. GGML_ASSERT(false);
  9555. } break;
  9556. }
  9557. }
  9558. // ggml_compute_forward_conv_1d_2s
  9559. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9560. const struct ggml_compute_params * params,
  9561. const struct ggml_tensor * src0,
  9562. const struct ggml_tensor * src1,
  9563. struct ggml_tensor * dst) {
  9564. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9565. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9566. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9567. int64_t t0 = ggml_perf_time_us();
  9568. UNUSED(t0);
  9569. const int64_t ne00 = src0->ne[0];
  9570. const int64_t ne01 = src0->ne[1];
  9571. const int64_t ne02 = src0->ne[2];
  9572. //const int64_t ne03 = src0->ne[3];
  9573. const int64_t ne10 = src1->ne[0];
  9574. const int64_t ne11 = src1->ne[1];
  9575. //const int64_t ne12 = src1->ne[2];
  9576. //const int64_t ne13 = src1->ne[3];
  9577. //const int64_t ne0 = dst->ne[0];
  9578. //const int64_t ne1 = dst->ne[1];
  9579. //const int64_t ne2 = dst->ne[2];
  9580. //const int64_t ne3 = dst->ne[3];
  9581. //const int64_t ne = ne0*ne1*ne2*ne3;
  9582. const int nb00 = src0->nb[0];
  9583. const int nb01 = src0->nb[1];
  9584. const int nb02 = src0->nb[2];
  9585. //const int nb03 = src0->nb[3];
  9586. const int nb10 = src1->nb[0];
  9587. const int nb11 = src1->nb[1];
  9588. //const int nb12 = src1->nb[2];
  9589. //const int nb13 = src1->nb[3];
  9590. //const int nb0 = dst->nb[0];
  9591. const int nb1 = dst->nb[1];
  9592. //const int nb2 = dst->nb[2];
  9593. //const int nb3 = dst->nb[3];
  9594. const int ith = params->ith;
  9595. const int nth = params->nth;
  9596. const int nk = ne00;
  9597. const int nh = nk/2;
  9598. const int ew0 = ggml_up32(ne01);
  9599. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9600. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9601. GGML_ASSERT(nb10 == sizeof(float));
  9602. if (params->type == GGML_TASK_INIT) {
  9603. // TODO: fix this memset (wsize is overestimated)
  9604. memset(params->wdata, 0, params->wsize);
  9605. // prepare kernel data (src0)
  9606. {
  9607. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9608. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9609. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9610. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9611. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9612. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9613. dst_data[i00*ew0 + i01] = src[i00];
  9614. }
  9615. }
  9616. }
  9617. }
  9618. // prepare source data (src1)
  9619. {
  9620. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9621. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9622. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9623. ggml_fp16_t * dst_data = wdata;
  9624. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9625. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9626. }
  9627. }
  9628. }
  9629. return;
  9630. }
  9631. if (params->type == GGML_TASK_FINALIZE) {
  9632. return;
  9633. }
  9634. // total rows in dst
  9635. const int nr = ne02;
  9636. // rows per thread
  9637. const int dr = (nr + nth - 1)/nth;
  9638. // row range for this thread
  9639. const int ir0 = dr*ith;
  9640. const int ir1 = MIN(ir0 + dr, nr);
  9641. for (int i1 = ir0; i1 < ir1; i1++) {
  9642. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9643. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9644. dst_data[i0/2] = 0;
  9645. for (int k = -nh; k <= nh; k++) {
  9646. float v = 0.0f;
  9647. ggml_vec_dot_f16(ew0, &v,
  9648. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9649. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9650. dst_data[i0/2] += v;
  9651. }
  9652. }
  9653. }
  9654. }
  9655. static void ggml_compute_forward_conv_1d_2s_f32(
  9656. const struct ggml_compute_params * params,
  9657. const struct ggml_tensor * src0,
  9658. const struct ggml_tensor * src1,
  9659. struct ggml_tensor * dst) {
  9660. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9661. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9662. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9663. int64_t t0 = ggml_perf_time_us();
  9664. UNUSED(t0);
  9665. const int64_t ne00 = src0->ne[0];
  9666. const int64_t ne01 = src0->ne[1];
  9667. const int64_t ne02 = src0->ne[2];
  9668. //const int64_t ne03 = src0->ne[3];
  9669. const int64_t ne10 = src1->ne[0];
  9670. const int64_t ne11 = src1->ne[1];
  9671. //const int64_t ne12 = src1->ne[2];
  9672. //const int64_t ne13 = src1->ne[3];
  9673. //const int64_t ne0 = dst->ne[0];
  9674. //const int64_t ne1 = dst->ne[1];
  9675. //const int64_t ne2 = dst->ne[2];
  9676. //const int64_t ne3 = dst->ne[3];
  9677. //const int64_t ne = ne0*ne1*ne2*ne3;
  9678. const int nb00 = src0->nb[0];
  9679. const int nb01 = src0->nb[1];
  9680. const int nb02 = src0->nb[2];
  9681. //const int nb03 = src0->nb[3];
  9682. const int nb10 = src1->nb[0];
  9683. const int nb11 = src1->nb[1];
  9684. //const int nb12 = src1->nb[2];
  9685. //const int nb13 = src1->nb[3];
  9686. //const int nb0 = dst->nb[0];
  9687. const int nb1 = dst->nb[1];
  9688. //const int nb2 = dst->nb[2];
  9689. //const int nb3 = dst->nb[3];
  9690. const int ith = params->ith;
  9691. const int nth = params->nth;
  9692. const int nk = ne00;
  9693. const int nh = nk/2;
  9694. const int ew0 = ggml_up32(ne01);
  9695. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9696. GGML_ASSERT(nb00 == sizeof(float));
  9697. GGML_ASSERT(nb10 == sizeof(float));
  9698. if (params->type == GGML_TASK_INIT) {
  9699. // TODO: fix this memset (wsize is overestimated)
  9700. memset(params->wdata, 0, params->wsize);
  9701. // prepare kernel data (src0)
  9702. {
  9703. float * const wdata = (float *) params->wdata + 0;
  9704. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9705. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9706. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9707. float * dst_data = wdata + i02*ew0*ne00;
  9708. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9709. dst_data[i00*ew0 + i01] = src[i00];
  9710. }
  9711. }
  9712. }
  9713. }
  9714. // prepare source data (src1)
  9715. {
  9716. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9717. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9718. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9719. float * dst_data = wdata;
  9720. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9721. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9722. }
  9723. }
  9724. }
  9725. return;
  9726. }
  9727. if (params->type == GGML_TASK_FINALIZE) {
  9728. return;
  9729. }
  9730. // total rows in dst
  9731. const int nr = ne02;
  9732. // rows per thread
  9733. const int dr = (nr + nth - 1)/nth;
  9734. // row range for this thread
  9735. const int ir0 = dr*ith;
  9736. const int ir1 = MIN(ir0 + dr, nr);
  9737. for (int i1 = ir0; i1 < ir1; i1++) {
  9738. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9739. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9740. dst_data[i0/2] = 0;
  9741. for (int k = -nh; k <= nh; k++) {
  9742. float v = 0.0f;
  9743. ggml_vec_dot_f32(ew0, &v,
  9744. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9745. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9746. dst_data[i0/2] += v;
  9747. }
  9748. }
  9749. }
  9750. }
  9751. static void ggml_compute_forward_conv_1d_2s(
  9752. const struct ggml_compute_params * params,
  9753. const struct ggml_tensor * src0,
  9754. const struct ggml_tensor * src1,
  9755. struct ggml_tensor * dst) {
  9756. switch (src0->type) {
  9757. case GGML_TYPE_F16:
  9758. {
  9759. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9760. } break;
  9761. case GGML_TYPE_F32:
  9762. {
  9763. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9764. } break;
  9765. default:
  9766. {
  9767. GGML_ASSERT(false);
  9768. } break;
  9769. }
  9770. }
  9771. // ggml_compute_forward_flash_attn
  9772. static void ggml_compute_forward_flash_attn_f32(
  9773. const struct ggml_compute_params * params,
  9774. const struct ggml_tensor * q,
  9775. const struct ggml_tensor * k,
  9776. const struct ggml_tensor * v,
  9777. const bool masked,
  9778. struct ggml_tensor * dst) {
  9779. int64_t t0 = ggml_perf_time_us();
  9780. UNUSED(t0);
  9781. const int64_t neq0 = q->ne[0];
  9782. const int64_t neq1 = q->ne[1];
  9783. const int64_t neq2 = q->ne[2];
  9784. const int64_t neq3 = q->ne[3];
  9785. const int64_t nek0 = k->ne[0];
  9786. const int64_t nek1 = k->ne[1];
  9787. //const int64_t nek2 = k->ne[2];
  9788. //const int64_t nek3 = k->ne[3];
  9789. //const int64_t nev0 = v->ne[0];
  9790. const int64_t nev1 = v->ne[1];
  9791. //const int64_t nev2 = v->ne[2];
  9792. //const int64_t nev3 = v->ne[3];
  9793. const int64_t ne0 = dst->ne[0];
  9794. const int64_t ne1 = dst->ne[1];
  9795. //const int64_t ne2 = dst->ne[2];
  9796. //const int64_t ne3 = dst->ne[3];
  9797. const int nbk0 = k->nb[0];
  9798. const int nbk1 = k->nb[1];
  9799. const int nbk2 = k->nb[2];
  9800. const int nbk3 = k->nb[3];
  9801. const int nbq0 = q->nb[0];
  9802. const int nbq1 = q->nb[1];
  9803. const int nbq2 = q->nb[2];
  9804. const int nbq3 = q->nb[3];
  9805. const int nbv0 = v->nb[0];
  9806. const int nbv1 = v->nb[1];
  9807. const int nbv2 = v->nb[2];
  9808. const int nbv3 = v->nb[3];
  9809. const int nb0 = dst->nb[0];
  9810. const int nb1 = dst->nb[1];
  9811. const int nb2 = dst->nb[2];
  9812. const int nb3 = dst->nb[3];
  9813. const int ith = params->ith;
  9814. const int nth = params->nth;
  9815. const int64_t D = neq0;
  9816. const int64_t N = neq1;
  9817. const int64_t P = nek1 - N;
  9818. const int64_t M = P + N;
  9819. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9820. GGML_ASSERT(ne0 == D);
  9821. GGML_ASSERT(ne1 == N);
  9822. GGML_ASSERT(P >= 0);
  9823. GGML_ASSERT(nbq0 == sizeof(float));
  9824. GGML_ASSERT(nbk0 == sizeof(float));
  9825. GGML_ASSERT(nbv0 == sizeof(float));
  9826. GGML_ASSERT(neq0 == D);
  9827. GGML_ASSERT(nek0 == D);
  9828. GGML_ASSERT(nev1 == D);
  9829. GGML_ASSERT(neq1 == N);
  9830. GGML_ASSERT(nek1 == N + P);
  9831. GGML_ASSERT(nev1 == D);
  9832. // dst cannot be transposed or permuted
  9833. GGML_ASSERT(nb0 == sizeof(float));
  9834. GGML_ASSERT(nb0 <= nb1);
  9835. GGML_ASSERT(nb1 <= nb2);
  9836. GGML_ASSERT(nb2 <= nb3);
  9837. if (params->type == GGML_TASK_INIT) {
  9838. return;
  9839. }
  9840. if (params->type == GGML_TASK_FINALIZE) {
  9841. return;
  9842. }
  9843. // parallelize by q rows using ggml_vec_dot_f32
  9844. // total rows in q
  9845. const int nr = neq1*neq2*neq3;
  9846. // rows per thread
  9847. const int dr = (nr + nth - 1)/nth;
  9848. // row range for this thread
  9849. const int ir0 = dr*ith;
  9850. const int ir1 = MIN(ir0 + dr, nr);
  9851. const float scale = 1.0f/sqrtf(D);
  9852. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9853. for (int ir = ir0; ir < ir1; ++ir) {
  9854. // q indices
  9855. const int iq3 = ir/(neq2*neq1);
  9856. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9857. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9858. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9859. for (int i = M; i < Mup; ++i) {
  9860. S[i] = -INFINITY;
  9861. }
  9862. for (int64_t ic = 0; ic < nek1; ++ic) {
  9863. // k indices
  9864. const int ik3 = iq3;
  9865. const int ik2 = iq2;
  9866. const int ik1 = ic;
  9867. // S indices
  9868. const int i1 = ik1;
  9869. ggml_vec_dot_f32(neq0,
  9870. S + i1,
  9871. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9872. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9873. }
  9874. // scale
  9875. ggml_vec_scale_f32(nek1, S, scale);
  9876. if (masked) {
  9877. for (int64_t i = P; i < M; i++) {
  9878. if (i > P + iq1) {
  9879. S[i] = -INFINITY;
  9880. }
  9881. }
  9882. }
  9883. // softmax
  9884. {
  9885. float max = -INFINITY;
  9886. ggml_vec_max_f32(M, &max, S);
  9887. ggml_float sum = 0.0;
  9888. {
  9889. #ifdef GGML_SOFT_MAX_ACCELERATE
  9890. max = -max;
  9891. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9892. vvexpf(S, S, &Mup);
  9893. ggml_vec_sum_f32(Mup, &sum, S);
  9894. #else
  9895. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9896. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9897. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9898. float * SS = S + i;
  9899. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9900. if (SS[j] == -INFINITY) {
  9901. SS[j] = 0.0f;
  9902. } else {
  9903. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9904. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9905. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9906. sump[j] += (ggml_float)val;
  9907. SS[j] = val;
  9908. }
  9909. }
  9910. }
  9911. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9912. sum += sump[i];
  9913. }
  9914. #endif
  9915. }
  9916. assert(sum > 0.0);
  9917. sum = 1.0/sum;
  9918. ggml_vec_scale_f32(M, S, sum);
  9919. #ifndef NDEBUG
  9920. for (int i = 0; i < M; ++i) {
  9921. assert(!isnan(S[i]));
  9922. assert(!isinf(S[i]));
  9923. }
  9924. #endif
  9925. }
  9926. for (int64_t ic = 0; ic < nev1; ++ic) {
  9927. // dst indices
  9928. const int i1 = iq1;
  9929. const int i2 = iq2;
  9930. const int i3 = iq3;
  9931. ggml_vec_dot_f32(nek1,
  9932. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9933. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9934. S);
  9935. }
  9936. }
  9937. }
  9938. static void ggml_compute_forward_flash_attn_f16(
  9939. const struct ggml_compute_params * params,
  9940. const struct ggml_tensor * q,
  9941. const struct ggml_tensor * k,
  9942. const struct ggml_tensor * v,
  9943. const bool masked,
  9944. struct ggml_tensor * dst) {
  9945. int64_t t0 = ggml_perf_time_us();
  9946. UNUSED(t0);
  9947. const int64_t neq0 = q->ne[0];
  9948. const int64_t neq1 = q->ne[1];
  9949. const int64_t neq2 = q->ne[2];
  9950. const int64_t neq3 = q->ne[3];
  9951. const int64_t nek0 = k->ne[0];
  9952. const int64_t nek1 = k->ne[1];
  9953. //const int64_t nek2 = k->ne[2];
