ggml.c 745 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SILU_FP16
  138. // #define GGML_CROSS_ENTROPY_EXP_FP16
  139. // #define GGML_FLASH_ATTN_EXP_FP16
  140. #define GGML_SOFT_MAX_UNROLL 4
  141. #define GGML_VEC_DOT_UNROLL 2
  142. #define GGML_VEC_MAD_UNROLL 32
  143. //
  144. // logging
  145. //
  146. #if (GGML_DEBUG >= 1)
  147. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG(...)
  150. #endif
  151. #if (GGML_DEBUG >= 5)
  152. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  153. #else
  154. #define GGML_PRINT_DEBUG_5(...)
  155. #endif
  156. #if (GGML_DEBUG >= 10)
  157. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  158. #else
  159. #define GGML_PRINT_DEBUG_10(...)
  160. #endif
  161. #define GGML_PRINT(...) printf(__VA_ARGS__)
  162. //
  163. // end of logging block
  164. //
  165. #ifdef GGML_USE_ACCELERATE
  166. // uncomment to use vDSP for soft max computation
  167. // note: not sure if it is actually faster
  168. //#define GGML_SOFT_MAX_ACCELERATE
  169. #endif
  170. #if defined(_MSC_VER) || defined(__MINGW32__)
  171. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  172. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  173. #else
  174. inline static void * ggml_aligned_malloc(size_t size) {
  175. if (size == 0) {
  176. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  177. return NULL;
  178. }
  179. void * aligned_memory = NULL;
  180. #ifdef GGML_USE_CPU_HBM
  181. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  182. #elif GGML_USE_METAL
  183. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  184. #else
  185. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  186. #endif
  187. if (result != 0) {
  188. // Handle allocation failure
  189. const char *error_desc = "unknown allocation error";
  190. switch (result) {
  191. case EINVAL:
  192. error_desc = "invalid alignment value";
  193. break;
  194. case ENOMEM:
  195. error_desc = "insufficient memory";
  196. break;
  197. }
  198. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  199. GGML_ASSERT(false);
  200. return NULL;
  201. }
  202. return aligned_memory;
  203. }
  204. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  205. #ifdef GGML_USE_CPU_HBM
  206. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  207. #else
  208. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  209. #endif
  210. #endif
  211. inline static void * ggml_malloc(size_t size) {
  212. if (size == 0) {
  213. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  214. return NULL;
  215. }
  216. void * result = malloc(size);
  217. if (result == NULL) {
  218. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  219. GGML_ASSERT(false);
  220. }
  221. return result;
  222. }
  223. // calloc
  224. inline static void * ggml_calloc(size_t num, size_t size) {
  225. if (num == 0 || size == 0) {
  226. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  227. return NULL;
  228. }
  229. void * result = calloc(num, size);
  230. if (result == NULL) {
  231. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  232. GGML_ASSERT(false);
  233. }
  234. return result;
  235. }
  236. #define GGML_MALLOC(size) ggml_malloc(size)
  237. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  238. #define GGML_FREE(ptr) free(ptr)
  239. #define UNUSED GGML_UNUSED
  240. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  241. #if defined(GGML_USE_ACCELERATE)
  242. #include <Accelerate/Accelerate.h>
  243. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  244. #include "ggml-opencl.h"
  245. #endif
  246. #elif defined(GGML_USE_OPENBLAS)
  247. #if defined(GGML_BLAS_USE_MKL)
  248. #include <mkl.h>
  249. #else
  250. #include <cblas.h>
  251. #endif
  252. #elif defined(GGML_USE_CLBLAST)
  253. #include "ggml-opencl.h"
  254. #endif
  255. // floating point type used to accumulate sums
  256. typedef double ggml_float;
  257. #undef MIN
  258. #undef MAX
  259. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  260. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  261. //
  262. // global data
  263. //
  264. // precomputed gelu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  266. // precomputed quick gelu table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  268. // precomputed silu table for f16 (128 KB)
  269. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  270. // precomputed exp table for f16 (128 KB)
  271. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  272. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  273. float ggml_table_f32_f16[1 << 16];
  274. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  275. switch (status) {
  276. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  277. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  278. case GGML_STATUS_SUCCESS: return "GGML status: success";
  279. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  280. }
  281. return "GGML status: unknown";
  282. }
  283. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  284. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  285. return GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  289. return GGML_FP32_TO_FP16(x);
  290. }
  291. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  292. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  293. return GGML_BF16_TO_FP32(x); // it just left shifts
  294. }
  295. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  296. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  297. return GGML_FP32_TO_BF16(x);
  298. }
  299. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  300. for (int64_t i = 0; i < n; i++) {
  301. y[i] = GGML_FP16_TO_FP32(x[i]);
  302. }
  303. }
  304. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  305. int64_t i = 0;
  306. #if defined(__F16C__)
  307. for (; i + 7 < n; i += 8) {
  308. __m256 x_vec = _mm256_loadu_ps(x + i);
  309. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  310. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  311. }
  312. for(; i + 3 < n; i += 4) {
  313. __m128 x_vec = _mm_loadu_ps(x + i);
  314. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  315. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  316. }
  317. #endif
  318. for (; i < n; i++) {
  319. y[i] = GGML_FP32_TO_FP16(x[i]);
  320. }
  321. }
  322. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  323. int64_t i = 0;
  324. #if defined(__AVX512F__)
  325. for (; i + 16 <= n; i += 16) {
  326. _mm512_storeu_ps(y + i,
  327. _mm512_castsi512_ps(
  328. _mm512_slli_epi32(
  329. _mm512_cvtepu16_epi32(
  330. _mm256_loadu_si256(
  331. (const __m256i *)(x + i))),
  332. 16)));
  333. }
  334. #elif defined(__AVX2__)
  335. for (; i + 8 <= n; i += 8) {
  336. _mm256_storeu_ps(y + i,
  337. _mm256_castsi256_ps(
  338. _mm256_slli_epi32(
  339. _mm256_cvtepu16_epi32(
  340. _mm_loadu_si128(
  341. (const __m128i *)(x + i))),
  342. 16)));
  343. }
  344. #endif
  345. for (; i < n; i++) {
  346. y[i] = GGML_BF16_TO_FP32(x[i]);
  347. }
  348. }
  349. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  350. int i = 0;
  351. #if defined(__AVX512BF16__)
  352. for (; i + 32 <= n; i += 32) {
  353. _mm512_storeu_ps(
  354. (__m512 *)(y + i),
  355. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  356. _mm512_loadu_ps(x + i)));
  357. }
  358. #endif
  359. for (; i < n; i++) {
  360. y[i] = GGML_FP32_TO_BF16(x[i]);
  361. }
  362. }
  363. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  364. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  365. }
  366. //
  367. // timing
  368. //
  369. #if defined(_MSC_VER) || defined(__MINGW32__)
  370. static int64_t timer_freq, timer_start;
  371. void ggml_time_init(void) {
  372. LARGE_INTEGER t;
  373. QueryPerformanceFrequency(&t);
  374. timer_freq = t.QuadPart;
  375. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  376. // and the uptime is high enough.
  377. // We subtract the program start time to reduce the likelihood of that happening.
  378. QueryPerformanceCounter(&t);
  379. timer_start = t.QuadPart;
  380. }
  381. int64_t ggml_time_ms(void) {
  382. LARGE_INTEGER t;
  383. QueryPerformanceCounter(&t);
  384. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  385. }
  386. int64_t ggml_time_us(void) {
  387. LARGE_INTEGER t;
  388. QueryPerformanceCounter(&t);
  389. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  390. }
  391. #else
  392. void ggml_time_init(void) {}
  393. int64_t ggml_time_ms(void) {
  394. struct timespec ts;
  395. clock_gettime(CLOCK_MONOTONIC, &ts);
  396. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  397. }
  398. int64_t ggml_time_us(void) {
  399. struct timespec ts;
  400. clock_gettime(CLOCK_MONOTONIC, &ts);
  401. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  402. }
  403. #endif
  404. int64_t ggml_cycles(void) {
  405. return clock();
  406. }
  407. int64_t ggml_cycles_per_ms(void) {
  408. return CLOCKS_PER_SEC/1000;
  409. }
  410. #ifdef GGML_PERF
  411. #define ggml_perf_time_ms() ggml_time_ms()
  412. #define ggml_perf_time_us() ggml_time_us()
  413. #define ggml_perf_cycles() ggml_cycles()
  414. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  415. #else
  416. #define ggml_perf_time_ms() 0
  417. #define ggml_perf_time_us() 0
  418. #define ggml_perf_cycles() 0
  419. #define ggml_perf_cycles_per_ms() 0
  420. #endif
  421. //
  422. // cross-platform UTF-8 file paths
  423. //
  424. #ifdef _WIN32
  425. static wchar_t * ggml_mbstowcs(const char * mbs) {
  426. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  427. if (!wlen) {
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  432. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  433. if (!wlen) {
  434. GGML_FREE(wbuf);
  435. errno = EINVAL;
  436. return NULL;
  437. }
  438. return wbuf;
  439. }
  440. #endif
  441. FILE * ggml_fopen(const char * fname, const char * mode) {
  442. #ifdef _WIN32
  443. FILE * file = NULL;
  444. // convert fname (UTF-8)
  445. wchar_t * wfname = ggml_mbstowcs(fname);
  446. if (wfname) {
  447. // convert mode (ANSI)
  448. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  449. wchar_t * wmode_p = wmode;
  450. do {
  451. *wmode_p++ = (wchar_t)*mode;
  452. } while (*mode++);
  453. // open file
  454. file = _wfopen(wfname, wmode);
  455. GGML_FREE(wfname);
  456. GGML_FREE(wmode);
  457. }
  458. return file;
  459. #else
  460. return fopen(fname, mode);
  461. #endif
  462. }
  463. //
  464. // cache line
  465. //
  466. #if defined(__cpp_lib_hardware_interference_size)
  467. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  468. #else
  469. #if defined(__POWER9_VECTOR__)
  470. #define CACHE_LINE_SIZE 128
  471. #else
  472. #define CACHE_LINE_SIZE 64
  473. #endif
  474. #endif
  475. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  476. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  477. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  478. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  479. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  480. [GGML_TYPE_I8] = {
  481. .type_name = "i8",
  482. .blck_size = 1,
  483. .type_size = sizeof(int8_t),
  484. .is_quantized = false,
  485. },
  486. [GGML_TYPE_I16] = {
  487. .type_name = "i16",
  488. .blck_size = 1,
  489. .type_size = sizeof(int16_t),
  490. .is_quantized = false,
  491. },
  492. [GGML_TYPE_I32] = {
  493. .type_name = "i32",
  494. .blck_size = 1,
  495. .type_size = sizeof(int32_t),
  496. .is_quantized = false,
  497. },
  498. [GGML_TYPE_I64] = {
  499. .type_name = "i64",
  500. .blck_size = 1,
  501. .type_size = sizeof(int64_t),
  502. .is_quantized = false,
  503. },
  504. [GGML_TYPE_F64] = {
  505. .type_name = "f64",
  506. .blck_size = 1,
  507. .type_size = sizeof(double),
  508. .is_quantized = false,
  509. .nrows = 1,
  510. },
  511. [GGML_TYPE_F32] = {
  512. .type_name = "f32",
  513. .blck_size = 1,
  514. .type_size = sizeof(float),
  515. .is_quantized = false,
  516. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  517. .vec_dot_type = GGML_TYPE_F32,
  518. .nrows = 1,
  519. },
  520. [GGML_TYPE_F16] = {
  521. .type_name = "f16",
  522. .blck_size = 1,
  523. .type_size = sizeof(ggml_fp16_t),
  524. .is_quantized = false,
  525. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  526. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  527. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  528. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  529. .vec_dot_type = GGML_TYPE_F16,
  530. .nrows = 1,
  531. },
  532. [GGML_TYPE_Q4_0] = {
  533. .type_name = "q4_0",
  534. .blck_size = QK4_0,
  535. .type_size = sizeof(block_q4_0),
  536. .is_quantized = true,
  537. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  538. .from_float = quantize_row_q4_0,
  539. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  540. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  541. .vec_dot_type = GGML_TYPE_Q8_0,
  542. #if defined (__ARM_FEATURE_MATMUL_INT8)
  543. .nrows = 2,
  544. #else
  545. .nrows = 1,
  546. #endif
  547. },
  548. [GGML_TYPE_Q4_1] = {
  549. .type_name = "q4_1",
  550. .blck_size = QK4_1,
  551. .type_size = sizeof(block_q4_1),
  552. .is_quantized = true,
  553. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  554. .from_float = quantize_row_q4_1,
  555. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  556. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  557. .vec_dot_type = GGML_TYPE_Q8_1,
  558. #if defined (__ARM_FEATURE_MATMUL_INT8)
  559. .nrows = 2,
  560. #else
  561. .nrows = 1,
  562. #endif
  563. },
  564. [4] = { // GGML_TYPE_Q4_2
  565. .type_name = "DEPRECATED",
  566. .blck_size = 0,
  567. .type_size = 0,
  568. .is_quantized = false,
  569. .to_float = NULL,
  570. .from_float = NULL,
  571. .from_float_reference = NULL,
  572. .vec_dot = NULL,
  573. .vec_dot_type = GGML_TYPE_COUNT,
  574. .nrows = 1,
  575. },
  576. [5] = { // GGML_TYPE_Q4_3
  577. .type_name = "DEPRECATED",
  578. .blck_size = 0,
  579. .type_size = 0,
  580. .is_quantized = false,
  581. .to_float = NULL,
  582. .from_float = NULL,
  583. .from_float_reference = NULL,
  584. .vec_dot = NULL,
  585. .vec_dot_type = GGML_TYPE_COUNT,
  586. .nrows = 1,
  587. },
  588. [GGML_TYPE_Q5_0] = {
  589. .type_name = "q5_0",
  590. .blck_size = QK5_0,
  591. .type_size = sizeof(block_q5_0),
  592. .is_quantized = true,
  593. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  594. .from_float = quantize_row_q5_0,
  595. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  596. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  597. .vec_dot_type = GGML_TYPE_Q8_0,
  598. .nrows = 1,
  599. },
  600. [GGML_TYPE_Q5_1] = {
  601. .type_name = "q5_1",
  602. .blck_size = QK5_1,
  603. .type_size = sizeof(block_q5_1),
  604. .is_quantized = true,
  605. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  606. .from_float = quantize_row_q5_1,
  607. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  608. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  609. .vec_dot_type = GGML_TYPE_Q8_1,
  610. .nrows = 1,
  611. },
  612. [GGML_TYPE_Q8_0] = {
  613. .type_name = "q8_0",
  614. .blck_size = QK8_0,
  615. .type_size = sizeof(block_q8_0),
  616. .is_quantized = true,
  617. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  618. .from_float = quantize_row_q8_0,
  619. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  620. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  621. .vec_dot_type = GGML_TYPE_Q8_0,
  622. #if defined (__ARM_FEATURE_MATMUL_INT8)
  623. .nrows = 2,
  624. #else
  625. .nrows = 1,
  626. #endif
  627. },
  628. [GGML_TYPE_Q8_1] = {
  629. .type_name = "q8_1",
  630. .blck_size = QK8_1,
  631. .type_size = sizeof(block_q8_1),
  632. .is_quantized = true,
  633. .from_float = quantize_row_q8_1,
  634. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  635. .vec_dot_type = GGML_TYPE_Q8_1,
  636. .nrows = 1,
  637. },
  638. [GGML_TYPE_Q2_K] = {
  639. .type_name = "q2_K",
  640. .blck_size = QK_K,
  641. .type_size = sizeof(block_q2_K),
  642. .is_quantized = true,
  643. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  644. .from_float = quantize_row_q2_K,
  645. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  646. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  647. .vec_dot_type = GGML_TYPE_Q8_K,
  648. .nrows = 1,
  649. },
  650. [GGML_TYPE_Q3_K] = {
  651. .type_name = "q3_K",
  652. .blck_size = QK_K,
  653. .type_size = sizeof(block_q3_K),
  654. .is_quantized = true,
  655. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  656. .from_float = quantize_row_q3_K,
  657. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  658. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  659. .vec_dot_type = GGML_TYPE_Q8_K,
  660. .nrows = 1,
  661. },
  662. [GGML_TYPE_Q4_K] = {
  663. .type_name = "q4_K",
  664. .blck_size = QK_K,
  665. .type_size = sizeof(block_q4_K),
  666. .is_quantized = true,
  667. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  668. .from_float = quantize_row_q4_K,
  669. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  670. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  671. .vec_dot_type = GGML_TYPE_Q8_K,
  672. .nrows = 1,
  673. },
  674. [GGML_TYPE_Q5_K] = {
  675. .type_name = "q5_K",
  676. .blck_size = QK_K,
  677. .type_size = sizeof(block_q5_K),
  678. .is_quantized = true,
  679. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  680. .from_float = quantize_row_q5_K,
  681. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  682. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  683. .vec_dot_type = GGML_TYPE_Q8_K,
  684. .nrows = 1,
  685. },
  686. [GGML_TYPE_Q6_K] = {
  687. .type_name = "q6_K",
  688. .blck_size = QK_K,
  689. .type_size = sizeof(block_q6_K),
  690. .is_quantized = true,
  691. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  692. .from_float = quantize_row_q6_K,
  693. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  694. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  695. .vec_dot_type = GGML_TYPE_Q8_K,
  696. .nrows = 1,
  697. },
  698. [GGML_TYPE_IQ2_XXS] = {
  699. .type_name = "iq2_xxs",
  700. .blck_size = QK_K,
  701. .type_size = sizeof(block_iq2_xxs),
  702. .is_quantized = true,
  703. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  704. .from_float = NULL,
  705. .from_float_reference = NULL,
  706. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  707. .vec_dot_type = GGML_TYPE_Q8_K,
  708. .nrows = 1,
  709. },
  710. [GGML_TYPE_IQ2_XS] = {
  711. .type_name = "iq2_xs",
  712. .blck_size = QK_K,
  713. .type_size = sizeof(block_iq2_xs),
  714. .is_quantized = true,
  715. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  716. .from_float = NULL,
  717. .from_float_reference = NULL,
  718. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  719. .vec_dot_type = GGML_TYPE_Q8_K,
  720. .nrows = 1,
  721. },
  722. [GGML_TYPE_IQ3_XXS] = {
  723. .type_name = "iq3_xxs",
  724. .blck_size = QK_K,
  725. .type_size = sizeof(block_iq3_xxs),
  726. .is_quantized = true,
  727. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  728. .from_float = quantize_row_iq3_xxs,
  729. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  730. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  731. .vec_dot_type = GGML_TYPE_Q8_K,
  732. .nrows = 1,
  733. },
  734. [GGML_TYPE_IQ3_S] = {
  735. .type_name = "iq3_s",
  736. .blck_size = QK_K,
  737. .type_size = sizeof(block_iq3_s),
  738. .is_quantized = true,
  739. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  740. .from_float = quantize_row_iq3_s,
  741. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  742. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  743. .vec_dot_type = GGML_TYPE_Q8_K,
  744. .nrows = 1,
  745. },
  746. [GGML_TYPE_IQ2_S] = {
  747. .type_name = "iq2_s",
  748. .blck_size = QK_K,
  749. .type_size = sizeof(block_iq2_s),
  750. .is_quantized = true,
  751. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  752. .from_float = quantize_row_iq2_s,
  753. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  754. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  755. .vec_dot_type = GGML_TYPE_Q8_K,
  756. .nrows = 1,
  757. },
  758. [GGML_TYPE_IQ1_S] = {
  759. .type_name = "iq1_s",
  760. .blck_size = QK_K,
  761. .type_size = sizeof(block_iq1_s),
  762. .is_quantized = true,
  763. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  764. .from_float = NULL,
  765. .from_float_reference = NULL,
  766. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  767. .vec_dot_type = GGML_TYPE_Q8_K,
  768. .nrows = 1,
  769. },
  770. [GGML_TYPE_IQ1_M] = {
  771. .type_name = "iq1_m",
  772. .blck_size = QK_K,
  773. .type_size = sizeof(block_iq1_m),
  774. .is_quantized = true,
  775. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  776. .from_float = NULL,
  777. .from_float_reference = NULL,
  778. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  779. .vec_dot_type = GGML_TYPE_Q8_K,
  780. .nrows = 1,
  781. },
  782. [GGML_TYPE_IQ4_NL] = {
  783. .type_name = "iq4_nl",
  784. .blck_size = QK4_NL,
  785. .type_size = sizeof(block_iq4_nl),
  786. .is_quantized = true,
  787. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  788. .from_float = quantize_row_iq4_nl,
  789. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  790. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  791. .vec_dot_type = GGML_TYPE_Q8_0,
  792. .nrows = 1,
  793. },
  794. [GGML_TYPE_IQ4_XS] = {
  795. .type_name = "iq4_xs",
  796. #if QK_K == 64
  797. .blck_size = QK4_NL,
  798. #else
  799. .blck_size = QK_K,
  800. #endif
  801. .type_size = sizeof(block_iq4_xs),
  802. .is_quantized = true,
  803. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  804. .from_float = quantize_row_iq4_xs,
  805. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  806. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  807. #if QK_K == 64
  808. .vec_dot_type = GGML_TYPE_Q8_0,
  809. #else
  810. .vec_dot_type = GGML_TYPE_Q8_K,
  811. #endif
  812. .nrows = 1,
  813. },
  814. [GGML_TYPE_Q8_K] = {
  815. .type_name = "q8_K",
  816. .blck_size = QK_K,
  817. .type_size = sizeof(block_q8_K),
  818. .is_quantized = true,
  819. .from_float = quantize_row_q8_K,
  820. },
  821. [GGML_TYPE_BF16] = {
  822. .type_name = "bf16",
  823. .blck_size = 1,
  824. .type_size = sizeof(ggml_bf16_t),
  825. .is_quantized = false,
  826. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  827. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  828. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  829. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  830. .vec_dot_type = GGML_TYPE_BF16,
  831. .nrows = 1,
  832. }
  833. };
  834. // For internal test use
  835. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  836. GGML_ASSERT(type < GGML_TYPE_COUNT);
  837. return type_traits[type];
  838. }
  839. //
  840. // simd mappings
  841. //
  842. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  843. // we then implement the fundamental computation operations below using only these macros
  844. // adding support for new architectures requires to define the corresponding SIMD macros
  845. //
  846. // GGML_F32_STEP / GGML_F16_STEP
  847. // number of elements to process in a single step
  848. //
  849. // GGML_F32_EPR / GGML_F16_EPR
  850. // number of elements to fit in a single register
  851. //
  852. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  853. #define GGML_SIMD
  854. // F32 NEON
  855. #define GGML_F32_STEP 16
  856. #define GGML_F32_EPR 4
  857. #define GGML_F32x4 float32x4_t
  858. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  859. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  860. #define GGML_F32x4_LOAD vld1q_f32
  861. #define GGML_F32x4_STORE vst1q_f32
  862. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  863. #define GGML_F32x4_ADD vaddq_f32
  864. #define GGML_F32x4_MUL vmulq_f32
  865. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  866. #define GGML_F32x4_REDUCE(res, x) \
  867. { \
  868. int offset = GGML_F32_ARR >> 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = vaddq_f32(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = vaddq_f32(x[i], x[offset+i]); \
  875. } \
  876. offset >>= 1; \
  877. for (int i = 0; i < offset; ++i) { \
  878. x[i] = vaddq_f32(x[i], x[offset+i]); \
  879. } \
  880. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  881. }
  882. #define GGML_F32_VEC GGML_F32x4
  883. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  884. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  885. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  886. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  887. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  888. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  889. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  890. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  891. // F16 NEON
  892. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  893. #define GGML_F16_STEP 32
  894. #define GGML_F16_EPR 8
  895. #define GGML_F16x8 float16x8_t
  896. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  897. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  898. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  899. #define GGML_F16x8_STORE vst1q_f16
  900. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  901. #define GGML_F16x8_ADD vaddq_f16
  902. #define GGML_F16x8_MUL vmulq_f16
  903. #define GGML_F16x8_REDUCE(res, x) \
  904. do { \
  905. int offset = GGML_F16_ARR >> 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = vaddq_f16(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = vaddq_f16(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = vaddq_f16(x[i], x[offset+i]); \
  916. } \
  917. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  918. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  919. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  920. } while (0)
  921. #define GGML_F16_VEC GGML_F16x8
  922. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  923. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  924. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  925. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  926. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  927. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  928. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  929. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  930. #else
  931. // if FP16 vector arithmetic is not supported, we use FP32 instead
  932. // and take advantage of the vcvt_ functions to convert to/from FP16
  933. #define GGML_F16_STEP 16
  934. #define GGML_F16_EPR 4
  935. #define GGML_F32Cx4 float32x4_t
  936. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  937. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  938. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  939. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  940. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  941. #define GGML_F32Cx4_ADD vaddq_f32
  942. #define GGML_F32Cx4_MUL vmulq_f32
  943. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  944. #define GGML_F16_VEC GGML_F32Cx4
  945. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  946. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  947. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  948. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  949. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  950. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  951. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  952. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  953. #endif
  954. #elif defined(__AVX512F__)
  955. #define GGML_SIMD
  956. // F32 AVX512
  957. #define GGML_F32_STEP 64
  958. #define GGML_F32_EPR 16
  959. #define GGML_F32x16 __m512
  960. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  961. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  962. #define GGML_F32x16_LOAD _mm512_loadu_ps
  963. #define GGML_F32x16_STORE _mm512_storeu_ps
  964. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  965. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  966. #define GGML_F32x16_ADD _mm512_add_ps
  967. #define GGML_F32x16_MUL _mm512_mul_ps
  968. #define GGML_F32x16_REDUCE(res, x) \
  969. do { \
  970. int offset = GGML_F32_ARR >> 1; \
  971. for (int i = 0; i < offset; ++i) { \
  972. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  973. } \
  974. offset >>= 1; \
  975. for (int i = 0; i < offset; ++i) { \
  976. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  977. } \
  978. offset >>= 1; \
  979. for (int i = 0; i < offset; ++i) { \
  980. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  981. } \
  982. res = _mm512_reduce_add_ps(x[0]); \
  983. } while (0)
  984. // TODO: is this optimal ?
  985. #define GGML_F32_VEC GGML_F32x16
  986. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  987. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  988. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  989. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  990. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  991. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  992. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  993. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  994. // F16 AVX512
  995. // F16 AVX
  996. #define GGML_F16_STEP 64
  997. #define GGML_F16_EPR 16
  998. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  999. #define GGML_F32Cx16 __m512
  1000. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1001. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1002. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1003. // so F16C guard isn't required
  1004. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1005. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1006. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1007. #define GGML_F32Cx16_ADD _mm512_add_ps
  1008. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1009. #define GGML_F32Cx16_REDUCE(res, x) \
  1010. do { \
  1011. int offset = GGML_F32_ARR >> 1; \
  1012. for (int i = 0; i < offset; ++i) { \
  1013. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1014. } \
  1015. offset >>= 1; \
  1016. for (int i = 0; i < offset; ++i) { \
  1017. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1018. } \
  1019. offset >>= 1; \
  1020. for (int i = 0; i < offset; ++i) { \
  1021. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1022. } \
  1023. res = _mm512_reduce_add_ps(x[0]); \
  1024. } while (0)
  1025. #define GGML_F16_VEC GGML_F32Cx16
  1026. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1027. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1028. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1029. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1030. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1031. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1032. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1033. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1034. #elif defined(__AVX__)
  1035. #define GGML_SIMD
  1036. // F32 AVX
  1037. #define GGML_F32_STEP 32
  1038. #define GGML_F32_EPR 8
  1039. #define GGML_F32x8 __m256
  1040. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1041. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1042. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1043. #define GGML_F32x8_STORE _mm256_storeu_ps
  1044. #if defined(__FMA__)
  1045. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1046. #else
  1047. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1048. #endif
  1049. #define GGML_F32x8_ADD _mm256_add_ps
  1050. #define GGML_F32x8_MUL _mm256_mul_ps
  1051. #define GGML_F32x8_REDUCE(res, x) \
  1052. do { \
  1053. int offset = GGML_F32_ARR >> 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1056. } \
  1057. offset >>= 1; \
  1058. for (int i = 0; i < offset; ++i) { \
  1059. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1060. } \
  1061. offset >>= 1; \
  1062. for (int i = 0; i < offset; ++i) { \
  1063. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1064. } \
  1065. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1066. _mm256_extractf128_ps(x[0], 1)); \
  1067. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1068. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1069. } while (0)
  1070. // TODO: is this optimal ?
  1071. #define GGML_F32_VEC GGML_F32x8
  1072. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1073. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1074. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1075. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1076. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1077. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1078. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1079. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1080. // F16 AVX
  1081. #define GGML_F16_STEP 32
  1082. #define GGML_F16_EPR 8
  1083. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1084. #define GGML_F32Cx8 __m256
  1085. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1086. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1087. #if defined(__F16C__)
  1088. // the _mm256_cvt intrinsics require F16C
  1089. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1090. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1091. #else
  1092. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1093. float tmp[8];
  1094. for (int i = 0; i < 8; i++) {
  1095. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1096. }
  1097. return _mm256_loadu_ps(tmp);
  1098. }
  1099. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1100. float arr[8];
  1101. _mm256_storeu_ps(arr, y);
  1102. for (int i = 0; i < 8; i++)
  1103. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1104. }
  1105. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1106. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1107. #endif
  1108. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1109. #define GGML_F32Cx8_ADD _mm256_add_ps
  1110. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1111. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1112. #define GGML_F16_VEC GGML_F32Cx8
  1113. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1114. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1115. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1116. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1117. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1118. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1119. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1120. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1121. #elif defined(__POWER9_VECTOR__)
  1122. #define GGML_SIMD
  1123. // F32 POWER9
  1124. #define GGML_F32_STEP 32
  1125. #define GGML_F32_EPR 4
  1126. #define GGML_F32x4 vector float
  1127. #define GGML_F32x4_ZERO 0.0f
  1128. #define GGML_F32x4_SET1 vec_splats
  1129. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1130. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1131. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1132. #define GGML_F32x4_ADD vec_add
  1133. #define GGML_F32x4_MUL vec_mul
  1134. #define GGML_F32x4_REDUCE(res, x) \
  1135. { \
  1136. int offset = GGML_F32_ARR >> 1; \
  1137. for (int i = 0; i < offset; ++i) { \
  1138. x[i] = vec_add(x[i], x[offset+i]); \
  1139. } \
  1140. offset >>= 1; \
  1141. for (int i = 0; i < offset; ++i) { \
  1142. x[i] = vec_add(x[i], x[offset+i]); \
  1143. } \
  1144. offset >>= 1; \
  1145. for (int i = 0; i < offset; ++i) { \
  1146. x[i] = vec_add(x[i], x[offset+i]); \
  1147. } \
  1148. res = vec_extract(x[0], 0) + \
  1149. vec_extract(x[0], 1) + \
  1150. vec_extract(x[0], 2) + \
  1151. vec_extract(x[0], 3); \
  1152. }
  1153. #define GGML_F32_VEC GGML_F32x4
  1154. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1155. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1156. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1157. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1158. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1159. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1160. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1161. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1162. // F16 POWER9
  1163. #define GGML_F16_STEP GGML_F32_STEP
  1164. #define GGML_F16_EPR GGML_F32_EPR
  1165. #define GGML_F16_VEC GGML_F32x4
  1166. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1167. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1168. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1169. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1170. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1171. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1172. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1173. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1174. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1175. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1176. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1177. #define GGML_F16_VEC_STORE(p, r, i) \
  1178. if (i & 0x1) \
  1179. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1180. r[i - GGML_ENDIAN_BYTE(0)]), \
  1181. 0, p - GGML_F16_EPR)
  1182. #elif defined(__wasm_simd128__)
  1183. #define GGML_SIMD
  1184. // F32 WASM
  1185. #define GGML_F32_STEP 16
  1186. #define GGML_F32_EPR 4
  1187. #define GGML_F32x4 v128_t
  1188. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1189. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1190. #define GGML_F32x4_LOAD wasm_v128_load
  1191. #define GGML_F32x4_STORE wasm_v128_store
  1192. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1193. #define GGML_F32x4_ADD wasm_f32x4_add
  1194. #define GGML_F32x4_MUL wasm_f32x4_mul
  1195. #define GGML_F32x4_REDUCE(res, x) \
  1196. { \
  1197. int offset = GGML_F32_ARR >> 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. offset >>= 1; \
  1206. for (int i = 0; i < offset; ++i) { \
  1207. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1208. } \
  1209. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1210. wasm_f32x4_extract_lane(x[0], 1) + \
  1211. wasm_f32x4_extract_lane(x[0], 2) + \
  1212. wasm_f32x4_extract_lane(x[0], 3); \
  1213. }
  1214. #define GGML_F32_VEC GGML_F32x4
  1215. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1216. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1217. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1218. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1219. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1220. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1221. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1222. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1223. // F16 WASM
  1224. #define GGML_F16_STEP 16
  1225. #define GGML_F16_EPR 4
  1226. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1227. float tmp[4];
  1228. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1229. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1230. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1231. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1232. return wasm_v128_load(tmp);
  1233. }
  1234. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1235. float tmp[4];
  1236. wasm_v128_store(tmp, x);
  1237. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1238. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1239. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1240. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1241. }
  1242. #define GGML_F16x4 v128_t
  1243. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1244. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1245. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1246. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1247. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1248. #define GGML_F16x4_ADD wasm_f32x4_add
  1249. #define GGML_F16x4_MUL wasm_f32x4_mul
  1250. #define GGML_F16x4_REDUCE(res, x) \
  1251. { \
  1252. int offset = GGML_F16_ARR >> 1; \
  1253. for (int i = 0; i < offset; ++i) { \
  1254. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1255. } \
  1256. offset >>= 1; \
  1257. for (int i = 0; i < offset; ++i) { \
  1258. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1259. } \
  1260. offset >>= 1; \
  1261. for (int i = 0; i < offset; ++i) { \
  1262. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1263. } \
  1264. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1265. wasm_f32x4_extract_lane(x[0], 1) + \
  1266. wasm_f32x4_extract_lane(x[0], 2) + \
  1267. wasm_f32x4_extract_lane(x[0], 3); \
  1268. }
  1269. #define GGML_F16_VEC GGML_F16x4
  1270. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1271. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1272. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1273. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1274. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1275. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1276. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1277. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1278. #elif defined(__SSE3__)
  1279. #define GGML_SIMD
  1280. // F32 SSE
  1281. #define GGML_F32_STEP 32
  1282. #define GGML_F32_EPR 4
  1283. #define GGML_F32x4 __m128
  1284. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1285. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1286. #define GGML_F32x4_LOAD _mm_loadu_ps
  1287. #define GGML_F32x4_STORE _mm_storeu_ps
  1288. #if defined(__FMA__)
  1289. // TODO: Does this work?
  1290. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1291. #else
  1292. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1293. #endif
  1294. #define GGML_F32x4_ADD _mm_add_ps
  1295. #define GGML_F32x4_MUL _mm_mul_ps
  1296. #define GGML_F32x4_REDUCE(res, x) \
  1297. { \
  1298. int offset = GGML_F32_ARR >> 1; \
  1299. for (int i = 0; i < offset; ++i) { \
  1300. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1301. } \
  1302. offset >>= 1; \
  1303. for (int i = 0; i < offset; ++i) { \
  1304. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1305. } \
  1306. offset >>= 1; \
  1307. for (int i = 0; i < offset; ++i) { \
  1308. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1309. } \
  1310. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1311. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1312. }
  1313. // TODO: is this optimal ?