  9954. //const int64_t nek3 = k->ne[3];
  9955. //const int64_t nev0 = v->ne[0];
  9956. const int64_t nev1 = v->ne[1];
  9957. //const int64_t nev2 = v->ne[2];
  9958. //const int64_t nev3 = v->ne[3];
  9959. const int64_t ne0 = dst->ne[0];
  9960. const int64_t ne1 = dst->ne[1];
  9961. //const int64_t ne2 = dst->ne[2];
  9962. //const int64_t ne3 = dst->ne[3];
  9963. const int nbk0 = k->nb[0];
  9964. const int nbk1 = k->nb[1];
  9965. const int nbk2 = k->nb[2];
  9966. const int nbk3 = k->nb[3];
  9967. const int nbq0 = q->nb[0];
  9968. const int nbq1 = q->nb[1];
  9969. const int nbq2 = q->nb[2];
  9970. const int nbq3 = q->nb[3];
  9971. const int nbv0 = v->nb[0];
  9972. const int nbv1 = v->nb[1];
  9973. const int nbv2 = v->nb[2];
  9974. const int nbv3 = v->nb[3];
  9975. const int nb0 = dst->nb[0];
  9976. const int nb1 = dst->nb[1];
  9977. const int nb2 = dst->nb[2];
  9978. const int nb3 = dst->nb[3];
  9979. const int ith = params->ith;
  9980. const int nth = params->nth;
  9981. const int64_t D = neq0;
  9982. const int64_t N = neq1;
  9983. const int64_t P = nek1 - N;
  9984. const int64_t M = P + N;
  9985. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9986. GGML_ASSERT(ne0 == D);
  9987. GGML_ASSERT(ne1 == N);
  9988. GGML_ASSERT(P >= 0);
  9989. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9990. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9991. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9992. GGML_ASSERT(neq0 == D);
  9993. GGML_ASSERT(nek0 == D);
  9994. GGML_ASSERT(nev1 == D);
  9995. GGML_ASSERT(neq1 == N);
  9996. GGML_ASSERT(nek1 == N + P);
  9997. GGML_ASSERT(nev1 == D);
  9998. // dst cannot be transposed or permuted
  9999. GGML_ASSERT(nb0 == sizeof(float));
  10000. GGML_ASSERT(nb0 <= nb1);
  10001. GGML_ASSERT(nb1 <= nb2);
  10002. GGML_ASSERT(nb2 <= nb3);
  10003. if (params->type == GGML_TASK_INIT) {
  10004. return;
  10005. }
  10006. if (params->type == GGML_TASK_FINALIZE) {
  10007. return;
  10008. }
  10009. // parallelize by q rows using ggml_vec_dot_f32
  10010. // total rows in q
  10011. const int nr = neq1*neq2*neq3;
  10012. // rows per thread
  10013. const int dr = (nr + nth - 1)/nth;
  10014. // row range for this thread
  10015. const int ir0 = dr*ith;
  10016. const int ir1 = MIN(ir0 + dr, nr);
  10017. const float scale = 1.0f/sqrtf(D);
  10018. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10019. for (int ir = ir0; ir < ir1; ++ir) {
  10020. // q indices
  10021. const int iq3 = ir/(neq2*neq1);
  10022. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10023. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10024. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10025. for (int i = M; i < Mup; ++i) {
  10026. S[i] = -INFINITY;
  10027. }
  10028. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10029. for (int64_t ic = 0; ic < nek1; ++ic) {
  10030. // k indices
  10031. const int ik3 = iq3;
  10032. const int ik2 = iq2;
  10033. const int ik1 = ic;
  10034. // S indices
  10035. const int i1 = ik1;
  10036. ggml_vec_dot_f16(neq0,
  10037. S + i1,
  10038. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10039. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10040. }
  10041. } else {
  10042. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10043. // k indices
  10044. const int ik3 = iq3;
  10045. const int ik2 = iq2;
  10046. const int ik1 = ic;
  10047. // S indices
  10048. const int i1 = ik1;
  10049. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10050. S + i1,
  10051. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10052. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10053. }
  10054. }
  10055. // scale
  10056. ggml_vec_scale_f32(nek1, S, scale);
  10057. if (masked) {
  10058. for (int64_t i = P; i < M; i++) {
  10059. if (i > P + iq1) {
  10060. S[i] = -INFINITY;
  10061. }
  10062. }
  10063. }
  10064. // softmax
  10065. {
  10066. float max = -INFINITY;
  10067. ggml_vec_max_f32(M, &max, S);
  10068. ggml_float sum = 0.0;
  10069. {
  10070. #ifdef GGML_SOFT_MAX_ACCELERATE
  10071. max = -max;
  10072. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10073. vvexpf(S, S, &Mup);
  10074. ggml_vec_sum_f32(Mup, &sum, S);
  10075. #else
  10076. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10077. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10078. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10079. float * SS = S + i;
  10080. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10081. if (SS[j] == -INFINITY) {
  10082. SS[j] = 0.0f;
  10083. } else {
  10084. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10085. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10086. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10087. sump[j] += (ggml_float)val;
  10088. SS[j] = val;
  10089. }
  10090. }
  10091. }
  10092. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10093. sum += sump[i];
  10094. }
  10095. #endif
  10096. }
  10097. assert(sum > 0.0);
  10098. sum = 1.0/sum;
  10099. ggml_vec_scale_f32(M, S, sum);
  10100. #ifndef NDEBUG
  10101. for (int i = 0; i < M; ++i) {
  10102. assert(!isnan(S[i]));
  10103. assert(!isinf(S[i]));
  10104. }
  10105. #endif
  10106. }
  10107. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10108. for (int64_t i = 0; i < M; i++) {
  10109. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10110. }
  10111. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10112. for (int64_t ic = 0; ic < nev1; ++ic) {
  10113. // dst indices
  10114. const int i1 = iq1;
  10115. const int i2 = iq2;
  10116. const int i3 = iq3;
  10117. ggml_vec_dot_f16(nek1,
  10118. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10119. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10120. S16);
  10121. }
  10122. } else {
  10123. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10124. // dst indices
  10125. const int i1 = iq1;
  10126. const int i2 = iq2;
  10127. const int i3 = iq3;
  10128. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10129. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10130. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10131. S16);
  10132. }
  10133. }
  10134. }
  10135. }
  10136. static void ggml_compute_forward_flash_attn(
  10137. const struct ggml_compute_params * params,
  10138. const struct ggml_tensor * q,
  10139. const struct ggml_tensor * k,
  10140. const struct ggml_tensor * v,
  10141. const bool masked,
  10142. struct ggml_tensor * dst) {
  10143. switch (q->type) {
  10144. case GGML_TYPE_F16:
  10145. {
  10146. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10147. } break;
  10148. case GGML_TYPE_F32:
  10149. {
  10150. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10151. } break;
  10152. default:
  10153. {
  10154. GGML_ASSERT(false);
  10155. } break;
  10156. }
  10157. }
  10158. // ggml_compute_forward_flash_ff
  10159. static void ggml_compute_forward_flash_ff_f16(
  10160. const struct ggml_compute_params * params,
  10161. const struct ggml_tensor * a, // F16
  10162. const struct ggml_tensor * b0, // F16 fc_w
  10163. const struct ggml_tensor * b1, // F32 fc_b
  10164. const struct ggml_tensor * c0, // F16 proj_w
  10165. const struct ggml_tensor * c1, // F32 proj_b
  10166. struct ggml_tensor * dst) {
  10167. int64_t t0 = ggml_perf_time_us();
  10168. UNUSED(t0);
  10169. const int64_t nea0 = a->ne[0];
  10170. const int64_t nea1 = a->ne[1];
  10171. const int64_t nea2 = a->ne[2];
  10172. const int64_t nea3 = a->ne[3];
  10173. const int64_t neb00 = b0->ne[0];
  10174. const int64_t neb01 = b0->ne[1];
  10175. //const int64_t neb02 = b0->ne[2];
  10176. //const int64_t neb03 = b0->ne[3];
  10177. const int64_t neb10 = b1->ne[0];
  10178. const int64_t neb11 = b1->ne[1];
  10179. //const int64_t neb12 = b1->ne[2];
  10180. //const int64_t neb13 = b1->ne[3];
  10181. const int64_t nec00 = c0->ne[0];
  10182. const int64_t nec01 = c0->ne[1];
  10183. //const int64_t nec02 = c0->ne[2];
  10184. //const int64_t nec03 = c0->ne[3];
  10185. const int64_t nec10 = c1->ne[0];
  10186. const int64_t nec11 = c1->ne[1];
  10187. //const int64_t nec12 = c1->ne[2];
  10188. //const int64_t nec13 = c1->ne[3];
  10189. const int64_t ne0 = dst->ne[0];
  10190. const int64_t ne1 = dst->ne[1];
  10191. const int64_t ne2 = dst->ne[2];
  10192. //const int64_t ne3 = dst->ne[3];
  10193. const int nba0 = a->nb[0];
  10194. const int nba1 = a->nb[1];
  10195. const int nba2 = a->nb[2];
  10196. const int nba3 = a->nb[3];
  10197. const int nbb00 = b0->nb[0];
  10198. const int nbb01 = b0->nb[1];
  10199. const int nbb02 = b0->nb[2];
  10200. const int nbb03 = b0->nb[3];
  10201. const int nbb10 = b1->nb[0];
  10202. //const int nbb11 = b1->nb[1];
  10203. //const int nbb12 = b1->nb[2];
  10204. //const int nbb13 = b1->nb[3];
  10205. const int nbc00 = c0->nb[0];
  10206. const int nbc01 = c0->nb[1];
  10207. const int nbc02 = c0->nb[2];
  10208. const int nbc03 = c0->nb[3];
  10209. const int nbc10 = c1->nb[0];
  10210. //const int nbc11 = c1->nb[1];
  10211. //const int nbc12 = c1->nb[2];
  10212. //const int nbc13 = c1->nb[3];
  10213. const int nb0 = dst->nb[0];
  10214. const int nb1 = dst->nb[1];
  10215. const int nb2 = dst->nb[2];
  10216. const int nb3 = dst->nb[3];
  10217. const int ith = params->ith;
  10218. const int nth = params->nth;
  10219. const int64_t D = nea0;
  10220. //const int64_t N = nea1;
  10221. const int64_t M = neb01;
  10222. GGML_ASSERT(ne0 == nea0);
  10223. GGML_ASSERT(ne1 == nea1);
  10224. GGML_ASSERT(ne2 == nea2);
  10225. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10226. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10227. GGML_ASSERT(nbb10 == sizeof(float));
  10228. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10229. GGML_ASSERT(nbc10 == sizeof(float));
  10230. GGML_ASSERT(neb00 == D);
  10231. GGML_ASSERT(neb01 == M);
  10232. GGML_ASSERT(neb10 == M);
  10233. GGML_ASSERT(neb11 == 1);
  10234. GGML_ASSERT(nec00 == M);
  10235. GGML_ASSERT(nec01 == D);
  10236. GGML_ASSERT(nec10 == D);
  10237. GGML_ASSERT(nec11 == 1);
  10238. // dst cannot be transposed or permuted
  10239. GGML_ASSERT(nb0 == sizeof(float));
  10240. GGML_ASSERT(nb0 <= nb1);
  10241. GGML_ASSERT(nb1 <= nb2);
  10242. GGML_ASSERT(nb2 <= nb3);
  10243. if (params->type == GGML_TASK_INIT) {
  10244. return;
  10245. }
  10246. if (params->type == GGML_TASK_FINALIZE) {
  10247. return;
  10248. }
  10249. // parallelize by a rows using ggml_vec_dot_f32
  10250. // total rows in a
  10251. const int nr = nea1*nea2*nea3;
  10252. // rows per thread
  10253. const int dr = (nr + nth - 1)/nth;
  10254. // row range for this thread
  10255. const int ir0 = dr*ith;
  10256. const int ir1 = MIN(ir0 + dr, nr);
  10257. for (int ir = ir0; ir < ir1; ++ir) {
  10258. // a indices
  10259. const int ia3 = ir/(nea2*nea1);
  10260. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10261. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10262. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10263. for (int64_t ic = 0; ic < neb01; ++ic) {
  10264. // b0 indices
  10265. const int ib03 = ia3;
  10266. const int ib02 = ia2;
  10267. const int ib01 = ic;
  10268. // S indices
  10269. const int i1 = ib01;
  10270. ggml_vec_dot_f16(nea0,
  10271. S + i1,
  10272. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10273. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10274. }
  10275. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10276. //ggml_vec_gelu_f32(neb01, S, S);
  10277. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10278. for (int64_t i = 0; i < M; i++) {
  10279. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10280. }
  10281. ggml_vec_gelu_f16(neb01, S16, S16);
  10282. {
  10283. // dst indices
  10284. const int i1 = ia1;
  10285. const int i2 = ia2;
  10286. const int i3 = ia3;
  10287. for (int64_t ic = 0; ic < nec01; ++ic) {
  10288. ggml_vec_dot_f16(neb01,
  10289. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10290. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10291. S16);
  10292. }
  10293. ggml_vec_add_f32(nec01,
  10294. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10295. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10296. (float *) c1->data);
  10297. }
  10298. }
  10299. }
  10300. static void ggml_compute_forward_flash_ff(
  10301. const struct ggml_compute_params * params,
  10302. const struct ggml_tensor * a,
  10303. const struct ggml_tensor * b0,
  10304. const struct ggml_tensor * b1,
  10305. const struct ggml_tensor * c0,
  10306. const struct ggml_tensor * c1,
  10307. struct ggml_tensor * dst) {
  10308. switch (b0->type) {
  10309. case GGML_TYPE_F16:
  10310. {
  10311. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10312. } break;
  10313. case GGML_TYPE_F32:
  10314. {
  10315. GGML_ASSERT(false); // TODO
  10316. } break;
  10317. default:
  10318. {
  10319. GGML_ASSERT(false);
  10320. } break;
  10321. }
  10322. }
  10323. // ggml_compute_forward_map_unary
  10324. static void ggml_compute_forward_map_unary_f32(
  10325. const struct ggml_compute_params * params,
  10326. const struct ggml_tensor * src0,
  10327. struct ggml_tensor * dst,
  10328. const ggml_unary_op_f32_t fun) {
  10329. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10331. return;
  10332. }
  10333. const int n = ggml_nrows(src0);
  10334. const int nc = src0->ne[0];
  10335. assert( dst->nb[0] == sizeof(float));
  10336. assert(src0->nb[0] == sizeof(float));
  10337. for (int i = 0; i < n; i++) {
  10338. fun(nc,
  10339. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10340. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10341. }
  10342. }
  10343. static void ggml_compute_forward_map_unary(
  10344. const struct ggml_compute_params * params,
  10345. const struct ggml_tensor * src0,
  10346. struct ggml_tensor * dst,
  10347. const ggml_unary_op_f32_t fun) {
  10348. switch (src0->type) {
  10349. case GGML_TYPE_F32:
  10350. {
  10351. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10352. } break;
  10353. default:
  10354. {
  10355. GGML_ASSERT(false);
  10356. } break;
  10357. }
  10358. }
  10359. // ggml_compute_forward_map_binary
  10360. static void ggml_compute_forward_map_binary_f32(
  10361. const struct ggml_compute_params * params,
  10362. const struct ggml_tensor * src0,
  10363. const struct ggml_tensor * src1,
  10364. struct ggml_tensor * dst,
  10365. const ggml_binary_op_f32_t fun) {
  10366. assert(params->ith == 0);
  10367. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10369. return;
  10370. }
  10371. const int n = ggml_nrows(src0);
  10372. const int nc = src0->ne[0];
  10373. assert( dst->nb[0] == sizeof(float));
  10374. assert(src0->nb[0] == sizeof(float));
  10375. assert(src1->nb[0] == sizeof(float));
  10376. for (int i = 0; i < n; i++) {
  10377. fun(nc,
  10378. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10379. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10380. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10381. }
  10382. }
  10383. static void ggml_compute_forward_map_binary(
  10384. const struct ggml_compute_params * params,
  10385. const struct ggml_tensor * src0,
  10386. const struct ggml_tensor * src1,
  10387. struct ggml_tensor * dst,
  10388. const ggml_binary_op_f32_t fun) {
  10389. switch (src0->type) {
  10390. case GGML_TYPE_F32:
  10391. {
  10392. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10393. } break;
  10394. default:
  10395. {
  10396. GGML_ASSERT(false);
  10397. } break;
  10398. }
  10399. }
  10400. /////////////////////////////////
  10401. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10402. GGML_ASSERT(params);
  10403. switch (tensor->op) {
  10404. case GGML_OP_DUP:
  10405. {
  10406. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10407. } break;
  10408. case GGML_OP_ADD:
  10409. {
  10410. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10411. } break;
  10412. case GGML_OP_ADD1:
  10413. {
  10414. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10415. } break;
  10416. case GGML_OP_ACC:
  10417. {
  10418. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10419. } break;
  10420. case GGML_OP_SUB:
  10421. {
  10422. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10423. } break;
  10424. case GGML_OP_MUL:
  10425. {
  10426. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10427. } break;
  10428. case GGML_OP_DIV:
  10429. {
  10430. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10431. } break;
  10432. case GGML_OP_SQR:
  10433. {
  10434. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10435. } break;
  10436. case GGML_OP_SQRT:
  10437. {
  10438. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10439. } break;
  10440. case GGML_OP_LOG:
  10441. {
  10442. ggml_compute_forward_log(params, tensor->src0, tensor);
  10443. } break;
  10444. case GGML_OP_SUM:
  10445. {
  10446. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10447. } break;
  10448. case GGML_OP_SUM_ROWS:
  10449. {
  10450. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10451. } break;
  10452. case GGML_OP_MEAN:
  10453. {
  10454. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10455. } break;
  10456. case GGML_OP_REPEAT:
  10457. {
  10458. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10459. } break;
  10460. case GGML_OP_ABS:
  10461. {
  10462. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10463. } break;
  10464. case GGML_OP_SGN:
  10465. {
  10466. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10467. } break;
  10468. case GGML_OP_NEG:
  10469. {
  10470. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10471. } break;
  10472. case GGML_OP_STEP:
  10473. {
  10474. ggml_compute_forward_step(params, tensor->src0, tensor);
  10475. } break;
  10476. case GGML_OP_RELU:
  10477. {
  10478. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10479. } break;
  10480. case GGML_OP_GELU:
  10481. {
  10482. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10483. } break;
  10484. case GGML_OP_SILU:
  10485. {
  10486. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10487. } break;
  10488. case GGML_OP_SILU_BACK:
  10489. {
  10490. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10491. } break;
  10492. case GGML_OP_NORM:
  10493. {
  10494. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10495. } break;
  10496. case GGML_OP_RMS_NORM:
  10497. {
  10498. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10499. } break;
  10500. case GGML_OP_RMS_NORM_BACK:
  10501. {
  10502. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10503. } break;
  10504. case GGML_OP_MUL_MAT:
  10505. {
  10506. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10507. } break;
  10508. case GGML_OP_SCALE:
  10509. {
  10510. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10511. } break;
  10512. case GGML_OP_SET:
  10513. {
  10514. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10515. } break;
  10516. case GGML_OP_CPY:
  10517. {
  10518. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10519. } break;
  10520. case GGML_OP_CONT:
  10521. {
  10522. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10523. } break;
  10524. case GGML_OP_RESHAPE:
  10525. {
  10526. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10527. } break;
  10528. case GGML_OP_VIEW:
  10529. {
  10530. ggml_compute_forward_view(params, tensor->src0);
  10531. } break;
  10532. case GGML_OP_PERMUTE:
  10533. {
  10534. ggml_compute_forward_permute(params, tensor->src0);
  10535. } break;
  10536. case GGML_OP_TRANSPOSE:
  10537. {
  10538. ggml_compute_forward_transpose(params, tensor->src0);
  10539. } break;
  10540. case GGML_OP_GET_ROWS:
  10541. {
  10542. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10543. } break;
  10544. case GGML_OP_GET_ROWS_BACK:
  10545. {
  10546. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10547. } break;
  10548. case GGML_OP_DIAG:
  10549. {
  10550. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10551. } break;
  10552. case GGML_OP_DIAG_MASK_INF:
  10553. {
  10554. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10555. } break;
  10556. case GGML_OP_DIAG_MASK_ZERO:
  10557. {
  10558. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10559. } break;
  10560. case GGML_OP_SOFT_MAX:
  10561. {
  10562. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10563. } break;
  10564. case GGML_OP_ROPE:
  10565. {
  10566. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10567. } break;
  10568. case GGML_OP_ROPE_BACK:
  10569. {
  10570. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10571. } break;
  10572. case GGML_OP_ALIBI:
  10573. {
  10574. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10575. } break;
  10576. case GGML_OP_CLAMP:
  10577. {
  10578. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10579. } break;
  10580. case GGML_OP_CONV_1D_1S:
  10581. {
  10582. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10583. } break;
  10584. case GGML_OP_CONV_1D_2S:
  10585. {
  10586. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10587. } break;
  10588. case GGML_OP_FLASH_ATTN:
  10589. {
  10590. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10591. GGML_ASSERT(t == 0 || t == 1);
  10592. bool masked = t != 0;
  10593. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10594. } break;
  10595. case GGML_OP_FLASH_FF:
  10596. {
  10597. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10598. } break;
  10599. case GGML_OP_MAP_UNARY:
  10600. {
  10601. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10602. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10603. }
  10604. break;
  10605. case GGML_OP_MAP_BINARY:
  10606. {
  10607. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10608. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10609. }
  10610. break;
  10611. case GGML_OP_NONE:
  10612. {
  10613. // nop
  10614. } break;
  10615. case GGML_OP_COUNT:
  10616. {
  10617. GGML_ASSERT(false);
  10618. } break;
  10619. }
  10620. }
  10621. ////////////////////////////////////////////////////////////////////////////////
  10622. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10623. struct ggml_tensor * src0 = tensor->src0;
  10624. struct ggml_tensor * src1 = tensor->src1;
  10625. switch (tensor->op) {
  10626. case GGML_OP_DUP:
  10627. {
  10628. if (src0->grad) {
  10629. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10630. }
  10631. } break;
  10632. case GGML_OP_ADD:
  10633. {
  10634. if (src0->grad) {
  10635. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10636. }
  10637. if (src1->grad) {
  10638. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10639. }
  10640. } break;
  10641. case GGML_OP_ADD1:
  10642. {
  10643. if (src0->grad) {
  10644. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10645. }
  10646. if (src1->grad) {
  10647. src1->grad = ggml_add_impl(ctx,
  10648. src1->grad,
  10649. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10650. inplace);
  10651. }
  10652. } break;
  10653. case GGML_OP_ACC:
  10654. {
  10655. if (src0->grad) {
  10656. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10657. }
  10658. if (src1->grad) {
  10659. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10660. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10661. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10662. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10663. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10664. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10665. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10666. tensor->grad,
  10667. src1->grad->ne[0],
  10668. src1->grad->ne[1],
  10669. src1->grad->ne[2],
  10670. src1->grad->ne[3],
  10671. nb1, nb2, nb3, offset);
  10672. src1->grad =
  10673. ggml_add_impl(ctx,
  10674. src1->grad,
  10675. ggml_reshape(ctx,
  10676. ggml_cont(ctx, tensor_grad_view),
  10677. src1->grad),
  10678. inplace);
  10679. }
  10680. } break;
  10681. case GGML_OP_SUB:
  10682. {
  10683. if (src0->grad) {
  10684. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10685. }
  10686. if (src1->grad) {
  10687. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10688. }
  10689. } break;
  10690. case GGML_OP_MUL:
  10691. {
  10692. if (src0->grad) {
  10693. src0->grad =
  10694. ggml_add_impl(ctx,
  10695. src0->grad,
  10696. ggml_mul(ctx, src1, tensor->grad),
  10697. inplace);
  10698. }
  10699. if (src1->grad) {
  10700. src1->grad =
  10701. ggml_add_impl(ctx,
  10702. src1->grad,
  10703. ggml_mul(ctx, src0, tensor->grad),
  10704. inplace);
  10705. }
  10706. } break;
  10707. case GGML_OP_DIV:
  10708. {
  10709. if (src0->grad) {
  10710. src0->grad =
  10711. ggml_add_impl(ctx,
  10712. src0->grad,
  10713. ggml_div(ctx, tensor->grad, src1),
  10714. inplace);
  10715. }
  10716. if (src1->grad) {
  10717. src1->grad =
  10718. ggml_sub_impl(ctx,
  10719. src1->grad,
  10720. ggml_mul(ctx,
  10721. tensor->grad,
  10722. ggml_div(ctx, tensor, src1)),
  10723. inplace);
  10724. }
  10725. } break;
  10726. case GGML_OP_SQR:
  10727. {
  10728. if (src0->grad) {
  10729. src0->grad =
  10730. ggml_add_impl(ctx,
  10731. src0->grad,
  10732. ggml_scale(ctx,
  10733. ggml_mul(ctx, src0, tensor->grad),
  10734. ggml_new_f32(ctx, 2.0f)),
  10735. inplace);
  10736. }
  10737. } break;
  10738. case GGML_OP_SQRT:
  10739. {
  10740. if (src0->grad) {
  10741. src0->grad =
  10742. ggml_add_impl(ctx,
  10743. src0->grad,
  10744. ggml_mul(ctx,
  10745. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10746. ggml_div(ctx,
  10747. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10748. tensor)),
  10749. inplace);
  10750. }
  10751. } break;
  10752. case GGML_OP_LOG:
  10753. {
  10754. if (src0->grad) {
  10755. src0->grad =
  10756. ggml_add_impl(ctx,
  10757. src0->grad,
  10758. ggml_div(ctx,
  10759. tensor->grad,
  10760. src0),
  10761. inplace);
  10762. }
  10763. } break;
  10764. case GGML_OP_SUM:
  10765. {
  10766. if (src0->grad) {
  10767. src0->grad =
  10768. ggml_add1_impl(ctx,
  10769. src0->grad,
  10770. tensor->grad,
  10771. inplace);
  10772. }
  10773. } break;
  10774. case GGML_OP_SUM_ROWS:
  10775. {
  10776. if (src0->grad) {
  10777. src0->grad =
  10778. ggml_add_impl(ctx,
  10779. src0->grad,
  10780. ggml_repeat(ctx,
  10781. tensor->grad,
  10782. src0->grad),
  10783. inplace);
  10784. }
  10785. } break;
  10786. case GGML_OP_MEAN:
  10787. {
  10788. GGML_ASSERT(false); // TODO: implement
  10789. } break;
  10790. case GGML_OP_REPEAT:
  10791. {
  10792. // necessary for llama
  10793. if (src0->grad) {
  10794. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10795. const int nc = tensor->ne[0];
  10796. const int nr = tensor->ne[1];
  10797. const int nc0 = src0->ne[0];
  10798. const int nr0 = src0->ne[1];
  10799. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10800. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10801. // tensor->grad [nc,nr,1,1]
  10802. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10803. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10804. // substitute [nc0,nr0,ncr,nrr]
  10805. // reshape [nc0*nr0,ncr*nrr,1,1]
  10806. // transpose [ncr*nrr,nc0*nr0,1,1]
  10807. // sum rows [1,nc0*nr0,1,1]
  10808. // transpose [nc0*nr0,1,1]
  10809. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10810. // add to src0->grad
  10811. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10812. struct ggml_tensor* F00 = tensor->grad;
  10813. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10814. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10815. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10816. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10817. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10818. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10819. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10820. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10821. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10822. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10823. src0->grad =
  10824. ggml_add_impl(ctx,
  10825. src0->grad,