  1314. #define GGML_F32_VEC GGML_F32x4
  1315. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1316. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1317. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1318. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1319. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1320. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1321. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1322. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1323. // F16 SSE
  1324. #define GGML_F16_STEP 32
  1325. #define GGML_F16_EPR 4
  1326. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1327. float tmp[4];
  1328. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1329. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1330. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1331. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1332. return _mm_loadu_ps(tmp);
  1333. }
  1334. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1335. float arr[4];
  1336. _mm_storeu_ps(arr, y);
  1337. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1338. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1339. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1340. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1341. }
  1342. #define GGML_F32Cx4 __m128
  1343. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1344. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1345. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1346. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1347. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1348. #define GGML_F32Cx4_ADD _mm_add_ps
  1349. #define GGML_F32Cx4_MUL _mm_mul_ps
  1350. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1351. #define GGML_F16_VEC GGML_F32Cx4
  1352. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1353. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1354. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1355. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1356. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1357. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1358. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1359. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1360. #endif
  1361. // GGML_F32_ARR / GGML_F16_ARR
  1362. // number of registers to use per step
  1363. #ifdef GGML_SIMD
  1364. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1365. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1366. #endif
  1367. //
  1368. // ggml context
  1369. //
  1370. struct ggml_context {
  1371. size_t mem_size;
  1372. void* mem_buffer;
  1373. bool mem_buffer_owned;
  1374. bool no_alloc;
  1375. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1376. int n_objects;
  1377. struct ggml_object* objects_begin;
  1378. struct ggml_object* objects_end;
  1379. struct ggml_scratch scratch;
  1380. struct ggml_scratch scratch_save;
  1381. };
  1382. struct ggml_context_container {
  1383. bool used;
  1384. struct ggml_context context;
  1385. };
  1386. struct ggml_compute_state_shared {
  1387. const struct ggml_cgraph* cgraph;
  1388. const struct ggml_cplan* cplan;
  1389. int64_t perf_node_start_cycles;
  1390. int64_t perf_node_start_time_us;
  1391. const int n_threads;
  1392. // synchronization primitives
  1393. atomic_int n_active; // num active threads
  1394. atomic_int node_n; // active graph node
  1395. atomic_int node_task; // active graph node task phase
  1396. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1397. void* abort_callback_data;
  1398. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1399. };
  1400. struct ggml_compute_state {
  1401. ggml_thread_t thrd;
  1402. int ith;
  1403. struct ggml_compute_state_shared* shared;
  1404. enum ggml_status ec;
  1405. };
  1406. //
  1407. // fundamental operations
  1408. //
  1409. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1410. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1411. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1412. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1413. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1414. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1415. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1416. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1417. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1418. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1419. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1420. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1421. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1422. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1423. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1425. assert(nrc == 1);
  1426. UNUSED(nrc);
  1427. UNUSED(bx);
  1428. UNUSED(by);
  1429. UNUSED(bs);
  1430. #if defined(GGML_SIMD)
  1431. float sumf = 0.0f;
  1432. const int np = (n & ~(GGML_F32_STEP - 1));
  1433. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1434. GGML_F32_VEC ax[GGML_F32_ARR];
  1435. GGML_F32_VEC ay[GGML_F32_ARR];
  1436. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1437. for (int j = 0; j < GGML_F32_ARR; j++) {
  1438. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1439. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1440. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1441. }
  1442. }
  1443. // reduce sum0..sum3 to sum0
  1444. GGML_F32_VEC_REDUCE(sumf, sum);
  1445. // leftovers
  1446. for (int i = np; i < n; ++i) {
  1447. sumf += x[i]*y[i];
  1448. }
  1449. #else
  1450. // scalar
  1451. ggml_float sumf = 0.0;
  1452. for (int i = 0; i < n; ++i) {
  1453. sumf += (ggml_float)(x[i]*y[i]);
  1454. }
  1455. #endif
  1456. *s = sumf;
  1457. }
  1458. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1459. assert(nrc == 1);
  1460. UNUSED(nrc);
  1461. UNUSED(bx);
  1462. UNUSED(by);
  1463. UNUSED(bs);
  1464. int i = 0;
  1465. ggml_float sumf = 0;
  1466. #if defined(__AVX512BF16__)
  1467. __m512 c1 = _mm512_setzero_ps();
  1468. __m512 c2 = _mm512_setzero_ps();
  1469. for (; i + 64 <= n; i += 64) {
  1470. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1471. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1472. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1473. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1474. }
  1475. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1476. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1477. #elif defined(__AVX512F__)
  1478. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1479. __m512 c1 = _mm512_setzero_ps();
  1480. __m512 c2 = _mm512_setzero_ps();
  1481. for (; i + 32 <= n; i += 32) {
  1482. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1483. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1484. }
  1485. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1486. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1487. #undef LOAD
  1488. #elif defined(__AVX2__)
  1489. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1490. __m256 c1 = _mm256_setzero_ps();
  1491. __m256 c2 = _mm256_setzero_ps();
  1492. __m256 c3 = _mm256_setzero_ps();
  1493. __m256 c4 = _mm256_setzero_ps();
  1494. for (; i + 32 <= n; i += 32) {
  1495. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1496. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1497. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1498. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1499. }
  1500. __m128 g;
  1501. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1502. _mm256_add_ps(c2, c4));
  1503. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1504. _mm256_castps256_ps128(c1));
  1505. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1506. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1507. sumf += (ggml_float)_mm_cvtss_f32(g);
  1508. #undef LOAD
  1509. #endif
  1510. for (; i < n; ++i) {
  1511. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1512. GGML_BF16_TO_FP32(y[i]));
  1513. }
  1514. *s = sumf;
  1515. }
  1516. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1517. assert(nrc == 1);
  1518. UNUSED(nrc);
  1519. UNUSED(bx);
  1520. UNUSED(by);
  1521. UNUSED(bs);
  1522. ggml_float sumf = 0.0;
  1523. #if defined(GGML_SIMD)
  1524. const int np = (n & ~(GGML_F16_STEP - 1));
  1525. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1526. GGML_F16_VEC ax[GGML_F16_ARR];
  1527. GGML_F16_VEC ay[GGML_F16_ARR];
  1528. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1529. for (int j = 0; j < GGML_F16_ARR; j++) {
  1530. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1531. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1532. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1533. }
  1534. }
  1535. // reduce sum0..sum3 to sum0
  1536. GGML_F16_VEC_REDUCE(sumf, sum);
  1537. // leftovers
  1538. for (int i = np; i < n; ++i) {
  1539. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1540. }
  1541. #else
  1542. for (int i = 0; i < n; ++i) {
  1543. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1544. }
  1545. #endif
  1546. *s = sumf;
  1547. }
  1548. // compute GGML_VEC_DOT_UNROLL dot products at once
  1549. // xs - x row stride in bytes
  1550. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1551. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1552. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1553. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1554. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1555. }
  1556. #if defined(GGML_SIMD)
  1557. const int np = (n & ~(GGML_F16_STEP - 1));
  1558. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1559. GGML_F16_VEC ax[GGML_F16_ARR];
  1560. GGML_F16_VEC ay[GGML_F16_ARR];
  1561. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1562. for (int j = 0; j < GGML_F16_ARR; j++) {
  1563. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1564. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1565. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1566. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1567. }
  1568. }
  1569. }
  1570. // reduce sum0..sum3 to sum0
  1571. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1572. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1573. }
  1574. // leftovers
  1575. for (int i = np; i < n; ++i) {
  1576. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1577. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1578. }
  1579. }
  1580. #else
  1581. for (int i = 0; i < n; ++i) {
  1582. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1583. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1584. }
  1585. }
  1586. #endif
  1587. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1588. s[i] = sumf[i];
  1589. }
  1590. }
  1591. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1592. #if defined(GGML_SIMD)
  1593. const int np = (n & ~(GGML_F32_STEP - 1));
  1594. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1595. GGML_F32_VEC ax[GGML_F32_ARR];
  1596. GGML_F32_VEC ay[GGML_F32_ARR];
  1597. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1598. for (int j = 0; j < GGML_F32_ARR; j++) {
  1599. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1600. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1601. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1602. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1603. }
  1604. }
  1605. // leftovers
  1606. for (int i = np; i < n; ++i) {
  1607. y[i] += x[i]*v;
  1608. }
  1609. #else
  1610. // scalar
  1611. for (int i = 0; i < n; ++i) {
  1612. y[i] += x[i]*v;
  1613. }
  1614. #endif
  1615. }
  1616. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1617. #if defined(GGML_SIMD)
  1618. const int np = (n & ~(GGML_F16_STEP - 1));
  1619. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1620. GGML_F16_VEC ax[GGML_F16_ARR];
  1621. GGML_F16_VEC ay[GGML_F16_ARR];
  1622. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1623. for (int j = 0; j < GGML_F16_ARR; j++) {
  1624. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1625. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1626. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1627. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1628. }
  1629. }
  1630. // leftovers
  1631. for (int i = np; i < n; ++i) {
  1632. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1633. }
  1634. #else
  1635. // scalar
  1636. for (int i = 0; i < n; ++i) {
  1637. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1638. }
  1639. #endif
  1640. }
  1641. // xs and vs are byte strides of x and v
  1642. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1643. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1644. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1645. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1646. x[i] = (const float *) ((const char *) xv + i*xs);
  1647. v[i] = (const float *) ((const char *) vv + i*vs);
  1648. }
  1649. #if defined(GGML_SIMD)
  1650. const int np = (n & ~(GGML_F32_STEP - 1));
  1651. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1652. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1653. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1654. }
  1655. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1656. GGML_F32_VEC ay[GGML_F32_ARR];
  1657. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1658. for (int j = 0; j < GGML_F32_ARR; j++) {
  1659. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1660. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1661. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1662. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1663. }
  1664. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1665. }
  1666. }
  1667. // leftovers
  1668. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1669. for (int i = np; i < n; ++i) {
  1670. y[i] += x[k][i]*v[k][0];
  1671. }
  1672. }
  1673. #else
  1674. // scalar
  1675. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1676. for (int i = 0; i < n; ++i) {
  1677. y[i] += x[k][i]*v[k][0];
  1678. }
  1679. }
  1680. #endif
  1681. }
  1682. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1683. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1684. #if defined(GGML_USE_ACCELERATE)
  1685. vDSP_vsmul(y, 1, &v, y, 1, n);
  1686. #elif defined(GGML_SIMD)
  1687. const int np = (n & ~(GGML_F32_STEP - 1));
  1688. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1689. GGML_F32_VEC ay[GGML_F32_ARR];
  1690. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1691. for (int j = 0; j < GGML_F32_ARR; j++) {
  1692. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1693. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1694. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1695. }
  1696. }
  1697. // leftovers
  1698. for (int i = np; i < n; ++i) {
  1699. y[i] *= v;
  1700. }
  1701. #else
  1702. // scalar
  1703. for (int i = 0; i < n; ++i) {
  1704. y[i] *= v;
  1705. }
  1706. #endif
  1707. }
  1708. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1709. #if defined(GGML_SIMD)
  1710. const int np = (n & ~(GGML_F16_STEP - 1));
  1711. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1712. GGML_F16_VEC ay[GGML_F16_ARR];
  1713. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1714. for (int j = 0; j < GGML_F16_ARR; j++) {
  1715. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1716. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1717. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1718. }
  1719. }
  1720. // leftovers
  1721. for (int i = np; i < n; ++i) {
  1722. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1723. }
  1724. #else
  1725. // scalar
  1726. for (int i = 0; i < n; ++i) {
  1727. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1728. }
  1729. #endif
  1730. }
  1731. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1732. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1733. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1734. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1735. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1736. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1737. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1738. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1739. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1740. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1741. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1742. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1743. // TODO: optimize performance
  1744. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1745. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1746. static const float GELU_COEF_A = 0.044715f;
  1747. static const float GELU_QUICK_COEF = -1.702f;
  1748. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1749. inline static float ggml_gelu_f32(float x) {
  1750. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1751. }
  1752. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1753. const uint16_t * i16 = (const uint16_t *) x;
  1754. for (int i = 0; i < n; ++i) {
  1755. y[i] = ggml_table_gelu_f16[i16[i]];
  1756. }
  1757. }
  1758. #ifdef GGML_GELU_FP16
  1759. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1760. uint16_t t;
  1761. for (int i = 0; i < n; ++i) {
  1762. if (x[i] <= -10.0f) {
  1763. y[i] = 0.0f;
  1764. } else if (x[i] >= 10.0f) {
  1765. y[i] = x[i];
  1766. } else {
  1767. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1768. memcpy(&t, &fp16, sizeof(uint16_t));
  1769. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1770. }
  1771. }
  1772. }
  1773. #else
  1774. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1775. for (int i = 0; i < n; ++i) {
  1776. y[i] = ggml_gelu_f32(x[i]);
  1777. }
  1778. }
  1779. #endif
  1780. inline static float ggml_gelu_quick_f32(float x) {
  1781. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1782. }
  1783. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1784. // const uint16_t * i16 = (const uint16_t *) x;
  1785. // for (int i = 0; i < n; ++i) {
  1786. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1787. // }
  1788. //}
  1789. #ifdef GGML_GELU_QUICK_FP16
  1790. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1791. uint16_t t;
  1792. for (int i = 0; i < n; ++i) {
  1793. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1794. memcpy(&t, &fp16, sizeof(uint16_t));
  1795. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1796. }
  1797. }
  1798. #else
  1799. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1800. for (int i = 0; i < n; ++i) {
  1801. y[i] = ggml_gelu_quick_f32(x[i]);
  1802. }
  1803. }
  1804. #endif
  1805. // Sigmoid Linear Unit (SiLU) function
  1806. inline static float ggml_silu_f32(float x) {
  1807. return x/(1.0f + expf(-x));
  1808. }
  1809. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1810. // const uint16_t * i16 = (const uint16_t *) x;
  1811. // for (int i = 0; i < n; ++i) {
  1812. // y[i] = ggml_table_silu_f16[i16[i]];
  1813. // }
  1814. //}
  1815. #ifdef GGML_SILU_FP16
  1816. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1817. uint16_t t;
  1818. for (int i = 0; i < n; ++i) {
  1819. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1820. memcpy(&t, &fp16, sizeof(uint16_t));
  1821. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1822. }
  1823. }
  1824. #else
  1825. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1826. for (int i = 0; i < n; ++i) {
  1827. y[i] = ggml_silu_f32(x[i]);
  1828. }
  1829. }
  1830. #endif
  1831. inline static float ggml_silu_backward_f32(float x, float dy) {
  1832. const float s = 1.0f/(1.0f + expf(-x));
  1833. return dy*s*(1.0f + x*(1.0f - s));
  1834. }
  1835. #ifdef GGML_SILU_FP16
  1836. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1837. for (int i = 0; i < n; ++i) {
  1838. // we did not use x[i] to compute forward silu but its f16 equivalent
  1839. // take derivative at f16 of x[i]:
  1840. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1841. float usedx = GGML_FP16_TO_FP32(fp16);
  1842. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1843. }
  1844. }
  1845. #else
  1846. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1847. for (int i = 0; i < n; ++i) {
  1848. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1849. }
  1850. }
  1851. #endif
  1852. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1853. #ifndef GGML_USE_ACCELERATE
  1854. ggml_float sum = 0.0;
  1855. for (int i = 0; i < n; ++i) {
  1856. sum += (ggml_float)x[i];
  1857. }
  1858. *s = sum;
  1859. #else
  1860. vDSP_sve(x, 1, s, n);
  1861. #endif
  1862. }
  1863. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1864. ggml_float sum = 0.0;
  1865. for (int i = 0; i < n; ++i) {
  1866. sum += (ggml_float)x[i];
  1867. }
  1868. *s = sum;
  1869. }
  1870. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1871. float sum = 0.0f;
  1872. for (int i = 0; i < n; ++i) {
  1873. sum += GGML_FP16_TO_FP32(x[i]);
  1874. }
  1875. *s = sum;
  1876. }
  1877. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1878. float sum = 0.0f;
  1879. for (int i = 0; i < n; ++i) {
  1880. sum += GGML_BF16_TO_FP32(x[i]);
  1881. }
  1882. *s = sum;
  1883. }
  1884. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1885. #ifndef GGML_USE_ACCELERATE
  1886. float max = -INFINITY;
  1887. for (int i = 0; i < n; ++i) {
  1888. max = MAX(max, x[i]);
  1889. }
  1890. *s = max;
  1891. #else
  1892. vDSP_maxv(x, 1, s, n);
  1893. #endif
  1894. }
  1895. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1896. ggml_vec_norm_f32(n, s, x);
  1897. *s = 1.f/(*s);
  1898. }
  1899. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1900. float max = -INFINITY;
  1901. int idx = 0;
  1902. for (int i = 0; i < n; ++i) {
  1903. max = MAX(max, x[i]);
  1904. if (max == x[i]) { idx = i; }
  1905. }
  1906. *s = idx;
  1907. }
  1908. //
  1909. // data types
  1910. //
  1911. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1912. "NONE",
  1913. "DUP",
  1914. "ADD",
  1915. "ADD1",
  1916. "ACC",
  1917. "SUB",
  1918. "MUL",
  1919. "DIV",
  1920. "SQR",
  1921. "SQRT",
  1922. "LOG",
  1923. "SUM",
  1924. "SUM_ROWS",
  1925. "MEAN",
  1926. "ARGMAX",
  1927. "REPEAT",
  1928. "REPEAT_BACK",
  1929. "CONCAT",
  1930. "SILU_BACK",
  1931. "NORM",
  1932. "RMS_NORM",
  1933. "RMS_NORM_BACK",
  1934. "GROUP_NORM",
  1935. "MUL_MAT",
  1936. "MUL_MAT_ID",
  1937. "OUT_PROD",
  1938. "SCALE",
  1939. "SET",
  1940. "CPY",
  1941. "CONT",
  1942. "RESHAPE",
  1943. "VIEW",
  1944. "PERMUTE",
  1945. "TRANSPOSE",
  1946. "GET_ROWS",
  1947. "GET_ROWS_BACK",
  1948. "DIAG",
  1949. "DIAG_MASK_INF",
  1950. "DIAG_MASK_ZERO",
  1951. "SOFT_MAX",
  1952. "SOFT_MAX_BACK",
  1953. "ROPE",
  1954. "ROPE_BACK",
  1955. "CLAMP",
  1956. "CONV_TRANSPOSE_1D",
  1957. "IM2COL",
  1958. "CONV_TRANSPOSE_2D",
  1959. "POOL_1D",
  1960. "POOL_2D",
  1961. "UPSCALE",
  1962. "PAD",
  1963. "ARANGE",
  1964. "TIMESTEP_EMBEDDING",
  1965. "ARGSORT",
  1966. "LEAKY_RELU",
  1967. "FLASH_ATTN",
  1968. "FLASH_ATTN_EXT",
  1969. "FLASH_FF",
  1970. "FLASH_ATTN_BACK",
  1971. "SSM_CONV",
  1972. "SSM_SCAN",
  1973. "WIN_PART",
  1974. "WIN_UNPART",
  1975. "GET_REL_POS",
  1976. "ADD_REL_POS",
  1977. "UNARY",
  1978. "MAP_UNARY",
  1979. "MAP_BINARY",
  1980. "MAP_CUSTOM1_F32",
  1981. "MAP_CUSTOM2_F32",
  1982. "MAP_CUSTOM3_F32",
  1983. "MAP_CUSTOM1",
  1984. "MAP_CUSTOM2",
  1985. "MAP_CUSTOM3",
  1986. "CROSS_ENTROPY_LOSS",
  1987. "CROSS_ENTROPY_LOSS_BACK",
  1988. };
  1989. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1990. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1991. "none",
  1992. "x",
  1993. "x+y",
  1994. "x+y",
  1995. "view(x,nb,offset)+=y->x",
  1996. "x-y",
  1997. "x*y",
  1998. "x/y",
  1999. "x^2",
  2000. "√x",
  2001. "log(x)",
  2002. "Σx",
  2003. "Σx_k",
  2004. "Σx/n",
  2005. "argmax(x)",
  2006. "repeat(x)",
  2007. "repeat_back(x)",
  2008. "concat(x, y)",
  2009. "silu_back(x)",
  2010. "norm(x)",
  2011. "rms_norm(x)",
  2012. "rms_norm_back(x)",
  2013. "group_norm(x)",
  2014. "X*Y",
  2015. "X[i]*Y",
  2016. "X*Y",
  2017. "x*v",
  2018. "y-\\>view(x)",
  2019. "x-\\>y",
  2020. "cont(x)",
  2021. "reshape(x)",
  2022. "view(x)",
  2023. "permute(x)",
  2024. "transpose(x)",
  2025. "get_rows(x)",
  2026. "get_rows_back(x)",
  2027. "diag(x)",
  2028. "diag_mask_inf(x)",
  2029. "diag_mask_zero(x)",
  2030. "soft_max(x)",
  2031. "soft_max_back(x)",
  2032. "rope(x)",
  2033. "rope_back(x)",
  2034. "clamp(x)",
  2035. "conv_transpose_1d(x)",
  2036. "im2col(x)",
  2037. "conv_transpose_2d(x)",
  2038. "pool_1d(x)",
  2039. "pool_2d(x)",
  2040. "upscale(x)",
  2041. "pad(x)",
  2042. "arange(start, stop, step)",
  2043. "timestep_embedding(timesteps, dim, max_period)",
  2044. "argsort(x)",
  2045. "leaky_relu(x)",
  2046. "flash_attn(x)",
  2047. "flash_attn_ext(x)",
  2048. "flash_ff(x)",
  2049. "flash_attn_back(x)",
  2050. "ssm_conv(x)",
  2051. "ssm_scan(x)",
  2052. "win_part(x)",
  2053. "win_unpart(x)",
  2054. "get_rel_pos(x)",
  2055. "add_rel_pos(x)",
  2056. "unary(x)",
  2057. "f(x)",
  2058. "f(x,y)",
  2059. "custom_f32(x)",
  2060. "custom_f32(x,y)",
  2061. "custom_f32(x,y,z)",
  2062. "custom(x)",
  2063. "custom(x,y)",
  2064. "custom(x,y,z)",
  2065. "cross_entropy_loss(x,y)",
  2066. "cross_entropy_loss_back(x,y)",
  2067. };
  2068. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2069. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2070. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2071. "ABS",
  2072. "SGN",
  2073. "NEG",
  2074. "STEP",
  2075. "TANH",
  2076. "ELU",
  2077. "RELU",
  2078. "SIGMOID",
  2079. "GELU",
  2080. "GELU_QUICK",
  2081. "SILU",
  2082. "HARDSWISH",
  2083. "HARDSIGMOID",
  2084. };
  2085. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2086. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2087. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2088. // WARN:
  2089. // Mis-configuration can lead to problem that's hard to reason about:
  2090. // * At best it crash or talks nosense.
  2091. // * At worst it talks slightly difference but hard to perceive.
  2092. //
  2093. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2094. // Take care about compile options (e.g., GGML_USE_xxx).
  2095. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2096. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2097. static void ggml_setup_op_has_task_pass(void) {
  2098. { // INIT
  2099. bool * p = GGML_OP_HAS_INIT;
  2100. p[GGML_OP_ACC ] = true;
  2101. p[GGML_OP_MUL_MAT ] = true;
  2102. p[GGML_OP_MUL_MAT_ID ] = true;
  2103. p[GGML_OP_OUT_PROD ] = true;
  2104. p[GGML_OP_SET ] = true;
  2105. p[GGML_OP_GET_ROWS_BACK ] = true;
  2106. p[GGML_OP_DIAG_MASK_INF ] = true;
  2107. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2108. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2109. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2110. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2111. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2112. p[GGML_OP_ADD_REL_POS ] = true;
  2113. }
  2114. { // FINALIZE
  2115. bool * p = GGML_OP_HAS_FINALIZE;
  2116. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2117. }
  2118. }
  2119. //
  2120. // NUMA support
  2121. //
  2122. #define GGML_NUMA_MAX_NODES 8
  2123. #define GGML_NUMA_MAX_CPUS 512
  2124. struct ggml_numa_node {
  2125. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2126. uint32_t n_cpus;
  2127. };
  2128. struct ggml_numa_nodes {
  2129. enum ggml_numa_strategy numa_strategy;
  2130. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2131. uint32_t n_nodes;
  2132. uint32_t total_cpus; // hardware threads on system
  2133. uint32_t current_node; // node on which main process is execting
  2134. #if defined(__gnu_linux__)
  2135. cpu_set_t cpuset; // cpuset from numactl
  2136. #else
  2137. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2138. #endif
  2139. };
  2140. //
  2141. // ggml state
  2142. //
  2143. struct ggml_state {
  2144. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2145. struct ggml_numa_nodes numa;
  2146. };
  2147. // global state
  2148. static struct ggml_state g_state;
  2149. static atomic_int g_state_barrier = 0;
  2150. // barrier via spin lock
  2151. inline static void ggml_critical_section_start(void) {
  2152. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2153. while (processing > 0) {
  2154. // wait for other threads to finish
  2155. atomic_fetch_sub(&g_state_barrier, 1);
  2156. sched_yield(); // TODO: reconsider this
  2157. processing = atomic_fetch_add(&g_state_barrier, 1);
  2158. }
  2159. }
  2160. // TODO: make this somehow automatically executed
  2161. // some sort of "sentry" mechanism
  2162. inline static void ggml_critical_section_end(void) {
  2163. atomic_fetch_sub(&g_state_barrier, 1);
  2164. }
  2165. #if defined(__gnu_linux__)
  2166. static cpu_set_t ggml_get_numa_affinity(void) {
  2167. cpu_set_t cpuset;
  2168. pthread_t thread;
  2169. thread = pthread_self();
  2170. CPU_ZERO(&cpuset);
  2171. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2172. return cpuset;
  2173. }
  2174. #else
  2175. static uint32_t ggml_get_numa_affinity(void) {
  2176. return 0; // no NUMA support
  2177. }
  2178. #endif
  2179. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2180. if (g_state.numa.n_nodes > 0) {
  2181. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2182. return;
  2183. }
  2184. #if defined(__gnu_linux__)
  2185. struct stat st;
  2186. char path[256];
  2187. int rv;
  2188. // set numa scheme
  2189. g_state.numa.numa_strategy = numa_flag;
  2190. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2191. g_state.numa.cpuset = ggml_get_numa_affinity();
  2192. // enumerate nodes
  2193. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2194. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2195. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2196. if (stat(path, &st) != 0) { break; }
  2197. ++g_state.numa.n_nodes;
  2198. }
  2199. // enumerate CPUs
  2200. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2201. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2202. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2203. if (stat(path, &st) != 0) { break; }
  2204. ++g_state.numa.total_cpus;
  2205. }
  2206. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2207. // figure out which node we're on
  2208. uint current_cpu;
  2209. int getcpu_ret = 0;
  2210. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2211. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2212. #else
  2213. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2214. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2215. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2216. # endif
  2217. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2218. #endif
  2219. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2220. g_state.numa.n_nodes = 0;
  2221. return;
  2222. }
  2223. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2224. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2225. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2226. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2227. node->n_cpus = 0;
  2228. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2229. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2230. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2231. if (stat(path, &st) == 0) {
  2232. node->cpus[node->n_cpus++] = c;
  2233. GGML_PRINT_DEBUG(" %u", c);
  2234. }
  2235. }
  2236. GGML_PRINT_DEBUG("\n");
  2237. }
  2238. if (ggml_is_numa()) {
  2239. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2240. if (fptr != NULL) {
  2241. char buf[42];
  2242. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2243. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2244. }
  2245. fclose(fptr);
  2246. }
  2247. }
  2248. #else
  2249. GGML_UNUSED(numa_flag);
  2250. // TODO
  2251. #endif
  2252. }
  2253. bool ggml_is_numa(void) {
  2254. return g_state.numa.n_nodes > 1;
  2255. }
  2256. ////////////////////////////////////////////////////////////////////////////////
  2257. void ggml_print_object(const struct ggml_object * obj) {
  2258. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2259. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2260. }
  2261. void ggml_print_objects(const struct ggml_context * ctx) {
  2262. struct ggml_object * obj = ctx->objects_begin;
  2263. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2264. while (obj != NULL) {
  2265. ggml_print_object(obj);
  2266. obj = obj->next;
  2267. }
  2268. GGML_PRINT("%s: --- end ---\n", __func__);
  2269. }
  2270. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2271. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2272. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2273. }
  2274. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2275. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2276. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2277. }
  2278. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2279. size_t nbytes;
  2280. size_t blck_size = ggml_blck_size(tensor->type);
  2281. if (blck_size == 1) {
  2282. nbytes = ggml_type_size(tensor->type);
  2283. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2284. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2285. }
  2286. }
  2287. else {
  2288. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2289. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2290. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2291. }
  2292. }
  2293. return nbytes;
  2294. }
  2295. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2296. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2297. }
  2298. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2299. return type_traits[type].blck_size;
  2300. }
  2301. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2302. return type_traits[type].type_size;
  2303. }
  2304. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2305. assert(ne % ggml_blck_size(type) == 0);
  2306. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2307. }
  2308. double ggml_type_sizef(enum ggml_type type) {
  2309. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2310. }
  2311. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2312. return type_traits[type].type_name;
  2313. }
  2314. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2315. return type_traits[type].is_quantized;
  2316. }
  2317. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2318. return GGML_OP_NAME[op];
  2319. }
  2320. const char * ggml_op_symbol(enum ggml_op op) {
  2321. return GGML_OP_SYMBOL[op];
  2322. }
  2323. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2324. return GGML_UNARY_OP_NAME[op];
  2325. }
  2326. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2327. if (t->op == GGML_OP_UNARY) {
  2328. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2329. return ggml_unary_op_name(uop);
  2330. }
  2331. else {
  2332. return ggml_op_name(t->op);
  2333. }
  2334. }
  2335. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2336. return ggml_type_size(tensor->type);
  2337. }
  2338. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2339. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2340. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2341. }
  2342. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2343. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2344. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2345. }
  2346. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2348. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2349. }
  2350. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2351. return tensor->ne[3] == 1;
  2352. }
  2353. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2354. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2355. if (tensor->ne[i] > 1) {
  2356. return i + 1;
  2357. }
  2358. }
  2359. return 1;
  2360. }
  2361. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2362. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2363. return (t0->ne[0] == t1->ne[0]) &&
  2364. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2365. (t1->ne[3]%t0->ne[3] == 0);
  2366. }
  2367. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2368. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2369. return (t0->ne[1] == t1->ne[1]) &&
  2370. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2371. (t1->ne[3]%t0->ne[3] == 0);
  2372. }
  2373. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2374. enum ggml_type wtype = GGML_TYPE_COUNT;
  2375. switch (ftype) {
  2376. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2377. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2378. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2379. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2380. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2381. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2382. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2383. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2384. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2385. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2386. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2387. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2388. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2389. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2390. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2391. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2392. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2393. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2394. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2395. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2396. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2397. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2398. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2399. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2400. }
  2401. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2402. return wtype;
  2403. }
  2404. size_t ggml_tensor_overhead(void) {
  2405. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2406. }
  2407. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2408. return tensor->nb[0] > tensor->nb[1];
  2409. }
  2410. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2411. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2412. return
  2413. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2414. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2415. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2416. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2417. }
  2418. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2420. return
  2421. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2422. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2423. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2424. }
  2425. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2426. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2427. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2428. }
  2429. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2430. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2431. return
  2432. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2433. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2434. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2435. }
  2436. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2437. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2438. if (tensor->ne[i] == 0) {
  2439. // empty if any dimension has no elements
  2440. return true;
  2441. }
  2442. }
  2443. return false;
  2444. }
  2445. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2446. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2447. return
  2448. (t0->ne[0] == t1->ne[0] ) &&
  2449. (t0->ne[1] == t1->ne[1] ) &&
  2450. (t0->ne[2] == t1->ne[2] ) &&
  2451. (t0->ne[3] == t1->ne[3] );
  2452. }
  2453. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2454. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2455. return
  2456. (t0->nb[0] == t1->nb[0] ) &&
  2457. (t0->nb[1] == t1->nb[1] ) &&
  2458. (t0->nb[2] == t1->nb[2] ) &&
  2459. (t0->nb[3] == t1->nb[3] );
  2460. }
  2461. // check if t1 can be represented as a repeatition of t0
  2462. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2463. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2464. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2465. (t1->ne[0]%t0->ne[0] == 0) &&
  2466. (t1->ne[1]%t0->ne[1] == 0) &&
  2467. (t1->ne[2]%t0->ne[2] == 0) &&
  2468. (t1->ne[3]%t0->ne[3] == 0);
  2469. }
  2470. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2471. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2472. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2473. }
  2474. static inline int ggml_up32(int n) {
  2475. return (n + 31) & ~31;
  2476. }
  2477. //static inline int ggml_up64(int n) {
  2478. // return (n + 63) & ~63;
  2479. //}
  2480. static inline int ggml_up(int n, int m) {
  2481. // assert m is a power of 2
  2482. GGML_ASSERT((m & (m - 1)) == 0);
  2483. return (n + m - 1) & ~(m - 1);
  2484. }
  2485. // assert that pointer is aligned to GGML_MEM_ALIGN
  2486. #define ggml_assert_aligned(ptr) \
  2487. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2488. ////////////////////////////////////////////////////////////////////////////////
  2489. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2490. // make this function thread safe
  2491. ggml_critical_section_start();
  2492. static bool is_first_call = true;
  2493. if (is_first_call) {
  2494. // initialize time system (required on Windows)
  2495. ggml_time_init();
  2496. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2497. {
  2498. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2499. for (int i = 0; i < (1 << 16); ++i) {
  2500. union {
  2501. uint16_t u16;
  2502. ggml_fp16_t fp16;
  2503. } u = {i};
  2504. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2505. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2506. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2507. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2508. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2509. }
  2510. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2511. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2512. }
  2513. // initialize g_state
  2514. {
  2515. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2516. g_state = (struct ggml_state) {
  2517. /*.contexts =*/ { { 0 } },
  2518. /*.numa =*/ {
  2519. .n_nodes = 0,
  2520. .total_cpus = 0,
  2521. },
  2522. };
  2523. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2524. g_state.contexts[i].used = false;
  2525. }
  2526. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2527. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2528. }
  2529. #if defined(GGML_USE_CLBLAST)
  2530. ggml_cl_init();
  2531. #endif
  2532. ggml_setup_op_has_task_pass();
  2533. is_first_call = false;
  2534. }
  2535. // find non-used context in g_state
  2536. struct ggml_context * ctx = NULL;
  2537. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2538. if (!g_state.contexts[i].used) {
  2539. g_state.contexts[i].used = true;
  2540. ctx = &g_state.contexts[i].context;
  2541. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2542. break;
  2543. }
  2544. }
  2545. if (ctx == NULL) {
  2546. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2547. ggml_critical_section_end();
  2548. return NULL;
  2549. }
  2550. // allow to call ggml_init with 0 size
  2551. if (params.mem_size == 0) {
  2552. params.mem_size = GGML_MEM_ALIGN;
  2553. }
  2554. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2555. *ctx = (struct ggml_context) {
  2556. /*.mem_size =*/ mem_size,
  2557. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2558. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2559. /*.no_alloc =*/ params.no_alloc,
  2560. /*.no_alloc_save =*/ params.no_alloc,
  2561. /*.n_objects =*/ 0,
  2562. /*.objects_begin =*/ NULL,
  2563. /*.objects_end =*/ NULL,
  2564. /*.scratch =*/ { 0, 0, NULL, },
  2565. /*.scratch_save =*/ { 0, 0, NULL, },
  2566. };
  2567. GGML_ASSERT(ctx->mem_buffer != NULL);
  2568. ggml_assert_aligned(ctx->mem_buffer);
  2569. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2570. ggml_critical_section_end();
  2571. return ctx;
  2572. }
  2573. void ggml_free(struct ggml_context * ctx) {
  2574. if (ctx == NULL) {
  2575. return;
  2576. }
  2577. // make this function thread safe
  2578. ggml_critical_section_start();
  2579. bool found = false;
  2580. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2581. if (&g_state.contexts[i].context == ctx) {
  2582. g_state.contexts[i].used = false;
  2583. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2584. __func__, i, ggml_used_mem(ctx));
  2585. if (ctx->mem_buffer_owned) {
  2586. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2587. }
  2588. found = true;
  2589. break;
  2590. }
  2591. }
  2592. if (!found) {
  2593. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2594. }
  2595. ggml_critical_section_end();
  2596. }
  2597. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2598. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2599. }
  2600. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2601. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2602. ctx->scratch = scratch;
  2603. return result;
  2604. }
  2605. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2606. return ctx->no_alloc;
  2607. }
  2608. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2609. ctx->no_alloc = no_alloc;
  2610. }
  2611. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2612. return ctx->mem_buffer;
  2613. }
  2614. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2615. return ctx->mem_size;
  2616. }
  2617. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2618. size_t max_size = 0;
  2619. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2620. size_t bytes = ggml_nbytes(tensor);
  2621. max_size = MAX(max_size, bytes);
  2622. }
  2623. return max_size;
  2624. }
  2625. // IMPORTANT:
  2626. // when creating "opt" tensors, always save and load the scratch buffer
  2627. // this is an error prone process, but it is necessary to support inplace
  2628. // operators when using scratch buffers
  2629. // TODO: implement a better way
  2630. static void ggml_scratch_save(struct ggml_context * ctx) {
  2631. // this is needed to allow opt tensors to store their data
  2632. // TODO: again, need to find a better way
  2633. ctx->no_alloc_save = ctx->no_alloc;
  2634. ctx->no_alloc = false;
  2635. ctx->scratch_save = ctx->scratch;
  2636. ctx->scratch.data = NULL;
  2637. }
  2638. static void ggml_scratch_load(struct ggml_context * ctx) {
  2639. ctx->no_alloc = ctx->no_alloc_save;
  2640. ctx->scratch = ctx->scratch_save;
  2641. }
  2642. ////////////////////////////////////////////////////////////////////////////////
  2643. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2644. // always insert objects at the end of the context's memory pool
  2645. struct ggml_object * obj_cur = ctx->objects_end;
  2646. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2647. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2648. const size_t cur_end = cur_offs + cur_size;
  2649. // align to GGML_MEM_ALIGN
  2650. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2651. char * const mem_buffer = ctx->mem_buffer;
  2652. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2653. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2654. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2655. __func__, cur_end + size_needed, ctx->mem_size);
  2656. assert(false);
  2657. return NULL;
  2658. }
  2659. *obj_new = (struct ggml_object) {
  2660. .offs = cur_end + GGML_OBJECT_SIZE,
  2661. .size = size_needed,
  2662. .next = NULL,
  2663. .type = type,
  2664. };
  2665. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2666. if (obj_cur != NULL) {
  2667. obj_cur->next = obj_new;
  2668. } else {
  2669. // this is the first object in this context
  2670. ctx->objects_begin = obj_new;
  2671. }
  2672. ctx->objects_end = obj_new;
  2673. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2674. return obj_new;
  2675. }
  2676. static struct ggml_tensor * ggml_new_tensor_impl(
  2677. struct ggml_context * ctx,
  2678. enum ggml_type type,
  2679. int n_dims,
  2680. const int64_t * ne,
  2681. struct ggml_tensor * view_src,
  2682. size_t view_offs) {
  2683. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2684. // find the base tensor and absolute offset
  2685. if (view_src != NULL && view_src->view_src != NULL) {
  2686. view_offs += view_src->view_offs;
  2687. view_src = view_src->view_src;
  2688. }
  2689. size_t data_size = ggml_row_size(type, ne[0]);
  2690. for (int i = 1; i < n_dims; i++) {
  2691. data_size *= ne[i];
  2692. }