  10826. F10,
  10827. inplace);
  10828. }
  10829. } break;
  10830. case GGML_OP_ABS:
  10831. {
  10832. if (src0->grad) {
  10833. src0->grad =
  10834. ggml_add_impl(ctx,
  10835. src0->grad,
  10836. ggml_mul(ctx,
  10837. ggml_sgn(ctx, src0),
  10838. tensor->grad),
  10839. inplace);
  10840. }
  10841. } break;
  10842. case GGML_OP_SGN:
  10843. {
  10844. if (src0->grad) {
  10845. // noop
  10846. }
  10847. } break;
  10848. case GGML_OP_NEG:
  10849. {
  10850. if (src0->grad) {
  10851. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10852. }
  10853. } break;
  10854. case GGML_OP_STEP:
  10855. {
  10856. if (src0->grad) {
  10857. // noop
  10858. }
  10859. } break;
  10860. case GGML_OP_RELU:
  10861. {
  10862. if (src0->grad) {
  10863. src0->grad = ggml_sub_impl(ctx,
  10864. src0->grad,
  10865. ggml_mul(ctx,
  10866. ggml_step(ctx, src0),
  10867. tensor->grad),
  10868. inplace);
  10869. }
  10870. } break;
  10871. case GGML_OP_GELU:
  10872. {
  10873. GGML_ASSERT(false); // TODO: not implemented
  10874. } break;
  10875. case GGML_OP_ALIBI:
  10876. {
  10877. GGML_ASSERT(false); // TODO: not implemented
  10878. } break;
  10879. case GGML_OP_CLAMP:
  10880. {
  10881. GGML_ASSERT(false); // TODO: not implemented
  10882. } break;
  10883. case GGML_OP_SILU:
  10884. {
  10885. // necessary for llama
  10886. if (src0->grad) {
  10887. src0->grad = ggml_add_impl(ctx,
  10888. src0->grad,
  10889. ggml_silu_back(ctx, src0, tensor->grad),
  10890. inplace);
  10891. }
  10892. } break;
  10893. case GGML_OP_SILU_BACK:
  10894. {
  10895. GGML_ASSERT(false); // TODO: not implemented
  10896. } break;
  10897. case GGML_OP_NORM:
  10898. {
  10899. GGML_ASSERT(false); // TODO: not implemented
  10900. } break;
  10901. case GGML_OP_RMS_NORM:
  10902. {
  10903. // necessary for llama
  10904. if (src0->grad) {
  10905. src0->grad = ggml_add_impl(ctx,
  10906. src0->grad,
  10907. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10908. inplace);
  10909. }
  10910. } break;
  10911. case GGML_OP_RMS_NORM_BACK:
  10912. {
  10913. GGML_ASSERT(false); // TODO: not implemented
  10914. } break;
  10915. case GGML_OP_MUL_MAT:
  10916. {
  10917. // https://cs231n.github.io/optimization-2/#staged
  10918. // # forward pass
  10919. // s0 = np.random.randn(5, 10)
  10920. // s1 = np.random.randn(10, 3)
  10921. // t = s0.dot(s1)
  10922. // # now suppose we had the gradient on t from above in the circuit
  10923. // dt = np.random.randn(*t.shape) # same shape as t
  10924. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10925. // ds1 = t.T.dot(dt)
  10926. // tensor.shape [m,p]
  10927. // src0.shape [n,m]
  10928. // src1.shape [n,p]
  10929. // necessary for llama
  10930. if (src0->grad) {
  10931. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10932. src0->grad =
  10933. ggml_add_impl(ctx,
  10934. src0->grad,
  10935. // ds0 = dt.dot(s1.T)
  10936. // ggml_out_prod(ctx, // [n,m]
  10937. // src1, // [n,p]
  10938. // tensor->grad), // [m,p]
  10939. // for now just using A*B==(B.T*A.T).T
  10940. ggml_cont(ctx, // [n,m]
  10941. ggml_transpose(ctx, // [n,m]
  10942. ggml_mul_mat(ctx, // [m,n]
  10943. ggml_cont(ctx, // [p,m]
  10944. ggml_transpose(ctx, // [p,m]
  10945. tensor->grad)), // [m,p]
  10946. ggml_cont(ctx, // [p,n]
  10947. ggml_transpose(ctx, // [p,n]
  10948. src1))))), // [n,p]
  10949. inplace);
  10950. }
  10951. if (src1->grad) {
  10952. src1->grad =
  10953. ggml_add_impl(ctx,
  10954. src1->grad,
  10955. // ds1 = s0.T.dot(dt):
  10956. ggml_mul_mat(ctx, // [n,p]
  10957. ggml_cont(ctx, // [m,n]
  10958. ggml_transpose(ctx, src0)), // [m,n]
  10959. tensor->grad), // [m,p]
  10960. inplace);
  10961. }
  10962. } break;
  10963. case GGML_OP_SCALE:
  10964. {
  10965. // necessary for llama
  10966. if (src0->grad) {
  10967. src0->grad =
  10968. ggml_add_impl(ctx,
  10969. src0->grad,
  10970. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10971. inplace);
  10972. }
  10973. if (src1->grad) {
  10974. src1->grad =
  10975. ggml_add_impl(ctx,
  10976. src1->grad,
  10977. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10978. inplace);
  10979. }
  10980. } break;
  10981. case GGML_OP_SET:
  10982. {
  10983. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10984. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10985. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10986. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10987. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10988. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10989. struct ggml_tensor * tensor_grad_view = NULL;
  10990. if (src0->grad || src1->grad) {
  10991. GGML_ASSERT(src0->type == tensor->type);
  10992. GGML_ASSERT(tensor->grad->type == tensor->type);
  10993. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10994. tensor_grad_view = ggml_view_4d(ctx,
  10995. tensor->grad,
  10996. src1->grad->ne[0],
  10997. src1->grad->ne[1],
  10998. src1->grad->ne[2],
  10999. src1->grad->ne[3],
  11000. nb1, nb2, nb3, offset);
  11001. }
  11002. if (src0->grad) {
  11003. src0->grad = ggml_add_impl(ctx,
  11004. src0->grad,
  11005. ggml_acc_impl(ctx,
  11006. tensor->grad,
  11007. ggml_neg(ctx, tensor_grad_view),
  11008. nb1, nb2, nb3, offset, false),
  11009. inplace);
  11010. }
  11011. if (src1->grad) {
  11012. src1->grad =
  11013. ggml_add_impl(ctx,
  11014. src1->grad,
  11015. ggml_reshape(ctx,
  11016. ggml_cont(ctx, tensor_grad_view),
  11017. src1->grad),
  11018. inplace);
  11019. }
  11020. } break;
  11021. case GGML_OP_CPY:
  11022. {
  11023. // necessary for llama
  11024. // cpy overwrites value of src1 by src0 and returns view(src1)
  11025. // the overwriting is mathematically equivalent to:
  11026. // tensor = src0 * 1 + src1 * 0
  11027. if (src0->grad) {
  11028. // dsrc0 = dtensor * 1
  11029. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11030. }
  11031. if (src1->grad) {
  11032. // dsrc1 = dtensor * 0 -> noop
  11033. }
  11034. } break;
  11035. case GGML_OP_CONT:
  11036. {
  11037. // same as cpy
  11038. if (src0->grad) {
  11039. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11040. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11041. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11042. }
  11043. } break;
  11044. case GGML_OP_RESHAPE:
  11045. {
  11046. // necessary for llama
  11047. if (src0->grad) {
  11048. src0->grad =
  11049. ggml_add_impl(ctx, src0->grad,
  11050. ggml_reshape(ctx, tensor->grad, src0->grad),
  11051. inplace);
  11052. }
  11053. } break;
  11054. case GGML_OP_VIEW:
  11055. {
  11056. // necessary for llama
  11057. if (src0->grad) {
  11058. size_t offset;
  11059. memcpy(&offset, tensor->padding, sizeof(offset));
  11060. size_t nb1 = tensor->nb[1];
  11061. size_t nb2 = tensor->nb[2];
  11062. size_t nb3 = tensor->nb[3];
  11063. if (src0->type != src0->grad->type) {
  11064. // gradient is typically F32, but src0 could be other type
  11065. size_t ng = ggml_element_size(src0->grad);
  11066. size_t n0 = ggml_element_size(src0);
  11067. GGML_ASSERT(offset % n0 == 0);
  11068. GGML_ASSERT(nb1 % n0 == 0);
  11069. GGML_ASSERT(nb2 % n0 == 0);
  11070. GGML_ASSERT(nb3 % n0 == 0);
  11071. offset = (offset / n0) * ng;
  11072. nb1 = (nb1 / n0) * ng;
  11073. nb2 = (nb2 / n0) * ng;
  11074. nb3 = (nb3 / n0) * ng;
  11075. }
  11076. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11077. }
  11078. } break;
  11079. case GGML_OP_PERMUTE:
  11080. {
  11081. // necessary for llama
  11082. if (src0->grad) {
  11083. int axis0 = tensor->padding[0] & 0x3;
  11084. int axis1 = tensor->padding[1] & 0x3;
  11085. int axis2 = tensor->padding[2] & 0x3;
  11086. int axis3 = tensor->padding[3] & 0x3;
  11087. int axes_backward[4] = {0,0,0,0};
  11088. axes_backward[axis0] = 0;
  11089. axes_backward[axis1] = 1;
  11090. axes_backward[axis2] = 2;
  11091. axes_backward[axis3] = 3;
  11092. src0->grad =
  11093. ggml_add_impl(ctx, src0->grad,
  11094. ggml_permute(ctx,
  11095. tensor->grad,
  11096. axes_backward[0],
  11097. axes_backward[1],
  11098. axes_backward[2],
  11099. axes_backward[3]),
  11100. inplace);
  11101. }
  11102. } break;
  11103. case GGML_OP_TRANSPOSE:
  11104. {
  11105. // necessary for llama
  11106. if (src0->grad) {
  11107. src0->grad =
  11108. ggml_add_impl(ctx, src0->grad,
  11109. ggml_transpose(ctx, tensor->grad),
  11110. inplace);
  11111. }
  11112. } break;
  11113. case GGML_OP_GET_ROWS:
  11114. {
  11115. // necessary for llama (only for tokenizer)
  11116. if (src0->grad) {
  11117. src0->grad =
  11118. ggml_add_impl(ctx, src0->grad,
  11119. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11120. inplace);
  11121. }
  11122. if (src1->grad) {
  11123. // noop
  11124. }
  11125. } break;
  11126. case GGML_OP_GET_ROWS_BACK:
  11127. {
  11128. GGML_ASSERT(false); // TODO: not implemented
  11129. } break;
  11130. case GGML_OP_DIAG:
  11131. {
  11132. GGML_ASSERT(false); // TODO: not implemented
  11133. } break;
  11134. case GGML_OP_DIAG_MASK_INF:
  11135. {
  11136. // necessary for llama
  11137. if (src0->grad) {
  11138. assert(src1->type == GGML_TYPE_I32);
  11139. assert(ggml_nelements(src1) == 2);
  11140. const int n_past = ((int32_t *) src1->data)[0];
  11141. src0->grad =
  11142. ggml_add_impl(ctx, src0->grad,
  11143. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11144. inplace);
  11145. }
  11146. if (src1->grad) {
  11147. // noop
  11148. }
  11149. } break;
  11150. case GGML_OP_DIAG_MASK_ZERO:
  11151. {
  11152. // necessary for llama
  11153. if (src0->grad) {
  11154. assert(src1->type == GGML_TYPE_I32);
  11155. assert(ggml_nelements(src1) == 2);
  11156. const int n_past = ((int32_t *) src1->data)[0];
  11157. src0->grad =
  11158. ggml_add_impl(ctx, src0->grad,
  11159. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11160. inplace);
  11161. }
  11162. if (src1->grad) {
  11163. // noop
  11164. }
  11165. } break;
  11166. case GGML_OP_SOFT_MAX:
  11167. {
  11168. // necessary for llama
  11169. if (src0->grad) {
  11170. // y = softmax(x)
  11171. //
  11172. // Jii = yi - yi*yi
  11173. // Jij = -yi*yj
  11174. // J = diag(y)-y.*y
  11175. // dx = J * dy
  11176. // dxk = sum(Jkj * dyk)
  11177. int64_t ne2[4] = {
  11178. tensor->ne[0],
  11179. 1,
  11180. tensor->ne[1]*tensor->ne[2],
  11181. tensor->ne[3]
  11182. };
  11183. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11184. ggml_reshape_4d(ctx,
  11185. ggml_cont(ctx, tensor),
  11186. ne2[0], ne2[1], ne2[2], ne2[3]));
  11187. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11188. ggml_reshape_4d(ctx,
  11189. ggml_cont(ctx, tensor->grad),
  11190. ne2[0], ne2[1], ne2[2], ne2[3]));
  11191. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11192. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11193. tensor2, // [ne0,1,ne1*ne2,ne3]
  11194. 1, 0, 2, 3));
  11195. src0->grad =
  11196. ggml_add_impl(ctx,
  11197. src0->grad, // [ne0,ne1,ne2,ne3]
  11198. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11199. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11200. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11201. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11202. tensor2), // [ne0,1,ne1*ne2,ne3]
  11203. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11204. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11205. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11206. grad2), // [ne0,1,ne1*ne2,ne3]
  11207. src0->grad),
  11208. inplace);
  11209. }
  11210. } break;
  11211. case GGML_OP_ROPE:
  11212. {
  11213. // necessary for llama
  11214. if (src0->grad) {
  11215. assert(src1->type == GGML_TYPE_I32);
  11216. assert(ggml_nelements(src1) == 3);
  11217. const int n_past = ((int32_t *) src1->data)[0];
  11218. const int n_dims = ((int32_t *) src1->data)[1];
  11219. const int mode = ((int32_t *) src1->data)[2];
  11220. src0->grad = ggml_add_impl(ctx,
  11221. src0->grad,
  11222. ggml_rope_back(ctx,
  11223. tensor->grad,
  11224. n_past,
  11225. n_dims,
  11226. mode),
  11227. inplace);
  11228. }
  11229. if (src1->grad) {
  11230. // noop
  11231. }
  11232. } break;
  11233. case GGML_OP_ROPE_BACK:
  11234. {
  11235. if (src0->grad) {
  11236. assert(src1->type == GGML_TYPE_I32);
  11237. assert(ggml_nelements(src1) == 3);
  11238. const int n_past = ((int32_t *) src1->data)[0];
  11239. const int n_dims = ((int32_t *) src1->data)[1];
  11240. const int mode = ((int32_t *) src1->data)[2];
  11241. src0->grad = ggml_add_impl(ctx,
  11242. src0->grad,
  11243. ggml_rope(ctx,
  11244. tensor->grad,
  11245. n_past,
  11246. n_dims,
  11247. mode),
  11248. inplace);
  11249. }
  11250. if (src1->grad) {
  11251. // noop
  11252. }
  11253. } break;
  11254. case GGML_OP_CONV_1D_1S:
  11255. {
  11256. GGML_ASSERT(false); // TODO: not implemented
  11257. } break;
  11258. case GGML_OP_CONV_1D_2S:
  11259. {
  11260. GGML_ASSERT(false); // TODO: not implemented
  11261. } break;
  11262. case GGML_OP_FLASH_ATTN:
  11263. {
  11264. GGML_ASSERT(false); // not supported
  11265. } break;
  11266. case GGML_OP_FLASH_FF:
  11267. {
  11268. GGML_ASSERT(false); // not supported
  11269. } break;
  11270. case GGML_OP_MAP_UNARY:
  11271. case GGML_OP_MAP_BINARY:
  11272. {
  11273. GGML_ASSERT(false); // not supported
  11274. } break;
  11275. case GGML_OP_NONE:
  11276. {
  11277. // nop
  11278. } break;
  11279. case GGML_OP_COUNT:
  11280. {
  11281. GGML_ASSERT(false);
  11282. } break;
  11283. }
  11284. }
  11285. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11286. if (node->grad == NULL) {
  11287. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11288. // it can also happen during forward pass, if the user performs computations with constants
  11289. if (node->op != GGML_OP_NONE) {
  11290. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11291. }
  11292. }
  11293. // check if already visited
  11294. for (int i = 0; i < cgraph->n_nodes; i++) {
  11295. if (cgraph->nodes[i] == node) {
  11296. return;
  11297. }
  11298. }
  11299. for (int i = 0; i < cgraph->n_leafs; i++) {
  11300. if (cgraph->leafs[i] == node) {
  11301. return;
  11302. }
  11303. }
  11304. if (node->src0) {
  11305. ggml_visit_parents(cgraph, node->src0);
  11306. }
  11307. if (node->src1) {
  11308. ggml_visit_parents(cgraph, node->src1);
  11309. }
  11310. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11311. if (node->opt[i]) {
  11312. ggml_visit_parents(cgraph, node->opt[i]);
  11313. }
  11314. }
  11315. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11316. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11317. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11318. if (strlen(node->name) == 0) {
  11319. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11320. }
  11321. cgraph->leafs[cgraph->n_leafs] = node;
  11322. cgraph->n_leafs++;
  11323. } else {
  11324. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11325. if (strlen(node->name) == 0) {
  11326. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11327. }
  11328. cgraph->nodes[cgraph->n_nodes] = node;
  11329. cgraph->grads[cgraph->n_nodes] = node->grad;
  11330. cgraph->n_nodes++;
  11331. }
  11332. }
  11333. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11334. if (!expand) {
  11335. cgraph->n_nodes = 0;
  11336. cgraph->n_leafs = 0;
  11337. }
  11338. const int n0 = cgraph->n_nodes;
  11339. UNUSED(n0);
  11340. ggml_visit_parents(cgraph, tensor);
  11341. const int n_new = cgraph->n_nodes - n0;
  11342. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11343. if (n_new > 0) {
  11344. // the last added node should always be starting point
  11345. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11346. }
  11347. }
  11348. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11349. ggml_build_forward_impl(cgraph, tensor, true);
  11350. }
  11351. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11352. struct ggml_cgraph result = {
  11353. /*.n_nodes =*/ 0,
  11354. /*.n_leafs =*/ 0,
  11355. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11356. /*.work_size =*/ 0,
  11357. /*.work =*/ NULL,
  11358. /*.nodes =*/ { NULL },
  11359. /*.grads =*/ { NULL },
  11360. /*.leafs =*/ { NULL },
  11361. /*.perf_runs =*/ 0,
  11362. /*.perf_cycles =*/ 0,
  11363. /*.perf_time_us =*/ 0,
  11364. };
  11365. ggml_build_forward_impl(&result, tensor, false);
  11366. return result;
  11367. }
  11368. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11369. struct ggml_cgraph result = *gf;
  11370. GGML_ASSERT(gf->n_nodes > 0);
  11371. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11372. if (keep) {
  11373. for (int i = 0; i < gf->n_nodes; i++) {
  11374. struct ggml_tensor * node = gf->nodes[i];
  11375. if (node->grad) {
  11376. node->grad = ggml_dup_tensor(ctx, node);
  11377. gf->grads[i] = node->grad;
  11378. }
  11379. }
  11380. }
  11381. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11382. struct ggml_tensor * node = gf->nodes[i];
  11383. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11384. if (node->grad) {
  11385. ggml_compute_backward(ctx, node, keep);
  11386. }
  11387. }
  11388. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11389. struct ggml_tensor * node = gf->nodes[i];
  11390. if (node->is_param) {
  11391. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11392. ggml_build_forward_impl(&result, node->grad, true);
  11393. }
  11394. }
  11395. return result;
  11396. }
  11397. //
  11398. // thread data
  11399. //
  11400. // synchronization is done via busy loops
  11401. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11402. //
  11403. #ifdef __APPLE__
  11404. //#include <os/lock.h>
  11405. //
  11406. //typedef os_unfair_lock ggml_lock_t;
  11407. //
  11408. //#define ggml_lock_init(x) UNUSED(x)
  11409. //#define ggml_lock_destroy(x) UNUSED(x)
  11410. //#define ggml_lock_lock os_unfair_lock_lock
  11411. //#define ggml_lock_unlock os_unfair_lock_unlock
  11412. //
  11413. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11414. typedef int ggml_lock_t;
  11415. #define ggml_lock_init(x) UNUSED(x)
  11416. #define ggml_lock_destroy(x) UNUSED(x)
  11417. #define ggml_lock_lock(x) UNUSED(x)
  11418. #define ggml_lock_unlock(x) UNUSED(x)
  11419. #define GGML_LOCK_INITIALIZER 0
  11420. typedef pthread_t ggml_thread_t;
  11421. #define ggml_thread_create pthread_create
  11422. #define ggml_thread_join pthread_join
  11423. #else
  11424. //typedef pthread_spinlock_t ggml_lock_t;
  11425. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11426. //#define ggml_lock_destroy pthread_spin_destroy
  11427. //#define ggml_lock_lock pthread_spin_lock
  11428. //#define ggml_lock_unlock pthread_spin_unlock
  11429. typedef int ggml_lock_t;
  11430. #define ggml_lock_init(x) UNUSED(x)
  11431. #define ggml_lock_destroy(x) UNUSED(x)
  11432. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11433. #define ggml_lock_lock(x) _mm_pause()
  11434. #else
  11435. #define ggml_lock_lock(x) UNUSED(x)
  11436. #endif
  11437. #define ggml_lock_unlock(x) UNUSED(x)
  11438. #define GGML_LOCK_INITIALIZER 0
  11439. typedef pthread_t ggml_thread_t;
  11440. #define ggml_thread_create pthread_create
  11441. #define ggml_thread_join pthread_join
  11442. #endif
  11443. struct ggml_compute_state_shared {
  11444. ggml_lock_t spin;
  11445. int n_threads;
  11446. // synchronization primitives
  11447. atomic_int n_ready;
  11448. atomic_bool has_work;
  11449. atomic_bool stop; // stop all threads
  11450. };
  11451. struct ggml_compute_state {
  11452. ggml_thread_t thrd;
  11453. struct ggml_compute_params params;
  11454. struct ggml_tensor * node;
  11455. struct ggml_compute_state_shared * shared;
  11456. };
  11457. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11458. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11459. const int n_threads = state->shared->n_threads;
  11460. while (true) {
  11461. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11462. atomic_store(&state->shared->has_work, false);
  11463. } else {
  11464. while (atomic_load(&state->shared->has_work)) {
  11465. if (atomic_load(&state->shared->stop)) {
  11466. return 0;
  11467. }
  11468. ggml_lock_lock (&state->shared->spin);
  11469. ggml_lock_unlock(&state->shared->spin);
  11470. }
  11471. }
  11472. atomic_fetch_sub(&state->shared->n_ready, 1);
  11473. // wait for work
  11474. while (!atomic_load(&state->shared->has_work)) {
  11475. if (atomic_load(&state->shared->stop)) {
  11476. return 0;
  11477. }
  11478. ggml_lock_lock (&state->shared->spin);
  11479. ggml_lock_unlock(&state->shared->spin);
  11480. }
  11481. // check if we should stop
  11482. if (atomic_load(&state->shared->stop)) {
  11483. break;
  11484. }
  11485. if (state->node) {
  11486. if (state->params.ith < state->params.nth) {
  11487. ggml_compute_forward(&state->params, state->node);
  11488. }
  11489. state->node = NULL;
  11490. } else {
  11491. break;
  11492. }
  11493. }
  11494. return 0;
  11495. }
  11496. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11497. const int n_threads = cgraph->n_threads;
  11498. struct ggml_compute_state_shared state_shared = {
  11499. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11500. /*.n_threads =*/ n_threads,
  11501. /*.n_ready =*/ 0,
  11502. /*.has_work =*/ false,
  11503. /*.stop =*/ false,
  11504. };
  11505. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11506. // create thread pool
  11507. if (n_threads > 1) {
  11508. ggml_lock_init(&state_shared.spin);
  11509. atomic_store(&state_shared.has_work, true);
  11510. for (int j = 0; j < n_threads - 1; j++) {
  11511. workers[j] = (struct ggml_compute_state) {
  11512. .thrd = 0,
  11513. .params = {
  11514. .type = GGML_TASK_COMPUTE,
  11515. .ith = j + 1,
  11516. .nth = n_threads,
  11517. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11518. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11519. },
  11520. .node = NULL,
  11521. .shared = &state_shared,
  11522. };
  11523. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11524. GGML_ASSERT(rc == 0);
  11525. UNUSED(rc);
  11526. }
  11527. }
  11528. // initialize tasks + work buffer
  11529. {
  11530. size_t work_size = 0;
  11531. // thread scheduling for the different operations
  11532. for (int i = 0; i < cgraph->n_nodes; i++) {
  11533. struct ggml_tensor * node = cgraph->nodes[i];
  11534. switch (node->op) {
  11535. case GGML_OP_CPY:
  11536. case GGML_OP_DUP:
  11537. {
  11538. node->n_tasks = n_threads;
  11539. size_t cur = 0;
  11540. if (ggml_is_quantized(node->type)) {
  11541. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11542. }
  11543. work_size = MAX(work_size, cur);
  11544. } break;
  11545. case GGML_OP_ADD:
  11546. case GGML_OP_ADD1:
  11547. {
  11548. node->n_tasks = n_threads;
  11549. size_t cur = 0;
  11550. if (ggml_is_quantized(node->src0->type)) {
  11551. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11552. }
  11553. work_size = MAX(work_size, cur);
  11554. } break;
  11555. case GGML_OP_ACC:
  11556. {
  11557. node->n_tasks = n_threads;
  11558. size_t cur = 0;
  11559. if (ggml_is_quantized(node->src0->type)) {
  11560. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11561. }
  11562. work_size = MAX(work_size, cur);
  11563. } break;
  11564. case GGML_OP_SUB:
  11565. case GGML_OP_DIV:
  11566. case GGML_OP_SQR:
  11567. case GGML_OP_SQRT:
  11568. case GGML_OP_LOG:
  11569. case GGML_OP_SUM:
  11570. case GGML_OP_SUM_ROWS:
  11571. case GGML_OP_MEAN:
  11572. case GGML_OP_REPEAT:
  11573. case GGML_OP_ABS:
  11574. case GGML_OP_SGN:
  11575. case GGML_OP_NEG:
  11576. case GGML_OP_STEP:
  11577. case GGML_OP_RELU:
  11578. {
  11579. node->n_tasks = 1;
  11580. } break;
  11581. case GGML_OP_MUL:
  11582. case GGML_OP_GELU:
  11583. case GGML_OP_SILU:
  11584. case GGML_OP_SILU_BACK:
  11585. case GGML_OP_NORM:
  11586. case GGML_OP_RMS_NORM:
  11587. case GGML_OP_RMS_NORM_BACK:
  11588. {
  11589. node->n_tasks = n_threads;
  11590. } break;
  11591. case GGML_OP_MUL_MAT:
  11592. {
  11593. node->n_tasks = n_threads;
  11594. // TODO: use different scheduling for different matrix sizes
  11595. //const int nr0 = ggml_nrows(node->src0);
  11596. //const int nr1 = ggml_nrows(node->src1);
  11597. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11598. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11599. size_t cur = 0;
  11600. #if defined(GGML_USE_CUBLAS)
  11601. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11602. node->n_tasks = 1; // TODO: this actually is doing nothing
  11603. // the threads are still spinning
  11604. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11605. }
  11606. else
  11607. #elif defined(GGML_USE_CLBLAST)
  11608. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11609. node->n_tasks = 1; // TODO: this actually is doing nothing
  11610. // the threads are still spinning
  11611. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11612. }
  11613. else
  11614. #endif
  11615. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11616. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11617. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11618. node->n_tasks = 1; // TODO: this actually is doing nothing
  11619. // the threads are still spinning
  11620. // here we need memory just for single 2D matrix from src0
  11621. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11622. } else {
  11623. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11624. }
  11625. #else
  11626. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11627. #endif
  11628. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11629. cur = 0;
  11630. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11631. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11632. node->n_tasks = 1;
  11633. }
  11634. #endif
  11635. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11636. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11637. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11638. node->n_tasks = 1;
  11639. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11640. } else
  11641. #endif
  11642. {
  11643. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11644. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11645. }
  11646. } else {
  11647. GGML_ASSERT(false);
  11648. }
  11649. work_size = MAX(work_size, cur);
  11650. } break;
  11651. case GGML_OP_SCALE:
  11652. {
  11653. node->n_tasks = n_threads;
  11654. } break;
  11655. case GGML_OP_SET:
  11656. case GGML_OP_CONT:
  11657. case GGML_OP_RESHAPE:
  11658. case GGML_OP_VIEW:
  11659. case GGML_OP_PERMUTE:
  11660. case GGML_OP_TRANSPOSE:
  11661. case GGML_OP_GET_ROWS:
  11662. case GGML_OP_GET_ROWS_BACK:
  11663. case GGML_OP_DIAG:
  11664. case GGML_OP_DIAG_MASK_ZERO:
  11665. {
  11666. node->n_tasks = 1;
  11667. } break;
  11668. case GGML_OP_DIAG_MASK_INF:
  11669. case GGML_OP_SOFT_MAX:
  11670. case GGML_OP_ROPE:
  11671. case GGML_OP_ROPE_BACK:
  11672. {
  11673. node->n_tasks = n_threads;
  11674. } break;
  11675. case GGML_OP_ALIBI:
  11676. {
  11677. node->n_tasks = 1; //TODO
  11678. } break;
  11679. case GGML_OP_CLAMP:
  11680. {
  11681. node->n_tasks = 1; //TODO
  11682. } break;
  11683. case GGML_OP_CONV_1D_1S:
  11684. case GGML_OP_CONV_1D_2S:
  11685. {
  11686. node->n_tasks = n_threads;
  11687. GGML_ASSERT(node->src0->ne[3] == 1);
  11688. GGML_ASSERT(node->src1->ne[2] == 1);
  11689. GGML_ASSERT(node->src1->ne[3] == 1);
  11690. size_t cur = 0;
  11691. const int nk = node->src0->ne[0];
  11692. if (node->src0->type == GGML_TYPE_F16 &&
  11693. node->src1->type == GGML_TYPE_F32) {
  11694. cur = sizeof(ggml_fp16_t)*(
  11695. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11696. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11697. );
  11698. } else if (node->src0->type == GGML_TYPE_F32 &&
  11699. node->src1->type == GGML_TYPE_F32) {
  11700. cur = sizeof(float)*(
  11701. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11702. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11703. );
  11704. } else {
  11705. GGML_ASSERT(false);
  11706. }