  2693. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2694. void * data = view_src != NULL ? view_src->data : NULL;
  2695. if (data != NULL) {
  2696. data = (char *) data + view_offs;
  2697. }
  2698. size_t obj_alloc_size = 0;
  2699. if (view_src == NULL && !ctx->no_alloc) {
  2700. if (ctx->scratch.data != NULL) {
  2701. // allocate tensor data in the scratch buffer
  2702. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2703. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2704. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2705. assert(false);
  2706. return NULL;
  2707. }
  2708. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2709. ctx->scratch.offs += data_size;
  2710. } else {
  2711. // allocate tensor data in the context's memory pool
  2712. obj_alloc_size = data_size;
  2713. }
  2714. }
  2715. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2716. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2717. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2718. #ifdef __clang__
  2719. // temporary until ggml_tensor::backend is removed
  2720. #pragma clang diagnostic push
  2721. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  2722. #endif
  2723. *result = (struct ggml_tensor) {
  2724. /*.type =*/ type,
  2725. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2726. /*.buffer =*/ NULL,
  2727. /*.ne =*/ { 1, 1, 1, 1 },
  2728. /*.nb =*/ { 0, 0, 0, 0 },
  2729. /*.op =*/ GGML_OP_NONE,
  2730. /*.op_params =*/ { 0 },
  2731. /*.flags =*/ 0,
  2732. /*.grad =*/ NULL,
  2733. /*.src =*/ { NULL },
  2734. /*.perf_runs =*/ 0,
  2735. /*.perf_cycles =*/ 0,
  2736. /*.perf_time_us =*/ 0,
  2737. /*.view_src =*/ view_src,
  2738. /*.view_offs =*/ view_offs,
  2739. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2740. /*.name =*/ { 0 },
  2741. /*.extra =*/ NULL,
  2742. /*.padding =*/ { 0 },
  2743. };
  2744. #ifdef __clang__
  2745. #pragma clang diagnostic pop
  2746. #endif
  2747. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2748. //ggml_assert_aligned(result->data);
  2749. for (int i = 0; i < n_dims; i++) {
  2750. result->ne[i] = ne[i];
  2751. }
  2752. result->nb[0] = ggml_type_size(type);
  2753. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2754. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2755. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2756. }
  2757. ctx->n_objects++;
  2758. return result;
  2759. }
  2760. struct ggml_tensor * ggml_new_tensor(
  2761. struct ggml_context * ctx,
  2762. enum ggml_type type,
  2763. int n_dims,
  2764. const int64_t * ne) {
  2765. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2766. }
  2767. struct ggml_tensor * ggml_new_tensor_1d(
  2768. struct ggml_context * ctx,
  2769. enum ggml_type type,
  2770. int64_t ne0) {
  2771. return ggml_new_tensor(ctx, type, 1, &ne0);
  2772. }
  2773. struct ggml_tensor * ggml_new_tensor_2d(
  2774. struct ggml_context * ctx,
  2775. enum ggml_type type,
  2776. int64_t ne0,
  2777. int64_t ne1) {
  2778. const int64_t ne[2] = { ne0, ne1 };
  2779. return ggml_new_tensor(ctx, type, 2, ne);
  2780. }
  2781. struct ggml_tensor * ggml_new_tensor_3d(
  2782. struct ggml_context * ctx,
  2783. enum ggml_type type,
  2784. int64_t ne0,
  2785. int64_t ne1,
  2786. int64_t ne2) {
  2787. const int64_t ne[3] = { ne0, ne1, ne2 };
  2788. return ggml_new_tensor(ctx, type, 3, ne);
  2789. }
  2790. struct ggml_tensor * ggml_new_tensor_4d(
  2791. struct ggml_context * ctx,
  2792. enum ggml_type type,
  2793. int64_t ne0,
  2794. int64_t ne1,
  2795. int64_t ne2,
  2796. int64_t ne3) {
  2797. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2798. return ggml_new_tensor(ctx, type, 4, ne);
  2799. }
  2800. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2801. ggml_scratch_save(ctx);
  2802. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2803. ggml_scratch_load(ctx);
  2804. ggml_set_i32(result, value);
  2805. return result;
  2806. }
  2807. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2808. ggml_scratch_save(ctx);
  2809. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2810. ggml_scratch_load(ctx);
  2811. ggml_set_f32(result, value);
  2812. return result;
  2813. }
  2814. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2815. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2816. }
  2817. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2818. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2819. assert(params_size <= GGML_MAX_OP_PARAMS);
  2820. memcpy(tensor->op_params, params, params_size);
  2821. }
  2822. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2823. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2824. return ((const int32_t *)(tensor->op_params))[i];
  2825. }
  2826. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2827. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2828. return ((const float *)(tensor->op_params))[i];
  2829. }
  2830. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2831. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2832. ((int32_t *)(tensor->op_params))[i] = value;
  2833. }
  2834. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2835. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2836. ((float *)(tensor->op_params))[i] = value;
  2837. }
  2838. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2839. memset(tensor->data, 0, ggml_nbytes(tensor));
  2840. return tensor;
  2841. }
  2842. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2843. const int n = ggml_nrows(tensor);
  2844. const int nc = tensor->ne[0];
  2845. const size_t n1 = tensor->nb[1];
  2846. char * const data = tensor->data;
  2847. switch (tensor->type) {
  2848. case GGML_TYPE_I8:
  2849. {
  2850. assert(tensor->nb[0] == sizeof(int8_t));
  2851. for (int i = 0; i < n; i++) {
  2852. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2853. }
  2854. } break;
  2855. case GGML_TYPE_I16:
  2856. {
  2857. assert(tensor->nb[0] == sizeof(int16_t));
  2858. for (int i = 0; i < n; i++) {
  2859. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2860. }
  2861. } break;
  2862. case GGML_TYPE_I32:
  2863. {
  2864. assert(tensor->nb[0] == sizeof(int32_t));
  2865. for (int i = 0; i < n; i++) {
  2866. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2867. }
  2868. } break;
  2869. case GGML_TYPE_F16:
  2870. {
  2871. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2872. for (int i = 0; i < n; i++) {
  2873. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2874. }
  2875. } break;
  2876. case GGML_TYPE_BF16:
  2877. {
  2878. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2879. for (int i = 0; i < n; i++) {
  2880. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2881. }
  2882. } break;
  2883. case GGML_TYPE_F32:
  2884. {
  2885. assert(tensor->nb[0] == sizeof(float));
  2886. for (int i = 0; i < n; i++) {
  2887. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2888. }
  2889. } break;
  2890. default:
  2891. {
  2892. GGML_ASSERT(false);
  2893. } break;
  2894. }
  2895. return tensor;
  2896. }
  2897. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2898. const int n = ggml_nrows(tensor);
  2899. const int nc = tensor->ne[0];
  2900. const size_t n1 = tensor->nb[1];
  2901. char * const data = tensor->data;
  2902. switch (tensor->type) {
  2903. case GGML_TYPE_I8:
  2904. {
  2905. assert(tensor->nb[0] == sizeof(int8_t));
  2906. for (int i = 0; i < n; i++) {
  2907. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2908. }
  2909. } break;
  2910. case GGML_TYPE_I16:
  2911. {
  2912. assert(tensor->nb[0] == sizeof(int16_t));
  2913. for (int i = 0; i < n; i++) {
  2914. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2915. }
  2916. } break;
  2917. case GGML_TYPE_I32:
  2918. {
  2919. assert(tensor->nb[0] == sizeof(int32_t));
  2920. for (int i = 0; i < n; i++) {
  2921. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2922. }
  2923. } break;
  2924. case GGML_TYPE_F16:
  2925. {
  2926. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2927. for (int i = 0; i < n; i++) {
  2928. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2929. }
  2930. } break;
  2931. case GGML_TYPE_BF16:
  2932. {
  2933. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2934. for (int i = 0; i < n; i++) {
  2935. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2936. }
  2937. } break;
  2938. case GGML_TYPE_F32:
  2939. {
  2940. assert(tensor->nb[0] == sizeof(float));
  2941. for (int i = 0; i < n; i++) {
  2942. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2943. }
  2944. } break;
  2945. default:
  2946. {
  2947. GGML_ASSERT(false);
  2948. } break;
  2949. }
  2950. return tensor;
  2951. }
  2952. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2953. const int64_t ne2 = tensor->ne[2];
  2954. const int64_t ne1 = tensor->ne[1];
  2955. const int64_t ne0 = tensor->ne[0];
  2956. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2957. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2958. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2959. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2960. if (i0) {
  2961. * i0 = i0_;
  2962. }
  2963. if (i1) {
  2964. * i1 = i1_;
  2965. }
  2966. if (i2) {
  2967. * i2 = i2_;
  2968. }
  2969. if (i3) {
  2970. * i3 = i3_;
  2971. }
  2972. }
  2973. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2974. if (!ggml_is_contiguous(tensor)) {
  2975. int64_t id[4] = { 0, 0, 0, 0 };
  2976. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2977. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2978. }
  2979. switch (tensor->type) {
  2980. case GGML_TYPE_I8:
  2981. {
  2982. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2983. return ((int8_t *)(tensor->data))[i];
  2984. }
  2985. case GGML_TYPE_I16:
  2986. {
  2987. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2988. return ((int16_t *)(tensor->data))[i];
  2989. }
  2990. case GGML_TYPE_I32:
  2991. {
  2992. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2993. return ((int32_t *)(tensor->data))[i];
  2994. }
  2995. case GGML_TYPE_F16:
  2996. {
  2997. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2998. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2999. }
  3000. case GGML_TYPE_BF16:
  3001. {
  3002. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3003. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3004. }
  3005. case GGML_TYPE_F32:
  3006. {
  3007. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3008. return ((float *)(tensor->data))[i];
  3009. }
  3010. default:
  3011. {
  3012. GGML_ASSERT(false);
  3013. }
  3014. }
  3015. return 0.0f;
  3016. }
  3017. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3018. if (!ggml_is_contiguous(tensor)) {
  3019. int64_t id[4] = { 0, 0, 0, 0 };
  3020. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3021. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3022. return;
  3023. }
  3024. switch (tensor->type) {
  3025. case GGML_TYPE_I8:
  3026. {
  3027. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3028. ((int8_t *)(tensor->data))[i] = value;
  3029. } break;
  3030. case GGML_TYPE_I16:
  3031. {
  3032. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3033. ((int16_t *)(tensor->data))[i] = value;
  3034. } break;
  3035. case GGML_TYPE_I32:
  3036. {
  3037. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3038. ((int32_t *)(tensor->data))[i] = value;
  3039. } break;
  3040. case GGML_TYPE_F16:
  3041. {
  3042. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3043. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3044. } break;
  3045. case GGML_TYPE_BF16:
  3046. {
  3047. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3048. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3049. } break;
  3050. case GGML_TYPE_F32:
  3051. {
  3052. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3053. ((float *)(tensor->data))[i] = value;
  3054. } break;
  3055. default:
  3056. {
  3057. GGML_ASSERT(false);
  3058. } break;
  3059. }
  3060. }
  3061. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3062. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3063. switch (tensor->type) {
  3064. case GGML_TYPE_I8:
  3065. return ((int8_t *) data)[0];
  3066. case GGML_TYPE_I16:
  3067. return ((int16_t *) data)[0];
  3068. case GGML_TYPE_I32:
  3069. return ((int32_t *) data)[0];
  3070. case GGML_TYPE_F16:
  3071. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3072. case GGML_TYPE_BF16:
  3073. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3074. case GGML_TYPE_F32:
  3075. return ((float *) data)[0];
  3076. default:
  3077. GGML_ASSERT(false);
  3078. }
  3079. return 0.0f;
  3080. }
  3081. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3082. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3083. switch (tensor->type) {
  3084. case GGML_TYPE_I8:
  3085. {
  3086. ((int8_t *)(data))[0] = value;
  3087. } break;
  3088. case GGML_TYPE_I16:
  3089. {
  3090. ((int16_t *)(data))[0] = value;
  3091. } break;
  3092. case GGML_TYPE_I32:
  3093. {
  3094. ((int32_t *)(data))[0] = value;
  3095. } break;
  3096. case GGML_TYPE_F16:
  3097. {
  3098. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3099. } break;
  3100. case GGML_TYPE_BF16:
  3101. {
  3102. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3103. } break;
  3104. case GGML_TYPE_F32:
  3105. {
  3106. ((float *)(data))[0] = value;
  3107. } break;
  3108. default:
  3109. {
  3110. GGML_ASSERT(false);
  3111. } break;
  3112. }
  3113. }
  3114. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3115. if (!ggml_is_contiguous(tensor)) {
  3116. int64_t id[4] = { 0, 0, 0, 0 };
  3117. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3118. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3119. }
  3120. switch (tensor->type) {
  3121. case GGML_TYPE_I8:
  3122. {
  3123. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3124. return ((int8_t *)(tensor->data))[i];
  3125. }
  3126. case GGML_TYPE_I16:
  3127. {
  3128. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3129. return ((int16_t *)(tensor->data))[i];
  3130. }
  3131. case GGML_TYPE_I32:
  3132. {
  3133. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3134. return ((int32_t *)(tensor->data))[i];
  3135. }
  3136. case GGML_TYPE_F16:
  3137. {
  3138. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3139. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3140. }
  3141. case GGML_TYPE_BF16:
  3142. {
  3143. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3144. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3145. }
  3146. case GGML_TYPE_F32:
  3147. {
  3148. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3149. return ((float *)(tensor->data))[i];
  3150. }
  3151. default:
  3152. {
  3153. GGML_ASSERT(false);
  3154. }
  3155. }
  3156. return 0.0f;
  3157. }
  3158. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3159. if (!ggml_is_contiguous(tensor)) {
  3160. int64_t id[4] = { 0, 0, 0, 0 };
  3161. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3162. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3163. return;
  3164. }
  3165. switch (tensor->type) {
  3166. case GGML_TYPE_I8:
  3167. {
  3168. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3169. ((int8_t *)(tensor->data))[i] = value;
  3170. } break;
  3171. case GGML_TYPE_I16:
  3172. {
  3173. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3174. ((int16_t *)(tensor->data))[i] = value;
  3175. } break;
  3176. case GGML_TYPE_I32:
  3177. {
  3178. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3179. ((int32_t *)(tensor->data))[i] = value;
  3180. } break;
  3181. case GGML_TYPE_F16:
  3182. {
  3183. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3184. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3185. } break;
  3186. case GGML_TYPE_BF16:
  3187. {
  3188. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3189. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3190. } break;
  3191. case GGML_TYPE_F32:
  3192. {
  3193. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3194. ((float *)(tensor->data))[i] = value;
  3195. } break;
  3196. default:
  3197. {
  3198. GGML_ASSERT(false);
  3199. } break;
  3200. }
  3201. }
  3202. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3203. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3204. switch (tensor->type) {
  3205. case GGML_TYPE_I8:
  3206. return ((int8_t *) data)[0];
  3207. case GGML_TYPE_I16:
  3208. return ((int16_t *) data)[0];
  3209. case GGML_TYPE_I32:
  3210. return ((int32_t *) data)[0];
  3211. case GGML_TYPE_F16:
  3212. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3213. case GGML_TYPE_BF16:
  3214. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3215. case GGML_TYPE_F32:
  3216. return ((float *) data)[0];
  3217. default:
  3218. GGML_ASSERT(false);
  3219. }
  3220. return 0.0f;
  3221. }
  3222. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3223. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3224. switch (tensor->type) {
  3225. case GGML_TYPE_I8:
  3226. {
  3227. ((int8_t *)(data))[0] = value;
  3228. } break;
  3229. case GGML_TYPE_I16:
  3230. {
  3231. ((int16_t *)(data))[0] = value;
  3232. } break;
  3233. case GGML_TYPE_I32:
  3234. {
  3235. ((int32_t *)(data))[0] = value;
  3236. } break;
  3237. case GGML_TYPE_F16:
  3238. {
  3239. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3240. } break;
  3241. case GGML_TYPE_BF16:
  3242. {
  3243. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3244. } break;
  3245. case GGML_TYPE_F32:
  3246. {
  3247. ((float *)(data))[0] = value;
  3248. } break;
  3249. default:
  3250. {
  3251. GGML_ASSERT(false);
  3252. } break;
  3253. }
  3254. }
  3255. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3256. return tensor->data;
  3257. }
  3258. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3259. assert(tensor->type == GGML_TYPE_F32);
  3260. return (float *)(tensor->data);
  3261. }
  3262. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3263. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3264. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3265. }
  3266. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3267. return tensor->name;
  3268. }
  3269. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3270. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3271. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3272. return tensor;
  3273. }
  3274. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3275. va_list args;
  3276. va_start(args, fmt);
  3277. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3278. va_end(args);
  3279. return tensor;
  3280. }
  3281. struct ggml_tensor * ggml_view_tensor(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * src) {
  3284. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3285. ggml_format_name(result, "%s (view)", src->name);
  3286. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3287. result->nb[i] = src->nb[i];
  3288. }
  3289. return result;
  3290. }
  3291. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3292. struct ggml_object * obj = ctx->objects_begin;
  3293. char * const mem_buffer = ctx->mem_buffer;
  3294. while (obj != NULL) {
  3295. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3296. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3297. }
  3298. obj = obj->next;
  3299. }
  3300. return NULL;
  3301. }
  3302. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3303. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3304. obj = obj->next;
  3305. char * const mem_buffer = ctx->mem_buffer;
  3306. while (obj != NULL) {
  3307. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3308. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3309. }
  3310. obj = obj->next;
  3311. }
  3312. return NULL;
  3313. }
  3314. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3315. struct ggml_object * obj = ctx->objects_begin;
  3316. char * const mem_buffer = ctx->mem_buffer;
  3317. while (obj != NULL) {
  3318. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3319. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3320. if (strcmp(cur->name, name) == 0) {
  3321. return cur;
  3322. }
  3323. }
  3324. obj = obj->next;
  3325. }
  3326. return NULL;
  3327. }
  3328. ////////////////////////////////////////////////////////////////////////////////
  3329. // ggml_dup
  3330. static struct ggml_tensor * ggml_dup_impl(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. bool inplace) {
  3334. bool is_node = false;
  3335. if (!inplace && (a->grad)) {
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3339. result->op = GGML_OP_DUP;
  3340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3341. result->src[0] = a;
  3342. return result;
  3343. }
  3344. struct ggml_tensor * ggml_dup(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_dup_impl(ctx, a, false);
  3348. }
  3349. struct ggml_tensor * ggml_dup_inplace(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_dup_impl(ctx, a, true);
  3353. }
  3354. // ggml_add
  3355. static struct ggml_tensor * ggml_add_impl(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. struct ggml_tensor * b,
  3359. bool inplace) {
  3360. GGML_ASSERT(ggml_can_repeat(b, a));
  3361. bool is_node = false;
  3362. if (!inplace && (a->grad || b->grad)) {
  3363. // TODO: support backward pass for broadcasting
  3364. GGML_ASSERT(ggml_are_same_shape(a, b));
  3365. is_node = true;
  3366. }
  3367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3368. result->op = GGML_OP_ADD;
  3369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3370. result->src[0] = a;
  3371. result->src[1] = b;
  3372. return result;
  3373. }
  3374. struct ggml_tensor * ggml_add(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a,
  3377. struct ggml_tensor * b) {
  3378. return ggml_add_impl(ctx, a, b, false);
  3379. }
  3380. struct ggml_tensor * ggml_add_inplace(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a,
  3383. struct ggml_tensor * b) {
  3384. return ggml_add_impl(ctx, a, b, true);
  3385. }
  3386. // ggml_add_cast
  3387. static struct ggml_tensor * ggml_add_cast_impl(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. struct ggml_tensor * b,
  3391. enum ggml_type type) {
  3392. // TODO: support less-strict constraint
  3393. // GGML_ASSERT(ggml_can_repeat(b, a));
  3394. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3395. // currently only supported for quantized input and f16
  3396. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3397. a->type == GGML_TYPE_F16 ||
  3398. a->type == GGML_TYPE_BF16);
  3399. bool is_node = false;
  3400. if (a->grad || b->grad) {
  3401. // TODO: support backward pass for broadcasting
  3402. GGML_ASSERT(ggml_are_same_shape(a, b));
  3403. is_node = true;
  3404. }
  3405. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3406. result->op = GGML_OP_ADD;
  3407. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3408. result->src[0] = a;
  3409. result->src[1] = b;
  3410. return result;
  3411. }
  3412. struct ggml_tensor * ggml_add_cast(
  3413. struct ggml_context * ctx,
  3414. struct ggml_tensor * a,
  3415. struct ggml_tensor * b,
  3416. enum ggml_type type) {
  3417. return ggml_add_cast_impl(ctx, a, b, type);
  3418. }
  3419. // ggml_add1
  3420. static struct ggml_tensor * ggml_add1_impl(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a,
  3423. struct ggml_tensor * b,
  3424. bool inplace) {
  3425. GGML_ASSERT(ggml_is_scalar(b));
  3426. GGML_ASSERT(ggml_is_padded_1d(a));
  3427. bool is_node = false;
  3428. if (a->grad || b->grad) {
  3429. is_node = true;
  3430. }
  3431. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3432. result->op = GGML_OP_ADD1;
  3433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3434. result->src[0] = a;
  3435. result->src[1] = b;
  3436. return result;
  3437. }
  3438. struct ggml_tensor * ggml_add1(
  3439. struct ggml_context * ctx,
  3440. struct ggml_tensor * a,
  3441. struct ggml_tensor * b) {
  3442. return ggml_add1_impl(ctx, a, b, false);
  3443. }
  3444. struct ggml_tensor * ggml_add1_inplace(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. struct ggml_tensor * b) {
  3448. return ggml_add1_impl(ctx, a, b, true);
  3449. }
  3450. // ggml_acc
  3451. static struct ggml_tensor * ggml_acc_impl(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a,
  3454. struct ggml_tensor * b,
  3455. size_t nb1,
  3456. size_t nb2,
  3457. size_t nb3,
  3458. size_t offset,
  3459. bool inplace) {
  3460. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3461. GGML_ASSERT(ggml_is_contiguous(a));
  3462. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3463. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3464. bool is_node = false;
  3465. if (!inplace && (a->grad || b->grad)) {
  3466. is_node = true;
  3467. }
  3468. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3469. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3470. ggml_set_op_params(result, params, sizeof(params));
  3471. result->op = GGML_OP_ACC;
  3472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3473. result->src[0] = a;
  3474. result->src[1] = b;
  3475. return result;
  3476. }
  3477. struct ggml_tensor * ggml_acc(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. struct ggml_tensor * b,
  3481. size_t nb1,
  3482. size_t nb2,
  3483. size_t nb3,
  3484. size_t offset) {
  3485. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3486. }
  3487. struct ggml_tensor * ggml_acc_inplace(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. size_t nb1,
  3492. size_t nb2,
  3493. size_t nb3,
  3494. size_t offset) {
  3495. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3496. }
  3497. // ggml_sub
  3498. static struct ggml_tensor * ggml_sub_impl(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. struct ggml_tensor * b,
  3502. bool inplace) {
  3503. GGML_ASSERT(ggml_are_same_shape(a, b));
  3504. bool is_node = false;
  3505. if (!inplace && (a->grad || b->grad)) {
  3506. is_node = true;
  3507. }
  3508. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3509. result->op = GGML_OP_SUB;
  3510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3511. result->src[0] = a;
  3512. result->src[1] = b;
  3513. return result;
  3514. }
  3515. struct ggml_tensor * ggml_sub(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b) {
  3519. return ggml_sub_impl(ctx, a, b, false);
  3520. }
  3521. struct ggml_tensor * ggml_sub_inplace(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a,
  3524. struct ggml_tensor * b) {
  3525. return ggml_sub_impl(ctx, a, b, true);
  3526. }
  3527. // ggml_mul
  3528. static struct ggml_tensor * ggml_mul_impl(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b,
  3532. bool inplace) {
  3533. GGML_ASSERT(ggml_can_repeat(b, a));
  3534. bool is_node = false;
  3535. if (!inplace && (a->grad || b->grad)) {
  3536. // TODO: support backward pass for broadcasting
  3537. GGML_ASSERT(ggml_are_same_shape(a, b));
  3538. is_node = true;
  3539. }
  3540. if (inplace) {
  3541. GGML_ASSERT(!is_node);
  3542. }
  3543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3544. result->op = GGML_OP_MUL;
  3545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3546. result->src[0] = a;
  3547. result->src[1] = b;
  3548. return result;
  3549. }
  3550. struct ggml_tensor * ggml_mul(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b) {
  3554. return ggml_mul_impl(ctx, a, b, false);
  3555. }
  3556. struct ggml_tensor * ggml_mul_inplace(
  3557. struct ggml_context * ctx,
  3558. struct ggml_tensor * a,
  3559. struct ggml_tensor * b) {
  3560. return ggml_mul_impl(ctx, a, b, true);
  3561. }
  3562. // ggml_div
  3563. static struct ggml_tensor * ggml_div_impl(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. struct ggml_tensor * b,
  3567. bool inplace) {
  3568. GGML_ASSERT(ggml_can_repeat(b, a));
  3569. bool is_node = false;
  3570. if (!inplace && (a->grad || b->grad)) {
  3571. is_node = true;
  3572. }
  3573. if (inplace) {
  3574. GGML_ASSERT(!is_node);
  3575. }
  3576. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3577. result->op = GGML_OP_DIV;
  3578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3579. result->src[0] = a;
  3580. result->src[1] = b;
  3581. return result;
  3582. }
  3583. struct ggml_tensor * ggml_div(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. struct ggml_tensor * b) {
  3587. return ggml_div_impl(ctx, a, b, false);
  3588. }
  3589. struct ggml_tensor * ggml_div_inplace(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. struct ggml_tensor * b) {
  3593. return ggml_div_impl(ctx, a, b, true);
  3594. }
  3595. // ggml_sqr
  3596. static struct ggml_tensor * ggml_sqr_impl(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. bool inplace) {
  3600. bool is_node = false;
  3601. if (!inplace && (a->grad)) {
  3602. is_node = true;
  3603. }
  3604. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3605. result->op = GGML_OP_SQR;
  3606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3607. result->src[0] = a;
  3608. return result;
  3609. }
  3610. struct ggml_tensor * ggml_sqr(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a) {
  3613. return ggml_sqr_impl(ctx, a, false);
  3614. }
  3615. struct ggml_tensor * ggml_sqr_inplace(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a) {
  3618. return ggml_sqr_impl(ctx, a, true);
  3619. }
  3620. // ggml_sqrt
  3621. static struct ggml_tensor * ggml_sqrt_impl(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a,
  3624. bool inplace) {
  3625. bool is_node = false;
  3626. if (!inplace && (a->grad)) {
  3627. is_node = true;
  3628. }
  3629. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3630. result->op = GGML_OP_SQRT;
  3631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3632. result->src[0] = a;
  3633. return result;
  3634. }
  3635. struct ggml_tensor * ggml_sqrt(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_sqrt_impl(ctx, a, false);
  3639. }
  3640. struct ggml_tensor * ggml_sqrt_inplace(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a) {
  3643. return ggml_sqrt_impl(ctx, a, true);
  3644. }
  3645. // ggml_log
  3646. static struct ggml_tensor * ggml_log_impl(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. bool inplace) {
  3650. bool is_node = false;
  3651. if (!inplace && (a->grad)) {
  3652. is_node = true;
  3653. }
  3654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3655. result->op = GGML_OP_LOG;
  3656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3657. result->src[0] = a;
  3658. return result;
  3659. }
  3660. struct ggml_tensor * ggml_log(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a) {
  3663. return ggml_log_impl(ctx, a, false);
  3664. }
  3665. struct ggml_tensor * ggml_log_inplace(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a) {
  3668. return ggml_log_impl(ctx, a, true);
  3669. }
  3670. // ggml_sum
  3671. struct ggml_tensor * ggml_sum(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a) {
  3674. bool is_node = false;
  3675. if (a->grad) {
  3676. is_node = true;
  3677. }
  3678. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3679. result->op = GGML_OP_SUM;
  3680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3681. result->src[0] = a;
  3682. return result;
  3683. }
  3684. // ggml_sum_rows
  3685. struct ggml_tensor * ggml_sum_rows(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a) {
  3688. bool is_node = false;
  3689. if (a->grad) {
  3690. is_node = true;
  3691. }
  3692. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3693. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3694. ne[i] = a->ne[i];
  3695. }
  3696. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3697. result->op = GGML_OP_SUM_ROWS;
  3698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3699. result->src[0] = a;
  3700. return result;
  3701. }
  3702. // ggml_mean
  3703. struct ggml_tensor * ggml_mean(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a) {
  3706. bool is_node = false;
  3707. if (a->grad) {
  3708. GGML_ASSERT(false); // TODO: implement
  3709. is_node = true;
  3710. }
  3711. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3712. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3713. result->op = GGML_OP_MEAN;
  3714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3715. result->src[0] = a;
  3716. return result;
  3717. }
  3718. // ggml_argmax
  3719. struct ggml_tensor * ggml_argmax(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a) {
  3722. GGML_ASSERT(ggml_is_matrix(a));
  3723. bool is_node = false;
  3724. if (a->grad) {
  3725. GGML_ASSERT(false);
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3729. result->op = GGML_OP_ARGMAX;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src[0] = a;
  3732. return result;
  3733. }
  3734. // ggml_repeat
  3735. struct ggml_tensor * ggml_repeat(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. struct ggml_tensor * b) {
  3739. GGML_ASSERT(ggml_can_repeat(a, b));
  3740. bool is_node = false;
  3741. if (a->grad) {
  3742. is_node = true;
  3743. }
  3744. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3745. result->op = GGML_OP_REPEAT;
  3746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3747. result->src[0] = a;
  3748. return result;
  3749. }
  3750. // ggml_repeat_back
  3751. struct ggml_tensor * ggml_repeat_back(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b) {
  3755. GGML_ASSERT(ggml_can_repeat(b, a));
  3756. bool is_node = false;
  3757. if (a->grad) {
  3758. is_node = true;
  3759. }
  3760. if (ggml_are_same_shape(a, b) && !is_node) {
  3761. return a;
  3762. }
  3763. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3764. result->op = GGML_OP_REPEAT_BACK;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src[0] = a;
  3767. return result;
  3768. }
  3769. // ggml_concat
  3770. struct ggml_tensor * ggml_concat(
  3771. struct ggml_context* ctx,
  3772. struct ggml_tensor* a,
  3773. struct ggml_tensor* b) {
  3774. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3775. bool is_node = false;
  3776. if (a->grad || b->grad) {
  3777. is_node = true;
  3778. }
  3779. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3780. result->op = GGML_OP_CONCAT;
  3781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3782. result->src[0] = a;
  3783. result->src[1] = b;
  3784. return result;
  3785. }
  3786. // ggml_abs
  3787. struct ggml_tensor * ggml_abs(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a) {
  3790. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3791. }
  3792. struct ggml_tensor * ggml_abs_inplace(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a) {
  3795. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3796. }
  3797. // ggml_sgn
  3798. struct ggml_tensor * ggml_sgn(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a) {
  3801. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3802. }
  3803. struct ggml_tensor * ggml_sgn_inplace(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a) {
  3806. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3807. }
  3808. // ggml_neg
  3809. struct ggml_tensor * ggml_neg(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a) {
  3812. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3813. }
  3814. struct ggml_tensor * ggml_neg_inplace(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a) {
  3817. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3818. }
  3819. // ggml_step
  3820. struct ggml_tensor * ggml_step(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a) {
  3823. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3824. }
  3825. struct ggml_tensor * ggml_step_inplace(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a) {
  3828. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3829. }
  3830. // ggml_tanh
  3831. struct ggml_tensor * ggml_tanh(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a) {
  3834. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3835. }
  3836. struct ggml_tensor * ggml_tanh_inplace(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a) {
  3839. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3840. }
  3841. // ggml_elu
  3842. struct ggml_tensor * ggml_elu(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a) {
  3845. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3846. }
  3847. struct ggml_tensor * ggml_elu_inplace(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a) {
  3850. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3851. }
  3852. // ggml_relu
  3853. struct ggml_tensor * ggml_relu(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a) {
  3856. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3857. }
  3858. struct ggml_tensor * ggml_relu_inplace(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3862. }
  3863. // ggml_leaky_relu
  3864. struct ggml_tensor * ggml_leaky_relu(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3867. bool is_node = false;
  3868. if (!inplace && (a->grad)) {
  3869. is_node = true;
  3870. }
  3871. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3872. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3873. result->op = GGML_OP_LEAKY_RELU;
  3874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3875. result->src[0] = a;
  3876. return result;
  3877. }
  3878. // ggml_sigmoid
  3879. struct ggml_tensor * ggml_sigmoid(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a) {
  3882. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  3883. }
  3884. struct ggml_tensor * ggml_sigmoid_inplace(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a) {
  3887. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  3888. }
  3889. // ggml_gelu
  3890. struct ggml_tensor * ggml_gelu(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3894. }
  3895. struct ggml_tensor * ggml_gelu_inplace(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a) {
  3898. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3899. }
  3900. // ggml_gelu_quick
  3901. struct ggml_tensor * ggml_gelu_quick(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a) {
  3904. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3905. }
  3906. struct ggml_tensor * ggml_gelu_quick_inplace(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a) {
  3909. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3910. }
  3911. // ggml_silu
  3912. struct ggml_tensor * ggml_silu(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a) {
  3915. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3916. }
  3917. struct ggml_tensor * ggml_silu_inplace(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a) {
  3920. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3921. }
  3922. // ggml_silu_back
  3923. struct ggml_tensor * ggml_silu_back(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b) {
  3927. bool is_node = false;
  3928. if (a->grad || b->grad) {
  3929. // TODO: implement backward
  3930. is_node = true;
  3931. }
  3932. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3933. result->op = GGML_OP_SILU_BACK;
  3934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3935. result->src[0] = a;
  3936. result->src[1] = b;
  3937. return result;
  3938. }
  3939. // ggml hardswish
  3940. struct ggml_tensor * ggml_hardswish(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * a) {
  3943. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3944. }
  3945. // ggml hardsigmoid
  3946. struct ggml_tensor * ggml_hardsigmoid(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a) {
  3949. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3950. }
  3951. // ggml_norm
  3952. static struct ggml_tensor * ggml_norm_impl(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. float eps,
  3956. bool inplace) {
  3957. bool is_node = false;
  3958. if (!inplace && (a->grad)) {
  3959. GGML_ASSERT(false); // TODO: implement backward
  3960. is_node = true;
  3961. }
  3962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3963. ggml_set_op_params(result, &eps, sizeof(eps));
  3964. result->op = GGML_OP_NORM;
  3965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3966. result->src[0] = a;
  3967. return result;
  3968. }
  3969. struct ggml_tensor * ggml_norm(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. float eps) {
  3973. return ggml_norm_impl(ctx, a, eps, false);
  3974. }
  3975. struct ggml_tensor * ggml_norm_inplace(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. float eps) {
  3979. return ggml_norm_impl(ctx, a, eps, true);
  3980. }
  3981. // ggml_rms_norm
  3982. static struct ggml_tensor * ggml_rms_norm_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. float eps,
  3986. bool inplace) {
  3987. bool is_node = false;
  3988. if (!inplace && (a->grad)) {
  3989. is_node = true;
  3990. }
  3991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3992. ggml_set_op_params(result, &eps, sizeof(eps));
  3993. result->op = GGML_OP_RMS_NORM;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src[0] = a;
  3996. return result;
  3997. }
  3998. struct ggml_tensor * ggml_rms_norm(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a,
  4001. float eps) {
  4002. return ggml_rms_norm_impl(ctx, a, eps, false);
  4003. }
  4004. struct ggml_tensor * ggml_rms_norm_inplace(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. float eps) {
  4008. return ggml_rms_norm_impl(ctx, a, eps, true);
  4009. }
  4010. // ggml_rms_norm_back
  4011. struct ggml_tensor * ggml_rms_norm_back(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. struct ggml_tensor * b,
  4015. float eps) {
  4016. bool is_node = false;
  4017. if (a->grad) {
  4018. // TODO: implement backward
  4019. is_node = true;
  4020. }
  4021. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4022. ggml_set_op_params(result, &eps, sizeof(eps));
  4023. result->op = GGML_OP_RMS_NORM_BACK;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src[0] = a;
  4026. result->src[1] = b;
  4027. return result;
  4028. }
  4029. // ggml_group_norm
  4030. static struct ggml_tensor * ggml_group_norm_impl(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a,
  4033. int n_groups,
  4034. bool inplace) {
  4035. bool is_node = false;
  4036. if (!inplace && (a->grad)) {
  4037. GGML_ASSERT(false); // TODO: implement backward
  4038. is_node = true;
  4039. }
  4040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4041. result->op_params[0] = n_groups;
  4042. result->op = GGML_OP_GROUP_NORM;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src[0] = a;
  4045. return result;
  4046. }
  4047. struct ggml_tensor * ggml_group_norm(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. int n_groups) {
  4051. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4052. }
  4053. struct ggml_tensor * ggml_group_norm_inplace(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. int n_groups) {
  4057. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4058. }
  4059. // ggml_mul_mat
  4060. struct ggml_tensor * ggml_mul_mat(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a,
  4063. struct ggml_tensor * b) {
  4064. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4065. GGML_ASSERT(!ggml_is_transposed(a));
  4066. bool is_node = false;
  4067. if (a->grad || b->grad) {
  4068. is_node = true;
  4069. }
  4070. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4071. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4072. result->op = GGML_OP_MUL_MAT;
  4073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4074. result->src[0] = a;
  4075. result->src[1] = b;
  4076. return result;
  4077. }
  4078. void ggml_mul_mat_set_prec(
  4079. struct ggml_tensor * a,
  4080. enum ggml_prec prec) {
  4081. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4082. const int32_t prec_i32 = (int32_t) prec;
  4083. ggml_set_op_params_i32(a, 0, prec_i32);
  4084. }
  4085. // ggml_mul_mat_id
  4086. /*
  4087. c = ggml_mul_mat_id(ctx, as, b, ids);
  4088. as -> [cols, rows, n_expert]
  4089. ids -> [n_experts_used, n_tokens] (i32)
  4090. b -> [cols, n_expert_used, n_tokens]
  4091. c -> [cols, n_expert_used, n_tokens]
  4092. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4093. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4094. */
  4095. struct ggml_tensor * ggml_mul_mat_id(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * as,
  4098. struct ggml_tensor * b,
  4099. struct ggml_tensor * ids) {
  4100. GGML_ASSERT(!ggml_is_transposed(as));
  4101. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4102. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4103. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4104. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4105. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4106. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4107. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4108. bool is_node = false;
  4109. if (as->grad || b->grad) {
  4110. is_node = true;
  4111. }
  4112. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4113. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4114. result->op = GGML_OP_MUL_MAT_ID;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src[0] = as;
  4117. result->src[1] = b;
  4118. result->src[2] = ids;
  4119. return result;
  4120. }
  4121. // ggml_out_prod
  4122. struct ggml_tensor * ggml_out_prod(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. struct ggml_tensor * b) {
  4126. GGML_ASSERT(ggml_can_out_prod(a, b));
  4127. GGML_ASSERT(!ggml_is_transposed(a));
  4128. bool is_node = false;
  4129. if (a->grad || b->grad) {
  4130. is_node = true;
  4131. }
  4132. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4133. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4134. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4135. result->op = GGML_OP_OUT_PROD;
  4136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4137. result->src[0] = a;
  4138. result->src[1] = b;
  4139. return result;
  4140. }
  4141. // ggml_scale
  4142. static struct ggml_tensor * ggml_scale_impl(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. float s,
  4146. bool inplace) {
  4147. GGML_ASSERT(ggml_is_padded_1d(a));
  4148. bool is_node = false;
  4149. if (a->grad) {
  4150. is_node = true;
  4151. }
  4152. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4153. ggml_set_op_params(result, &s, sizeof(s));
  4154. result->op = GGML_OP_SCALE;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src[0] = a;
  4157. return result;
  4158. }
  4159. struct ggml_tensor * ggml_scale(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. float s) {
  4163. return ggml_scale_impl(ctx, a, s, false);
  4164. }
  4165. struct ggml_tensor * ggml_scale_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. float s) {
  4169. return ggml_scale_impl(ctx, a, s, true);
  4170. }
  4171. // ggml_set
  4172. static struct ggml_tensor * ggml_set_impl(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. struct ggml_tensor * b,
  4176. size_t nb1,
  4177. size_t nb2,
  4178. size_t nb3,
  4179. size_t offset,
  4180. bool inplace) {
  4181. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4182. bool is_node = false;
  4183. if (a->grad || b->grad) {
  4184. is_node = true;
  4185. }
  4186. // make a view of the destination
  4187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4188. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4189. ggml_set_op_params(result, params, sizeof(params));
  4190. result->op = GGML_OP_SET;
  4191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4192. result->src[0] = a;
  4193. result->src[1] = b;
  4194. return result;
  4195. }
  4196. struct ggml_tensor * ggml_set(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. struct ggml_tensor * b,
  4200. size_t nb1,
  4201. size_t nb2,
  4202. size_t nb3,
  4203. size_t offset) {
  4204. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4205. }
  4206. struct ggml_tensor * ggml_set_inplace(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. struct ggml_tensor * b,
  4210. size_t nb1,
  4211. size_t nb2,
  4212. size_t nb3,
  4213. size_t offset) {
  4214. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4215. }
  4216. struct ggml_tensor * ggml_set_1d(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. struct ggml_tensor * b,
  4220. size_t offset) {
  4221. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4222. }
  4223. struct ggml_tensor * ggml_set_1d_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. size_t offset) {
  4228. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4229. }
  4230. struct ggml_tensor * ggml_set_2d(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. struct ggml_tensor * b,
  4234. size_t nb1,
  4235. size_t offset) {
  4236. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4237. }
  4238. struct ggml_tensor * ggml_set_2d_inplace(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. struct ggml_tensor * b,
  4242. size_t nb1,
  4243. size_t offset) {
  4244. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4245. }
  4246. // ggml_cpy
  4247. static struct ggml_tensor * ggml_cpy_impl(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b) {
  4251. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4252. bool is_node = false;
  4253. if (a->grad || b->grad) {
  4254. // inplace is false and either one have a grad
  4255. is_node = true;
  4256. }
  4257. // make a view of the destination
  4258. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4259. if (strlen(b->name) > 0) {
  4260. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4261. } else {
  4262. ggml_format_name(result, "%s (copy)", a->name);
  4263. }
  4264. result->op = GGML_OP_CPY;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src[0] = a;
  4267. result->src[1] = b;
  4268. return result;
  4269. }
  4270. struct ggml_tensor * ggml_cpy(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. struct ggml_tensor * b) {
  4274. return ggml_cpy_impl(ctx, a, b);
  4275. }
  4276. struct ggml_tensor * ggml_cast(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. enum ggml_type type) {
  4280. bool is_node = false;
  4281. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4282. ggml_format_name(result, "%s (copy)", a->name);
  4283. result->op = GGML_OP_CPY;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. result->src[1] = result;
  4287. return result;
  4288. }
  4289. // ggml_cont
  4290. static struct ggml_tensor * ggml_cont_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. bool is_node = false;
  4294. if (a->grad) {
  4295. is_node = true;
  4296. }
  4297. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4298. ggml_format_name(result, "%s (cont)", a->name);
  4299. result->op = GGML_OP_CONT;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src[0] = a;
  4302. return result;
  4303. }
  4304. struct ggml_tensor * ggml_cont(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a) {
  4307. return ggml_cont_impl(ctx, a);
  4308. }
  4309. // make contiguous, with new shape
  4310. GGML_API struct ggml_tensor * ggml_cont_1d(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. int64_t ne0) {
  4314. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4315. }
  4316. GGML_API struct ggml_tensor * ggml_cont_2d(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. int64_t ne0,
  4320. int64_t ne1) {
  4321. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4322. }
  4323. GGML_API struct ggml_tensor * ggml_cont_3d(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. int64_t ne0,
  4327. int64_t ne1,
  4328. int64_t ne2) {
  4329. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4330. }
  4331. struct ggml_tensor * ggml_cont_4d(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a,
  4334. int64_t ne0,
  4335. int64_t ne1,
  4336. int64_t ne2,
  4337. int64_t ne3) {
  4338. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4339. bool is_node = false;
  4340. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4341. ggml_format_name(result, "%s (cont)", a->name);
  4342. result->op = GGML_OP_CONT;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. return result;
  4346. }
  4347. // ggml_reshape
  4348. struct ggml_tensor * ggml_reshape(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * b) {
  4352. GGML_ASSERT(ggml_is_contiguous(a));
  4353. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4354. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4355. bool is_node = false;
  4356. if (a->grad) {
  4357. is_node = true;
  4358. }
  4359. if (b->grad) {
  4360. // gradient propagation is not supported
  4361. //GGML_ASSERT(false);
  4362. }
  4363. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4364. ggml_format_name(result, "%s (reshaped)", a->name);
  4365. result->op = GGML_OP_RESHAPE;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_reshape_1d(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. int64_t ne0) {
  4374. GGML_ASSERT(ggml_is_contiguous(a));
  4375. GGML_ASSERT(ggml_nelements(a) == ne0);
  4376. bool is_node = false;
  4377. if (a->grad) {
  4378. is_node = true;
  4379. }
  4380. const int64_t ne[1] = { ne0 };
  4381. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4382. ggml_format_name(result, "%s (reshaped)", a->name);
  4383. result->op = GGML_OP_RESHAPE;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src[0] = a;
  4386. return result;
  4387. }
  4388. struct ggml_tensor * ggml_reshape_2d(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. int64_t ne0,
  4392. int64_t ne1) {
  4393. GGML_ASSERT(ggml_is_contiguous(a));
  4394. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4395. bool is_node = false;
  4396. if (a->grad) {
  4397. is_node = true;
  4398. }
  4399. const int64_t ne[2] = { ne0, ne1 };
  4400. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4401. ggml_format_name(result, "%s (reshaped)", a->name);
  4402. result->op = GGML_OP_RESHAPE;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src[0] = a;
  4405. return result;
  4406. }
  4407. struct ggml_tensor * ggml_reshape_3d(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. int64_t ne0,
  4411. int64_t ne1,
  4412. int64_t ne2) {
  4413. GGML_ASSERT(ggml_is_contiguous(a));
  4414. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4415. bool is_node = false;
  4416. if (a->grad) {
  4417. is_node = true;
  4418. }
  4419. const int64_t ne[3] = { ne0, ne1, ne2 };
  4420. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4421. ggml_format_name(result, "%s (reshaped)", a->name);
  4422. result->op = GGML_OP_RESHAPE;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. return result;
  4426. }
  4427. struct ggml_tensor * ggml_reshape_4d(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. int64_t ne0,
  4431. int64_t ne1,
  4432. int64_t ne2,
  4433. int64_t ne3) {
  4434. GGML_ASSERT(ggml_is_contiguous(a));
  4435. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4436. bool is_node = false;
  4437. if (a->grad) {
  4438. is_node = true;
  4439. }
  4440. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4441. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4442. ggml_format_name(result, "%s (reshaped)", a->name);
  4443. result->op = GGML_OP_RESHAPE;
  4444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4445. result->src[0] = a;
  4446. return result;
  4447. }
  4448. static struct ggml_tensor * ggml_view_impl(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. int n_dims,
  4452. const int64_t * ne,
  4453. size_t offset) {
  4454. bool is_node = false;
  4455. if (a->grad) {
  4456. is_node = true;
  4457. }
  4458. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4459. ggml_format_name(result, "%s (view)", a->name);
  4460. ggml_set_op_params(result, &offset, sizeof(offset));
  4461. result->op = GGML_OP_VIEW;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src[0] = a;
  4464. return result;
  4465. }
  4466. // ggml_view_1d
  4467. struct ggml_tensor * ggml_view_1d(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. int64_t ne0,
  4471. size_t offset) {
  4472. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4473. return result;
  4474. }
  4475. // ggml_view_2d
  4476. struct ggml_tensor * ggml_view_2d(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. int64_t ne0,
  4480. int64_t ne1,
  4481. size_t nb1,
  4482. size_t offset) {
  4483. const int64_t ne[2] = { ne0, ne1 };
  4484. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4485. result->nb[1] = nb1;
  4486. result->nb[2] = result->nb[1]*ne1;
  4487. result->nb[3] = result->nb[2];
  4488. return result;
  4489. }
  4490. // ggml_view_3d
  4491. struct ggml_tensor * ggml_view_3d(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. int64_t ne0,
  4495. int64_t ne1,
  4496. int64_t ne2,
  4497. size_t nb1,
  4498. size_t nb2,
  4499. size_t offset) {
  4500. const int64_t ne[3] = { ne0, ne1, ne2 };
  4501. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4502. result->nb[1] = nb1;
  4503. result->nb[2] = nb2;
  4504. result->nb[3] = result->nb[2]*ne2;
  4505. return result;
  4506. }
  4507. // ggml_view_4d
  4508. struct ggml_tensor * ggml_view_4d(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. int64_t ne0,
  4512. int64_t ne1,
  4513. int64_t ne2,
  4514. int64_t ne3,
  4515. size_t nb1,
  4516. size_t nb2,
  4517. size_t nb3,
  4518. size_t offset) {
  4519. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4520. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4521. result->nb[1] = nb1;
  4522. result->nb[2] = nb2;
  4523. result->nb[3] = nb3;
  4524. return result;
  4525. }
  4526. // ggml_permute
  4527. struct ggml_tensor * ggml_permute(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. int axis0,
  4531. int axis1,
  4532. int axis2,
  4533. int axis3) {
  4534. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4535. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4536. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4537. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4538. GGML_ASSERT(axis0 != axis1);
  4539. GGML_ASSERT(axis0 != axis2);
  4540. GGML_ASSERT(axis0 != axis3);
  4541. GGML_ASSERT(axis1 != axis2);
  4542. GGML_ASSERT(axis1 != axis3);
  4543. GGML_ASSERT(axis2 != axis3);
  4544. bool is_node = false;
  4545. if (a->grad) {
  4546. is_node = true;
  4547. }
  4548. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4549. ggml_format_name(result, "%s (permuted)", a->name);
  4550. int ne[GGML_MAX_DIMS];
  4551. int nb[GGML_MAX_DIMS];
  4552. ne[axis0] = a->ne[0];
  4553. ne[axis1] = a->ne[1];
  4554. ne[axis2] = a->ne[2];
  4555. ne[axis3] = a->ne[3];
  4556. nb[axis0] = a->nb[0];
  4557. nb[axis1] = a->nb[1];
  4558. nb[axis2] = a->nb[2];
  4559. nb[axis3] = a->nb[3];
  4560. result->ne[0] = ne[0];
  4561. result->ne[1] = ne[1];
  4562. result->ne[2] = ne[2];
  4563. result->ne[3] = ne[3];
  4564. result->nb[0] = nb[0];
  4565. result->nb[1] = nb[1];
  4566. result->nb[2] = nb[2];
  4567. result->nb[3] = nb[3];
  4568. result->op = GGML_OP_PERMUTE;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src[0] = a;
  4571. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4572. ggml_set_op_params(result, params, sizeof(params));
  4573. return result;
  4574. }
  4575. // ggml_transpose
  4576. struct ggml_tensor * ggml_transpose(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a) {
  4579. bool is_node = false;
  4580. if (a->grad) {
  4581. is_node = true;
  4582. }
  4583. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4584. ggml_format_name(result, "%s (transposed)", a->name);
  4585. result->ne[0] = a->ne[1];
  4586. result->ne[1] = a->ne[0];
  4587. result->nb[0] = a->nb[1];
  4588. result->nb[1] = a->nb[0];
  4589. result->op = GGML_OP_TRANSPOSE;
  4590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4591. result->src[0] = a;
  4592. return result;
  4593. }
  4594. // ggml_get_rows
  4595. struct ggml_tensor * ggml_get_rows(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b) {
  4599. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4600. GGML_ASSERT(b->ne[3] == 1);
  4601. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4602. bool is_node = false;
  4603. if (a->grad || b->grad) {
  4604. is_node = true;
  4605. }
  4606. // TODO: implement non F32 return
  4607. enum ggml_type type = GGML_TYPE_F32;
  4608. if (a->type == GGML_TYPE_I32) {
  4609. type = a->type;
  4610. }
  4611. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4612. result->op = GGML_OP_GET_ROWS;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src[0] = a;
  4615. result->src[1] = b;
  4616. return result;
  4617. }
  4618. // ggml_get_rows_back
  4619. struct ggml_tensor * ggml_get_rows_back(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b,
  4623. struct ggml_tensor * c) {
  4624. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4625. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4626. bool is_node = false;
  4627. if (a->grad || b->grad) {
  4628. is_node = true;
  4629. }
  4630. // TODO: implement non F32 return
  4631. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4632. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4633. result->op = GGML_OP_GET_ROWS_BACK;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src[0] = a;
  4636. result->src[1] = b;
  4637. return result;
  4638. }
  4639. // ggml_diag
  4640. struct ggml_tensor * ggml_diag(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a) {
  4643. GGML_ASSERT(a->ne[1] == 1);
  4644. bool is_node = false;
  4645. if (a->grad) {
  4646. is_node = true;
  4647. }
  4648. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4649. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4650. result->op = GGML_OP_DIAG;
  4651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4652. result->src[0] = a;
  4653. return result;
  4654. }
  4655. // ggml_diag_mask_inf
  4656. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4657. struct ggml_context * ctx,
  4658. struct ggml_tensor * a,
  4659. int n_past,
  4660. bool inplace) {
  4661. bool is_node = false;
  4662. if (a->grad) {
  4663. is_node = true;
  4664. }
  4665. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4666. int32_t params[] = { n_past };
  4667. ggml_set_op_params(result, params, sizeof(params));
  4668. result->op = GGML_OP_DIAG_MASK_INF;
  4669. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4670. result->src[0] = a;
  4671. return result;
  4672. }
  4673. struct ggml_tensor * ggml_diag_mask_inf(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. int n_past) {
  4677. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4678. }
  4679. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. int n_past) {
  4683. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4684. }
  4685. // ggml_diag_mask_zero
  4686. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. int n_past,
  4690. bool inplace) {
  4691. bool is_node = false;
  4692. if (a->grad) {
  4693. is_node = true;
  4694. }
  4695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4696. int32_t params[] = { n_past };
  4697. ggml_set_op_params(result, params, sizeof(params));
  4698. result->op = GGML_OP_DIAG_MASK_ZERO;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src[0] = a;
  4701. return result;
  4702. }
  4703. struct ggml_tensor * ggml_diag_mask_zero(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. int n_past) {
  4707. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4708. }
  4709. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. int n_past) {
  4713. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4714. }
  4715. // ggml_soft_max
  4716. static struct ggml_tensor * ggml_soft_max_impl(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. struct ggml_tensor * mask,
  4720. float scale,
  4721. float max_bias,
  4722. bool inplace) {
  4723. GGML_ASSERT(ggml_is_contiguous(a));
  4724. if (mask) {
  4725. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4726. GGML_ASSERT(ggml_is_contiguous(mask));
  4727. GGML_ASSERT(ggml_is_matrix(mask));
  4728. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4729. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4730. }
  4731. if (max_bias > 0.0f) {
  4732. GGML_ASSERT(mask);
  4733. }
  4734. bool is_node = false;
  4735. if (a->grad) {
  4736. is_node = true;
  4737. }
  4738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4739. float params[] = { scale, max_bias };
  4740. ggml_set_op_params(result, params, sizeof(params));
  4741. result->op = GGML_OP_SOFT_MAX;
  4742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4743. result->src[0] = a;
  4744. result->src[1] = mask;
  4745. return result;
  4746. }
  4747. struct ggml_tensor * ggml_soft_max(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a) {
  4750. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4751. }
  4752. struct ggml_tensor * ggml_soft_max_inplace(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a) {
  4755. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4756. }
  4757. struct ggml_tensor * ggml_soft_max_ext(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. struct ggml_tensor * mask,
  4761. float scale,
  4762. float max_bias) {
  4763. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  4764. }
  4765. // ggml_soft_max_back
  4766. static struct ggml_tensor * ggml_soft_max_back_impl(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. struct ggml_tensor * b,
  4770. bool inplace) {
  4771. bool is_node = false;
  4772. if (a->grad || b->grad) {
  4773. is_node = true; // TODO : implement backward pass
  4774. }
  4775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4776. result->op = GGML_OP_SOFT_MAX_BACK;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. result->src[1] = b;
  4780. return result;
  4781. }
  4782. struct ggml_tensor * ggml_soft_max_back(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * b) {
  4786. return ggml_soft_max_back_impl(ctx, a, b, false);
  4787. }
  4788. struct ggml_tensor * ggml_soft_max_back_inplace(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. struct ggml_tensor * b) {
  4792. return ggml_soft_max_back_impl(ctx, a, b, true);
  4793. }
  4794. // ggml_rope
  4795. static struct ggml_tensor * ggml_rope_impl(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. struct ggml_tensor * b,
  4799. int n_dims,
  4800. int mode,
  4801. int n_ctx,
  4802. int n_orig_ctx,
  4803. float freq_base,
  4804. float freq_scale,
  4805. float ext_factor,
  4806. float attn_factor,
  4807. float beta_fast,
  4808. float beta_slow,
  4809. float xpos_base,
  4810. bool xpos_down,
  4811. bool inplace) {
  4812. GGML_ASSERT(ggml_is_vector(b));
  4813. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4814. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4815. bool is_node = false;
  4816. if (a->grad) {
  4817. is_node = true;
  4818. }
  4819. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4820. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4821. memcpy(params + 5, &freq_base, sizeof(float));
  4822. memcpy(params + 6, &freq_scale, sizeof(float));
  4823. memcpy(params + 7, &ext_factor, sizeof(float));
  4824. memcpy(params + 8, &attn_factor, sizeof(float));
  4825. memcpy(params + 9, &beta_fast, sizeof(float));
  4826. memcpy(params + 10, &beta_slow, sizeof(float));
  4827. memcpy(params + 11, &xpos_base, sizeof(float));
  4828. memcpy(params + 12, &xpos_down, sizeof(bool));
  4829. ggml_set_op_params(result, params, sizeof(params));
  4830. result->op = GGML_OP_ROPE;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = a;
  4833. result->src[1] = b;
  4834. return result;
  4835. }
  4836. struct ggml_tensor * ggml_rope(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. int n_dims,
  4841. int mode,
  4842. int n_ctx) {
  4843. return ggml_rope_impl(
  4844. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4845. );
  4846. }
  4847. struct ggml_tensor * ggml_rope_inplace(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. struct ggml_tensor * b,
  4851. int n_dims,
  4852. int mode,
  4853. int n_ctx) {
  4854. return ggml_rope_impl(
  4855. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4856. );
  4857. }
  4858. struct ggml_tensor * ggml_rope_custom(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. struct ggml_tensor * b,
  4862. int n_dims,
  4863. int mode,
  4864. int n_ctx,
  4865. int n_orig_ctx,
  4866. float freq_base,
  4867. float freq_scale,
  4868. float ext_factor,
  4869. float attn_factor,
  4870. float beta_fast,
  4871. float beta_slow) {
  4872. return ggml_rope_impl(
  4873. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4874. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4875. );
  4876. }
  4877. struct ggml_tensor * ggml_rope_custom_inplace(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. int n_dims,
  4882. int mode,
  4883. int n_ctx,
  4884. int n_orig_ctx,
  4885. float freq_base,
  4886. float freq_scale,
  4887. float ext_factor,
  4888. float attn_factor,
  4889. float beta_fast,
  4890. float beta_slow) {
  4891. return ggml_rope_impl(
  4892. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4893. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4894. );
  4895. }
  4896. struct ggml_tensor * ggml_rope_xpos_inplace(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. struct ggml_tensor * b,
  4900. int n_dims,
  4901. float base,
  4902. bool down) {
  4903. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4904. }
  4905. // ggml_rope_back
  4906. struct ggml_tensor * ggml_rope_back(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. struct ggml_tensor * b,
  4910. int n_dims,
  4911. int mode,
  4912. int n_ctx,
  4913. int n_orig_ctx,
  4914. float freq_base,
  4915. float freq_scale,
  4916. float ext_factor,
  4917. float attn_factor,
  4918. float beta_fast,
  4919. float beta_slow,
  4920. float xpos_base,
  4921. bool xpos_down) {
  4922. GGML_ASSERT(ggml_is_vector(b));
  4923. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4924. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4925. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4926. bool is_node = false;
  4927. if (a->grad) {
  4928. is_node = false; // TODO: implement backward
  4929. }
  4930. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4931. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4932. memcpy(params + 5, &freq_base, sizeof(float));
  4933. memcpy(params + 6, &freq_scale, sizeof(float));
  4934. memcpy(params + 7, &ext_factor, sizeof(float));
  4935. memcpy(params + 8, &attn_factor, sizeof(float));
  4936. memcpy(params + 9, &beta_fast, sizeof(float));
  4937. memcpy(params + 10, &beta_slow, sizeof(float));
  4938. memcpy(params + 11, &xpos_base, sizeof(float));
  4939. memcpy(params + 12, &xpos_down, sizeof(bool));
  4940. ggml_set_op_params(result, params, sizeof(params));
  4941. result->op = GGML_OP_ROPE_BACK;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src[0] = a;
  4944. result->src[1] = b;
  4945. return result;
  4946. }
  4947. // ggml_clamp
  4948. struct ggml_tensor * ggml_clamp(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a,
  4951. float min,
  4952. float max) {
  4953. bool is_node = false;
  4954. if (a->grad) {
  4955. GGML_ASSERT(false); // TODO: implement backward
  4956. is_node = true;
  4957. }
  4958. // TODO: when implement backward, fix this:
  4959. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4960. float params[] = { min, max };
  4961. ggml_set_op_params(result, params, sizeof(params));
  4962. result->op = GGML_OP_CLAMP;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. // ggml_conv_1d
  4968. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4969. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4970. }
  4971. GGML_API struct ggml_tensor * ggml_conv_1d(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. struct ggml_tensor * b,
  4975. int s0,
  4976. int p0,
  4977. int d0) {
  4978. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4979. struct ggml_tensor * result =
  4980. ggml_mul_mat(ctx,
  4981. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4982. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4983. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4984. return result;
  4985. }
  4986. // ggml_conv_1d_ph
  4987. struct ggml_tensor* ggml_conv_1d_ph(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. struct ggml_tensor * b,
  4991. int s,
  4992. int d) {
  4993. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4994. }
  4995. // ggml_conv_transpose_1d
  4996. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4997. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4998. }
  4999. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. int s0,
  5004. int p0,
  5005. int d0) {
  5006. GGML_ASSERT(ggml_is_matrix(b));
  5007. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5008. GGML_ASSERT(a->ne[3] == 1);
  5009. GGML_ASSERT(p0 == 0);
  5010. GGML_ASSERT(d0 == 1);
  5011. bool is_node = false;
  5012. if (a->grad || b->grad) {
  5013. GGML_ASSERT(false); // TODO: implement backward
  5014. is_node = true;
  5015. }
  5016. const int64_t ne[4] = {
  5017. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5018. a->ne[1], b->ne[2], 1,
  5019. };
  5020. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5021. int32_t params[] = { s0, p0, d0 };
  5022. ggml_set_op_params(result, params, sizeof(params));
  5023. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src[0] = a;
  5026. result->src[1] = b;
  5027. return result;
  5028. }
  5029. // ggml_conv_depthwise
  5030. struct ggml_tensor * ggml_conv_depthwise_2d(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. struct ggml_tensor * b,
  5034. int s0,
  5035. int s1,
  5036. int p0,
  5037. int p1,
  5038. int d0,
  5039. int d1) {
  5040. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5041. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5042. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5043. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5044. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5045. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5046. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5047. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5048. return result;
  5049. }
  5050. // ggml_conv_2d
  5051. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5052. // a: [OC,IC, KH, KW]
  5053. // b: [N, IC, IH, IW]
  5054. // result: [N, OH, OW, IC*KH*KW]
  5055. struct ggml_tensor * ggml_im2col(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. struct ggml_tensor * b,
  5059. int s0,
  5060. int s1,
  5061. int p0,
  5062. int p1,
  5063. int d0,
  5064. int d1,
  5065. bool is_2D,
  5066. enum ggml_type dst_type) {
  5067. if(is_2D) {
  5068. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5069. } else {
  5070. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5071. }
  5072. bool is_node = false;
  5073. if (a->grad || b->grad) {
  5074. GGML_ASSERT(false); // TODO: implement backward
  5075. is_node = true;
  5076. }
  5077. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5078. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5079. const int64_t ne[4] = {
  5080. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5081. OW,
  5082. is_2D ? OH : b->ne[2],
  5083. is_2D ? b->ne[3] : 1,
  5084. };
  5085. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5086. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5087. ggml_set_op_params(result, params, sizeof(params));
  5088. result->op = GGML_OP_IM2COL;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src[0] = a;
  5091. result->src[1] = b;
  5092. return result;
  5093. }
  5094. // a: [OC,IC, KH, KW]
  5095. // b: [N, IC, IH, IW]
  5096. // result: [N, OC, OH, OW]
  5097. struct ggml_tensor * ggml_conv_2d(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b,
  5101. int s0,
  5102. int s1,
  5103. int p0,
  5104. int p1,
  5105. int d0,
  5106. int d1) {
  5107. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5108. struct ggml_tensor * result =
  5109. ggml_mul_mat(ctx,
  5110. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5111. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5112. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5113. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5114. return result;
  5115. }
  5116. // ggml_conv_2d_sk_p0
  5117. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. struct ggml_tensor * b) {
  5121. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5122. }
  5123. // ggml_conv_2d_s1_ph
  5124. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. struct ggml_tensor * b) {
  5128. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5129. }
  5130. // ggml_conv_transpose_2d_p0
  5131. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5132. return (ins - 1) * s - 2 * p + ks;
  5133. }
  5134. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. struct ggml_tensor * b,
  5138. int stride) {
  5139. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5140. bool is_node = false;
  5141. if (a->grad || b->grad) {
  5142. GGML_ASSERT(false); // TODO: implement backward
  5143. is_node = true;
  5144. }
  5145. const int64_t ne[4] = {
  5146. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5147. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5148. a->ne[2], b->ne[3],
  5149. };
  5150. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5151. ggml_set_op_params_i32(result, 0, stride);
  5152. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5154. result->src[0] = a;
  5155. result->src[1] = b;
  5156. return result;
  5157. }
  5158. // ggml_pool_*
  5159. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5160. return (ins + 2 * p - ks) / s + 1;
  5161. }
  5162. // ggml_pool_1d
  5163. struct ggml_tensor * ggml_pool_1d(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. enum ggml_op_pool op,
  5167. int k0,
  5168. int s0,
  5169. int p0) {
  5170. bool is_node = false;
  5171. if (a->grad) {
  5172. GGML_ASSERT(false); // TODO: implement backward
  5173. is_node = true;
  5174. }
  5175. const int64_t ne[4] = {
  5176. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5177. a->ne[1],
  5178. a->ne[2],
  5179. a->ne[3],
  5180. };
  5181. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5182. int32_t params[] = { op, k0, s0, p0 };
  5183. ggml_set_op_params(result, params, sizeof(params));
  5184. result->op = GGML_OP_POOL_1D;
  5185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5186. result->src[0] = a;
  5187. return result;
  5188. }
  5189. // ggml_pool_2d
  5190. struct ggml_tensor * ggml_pool_2d(
  5191. struct ggml_context * ctx,
  5192. struct ggml_tensor * a,
  5193. enum ggml_op_pool op,
  5194. int k0,
  5195. int k1,
  5196. int s0,
  5197. int s1,
  5198. float p0,
  5199. float p1) {
  5200. bool is_node = false;
  5201. if (a->grad) {
  5202. GGML_ASSERT(false); // TODO: implement backward
  5203. is_node = true;
  5204. }
  5205. struct ggml_tensor * result;
  5206. const int64_t ne[3] = {
  5207. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5208. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5209. a->ne[2],
  5210. };
  5211. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5212. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5213. ggml_set_op_params(result, params, sizeof(params));
  5214. result->op = GGML_OP_POOL_2D;
  5215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5216. result->src[0] = a;
  5217. return result;
  5218. }
  5219. // ggml_upscale
  5220. static struct ggml_tensor * ggml_upscale_impl(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. int ne0,
  5224. int ne1,
  5225. int ne2,
  5226. int ne3) {
  5227. bool is_node = false;
  5228. if (a->grad) {
  5229. GGML_ASSERT(false); // TODO: implement backward
  5230. is_node = true;
  5231. }
  5232. GGML_ASSERT(a->ne[0] <= ne0);
  5233. GGML_ASSERT(a->ne[1] <= ne1);
  5234. GGML_ASSERT(a->ne[2] <= ne2);
  5235. GGML_ASSERT(a->ne[3] <= ne3);
  5236. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5237. ne0,
  5238. ne1,
  5239. ne2,
  5240. ne3
  5241. );
  5242. result->op = GGML_OP_UPSCALE;
  5243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5244. result->src[0] = a;
  5245. return result;
  5246. }
  5247. struct ggml_tensor * ggml_upscale(
  5248. struct ggml_context * ctx,
  5249. struct ggml_tensor * a,
  5250. int scale_factor) {
  5251. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5252. }
  5253. struct ggml_tensor * ggml_upscale_ext(
  5254. struct ggml_context * ctx,
  5255. struct ggml_tensor * a,
  5256. int ne0,
  5257. int ne1,
  5258. int ne2,
  5259. int ne3) {
  5260. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5261. }
  5262. // ggml_pad
  5263. struct ggml_tensor * ggml_pad(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. int p0, int p1, int p2, int p3) {
  5267. bool is_node = false;
  5268. if (a->grad) {
  5269. GGML_ASSERT(false); // TODO: implement backward
  5270. is_node = true;
  5271. }
  5272. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5273. a->ne[0] + p0,
  5274. a->ne[1] + p1,
  5275. a->ne[2] + p2,
  5276. a->ne[3] + p3);
  5277. result->op = GGML_OP_PAD;
  5278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5279. result->src[0] = a;
  5280. return result;
  5281. }
  5282. // ggml_arange
  5283. struct ggml_tensor * ggml_arange(
  5284. struct ggml_context * ctx,
  5285. float start,
  5286. float stop,
  5287. float step) {
  5288. GGML_ASSERT(stop > start);
  5289. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5290. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5291. result->op = GGML_OP_ARANGE;
  5292. ggml_set_op_params_f32(result, 0, start);
  5293. ggml_set_op_params_f32(result, 1, stop);
  5294. ggml_set_op_params_f32(result, 2, step);
  5295. return result;
  5296. }
  5297. // ggml_timestep_embedding
  5298. struct ggml_tensor * ggml_timestep_embedding(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * timesteps,
  5301. int dim,
  5302. int max_period) {
  5303. bool is_node = false;
  5304. if (timesteps->grad) {
  5305. GGML_ASSERT(false); // TODO: implement backward
  5306. is_node = true;
  5307. }
  5308. int actual_dim = dim;
  5309. if (dim % 2 != 0) {
  5310. actual_dim = dim + 1;
  5311. }
  5312. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5313. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5314. ggml_set_op_params_i32(result, 0, dim);
  5315. ggml_set_op_params_i32(result, 1, max_period);
  5316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5317. result->src[0] = timesteps;
  5318. return result;
  5319. }
  5320. // ggml_argsort
  5321. struct ggml_tensor * ggml_argsort(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. enum ggml_sort_order order) {
  5325. bool is_node = false;
  5326. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5327. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5328. result->op = GGML_OP_ARGSORT;
  5329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5330. result->src[0] = a;
  5331. return result;
  5332. }
  5333. // ggml_top_k
  5334. struct ggml_tensor * ggml_top_k(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. int k) {
  5338. GGML_ASSERT(a->ne[0] >= k);
  5339. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5340. result = ggml_view_4d(ctx, result,
  5341. k, result->ne[1], result->ne[2], result->ne[3],
  5342. result->nb[1], result->nb[2], result->nb[3],
  5343. 0);
  5344. return result;
  5345. }
  5346. // ggml_flash_attn
  5347. struct ggml_tensor * ggml_flash_attn(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * q,
  5350. struct ggml_tensor * k,
  5351. struct ggml_tensor * v,
  5352. bool masked) {
  5353. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5354. // TODO: check if vT can be multiplied by (k*qT)
  5355. bool is_node = false;
  5356. if (q->grad || k->grad || v->grad) {
  5357. is_node = true;
  5358. }
  5359. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5360. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5361. int32_t t = masked ? 1 : 0;
  5362. ggml_set_op_params(result, &t, sizeof(t));
  5363. result->op = GGML_OP_FLASH_ATTN;
  5364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5365. result->src[0] = q;
  5366. result->src[1] = k;
  5367. result->src[2] = v;
  5368. return result;
  5369. }
  5370. // ggml_flash_attn_ext
  5371. struct ggml_tensor * ggml_flash_attn_ext(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * q,
  5374. struct ggml_tensor * k,
  5375. struct ggml_tensor * v,
  5376. struct ggml_tensor * mask,
  5377. float scale,
  5378. float max_bias) {
  5379. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5380. // TODO: check if vT can be multiplied by (k*qT)
  5381. if (mask) {
  5382. GGML_ASSERT(ggml_is_contiguous(mask));
  5383. GGML_ASSERT(mask->ne[2] == 1);
  5384. GGML_ASSERT(mask->ne[3] == 1);
  5385. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5386. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5387. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5388. }
  5389. if (max_bias > 0.0f) {
  5390. GGML_ASSERT(mask);
  5391. }
  5392. bool is_node = false;
  5393. if (q->grad || k->grad || v->grad) {
  5394. is_node = true;
  5395. }
  5396. // permute(0, 2, 1, 3)
  5397. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5398. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5399. float params[] = { scale, max_bias };
  5400. ggml_set_op_params(result, params, sizeof(params));
  5401. result->op = GGML_OP_FLASH_ATTN_EXT;
  5402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5403. result->src[0] = q;
  5404. result->src[1] = k;
  5405. result->src[2] = v;
  5406. result->src[3] = mask;
  5407. return result;
  5408. }
  5409. void ggml_flash_attn_ext_set_prec(
  5410. struct ggml_tensor * a,
  5411. enum ggml_prec prec) {
  5412. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5413. const int32_t prec_i32 = (int32_t) prec;
  5414. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5415. }
  5416. // ggml_flash_ff
  5417. struct ggml_tensor * ggml_flash_ff(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. struct ggml_tensor * b0,
  5421. struct ggml_tensor * b1,
  5422. struct ggml_tensor * c0,
  5423. struct ggml_tensor * c1) {
  5424. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5425. // TODO: more checks
  5426. bool is_node = false;
  5427. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5428. is_node = true;
  5429. }
  5430. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5431. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5432. result->op = GGML_OP_FLASH_FF;
  5433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5434. result->src[0] = a;
  5435. result->src[1] = b0;
  5436. result->src[2] = b1;
  5437. result->src[3] = c0;
  5438. result->src[4] = c1;
  5439. return result;
  5440. }
  5441. // ggml_flash_attn_back
  5442. struct ggml_tensor * ggml_flash_attn_back(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * q,
  5445. struct ggml_tensor * k,
  5446. struct ggml_tensor * v,
  5447. struct ggml_tensor * d,
  5448. bool masked) {
  5449. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5450. // TODO: check if vT can be multiplied by (k*qT)
  5451. // d shape [D,N,ne2,ne3]
  5452. // q shape [D,N,ne2,ne3]
  5453. // k shape [D,M,kvne2,ne3]
  5454. // v shape [M,D,kvne2,ne3]
  5455. const int64_t D = q->ne[0];
  5456. const int64_t N = q->ne[1];
  5457. const int64_t M = k->ne[1];
  5458. const int64_t ne2 = q->ne[2];
  5459. const int64_t ne3 = q->ne[3];
  5460. const int64_t kvne2 = k->ne[2];
  5461. GGML_ASSERT(k->ne[0] == D);
  5462. GGML_ASSERT(v->ne[0] == M);
  5463. GGML_ASSERT(v->ne[1] == D);
  5464. GGML_ASSERT(d->ne[0] == D);
  5465. GGML_ASSERT(d->ne[1] == N);
  5466. GGML_ASSERT(k->ne[2] == kvne2);
  5467. GGML_ASSERT(k->ne[3] == ne3);
  5468. GGML_ASSERT(v->ne[2] == kvne2);
  5469. GGML_ASSERT(v->ne[3] == ne3);
  5470. GGML_ASSERT(d->ne[2] == ne2);
  5471. GGML_ASSERT(d->ne[3] == ne3);
  5472. GGML_ASSERT(ne2 % kvne2 == 0);
  5473. bool is_node = false;
  5474. if (q->grad || k->grad || v->grad) {
  5475. // when using this operation (in backwards pass) these grads are set.
  5476. // we don't want to create (big) grad of our result, so is_node is false.
  5477. is_node = false;
  5478. }
  5479. // store gradients of q, k and v as continuous tensors concatenated in result.
  5480. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5481. const int64_t elem_q = ggml_nelements(q);
  5482. const int64_t elem_k = ggml_nelements(k);
  5483. const int64_t elem_v = ggml_nelements(v);
  5484. enum ggml_type result_type = GGML_TYPE_F32;
  5485. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5486. const size_t tsize = ggml_type_size(result_type);
  5487. const size_t offs_q = 0;
  5488. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5489. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5490. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5491. const size_t nelements = (end + tsize - 1)/tsize;
  5492. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5493. int32_t masked_i = masked ? 1 : 0;
  5494. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5495. result->op = GGML_OP_FLASH_ATTN_BACK;
  5496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5497. result->src[0] = q;
  5498. result->src[1] = k;
  5499. result->src[2] = v;
  5500. result->src[3] = d;
  5501. return result;
  5502. }
  5503. // ggml_ssm_conv
  5504. struct ggml_tensor * ggml_ssm_conv(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * s,
  5507. struct ggml_tensor * x,
  5508. struct ggml_tensor * c,
  5509. struct ggml_tensor * sq) {
  5510. GGML_ASSERT(ggml_is_3d(s));
  5511. GGML_ASSERT(ggml_is_matrix(x));
  5512. GGML_ASSERT(ggml_is_matrix(c));
  5513. GGML_ASSERT(ggml_is_matrix(sq));
  5514. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5515. const int64_t d_conv = c->ne[0];
  5516. const int64_t d_inner = c->ne[1];
  5517. const int64_t n_tokens = x->ne[1];
  5518. const int64_t n_kv = s->ne[2];
  5519. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5520. GGML_ASSERT( s->ne[1] == d_inner);
  5521. GGML_ASSERT( x->ne[0] == d_inner);
  5522. GGML_ASSERT(sq->ne[0] == n_kv);
  5523. GGML_ASSERT(sq->ne[1] == n_tokens);
  5524. bool is_node = false;
  5525. if (s->grad || x->grad || c->grad || sq->grad) {
  5526. GGML_ASSERT(false); // TODO: implement
  5527. is_node = true;
  5528. }
  5529. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5531. result->op = GGML_OP_SSM_CONV;
  5532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5533. result->src[0] = s;
  5534. result->src[1] = x;
  5535. result->src[2] = c;
  5536. result->src[3] = sq;
  5537. return result;
  5538. }
  5539. // ggml_ssm_scan
  5540. struct ggml_tensor * ggml_ssm_scan(
  5541. struct ggml_context * ctx,
  5542. struct ggml_tensor * s,
  5543. struct ggml_tensor * x,
  5544. struct ggml_tensor * dt,
  5545. struct ggml_tensor * A,
  5546. struct ggml_tensor * B,
  5547. struct ggml_tensor * C,
  5548. struct ggml_tensor * sq) {
  5549. GGML_ASSERT(ggml_is_contiguous(s));
  5550. GGML_ASSERT(ggml_is_contiguous(x));
  5551. GGML_ASSERT(ggml_is_contiguous(dt));
  5552. GGML_ASSERT(ggml_is_contiguous(A));
  5553. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5554. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5555. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5556. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5557. {
  5558. const int64_t d_state = s->ne[0];
  5559. const int64_t d_inner = s->ne[1];
  5560. const int64_t n_tokens = x->ne[1];
  5561. GGML_ASSERT(x->ne[0] == d_inner);
  5562. GGML_ASSERT(A->ne[0] == d_state);
  5563. GGML_ASSERT(A->ne[1] == d_inner);
  5564. GGML_ASSERT(B->ne[0] == d_state);
  5565. GGML_ASSERT(B->ne[1] == n_tokens);
  5566. GGML_ASSERT(C->ne[0] == d_state);
  5567. GGML_ASSERT(C->ne[1] == n_tokens);
  5568. }
  5569. bool is_node = false;
  5570. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5571. GGML_ASSERT(false); // TODO: implement
  5572. is_node = true;
  5573. }
  5574. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5575. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5576. result->op = GGML_OP_SSM_SCAN;
  5577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5578. result->src[0] = s;
  5579. result->src[1] = x;
  5580. result->src[2] = dt;
  5581. result->src[3] = A;
  5582. result->src[4] = B;
  5583. result->src[5] = C;
  5584. result->src[6] = sq;
  5585. return result;
  5586. }
  5587. // ggml_win_part
  5588. struct ggml_tensor * ggml_win_part(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * a,
  5591. int w) {
  5592. GGML_ASSERT(a->ne[3] == 1);
  5593. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5594. bool is_node = false;
  5595. if (a->grad) {
  5596. GGML_ASSERT(false); // TODO: implement backward
  5597. is_node = true;
  5598. }
  5599. // padding
  5600. const int px = (w - a->ne[1]%w)%w;
  5601. const int py = (w - a->ne[2]%w)%w;
  5602. const int npx = (px + a->ne[1])/w;
  5603. const int npy = (py + a->ne[2])/w;
  5604. const int np = npx*npy;
  5605. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5606. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5607. int32_t params[] = { npx, npy, w };
  5608. ggml_set_op_params(result, params, sizeof(params));
  5609. result->op = GGML_OP_WIN_PART;
  5610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5611. result->src[0] = a;
  5612. return result;
  5613. }
  5614. // ggml_win_unpart
  5615. struct ggml_tensor * ggml_win_unpart(
  5616. struct ggml_context * ctx,
  5617. struct ggml_tensor * a,
  5618. int w0,
  5619. int h0,
  5620. int w) {
  5621. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5622. bool is_node = false;
  5623. if (a->grad) {
  5624. GGML_ASSERT(false); // TODO: implement backward
  5625. is_node = true;
  5626. }
  5627. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5628. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5629. int32_t params[] = { w };
  5630. ggml_set_op_params(result, params, sizeof(params));
  5631. result->op = GGML_OP_WIN_UNPART;
  5632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5633. result->src[0] = a;
  5634. return result;
  5635. }
  5636. // ggml_get_rel_pos
  5637. struct ggml_tensor * ggml_get_rel_pos(
  5638. struct ggml_context * ctx,
  5639. struct ggml_tensor * a,
  5640. int qh,
  5641. int kh) {
  5642. GGML_ASSERT(qh == kh);
  5643. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5644. bool is_node = false;
  5645. if (a->grad) {
  5646. GGML_ASSERT(false); // TODO: implement backward
  5647. is_node = true;
  5648. }
  5649. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5650. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5651. result->op = GGML_OP_GET_REL_POS;
  5652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5653. result->src[0] = a;
  5654. return result;
  5655. }
  5656. // ggml_add_rel_pos
  5657. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5658. struct ggml_context * ctx,
  5659. struct ggml_tensor * a,
  5660. struct ggml_tensor * pw,
  5661. struct ggml_tensor * ph,
  5662. bool inplace) {
  5663. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5664. GGML_ASSERT(ggml_is_contiguous(a));
  5665. GGML_ASSERT(ggml_is_contiguous(pw));
  5666. GGML_ASSERT(ggml_is_contiguous(ph));
  5667. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5668. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5669. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5670. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5671. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5672. bool is_node = false;
  5673. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5674. is_node = true;
  5675. }
  5676. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5677. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5678. result->op = GGML_OP_ADD_REL_POS;
  5679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5680. result->src[0] = a;
  5681. result->src[1] = pw;
  5682. result->src[2] = ph;
  5683. return result;
  5684. }
  5685. struct ggml_tensor * ggml_add_rel_pos(
  5686. struct ggml_context * ctx,
  5687. struct ggml_tensor * a,
  5688. struct ggml_tensor * pw,
  5689. struct ggml_tensor * ph) {
  5690. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5691. }
  5692. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5693. struct ggml_context * ctx,
  5694. struct ggml_tensor * a,
  5695. struct ggml_tensor * pw,
  5696. struct ggml_tensor * ph) {
  5697. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5698. }
  5699. // gmml_unary
  5700. static struct ggml_tensor * ggml_unary_impl(
  5701. struct ggml_context * ctx,
  5702. struct ggml_tensor * a,
  5703. enum ggml_unary_op op,
  5704. bool inplace) {
  5705. bool is_node = false;
  5706. if (!inplace && (a->grad)) {
  5707. is_node = true;
  5708. }
  5709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5710. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5711. result->op = GGML_OP_UNARY;
  5712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5713. result->src[0] = a;
  5714. return result;
  5715. }
  5716. struct ggml_tensor * ggml_unary(
  5717. struct ggml_context * ctx,
  5718. struct ggml_tensor * a,
  5719. enum ggml_unary_op op) {
  5720. return ggml_unary_impl(ctx, a, op, false);
  5721. }
  5722. struct ggml_tensor * ggml_unary_inplace(
  5723. struct ggml_context * ctx,
  5724. struct ggml_tensor * a,
  5725. enum ggml_unary_op op) {
  5726. return ggml_unary_impl(ctx, a, op, true);
  5727. }
  5728. // ggml_map_unary
  5729. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5730. struct ggml_context * ctx,
  5731. struct ggml_tensor * a,
  5732. const ggml_unary_op_f32_t fun,
  5733. bool inplace) {
  5734. bool is_node = false;
  5735. if (!inplace && a->grad) {
  5736. is_node = true;
  5737. }
  5738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5739. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5740. result->op = GGML_OP_MAP_UNARY;
  5741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5742. result->src[0] = a;
  5743. return result;
  5744. }