  11707. work_size = MAX(work_size, cur);
  11708. } break;
  11709. case GGML_OP_FLASH_ATTN:
  11710. {
  11711. node->n_tasks = n_threads;
  11712. size_t cur = 0;
  11713. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11714. if (node->src1->type == GGML_TYPE_F32) {
  11715. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11716. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11717. }
  11718. if (node->src1->type == GGML_TYPE_F16) {
  11719. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11720. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11721. }
  11722. work_size = MAX(work_size, cur);
  11723. } break;
  11724. case GGML_OP_FLASH_FF:
  11725. {
  11726. node->n_tasks = n_threads;
  11727. size_t cur = 0;
  11728. if (node->src1->type == GGML_TYPE_F32) {
  11729. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11730. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11731. }
  11732. if (node->src1->type == GGML_TYPE_F16) {
  11733. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11734. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11735. }
  11736. work_size = MAX(work_size, cur);
  11737. } break;
  11738. case GGML_OP_MAP_UNARY:
  11739. case GGML_OP_MAP_BINARY:
  11740. {
  11741. node->n_tasks = 1;
  11742. } break;
  11743. case GGML_OP_NONE:
  11744. {
  11745. node->n_tasks = 1;
  11746. } break;
  11747. case GGML_OP_COUNT:
  11748. {
  11749. GGML_ASSERT(false);
  11750. } break;
  11751. }
  11752. }
  11753. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11754. GGML_ASSERT(false); // TODO: better handling
  11755. }
  11756. if (work_size > 0 && cgraph->work == NULL) {
  11757. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11758. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11759. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11760. }
  11761. }
  11762. const int64_t perf_start_cycles = ggml_perf_cycles();
  11763. const int64_t perf_start_time_us = ggml_perf_time_us();
  11764. for (int i = 0; i < cgraph->n_nodes; i++) {
  11765. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11766. struct ggml_tensor * node = cgraph->nodes[i];
  11767. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11768. //if (node->grad == NULL && node->perf_runs > 0) {
  11769. // continue;
  11770. //}
  11771. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11772. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11773. // INIT
  11774. struct ggml_compute_params params = {
  11775. /*.type =*/ GGML_TASK_INIT,
  11776. /*.ith =*/ 0,
  11777. /*.nth =*/ node->n_tasks,
  11778. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11779. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11780. };
  11781. ggml_compute_forward(&params, node);
  11782. // COMPUTE
  11783. if (node->n_tasks > 1) {
  11784. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11785. atomic_store(&state_shared.has_work, false);
  11786. }
  11787. while (atomic_load(&state_shared.has_work)) {
  11788. ggml_lock_lock (&state_shared.spin);
  11789. ggml_lock_unlock(&state_shared.spin);
  11790. }
  11791. // launch thread pool
  11792. for (int j = 0; j < n_threads - 1; j++) {
  11793. workers[j].params = (struct ggml_compute_params) {
  11794. .type = GGML_TASK_COMPUTE,
  11795. .ith = j + 1,
  11796. .nth = node->n_tasks,
  11797. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11798. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11799. };
  11800. workers[j].node = node;
  11801. }
  11802. atomic_fetch_sub(&state_shared.n_ready, 1);
  11803. while (atomic_load(&state_shared.n_ready) > 0) {
  11804. ggml_lock_lock (&state_shared.spin);
  11805. ggml_lock_unlock(&state_shared.spin);
  11806. }
  11807. atomic_store(&state_shared.has_work, true);
  11808. }
  11809. params.type = GGML_TASK_COMPUTE;
  11810. ggml_compute_forward(&params, node);
  11811. // wait for thread pool
  11812. if (node->n_tasks > 1) {
  11813. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11814. atomic_store(&state_shared.has_work, false);
  11815. }
  11816. while (atomic_load(&state_shared.has_work)) {
  11817. ggml_lock_lock (&state_shared.spin);
  11818. ggml_lock_unlock(&state_shared.spin);
  11819. }
  11820. atomic_fetch_sub(&state_shared.n_ready, 1);
  11821. while (atomic_load(&state_shared.n_ready) != 0) {
  11822. ggml_lock_lock (&state_shared.spin);
  11823. ggml_lock_unlock(&state_shared.spin);
  11824. }
  11825. }
  11826. // FINALIZE
  11827. if (node->n_tasks > 1) {
  11828. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11829. atomic_store(&state_shared.has_work, false);
  11830. }
  11831. while (atomic_load(&state_shared.has_work)) {
  11832. ggml_lock_lock (&state_shared.spin);
  11833. ggml_lock_unlock(&state_shared.spin);
  11834. }
  11835. // launch thread pool
  11836. for (int j = 0; j < n_threads - 1; j++) {
  11837. workers[j].params = (struct ggml_compute_params) {
  11838. .type = GGML_TASK_FINALIZE,
  11839. .ith = j + 1,
  11840. .nth = node->n_tasks,
  11841. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11842. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11843. };
  11844. workers[j].node = node;
  11845. }
  11846. atomic_fetch_sub(&state_shared.n_ready, 1);
  11847. while (atomic_load(&state_shared.n_ready) > 0) {
  11848. ggml_lock_lock (&state_shared.spin);
  11849. ggml_lock_unlock(&state_shared.spin);
  11850. }
  11851. atomic_store(&state_shared.has_work, true);
  11852. }
  11853. params.type = GGML_TASK_FINALIZE;
  11854. ggml_compute_forward(&params, node);
  11855. // wait for thread pool
  11856. if (node->n_tasks > 1) {
  11857. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11858. atomic_store(&state_shared.has_work, false);
  11859. }
  11860. while (atomic_load(&state_shared.has_work)) {
  11861. ggml_lock_lock (&state_shared.spin);
  11862. ggml_lock_unlock(&state_shared.spin);
  11863. }
  11864. atomic_fetch_sub(&state_shared.n_ready, 1);
  11865. while (atomic_load(&state_shared.n_ready) != 0) {
  11866. ggml_lock_lock (&state_shared.spin);
  11867. ggml_lock_unlock(&state_shared.spin);
  11868. }
  11869. }
  11870. // performance stats (node)
  11871. {
  11872. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11873. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11874. node->perf_runs++;
  11875. node->perf_cycles += perf_cycles_cur;
  11876. node->perf_time_us += perf_time_us_cur;
  11877. }
  11878. }
  11879. // join thread pool
  11880. if (n_threads > 1) {
  11881. atomic_store(&state_shared.stop, true);
  11882. atomic_store(&state_shared.has_work, true);
  11883. for (int j = 0; j < n_threads - 1; j++) {
  11884. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11885. GGML_ASSERT(rc == 0);
  11886. UNUSED(rc);
  11887. }
  11888. ggml_lock_destroy(&state_shared.spin);
  11889. }
  11890. // performance stats (graph)
  11891. {
  11892. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11893. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11894. cgraph->perf_runs++;
  11895. cgraph->perf_cycles += perf_cycles_cur;
  11896. cgraph->perf_time_us += perf_time_us_cur;
  11897. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11898. __func__, cgraph->perf_runs,
  11899. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11900. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11901. (double) perf_time_us_cur / 1000.0,
  11902. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11903. }
  11904. }
  11905. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11906. for (int i = 0; i < cgraph->n_nodes; i++) {
  11907. struct ggml_tensor * grad = cgraph->grads[i];
  11908. if (grad) {
  11909. ggml_set_zero(grad);
  11910. }
  11911. }
  11912. }
  11913. struct ggml_tensor * ggml_get_tensor_by_name(struct ggml_cgraph * cgraph, const char * name) {
  11914. for (int i = 0; i < cgraph->n_leafs; i++) {
  11915. struct ggml_tensor * leaf = cgraph->leafs[i];
  11916. if (strcmp(leaf->name, name) == 0) {
  11917. return leaf;
  11918. }
  11919. }
  11920. for (int i = 0; i < cgraph->n_nodes; i++) {
  11921. struct ggml_tensor * node = cgraph->nodes[i];
  11922. if (strcmp(node->name, name) == 0) {
  11923. return node;
  11924. }
  11925. }
  11926. return NULL;
  11927. }
  11928. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11929. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11930. GGML_PRINT("=== GRAPH ===\n");
  11931. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11932. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11933. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11934. for (int i = 0; i < cgraph->n_nodes; i++) {
  11935. struct ggml_tensor * node = cgraph->nodes[i];
  11936. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11937. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11938. i,
  11939. node->ne[0], node->ne[1], node->ne[2],
  11940. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11941. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11942. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11943. (double) node->perf_time_us / 1000.0,
  11944. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11945. }
  11946. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11947. for (int i = 0; i < cgraph->n_leafs; i++) {
  11948. struct ggml_tensor * node = cgraph->leafs[i];
  11949. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11950. i,
  11951. node->ne[0], node->ne[1],
  11952. GGML_OP_NAME[node->op]);
  11953. }
  11954. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11955. if (perf_total_per_op_us[i] == 0) {
  11956. continue;
  11957. }
  11958. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  11959. }
  11960. GGML_PRINT("========================================\n");
  11961. }
  11962. // check if node is part of the graph
  11963. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11964. if (cgraph == NULL) {
  11965. return true;
  11966. }
  11967. for (int i = 0; i < cgraph->n_nodes; i++) {
  11968. if (cgraph->nodes[i] == node) {
  11969. return true;
  11970. }
  11971. }
  11972. return false;
  11973. }
  11974. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11975. for (int i = 0; i < cgraph->n_nodes; i++) {
  11976. struct ggml_tensor * parent = cgraph->nodes[i];
  11977. if (parent->grad == node) {
  11978. return parent;
  11979. }
  11980. }
  11981. return NULL;
  11982. }
  11983. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11984. char color[16];
  11985. FILE * fp = fopen(filename, "w");
  11986. GGML_ASSERT(fp);
  11987. fprintf(fp, "digraph G {\n");
  11988. fprintf(fp, " newrank = true;\n");
  11989. fprintf(fp, " rankdir = LR;\n");
  11990. for (int i = 0; i < gb->n_nodes; i++) {
  11991. struct ggml_tensor * node = gb->nodes[i];
  11992. if (ggml_graph_get_parent(gb, node) != NULL) {
  11993. continue;
  11994. }
  11995. if (node->is_param) {
  11996. snprintf(color, sizeof(color), "yellow");
  11997. } else if (node->grad) {
  11998. if (ggml_graph_find(gf, node)) {
  11999. snprintf(color, sizeof(color), "green");
  12000. } else {
  12001. snprintf(color, sizeof(color), "lightblue");
  12002. }
  12003. } else {
  12004. snprintf(color, sizeof(color), "white");
  12005. }
  12006. fprintf(fp, " \"%p\" [ "
  12007. "style = filled; fillcolor = %s; shape = record; "
  12008. "label=\"",
  12009. (void *) node, color);
  12010. if (strlen(node->name) > 0) {
  12011. fprintf(fp, "%s |", node->name);
  12012. }
  12013. if (node->n_dims == 2) {
  12014. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12015. } else {
  12016. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12017. }
  12018. if (node->grad) {
  12019. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12020. } else {
  12021. fprintf(fp, "\"; ]\n");
  12022. }
  12023. }
  12024. for (int i = 0; i < gb->n_leafs; i++) {
  12025. struct ggml_tensor * node = gb->leafs[i];
  12026. snprintf(color, sizeof(color), "pink");
  12027. fprintf(fp, " \"%p\" [ "
  12028. "style = filled; fillcolor = %s; shape = record; "
  12029. "label=\"<x>",
  12030. (void *) node, color);
  12031. if (strlen(node->name) > 0) {
  12032. fprintf(fp, "%s | ", node->name);
  12033. }
  12034. if (ggml_nelements(node) == 1) {
  12035. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12036. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12037. }
  12038. else {
  12039. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12040. }
  12041. }
  12042. else {
  12043. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12044. }
  12045. fprintf(fp, "\"; ]\n");
  12046. }
  12047. for (int i = 0; i < gb->n_nodes; i++) {
  12048. struct ggml_tensor * node = gb->nodes[i];
  12049. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12050. if (node->src0) {
  12051. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12052. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12053. parent0 ? (void *) parent0 : (void *) node->src0,
  12054. parent0 ? "g" : "x",
  12055. parent ? (void *) parent : (void *) node,
  12056. parent ? "g" : "x",
  12057. parent ? "empty" : "vee",
  12058. parent ? "dashed" : "solid");
  12059. }
  12060. if (node->src1) {
  12061. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12062. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12063. parent1 ? (void *) parent1 : (void *) node->src1,
  12064. parent1 ? "g" : "x",
  12065. parent ? (void *) parent : (void *) node,
  12066. parent ? "g" : "x",
  12067. parent ? "empty" : "vee",
  12068. parent ? "dashed" : "solid");
  12069. }
  12070. }
  12071. for (int i = 0; i < gb->n_leafs; i++) {
  12072. struct ggml_tensor * node = gb->leafs[i];
  12073. if (node->src0) {
  12074. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12075. (void *) node->src0, "x",
  12076. (void *) node, "x");
  12077. }
  12078. if (node->src1) {
  12079. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12080. (void *) node->src1, "x",
  12081. (void *) node, "x");
  12082. }
  12083. }
  12084. fprintf(fp, "}\n");
  12085. fclose(fp);
  12086. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12087. }
  12088. ////////////////////////////////////////////////////////////////////////////////