  5745. struct ggml_tensor * ggml_map_unary_f32(
  5746. struct ggml_context * ctx,
  5747. struct ggml_tensor * a,
  5748. const ggml_unary_op_f32_t fun) {
  5749. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5750. }
  5751. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5752. struct ggml_context * ctx,
  5753. struct ggml_tensor * a,
  5754. const ggml_unary_op_f32_t fun) {
  5755. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5756. }
  5757. // ggml_map_binary
  5758. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5759. struct ggml_context * ctx,
  5760. struct ggml_tensor * a,
  5761. struct ggml_tensor * b,
  5762. const ggml_binary_op_f32_t fun,
  5763. bool inplace) {
  5764. GGML_ASSERT(ggml_are_same_shape(a, b));
  5765. bool is_node = false;
  5766. if (!inplace && (a->grad || b->grad)) {
  5767. is_node = true;
  5768. }
  5769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5770. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5771. result->op = GGML_OP_MAP_BINARY;
  5772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5773. result->src[0] = a;
  5774. result->src[1] = b;
  5775. return result;
  5776. }
  5777. struct ggml_tensor * ggml_map_binary_f32(
  5778. struct ggml_context * ctx,
  5779. struct ggml_tensor * a,
  5780. struct ggml_tensor * b,
  5781. const ggml_binary_op_f32_t fun) {
  5782. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5783. }
  5784. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5785. struct ggml_context * ctx,
  5786. struct ggml_tensor * a,
  5787. struct ggml_tensor * b,
  5788. const ggml_binary_op_f32_t fun) {
  5789. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5790. }
  5791. // ggml_map_custom1_f32
  5792. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5793. struct ggml_context * ctx,
  5794. struct ggml_tensor * a,
  5795. const ggml_custom1_op_f32_t fun,
  5796. bool inplace) {
  5797. bool is_node = false;
  5798. if (!inplace && a->grad) {
  5799. is_node = true;
  5800. }
  5801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5802. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5803. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5805. result->src[0] = a;
  5806. return result;
  5807. }
  5808. struct ggml_tensor * ggml_map_custom1_f32(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. const ggml_custom1_op_f32_t fun) {
  5812. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5813. }
  5814. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * a,
  5817. const ggml_custom1_op_f32_t fun) {
  5818. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5819. }
  5820. // ggml_map_custom2_f32
  5821. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5822. struct ggml_context * ctx,
  5823. struct ggml_tensor * a,
  5824. struct ggml_tensor * b,
  5825. const ggml_custom2_op_f32_t fun,
  5826. bool inplace) {
  5827. bool is_node = false;
  5828. if (!inplace && (a->grad || b->grad)) {
  5829. is_node = true;
  5830. }
  5831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5832. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5833. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5835. result->src[0] = a;
  5836. result->src[1] = b;
  5837. return result;
  5838. }
  5839. struct ggml_tensor * ggml_map_custom2_f32(
  5840. struct ggml_context * ctx,
  5841. struct ggml_tensor * a,
  5842. struct ggml_tensor * b,
  5843. const ggml_custom2_op_f32_t fun) {
  5844. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5845. }
  5846. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5847. struct ggml_context * ctx,
  5848. struct ggml_tensor * a,
  5849. struct ggml_tensor * b,
  5850. const ggml_custom2_op_f32_t fun) {
  5851. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5852. }
  5853. // ggml_map_custom3_f32
  5854. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. struct ggml_tensor * b,
  5858. struct ggml_tensor * c,
  5859. const ggml_custom3_op_f32_t fun,
  5860. bool inplace) {
  5861. bool is_node = false;
  5862. if (!inplace && (a->grad || b->grad || c->grad)) {
  5863. is_node = true;
  5864. }
  5865. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5866. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5867. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5869. result->src[0] = a;
  5870. result->src[1] = b;
  5871. result->src[2] = c;
  5872. return result;
  5873. }
  5874. struct ggml_tensor * ggml_map_custom3_f32(
  5875. struct ggml_context * ctx,
  5876. struct ggml_tensor * a,
  5877. struct ggml_tensor * b,
  5878. struct ggml_tensor * c,
  5879. const ggml_custom3_op_f32_t fun) {
  5880. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5881. }
  5882. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5883. struct ggml_context * ctx,
  5884. struct ggml_tensor * a,
  5885. struct ggml_tensor * b,
  5886. struct ggml_tensor * c,
  5887. const ggml_custom3_op_f32_t fun) {
  5888. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5889. }
  5890. // ggml_map_custom1
  5891. struct ggml_map_custom1_op_params {
  5892. ggml_custom1_op_t fun;
  5893. int n_tasks;
  5894. void * userdata;
  5895. };
  5896. static struct ggml_tensor * ggml_map_custom1_impl(
  5897. struct ggml_context * ctx,
  5898. struct ggml_tensor * a,
  5899. const ggml_custom1_op_t fun,
  5900. int n_tasks,
  5901. void * userdata,
  5902. bool inplace) {
  5903. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5904. bool is_node = false;
  5905. if (!inplace && a->grad) {
  5906. is_node = true;
  5907. }
  5908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5909. struct ggml_map_custom1_op_params params = {
  5910. /*.fun =*/ fun,
  5911. /*.n_tasks =*/ n_tasks,
  5912. /*.userdata =*/ userdata
  5913. };
  5914. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5915. result->op = GGML_OP_MAP_CUSTOM1;
  5916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5917. result->src[0] = a;
  5918. return result;
  5919. }
  5920. struct ggml_tensor * ggml_map_custom1(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * a,
  5923. const ggml_custom1_op_t fun,
  5924. int n_tasks,
  5925. void * userdata) {
  5926. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5927. }
  5928. struct ggml_tensor * ggml_map_custom1_inplace(
  5929. struct ggml_context * ctx,
  5930. struct ggml_tensor * a,
  5931. const ggml_custom1_op_t fun,
  5932. int n_tasks,
  5933. void * userdata) {
  5934. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5935. }
  5936. // ggml_map_custom2
  5937. struct ggml_map_custom2_op_params {
  5938. ggml_custom2_op_t fun;
  5939. int n_tasks;
  5940. void * userdata;
  5941. };
  5942. static struct ggml_tensor * ggml_map_custom2_impl(
  5943. struct ggml_context * ctx,
  5944. struct ggml_tensor * a,
  5945. struct ggml_tensor * b,
  5946. const ggml_custom2_op_t fun,
  5947. int n_tasks,
  5948. void * userdata,
  5949. bool inplace) {
  5950. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5951. bool is_node = false;
  5952. if (!inplace && (a->grad || b->grad)) {
  5953. is_node = true;
  5954. }
  5955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5956. struct ggml_map_custom2_op_params params = {
  5957. /*.fun =*/ fun,
  5958. /*.n_tasks =*/ n_tasks,
  5959. /*.userdata =*/ userdata
  5960. };
  5961. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5962. result->op = GGML_OP_MAP_CUSTOM2;
  5963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5964. result->src[0] = a;
  5965. result->src[1] = b;
  5966. return result;
  5967. }
  5968. struct ggml_tensor * ggml_map_custom2(
  5969. struct ggml_context * ctx,
  5970. struct ggml_tensor * a,
  5971. struct ggml_tensor * b,
  5972. const ggml_custom2_op_t fun,
  5973. int n_tasks,
  5974. void * userdata) {
  5975. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5976. }
  5977. struct ggml_tensor * ggml_map_custom2_inplace(
  5978. struct ggml_context * ctx,
  5979. struct ggml_tensor * a,
  5980. struct ggml_tensor * b,
  5981. const ggml_custom2_op_t fun,
  5982. int n_tasks,
  5983. void * userdata) {
  5984. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5985. }
  5986. // ggml_map_custom3
  5987. struct ggml_map_custom3_op_params {
  5988. ggml_custom3_op_t fun;
  5989. int n_tasks;
  5990. void * userdata;
  5991. };
  5992. static struct ggml_tensor * ggml_map_custom3_impl(
  5993. struct ggml_context * ctx,
  5994. struct ggml_tensor * a,
  5995. struct ggml_tensor * b,
  5996. struct ggml_tensor * c,
  5997. const ggml_custom3_op_t fun,
  5998. int n_tasks,
  5999. void * userdata,
  6000. bool inplace) {
  6001. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6002. bool is_node = false;
  6003. if (!inplace && (a->grad || b->grad || c->grad)) {
  6004. is_node = true;
  6005. }
  6006. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6007. struct ggml_map_custom3_op_params params = {
  6008. /*.fun =*/ fun,
  6009. /*.n_tasks =*/ n_tasks,
  6010. /*.userdata =*/ userdata
  6011. };
  6012. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6013. result->op = GGML_OP_MAP_CUSTOM3;
  6014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6015. result->src[0] = a;
  6016. result->src[1] = b;
  6017. result->src[2] = c;
  6018. return result;
  6019. }
  6020. struct ggml_tensor * ggml_map_custom3(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. struct ggml_tensor * b,
  6024. struct ggml_tensor * c,
  6025. const ggml_custom3_op_t fun,
  6026. int n_tasks,
  6027. void * userdata) {
  6028. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6029. }
  6030. struct ggml_tensor * ggml_map_custom3_inplace(
  6031. struct ggml_context * ctx,
  6032. struct ggml_tensor * a,
  6033. struct ggml_tensor * b,
  6034. struct ggml_tensor * c,
  6035. const ggml_custom3_op_t fun,
  6036. int n_tasks,
  6037. void * userdata) {
  6038. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6039. }
  6040. // ggml_cross_entropy_loss
  6041. struct ggml_tensor * ggml_cross_entropy_loss(
  6042. struct ggml_context * ctx,
  6043. struct ggml_tensor * a,
  6044. struct ggml_tensor * b) {
  6045. GGML_ASSERT(ggml_are_same_shape(a, b));
  6046. bool is_node = false;
  6047. if (a->grad || b->grad) {
  6048. is_node = true;
  6049. }
  6050. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6051. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6053. result->src[0] = a;
  6054. result->src[1] = b;
  6055. return result;
  6056. }
  6057. // ggml_cross_entropy_loss_back
  6058. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. struct ggml_tensor * b,
  6062. struct ggml_tensor * c) {
  6063. GGML_ASSERT(ggml_are_same_shape(a, b));
  6064. GGML_ASSERT(ggml_is_scalar(c));
  6065. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6066. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6067. result->grad = NULL;
  6068. result->src[0] = a;
  6069. result->src[1] = b;
  6070. result->src[2] = c;
  6071. return result;
  6072. }
  6073. ////////////////////////////////////////////////////////////////////////////////
  6074. void ggml_set_param(
  6075. struct ggml_context * ctx,
  6076. struct ggml_tensor * tensor) {
  6077. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6078. GGML_ASSERT(tensor->grad == NULL);
  6079. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6080. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6081. }
  6082. // ggml_compute_forward_dup
  6083. static void ggml_compute_forward_dup_same_cont(
  6084. const struct ggml_compute_params * params,
  6085. struct ggml_tensor * dst) {
  6086. const struct ggml_tensor * src0 = dst->src[0];
  6087. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6088. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6089. GGML_ASSERT(src0->type == dst->type);
  6090. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6091. return;
  6092. }
  6093. const size_t nb00 = src0->nb[0];
  6094. const size_t nb0 = dst->nb[0];
  6095. const int ith = params->ith; // thread index
  6096. const int nth = params->nth; // number of threads
  6097. // parallelize by elements
  6098. const int ne = ggml_nelements(dst);
  6099. const int dr = (ne + nth - 1) / nth;
  6100. const int ie0 = dr * ith;
  6101. const int ie1 = MIN(ie0 + dr, ne);
  6102. if (ie0 < ie1) {
  6103. memcpy(
  6104. ((char *) dst->data + ie0*nb0),
  6105. ((char *) src0->data + ie0*nb00),
  6106. (ie1 - ie0) * ggml_type_size(src0->type));
  6107. }
  6108. }
  6109. static void ggml_compute_forward_dup_f16(
  6110. const struct ggml_compute_params * params,
  6111. struct ggml_tensor * dst) {
  6112. const struct ggml_tensor * src0 = dst->src[0];
  6113. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6114. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6115. return;
  6116. }
  6117. GGML_TENSOR_UNARY_OP_LOCALS
  6118. const int ith = params->ith; // thread index
  6119. const int nth = params->nth; // number of threads
  6120. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6121. ggml_compute_forward_dup_same_cont(params, dst);
  6122. return;
  6123. }
  6124. // parallelize by rows
  6125. const int nr = ne01;
  6126. // number of rows per thread
  6127. const int dr = (nr + nth - 1) / nth;
  6128. // row range for this thread
  6129. const int ir0 = dr * ith;
  6130. const int ir1 = MIN(ir0 + dr, nr);
  6131. if (src0->type == dst->type &&
  6132. ne00 == ne0 &&
  6133. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6134. // copy by rows
  6135. const size_t rs = ne00*nb00;
  6136. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6137. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6138. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6139. memcpy(
  6140. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6141. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6142. rs);
  6143. }
  6144. }
  6145. }
  6146. return;
  6147. }
  6148. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6149. if (ggml_is_contiguous(dst)) {
  6150. if (nb00 == sizeof(ggml_fp16_t)) {
  6151. if (dst->type == GGML_TYPE_F16) {
  6152. size_t id = 0;
  6153. const size_t rs = ne00 * nb00;
  6154. char * dst_ptr = (char *) dst->data;
  6155. for (int i03 = 0; i03 < ne03; i03++) {
  6156. for (int i02 = 0; i02 < ne02; i02++) {
  6157. id += rs * ir0;
  6158. for (int i01 = ir0; i01 < ir1; i01++) {
  6159. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6160. memcpy(dst_ptr + id, src0_ptr, rs);
  6161. id += rs;
  6162. }
  6163. id += rs * (ne01 - ir1);
  6164. }
  6165. }
  6166. } else if (dst->type == GGML_TYPE_F32) {
  6167. size_t id = 0;
  6168. float * dst_ptr = (float *) dst->data;
  6169. for (int i03 = 0; i03 < ne03; i03++) {
  6170. for (int i02 = 0; i02 < ne02; i02++) {
  6171. id += ne00 * ir0;
  6172. for (int i01 = ir0; i01 < ir1; i01++) {
  6173. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6174. for (int i00 = 0; i00 < ne00; i00++) {
  6175. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6176. id++;
  6177. }
  6178. }
  6179. id += ne00 * (ne01 - ir1);
  6180. }
  6181. }
  6182. } else if (type_traits[dst->type].from_float) {
  6183. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6184. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6185. size_t id = 0;
  6186. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6187. char * dst_ptr = (char *) dst->data;
  6188. for (int i03 = 0; i03 < ne03; i03++) {
  6189. for (int i02 = 0; i02 < ne02; i02++) {
  6190. id += rs * ir0;
  6191. for (int i01 = ir0; i01 < ir1; i01++) {
  6192. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6193. for (int i00 = 0; i00 < ne00; i00++) {
  6194. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6195. }
  6196. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6197. id += rs;
  6198. }
  6199. id += rs * (ne01 - ir1);
  6200. }
  6201. }
  6202. } else {
  6203. GGML_ASSERT(false); // TODO: implement
  6204. }
  6205. } else {
  6206. //printf("%s: this is not optimal - fix me\n", __func__);
  6207. if (dst->type == GGML_TYPE_F32) {
  6208. size_t id = 0;
  6209. float * dst_ptr = (float *) dst->data;
  6210. for (int i03 = 0; i03 < ne03; i03++) {
  6211. for (int i02 = 0; i02 < ne02; i02++) {
  6212. id += ne00 * ir0;
  6213. for (int i01 = ir0; i01 < ir1; i01++) {
  6214. for (int i00 = 0; i00 < ne00; i00++) {
  6215. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6216. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6217. id++;
  6218. }
  6219. }
  6220. id += ne00 * (ne01 - ir1);
  6221. }
  6222. }
  6223. } else if (dst->type == GGML_TYPE_F16) {
  6224. size_t id = 0;
  6225. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6226. for (int i03 = 0; i03 < ne03; i03++) {
  6227. for (int i02 = 0; i02 < ne02; i02++) {
  6228. id += ne00 * ir0;
  6229. for (int i01 = ir0; i01 < ir1; i01++) {
  6230. for (int i00 = 0; i00 < ne00; i00++) {
  6231. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6232. dst_ptr[id] = *src0_ptr;
  6233. id++;
  6234. }
  6235. }
  6236. id += ne00 * (ne01 - ir1);
  6237. }
  6238. }
  6239. } else {
  6240. GGML_ASSERT(false); // TODO: implement
  6241. }
  6242. }
  6243. return;
  6244. }
  6245. // dst counters
  6246. int64_t i10 = 0;
  6247. int64_t i11 = 0;
  6248. int64_t i12 = 0;
  6249. int64_t i13 = 0;
  6250. if (dst->type == GGML_TYPE_F16) {
  6251. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6252. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6253. i10 += ne00 * ir0;
  6254. while (i10 >= ne0) {
  6255. i10 -= ne0;
  6256. if (++i11 == ne1) {
  6257. i11 = 0;
  6258. if (++i12 == ne2) {
  6259. i12 = 0;
  6260. if (++i13 == ne3) {
  6261. i13 = 0;
  6262. }
  6263. }
  6264. }
  6265. }
  6266. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6267. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6268. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6269. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6270. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6271. if (++i10 == ne00) {
  6272. i10 = 0;
  6273. if (++i11 == ne01) {
  6274. i11 = 0;
  6275. if (++i12 == ne02) {
  6276. i12 = 0;
  6277. if (++i13 == ne03) {
  6278. i13 = 0;
  6279. }
  6280. }
  6281. }
  6282. }
  6283. }
  6284. }
  6285. i10 += ne00 * (ne01 - ir1);
  6286. while (i10 >= ne0) {
  6287. i10 -= ne0;
  6288. if (++i11 == ne1) {
  6289. i11 = 0;
  6290. if (++i12 == ne2) {
  6291. i12 = 0;
  6292. if (++i13 == ne3) {
  6293. i13 = 0;
  6294. }
  6295. }
  6296. }
  6297. }
  6298. }
  6299. }
  6300. } else if (dst->type == GGML_TYPE_F32) {
  6301. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6302. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6303. i10 += ne00 * ir0;
  6304. while (i10 >= ne0) {
  6305. i10 -= ne0;
  6306. if (++i11 == ne1) {
  6307. i11 = 0;
  6308. if (++i12 == ne2) {
  6309. i12 = 0;
  6310. if (++i13 == ne3) {
  6311. i13 = 0;
  6312. }
  6313. }
  6314. }
  6315. }
  6316. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6317. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6318. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6319. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6320. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6321. if (++i10 == ne0) {
  6322. i10 = 0;
  6323. if (++i11 == ne1) {
  6324. i11 = 0;
  6325. if (++i12 == ne2) {
  6326. i12 = 0;
  6327. if (++i13 == ne3) {
  6328. i13 = 0;
  6329. }
  6330. }
  6331. }
  6332. }
  6333. }
  6334. }
  6335. i10 += ne00 * (ne01 - ir1);
  6336. while (i10 >= ne0) {
  6337. i10 -= ne0;
  6338. if (++i11 == ne1) {
  6339. i11 = 0;
  6340. if (++i12 == ne2) {
  6341. i12 = 0;
  6342. if (++i13 == ne3) {
  6343. i13 = 0;
  6344. }
  6345. }
  6346. }
  6347. }
  6348. }
  6349. }
  6350. } else {
  6351. GGML_ASSERT(false); // TODO: implement
  6352. }
  6353. }
  6354. static void ggml_compute_forward_dup_bf16(
  6355. const struct ggml_compute_params * params,
  6356. struct ggml_tensor * dst) {
  6357. const struct ggml_tensor * src0 = dst->src[0];
  6358. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6359. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6360. return;
  6361. }
  6362. GGML_TENSOR_UNARY_OP_LOCALS
  6363. const int ith = params->ith; // thread index
  6364. const int nth = params->nth; // number of threads
  6365. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6366. ggml_compute_forward_dup_same_cont(params, dst);
  6367. return;
  6368. }
  6369. // parallelize by rows
  6370. const int nr = ne01;
  6371. // number of rows per thread
  6372. const int dr = (nr + nth - 1) / nth;
  6373. // row range for this thread
  6374. const int ir0 = dr * ith;
  6375. const int ir1 = MIN(ir0 + dr, nr);
  6376. if (src0->type == dst->type &&
  6377. ne00 == ne0 &&
  6378. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6379. // copy by rows
  6380. const size_t rs = ne00*nb00;
  6381. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6382. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6383. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6384. memcpy(
  6385. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6386. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6387. rs);
  6388. }
  6389. }
  6390. }
  6391. return;
  6392. }
  6393. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6394. if (ggml_is_contiguous(dst)) {
  6395. if (nb00 == sizeof(ggml_bf16_t)) {
  6396. if (dst->type == GGML_TYPE_BF16) {
  6397. size_t id = 0;
  6398. const size_t rs = ne00 * nb00;
  6399. char * dst_ptr = (char *) dst->data;
  6400. for (int i03 = 0; i03 < ne03; i03++) {
  6401. for (int i02 = 0; i02 < ne02; i02++) {
  6402. id += rs * ir0;
  6403. for (int i01 = ir0; i01 < ir1; i01++) {
  6404. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6405. memcpy(dst_ptr + id, src0_ptr, rs);
  6406. id += rs;
  6407. }
  6408. id += rs * (ne01 - ir1);
  6409. }
  6410. }
  6411. } else if (dst->type == GGML_TYPE_F16) {
  6412. size_t id = 0;
  6413. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6414. for (int i03 = 0; i03 < ne03; i03++) {
  6415. for (int i02 = 0; i02 < ne02; i02++) {
  6416. id += ne00 * ir0;
  6417. for (int i01 = ir0; i01 < ir1; i01++) {
  6418. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6419. for (int i00 = 0; i00 < ne00; i00++) {
  6420. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6421. id++;
  6422. }
  6423. }
  6424. id += ne00 * (ne01 - ir1);
  6425. }
  6426. }
  6427. } else if (dst->type == GGML_TYPE_F32) {
  6428. size_t id = 0;
  6429. float * dst_ptr = (float *) dst->data;
  6430. for (int i03 = 0; i03 < ne03; i03++) {
  6431. for (int i02 = 0; i02 < ne02; i02++) {
  6432. id += ne00 * ir0;
  6433. for (int i01 = ir0; i01 < ir1; i01++) {
  6434. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6435. for (int i00 = 0; i00 < ne00; i00++) {
  6436. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6437. id++;
  6438. }
  6439. }
  6440. id += ne00 * (ne01 - ir1);
  6441. }
  6442. }
  6443. } else if (type_traits[dst->type].from_float) {
  6444. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6445. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6446. size_t id = 0;
  6447. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6448. char * dst_ptr = (char *) dst->data;
  6449. for (int i03 = 0; i03 < ne03; i03++) {
  6450. for (int i02 = 0; i02 < ne02; i02++) {
  6451. id += rs * ir0;
  6452. for (int i01 = ir0; i01 < ir1; i01++) {
  6453. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6454. for (int i00 = 0; i00 < ne00; i00++) {
  6455. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6456. }
  6457. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6458. id += rs;
  6459. }
  6460. id += rs * (ne01 - ir1);
  6461. }
  6462. }
  6463. } else {
  6464. GGML_ASSERT(false); // TODO: implement
  6465. }
  6466. } else {
  6467. //printf("%s: this is not optimal - fix me\n", __func__);
  6468. if (dst->type == GGML_TYPE_F32) {
  6469. size_t id = 0;
  6470. float * dst_ptr = (float *) dst->data;
  6471. for (int i03 = 0; i03 < ne03; i03++) {
  6472. for (int i02 = 0; i02 < ne02; i02++) {
  6473. id += ne00 * ir0;
  6474. for (int i01 = ir0; i01 < ir1; i01++) {
  6475. for (int i00 = 0; i00 < ne00; i00++) {
  6476. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6477. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6478. id++;
  6479. }
  6480. }
  6481. id += ne00 * (ne01 - ir1);
  6482. }
  6483. }
  6484. } else if (dst->type == GGML_TYPE_BF16) {
  6485. size_t id = 0;
  6486. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6487. for (int i03 = 0; i03 < ne03; i03++) {
  6488. for (int i02 = 0; i02 < ne02; i02++) {
  6489. id += ne00 * ir0;
  6490. for (int i01 = ir0; i01 < ir1; i01++) {
  6491. for (int i00 = 0; i00 < ne00; i00++) {
  6492. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6493. dst_ptr[id] = *src0_ptr;
  6494. id++;
  6495. }
  6496. }
  6497. id += ne00 * (ne01 - ir1);
  6498. }
  6499. }
  6500. } else if (dst->type == GGML_TYPE_F16) {
  6501. size_t id = 0;
  6502. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6503. for (int i03 = 0; i03 < ne03; i03++) {
  6504. for (int i02 = 0; i02 < ne02; i02++) {
  6505. id += ne00 * ir0;
  6506. for (int i01 = ir0; i01 < ir1; i01++) {
  6507. for (int i00 = 0; i00 < ne00; i00++) {
  6508. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6509. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6510. id++;
  6511. }
  6512. }
  6513. id += ne00 * (ne01 - ir1);
  6514. }
  6515. }
  6516. } else {
  6517. GGML_ASSERT(false); // TODO: implement
  6518. }
  6519. }
  6520. return;
  6521. }
  6522. // dst counters
  6523. int64_t i10 = 0;
  6524. int64_t i11 = 0;
  6525. int64_t i12 = 0;
  6526. int64_t i13 = 0;
  6527. if (dst->type == GGML_TYPE_BF16) {
  6528. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6529. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6530. i10 += ne00 * ir0;
  6531. while (i10 >= ne0) {
  6532. i10 -= ne0;
  6533. if (++i11 == ne1) {
  6534. i11 = 0;
  6535. if (++i12 == ne2) {
  6536. i12 = 0;
  6537. if (++i13 == ne3) {
  6538. i13 = 0;
  6539. }
  6540. }
  6541. }
  6542. }
  6543. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6544. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6545. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6546. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6547. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6548. if (++i10 == ne00) {
  6549. i10 = 0;
  6550. if (++i11 == ne01) {
  6551. i11 = 0;
  6552. if (++i12 == ne02) {
  6553. i12 = 0;
  6554. if (++i13 == ne03) {
  6555. i13 = 0;
  6556. }
  6557. }
  6558. }
  6559. }
  6560. }
  6561. }
  6562. i10 += ne00 * (ne01 - ir1);
  6563. while (i10 >= ne0) {
  6564. i10 -= ne0;
  6565. if (++i11 == ne1) {
  6566. i11 = 0;
  6567. if (++i12 == ne2) {
  6568. i12 = 0;
  6569. if (++i13 == ne3) {
  6570. i13 = 0;
  6571. }
  6572. }
  6573. }
  6574. }
  6575. }
  6576. }
  6577. } else if (dst->type == GGML_TYPE_F16) {
  6578. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6579. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6580. i10 += ne00 * ir0;
  6581. while (i10 >= ne0) {
  6582. i10 -= ne0;
  6583. if (++i11 == ne1) {
  6584. i11 = 0;
  6585. if (++i12 == ne2) {
  6586. i12 = 0;
  6587. if (++i13 == ne3) {
  6588. i13 = 0;
  6589. }
  6590. }
  6591. }
  6592. }
  6593. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6594. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6595. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6596. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6597. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6598. if (++i10 == ne0) {
  6599. i10 = 0;
  6600. if (++i11 == ne1) {
  6601. i11 = 0;
  6602. if (++i12 == ne2) {
  6603. i12 = 0;
  6604. if (++i13 == ne3) {
  6605. i13 = 0;
  6606. }
  6607. }
  6608. }
  6609. }
  6610. }
  6611. }
  6612. i10 += ne00 * (ne01 - ir1);
  6613. while (i10 >= ne0) {
  6614. i10 -= ne0;
  6615. if (++i11 == ne1) {
  6616. i11 = 0;
  6617. if (++i12 == ne2) {
  6618. i12 = 0;
  6619. if (++i13 == ne3) {
  6620. i13 = 0;
  6621. }
  6622. }
  6623. }
  6624. }
  6625. }
  6626. }
  6627. } else if (dst->type == GGML_TYPE_F32) {
  6628. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6629. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6630. i10 += ne00 * ir0;
  6631. while (i10 >= ne0) {
  6632. i10 -= ne0;
  6633. if (++i11 == ne1) {
  6634. i11 = 0;
  6635. if (++i12 == ne2) {
  6636. i12 = 0;
  6637. if (++i13 == ne3) {
  6638. i13 = 0;
  6639. }
  6640. }
  6641. }
  6642. }
  6643. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6644. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6645. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6646. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6647. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6648. if (++i10 == ne0) {
  6649. i10 = 0;
  6650. if (++i11 == ne1) {
  6651. i11 = 0;
  6652. if (++i12 == ne2) {
  6653. i12 = 0;
  6654. if (++i13 == ne3) {
  6655. i13 = 0;
  6656. }
  6657. }
  6658. }
  6659. }
  6660. }
  6661. }
  6662. i10 += ne00 * (ne01 - ir1);
  6663. while (i10 >= ne0) {
  6664. i10 -= ne0;
  6665. if (++i11 == ne1) {
  6666. i11 = 0;
  6667. if (++i12 == ne2) {
  6668. i12 = 0;
  6669. if (++i13 == ne3) {
  6670. i13 = 0;
  6671. }
  6672. }
  6673. }
  6674. }
  6675. }
  6676. }
  6677. } else {
  6678. GGML_ASSERT(false); // TODO: implement
  6679. }
  6680. }
  6681. static void ggml_compute_forward_dup_f32(
  6682. const struct ggml_compute_params * params,
  6683. struct ggml_tensor * dst) {
  6684. const struct ggml_tensor * src0 = dst->src[0];
  6685. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6686. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6687. return;
  6688. }
  6689. GGML_TENSOR_UNARY_OP_LOCALS
  6690. const int ith = params->ith; // thread index
  6691. const int nth = params->nth; // number of threads
  6692. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6693. ggml_compute_forward_dup_same_cont(params, dst);
  6694. return;
  6695. }
  6696. // parallelize by rows
  6697. const int nr = ne01;
  6698. // number of rows per thread
  6699. const int dr = (nr + nth - 1) / nth;
  6700. // row range for this thread
  6701. const int ir0 = dr * ith;
  6702. const int ir1 = MIN(ir0 + dr, nr);
  6703. if (src0->type == dst->type &&
  6704. ne00 == ne0 &&
  6705. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6706. // copy by rows
  6707. const size_t rs = ne00*nb00;
  6708. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6709. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6710. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6711. memcpy(
  6712. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6713. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6714. rs);
  6715. }
  6716. }
  6717. }
  6718. return;
  6719. }
  6720. if (ggml_is_contiguous(dst)) {
  6721. // TODO: simplify
  6722. if (nb00 == sizeof(float)) {
  6723. if (dst->type == GGML_TYPE_F32) {
  6724. size_t id = 0;
  6725. const size_t rs = ne00 * nb00;
  6726. char * dst_ptr = (char *) dst->data;
  6727. for (int i03 = 0; i03 < ne03; i03++) {
  6728. for (int i02 = 0; i02 < ne02; i02++) {
  6729. id += rs * ir0;
  6730. for (int i01 = ir0; i01 < ir1; i01++) {
  6731. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6732. memcpy(dst_ptr + id, src0_ptr, rs);
  6733. id += rs;
  6734. }
  6735. id += rs * (ne01 - ir1);
  6736. }
  6737. }
  6738. } else if (type_traits[dst->type].from_float) {
  6739. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6740. size_t id = 0;
  6741. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6742. char * dst_ptr = (char *) dst->data;
  6743. for (int i03 = 0; i03 < ne03; i03++) {
  6744. for (int i02 = 0; i02 < ne02; i02++) {
  6745. id += rs * ir0;
  6746. for (int i01 = ir0; i01 < ir1; i01++) {
  6747. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6748. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6749. id += rs;
  6750. }
  6751. id += rs * (ne01 - ir1);
  6752. }
  6753. }
  6754. } else {
  6755. GGML_ASSERT(false); // TODO: implement
  6756. }
  6757. } else {
  6758. //printf("%s: this is not optimal - fix me\n", __func__);
  6759. if (dst->type == GGML_TYPE_F32) {
  6760. size_t id = 0;
  6761. float * dst_ptr = (float *) dst->data;
  6762. for (int i03 = 0; i03 < ne03; i03++) {
  6763. for (int i02 = 0; i02 < ne02; i02++) {
  6764. id += ne00 * ir0;
  6765. for (int i01 = ir0; i01 < ir1; i01++) {
  6766. for (int i00 = 0; i00 < ne00; i00++) {
  6767. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6768. dst_ptr[id] = *src0_ptr;
  6769. id++;
  6770. }
  6771. }
  6772. id += ne00 * (ne01 - ir1);
  6773. }
  6774. }
  6775. } else if (dst->type == GGML_TYPE_F16) {
  6776. size_t id = 0;
  6777. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6778. for (int i03 = 0; i03 < ne03; i03++) {
  6779. for (int i02 = 0; i02 < ne02; i02++) {
  6780. id += ne00 * ir0;
  6781. for (int i01 = ir0; i01 < ir1; i01++) {
  6782. for (int i00 = 0; i00 < ne00; i00++) {
  6783. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6784. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6785. id++;
  6786. }
  6787. }
  6788. id += ne00 * (ne01 - ir1);
  6789. }
  6790. }
  6791. } else if (dst->type == GGML_TYPE_BF16) {
  6792. size_t id = 0;
  6793. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6794. for (int i03 = 0; i03 < ne03; i03++) {
  6795. for (int i02 = 0; i02 < ne02; i02++) {
  6796. id += ne00 * ir0;
  6797. for (int i01 = ir0; i01 < ir1; i01++) {
  6798. for (int i00 = 0; i00 < ne00; i00++) {
  6799. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6800. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  6801. id++;
  6802. }
  6803. }
  6804. id += ne00 * (ne01 - ir1);
  6805. }
  6806. }
  6807. } else {
  6808. GGML_ASSERT(false); // TODO: implement
  6809. }
  6810. }
  6811. return;
  6812. }
  6813. // dst counters
  6814. int64_t i10 = 0;
  6815. int64_t i11 = 0;
  6816. int64_t i12 = 0;
  6817. int64_t i13 = 0;
  6818. if (dst->type == GGML_TYPE_F32) {
  6819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6821. i10 += ne00 * ir0;
  6822. while (i10 >= ne0) {
  6823. i10 -= ne0;
  6824. if (++i11 == ne1) {
  6825. i11 = 0;
  6826. if (++i12 == ne2) {
  6827. i12 = 0;
  6828. if (++i13 == ne3) {
  6829. i13 = 0;
  6830. }
  6831. }
  6832. }
  6833. }
  6834. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6836. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6837. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6838. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6839. if (++i10 == ne0) {
  6840. i10 = 0;
  6841. if (++i11 == ne1) {
  6842. i11 = 0;
  6843. if (++i12 == ne2) {
  6844. i12 = 0;
  6845. if (++i13 == ne3) {
  6846. i13 = 0;
  6847. }
  6848. }
  6849. }
  6850. }
  6851. }
  6852. }
  6853. i10 += ne00 * (ne01 - ir1);
  6854. while (i10 >= ne0) {
  6855. i10 -= ne0;
  6856. if (++i11 == ne1) {
  6857. i11 = 0;
  6858. if (++i12 == ne2) {
  6859. i12 = 0;
  6860. if (++i13 == ne3) {
  6861. i13 = 0;
  6862. }
  6863. }
  6864. }
  6865. }
  6866. }
  6867. }
  6868. } else if (dst->type == GGML_TYPE_F16) {
  6869. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6870. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6871. i10 += ne00 * ir0;
  6872. while (i10 >= ne0) {
  6873. i10 -= ne0;
  6874. if (++i11 == ne1) {
  6875. i11 = 0;
  6876. if (++i12 == ne2) {
  6877. i12 = 0;
  6878. if (++i13 == ne3) {
  6879. i13 = 0;
  6880. }
  6881. }
  6882. }
  6883. }
  6884. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6885. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6886. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6887. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6888. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6889. if (++i10 == ne0) {
  6890. i10 = 0;
  6891. if (++i11 == ne1) {
  6892. i11 = 0;
  6893. if (++i12 == ne2) {
  6894. i12 = 0;
  6895. if (++i13 == ne3) {
  6896. i13 = 0;
  6897. }
  6898. }
  6899. }
  6900. }
  6901. }
  6902. }
  6903. i10 += ne00 * (ne01 - ir1);
  6904. while (i10 >= ne0) {
  6905. i10 -= ne0;
  6906. if (++i11 == ne1) {
  6907. i11 = 0;
  6908. if (++i12 == ne2) {
  6909. i12 = 0;
  6910. if (++i13 == ne3) {
  6911. i13 = 0;
  6912. }
  6913. }
  6914. }
  6915. }
  6916. }
  6917. }
  6918. } else if (dst->type == GGML_TYPE_BF16) {
  6919. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6920. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6921. i10 += ne00 * ir0;
  6922. while (i10 >= ne0) {
  6923. i10 -= ne0;
  6924. if (++i11 == ne1) {
  6925. i11 = 0;
  6926. if (++i12 == ne2) {
  6927. i12 = 0;
  6928. if (++i13 == ne3) {
  6929. i13 = 0;
  6930. }
  6931. }
  6932. }
  6933. }
  6934. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6935. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6936. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6937. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6938. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  6939. if (++i10 == ne0) {
  6940. i10 = 0;
  6941. if (++i11 == ne1) {
  6942. i11 = 0;
  6943. if (++i12 == ne2) {
  6944. i12 = 0;
  6945. if (++i13 == ne3) {
  6946. i13 = 0;
  6947. }
  6948. }
  6949. }
  6950. }
  6951. }
  6952. }
  6953. i10 += ne00 * (ne01 - ir1);
  6954. while (i10 >= ne0) {
  6955. i10 -= ne0;
  6956. if (++i11 == ne1) {
  6957. i11 = 0;
  6958. if (++i12 == ne2) {
  6959. i12 = 0;
  6960. if (++i13 == ne3) {
  6961. i13 = 0;
  6962. }
  6963. }
  6964. }
  6965. }
  6966. }
  6967. }
  6968. } else {
  6969. GGML_ASSERT(false); // TODO: implement
  6970. }
  6971. }
  6972. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6973. static void ggml_compute_forward_dup_bytes(
  6974. const struct ggml_compute_params * params,
  6975. struct ggml_tensor * dst) {
  6976. const struct ggml_tensor * src0 = dst->src[0];
  6977. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6978. GGML_ASSERT(src0->type == dst->type);
  6979. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6980. return;
  6981. }
  6982. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6983. ggml_compute_forward_dup_same_cont(params, dst);
  6984. return;
  6985. }
  6986. GGML_TENSOR_UNARY_OP_LOCALS;
  6987. const size_t type_size = ggml_type_size(src0->type);
  6988. const int ith = params->ith; // thread index
  6989. const int nth = params->nth; // number of threads
  6990. // parallelize by rows
  6991. const int nr = ne01;
  6992. // number of rows per thread
  6993. const int dr = (nr + nth - 1) / nth;
  6994. // row range for this thread
  6995. const int ir0 = dr * ith;
  6996. const int ir1 = MIN(ir0 + dr, nr);
  6997. if (src0->type == dst->type &&
  6998. ne00 == ne0 &&
  6999. nb00 == type_size && nb0 == type_size) {
  7000. // copy by rows
  7001. const size_t rs = ne00 * type_size;
  7002. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7003. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7004. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7005. memcpy(
  7006. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7007. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7008. rs);
  7009. }
  7010. }
  7011. }
  7012. return;
  7013. }
  7014. if (ggml_is_contiguous(dst)) {
  7015. size_t id = 0;
  7016. char * dst_ptr = (char *) dst->data;
  7017. const size_t rs = ne00 * type_size;
  7018. if (nb00 == type_size) {
  7019. // src0 is contigous on first dimension, copy by rows
  7020. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7021. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7022. id += rs * ir0;
  7023. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7024. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7025. memcpy(dst_ptr + id, src0_ptr, rs);
  7026. id += rs;
  7027. }
  7028. id += rs * (ne01 - ir1);
  7029. }
  7030. }
  7031. } else {
  7032. //printf("%s: this is not optimal - fix me\n", __func__);
  7033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7035. id += rs * ir0;
  7036. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7037. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7038. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7039. memcpy(dst_ptr + id, src0_ptr, type_size);
  7040. id += type_size;
  7041. }
  7042. }
  7043. id += rs * (ne01 - ir1);
  7044. }
  7045. }
  7046. }
  7047. return;
  7048. }
  7049. // dst counters
  7050. int64_t i10 = 0;
  7051. int64_t i11 = 0;
  7052. int64_t i12 = 0;
  7053. int64_t i13 = 0;
  7054. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7055. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7056. i10 += ne00 * ir0;
  7057. while (i10 >= ne0) {
  7058. i10 -= ne0;
  7059. if (++i11 == ne1) {
  7060. i11 = 0;
  7061. if (++i12 == ne2) {
  7062. i12 = 0;
  7063. if (++i13 == ne3) {
  7064. i13 = 0;
  7065. }
  7066. }
  7067. }
  7068. }
  7069. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7070. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7071. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7072. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7073. memcpy(dst_ptr, src0_ptr, type_size);
  7074. if (++i10 == ne0) {
  7075. i10 = 0;
  7076. if (++i11 == ne1) {
  7077. i11 = 0;
  7078. if (++i12 == ne2) {
  7079. i12 = 0;
  7080. if (++i13 == ne3) {
  7081. i13 = 0;
  7082. }
  7083. }
  7084. }
  7085. }
  7086. }
  7087. }
  7088. i10 += ne00 * (ne01 - ir1);
  7089. while (i10 >= ne0) {
  7090. i10 -= ne0;
  7091. if (++i11 == ne1) {
  7092. i11 = 0;
  7093. if (++i12 == ne2) {
  7094. i12 = 0;
  7095. if (++i13 == ne3) {
  7096. i13 = 0;
  7097. }
  7098. }
  7099. }
  7100. }
  7101. }
  7102. }
  7103. }
  7104. static void ggml_compute_forward_dup(
  7105. const struct ggml_compute_params * params,
  7106. struct ggml_tensor * dst) {
  7107. const struct ggml_tensor * src0 = dst->src[0];
  7108. if (src0->type == dst->type) {
  7109. ggml_compute_forward_dup_bytes(params, dst);
  7110. return;
  7111. }
  7112. switch (src0->type) {
  7113. case GGML_TYPE_F16:
  7114. {
  7115. ggml_compute_forward_dup_f16(params, dst);
  7116. } break;
  7117. case GGML_TYPE_BF16:
  7118. {
  7119. ggml_compute_forward_dup_bf16(params, dst);
  7120. } break;
  7121. case GGML_TYPE_F32:
  7122. {
  7123. ggml_compute_forward_dup_f32(params, dst);
  7124. } break;
  7125. default:
  7126. {
  7127. GGML_ASSERT(false);
  7128. } break;
  7129. }
  7130. }
  7131. // ggml_compute_forward_add
  7132. static void ggml_compute_forward_add_f32(
  7133. const struct ggml_compute_params * params,
  7134. struct ggml_tensor * dst) {
  7135. const struct ggml_tensor * src0 = dst->src[0];
  7136. const struct ggml_tensor * src1 = dst->src[1];
  7137. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7138. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7139. return;
  7140. }
  7141. const int ith = params->ith;
  7142. const int nth = params->nth;
  7143. #ifdef GGML_USE_CLBLAST
  7144. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7145. // TODO: OpenCL kernel support full broadcast
  7146. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7147. if (ith == 0) {
  7148. ggml_cl_add(src0, src1, dst);
  7149. }
  7150. return;
  7151. }
  7152. #endif
  7153. const int nr = ggml_nrows(src0);
  7154. GGML_TENSOR_BINARY_OP_LOCALS
  7155. GGML_ASSERT( nb0 == sizeof(float));
  7156. GGML_ASSERT(nb00 == sizeof(float));
  7157. // rows per thread
  7158. const int dr = (nr + nth - 1)/nth;
  7159. // row range for this thread
  7160. const int ir0 = dr*ith;
  7161. const int ir1 = MIN(ir0 + dr, nr);
  7162. if (nb10 == sizeof(float)) {
  7163. for (int ir = ir0; ir < ir1; ++ir) {
  7164. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7165. const int64_t i03 = ir/(ne02*ne01);
  7166. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7167. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7168. const int64_t i13 = i03 % ne13;
  7169. const int64_t i12 = i02 % ne12;
  7170. const int64_t i11 = i01 % ne11;
  7171. const int64_t nr0 = ne00 / ne10;
  7172. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7173. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7174. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7175. for (int64_t r = 0; r < nr0; ++r) {
  7176. #ifdef GGML_USE_ACCELERATE
  7177. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7178. #else
  7179. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7180. #endif
  7181. }
  7182. }
  7183. } else {
  7184. // src1 is not contiguous
  7185. for (int ir = ir0; ir < ir1; ++ir) {
  7186. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7187. const int64_t i03 = ir/(ne02*ne01);
  7188. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7189. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7190. const int64_t i13 = i03 % ne13;
  7191. const int64_t i12 = i02 % ne12;
  7192. const int64_t i11 = i01 % ne11;
  7193. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7194. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7195. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7196. const int64_t i10 = i0 % ne10;
  7197. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7198. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7199. }
  7200. }
  7201. }
  7202. }
  7203. static void ggml_compute_forward_add_f16_f32(
  7204. const struct ggml_compute_params * params,
  7205. struct ggml_tensor * dst) {
  7206. const struct ggml_tensor * src0 = dst->src[0];
  7207. const struct ggml_tensor * src1 = dst->src[1];
  7208. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7210. return;
  7211. }
  7212. const int ith = params->ith;
  7213. const int nth = params->nth;
  7214. const int nr = ggml_nrows(src0);
  7215. GGML_TENSOR_BINARY_OP_LOCALS
  7216. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7217. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7218. if (dst->type == GGML_TYPE_F32) {
  7219. GGML_ASSERT( nb0 == sizeof(float));
  7220. }
  7221. else {
  7222. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7223. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7224. }
  7225. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7226. // rows per thread
  7227. const int dr = (nr + nth - 1)/nth;
  7228. // row range for this thread
  7229. const int ir0 = dr*ith;
  7230. const int ir1 = MIN(ir0 + dr, nr);
  7231. if (nb10 == sizeof(float)) {
  7232. if (dst->type == GGML_TYPE_F16) {
  7233. for (int ir = ir0; ir < ir1; ++ir) {
  7234. // src0, src1 and dst are same shape => same indices
  7235. const int i3 = ir/(ne2*ne1);
  7236. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7237. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7238. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7239. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7240. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7241. for (int i = 0; i < ne0; i++) {
  7242. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7243. }
  7244. }
  7245. } else {
  7246. for (int ir = ir0; ir < ir1; ++ir) {
  7247. // src0, src1 and dst are same shape => same indices
  7248. const int i3 = ir/(ne2*ne1);
  7249. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7250. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7251. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7252. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7253. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7254. for (int i = 0; i < ne0; i++) {
  7255. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7256. }
  7257. }
  7258. }
  7259. }
  7260. else {
  7261. // src1 is not contiguous
  7262. GGML_ASSERT(false);
  7263. }
  7264. }
  7265. static void ggml_compute_forward_add_bf16_f32(
  7266. const struct ggml_compute_params * params,
  7267. struct ggml_tensor * dst) {
  7268. const struct ggml_tensor * src0 = dst->src[0];
  7269. const struct ggml_tensor * src1 = dst->src[1];
  7270. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7271. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7272. return;
  7273. }
  7274. const int ith = params->ith;
  7275. const int nth = params->nth;
  7276. const int nr = ggml_nrows(src0);
  7277. GGML_TENSOR_BINARY_OP_LOCALS
  7278. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7279. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7280. if (dst->type == GGML_TYPE_F32) {
  7281. GGML_ASSERT( nb0 == sizeof(float));
  7282. }
  7283. else {
  7284. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7285. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7286. }
  7287. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7288. // rows per thread
  7289. const int dr = (nr + nth - 1)/nth;
  7290. // row range for this thread
  7291. const int ir0 = dr*ith;
  7292. const int ir1 = MIN(ir0 + dr, nr);
  7293. if (nb10 == sizeof(float)) {
  7294. if (dst->type == GGML_TYPE_BF16) {
  7295. for (int ir = ir0; ir < ir1; ++ir) {
  7296. // src0, src1 and dst are same shape => same indices
  7297. const int i3 = ir/(ne2*ne1);
  7298. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7299. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7300. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7301. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7302. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7303. for (int i = 0; i < ne0; i++) {