  12089. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12090. int i = 0;
  12091. for (int p = 0; p < np; ++p) {
  12092. const int64_t ne = ggml_nelements(ps[p]) ;
  12093. // TODO: add function to set tensor from array
  12094. for (int64_t j = 0; j < ne; ++j) {
  12095. ggml_set_f32_1d(ps[p], j, x[i++]);
  12096. }
  12097. }
  12098. }
  12099. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12100. int i = 0;
  12101. for (int p = 0; p < np; ++p) {
  12102. const int64_t ne = ggml_nelements(ps[p]) ;
  12103. // TODO: add function to get all elements at once
  12104. for (int64_t j = 0; j < ne; ++j) {
  12105. x[i++] = ggml_get_f32_1d(ps[p], j);
  12106. }
  12107. }
  12108. }
  12109. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12110. int i = 0;
  12111. for (int p = 0; p < np; ++p) {
  12112. const int64_t ne = ggml_nelements(ps[p]) ;
  12113. // TODO: add function to get all elements at once
  12114. for (int64_t j = 0; j < ne; ++j) {
  12115. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12116. }
  12117. }
  12118. }
  12119. //
  12120. // ADAM
  12121. //
  12122. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12123. //
  12124. static enum ggml_opt_result ggml_opt_adam(
  12125. struct ggml_context * ctx,
  12126. struct ggml_opt_params params,
  12127. struct ggml_tensor * f,
  12128. struct ggml_cgraph * gf,
  12129. struct ggml_cgraph * gb) {
  12130. GGML_ASSERT(ggml_is_scalar(f));
  12131. gf->n_threads = params.n_threads;
  12132. gb->n_threads = params.n_threads;
  12133. // these will store the parameters we want to optimize
  12134. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12135. int np = 0;
  12136. int nx = 0;
  12137. for (int i = 0; i < gf->n_nodes; ++i) {
  12138. if (gf->nodes[i]->is_param) {
  12139. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12140. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12141. ps[np++] = gf->nodes[i];
  12142. nx += ggml_nelements(gf->nodes[i]);
  12143. }
  12144. }
  12145. // constants
  12146. const float alpha = params.adam.alpha;
  12147. const float beta1 = params.adam.beta1;
  12148. const float beta2 = params.adam.beta2;
  12149. const float eps = params.adam.eps;
  12150. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12151. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12152. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12153. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12154. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12155. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12156. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12157. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12158. // initialize
  12159. ggml_vec_set_f32(nx, m, 0.0f);
  12160. ggml_vec_set_f32(nx, v, 0.0f);
  12161. // update view
  12162. ggml_opt_get_params(np, ps, x);
  12163. // compute the function value
  12164. ggml_graph_reset (gf);
  12165. ggml_set_f32 (f->grad, 1.0f);
  12166. ggml_graph_compute(ctx, gb);
  12167. float fx_prev = ggml_get_f32_1d(f, 0);
  12168. if (pf) {
  12169. pf[0] = fx_prev;
  12170. }
  12171. int n_no_improvement = 0;
  12172. float fx_best = fx_prev;
  12173. // run the optimizer
  12174. for (int t = 0; t < params.adam.n_iter; ++t) {
  12175. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12176. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12177. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12178. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12179. for (int i = 0; i < np; ++i) {
  12180. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12181. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12182. }
  12183. const int64_t t_start_wall = ggml_time_us();
  12184. const int64_t t_start_cpu = ggml_cycles();
  12185. UNUSED(t_start_wall);
  12186. UNUSED(t_start_cpu);
  12187. {
  12188. // update the gradient
  12189. ggml_opt_get_grad(np, ps, g1);
  12190. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12191. ggml_vec_scale_f32(nx, m, beta1);
  12192. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12193. // g2 = g1^2
  12194. ggml_vec_sqr_f32 (nx, g2, g1);
  12195. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12196. ggml_vec_scale_f32(nx, v, beta2);
  12197. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12198. // m^hat = m_t / (1 - beta1^t)
  12199. // v^hat = v_t / (1 - beta2^t)
  12200. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12201. ggml_vec_cpy_f32 (nx, mh, m);
  12202. ggml_vec_cpy_f32 (nx, vh, v);
  12203. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12204. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12205. ggml_vec_sqrt_f32 (nx, vh, vh);
  12206. ggml_vec_acc1_f32 (nx, vh, eps);
  12207. ggml_vec_div_f32 (nx, mh, mh, vh);
  12208. ggml_vec_sub_f32 (nx, x, x, mh);
  12209. // update the parameters
  12210. ggml_opt_set_params(np, ps, x);
  12211. }
  12212. ggml_graph_reset (gf);
  12213. ggml_set_f32 (f->grad, 1.0f);
  12214. ggml_graph_compute(ctx, gb);
  12215. const float fx = ggml_get_f32_1d(f, 0);
  12216. // check convergence
  12217. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12218. GGML_PRINT_DEBUG("converged\n");
  12219. return GGML_OPT_OK;
  12220. }
  12221. // delta-based convergence test
  12222. if (pf != NULL) {
  12223. // need at least params.past iterations to start checking for convergence
  12224. if (params.past <= t) {
  12225. const float rate = (pf[t%params.past] - fx)/fx;
  12226. if (fabsf(rate) < params.delta) {
  12227. return GGML_OPT_OK;
  12228. }
  12229. }
  12230. pf[t%params.past] = fx;
  12231. }
  12232. // check for improvement
  12233. if (params.max_no_improvement > 0) {
  12234. if (fx_best > fx) {
  12235. fx_best = fx;
  12236. n_no_improvement = 0;
  12237. } else {
  12238. ++n_no_improvement;
  12239. if (n_no_improvement >= params.max_no_improvement) {
  12240. return GGML_OPT_OK;
  12241. }
  12242. }
  12243. }
  12244. fx_prev = fx;
  12245. {
  12246. const int64_t t_end_cpu = ggml_cycles();
  12247. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12248. UNUSED(t_end_cpu);
  12249. const int64_t t_end_wall = ggml_time_us();
  12250. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12251. UNUSED(t_end_wall);
  12252. }
  12253. }
  12254. return GGML_OPT_DID_NOT_CONVERGE;
  12255. }
  12256. //
  12257. // L-BFGS
  12258. //
  12259. // the L-BFGS implementation below is based on the following implementation:
  12260. //
  12261. // https://github.com/chokkan/liblbfgs
  12262. //
  12263. struct ggml_lbfgs_iteration_data {
  12264. float alpha;
  12265. float ys;
  12266. float * s;
  12267. float * y;
  12268. };
  12269. static enum ggml_opt_result linesearch_backtracking(
  12270. struct ggml_context * ctx,
  12271. const struct ggml_opt_params * params,
  12272. int nx,
  12273. float * x,
  12274. float * fx,
  12275. float * g,
  12276. float * d,
  12277. float * step,
  12278. const float * xp,
  12279. struct ggml_tensor * f,
  12280. struct ggml_cgraph * gf,
  12281. struct ggml_cgraph * gb,
  12282. const int np,
  12283. struct ggml_tensor * ps[]) {
  12284. int count = 0;
  12285. float width = 0.0f;
  12286. float dg = 0.0f;
  12287. float finit = 0.0f;
  12288. float dginit = 0.0f;
  12289. float dgtest = 0.0f;
  12290. const float dec = 0.5f;
  12291. const float inc = 2.1f;
  12292. if (*step <= 0.f) {
  12293. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12294. }
  12295. // compute the initial gradient in the search direction
  12296. ggml_vec_dot_f32(nx, &dginit, g, d);
  12297. // make sure that d points to a descent direction
  12298. if (0 < dginit) {
  12299. return GGML_LINESEARCH_FAIL;
  12300. }
  12301. // initialize local variables
  12302. finit = *fx;
  12303. dgtest = params->lbfgs.ftol*dginit;
  12304. while (true) {
  12305. ggml_vec_cpy_f32(nx, x, xp);
  12306. ggml_vec_mad_f32(nx, x, d, *step);
  12307. // evaluate the function and gradient values
  12308. {
  12309. ggml_opt_set_params(np, ps, x);
  12310. ggml_graph_reset (gf);
  12311. ggml_set_f32 (f->grad, 1.0f);
  12312. ggml_graph_compute(ctx, gb);
  12313. ggml_opt_get_grad(np, ps, g);
  12314. *fx = ggml_get_f32_1d(f, 0);
  12315. }
  12316. ++count;
  12317. if (*fx > finit + (*step)*dgtest) {
  12318. width = dec;
  12319. } else {
  12320. // Armijo condition is satisfied
  12321. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12322. return count;
  12323. }
  12324. ggml_vec_dot_f32(nx, &dg, g, d);
  12325. // check the Wolfe condition
  12326. if (dg < params->lbfgs.wolfe * dginit) {
  12327. width = inc;
  12328. } else {
  12329. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12330. // regular Wolfe conditions
  12331. return count;
  12332. }
  12333. if(dg > -params->lbfgs.wolfe*dginit) {
  12334. width = dec;
  12335. } else {
  12336. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12337. return count;
  12338. }
  12339. return count;
  12340. }
  12341. }
  12342. if (*step < params->lbfgs.min_step) {
  12343. return GGML_LINESEARCH_MINIMUM_STEP;
  12344. }
  12345. if (*step > params->lbfgs.max_step) {
  12346. return GGML_LINESEARCH_MAXIMUM_STEP;
  12347. }
  12348. if (params->lbfgs.max_linesearch <= count) {
  12349. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12350. }
  12351. (*step) *= width;
  12352. }
  12353. return GGML_LINESEARCH_FAIL;
  12354. }
  12355. static enum ggml_opt_result ggml_opt_lbfgs(
  12356. struct ggml_context * ctx,
  12357. struct ggml_opt_params params,
  12358. struct ggml_tensor * f,
  12359. struct ggml_cgraph * gf,
  12360. struct ggml_cgraph * gb) {
  12361. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12362. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12363. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12364. return GGML_OPT_INVALID_WOLFE;
  12365. }
  12366. }
  12367. gf->n_threads = params.n_threads;
  12368. gb->n_threads = params.n_threads;
  12369. const int m = params.lbfgs.m;
  12370. // these will store the parameters we want to optimize
  12371. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12372. int np = 0;
  12373. int nx = 0;
  12374. for (int i = 0; i < gf->n_nodes; ++i) {
  12375. if (gf->nodes[i]->is_param) {
  12376. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12377. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12378. ps[np++] = gf->nodes[i];
  12379. nx += ggml_nelements(gf->nodes[i]);
  12380. }
  12381. }
  12382. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12383. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12384. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12385. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12386. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12387. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12388. float fx = 0.0f; // cost function value
  12389. float xnorm = 0.0f; // ||x||
  12390. float gnorm = 0.0f; // ||g||
  12391. float step = 0.0f;
  12392. // initialize x from the graph nodes
  12393. ggml_opt_get_params(np, ps, x);
  12394. // the L-BFGS memory
  12395. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12396. for (int i = 0; i < m; ++i) {
  12397. lm[i].alpha = 0.0f;
  12398. lm[i].ys = 0.0f;
  12399. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12400. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12401. }
  12402. // evaluate the function value and its gradient
  12403. {
  12404. ggml_opt_set_params(np, ps, x);
  12405. ggml_graph_reset (gf);
  12406. ggml_set_f32 (f->grad, 1.0f);
  12407. ggml_graph_compute(ctx, gb);
  12408. ggml_opt_get_grad(np, ps, g);
  12409. fx = ggml_get_f32_1d(f, 0);
  12410. }
  12411. if (pf) {
  12412. pf[0] = fx;
  12413. }
  12414. float fx_best = fx;
  12415. // search direction = -gradient
  12416. ggml_vec_neg_f32(nx, d, g);
  12417. // ||x||, ||g||
  12418. ggml_vec_norm_f32(nx, &xnorm, x);
  12419. ggml_vec_norm_f32(nx, &gnorm, g);
  12420. if (xnorm < 1.0f) {
  12421. xnorm = 1.0f;
  12422. }
  12423. // already optimized
  12424. if (gnorm/xnorm <= params.lbfgs.eps) {
  12425. return GGML_OPT_OK;
  12426. }
  12427. // initial step
  12428. ggml_vec_norm_inv_f32(nx, &step, d);
  12429. int j = 0;
  12430. int k = 1;
  12431. int ls = 0;
  12432. int end = 0;
  12433. int bound = 0;
  12434. int n_no_improvement = 0;
  12435. float ys = 0.0f;
  12436. float yy = 0.0f;
  12437. float beta = 0.0f;
  12438. while (true) {
  12439. // store the current position and gradient vectors
  12440. ggml_vec_cpy_f32(nx, xp, x);
  12441. ggml_vec_cpy_f32(nx, gp, g);
  12442. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12443. if (ls < 0) {
  12444. // linesearch failed - go back to the previous point and return
  12445. ggml_vec_cpy_f32(nx, x, xp);
  12446. ggml_vec_cpy_f32(nx, g, gp);
  12447. return ls;
  12448. }
  12449. ggml_vec_norm_f32(nx, &xnorm, x);
  12450. ggml_vec_norm_f32(nx, &gnorm, g);
  12451. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12452. if (xnorm < 1.0f) {
  12453. xnorm = 1.0f;
  12454. }
  12455. if (gnorm/xnorm <= params.lbfgs.eps) {
  12456. // converged
  12457. return GGML_OPT_OK;
  12458. }
  12459. // delta-based convergence test
  12460. if (pf != NULL) {
  12461. // need at least params.past iterations to start checking for convergence
  12462. if (params.past <= k) {
  12463. const float rate = (pf[k%params.past] - fx)/fx;
  12464. if (fabsf(rate) < params.delta) {
  12465. return GGML_OPT_OK;
  12466. }
  12467. }
  12468. pf[k%params.past] = fx;
  12469. }
  12470. // check for improvement
  12471. if (params.max_no_improvement > 0) {
  12472. if (fx < fx_best) {
  12473. fx_best = fx;
  12474. n_no_improvement = 0;
  12475. } else {
  12476. n_no_improvement++;
  12477. if (n_no_improvement >= params.max_no_improvement) {
  12478. return GGML_OPT_OK;
  12479. }
  12480. }
  12481. }
  12482. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12483. // reached the maximum number of iterations
  12484. return GGML_OPT_DID_NOT_CONVERGE;
  12485. }
  12486. // update vectors s and y:
  12487. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12488. // y_{k+1} = g_{k+1} - g_{k}.