  7304. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7305. }
  7306. }
  7307. } else {
  7308. for (int ir = ir0; ir < ir1; ++ir) {
  7309. // src0, src1 and dst are same shape => same indices
  7310. const int i3 = ir/(ne2*ne1);
  7311. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7312. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7313. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7314. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7315. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7316. for (int i = 0; i < ne0; i++) {
  7317. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7318. }
  7319. }
  7320. }
  7321. }
  7322. else {
  7323. // src1 is not contiguous
  7324. GGML_ASSERT(false);
  7325. }
  7326. }
  7327. static void ggml_compute_forward_add_f16_f16(
  7328. const struct ggml_compute_params * params,
  7329. struct ggml_tensor * dst) {
  7330. const struct ggml_tensor * src0 = dst->src[0];
  7331. const struct ggml_tensor * src1 = dst->src[1];
  7332. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7333. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7334. return;
  7335. }
  7336. const int ith = params->ith;
  7337. const int nth = params->nth;
  7338. const int nr = ggml_nrows(src0);
  7339. GGML_TENSOR_BINARY_OP_LOCALS
  7340. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7341. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7342. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7343. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7344. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7345. // rows per thread
  7346. const int dr = (nr + nth - 1)/nth;
  7347. // row range for this thread
  7348. const int ir0 = dr*ith;
  7349. const int ir1 = MIN(ir0 + dr, nr);
  7350. if (nb10 == sizeof(ggml_fp16_t)) {
  7351. for (int ir = ir0; ir < ir1; ++ir) {
  7352. // src0, src1 and dst are same shape => same indices
  7353. const int i3 = ir/(ne2*ne1);
  7354. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7355. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7356. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7357. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7358. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7359. for (int i = 0; i < ne0; i++) {
  7360. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7361. }
  7362. }
  7363. }
  7364. else {
  7365. // src1 is not contiguous
  7366. GGML_ASSERT(false);
  7367. }
  7368. }
  7369. static void ggml_compute_forward_add_bf16_bf16(
  7370. const struct ggml_compute_params * params,
  7371. struct ggml_tensor * dst) {
  7372. const struct ggml_tensor * src0 = dst->src[0];
  7373. const struct ggml_tensor * src1 = dst->src[1];
  7374. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7375. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7376. return;
  7377. }
  7378. const int ith = params->ith;
  7379. const int nth = params->nth;
  7380. const int nr = ggml_nrows(src0);
  7381. GGML_TENSOR_BINARY_OP_LOCALS
  7382. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7383. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7384. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7385. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7386. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7387. // rows per thread
  7388. const int dr = (nr + nth - 1)/nth;
  7389. // row range for this thread
  7390. const int ir0 = dr*ith;
  7391. const int ir1 = MIN(ir0 + dr, nr);
  7392. if (nb10 == sizeof(ggml_bf16_t)) {
  7393. for (int ir = ir0; ir < ir1; ++ir) {
  7394. // src0, src1 and dst are same shape => same indices
  7395. const int i3 = ir/(ne2*ne1);
  7396. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7397. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7398. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7399. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7400. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7401. for (int i = 0; i < ne0; i++) {
  7402. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7403. }
  7404. }
  7405. }
  7406. else {
  7407. // src1 is not contiguous
  7408. GGML_ASSERT(false);
  7409. }
  7410. }
  7411. static void ggml_compute_forward_add_q_f32(
  7412. const struct ggml_compute_params * params,
  7413. struct ggml_tensor * dst) {
  7414. const struct ggml_tensor * src0 = dst->src[0];
  7415. const struct ggml_tensor * src1 = dst->src[1];
  7416. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7417. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7418. return;
  7419. }
  7420. const int nr = ggml_nrows(src0);
  7421. GGML_TENSOR_BINARY_OP_LOCALS
  7422. const int ith = params->ith;
  7423. const int nth = params->nth;
  7424. const enum ggml_type type = src0->type;
  7425. const enum ggml_type dtype = dst->type;
  7426. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7427. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7428. // we don't support permuted src0 or src1
  7429. GGML_ASSERT(nb00 == ggml_type_size(type));
  7430. GGML_ASSERT(nb10 == sizeof(float));
  7431. // dst cannot be transposed or permuted
  7432. GGML_ASSERT(nb0 <= nb1);
  7433. GGML_ASSERT(nb1 <= nb2);
  7434. GGML_ASSERT(nb2 <= nb3);
  7435. GGML_ASSERT(ggml_is_quantized(src0->type));
  7436. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7437. // rows per thread
  7438. const int dr = (nr + nth - 1)/nth;
  7439. // row range for this thread
  7440. const int ir0 = dr*ith;
  7441. const int ir1 = MIN(ir0 + dr, nr);
  7442. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7443. for (int ir = ir0; ir < ir1; ++ir) {
  7444. // src0 indices
  7445. const int i03 = ir/(ne02*ne01);
  7446. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7447. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7448. // src1 and dst are same shape as src0 => same indices
  7449. const int i13 = i03;
  7450. const int i12 = i02;
  7451. const int i11 = i01;
  7452. const int i3 = i03;
  7453. const int i2 = i02;
  7454. const int i1 = i01;
  7455. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7456. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7457. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7458. assert(ne00 % 32 == 0);
  7459. // unquantize row from src0 to temp buffer
  7460. dequantize_row_q(src0_row, wdata, ne00);
  7461. // add src1
  7462. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7463. // quantize row to dst
  7464. if (quantize_row_q != NULL) {
  7465. quantize_row_q(wdata, dst_row, ne00);
  7466. } else {
  7467. memcpy(dst_row, wdata, ne0*nb0);
  7468. }
  7469. }
  7470. }
  7471. static void ggml_compute_forward_add(
  7472. const struct ggml_compute_params * params,
  7473. struct ggml_tensor * dst) {
  7474. const struct ggml_tensor * src0 = dst->src[0];
  7475. const struct ggml_tensor * src1 = dst->src[1];
  7476. switch (src0->type) {
  7477. case GGML_TYPE_F32:
  7478. {
  7479. if (src1->type == GGML_TYPE_F32) {
  7480. ggml_compute_forward_add_f32(params, dst);
  7481. }
  7482. else {
  7483. GGML_ASSERT(false);
  7484. }
  7485. } break;
  7486. case GGML_TYPE_F16:
  7487. {
  7488. if (src1->type == GGML_TYPE_F16) {
  7489. ggml_compute_forward_add_f16_f16(params, dst);
  7490. }
  7491. else if (src1->type == GGML_TYPE_F32) {
  7492. ggml_compute_forward_add_f16_f32(params, dst);
  7493. }
  7494. else {
  7495. GGML_ASSERT(false);
  7496. }
  7497. } break;
  7498. case GGML_TYPE_BF16:
  7499. {
  7500. if (src1->type == GGML_TYPE_BF16) {
  7501. ggml_compute_forward_add_bf16_bf16(params, dst);
  7502. }
  7503. else if (src1->type == GGML_TYPE_F32) {
  7504. ggml_compute_forward_add_bf16_f32(params, dst);
  7505. }
  7506. else {
  7507. GGML_ASSERT(false);
  7508. }
  7509. } break;
  7510. case GGML_TYPE_Q4_0:
  7511. case GGML_TYPE_Q4_1:
  7512. case GGML_TYPE_Q5_0:
  7513. case GGML_TYPE_Q5_1:
  7514. case GGML_TYPE_Q8_0:
  7515. case GGML_TYPE_Q2_K:
  7516. case GGML_TYPE_Q3_K:
  7517. case GGML_TYPE_Q4_K:
  7518. case GGML_TYPE_Q5_K:
  7519. case GGML_TYPE_Q6_K:
  7520. case GGML_TYPE_IQ2_XXS:
  7521. case GGML_TYPE_IQ2_XS:
  7522. case GGML_TYPE_IQ3_XXS:
  7523. case GGML_TYPE_IQ1_S:
  7524. case GGML_TYPE_IQ1_M:
  7525. case GGML_TYPE_IQ4_NL:
  7526. case GGML_TYPE_IQ4_XS:
  7527. case GGML_TYPE_IQ3_S:
  7528. case GGML_TYPE_IQ2_S:
  7529. {
  7530. ggml_compute_forward_add_q_f32(params, dst);
  7531. } break;
  7532. default:
  7533. {
  7534. GGML_ASSERT(false);
  7535. } break;
  7536. }
  7537. }
  7538. // ggml_compute_forward_add1
  7539. static void ggml_compute_forward_add1_f32(
  7540. const struct ggml_compute_params * params,
  7541. struct ggml_tensor * dst) {
  7542. const struct ggml_tensor * src0 = dst->src[0];
  7543. const struct ggml_tensor * src1 = dst->src[1];
  7544. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7545. GGML_ASSERT(ggml_is_scalar(src1));
  7546. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7547. return;
  7548. }
  7549. const int ith = params->ith;
  7550. const int nth = params->nth;
  7551. const int nr = ggml_nrows(src0);
  7552. GGML_TENSOR_UNARY_OP_LOCALS
  7553. GGML_ASSERT( nb0 == sizeof(float));
  7554. GGML_ASSERT(nb00 == sizeof(float));
  7555. // rows per thread
  7556. const int dr = (nr + nth - 1)/nth;
  7557. // row range for this thread
  7558. const int ir0 = dr*ith;
  7559. const int ir1 = MIN(ir0 + dr, nr);
  7560. for (int ir = ir0; ir < ir1; ++ir) {
  7561. // src0 and dst are same shape => same indices
  7562. const int i3 = ir/(ne2*ne1);
  7563. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7564. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7565. #ifdef GGML_USE_ACCELERATE
  7566. UNUSED(ggml_vec_add1_f32);
  7567. vDSP_vadd(
  7568. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7569. (float *) ((char *) src1->data), 0,
  7570. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7571. ne0);
  7572. #else
  7573. ggml_vec_add1_f32(ne0,
  7574. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7575. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7576. *(float *) src1->data);
  7577. #endif
  7578. }
  7579. }
  7580. static void ggml_compute_forward_add1_f16_f32(
  7581. const struct ggml_compute_params * params,
  7582. struct ggml_tensor * dst) {
  7583. const struct ggml_tensor * src0 = dst->src[0];
  7584. const struct ggml_tensor * src1 = dst->src[1];
  7585. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7586. GGML_ASSERT(ggml_is_scalar(src1));
  7587. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7588. return;
  7589. }
  7590. // scalar to add
  7591. const float v = *(float *) src1->data;
  7592. const int ith = params->ith;
  7593. const int nth = params->nth;
  7594. const int nr = ggml_nrows(src0);
  7595. GGML_TENSOR_UNARY_OP_LOCALS
  7596. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7597. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7598. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7599. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7600. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7601. // rows per thread
  7602. const int dr = (nr + nth - 1)/nth;
  7603. // row range for this thread
  7604. const int ir0 = dr*ith;
  7605. const int ir1 = MIN(ir0 + dr, nr);
  7606. for (int ir = ir0; ir < ir1; ++ir) {
  7607. // src0 and dst are same shape => same indices
  7608. const int i3 = ir/(ne2*ne1);
  7609. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7610. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7611. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7612. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7613. for (int i = 0; i < ne0; i++) {
  7614. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_add1_f16_f16(
  7619. const struct ggml_compute_params * params,
  7620. struct ggml_tensor * dst) {
  7621. const struct ggml_tensor * src0 = dst->src[0];
  7622. const struct ggml_tensor * src1 = dst->src[1];
  7623. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7624. GGML_ASSERT(ggml_is_scalar(src1));
  7625. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7626. return;
  7627. }
  7628. // scalar to add
  7629. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7630. const int ith = params->ith;
  7631. const int nth = params->nth;
  7632. const int nr = ggml_nrows(src0);
  7633. GGML_TENSOR_UNARY_OP_LOCALS
  7634. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7635. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7636. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7637. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7638. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7639. // rows per thread
  7640. const int dr = (nr + nth - 1)/nth;
  7641. // row range for this thread
  7642. const int ir0 = dr*ith;
  7643. const int ir1 = MIN(ir0 + dr, nr);
  7644. for (int ir = ir0; ir < ir1; ++ir) {
  7645. // src0 and dst are same shape => same indices
  7646. const int i3 = ir/(ne2*ne1);
  7647. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7648. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7649. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7650. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7651. for (int i = 0; i < ne0; i++) {
  7652. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7653. }
  7654. }
  7655. }
  7656. static void ggml_compute_forward_add1_q_f32(
  7657. const struct ggml_compute_params * params,
  7658. struct ggml_tensor * dst) {
  7659. const struct ggml_tensor * src0 = dst->src[0];
  7660. const struct ggml_tensor * src1 = dst->src[1];
  7661. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7662. GGML_ASSERT(ggml_is_scalar(src1));
  7663. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7664. return;
  7665. }
  7666. // scalar to add
  7667. const float v = *(float *) src1->data;
  7668. const int ith = params->ith;
  7669. const int nth = params->nth;
  7670. const int nr = ggml_nrows(src0);
  7671. GGML_TENSOR_UNARY_OP_LOCALS
  7672. const enum ggml_type type = src0->type;
  7673. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7674. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7675. // we don't support permuted src0
  7676. GGML_ASSERT(nb00 == ggml_type_size(type));
  7677. // dst cannot be transposed or permuted
  7678. GGML_ASSERT(nb0 <= nb1);
  7679. GGML_ASSERT(nb1 <= nb2);
  7680. GGML_ASSERT(nb2 <= nb3);
  7681. GGML_ASSERT(ggml_is_quantized(src0->type));
  7682. GGML_ASSERT(dst->type == src0->type);
  7683. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7684. // rows per thread
  7685. const int dr = (nr + nth - 1)/nth;
  7686. // row range for this thread
  7687. const int ir0 = dr*ith;
  7688. const int ir1 = MIN(ir0 + dr, nr);
  7689. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7690. for (int ir = ir0; ir < ir1; ++ir) {
  7691. // src0 and dst are same shape => same indices
  7692. const int i3 = ir/(ne2*ne1);
  7693. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7694. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7695. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7696. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7697. assert(ne0 % 32 == 0);
  7698. // unquantize row from src0 to temp buffer
  7699. dequantize_row_q(src0_row, wdata, ne0);
  7700. // add src1
  7701. ggml_vec_acc1_f32(ne0, wdata, v);
  7702. // quantize row to dst
  7703. quantize_row_q(wdata, dst_row, ne0);
  7704. }
  7705. }
  7706. static void ggml_compute_forward_add1_bf16_f32(
  7707. const struct ggml_compute_params * params,
  7708. struct ggml_tensor * dst) {
  7709. const struct ggml_tensor * src0 = dst->src[0];
  7710. const struct ggml_tensor * src1 = dst->src[1];
  7711. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7712. GGML_ASSERT(ggml_is_scalar(src1));
  7713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7714. return;
  7715. }
  7716. // scalar to add
  7717. const float v = *(float *) src1->data;
  7718. const int ith = params->ith;
  7719. const int nth = params->nth;
  7720. const int nr = ggml_nrows(src0);
  7721. GGML_TENSOR_UNARY_OP_LOCALS
  7722. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7723. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7724. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7725. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7726. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7727. // rows per thread
  7728. const int dr = (nr + nth - 1)/nth;
  7729. // row range for this thread
  7730. const int ir0 = dr*ith;
  7731. const int ir1 = MIN(ir0 + dr, nr);
  7732. for (int ir = ir0; ir < ir1; ++ir) {
  7733. // src0 and dst are same shape => same indices
  7734. const int i3 = ir/(ne2*ne1);
  7735. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7736. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7737. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7738. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7739. for (int i = 0; i < ne0; i++) {
  7740. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7741. }
  7742. }
  7743. }
  7744. static void ggml_compute_forward_add1_bf16_bf16(
  7745. const struct ggml_compute_params * params,
  7746. struct ggml_tensor * dst) {
  7747. const struct ggml_tensor * src0 = dst->src[0];
  7748. const struct ggml_tensor * src1 = dst->src[1];
  7749. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7750. GGML_ASSERT(ggml_is_scalar(src1));
  7751. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7752. return;
  7753. }
  7754. // scalar to add
  7755. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7756. const int ith = params->ith;
  7757. const int nth = params->nth;
  7758. const int nr = ggml_nrows(src0);
  7759. GGML_TENSOR_UNARY_OP_LOCALS
  7760. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7761. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7762. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7763. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7764. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7765. // rows per thread
  7766. const int dr = (nr + nth - 1)/nth;
  7767. // row range for this thread
  7768. const int ir0 = dr*ith;
  7769. const int ir1 = MIN(ir0 + dr, nr);
  7770. for (int ir = ir0; ir < ir1; ++ir) {
  7771. // src0 and dst are same shape => same indices
  7772. const int i3 = ir/(ne2*ne1);
  7773. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7774. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7775. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7776. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7777. for (int i = 0; i < ne0; i++) {
  7778. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7779. }
  7780. }
  7781. }
  7782. static void ggml_compute_forward_add1(
  7783. const struct ggml_compute_params * params,
  7784. struct ggml_tensor * dst) {
  7785. const struct ggml_tensor * src0 = dst->src[0];
  7786. const struct ggml_tensor * src1 = dst->src[1];
  7787. switch (src0->type) {
  7788. case GGML_TYPE_F32:
  7789. {
  7790. ggml_compute_forward_add1_f32(params, dst);
  7791. } break;
  7792. case GGML_TYPE_F16:
  7793. {
  7794. if (src1->type == GGML_TYPE_F16) {
  7795. ggml_compute_forward_add1_f16_f16(params, dst);
  7796. }
  7797. else if (src1->type == GGML_TYPE_F32) {
  7798. ggml_compute_forward_add1_f16_f32(params, dst);
  7799. }
  7800. else {
  7801. GGML_ASSERT(false);
  7802. }
  7803. } break;
  7804. case GGML_TYPE_BF16:
  7805. {
  7806. if (src1->type == GGML_TYPE_BF16) {
  7807. ggml_compute_forward_add1_bf16_bf16(params, dst);
  7808. }
  7809. else if (src1->type == GGML_TYPE_F32) {
  7810. ggml_compute_forward_add1_bf16_f32(params, dst);
  7811. }
  7812. else {
  7813. GGML_ASSERT(false);
  7814. }
  7815. } break;
  7816. case GGML_TYPE_Q4_0:
  7817. case GGML_TYPE_Q4_1:
  7818. case GGML_TYPE_Q5_0:
  7819. case GGML_TYPE_Q5_1:
  7820. case GGML_TYPE_Q8_0:
  7821. case GGML_TYPE_Q8_1:
  7822. case GGML_TYPE_Q2_K:
  7823. case GGML_TYPE_Q3_K:
  7824. case GGML_TYPE_Q4_K:
  7825. case GGML_TYPE_Q5_K:
  7826. case GGML_TYPE_Q6_K:
  7827. case GGML_TYPE_IQ2_XXS:
  7828. case GGML_TYPE_IQ2_XS:
  7829. case GGML_TYPE_IQ3_XXS:
  7830. case GGML_TYPE_IQ1_S:
  7831. case GGML_TYPE_IQ1_M:
  7832. case GGML_TYPE_IQ4_NL:
  7833. case GGML_TYPE_IQ4_XS:
  7834. case GGML_TYPE_IQ3_S:
  7835. case GGML_TYPE_IQ2_S:
  7836. {
  7837. ggml_compute_forward_add1_q_f32(params, dst);
  7838. } break;
  7839. default:
  7840. {
  7841. GGML_ASSERT(false);
  7842. } break;
  7843. }
  7844. }
  7845. // ggml_compute_forward_acc
  7846. static void ggml_compute_forward_acc_f32(
  7847. const struct ggml_compute_params * params,
  7848. struct ggml_tensor * dst) {
  7849. const struct ggml_tensor * src0 = dst->src[0];
  7850. const struct ggml_tensor * src1 = dst->src[1];
  7851. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7852. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7853. // view src0 and dst with these strides and data offset inbytes during acc
  7854. // nb0 is implicitly element_size because src0 and dst are contiguous
  7855. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7856. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7857. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7858. size_t offset = ((int32_t *) dst->op_params)[3];
  7859. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7860. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7861. if (params->ith != 0) {
  7862. return;
  7863. }
  7864. // memcpy needs to be synchronized across threads to avoid race conditions.
  7865. // => do it in INIT phase
  7866. memcpy(
  7867. ((char *) dst->data),
  7868. ((char *) src0->data),
  7869. ggml_nbytes(dst));
  7870. }
  7871. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7872. return;
  7873. }
  7874. const int ith = params->ith;
  7875. const int nth = params->nth;
  7876. const int nr = ggml_nrows(src1);
  7877. const int nc = src1->ne[0];
  7878. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7879. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7880. // src0 and dst as viewed during acc
  7881. const size_t nb0 = ggml_element_size(src0);
  7882. const size_t nb00 = nb0;
  7883. const size_t nb01 = nb1;
  7884. const size_t nb02 = nb2;
  7885. const size_t nb03 = nb3;
  7886. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7887. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7888. GGML_ASSERT(nb10 == sizeof(float));
  7889. // rows per thread
  7890. const int dr = (nr + nth - 1)/nth;
  7891. // row range for this thread
  7892. const int ir0 = dr*ith;
  7893. const int ir1 = MIN(ir0 + dr, nr);
  7894. for (int ir = ir0; ir < ir1; ++ir) {
  7895. // src0 and dst are viewed with shape of src1 and offset
  7896. // => same indices
  7897. const int i3 = ir/(ne12*ne11);
  7898. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7899. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7900. #ifdef GGML_USE_ACCELERATE
  7901. vDSP_vadd(
  7902. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7903. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7904. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7905. #else
  7906. ggml_vec_add_f32(nc,
  7907. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7908. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7909. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7910. #endif
  7911. }
  7912. }
  7913. static void ggml_compute_forward_acc(
  7914. const struct ggml_compute_params * params,
  7915. struct ggml_tensor * dst) {
  7916. const struct ggml_tensor * src0 = dst->src[0];
  7917. switch (src0->type) {
  7918. case GGML_TYPE_F32:
  7919. {
  7920. ggml_compute_forward_acc_f32(params, dst);
  7921. } break;
  7922. case GGML_TYPE_F16:
  7923. case GGML_TYPE_BF16:
  7924. case GGML_TYPE_Q4_0:
  7925. case GGML_TYPE_Q4_1:
  7926. case GGML_TYPE_Q5_0:
  7927. case GGML_TYPE_Q5_1:
  7928. case GGML_TYPE_Q8_0:
  7929. case GGML_TYPE_Q8_1:
  7930. case GGML_TYPE_Q2_K:
  7931. case GGML_TYPE_Q3_K:
  7932. case GGML_TYPE_Q4_K:
  7933. case GGML_TYPE_Q5_K:
  7934. case GGML_TYPE_Q6_K:
  7935. case GGML_TYPE_IQ2_XXS:
  7936. case GGML_TYPE_IQ2_XS:
  7937. case GGML_TYPE_IQ3_XXS:
  7938. case GGML_TYPE_IQ1_S:
  7939. case GGML_TYPE_IQ1_M:
  7940. case GGML_TYPE_IQ4_NL:
  7941. case GGML_TYPE_IQ4_XS:
  7942. case GGML_TYPE_IQ3_S:
  7943. case GGML_TYPE_IQ2_S:
  7944. default:
  7945. {
  7946. GGML_ASSERT(false);
  7947. } break;
  7948. }
  7949. }
  7950. // ggml_compute_forward_sub
  7951. static void ggml_compute_forward_sub_f32(
  7952. const struct ggml_compute_params * params,
  7953. struct ggml_tensor * dst) {
  7954. const struct ggml_tensor * src0 = dst->src[0];
  7955. const struct ggml_tensor * src1 = dst->src[1];
  7956. assert(params->ith == 0);
  7957. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7958. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7959. return;
  7960. }
  7961. const int nr = ggml_nrows(src0);
  7962. GGML_TENSOR_BINARY_OP_LOCALS
  7963. GGML_ASSERT( nb0 == sizeof(float));
  7964. GGML_ASSERT(nb00 == sizeof(float));
  7965. if (nb10 == sizeof(float)) {
  7966. for (int ir = 0; ir < nr; ++ir) {
  7967. // src0, src1 and dst are same shape => same indices
  7968. const int i3 = ir/(ne2*ne1);
  7969. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7970. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7971. #ifdef GGML_USE_ACCELERATE
  7972. vDSP_vsub(
  7973. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7974. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7975. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7976. ne0);
  7977. #else
  7978. ggml_vec_sub_f32(ne0,
  7979. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7980. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7981. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7982. #endif
  7983. // }
  7984. // }
  7985. }
  7986. } else {
  7987. // src1 is not contiguous
  7988. for (int ir = 0; ir < nr; ++ir) {
  7989. // src0, src1 and dst are same shape => same indices
  7990. const int i3 = ir/(ne2*ne1);
  7991. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7992. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7993. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7994. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7995. for (int i0 = 0; i0 < ne0; i0++) {
  7996. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7997. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7998. }
  7999. }
  8000. }
  8001. }
  8002. static void ggml_compute_forward_sub(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. switch (src0->type) {
  8007. case GGML_TYPE_F32:
  8008. {
  8009. ggml_compute_forward_sub_f32(params, dst);
  8010. } break;
  8011. default:
  8012. {
  8013. GGML_ASSERT(false);
  8014. } break;
  8015. }
  8016. }
  8017. // ggml_compute_forward_mul
  8018. static void ggml_compute_forward_mul_f32(
  8019. const struct ggml_compute_params * params,
  8020. struct ggml_tensor * dst) {
  8021. const struct ggml_tensor * src0 = dst->src[0];
  8022. const struct ggml_tensor * src1 = dst->src[1];
  8023. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8024. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8025. return;
  8026. }
  8027. const int ith = params->ith;
  8028. const int nth = params->nth;
  8029. #if defined(GGML_USE_CLBLAST)
  8030. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8031. // TODO: OpenCL kernel support full broadcast
  8032. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8033. if (ith == 0) {
  8034. ggml_cl_mul(src0, src1, dst);
  8035. }
  8036. return;
  8037. }
  8038. #endif
  8039. const int64_t nr = ggml_nrows(src0);
  8040. GGML_TENSOR_BINARY_OP_LOCALS
  8041. GGML_ASSERT( nb0 == sizeof(float));
  8042. GGML_ASSERT(nb00 == sizeof(float));
  8043. if (nb10 == sizeof(float)) {
  8044. for (int64_t ir = ith; ir < nr; ir += nth) {
  8045. // src0 and dst are same shape => same indices
  8046. const int64_t i03 = ir/(ne02*ne01);
  8047. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8048. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8049. const int64_t i13 = i03 % ne13;
  8050. const int64_t i12 = i02 % ne12;
  8051. const int64_t i11 = i01 % ne11;
  8052. const int64_t nr0 = ne00 / ne10;
  8053. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8054. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8055. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8056. for (int64_t r = 0 ; r < nr0; ++r) {
  8057. #ifdef GGML_USE_ACCELERATE
  8058. UNUSED(ggml_vec_mul_f32);
  8059. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8060. #else
  8061. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8062. #endif
  8063. }
  8064. }
  8065. } else {
  8066. // src1 is not contiguous
  8067. for (int64_t ir = ith; ir < nr; ir += nth) {
  8068. // src0 and dst are same shape => same indices
  8069. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8070. const int64_t i03 = ir/(ne02*ne01);
  8071. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8072. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8073. const int64_t i13 = i03 % ne13;
  8074. const int64_t i12 = i02 % ne12;
  8075. const int64_t i11 = i01 % ne11;
  8076. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8077. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8078. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8079. const int64_t i10 = i0 % ne10;
  8080. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8081. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8082. }
  8083. }
  8084. }
  8085. }
  8086. static void ggml_compute_forward_mul(
  8087. const struct ggml_compute_params * params,
  8088. struct ggml_tensor * dst) {
  8089. const struct ggml_tensor * src0 = dst->src[0];
  8090. const struct ggml_tensor * src1 = dst->src[1];
  8091. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8092. switch (src0->type) {
  8093. case GGML_TYPE_F32:
  8094. {
  8095. ggml_compute_forward_mul_f32(params, dst);
  8096. } break;
  8097. default:
  8098. {
  8099. GGML_ASSERT(false);
  8100. } break;
  8101. }
  8102. }
  8103. // ggml_compute_forward_div
  8104. static void ggml_compute_forward_div_f32(
  8105. const struct ggml_compute_params * params,
  8106. struct ggml_tensor * dst) {
  8107. const struct ggml_tensor * src0 = dst->src[0];
  8108. const struct ggml_tensor * src1 = dst->src[1];
  8109. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8110. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8111. return;
  8112. }
  8113. const int ith = params->ith;
  8114. const int nth = params->nth;
  8115. const int64_t nr = ggml_nrows(src0);
  8116. GGML_TENSOR_BINARY_OP_LOCALS
  8117. GGML_ASSERT( nb0 == sizeof(float));
  8118. GGML_ASSERT(nb00 == sizeof(float));
  8119. if (nb10 == sizeof(float)) {
  8120. for (int64_t ir = ith; ir < nr; ir += nth) {
  8121. // src0 and dst are same shape => same indices
  8122. const int64_t i03 = ir/(ne02*ne01);
  8123. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8124. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8125. const int64_t i13 = i03 % ne13;
  8126. const int64_t i12 = i02 % ne12;
  8127. const int64_t i11 = i01 % ne11;
  8128. const int64_t nr0 = ne00 / ne10;
  8129. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8130. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8131. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8132. for (int64_t r = 0; r < nr0; ++r) {
  8133. #ifdef GGML_USE_ACCELERATE
  8134. UNUSED(ggml_vec_div_f32);
  8135. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8136. #else
  8137. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8138. #endif
  8139. }
  8140. }
  8141. } else {
  8142. // src1 is not contiguous
  8143. for (int64_t ir = ith; ir < nr; ir += nth) {
  8144. // src0 and dst are same shape => same indices
  8145. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8146. const int64_t i03 = ir/(ne02*ne01);
  8147. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8148. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8149. const int64_t i13 = i03 % ne13;
  8150. const int64_t i12 = i02 % ne12;
  8151. const int64_t i11 = i01 % ne11;
  8152. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8153. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8154. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8155. const int64_t i10 = i0 % ne10;
  8156. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8157. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8158. }
  8159. }
  8160. }
  8161. }
  8162. static void ggml_compute_forward_div(
  8163. const struct ggml_compute_params * params,
  8164. struct ggml_tensor * dst) {
  8165. const struct ggml_tensor * src0 = dst->src[0];
  8166. switch (src0->type) {
  8167. case GGML_TYPE_F32:
  8168. {
  8169. ggml_compute_forward_div_f32(params, dst);
  8170. } break;
  8171. default:
  8172. {
  8173. GGML_ASSERT(false);
  8174. } break;
  8175. }
  8176. }
  8177. // ggml_compute_forward_sqr
  8178. static void ggml_compute_forward_sqr_f32(
  8179. const struct ggml_compute_params * params,
  8180. struct ggml_tensor * dst) {
  8181. const struct ggml_tensor * src0 = dst->src[0];
  8182. assert(params->ith == 0);
  8183. assert(ggml_are_same_shape(src0, dst));
  8184. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8185. return;
  8186. }
  8187. const int n = ggml_nrows(src0);
  8188. const int nc = src0->ne[0];
  8189. assert( dst->nb[0] == sizeof(float));
  8190. assert(src0->nb[0] == sizeof(float));
  8191. for (int i = 0; i < n; i++) {
  8192. ggml_vec_sqr_f32(nc,
  8193. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8194. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8195. }
  8196. }
  8197. static void ggml_compute_forward_sqr(
  8198. const struct ggml_compute_params * params,
  8199. struct ggml_tensor * dst) {
  8200. const struct ggml_tensor * src0 = dst->src[0];
  8201. switch (src0->type) {
  8202. case GGML_TYPE_F32:
  8203. {
  8204. ggml_compute_forward_sqr_f32(params, dst);
  8205. } break;
  8206. default:
  8207. {
  8208. GGML_ASSERT(false);
  8209. } break;
  8210. }
  8211. }
  8212. // ggml_compute_forward_sqrt
  8213. static void ggml_compute_forward_sqrt_f32(
  8214. const struct ggml_compute_params * params,
  8215. struct ggml_tensor * dst) {
  8216. const struct ggml_tensor * src0 = dst->src[0];
  8217. assert(params->ith == 0);
  8218. assert(ggml_are_same_shape(src0, dst));
  8219. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8220. return;
  8221. }
  8222. const int n = ggml_nrows(src0);
  8223. const int nc = src0->ne[0];
  8224. assert( dst->nb[0] == sizeof(float));
  8225. assert(src0->nb[0] == sizeof(float));
  8226. for (int i = 0; i < n; i++) {
  8227. ggml_vec_sqrt_f32(nc,
  8228. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8229. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8230. }
  8231. }
  8232. static void ggml_compute_forward_sqrt(
  8233. const struct ggml_compute_params * params,
  8234. struct ggml_tensor * dst) {
  8235. const struct ggml_tensor * src0 = dst->src[0];
  8236. switch (src0->type) {
  8237. case GGML_TYPE_F32:
  8238. {
  8239. ggml_compute_forward_sqrt_f32(params, dst);
  8240. } break;
  8241. default:
  8242. {
  8243. GGML_ASSERT(false);
  8244. } break;
  8245. }
  8246. }
  8247. // ggml_compute_forward_log
  8248. static void ggml_compute_forward_log_f32(
  8249. const struct ggml_compute_params * params,
  8250. struct ggml_tensor * dst) {
  8251. const struct ggml_tensor * src0 = dst->src[0];
  8252. GGML_ASSERT(params->ith == 0);
  8253. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8254. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8255. return;
  8256. }
  8257. const int n = ggml_nrows(src0);
  8258. const int nc = src0->ne[0];
  8259. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8260. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8261. for (int i = 0; i < n; i++) {
  8262. ggml_vec_log_f32(nc,
  8263. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8264. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8265. }
  8266. }
  8267. static void ggml_compute_forward_log(
  8268. const struct ggml_compute_params * params,
  8269. struct ggml_tensor * dst) {
  8270. const struct ggml_tensor * src0 = dst->src[0];
  8271. switch (src0->type) {
  8272. case GGML_TYPE_F32:
  8273. {
  8274. ggml_compute_forward_log_f32(params, dst);
  8275. } break;
  8276. default:
  8277. {
  8278. GGML_ASSERT(false);
  8279. } break;
  8280. }
  8281. }
  8282. // ggml_compute_forward_sum
  8283. static void ggml_compute_forward_sum_f32(
  8284. const struct ggml_compute_params * params,
  8285. struct ggml_tensor * dst) {
  8286. const struct ggml_tensor * src0 = dst->src[0];
  8287. assert(params->ith == 0);
  8288. assert(ggml_is_scalar(dst));
  8289. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8290. return;
  8291. }
  8292. assert(ggml_is_scalar(dst));
  8293. assert(src0->nb[0] == sizeof(float));
  8294. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8295. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8296. ggml_float sum = 0;
  8297. ggml_float row_sum = 0;
  8298. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8299. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8300. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8301. ggml_vec_sum_f32_ggf(ne00,
  8302. &row_sum,
  8303. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8304. sum += row_sum;
  8305. }
  8306. }
  8307. }
  8308. ((float *) dst->data)[0] = sum;
  8309. }
  8310. static void ggml_compute_forward_sum_f16(
  8311. const struct ggml_compute_params * params,
  8312. struct ggml_tensor * dst) {
  8313. const struct ggml_tensor * src0 = dst->src[0];
  8314. assert(params->ith == 0);
  8315. assert(ggml_is_scalar(dst));
  8316. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8317. return;
  8318. }
  8319. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8320. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8321. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8322. float sum = 0;
  8323. float row_sum = 0;
  8324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8326. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8327. ggml_vec_sum_f16_ggf(ne00,
  8328. &row_sum,
  8329. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8330. sum += row_sum;
  8331. }
  8332. }
  8333. }
  8334. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8335. }
  8336. static void ggml_compute_forward_sum_bf16(
  8337. const struct ggml_compute_params * params,
  8338. struct ggml_tensor * dst) {
  8339. const struct ggml_tensor * src0 = dst->src[0];
  8340. assert(params->ith == 0);
  8341. assert(ggml_is_scalar(dst));
  8342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8343. return;
  8344. }
  8345. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8346. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8347. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8348. float sum = 0;
  8349. float row_sum = 0;
  8350. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8351. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8352. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8353. ggml_vec_sum_bf16_ggf(ne00,
  8354. &row_sum,
  8355. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8356. sum += row_sum;
  8357. }
  8358. }
  8359. }
  8360. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8361. }
  8362. static void ggml_compute_forward_sum(
  8363. const struct ggml_compute_params * params,
  8364. struct ggml_tensor * dst) {
  8365. const struct ggml_tensor * src0 = dst->src[0];
  8366. switch (src0->type) {
  8367. case GGML_TYPE_F32:
  8368. {
  8369. ggml_compute_forward_sum_f32(params, dst);
  8370. } break;
  8371. case GGML_TYPE_F16:
  8372. {
  8373. ggml_compute_forward_sum_f16(params, dst);
  8374. } break;
  8375. case GGML_TYPE_BF16:
  8376. {
  8377. ggml_compute_forward_sum_bf16(params, dst);
  8378. } break;
  8379. default:
  8380. {
  8381. GGML_ASSERT(false);
  8382. } break;
  8383. }
  8384. }
  8385. // ggml_compute_forward_sum_rows
  8386. static void ggml_compute_forward_sum_rows_f32(
  8387. const struct ggml_compute_params * params,
  8388. struct ggml_tensor * dst) {
  8389. const struct ggml_tensor * src0 = dst->src[0];
  8390. GGML_ASSERT(params->ith == 0);
  8391. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8392. return;
  8393. }
  8394. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8395. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8396. GGML_TENSOR_UNARY_OP_LOCALS
  8397. GGML_ASSERT(ne0 == 1);
  8398. GGML_ASSERT(ne1 == ne01);
  8399. GGML_ASSERT(ne2 == ne02);
  8400. GGML_ASSERT(ne3 == ne03);
  8401. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8402. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8403. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8404. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8405. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8406. float row_sum = 0;
  8407. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8408. dst_row[0] = row_sum;
  8409. }
  8410. }
  8411. }
  8412. }
  8413. static void ggml_compute_forward_sum_rows(
  8414. const struct ggml_compute_params * params,
  8415. struct ggml_tensor * dst) {
  8416. const struct ggml_tensor * src0 = dst->src[0];
  8417. switch (src0->type) {
  8418. case GGML_TYPE_F32:
  8419. {
  8420. ggml_compute_forward_sum_rows_f32(params, dst);
  8421. } break;
  8422. default:
  8423. {
  8424. GGML_ASSERT(false);
  8425. } break;
  8426. }
  8427. }
  8428. // ggml_compute_forward_mean
  8429. static void ggml_compute_forward_mean_f32(
  8430. const struct ggml_compute_params * params,
  8431. struct ggml_tensor * dst) {
  8432. const struct ggml_tensor * src0 = dst->src[0];
  8433. assert(params->ith == 0);
  8434. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8435. return;
  8436. }
  8437. assert(src0->nb[0] == sizeof(float));
  8438. GGML_TENSOR_UNARY_OP_LOCALS
  8439. assert(ne0 == 1);
  8440. assert(ne1 == ne01);
  8441. assert(ne2 == ne02);
  8442. assert(ne3 == ne03);
  8443. UNUSED(ne0);
  8444. UNUSED(ne1);
  8445. UNUSED(ne2);
  8446. UNUSED(ne3);
  8447. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8448. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8449. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8450. ggml_vec_sum_f32(ne00,
  8451. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8452. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8453. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8454. }
  8455. }
  8456. }
  8457. }
  8458. static void ggml_compute_forward_mean(
  8459. const struct ggml_compute_params * params,
  8460. struct ggml_tensor * dst) {
  8461. const struct ggml_tensor * src0 = dst->src[0];
  8462. switch (src0->type) {
  8463. case GGML_TYPE_F32:
  8464. {
  8465. ggml_compute_forward_mean_f32(params, dst);
  8466. } break;
  8467. default:
  8468. {
  8469. GGML_ASSERT(false);
  8470. } break;
  8471. }
  8472. }
  8473. // ggml_compute_forward_argmax
  8474. static void ggml_compute_forward_argmax_f32(
  8475. const struct ggml_compute_params * params,
  8476. struct ggml_tensor * dst) {
  8477. const struct ggml_tensor * src0 = dst->src[0];
  8478. assert(params->ith == 0);
  8479. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8480. return;
  8481. }
  8482. assert(src0->nb[0] == sizeof(float));
  8483. assert(dst->nb[0] == sizeof(float));
  8484. const int64_t ne00 = src0->ne[0];
  8485. const int64_t ne01 = src0->ne[1];
  8486. const size_t nb01 = src0->nb[1];
  8487. const size_t nb0 = dst->nb[0];
  8488. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8489. float * src = (float *) ((char *) src0->data + i1*nb01);
  8490. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8491. int v = 0;
  8492. ggml_vec_argmax_f32(ne00, &v, src);
  8493. dst_[0] = v;
  8494. }
  8495. }
  8496. static void ggml_compute_forward_argmax(
  8497. const struct ggml_compute_params * params,
  8498. struct ggml_tensor * dst) {
  8499. const struct ggml_tensor * src0 = dst->src[0];
  8500. switch (src0->type) {
  8501. case GGML_TYPE_F32:
  8502. {
  8503. ggml_compute_forward_argmax_f32(params, dst);
  8504. } break;
  8505. default:
  8506. {
  8507. GGML_ASSERT(false);
  8508. } break;
  8509. }
  8510. }
  8511. // ggml_compute_forward_repeat
  8512. static void ggml_compute_forward_repeat_f32(
  8513. const struct ggml_compute_params * params,
  8514. struct ggml_tensor * dst) {
  8515. const struct ggml_tensor * src0 = dst->src[0];
  8516. GGML_ASSERT(params->ith == 0);
  8517. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8518. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8519. return;
  8520. }
  8521. GGML_TENSOR_UNARY_OP_LOCALS
  8522. // guaranteed to be an integer due to the check in ggml_can_repeat
  8523. const int nr0 = (int)(ne0/ne00);
  8524. const int nr1 = (int)(ne1/ne01);
  8525. const int nr2 = (int)(ne2/ne02);
  8526. const int nr3 = (int)(ne3/ne03);
  8527. // TODO: support for transposed / permuted tensors
  8528. GGML_ASSERT(nb0 == sizeof(float));
  8529. GGML_ASSERT(nb00 == sizeof(float));
  8530. // TODO: maybe this is not optimal?
  8531. for (int i3 = 0; i3 < nr3; i3++) {
  8532. for (int k3 = 0; k3 < ne03; k3++) {
  8533. for (int i2 = 0; i2 < nr2; i2++) {
  8534. for (int k2 = 0; k2 < ne02; k2++) {
  8535. for (int i1 = 0; i1 < nr1; i1++) {
  8536. for (int k1 = 0; k1 < ne01; k1++) {
  8537. for (int i0 = 0; i0 < nr0; i0++) {
  8538. ggml_vec_cpy_f32(ne00,
  8539. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8540. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8541. }
  8542. }
  8543. }
  8544. }
  8545. }
  8546. }
  8547. }
  8548. }
  8549. static void ggml_compute_forward_repeat_f16(
  8550. const struct ggml_compute_params * params,
  8551. struct ggml_tensor * dst) {
  8552. const struct ggml_tensor * src0 = dst->src[0];
  8553. GGML_ASSERT(params->ith == 0);
  8554. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8555. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8556. return;
  8557. }
  8558. GGML_TENSOR_UNARY_OP_LOCALS
  8559. // guaranteed to be an integer due to the check in ggml_can_repeat
  8560. const int nr0 = (int)(ne0/ne00);
  8561. const int nr1 = (int)(ne1/ne01);
  8562. const int nr2 = (int)(ne2/ne02);
  8563. const int nr3 = (int)(ne3/ne03);
  8564. // TODO: support for transposed / permuted tensors
  8565. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8566. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8567. // TODO: maybe this is not optimal?
  8568. for (int i3 = 0; i3 < nr3; i3++) {
  8569. for (int k3 = 0; k3 < ne03; k3++) {
  8570. for (int i2 = 0; i2 < nr2; i2++) {
  8571. for (int k2 = 0; k2 < ne02; k2++) {
  8572. for (int i1 = 0; i1 < nr1; i1++) {
  8573. for (int k1 = 0; k1 < ne01; k1++) {
  8574. for (int i0 = 0; i0 < nr0; i0++) {
  8575. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8576. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8577. // ggml_vec_cpy_f16(ne00, y, x)
  8578. for (int i = 0; i < ne00; ++i) {
  8579. y[i] = x[i];
  8580. }
  8581. }
  8582. }
  8583. }
  8584. }
  8585. }
  8586. }
  8587. }
  8588. }
  8589. static void ggml_compute_forward_repeat(
  8590. const struct ggml_compute_params * params,
  8591. struct ggml_tensor * dst) {
  8592. const struct ggml_tensor * src0 = dst->src[0];
  8593. switch (src0->type) {
  8594. case GGML_TYPE_F16:
  8595. case GGML_TYPE_BF16:
  8596. case GGML_TYPE_I16:
  8597. {
  8598. ggml_compute_forward_repeat_f16(params, dst);
  8599. } break;
  8600. case GGML_TYPE_F32:
  8601. case GGML_TYPE_I32:
  8602. {
  8603. ggml_compute_forward_repeat_f32(params, dst);
  8604. } break;
  8605. default:
  8606. {
  8607. GGML_ASSERT(false);
  8608. } break;
  8609. }
  8610. }
  8611. // ggml_compute_forward_repeat_back
  8612. static void ggml_compute_forward_repeat_back_f32(
  8613. const struct ggml_compute_params * params,
  8614. struct ggml_tensor * dst) {
  8615. const struct ggml_tensor * src0 = dst->src[0];
  8616. GGML_ASSERT(params->ith == 0);
  8617. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8618. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8619. return;
  8620. }
  8621. GGML_TENSOR_UNARY_OP_LOCALS
  8622. // guaranteed to be an integer due to the check in ggml_can_repeat
  8623. const int nr0 = (int)(ne00/ne0);
  8624. const int nr1 = (int)(ne01/ne1);
  8625. const int nr2 = (int)(ne02/ne2);
  8626. const int nr3 = (int)(ne03/ne3);
  8627. // TODO: support for transposed / permuted tensors
  8628. GGML_ASSERT(nb0 == sizeof(float));
  8629. GGML_ASSERT(nb00 == sizeof(float));
  8630. if (ggml_is_contiguous(dst)) {
  8631. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8632. } else {
  8633. for (int k3 = 0; k3 < ne3; k3++) {
  8634. for (int k2 = 0; k2 < ne2; k2++) {
  8635. for (int k1 = 0; k1 < ne1; k1++) {
  8636. ggml_vec_set_f32(ne0,
  8637. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8638. 0);
  8639. }
  8640. }
  8641. }
  8642. }
  8643. // TODO: maybe this is not optimal?
  8644. for (int i3 = 0; i3 < nr3; i3++) {
  8645. for (int k3 = 0; k3 < ne3; k3++) {
  8646. for (int i2 = 0; i2 < nr2; i2++) {
  8647. for (int k2 = 0; k2 < ne2; k2++) {
  8648. for (int i1 = 0; i1 < nr1; i1++) {
  8649. for (int k1 = 0; k1 < ne1; k1++) {
  8650. for (int i0 = 0; i0 < nr0; i0++) {
  8651. ggml_vec_acc_f32(ne0,
  8652. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8653. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8654. }
  8655. }
  8656. }
  8657. }
  8658. }
  8659. }
  8660. }
  8661. }
  8662. static void ggml_compute_forward_repeat_back(
  8663. const struct ggml_compute_params * params,
  8664. struct ggml_tensor * dst) {
  8665. const struct ggml_tensor * src0 = dst->src[0];
  8666. switch (src0->type) {
  8667. case GGML_TYPE_F32:
  8668. {
  8669. ggml_compute_forward_repeat_back_f32(params, dst);
  8670. } break;
  8671. default:
  8672. {
  8673. GGML_ASSERT(false);
  8674. } break;
  8675. }
  8676. }
  8677. // ggml_compute_forward_concat
  8678. static void ggml_compute_forward_concat_f32(
  8679. const struct ggml_compute_params * params,
  8680. struct ggml_tensor * dst) {
  8681. const struct ggml_tensor * src0 = dst->src[0];
  8682. const struct ggml_tensor * src1 = dst->src[1];
  8683. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8684. return;
  8685. }
  8686. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8687. const int ith = params->ith;
  8688. const int nth = params->nth;
  8689. GGML_TENSOR_BINARY_OP_LOCALS
  8690. // TODO: support for transposed / permuted tensors
  8691. GGML_ASSERT(nb0 == sizeof(float));
  8692. GGML_ASSERT(nb00 == sizeof(float));
  8693. GGML_ASSERT(nb10 == sizeof(float));
  8694. for (int i3 = 0; i3 < ne3; i3++) {
  8695. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8696. if (i2 < ne02) { // src0
  8697. for (int i1 = 0; i1 < ne1; i1++) {
  8698. for (int i0 = 0; i0 < ne0; i0++) {
  8699. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8700. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8701. *y = *x;
  8702. }
  8703. }
  8704. } // src1
  8705. else {
  8706. for (int i1 = 0; i1 < ne1; i1++) {
  8707. for (int i0 = 0; i0 < ne0; i0++) {
  8708. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8709. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8710. *y = *x;
  8711. }
  8712. }
  8713. }
  8714. }
  8715. }
  8716. }
  8717. static void ggml_compute_forward_concat(
  8718. const struct ggml_compute_params* params,
  8719. struct ggml_tensor* dst) {
  8720. const struct ggml_tensor * src0 = dst->src[0];
  8721. switch (src0->type) {
  8722. case GGML_TYPE_F32:
  8723. case GGML_TYPE_I32:
  8724. {
  8725. ggml_compute_forward_concat_f32(params, dst);
  8726. } break;
  8727. default:
  8728. {
  8729. GGML_ASSERT(false);
  8730. } break;
  8731. }
  8732. }
  8733. // ggml_compute_forward_abs
  8734. static void ggml_compute_forward_abs_f32(
  8735. const struct ggml_compute_params * params,
  8736. struct ggml_tensor * dst) {
  8737. const struct ggml_tensor * src0 = dst->src[0];
  8738. assert(params->ith == 0);
  8739. assert(ggml_are_same_shape(src0, dst));
  8740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8741. return;
  8742. }
  8743. const int n = ggml_nrows(src0);
  8744. const int nc = src0->ne[0];
  8745. assert(dst->nb[0] == sizeof(float));
  8746. assert(src0->nb[0] == sizeof(float));
  8747. for (int i = 0; i < n; i++) {
  8748. ggml_vec_abs_f32(nc,
  8749. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8750. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8751. }
  8752. }
  8753. static void ggml_compute_forward_abs(
  8754. const struct ggml_compute_params * params,
  8755. struct ggml_tensor * dst) {
  8756. const struct ggml_tensor * src0 = dst->src[0];
  8757. switch (src0->type) {
  8758. case GGML_TYPE_F32:
  8759. {
  8760. ggml_compute_forward_abs_f32(params, dst);
  8761. } break;
  8762. default:
  8763. {
  8764. GGML_ASSERT(false);
  8765. } break;
  8766. }
  8767. }
  8768. // ggml_compute_forward_sgn
  8769. static void ggml_compute_forward_sgn_f32(
  8770. const struct ggml_compute_params * params,
  8771. struct ggml_tensor * dst) {
  8772. const struct ggml_tensor * src0 = dst->src[0];
  8773. assert(params->ith == 0);
  8774. assert(ggml_are_same_shape(src0, dst));
  8775. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8776. return;
  8777. }
  8778. const int n = ggml_nrows(src0);
  8779. const int nc = src0->ne[0];
  8780. assert(dst->nb[0] == sizeof(float));
  8781. assert(src0->nb[0] == sizeof(float));
  8782. for (int i = 0; i < n; i++) {
  8783. ggml_vec_sgn_f32(nc,
  8784. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8785. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8786. }
  8787. }
  8788. static void ggml_compute_forward_sgn(
  8789. const struct ggml_compute_params * params,
  8790. struct ggml_tensor * dst) {
  8791. const struct ggml_tensor * src0 = dst->src[0];
  8792. switch (src0->type) {
  8793. case GGML_TYPE_F32:
  8794. {
  8795. ggml_compute_forward_sgn_f32(params, dst);
  8796. } break;
  8797. default:
  8798. {
  8799. GGML_ASSERT(false);
  8800. } break;
  8801. }
  8802. }
  8803. // ggml_compute_forward_neg
  8804. static void ggml_compute_forward_neg_f32(
  8805. const struct ggml_compute_params * params,
  8806. struct ggml_tensor * dst) {
  8807. const struct ggml_tensor * src0 = dst->src[0];
  8808. assert(params->ith == 0);
  8809. assert(ggml_are_same_shape(src0, dst));
  8810. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8811. return;
  8812. }
  8813. const int n = ggml_nrows(src0);
  8814. const int nc = src0->ne[0];
  8815. assert(dst->nb[0] == sizeof(float));
  8816. assert(src0->nb[0] == sizeof(float));
  8817. for (int i = 0; i < n; i++) {
  8818. ggml_vec_neg_f32(nc,
  8819. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8820. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8821. }
  8822. }
  8823. static void ggml_compute_forward_neg(
  8824. const struct ggml_compute_params * params,
  8825. struct ggml_tensor * dst) {
  8826. const struct ggml_tensor * src0 = dst->src[0];
  8827. switch (src0->type) {
  8828. case GGML_TYPE_F32:
  8829. {
  8830. ggml_compute_forward_neg_f32(params, dst);
  8831. } break;
  8832. default:
  8833. {
  8834. GGML_ASSERT(false);
  8835. } break;
  8836. }
  8837. }
  8838. // ggml_compute_forward_step
  8839. static void ggml_compute_forward_step_f32(
  8840. const struct ggml_compute_params * params,
  8841. struct ggml_tensor * dst) {
  8842. const struct ggml_tensor * src0 = dst->src[0];
  8843. assert(params->ith == 0);
  8844. assert(ggml_are_same_shape(src0, dst));
  8845. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8846. return;
  8847. }
  8848. const int n = ggml_nrows(src0);
  8849. const int nc = src0->ne[0];
  8850. assert(dst->nb[0] == sizeof(float));
  8851. assert(src0->nb[0] == sizeof(float));
  8852. for (int i = 0; i < n; i++) {
  8853. ggml_vec_step_f32(nc,
  8854. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8855. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8856. }
  8857. }
  8858. static void ggml_compute_forward_step(
  8859. const struct ggml_compute_params * params,
  8860. struct ggml_tensor * dst) {
  8861. const struct ggml_tensor * src0 = dst->src[0];
  8862. switch (src0->type) {
  8863. case GGML_TYPE_F32:
  8864. {
  8865. ggml_compute_forward_step_f32(params, dst);
  8866. } break;
  8867. default:
  8868. {
  8869. GGML_ASSERT(false);
  8870. } break;
  8871. }
  8872. }
  8873. // ggml_compute_forward_tanh
  8874. static void ggml_compute_forward_tanh_f32(
  8875. const struct ggml_compute_params * params,
  8876. struct ggml_tensor * dst) {
  8877. const struct ggml_tensor * src0 = dst->src[0];
  8878. assert(params->ith == 0);
  8879. assert(ggml_are_same_shape(src0, dst));
  8880. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8881. return;
  8882. }
  8883. const int n = ggml_nrows(src0);
  8884. const int nc = src0->ne[0];
  8885. assert(dst->nb[0] == sizeof(float));
  8886. assert(src0->nb[0] == sizeof(float));
  8887. for (int i = 0; i < n; i++) {
  8888. ggml_vec_tanh_f32(nc,
  8889. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8890. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8891. }
  8892. }
  8893. static void ggml_compute_forward_tanh(
  8894. const struct ggml_compute_params * params,
  8895. struct ggml_tensor * dst) {
  8896. const struct ggml_tensor * src0 = dst->src[0];
  8897. switch (src0->type) {
  8898. case GGML_TYPE_F32:
  8899. {
  8900. ggml_compute_forward_tanh_f32(params, dst);
  8901. } break;
  8902. default:
  8903. {
  8904. GGML_ASSERT(false);
  8905. } break;
  8906. }
  8907. }
  8908. // ggml_compute_forward_elu
  8909. static void ggml_compute_forward_elu_f32(
  8910. const struct ggml_compute_params * params,
  8911. struct ggml_tensor * dst) {
  8912. const struct ggml_tensor * src0 = dst->src[0];
  8913. assert(params->ith == 0);
  8914. assert(ggml_are_same_shape(src0, dst));
  8915. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8916. return;
  8917. }
  8918. const int n = ggml_nrows(src0);
  8919. const int nc = src0->ne[0];
  8920. assert(dst->nb[0] == sizeof(float));
  8921. assert(src0->nb[0] == sizeof(float));
  8922. for (int i = 0; i < n; i++) {
  8923. ggml_vec_elu_f32(nc,
  8924. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8925. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8926. }
  8927. }
  8928. static void ggml_compute_forward_elu(
  8929. const struct ggml_compute_params * params,
  8930. struct ggml_tensor * dst) {
  8931. const struct ggml_tensor * src0 = dst->src[0];
  8932. switch (src0->type) {
  8933. case GGML_TYPE_F32:
  8934. {
  8935. ggml_compute_forward_elu_f32(params, dst);
  8936. } break;
  8937. default:
  8938. {
  8939. GGML_ASSERT(false);
  8940. } break;
  8941. }
  8942. }
  8943. // ggml_compute_forward_relu
  8944. static void ggml_compute_forward_relu_f32(
  8945. const struct ggml_compute_params * params,
  8946. struct ggml_tensor * dst) {
  8947. const struct ggml_tensor * src0 = dst->src[0];
  8948. assert(params->ith == 0);
  8949. assert(ggml_are_same_shape(src0, dst));
  8950. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8951. return;
  8952. }
  8953. const int n = ggml_nrows(src0);
  8954. const int nc = src0->ne[0];
  8955. assert(dst->nb[0] == sizeof(float));
  8956. assert(src0->nb[0] == sizeof(float));
  8957. for (int i = 0; i < n; i++) {
  8958. ggml_vec_relu_f32(nc,
  8959. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8960. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8961. }
  8962. }
  8963. static void ggml_compute_forward_relu(
  8964. const struct ggml_compute_params * params,
  8965. struct ggml_tensor * dst) {
  8966. const struct ggml_tensor * src0 = dst->src[0];
  8967. switch (src0->type) {
  8968. case GGML_TYPE_F32:
  8969. {
  8970. ggml_compute_forward_relu_f32(params, dst);
  8971. } break;
  8972. default:
  8973. {
  8974. GGML_ASSERT(false);
  8975. } break;
  8976. }
  8977. }
  8978. // ggml_compute_forward_sigmoid
  8979. static void ggml_compute_forward_sigmoid_f32(
  8980. const struct ggml_compute_params * params,
  8981. struct ggml_tensor * dst) {
  8982. const struct ggml_tensor * src0 = dst->src[0];
  8983. assert(params->ith == 0);
  8984. assert(ggml_are_same_shape(src0, dst));
  8985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8986. return;
  8987. }
  8988. const int n = ggml_nrows(src0);
  8989. const int nc = src0->ne[0];
  8990. assert(dst->nb[0] == sizeof(float));
  8991. assert(src0->nb[0] == sizeof(float));
  8992. for (int i = 0; i < n; i++) {
  8993. ggml_vec_sigmoid_f32(nc,
  8994. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8995. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8996. }
  8997. }
  8998. static void ggml_compute_forward_sigmoid(
  8999. const struct ggml_compute_params * params,
  9000. struct ggml_tensor * dst) {
  9001. const struct ggml_tensor * src0 = dst->src[0];
  9002. switch (src0->type) {
  9003. case GGML_TYPE_F32:
  9004. {
  9005. ggml_compute_forward_sigmoid_f32(params, dst);
  9006. } break;
  9007. default:
  9008. {
  9009. GGML_ASSERT(false);
  9010. } break;
  9011. }
  9012. }
  9013. // ggml_compute_forward_gelu
  9014. static void ggml_compute_forward_gelu_f32(
  9015. const struct ggml_compute_params * params,
  9016. struct ggml_tensor * dst) {
  9017. const struct ggml_tensor * src0 = dst->src[0];
  9018. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9019. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9020. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9021. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9022. return;
  9023. }
  9024. const int ith = params->ith;
  9025. const int nth = params->nth;
  9026. const int nc = src0->ne[0];
  9027. const int nr = ggml_nrows(src0);
  9028. // rows per thread
  9029. const int dr = (nr + nth - 1)/nth;
  9030. // row range for this thread
  9031. const int ir0 = dr*ith;
  9032. const int ir1 = MIN(ir0 + dr, nr);
  9033. for (int i1 = ir0; i1 < ir1; i1++) {
  9034. ggml_vec_gelu_f32(nc,
  9035. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9036. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9037. #ifndef NDEBUG
  9038. for (int k = 0; k < nc; k++) {
  9039. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9040. UNUSED(x);
  9041. assert(!isnan(x));
  9042. assert(!isinf(x));
  9043. }
  9044. #endif
  9045. }
  9046. }
  9047. static void ggml_compute_forward_gelu(
  9048. const struct ggml_compute_params * params,
  9049. struct ggml_tensor * dst) {
  9050. const struct ggml_tensor * src0 = dst->src[0];
  9051. switch (src0->type) {
  9052. case GGML_TYPE_F32:
  9053. {
  9054. ggml_compute_forward_gelu_f32(params, dst);
  9055. } break;
  9056. default:
  9057. {
  9058. GGML_ASSERT(false);
  9059. } break;
  9060. }
  9061. }
  9062. // ggml_compute_forward_gelu_quick
  9063. static void ggml_compute_forward_gelu_quick_f32(
  9064. const struct ggml_compute_params * params,
  9065. struct ggml_tensor * dst) {
  9066. const struct ggml_tensor * src0 = dst->src[0];
  9067. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9068. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9069. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9070. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9071. return;
  9072. }
  9073. const int ith = params->ith;
  9074. const int nth = params->nth;
  9075. const int nc = src0->ne[0];
  9076. const int nr = ggml_nrows(src0);
  9077. // rows per thread
  9078. const int dr = (nr + nth - 1)/nth;
  9079. // row range for this thread
  9080. const int ir0 = dr*ith;
  9081. const int ir1 = MIN(ir0 + dr, nr);
  9082. for (int i1 = ir0; i1 < ir1; i1++) {
  9083. ggml_vec_gelu_quick_f32(nc,
  9084. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9085. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9086. #ifndef NDEBUG
  9087. for (int k = 0; k < nc; k++) {
  9088. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9089. UNUSED(x);
  9090. assert(!isnan(x));
  9091. assert(!isinf(x));
  9092. }
  9093. #endif
  9094. }
  9095. }
  9096. static void ggml_compute_forward_gelu_quick(
  9097. const struct ggml_compute_params * params,
  9098. struct ggml_tensor * dst) {
  9099. const struct ggml_tensor * src0 = dst->src[0];
  9100. switch (src0->type) {
  9101. case GGML_TYPE_F32:
  9102. {
  9103. ggml_compute_forward_gelu_quick_f32(params, dst);
  9104. } break;
  9105. default:
  9106. {
  9107. GGML_ASSERT(false);
  9108. } break;
  9109. }
  9110. }
  9111. // ggml_compute_forward_silu
  9112. static void ggml_compute_forward_silu_f32(
  9113. const struct ggml_compute_params * params,
  9114. struct ggml_tensor * dst) {
  9115. const struct ggml_tensor * src0 = dst->src[0];
  9116. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9117. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9118. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9119. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9120. return;
  9121. }
  9122. const int ith = params->ith;
  9123. const int nth = params->nth;
  9124. const int nc = src0->ne[0];
  9125. const int nr = ggml_nrows(src0);
  9126. // rows per thread
  9127. const int dr = (nr + nth - 1)/nth;
  9128. // row range for this thread
  9129. const int ir0 = dr*ith;
  9130. const int ir1 = MIN(ir0 + dr, nr);
  9131. for (int i1 = ir0; i1 < ir1; i1++) {
  9132. ggml_vec_silu_f32(nc,
  9133. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9134. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9135. #ifndef NDEBUG
  9136. for (int k = 0; k < nc; k++) {
  9137. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9138. UNUSED(x);
  9139. assert(!isnan(x));
  9140. assert(!isinf(x));
  9141. }
  9142. #endif
  9143. }
  9144. }
  9145. static void ggml_compute_forward_silu(
  9146. const struct ggml_compute_params * params,
  9147. struct ggml_tensor * dst) {
  9148. const struct ggml_tensor * src0 = dst->src[0];
  9149. switch (src0->type) {
  9150. case GGML_TYPE_F32:
  9151. {
  9152. ggml_compute_forward_silu_f32(params, dst);
  9153. } break;
  9154. default:
  9155. {
  9156. GGML_ASSERT(false);
  9157. } break;
  9158. }
  9159. }
  9160. // ggml_compute_forward_leaky_relu
  9161. static void ggml_compute_forward_leaky_relu_f32(
  9162. const struct ggml_compute_params * params,
  9163. struct ggml_tensor * dst) {
  9164. const struct ggml_tensor * src0 = dst->src[0];
  9165. assert(params->ith == 0);
  9166. assert(ggml_are_same_shape(src0, dst));
  9167. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9168. return;
  9169. }
  9170. const int n = ggml_nrows(src0);
  9171. const int nc = src0->ne[0];
  9172. float negative_slope;
  9173. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9174. assert(dst->nb[0] == sizeof(float));
  9175. assert(src0->nb[0] == sizeof(float));
  9176. for (int i = 0; i < n; i++) {
  9177. ggml_vec_leaky_relu_f32(nc,
  9178. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9179. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9180. }
  9181. }
  9182. static void ggml_compute_forward_leaky_relu(
  9183. const struct ggml_compute_params * params,
  9184. struct ggml_tensor * dst) {
  9185. const struct ggml_tensor * src0 = dst->src[0];
  9186. switch (src0->type) {
  9187. case GGML_TYPE_F32:
  9188. {
  9189. ggml_compute_forward_leaky_relu_f32(params, dst);
  9190. } break;
  9191. default:
  9192. {
  9193. GGML_ASSERT(false);
  9194. } break;
  9195. }
  9196. }
  9197. // ggml_compute_forward_silu_back
  9198. static void ggml_compute_forward_silu_back_f32(
  9199. const struct ggml_compute_params * params,
  9200. struct ggml_tensor * dst) {
  9201. const struct ggml_tensor * src0 = dst->src[0];
  9202. const struct ggml_tensor * grad = dst->src[1];
  9203. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9204. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9205. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9206. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9207. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9208. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9209. return;
  9210. }
  9211. const int ith = params->ith;
  9212. const int nth = params->nth;
  9213. const int nc = src0->ne[0];
  9214. const int nr = ggml_nrows(src0);
  9215. // rows per thread
  9216. const int dr = (nr + nth - 1)/nth;
  9217. // row range for this thread
  9218. const int ir0 = dr*ith;
  9219. const int ir1 = MIN(ir0 + dr, nr);
  9220. for (int i1 = ir0; i1 < ir1; i1++) {
  9221. ggml_vec_silu_backward_f32(nc,
  9222. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9223. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9224. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9225. #ifndef NDEBUG
  9226. for (int k = 0; k < nc; k++) {
  9227. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9228. UNUSED(x);
  9229. assert(!isnan(x));
  9230. assert(!isinf(x));
  9231. }
  9232. #endif
  9233. }
  9234. }
  9235. static void ggml_compute_forward_silu_back(
  9236. const struct ggml_compute_params * params,
  9237. struct ggml_tensor * dst) {
  9238. const struct ggml_tensor * src0 = dst->src[0];
  9239. switch (src0->type) {
  9240. case GGML_TYPE_F32:
  9241. {
  9242. ggml_compute_forward_silu_back_f32(params, dst);
  9243. } break;
  9244. default:
  9245. {
  9246. GGML_ASSERT(false);
  9247. } break;
  9248. }
  9249. }
  9250. static void ggml_compute_forward_hardswish_f32(
  9251. const struct ggml_compute_params * params,
  9252. struct ggml_tensor * dst) {
  9253. const struct ggml_tensor * src0 = dst->src[0];
  9254. assert(params->ith == 0);
  9255. assert(ggml_are_same_shape(src0, dst));
  9256. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9257. return;
  9258. }
  9259. const int n = ggml_nrows(src0);
  9260. const int nc = src0->ne[0];
  9261. assert(dst->nb[0] == sizeof(float));
  9262. assert(src0->nb[0] == sizeof(float));
  9263. for (int i = 0; i < n; i++) {
  9264. ggml_vec_hardswish_f32(nc,
  9265. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9266. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9267. }
  9268. }
  9269. static void ggml_compute_forward_hardswish(
  9270. const struct ggml_compute_params * params,
  9271. struct ggml_tensor * dst) {
  9272. const struct ggml_tensor * src0 = dst->src[0];
  9273. switch (src0->type) {
  9274. case GGML_TYPE_F32:
  9275. {
  9276. ggml_compute_forward_hardswish_f32(params, dst);
  9277. } break;
  9278. default:
  9279. {
  9280. GGML_ASSERT(false);
  9281. } break;
  9282. }
  9283. }
  9284. static void ggml_compute_forward_hardsigmoid_f32(
  9285. const struct ggml_compute_params * params,
  9286. struct ggml_tensor * dst) {
  9287. const struct ggml_tensor * src0 = dst->src[0];
  9288. assert(params->ith == 0);
  9289. assert(ggml_are_same_shape(src0, dst));
  9290. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9291. return;
  9292. }
  9293. const int n = ggml_nrows(src0);
  9294. const int nc = src0->ne[0];
  9295. assert(dst->nb[0] == sizeof(float));
  9296. assert(src0->nb[0] == sizeof(float));
  9297. for (int i = 0; i < n; i++) {
  9298. ggml_vec_hardsigmoid_f32(nc,
  9299. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9300. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9301. }
  9302. }
  9303. static void ggml_compute_forward_hardsigmoid(
  9304. const struct ggml_compute_params * params,
  9305. struct ggml_tensor * dst) {
  9306. const struct ggml_tensor * src0 = dst->src[0];
  9307. switch (src0->type) {
  9308. case GGML_TYPE_F32:
  9309. {
  9310. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9311. } break;
  9312. default:
  9313. {
  9314. GGML_ASSERT(false);
  9315. } break;
  9316. }
  9317. }
  9318. // ggml_compute_forward_norm
  9319. static void ggml_compute_forward_norm_f32(
  9320. const struct ggml_compute_params * params,
  9321. struct ggml_tensor * dst) {
  9322. const struct ggml_tensor * src0 = dst->src[0];
  9323. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9324. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9325. return;
  9326. }
  9327. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9328. const int ith = params->ith;
  9329. const int nth = params->nth;
  9330. GGML_TENSOR_UNARY_OP_LOCALS
  9331. float eps;
  9332. memcpy(&eps, dst->op_params, sizeof(float));
  9333. GGML_ASSERT(eps > 0.0f);
  9334. // TODO: optimize
  9335. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9336. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9337. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9338. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9339. ggml_float sum = 0.0;
  9340. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9341. sum += (ggml_float)x[i00];
  9342. }
  9343. float mean = sum/ne00;
  9344. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9345. ggml_float sum2 = 0.0;
  9346. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9347. float v = x[i00] - mean;
  9348. y[i00] = v;
  9349. sum2 += (ggml_float)(v*v);
  9350. }
  9351. float variance = sum2/ne00;
  9352. const float scale = 1.0f/sqrtf(variance + eps);
  9353. ggml_vec_scale_f32(ne00, y, scale);
  9354. }
  9355. }
  9356. }
  9357. }
  9358. static void ggml_compute_forward_norm(
  9359. const struct ggml_compute_params * params,
  9360. struct ggml_tensor * dst) {
  9361. const struct ggml_tensor * src0 = dst->src[0];
  9362. switch (src0->type) {
  9363. case GGML_TYPE_F32:
  9364. {
  9365. ggml_compute_forward_norm_f32(params, dst);
  9366. } break;
  9367. default:
  9368. {
  9369. GGML_ASSERT(false);
  9370. } break;
  9371. }
  9372. }
  9373. // ggml_compute_forward_group_rms_norm
  9374. static void ggml_compute_forward_rms_norm_f32(
  9375. const struct ggml_compute_params * params,
  9376. struct ggml_tensor * dst) {
  9377. const struct ggml_tensor * src0 = dst->src[0];
  9378. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9379. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9380. return;
  9381. }
  9382. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9383. const int ith = params->ith;
  9384. const int nth = params->nth;
  9385. GGML_TENSOR_UNARY_OP_LOCALS
  9386. float eps;
  9387. memcpy(&eps, dst->op_params, sizeof(float));
  9388. GGML_ASSERT(eps > 0.0f);
  9389. // TODO: optimize
  9390. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9391. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9392. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9393. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9394. ggml_float sum = 0.0;
  9395. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9396. sum += (ggml_float)(x[i00] * x[i00]);
  9397. }
  9398. const float mean = sum/ne00;
  9399. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9400. memcpy(y, x, ne00 * sizeof(float));
  9401. // for (int i00 = 0; i00 < ne00; i00++) {
  9402. // y[i00] = x[i00];
  9403. // }
  9404. const float scale = 1.0f/sqrtf(mean + eps);
  9405. ggml_vec_scale_f32(ne00, y, scale);
  9406. }
  9407. }
  9408. }
  9409. }
  9410. static void ggml_compute_forward_rms_norm(
  9411. const struct ggml_compute_params * params,
  9412. struct ggml_tensor * dst) {
  9413. const struct ggml_tensor * src0 = dst->src[0];
  9414. switch (src0->type) {
  9415. case GGML_TYPE_F32:
  9416. {
  9417. ggml_compute_forward_rms_norm_f32(params, dst);
  9418. } break;
  9419. default:
  9420. {
  9421. GGML_ASSERT(false);
  9422. } break;
  9423. }
  9424. }
  9425. static void ggml_compute_forward_rms_norm_back_f32(
  9426. const struct ggml_compute_params * params,
  9427. struct ggml_tensor * dst) {
  9428. const struct ggml_tensor * src0 = dst->src[0];
  9429. const struct ggml_tensor * src1 = dst->src[1];
  9430. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9431. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9432. return;
  9433. }
  9434. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9435. const int ith = params->ith;
  9436. const int nth = params->nth;
  9437. GGML_TENSOR_BINARY_OP_LOCALS
  9438. float eps;
  9439. memcpy(&eps, dst->op_params, sizeof(float));
  9440. // TODO: optimize
  9441. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9442. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9443. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9444. // src1 is same shape as src0 => same indices
  9445. const int64_t i11 = i01;
  9446. const int64_t i12 = i02;
  9447. const int64_t i13 = i03;
  9448. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9449. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9450. ggml_float sum_xx = 0.0;
  9451. ggml_float sum_xdz = 0.0;
  9452. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9453. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9454. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9455. }
  9456. //const float mean = (float)(sum_xx)/ne00;
  9457. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9458. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9459. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9460. // we could cache rms from forward pass to improve performance.
  9461. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9462. //const float rms = sqrtf(mean_eps);
  9463. const float rrms = 1.0f / sqrtf(mean_eps);
  9464. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9465. {
  9466. // z = rms_norm(x)
  9467. //
  9468. // rms_norm(src0) =
  9469. // scale(
  9470. // src0,
  9471. // div(
  9472. // 1,
  9473. // sqrt(
  9474. // add(
  9475. // scale(
  9476. // sum(
  9477. // sqr(
  9478. // src0)),
  9479. // (1.0/N)),
  9480. // eps))));
  9481. // postorder:
  9482. // ## op args grad
  9483. // 00 param src0 grad[#00]
  9484. // 01 const 1
  9485. // 02 sqr (#00) grad[#02]
  9486. // 03 sum (#02) grad[#03]
  9487. // 04 const 1/N
  9488. // 05 scale (#03, #04) grad[#05]
  9489. // 06 const eps
  9490. // 07 add (#05, #06) grad[#07]
  9491. // 08 sqrt (#07) grad[#08]
  9492. // 09 div (#01,#08) grad[#09]
  9493. // 10 scale (#00,#09) grad[#10]
  9494. //
  9495. // backward pass, given grad[#10]
  9496. // #10: scale
  9497. // grad[#00] += scale(grad[#10],#09)
  9498. // grad[#09] += sum(mul(grad[#10],#00))
  9499. // #09: div
  9500. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9501. // #08: sqrt
  9502. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9503. // #07: add
  9504. // grad[#05] += grad[#07]
  9505. // #05: scale
  9506. // grad[#03] += scale(grad[#05],#04)
  9507. // #03: sum
  9508. // grad[#02] += repeat(grad[#03], #02)
  9509. // #02:
  9510. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9511. //
  9512. // substitute and simplify:
  9513. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9514. // grad[#02] = repeat(grad[#03], #02)
  9515. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9516. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9517. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9518. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9519. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9520. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9521. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9522. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9523. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9524. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9525. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9526. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9527. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9528. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9529. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9530. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9531. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9532. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9533. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9534. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9535. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9536. // a = b*c + d*e
  9537. // a = b*c*f/f + d*e*f/f
  9538. // a = (b*c*f + d*e*f)*(1/f)
  9539. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9540. // a = (b + d*e/c)*c
  9541. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9542. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9543. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9544. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9545. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9546. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9547. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9548. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9549. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9550. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9551. }
  9552. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9553. // post-order:
  9554. // dx := x
  9555. // dx := scale(dx,-mean_xdz/mean_eps)
  9556. // dx := add(dx, dz)
  9557. // dx := scale(dx, rrms)
  9558. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9559. ggml_vec_cpy_f32 (ne00, dx, x);
  9560. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9561. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9562. ggml_vec_acc_f32 (ne00, dx, dz);
  9563. ggml_vec_scale_f32(ne00, dx, rrms);
  9564. }
  9565. }
  9566. }
  9567. }
  9568. static void ggml_compute_forward_rms_norm_back(
  9569. const struct ggml_compute_params * params,
  9570. struct ggml_tensor * dst) {
  9571. const struct ggml_tensor * src0 = dst->src[0];
  9572. switch (src0->type) {
  9573. case GGML_TYPE_F32:
  9574. {
  9575. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9576. } break;
  9577. default:
  9578. {
  9579. GGML_ASSERT(false);
  9580. } break;
  9581. }
  9582. }
  9583. // ggml_compute_forward_group_norm
  9584. static void ggml_compute_forward_group_norm_f32(
  9585. const struct ggml_compute_params * params,
  9586. struct ggml_tensor * dst) {
  9587. const struct ggml_tensor * src0 = dst->src[0];
  9588. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9590. return;
  9591. }
  9592. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9593. const int ith = params->ith;
  9594. const int nth = params->nth;
  9595. GGML_TENSOR_UNARY_OP_LOCALS
  9596. const float eps = 1e-6f; // TODO: make this a parameter
  9597. // TODO: optimize
  9598. int n_channels = src0->ne[2];
  9599. int n_groups = dst->op_params[0];
  9600. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9601. for (int i = ith; i < n_groups; i += nth) {
  9602. int start = i * n_channels_per_group;
  9603. int end = start + n_channels_per_group;
  9604. if (end > n_channels) {
  9605. end = n_channels;
  9606. }
  9607. int step = end - start;
  9608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9609. ggml_float sum = 0.0;
  9610. for (int64_t i02 = start; i02 < end; i02++) {
  9611. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9612. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9613. ggml_float sumr = 0.0;
  9614. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9615. sumr += (ggml_float)x[i00];
  9616. }
  9617. sum += sumr;
  9618. }
  9619. }
  9620. const float mean = sum / (ne00 * ne01 * step);
  9621. ggml_float sum2 = 0.0;
  9622. for (int64_t i02 = start; i02 < end; i02++) {
  9623. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9624. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9625. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9626. ggml_float sumr = 0.0;
  9627. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9628. float v = x[i00] - mean;
  9629. y[i00] = v;
  9630. sumr += (ggml_float)(v * v);
  9631. }
  9632. sum2 += sumr;
  9633. }
  9634. }
  9635. const float variance = sum2 / (ne00 * ne01 * step);
  9636. const float scale = 1.0f / sqrtf(variance + eps);
  9637. for (int64_t i02 = start; i02 < end; i02++) {
  9638. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9639. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9640. ggml_vec_scale_f32(ne00, y, scale);
  9641. }
  9642. }
  9643. }
  9644. }
  9645. }
  9646. static void ggml_compute_forward_group_norm(
  9647. const struct ggml_compute_params * params,
  9648. struct ggml_tensor * dst) {
  9649. const struct ggml_tensor * src0 = dst->src[0];
  9650. switch (src0->type) {
  9651. case GGML_TYPE_F32:
  9652. {
  9653. ggml_compute_forward_group_norm_f32(params, dst);
  9654. } break;
  9655. default:
  9656. {
  9657. GGML_ASSERT(false);
  9658. } break;
  9659. }
  9660. }
  9661. // ggml_compute_forward_mul_mat
  9662. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9663. // helper function to determine if it is better to use BLAS or not
  9664. // for large matrices, BLAS is faster
  9665. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9666. const struct ggml_tensor * src0 = dst->src[0];
  9667. const struct ggml_tensor * src1 = dst->src[1];
  9668. //const int64_t ne00 = src0->ne[0];
  9669. //const int64_t ne01 = src0->ne[1];
  9670. const int64_t ne10 = src1->ne[0];
  9671. const int64_t ne0 = dst->ne[0];
  9672. const int64_t ne1 = dst->ne[1];
  9673. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9674. // all the experts for each batch element and the processing would become incredibly slow
  9675. // TODO: find the optimal values for these
  9676. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9677. ggml_is_contiguous(src0) &&
  9678. ggml_is_contiguous(src1) &&
  9679. //src0->type == GGML_TYPE_F32 &&
  9680. src1->type == GGML_TYPE_F32 &&
  9681. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9682. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9683. return true;
  9684. }
  9685. return false;
  9686. }
  9687. #endif
  9688. static void ggml_compute_forward_mul_mat_one_chunk(
  9689. const struct ggml_compute_params * params,
  9690. struct ggml_tensor * dst,
  9691. const int64_t num_rows_per_vec_dot,
  9692. const int64_t ir0_start,
  9693. const int64_t ir0_end,
  9694. const int64_t ir1_start,
  9695. const int64_t ir1_end) {
  9696. const struct ggml_tensor * src0 = dst->src[0];
  9697. const struct ggml_tensor * src1 = dst->src[1];
  9698. GGML_TENSOR_BINARY_OP_LOCALS
  9699. const enum ggml_type type = src0->type;
  9700. const bool src1_cont = ggml_is_contiguous(src1);
  9701. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9702. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9703. // broadcast factors
  9704. const int64_t r2 = ne12 / ne02;
  9705. const int64_t r3 = ne13 / ne03;
  9706. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  9707. // threads with no work simply yield (not sure if it helps)
  9708. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  9709. return;
  9710. }
  9711. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9712. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9713. assert(ne12 % ne02 == 0);
  9714. assert(ne13 % ne03 == 0);
  9715. // block-tiling attempt
  9716. const int64_t blck_0 = 16;
  9717. const int64_t blck_1 = 16;
  9718. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9719. // attempt to reduce false-sharing (does not seem to make a difference)
  9720. // 16 * 2, accounting for mmla kernels
  9721. float tmp[32];
  9722. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  9723. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  9724. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  9725. const int64_t i13 = (ir1 / (ne12 * ne1));
  9726. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  9727. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  9728. // broadcast src0 into src1
  9729. const int64_t i03 = i13 / r3;
  9730. const int64_t i02 = i12 / r2;
  9731. const int64_t i1 = i11;
  9732. const int64_t i2 = i12;
  9733. const int64_t i3 = i13;
  9734. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  9735. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9736. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9737. // the original src1 data pointer, so we should index using the indices directly
  9738. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9739. const char * src1_col = (const char*)wdata +
  9740. (src1_cont || src1->type != vec_dot_type
  9741. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  9742. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  9743. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  9744. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  9745. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9746. //}
  9747. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  9748. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  9749. }
  9750. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  9751. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  9752. }
  9753. }
  9754. }
  9755. }
  9756. }
  9757. static void ggml_compute_forward_mul_mat(
  9758. const struct ggml_compute_params * params,
  9759. struct ggml_tensor * dst,
  9760. struct ggml_compute_state * state) {
  9761. const struct ggml_tensor * src0 = dst->src[0];
  9762. const struct ggml_tensor * src1 = dst->src[1];
  9763. int64_t t0 = ggml_perf_time_us();
  9764. UNUSED(t0);
  9765. GGML_TENSOR_BINARY_OP_LOCALS
  9766. const int ith = params->ith;
  9767. const int nth = params->nth;
  9768. const enum ggml_type type = src0->type;
  9769. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9770. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9771. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9772. GGML_ASSERT(ne0 == ne01);
  9773. GGML_ASSERT(ne1 == ne11);
  9774. GGML_ASSERT(ne2 == ne12);
  9775. GGML_ASSERT(ne3 == ne13);
  9776. // we don't support permuted src0 or src1
  9777. GGML_ASSERT(nb00 == ggml_type_size(type));
  9778. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9779. // dst cannot be transposed or permuted
  9780. GGML_ASSERT(nb0 == sizeof(float));
  9781. GGML_ASSERT(nb0 <= nb1);
  9782. GGML_ASSERT(nb1 <= nb2);
  9783. GGML_ASSERT(nb2 <= nb3);
  9784. // broadcast factors
  9785. const int64_t r2 = ne12 / ne02;
  9786. const int64_t r3 = ne13 / ne03;
  9787. UNUSED(r2);
  9788. UNUSED(r3);
  9789. // nb01 >= nb00 - src0 is not transposed
  9790. // compute by src0 rows
  9791. #if defined(GGML_USE_CLBLAST)
  9792. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9793. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  9794. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9795. }
  9796. return;
  9797. }
  9798. #endif
  9799. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9800. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  9801. const int64_t ne_plane = ne01*ne00;
  9802. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  9803. UNUSED(desired_wsize);
  9804. if (params->type == GGML_TASK_TYPE_INIT) {
  9805. if (type != GGML_TYPE_F32) {
  9806. assert(params->wsize >= desired_wsize);
  9807. // parallelize by src0 rows
  9808. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9809. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9810. // broadcast src0 into src1 across 2nd,3rd dimension
  9811. const int64_t i03 = i13/r3;
  9812. const int64_t i02 = i12/r2;
  9813. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9814. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9815. ggml_to_float_t const to_float = type_traits[type].to_float;
  9816. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9817. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  9818. }
  9819. }
  9820. }
  9821. }
  9822. return;
  9823. }
  9824. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9825. return;
  9826. }
  9827. // perform sgemm, parallelization controlled by blas lib
  9828. if (ith != 0) {
  9829. return;
  9830. }
  9831. //const int64_t tgemm0 = ggml_perf_time_us();
  9832. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9833. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9834. const int64_t i03 = i13/r3;
  9835. const int64_t i02 = i12/r2;
  9836. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9837. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9838. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9839. if (type != GGML_TYPE_F32) {
  9840. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9841. }
  9842. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9843. ne1, ne01, ne10,
  9844. 1.0f, y, ne10,
  9845. x, ne00,
  9846. 0.0f, d, ne01);
  9847. }
  9848. }
  9849. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  9850. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9851. return;
  9852. }
  9853. #endif
  9854. #if GGML_USE_LLAMAFILE
  9855. const bool src1_cont = ggml_is_contiguous(src1);
  9856. if (src1_cont) {
  9857. for (int64_t i13 = 0; i13 < ne13; i13++)
  9858. for (int64_t i12 = 0; i12 < ne12; i12++)
  9859. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9860. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9861. nb01/ggml_type_size(src0->type),
  9862. (const char *)src1->data + i12*nb12 + i13*nb13,
  9863. nb11/ggml_type_size(src1->type),
  9864. (char *)dst->data + i12*nb2 + i13*nb3,
  9865. nb1/ggml_type_size(dst->type),
  9866. ith, nth,
  9867. params->type,
  9868. src0->type,
  9869. src1->type,
  9870. dst->type))
  9871. goto UseGgmlGemm1;
  9872. return;
  9873. }
  9874. UseGgmlGemm1:;
  9875. #endif
  9876. if (params->type == GGML_TASK_TYPE_INIT) {
  9877. if (ith != 0) {
  9878. return;
  9879. }
  9880. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  9881. atomic_store(&state->shared->current_chunk, nth);
  9882. if (src1->type != vec_dot_type) {
  9883. char * wdata = params->wdata;
  9884. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9885. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9886. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9887. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9888. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9889. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9890. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9891. wdata += row_size;
  9892. }
  9893. }
  9894. }
  9895. }
  9896. return;
  9897. }
  9898. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9899. return;
  9900. }
  9901. #if GGML_USE_LLAMAFILE
  9902. if (src1->type != vec_dot_type) {
  9903. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9904. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9905. for (int64_t i13 = 0; i13 < ne13; i13++)
  9906. for (int64_t i12 = 0; i12 < ne12; i12++)
  9907. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9908. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9909. nb01/ggml_type_size(src0->type),
  9910. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  9911. row_size/ggml_type_size(vec_dot_type),
  9912. (char *)dst->data + i12*nb2 + i13*nb3,
  9913. nb1/ggml_type_size(dst->type),
  9914. ith, nth,
  9915. params->type,
  9916. src0->type,
  9917. vec_dot_type,
  9918. dst->type))
  9919. goto UseGgmlGemm2;
  9920. return;
  9921. }
  9922. UseGgmlGemm2:;
  9923. #endif
  9924. #ifdef GGML_PERF
  9925. int chunks_executed = 0;
  9926. UNUSED(chunks_executed);
  9927. #endif
  9928. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  9929. const int64_t nr0 = ne0;
  9930. // This is the size of the rest of the dimensions of the result
  9931. const int64_t nr1 = ne1 * ne2 * ne3;
  9932. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  9933. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  9934. // TODO: currently the mmla kernels support only even numbered rows/cols.
  9935. // this check can be removed once they are extended to support odd numbered rows/cols too
  9936. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  9937. num_rows_per_vec_dot = 1;
  9938. }
  9939. // Now select a reasonable chunk size.
  9940. int chunk_size = 16;
  9941. // We need to step up the size if it's small
  9942. if (nr0 == 1 || nr1 == 1) {
  9943. chunk_size = 64;
  9944. }
  9945. // distribute the work across the inner or outer loop based on which one is larger
  9946. // The number of chunks in the 0/1 dim.
  9947. // CEIL(nr0/chunk_size)
  9948. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  9949. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  9950. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  9951. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  9952. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  9953. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  9954. // distribute the thread work across the inner or outer loop based on which one is larger
  9955. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9956. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9957. }
  9958. // The number of elements in each chunk
  9959. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  9960. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  9961. //if (ith == 0)
  9962. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  9963. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  9964. int current_chunk = ith;
  9965. while (current_chunk < nchunk0 * nchunk1) {
  9966. const int64_t ith0 = current_chunk % nchunk0;
  9967. const int64_t ith1 = current_chunk / nchunk0;
  9968. const int64_t ir0_start = dr0 * ith0;
  9969. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  9970. const int64_t ir1_start = dr1 * ith1;
  9971. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  9972. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  9973. #ifdef GGML_PERF
  9974. chunks_executed++;
  9975. #endif
  9976. if (nth >= nchunk0 * nchunk1) {
  9977. break;
  9978. }
  9979. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  9980. }
  9981. #ifdef GGML_PERF
  9982. // These numbers are useful when trying to measure how well the threading scheduling works.