  12489. //
  12490. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12491. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12492. // compute scalars ys and yy:
  12493. // ys = y^t \cdot s -> 1 / \rho.
  12494. // yy = y^t \cdot y.
  12495. //
  12496. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12497. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12498. lm[end].ys = ys;
  12499. // find new search direction
  12500. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12501. bound = (m <= k) ? m : k;
  12502. k++;
  12503. end = (end + 1)%m;
  12504. // initialize search direction with -g
  12505. ggml_vec_neg_f32(nx, d, g);
  12506. j = end;
  12507. for (int i = 0; i < bound; ++i) {
  12508. j = (j + m - 1) % m;
  12509. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12510. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12511. lm[j].alpha /= lm[j].ys;
  12512. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12513. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12514. }
  12515. ggml_vec_scale_f32(nx, d, ys/yy);
  12516. for (int i = 0; i < bound; ++i) {
  12517. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12518. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12519. beta /= lm[j].ys;
  12520. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12521. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12522. j = (j + 1)%m;
  12523. }
  12524. step = 1.0;
  12525. }
  12526. return GGML_OPT_DID_NOT_CONVERGE;
  12527. }
  12528. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12529. struct ggml_opt_params result;
  12530. switch (type) {
  12531. case GGML_OPT_ADAM:
  12532. {
  12533. result = (struct ggml_opt_params) {
  12534. .type = GGML_OPT_ADAM,
  12535. .n_threads = 1,
  12536. .past = 0,
  12537. .delta = 1e-5f,
  12538. .max_no_improvement = 100,
  12539. .print_forward_graph = true,
  12540. .print_backward_graph = true,
  12541. .adam = {
  12542. .n_iter = 10000,
  12543. .alpha = 0.001f,
  12544. .beta1 = 0.9f,
  12545. .beta2 = 0.999f,
  12546. .eps = 1e-8f,
  12547. .eps_f = 1e-5f,
  12548. .eps_g = 1e-3f,
  12549. },
  12550. };
  12551. } break;
  12552. case GGML_OPT_LBFGS:
  12553. {
  12554. result = (struct ggml_opt_params) {
  12555. .type = GGML_OPT_LBFGS,
  12556. .n_threads = 1,
  12557. .past = 0,
  12558. .delta = 1e-5f,
  12559. .max_no_improvement = 0,
  12560. .print_forward_graph = true,
  12561. .print_backward_graph = true,
  12562. .lbfgs = {
  12563. .m = 6,
  12564. .n_iter = 100,
  12565. .max_linesearch = 20,
  12566. .eps = 1e-5f,
  12567. .ftol = 1e-4f,
  12568. .wolfe = 0.9f,
  12569. .min_step = 1e-20f,
  12570. .max_step = 1e+20f,
  12571. .linesearch = GGML_LINESEARCH_DEFAULT,
  12572. },
  12573. };
  12574. } break;
  12575. }
  12576. return result;
  12577. }
  12578. enum ggml_opt_result ggml_opt(
  12579. struct ggml_context * ctx,
  12580. struct ggml_opt_params params,
  12581. struct ggml_tensor * f) {
  12582. bool free_ctx = false;
  12583. if (ctx == NULL) {
  12584. struct ggml_init_params params_ctx = {
  12585. .mem_size = 16*1024*1024,
  12586. .mem_buffer = NULL,
  12587. .no_alloc = false,
  12588. };
  12589. ctx = ggml_init(params_ctx);
  12590. if (ctx == NULL) {
  12591. return GGML_OPT_NO_CONTEXT;
  12592. }
  12593. free_ctx = true;
  12594. }
  12595. enum ggml_opt_result result = GGML_OPT_OK;
  12596. // build forward + backward compute graphs
  12597. struct ggml_cgraph gf = ggml_build_forward (f);
  12598. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12599. switch (params.type) {
  12600. case GGML_OPT_ADAM:
  12601. {
  12602. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12603. } break;
  12604. case GGML_OPT_LBFGS:
  12605. {
  12606. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12607. } break;
  12608. }
  12609. if (params.print_forward_graph) {
  12610. ggml_graph_print (&gf);
  12611. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12612. }
  12613. if (params.print_backward_graph) {
  12614. ggml_graph_print (&gb);
  12615. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12616. }
  12617. if (free_ctx) {
  12618. ggml_free(ctx);
  12619. }
  12620. return result;
  12621. }
  12622. ////////////////////////////////////////////////////////////////////////////////
  12623. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12624. assert(k % QK4_0 == 0);
  12625. const int nb = k / QK4_0;
  12626. for (int b = 0; b < n; b += k) {
  12627. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12628. quantize_row_q4_0_reference(src + b, y, k);
  12629. for (int i = 0; i < nb; i++) {
  12630. for (int j = 0; j < QK4_0; j += 2) {
  12631. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12632. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12633. hist[vi0]++;
  12634. hist[vi1]++;
  12635. }
  12636. }
  12637. }
  12638. return (n/QK4_0*sizeof(block_q4_0));
  12639. }
  12640. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12641. assert(k % QK4_1 == 0);
  12642. const int nb = k / QK4_1;
  12643. for (int b = 0; b < n; b += k) {
  12644. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12645. quantize_row_q4_1_reference(src + b, y, k);
  12646. for (int i = 0; i < nb; i++) {
  12647. for (int j = 0; j < QK4_1; j += 2) {
  12648. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12649. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12650. hist[vi0]++;
  12651. hist[vi1]++;
  12652. }
  12653. }
  12654. }
  12655. return (n/QK4_1*sizeof(block_q4_1));
  12656. }
  12657. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12658. assert(k % QK5_0 == 0);
  12659. const int nb = k / QK5_0;
  12660. for (int b = 0; b < n; b += k) {
  12661. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12662. quantize_row_q5_0_reference(src + b, y, k);
  12663. for (int i = 0; i < nb; i++) {
  12664. uint32_t qh;
  12665. memcpy(&qh, &y[i].qh, sizeof(qh));
  12666. for (int j = 0; j < QK5_0; j += 2) {
  12667. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12668. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12669. // cast to 16 bins
  12670. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12671. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12672. hist[vi0]++;
  12673. hist[vi1]++;
  12674. }
  12675. }
  12676. }
  12677. return (n/QK5_0*sizeof(block_q5_0));
  12678. }
  12679. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12680. assert(k % QK5_1 == 0);
  12681. const int nb = k / QK5_1;
  12682. for (int b = 0; b < n; b += k) {
  12683. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12684. quantize_row_q5_1_reference(src + b, y, k);
  12685. for (int i = 0; i < nb; i++) {
  12686. uint32_t qh;
  12687. memcpy(&qh, &y[i].qh, sizeof(qh));
  12688. for (int j = 0; j < QK5_1; j += 2) {
  12689. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12690. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12691. // cast to 16 bins
  12692. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12693. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12694. hist[vi0]++;
  12695. hist[vi1]++;
  12696. }
  12697. }
  12698. }
  12699. return (n/QK5_1*sizeof(block_q5_1));
  12700. }
  12701. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12702. assert(k % QK8_0 == 0);
  12703. const int nb = k / QK8_0;
  12704. for (int b = 0; b < n; b += k) {
  12705. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12706. quantize_row_q8_0_reference(src + b, y, k);
  12707. for (int i = 0; i < nb; i++) {
  12708. for (int j = 0; j < QK8_0; ++j) {
  12709. const int8_t vi = y[i].qs[j];
  12710. hist[vi/16 + 8]++;
  12711. }
  12712. }
  12713. }
  12714. return (n/QK8_0*sizeof(block_q8_0));
  12715. }
  12716. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12717. size_t result = 0;
  12718. switch (type) {
  12719. case GGML_TYPE_Q4_0:
  12720. {
  12721. GGML_ASSERT(start % QK4_0 == 0);
  12722. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12723. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12724. } break;
  12725. case GGML_TYPE_Q4_1:
  12726. {
  12727. GGML_ASSERT(start % QK4_1 == 0);
  12728. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12729. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12730. } break;
  12731. case GGML_TYPE_Q5_0:
  12732. {
  12733. GGML_ASSERT(start % QK5_0 == 0);
  12734. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12735. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12736. } break;
  12737. case GGML_TYPE_Q5_1:
  12738. {
  12739. GGML_ASSERT(start % QK5_1 == 0);
  12740. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12741. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12742. } break;
  12743. case GGML_TYPE_Q8_0:
  12744. {
  12745. GGML_ASSERT(start % QK8_0 == 0);
  12746. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12747. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12748. } break;
  12749. default:
  12750. assert(false);
  12751. }
  12752. return result;
  12753. }
  12754. ////////////////////////////////////////////////////////////////////////////////
  12755. int ggml_cpu_has_avx(void) {
  12756. #if defined(__AVX__)
  12757. return 1;
  12758. #else
  12759. return 0;
  12760. #endif
  12761. }
  12762. int ggml_cpu_has_avx2(void) {
  12763. #if defined(__AVX2__)
  12764. return 1;
  12765. #else
  12766. return 0;
  12767. #endif
  12768. }
  12769. int ggml_cpu_has_avx512(void) {
  12770. #if defined(__AVX512F__)
  12771. return 1;
  12772. #else
  12773. return 0;
  12774. #endif
  12775. }
  12776. int ggml_cpu_has_avx512_vbmi(void) {
  12777. #if defined(__AVX512VBMI__)
  12778. return 1;
  12779. #else
  12780. return 0;
  12781. #endif
  12782. }
  12783. int ggml_cpu_has_avx512_vnni(void) {
  12784. #if defined(__AVX512VNNI__)
  12785. return 1;
  12786. #else
  12787. return 0;
  12788. #endif
  12789. }
  12790. int ggml_cpu_has_fma(void) {
  12791. #if defined(__FMA__)
  12792. return 1;
  12793. #else
  12794. return 0;
  12795. #endif
  12796. }
  12797. int ggml_cpu_has_neon(void) {
  12798. #if defined(__ARM_NEON)
  12799. return 1;
  12800. #else
  12801. return 0;
  12802. #endif
  12803. }
  12804. int ggml_cpu_has_arm_fma(void) {
  12805. #if defined(__ARM_FEATURE_FMA)
  12806. return 1;
  12807. #else
  12808. return 0;
  12809. #endif
  12810. }
  12811. int ggml_cpu_has_f16c(void) {
  12812. #if defined(__F16C__)
  12813. return 1;
  12814. #else
  12815. return 0;
  12816. #endif
  12817. }
  12818. int ggml_cpu_has_fp16_va(void) {
  12819. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12820. return 1;
  12821. #else
  12822. return 0;
  12823. #endif
  12824. }
  12825. int ggml_cpu_has_wasm_simd(void) {
  12826. #if defined(__wasm_simd128__)
  12827. return 1;
  12828. #else
  12829. return 0;
  12830. #endif
  12831. }
  12832. int ggml_cpu_has_blas(void) {
  12833. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12834. return 1;
  12835. #else
  12836. return 0;
  12837. #endif
  12838. }
  12839. int ggml_cpu_has_cublas(void) {
  12840. #if defined(GGML_USE_CUBLAS)
  12841. return 1;
  12842. #else
  12843. return 0;
  12844. #endif
  12845. }
  12846. int ggml_cpu_has_clblast(void) {
  12847. #if defined(GGML_USE_CLBLAST)
  12848. return 1;
  12849. #else
  12850. return 0;
  12851. #endif
  12852. }
  12853. int ggml_cpu_has_gpublas(void) {
  12854. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12855. }
  12856. int ggml_cpu_has_sse3(void) {
  12857. #if defined(__SSE3__)
  12858. return 1;
  12859. #else
  12860. return 0;
  12861. #endif
  12862. }
  12863. int ggml_cpu_has_vsx(void) {
  12864. #if defined(__POWER9_VECTOR__)
  12865. return 1;
  12866. #else
  12867. return 0;
  12868. #endif
  12869. }
  12870. ////////////////////////////////////////////////////////////////////////////////