  9983. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  9984. //float time = (ggml_perf_time_us() - t0);
  9985. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  9986. #endif
  9987. }
  9988. // ggml_compute_forward_mul_mat_id
  9989. static void ggml_compute_forward_mul_mat_id(
  9990. const struct ggml_compute_params * params,
  9991. struct ggml_tensor * dst) {
  9992. const struct ggml_tensor * src0 = dst->src[0];
  9993. const struct ggml_tensor * src1 = dst->src[1];
  9994. const struct ggml_tensor * ids = dst->src[2];
  9995. GGML_TENSOR_BINARY_OP_LOCALS
  9996. const int ith = params->ith;
  9997. const int nth = params->nth;
  9998. const enum ggml_type type = src0->type;
  9999. const bool src1_cont = ggml_is_contiguous(src1);
  10000. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10001. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10002. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10003. // we don't support permuted src0 or src1
  10004. GGML_ASSERT(nb00 == ggml_type_size(type));
  10005. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10006. // dst cannot be transposed or permuted
  10007. GGML_ASSERT(nb0 == sizeof(float));
  10008. GGML_ASSERT(nb0 <= nb1);
  10009. GGML_ASSERT(nb1 <= nb2);
  10010. GGML_ASSERT(nb2 <= nb3);
  10011. // row groups
  10012. const int n_ids = ids->ne[0]; // n_expert_used
  10013. const int n_as = ne02; // n_expert
  10014. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10015. (char *) params->wdata :
  10016. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10017. struct mmid_row_mapping {
  10018. int32_t i1;
  10019. int32_t i2;
  10020. };
  10021. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10022. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10023. if (params->type == GGML_TASK_TYPE_INIT) {
  10024. if (ith != 0) {
  10025. return;
  10026. }
  10027. char * wdata = params->wdata;
  10028. if (src1->type != vec_dot_type) {
  10029. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10030. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10031. assert(src1->type == GGML_TYPE_F32);
  10032. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10033. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10034. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10035. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10036. wdata += row_size;
  10037. }
  10038. }
  10039. }
  10040. }
  10041. // initialize matrix_row_counts
  10042. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10043. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10044. // group rows by src0 matrix
  10045. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10046. for (int id = 0; id < n_ids; ++id) {
  10047. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10048. assert(i02 >= 0 && i02 < n_as);
  10049. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10050. matrix_row_counts[i02] += 1;
  10051. }
  10052. }
  10053. return;
  10054. }
  10055. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10056. return;
  10057. }
  10058. // compute each matrix multiplication in sequence
  10059. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10060. const int64_t cne1 = matrix_row_counts[cur_a];
  10061. if (cne1 == 0) {
  10062. continue;
  10063. }
  10064. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10065. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10066. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10067. const int64_t nr0 = ne01; // src0 rows
  10068. const int64_t nr1 = cne1; // src1 rows
  10069. // distribute the thread work across the inner or outer loop based on which one is larger
  10070. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10071. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10072. const int64_t ith0 = ith % nth0;
  10073. const int64_t ith1 = ith / nth0;
  10074. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10075. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10076. const int64_t ir010 = dr0*ith0;
  10077. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10078. const int64_t ir110 = dr1*ith1;
  10079. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10080. // threads with no work simply yield (not sure if it helps)
  10081. //if (ir010 >= ir011 || ir110 >= ir111) {
  10082. // sched_yield();
  10083. // continue;
  10084. //}
  10085. // block-tiling attempt
  10086. const int64_t blck_0 = 16;
  10087. const int64_t blck_1 = 16;
  10088. // attempt to reduce false-sharing (does not seem to make a difference)
  10089. float tmp[16];
  10090. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10091. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10092. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10093. const int64_t _i12 = ir1; // logical row index for this expert
  10094. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10095. const int id = row_mapping.i1; // selected expert index
  10096. const int64_t i11 = id % ne11;
  10097. const int64_t i12 = row_mapping.i2; // row index in src1
  10098. const int64_t i1 = id; // selected expert index
  10099. const int64_t i2 = i12; // row
  10100. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10101. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10102. // the original src1 data pointer, so we should index using the indices directly
  10103. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10104. const char * src1_col = (const char *) wdata +
  10105. (src1_cont || src1->type != vec_dot_type
  10106. ? (i11 + i12*ne11)*row_size
  10107. : (i11*nb11 + i12*nb12));
  10108. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10109. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10110. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10111. //}
  10112. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10113. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10114. }
  10115. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10116. }
  10117. }
  10118. }
  10119. }
  10120. #undef MMID_MATRIX_ROW
  10121. }
  10122. // ggml_compute_forward_out_prod
  10123. static void ggml_compute_forward_out_prod_f32(
  10124. const struct ggml_compute_params * params,
  10125. struct ggml_tensor * dst) {
  10126. const struct ggml_tensor * src0 = dst->src[0];
  10127. const struct ggml_tensor * src1 = dst->src[1];
  10128. // int64_t t0 = ggml_perf_time_us();
  10129. // UNUSED(t0);
  10130. GGML_TENSOR_BINARY_OP_LOCALS
  10131. const int ith = params->ith;
  10132. const int nth = params->nth;
  10133. GGML_ASSERT(ne0 == ne00);
  10134. GGML_ASSERT(ne1 == ne10);
  10135. GGML_ASSERT(ne2 == ne02);
  10136. GGML_ASSERT(ne02 == ne12);
  10137. GGML_ASSERT(ne3 == ne13);
  10138. GGML_ASSERT(ne03 == ne13);
  10139. // we don't support permuted src0 or src1
  10140. GGML_ASSERT(nb00 == sizeof(float));
  10141. // dst cannot be transposed or permuted
  10142. GGML_ASSERT(nb0 == sizeof(float));
  10143. // GGML_ASSERT(nb0 <= nb1);
  10144. // GGML_ASSERT(nb1 <= nb2);
  10145. // GGML_ASSERT(nb2 <= nb3);
  10146. // nb01 >= nb00 - src0 is not transposed
  10147. // compute by src0 rows
  10148. // TODO: #if defined(GGML_USE_CLBLAST)
  10149. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10150. bool use_blas = ggml_is_matrix(src0) &&
  10151. ggml_is_matrix(src1) &&
  10152. ggml_is_contiguous(src0) &&
  10153. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10154. #endif
  10155. if (params->type == GGML_TASK_TYPE_INIT) {
  10156. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10157. if (use_blas) {
  10158. return;
  10159. }
  10160. #endif
  10161. if (ith != 0) {
  10162. return;
  10163. }
  10164. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10165. return;
  10166. }
  10167. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10168. return;
  10169. }
  10170. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10171. if (use_blas) {
  10172. if (params->ith != 0) { // All threads other than the first do no work.
  10173. return;
  10174. }
  10175. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10176. // src0: (k,n)
  10177. // src1: (k,m)
  10178. // dst: (m,n)
  10179. //
  10180. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10181. // Also expressed as (major,minor)
  10182. // a: (m,k): so src1 transposed
  10183. // b: (k,n): so src0
  10184. // c: (m,n)
  10185. //
  10186. // However, if ggml_is_transposed(src1) is true, then
  10187. // src1->data already contains a transposed version, so sgemm mustn't
  10188. // transpose it further.
  10189. int n = src0->ne[0];
  10190. int k = src0->ne[1];
  10191. int m = src1->ne[0];
  10192. int transposeA, lda;
  10193. if (!ggml_is_transposed(src1)) {
  10194. transposeA = CblasTrans;
  10195. lda = m;
  10196. } else {
  10197. transposeA = CblasNoTrans;
  10198. lda = k;
  10199. }
  10200. float * a = (float *) ((char *) src1->data);
  10201. float * b = (float *) ((char *) src0->data);
  10202. float * c = (float *) ((char *) dst->data);
  10203. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10204. return;
  10205. }
  10206. #endif
  10207. // dst[:,:,:,:] = 0
  10208. // for i2,i3:
  10209. // for i1:
  10210. // for i01:
  10211. // for i0:
  10212. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10213. // parallelize by last three dimensions
  10214. // total rows in dst
  10215. const int64_t nr = ne1*ne2*ne3;
  10216. // rows per thread
  10217. const int64_t dr = (nr + nth - 1)/nth;
  10218. // row range for this thread
  10219. const int64_t ir0 = dr*ith;
  10220. const int64_t ir1 = MIN(ir0 + dr, nr);
  10221. // block-tiling attempt
  10222. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10223. const int64_t blck_1 = 16;
  10224. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10225. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10226. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10227. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10228. for (int64_t ir = bir; ir < bir1; ++ir) {
  10229. // dst indices
  10230. const int64_t i3 = ir/(ne2*ne1);
  10231. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10232. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10233. const int64_t i02 = i2;
  10234. const int64_t i03 = i3;
  10235. //const int64_t i10 = i1;
  10236. const int64_t i12 = i2;
  10237. const int64_t i13 = i3;
  10238. #if GGML_VEC_MAD_UNROLL > 2
  10239. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10240. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10241. const int64_t i11 = i01;
  10242. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10243. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10244. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10245. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10246. }
  10247. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10248. const int64_t i11 = i01;
  10249. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10250. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10251. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10252. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10253. }
  10254. #else
  10255. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10256. const int64_t i11 = i01;
  10257. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10258. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10259. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10260. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10261. }
  10262. #endif
  10263. }
  10264. }
  10265. }
  10266. //int64_t t1 = ggml_perf_time_us();
  10267. //static int64_t acc = 0;
  10268. //acc += t1 - t0;
  10269. //if (t1 - t0 > 10) {
  10270. // printf("\n");
  10271. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10272. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10273. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10274. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10275. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10276. //}
  10277. }
  10278. static void ggml_compute_forward_out_prod_q_f32(
  10279. const struct ggml_compute_params * params,
  10280. struct ggml_tensor * dst) {
  10281. const struct ggml_tensor * src0 = dst->src[0];
  10282. const struct ggml_tensor * src1 = dst->src[1];
  10283. // int64_t t0 = ggml_perf_time_us();
  10284. // UNUSED(t0);
  10285. GGML_TENSOR_BINARY_OP_LOCALS;
  10286. const int ith = params->ith;
  10287. const int nth = params->nth;
  10288. const enum ggml_type type = src0->type;
  10289. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10290. GGML_ASSERT(ne02 == ne12);
  10291. GGML_ASSERT(ne03 == ne13);
  10292. GGML_ASSERT(ne2 == ne12);
  10293. GGML_ASSERT(ne3 == ne13);
  10294. // we don't support permuted src0 dim0
  10295. GGML_ASSERT(nb00 == ggml_type_size(type));
  10296. // dst dim0 cannot be transposed or permuted
  10297. GGML_ASSERT(nb0 == sizeof(float));
  10298. // GGML_ASSERT(nb0 <= nb1);
  10299. // GGML_ASSERT(nb1 <= nb2);
  10300. // GGML_ASSERT(nb2 <= nb3);
  10301. GGML_ASSERT(ne0 == ne00);
  10302. GGML_ASSERT(ne1 == ne10);
  10303. GGML_ASSERT(ne2 == ne02);
  10304. GGML_ASSERT(ne3 == ne03);
  10305. // nb01 >= nb00 - src0 is not transposed
  10306. // compute by src0 rows
  10307. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10308. if (params->type == GGML_TASK_TYPE_INIT) {
  10309. if (ith != 0) {
  10310. return;
  10311. }
  10312. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10313. return;
  10314. }
  10315. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10316. return;
  10317. }
  10318. // parallelize by last three dimensions
  10319. // total rows in dst
  10320. const int64_t nr = ne1*ne2*ne3;
  10321. // rows per thread
  10322. const int64_t dr = (nr + nth - 1)/nth;
  10323. // row range for this thread
  10324. const int64_t ir0 = dr*ith;
  10325. const int64_t ir1 = MIN(ir0 + dr, nr);
  10326. // dst[:,:,:,:] = 0
  10327. // for i2,i3:
  10328. // for i1:
  10329. // for i01:
  10330. // for i0:
  10331. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10332. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10333. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10334. // dst indices
  10335. const int64_t i3 = ir/(ne2*ne1);
  10336. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10337. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10338. const int64_t i02 = i2;
  10339. const int64_t i03 = i3;
  10340. //const int64_t i10 = i1;
  10341. const int64_t i12 = i2;
  10342. const int64_t i13 = i3;
  10343. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10344. const int64_t i11 = i01;
  10345. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10346. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10347. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10348. dequantize_row_q(s0, wdata, ne0);
  10349. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10350. }
  10351. }
  10352. //int64_t t1 = ggml_perf_time_us();
  10353. //static int64_t acc = 0;
  10354. //acc += t1 - t0;
  10355. //if (t1 - t0 > 10) {
  10356. // printf("\n");
  10357. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10358. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10359. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10360. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10361. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10362. //}
  10363. }
  10364. static void ggml_compute_forward_out_prod(
  10365. const struct ggml_compute_params * params,
  10366. struct ggml_tensor * dst) {
  10367. const struct ggml_tensor * src0 = dst->src[0];
  10368. switch (src0->type) {
  10369. case GGML_TYPE_Q4_0:
  10370. case GGML_TYPE_Q4_1:
  10371. case GGML_TYPE_Q5_0:
  10372. case GGML_TYPE_Q5_1:
  10373. case GGML_TYPE_Q8_0:
  10374. case GGML_TYPE_Q2_K:
  10375. case GGML_TYPE_Q3_K:
  10376. case GGML_TYPE_Q4_K:
  10377. case GGML_TYPE_Q5_K:
  10378. case GGML_TYPE_Q6_K:
  10379. case GGML_TYPE_IQ2_XXS:
  10380. case GGML_TYPE_IQ2_XS:
  10381. case GGML_TYPE_IQ3_XXS:
  10382. case GGML_TYPE_IQ1_S:
  10383. case GGML_TYPE_IQ1_M:
  10384. case GGML_TYPE_IQ4_NL:
  10385. case GGML_TYPE_IQ4_XS:
  10386. case GGML_TYPE_IQ3_S:
  10387. case GGML_TYPE_IQ2_S:
  10388. {
  10389. ggml_compute_forward_out_prod_q_f32(params, dst);
  10390. } break;
  10391. case GGML_TYPE_F16:
  10392. {
  10393. GGML_ASSERT(false); // todo
  10394. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10395. } break;
  10396. case GGML_TYPE_F32:
  10397. {
  10398. ggml_compute_forward_out_prod_f32(params, dst);
  10399. } break;
  10400. default:
  10401. {
  10402. GGML_ASSERT(false);
  10403. } break;
  10404. }
  10405. }
  10406. // ggml_compute_forward_scale
  10407. static void ggml_compute_forward_scale_f32(
  10408. const struct ggml_compute_params * params,
  10409. struct ggml_tensor * dst) {
  10410. const struct ggml_tensor * src0 = dst->src[0];
  10411. GGML_ASSERT(ggml_is_contiguous(src0));
  10412. GGML_ASSERT(ggml_is_contiguous(dst));
  10413. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10414. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10415. return;
  10416. }
  10417. // scale factor
  10418. float v;
  10419. memcpy(&v, dst->op_params, sizeof(float));
  10420. const int ith = params->ith;
  10421. const int nth = params->nth;
  10422. const int nc = src0->ne[0];
  10423. const int nr = ggml_nrows(src0);
  10424. // rows per thread
  10425. const int dr = (nr + nth - 1)/nth;
  10426. // row range for this thread
  10427. const int ir0 = dr*ith;
  10428. const int ir1 = MIN(ir0 + dr, nr);
  10429. const size_t nb01 = src0->nb[1];
  10430. const size_t nb1 = dst->nb[1];
  10431. for (int i1 = ir0; i1 < ir1; i1++) {
  10432. if (dst->data != src0->data) {
  10433. // src0 is same shape as dst => same indices
  10434. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10435. }
  10436. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10437. }
  10438. }
  10439. static void ggml_compute_forward_scale(
  10440. const struct ggml_compute_params * params,
  10441. struct ggml_tensor * dst) {
  10442. const struct ggml_tensor * src0 = dst->src[0];
  10443. switch (src0->type) {
  10444. case GGML_TYPE_F32:
  10445. {
  10446. ggml_compute_forward_scale_f32(params, dst);
  10447. } break;
  10448. default:
  10449. {
  10450. GGML_ASSERT(false);
  10451. } break;
  10452. }
  10453. }
  10454. // ggml_compute_forward_set
  10455. static void ggml_compute_forward_set_f32(
  10456. const struct ggml_compute_params * params,
  10457. struct ggml_tensor * dst) {
  10458. const struct ggml_tensor * src0 = dst->src[0];
  10459. const struct ggml_tensor * src1 = dst->src[1];
  10460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10461. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10462. // view src0 and dst with these strides and data offset inbytes during set
  10463. // nb0 is implicitly element_size because src0 and dst are contiguous
  10464. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10465. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10466. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10467. size_t offset = ((int32_t *) dst->op_params)[3];
  10468. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10469. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10470. if (params->ith != 0) {
  10471. return;
  10472. }
  10473. // memcpy needs to be synchronized across threads to avoid race conditions.
  10474. // => do it in INIT phase
  10475. memcpy(
  10476. ((char *) dst->data),
  10477. ((char *) src0->data),
  10478. ggml_nbytes(dst));
  10479. }
  10480. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10481. return;
  10482. }
  10483. const int ith = params->ith;
  10484. const int nth = params->nth;
  10485. const int nr = ggml_nrows(src1);
  10486. const int nc = src1->ne[0];
  10487. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10488. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10489. // src0 and dst as viewed during set
  10490. const size_t nb0 = ggml_element_size(src0);
  10491. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10492. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10493. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10494. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10495. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10496. GGML_ASSERT(nb10 == sizeof(float));
  10497. // rows per thread
  10498. const int dr = (nr + nth - 1)/nth;
  10499. // row range for this thread
  10500. const int ir0 = dr*ith;
  10501. const int ir1 = MIN(ir0 + dr, nr);
  10502. for (int ir = ir0; ir < ir1; ++ir) {
  10503. // src0 and dst are viewed with shape of src1 and offset
  10504. // => same indices
  10505. const int i3 = ir/(ne12*ne11);
  10506. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10507. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10508. ggml_vec_cpy_f32(nc,
  10509. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10510. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10511. }
  10512. }
  10513. static void ggml_compute_forward_set(
  10514. const struct ggml_compute_params * params,
  10515. struct ggml_tensor * dst) {
  10516. const struct ggml_tensor * src0 = dst->src[0];
  10517. switch (src0->type) {
  10518. case GGML_TYPE_F32:
  10519. {
  10520. ggml_compute_forward_set_f32(params, dst);
  10521. } break;
  10522. case GGML_TYPE_F16:
  10523. case GGML_TYPE_BF16:
  10524. case GGML_TYPE_Q4_0:
  10525. case GGML_TYPE_Q4_1:
  10526. case GGML_TYPE_Q5_0:
  10527. case GGML_TYPE_Q5_1:
  10528. case GGML_TYPE_Q8_0:
  10529. case GGML_TYPE_Q8_1:
  10530. case GGML_TYPE_Q2_K:
  10531. case GGML_TYPE_Q3_K:
  10532. case GGML_TYPE_Q4_K:
  10533. case GGML_TYPE_Q5_K:
  10534. case GGML_TYPE_Q6_K:
  10535. case GGML_TYPE_IQ2_XXS:
  10536. case GGML_TYPE_IQ2_XS:
  10537. case GGML_TYPE_IQ3_XXS:
  10538. case GGML_TYPE_IQ1_S:
  10539. case GGML_TYPE_IQ1_M:
  10540. case GGML_TYPE_IQ4_NL:
  10541. case GGML_TYPE_IQ4_XS:
  10542. case GGML_TYPE_IQ3_S:
  10543. case GGML_TYPE_IQ2_S:
  10544. default:
  10545. {
  10546. GGML_ASSERT(false);
  10547. } break;
  10548. }
  10549. }
  10550. // ggml_compute_forward_cpy
  10551. static void ggml_compute_forward_cpy(
  10552. const struct ggml_compute_params * params,
  10553. struct ggml_tensor * dst) {
  10554. ggml_compute_forward_dup(params, dst);
  10555. }
  10556. // ggml_compute_forward_cont
  10557. static void ggml_compute_forward_cont(
  10558. const struct ggml_compute_params * params,
  10559. struct ggml_tensor * dst) {
  10560. ggml_compute_forward_dup(params, dst);
  10561. }
  10562. // ggml_compute_forward_reshape
  10563. static void ggml_compute_forward_reshape(
  10564. const struct ggml_compute_params * params,
  10565. struct ggml_tensor * dst) {
  10566. // NOP
  10567. UNUSED(params);
  10568. UNUSED(dst);
  10569. }
  10570. // ggml_compute_forward_view
  10571. static void ggml_compute_forward_view(
  10572. const struct ggml_compute_params * params,
  10573. const struct ggml_tensor * dst) {
  10574. // NOP
  10575. UNUSED(params);
  10576. UNUSED(dst);
  10577. }
  10578. // ggml_compute_forward_permute
  10579. static void ggml_compute_forward_permute(
  10580. const struct ggml_compute_params * params,
  10581. const struct ggml_tensor * dst) {
  10582. // NOP
  10583. UNUSED(params);
  10584. UNUSED(dst);
  10585. }
  10586. // ggml_compute_forward_transpose
  10587. static void ggml_compute_forward_transpose(
  10588. const struct ggml_compute_params * params,
  10589. const struct ggml_tensor * dst) {
  10590. // NOP
  10591. UNUSED(params);
  10592. UNUSED(dst);
  10593. }
  10594. // ggml_compute_forward_get_rows
  10595. static void ggml_compute_forward_get_rows_q(
  10596. const struct ggml_compute_params * params,
  10597. struct ggml_tensor * dst) {
  10598. const struct ggml_tensor * src0 = dst->src[0];
  10599. const struct ggml_tensor * src1 = dst->src[1];
  10600. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10601. return;
  10602. }
  10603. GGML_TENSOR_BINARY_OP_LOCALS
  10604. const int64_t nc = ne00;
  10605. const int64_t nr = ggml_nelements(src1);
  10606. const enum ggml_type type = src0->type;
  10607. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10608. assert(ne0 == nc);
  10609. assert(ne02 == ne11);
  10610. assert(nb00 == ggml_type_size(type));
  10611. assert(ggml_nrows(dst) == nr);
  10612. const int ith = params->ith;
  10613. const int nth = params->nth;
  10614. // rows per thread
  10615. const int dr = (nr + nth - 1)/nth;
  10616. // row range for this thread
  10617. const int ir0 = dr*ith;
  10618. const int ir1 = MIN(ir0 + dr, nr);
  10619. for (int64_t i = ir0; i < ir1; ++i) {
  10620. const int64_t i12 = i/(ne11*ne10);
  10621. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10622. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10623. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10624. dequantize_row_q(
  10625. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10626. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10627. }
  10628. }
  10629. static void ggml_compute_forward_get_rows_f16(
  10630. const struct ggml_compute_params * params,
  10631. struct ggml_tensor * dst) {
  10632. const struct ggml_tensor * src0 = dst->src[0];
  10633. const struct ggml_tensor * src1 = dst->src[1];
  10634. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10635. return;
  10636. }
  10637. GGML_TENSOR_BINARY_OP_LOCALS
  10638. const int64_t nc = ne00;
  10639. const int64_t nr = ggml_nelements(src1);
  10640. assert(ne0 == nc);
  10641. assert(ne02 == ne11);
  10642. assert(nb00 == sizeof(ggml_fp16_t));
  10643. assert(ggml_nrows(dst) == nr);
  10644. const int ith = params->ith;
  10645. const int nth = params->nth;
  10646. // rows per thread
  10647. const int dr = (nr + nth - 1)/nth;
  10648. // row range for this thread
  10649. const int ir0 = dr*ith;
  10650. const int ir1 = MIN(ir0 + dr, nr);
  10651. for (int64_t i = ir0; i < ir1; ++i) {
  10652. const int64_t i12 = i/(ne11*ne10);
  10653. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10654. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10655. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10656. ggml_fp16_to_fp32_row(
  10657. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10658. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10659. }
  10660. }
  10661. static void ggml_compute_forward_get_rows_bf16(
  10662. const struct ggml_compute_params * params,
  10663. struct ggml_tensor * dst) {
  10664. const struct ggml_tensor * src0 = dst->src[0];
  10665. const struct ggml_tensor * src1 = dst->src[1];
  10666. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10667. return;
  10668. }
  10669. GGML_TENSOR_BINARY_OP_LOCALS
  10670. const int64_t nc = ne00;
  10671. const int64_t nr = ggml_nelements(src1);
  10672. assert(ne0 == nc);
  10673. assert(ne02 == ne11);
  10674. assert(nb00 == sizeof(ggml_bf16_t));
  10675. assert(ggml_nrows(dst) == nr);
  10676. const int ith = params->ith;
  10677. const int nth = params->nth;
  10678. // rows per thread
  10679. const int dr = (nr + nth - 1)/nth;
  10680. // row range for this thread
  10681. const int ir0 = dr*ith;
  10682. const int ir1 = MIN(ir0 + dr, nr);
  10683. for (int64_t i = ir0; i < ir1; ++i) {
  10684. const int64_t i12 = i/(ne11*ne10);
  10685. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10686. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10687. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10688. ggml_bf16_to_fp32_row(
  10689. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10690. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10691. }
  10692. }
  10693. static void ggml_compute_forward_get_rows_f32(
  10694. const struct ggml_compute_params * params,
  10695. struct ggml_tensor * dst) {
  10696. const struct ggml_tensor * src0 = dst->src[0];
  10697. const struct ggml_tensor * src1 = dst->src[1];
  10698. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10699. return;
  10700. }
  10701. GGML_TENSOR_BINARY_OP_LOCALS
  10702. const int64_t nc = ne00;
  10703. const int64_t nr = ggml_nelements(src1);
  10704. assert(ne0 == nc);
  10705. assert(ne02 == ne11);
  10706. assert(nb00 == sizeof(float));
  10707. assert(ggml_nrows(dst) == nr);
  10708. const int ith = params->ith;
  10709. const int nth = params->nth;
  10710. // rows per thread
  10711. const int dr = (nr + nth - 1)/nth;
  10712. // row range for this thread
  10713. const int ir0 = dr*ith;
  10714. const int ir1 = MIN(ir0 + dr, nr);
  10715. for (int64_t i = ir0; i < ir1; ++i) {
  10716. const int64_t i12 = i/(ne11*ne10);
  10717. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10718. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10719. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10720. ggml_vec_cpy_f32(nc,
  10721. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10722. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10723. }
  10724. }
  10725. static void ggml_compute_forward_get_rows(
  10726. const struct ggml_compute_params * params,
  10727. struct ggml_tensor * dst) {
  10728. const struct ggml_tensor * src0 = dst->src[0];
  10729. switch (src0->type) {
  10730. case GGML_TYPE_Q4_0:
  10731. case GGML_TYPE_Q4_1:
  10732. case GGML_TYPE_Q5_0:
  10733. case GGML_TYPE_Q5_1:
  10734. case GGML_TYPE_Q8_0:
  10735. case GGML_TYPE_Q8_1:
  10736. case GGML_TYPE_Q2_K:
  10737. case GGML_TYPE_Q3_K:
  10738. case GGML_TYPE_Q4_K:
  10739. case GGML_TYPE_Q5_K:
  10740. case GGML_TYPE_Q6_K:
  10741. case GGML_TYPE_IQ2_XXS:
  10742. case GGML_TYPE_IQ2_XS:
  10743. case GGML_TYPE_IQ3_XXS:
  10744. case GGML_TYPE_IQ1_S:
  10745. case GGML_TYPE_IQ1_M:
  10746. case GGML_TYPE_IQ4_NL:
  10747. case GGML_TYPE_IQ4_XS:
  10748. case GGML_TYPE_IQ3_S:
  10749. case GGML_TYPE_IQ2_S:
  10750. {
  10751. ggml_compute_forward_get_rows_q(params, dst);
  10752. } break;
  10753. case GGML_TYPE_F16:
  10754. {
  10755. ggml_compute_forward_get_rows_f16(params, dst);
  10756. } break;
  10757. case GGML_TYPE_BF16:
  10758. {
  10759. ggml_compute_forward_get_rows_bf16(params, dst);
  10760. } break;
  10761. case GGML_TYPE_F32:
  10762. case GGML_TYPE_I32:
  10763. {
  10764. ggml_compute_forward_get_rows_f32(params, dst);
  10765. } break;
  10766. default:
  10767. {
  10768. GGML_ASSERT(false);
  10769. } break;
  10770. }
  10771. //static bool first = true;
  10772. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10773. //if (first) {
  10774. // first = false;
  10775. //} else {
  10776. // for (int k = 0; k < dst->ne[1]; ++k) {
  10777. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10778. // for (int i = 0; i < 16; ++i) {
  10779. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10780. // }
  10781. // printf("\n");
  10782. // }
  10783. // printf("\n");
  10784. // }
  10785. // printf("\n");
  10786. // exit(0);
  10787. //}
  10788. }
  10789. // ggml_compute_forward_get_rows_back
  10790. static void ggml_compute_forward_get_rows_back_f32_f16(
  10791. const struct ggml_compute_params * params,
  10792. struct ggml_tensor * dst) {
  10793. const struct ggml_tensor * src0 = dst->src[0];
  10794. const struct ggml_tensor * src1 = dst->src[1];
  10795. GGML_ASSERT(params->ith == 0);
  10796. GGML_ASSERT(ggml_is_contiguous(dst));
  10797. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10798. if (params->type == GGML_TASK_TYPE_INIT) {
  10799. if (params->ith != 0) {
  10800. return;
  10801. }
  10802. memset(dst->data, 0, ggml_nbytes(dst));
  10803. }
  10804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10805. return;
  10806. }
  10807. const int nc = src0->ne[0];
  10808. const int nr = ggml_nelements(src1);
  10809. GGML_ASSERT( dst->ne[0] == nc);
  10810. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10811. for (int i = 0; i < nr; ++i) {
  10812. const int r = ((int32_t *) src1->data)[i];
  10813. for (int j = 0; j < nc; ++j) {
  10814. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10815. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10816. }
  10817. }
  10818. }
  10819. static void ggml_compute_forward_get_rows_back_f32(
  10820. const struct ggml_compute_params * params,
  10821. struct ggml_tensor * dst) {
  10822. const struct ggml_tensor * src0 = dst->src[0];
  10823. const struct ggml_tensor * src1 = dst->src[1];
  10824. GGML_ASSERT(params->ith == 0);
  10825. GGML_ASSERT(ggml_is_contiguous(dst));
  10826. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10827. if (params->type == GGML_TASK_TYPE_INIT) {
  10828. if (params->ith != 0) {
  10829. return;
  10830. }
  10831. memset(dst->data, 0, ggml_nbytes(dst));
  10832. }
  10833. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10834. return;
  10835. }
  10836. const int nc = src0->ne[0];
  10837. const int nr = ggml_nelements(src1);
  10838. GGML_ASSERT( dst->ne[0] == nc);
  10839. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10840. for (int i = 0; i < nr; ++i) {
  10841. const int r = ((int32_t *) src1->data)[i];
  10842. ggml_vec_add_f32(nc,
  10843. (float *) ((char *) dst->data + r*dst->nb[1]),
  10844. (float *) ((char *) dst->data + r*dst->nb[1]),
  10845. (float *) ((char *) src0->data + i*src0->nb[1]));
  10846. }
  10847. }
  10848. static void ggml_compute_forward_get_rows_back(
  10849. const struct ggml_compute_params * params,
  10850. struct ggml_tensor * dst) {
  10851. const struct ggml_tensor * src0 = dst->src[0];
  10852. switch (src0->type) {
  10853. case GGML_TYPE_F16:
  10854. {
  10855. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10856. } break;
  10857. case GGML_TYPE_F32:
  10858. {
  10859. ggml_compute_forward_get_rows_back_f32(params, dst);
  10860. } break;
  10861. default:
  10862. {
  10863. GGML_ASSERT(false);
  10864. } break;
  10865. }
  10866. //static bool first = true;
  10867. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10868. //if (first) {
  10869. // first = false;
  10870. //} else {
  10871. // for (int k = 0; k < dst->ne[1]; ++k) {
  10872. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10873. // for (int i = 0; i < 16; ++i) {
  10874. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10875. // }
  10876. // printf("\n");
  10877. // }
  10878. // printf("\n");
  10879. // }
  10880. // printf("\n");
  10881. // exit(0);
  10882. //}
  10883. }
  10884. // ggml_compute_forward_diag
  10885. static void ggml_compute_forward_diag_f32(
  10886. const struct ggml_compute_params * params,
  10887. struct ggml_tensor * dst) {
  10888. const struct ggml_tensor * src0 = dst->src[0];
  10889. GGML_ASSERT(params->ith == 0);
  10890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10891. return;
  10892. }
  10893. // TODO: handle transposed/permuted matrices
  10894. GGML_TENSOR_UNARY_OP_LOCALS
  10895. GGML_ASSERT(ne00 == ne0);
  10896. GGML_ASSERT(ne00 == ne1);
  10897. GGML_ASSERT(ne01 == 1);
  10898. GGML_ASSERT(ne02 == ne2);
  10899. GGML_ASSERT(ne03 == ne3);
  10900. GGML_ASSERT(nb00 == sizeof(float));
  10901. GGML_ASSERT(nb0 == sizeof(float));
  10902. for (int i3 = 0; i3 < ne3; i3++) {
  10903. for (int i2 = 0; i2 < ne2; i2++) {
  10904. for (int i1 = 0; i1 < ne1; i1++) {
  10905. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10906. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10907. for (int i0 = 0; i0 < i1; i0++) {
  10908. d[i0] = 0;
  10909. }
  10910. d[i1] = s[i1];
  10911. for (int i0 = i1+1; i0 < ne0; i0++) {
  10912. d[i0] = 0;
  10913. }
  10914. }
  10915. }
  10916. }
  10917. }
  10918. static void ggml_compute_forward_diag(
  10919. const struct ggml_compute_params * params,
  10920. struct ggml_tensor * dst) {
  10921. const struct ggml_tensor * src0 = dst->src[0];
  10922. switch (src0->type) {
  10923. case GGML_TYPE_F32:
  10924. {
  10925. ggml_compute_forward_diag_f32(params, dst);
  10926. } break;
  10927. default:
  10928. {
  10929. GGML_ASSERT(false);
  10930. } break;
  10931. }
  10932. }
  10933. // ggml_compute_forward_diag_mask_inf
  10934. static void ggml_compute_forward_diag_mask_f32(
  10935. const struct ggml_compute_params * params,
  10936. struct ggml_tensor * dst,
  10937. const float value) {
  10938. const struct ggml_tensor * src0 = dst->src[0];
  10939. const int ith = params->ith;
  10940. const int nth = params->nth;
  10941. const int n_past = ((int32_t *) dst->op_params)[0];
  10942. const bool inplace = src0->data == dst->data;
  10943. GGML_ASSERT(n_past >= 0);
  10944. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10945. if (ith != 0) {
  10946. return;
  10947. }
  10948. // memcpy needs to be synchronized across threads to avoid race conditions.
  10949. // => do it in INIT phase
  10950. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10951. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10952. memcpy(
  10953. ((char *) dst->data),
  10954. ((char *) src0->data),
  10955. ggml_nbytes(dst));
  10956. }
  10957. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10958. return;
  10959. }
  10960. // TODO: handle transposed/permuted matrices
  10961. const int n = ggml_nrows(src0);
  10962. const int nc = src0->ne[0];
  10963. const int nr = src0->ne[1];
  10964. const int nz = n/nr;
  10965. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10966. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10967. for (int k = 0; k < nz; k++) {
  10968. for (int j = ith; j < nr; j += nth) {
  10969. for (int i = n_past; i < nc; i++) {
  10970. if (i > n_past + j) {
  10971. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10972. }
  10973. }
  10974. }
  10975. }
  10976. }
  10977. static void ggml_compute_forward_diag_mask_inf(
  10978. const struct ggml_compute_params * params,
  10979. struct ggml_tensor * dst) {
  10980. const struct ggml_tensor * src0 = dst->src[0];
  10981. switch (src0->type) {
  10982. case GGML_TYPE_F32:
  10983. {
  10984. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10985. } break;
  10986. default:
  10987. {
  10988. GGML_ASSERT(false);
  10989. } break;
  10990. }
  10991. }
  10992. static void ggml_compute_forward_diag_mask_zero(
  10993. const struct ggml_compute_params * params,
  10994. struct ggml_tensor * dst) {
  10995. const struct ggml_tensor * src0 = dst->src[0];
  10996. switch (src0->type) {
  10997. case GGML_TYPE_F32:
  10998. {
  10999. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11000. } break;
  11001. default:
  11002. {
  11003. GGML_ASSERT(false);
  11004. } break;
  11005. }
  11006. }
  11007. // ggml_compute_forward_soft_max
  11008. static void ggml_compute_forward_soft_max_f32(
  11009. const struct ggml_compute_params * params,
  11010. struct ggml_tensor * dst) {
  11011. const struct ggml_tensor * src0 = dst->src[0];
  11012. const struct ggml_tensor * src1 = dst->src[1];
  11013. assert(ggml_is_contiguous(dst));
  11014. assert(ggml_are_same_shape(src0, dst));
  11015. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11016. return;
  11017. }
  11018. float scale = 1.0f;
  11019. float max_bias = 0.0f;
  11020. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11021. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11022. // TODO: handle transposed/permuted matrices
  11023. const int ith = params->ith;
  11024. const int nth = params->nth;
  11025. GGML_TENSOR_UNARY_OP_LOCALS
  11026. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11027. // TODO: is this supposed to be ceil instead of floor?
  11028. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11029. const uint32_t n_head = ne02;
  11030. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11031. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11032. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11033. const int nc = src0->ne[0];
  11034. const int nr = ggml_nrows(src0);
  11035. // rows per thread
  11036. const int dr = (nr + nth - 1)/nth;
  11037. // row range for this thread
  11038. const int ir0 = dr*ith;
  11039. const int ir1 = MIN(ir0 + dr, nr);
  11040. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11041. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11042. for (int i1 = ir0; i1 < ir1; i1++) {
  11043. // ALiBi
  11044. const uint32_t h = (i1/ne01)%ne02; // head
  11045. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11046. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11047. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11048. // broadcast the mask across rows
  11049. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11050. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11051. ggml_vec_cpy_f32 (nc, wp, sp);
  11052. ggml_vec_scale_f32(nc, wp, scale);
  11053. if (mp_f32) {
  11054. if (use_f16) {
  11055. for (int i = 0; i < nc; ++i) {
  11056. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11057. }
  11058. } else {
  11059. for (int i = 0; i < nc; ++i) {
  11060. wp[i] += slope*mp_f32[i];
  11061. }
  11062. }
  11063. }
  11064. #ifndef NDEBUG
  11065. for (int i = 0; i < nc; ++i) {
  11066. //printf("p[%d] = %f\n", i, p[i]);
  11067. assert(!isnan(wp[i]));
  11068. }
  11069. #endif
  11070. float max = -INFINITY;
  11071. ggml_vec_max_f32(nc, &max, wp);
  11072. ggml_float sum = 0.0;
  11073. uint16_t scvt;
  11074. for (int i = 0; i < nc; i++) {
  11075. if (wp[i] == -INFINITY) {
  11076. dp[i] = 0.0f;
  11077. } else {
  11078. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  11079. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  11080. memcpy(&scvt, &s, sizeof(scvt));
  11081. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11082. sum += (ggml_float)val;
  11083. dp[i] = val;
  11084. }
  11085. }
  11086. assert(sum > 0.0);
  11087. sum = 1.0/sum;
  11088. ggml_vec_scale_f32(nc, dp, sum);
  11089. #ifndef NDEBUG
  11090. for (int i = 0; i < nc; ++i) {
  11091. assert(!isnan(dp[i]));
  11092. assert(!isinf(dp[i]));
  11093. }
  11094. #endif
  11095. }
  11096. }
  11097. static void ggml_compute_forward_soft_max(
  11098. const struct ggml_compute_params * params,
  11099. struct ggml_tensor * dst) {
  11100. const struct ggml_tensor * src0 = dst->src[0];
  11101. switch (src0->type) {
  11102. case GGML_TYPE_F32:
  11103. {
  11104. ggml_compute_forward_soft_max_f32(params, dst);
  11105. } break;
  11106. default:
  11107. {
  11108. GGML_ASSERT(false);
  11109. } break;
  11110. }
  11111. }
  11112. // ggml_compute_forward_soft_max_back
  11113. static void ggml_compute_forward_soft_max_back_f32(
  11114. const struct ggml_compute_params * params,
  11115. struct ggml_tensor * dst) {
  11116. const struct ggml_tensor * src0 = dst->src[0];
  11117. const struct ggml_tensor * src1 = dst->src[1];
  11118. GGML_ASSERT(ggml_is_contiguous(src0));
  11119. GGML_ASSERT(ggml_is_contiguous(src1));
  11120. GGML_ASSERT(ggml_is_contiguous(dst));
  11121. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11122. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11123. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11124. return;
  11125. }
  11126. // TODO: handle transposed/permuted matrices
  11127. const int ith = params->ith;
  11128. const int nth = params->nth;
  11129. const int nc = src0->ne[0];
  11130. const int nr = ggml_nrows(src0);
  11131. // rows per thread
  11132. const int dr = (nr + nth - 1)/nth;
  11133. // row range for this thread
  11134. const int ir0 = dr*ith;
  11135. const int ir1 = MIN(ir0 + dr, nr);
  11136. for (int i1 = ir0; i1 < ir1; i1++) {
  11137. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11138. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11139. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11140. #ifndef NDEBUG
  11141. for (int i = 0; i < nc; ++i) {
  11142. //printf("p[%d] = %f\n", i, p[i]);
  11143. assert(!isnan(dy[i]));
  11144. assert(!isnan(y[i]));
  11145. }
  11146. #endif
  11147. // Jii = yi - yi*yi
  11148. // Jij = -yi*yj
  11149. // J = diag(y)-y.T*y
  11150. // dx = J * dy
  11151. // dxk = sum_i(Jki * dyi)
  11152. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11153. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11154. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11155. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11156. // dxk = -yk * dot(y, dy) + yk*dyk
  11157. // dxk = yk * (- dot(y, dy) + dyk)
  11158. // dxk = yk * (dyk - dot(y, dy))
  11159. //
  11160. // post-order:
  11161. // dot_y_dy := dot(y, dy)
  11162. // dx := dy
  11163. // dx := dx - dot_y_dy
  11164. // dx := dx * y
  11165. // linear runtime, no additional memory
  11166. float dot_y_dy = 0;
  11167. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11168. ggml_vec_cpy_f32 (nc, dx, dy);
  11169. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11170. ggml_vec_mul_f32 (nc, dx, dx, y);
  11171. #ifndef NDEBUG
  11172. for (int i = 0; i < nc; ++i) {
  11173. assert(!isnan(dx[i]));
  11174. assert(!isinf(dx[i]));
  11175. }
  11176. #endif
  11177. }
  11178. }
  11179. static void ggml_compute_forward_soft_max_back(
  11180. const struct ggml_compute_params * params,
  11181. struct ggml_tensor * dst) {
  11182. const struct ggml_tensor * src0 = dst->src[0];
  11183. switch (src0->type) {
  11184. case GGML_TYPE_F32:
  11185. {
  11186. ggml_compute_forward_soft_max_back_f32(params, dst);
  11187. } break;
  11188. default:
  11189. {
  11190. GGML_ASSERT(false);
  11191. } break;
  11192. }
  11193. }
  11194. // ggml_compute_forward_clamp
  11195. static void ggml_compute_forward_clamp_f32(
  11196. const struct ggml_compute_params * params,
  11197. struct ggml_tensor * dst) {
  11198. const struct ggml_tensor * src0 = dst->src[0];
  11199. assert(params->ith == 0);
  11200. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11201. return;
  11202. }
  11203. float min;
  11204. float max;
  11205. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11206. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11207. const int ith = params->ith;
  11208. const int nth = params->nth;
  11209. const int n = ggml_nrows(src0);
  11210. const int nc = src0->ne[0];
  11211. const size_t nb00 = src0->nb[0];
  11212. const size_t nb01 = src0->nb[1];
  11213. const size_t nb0 = dst->nb[0];
  11214. const size_t nb1 = dst->nb[1];
  11215. GGML_ASSERT( nb0 == sizeof(float));
  11216. GGML_ASSERT(nb00 == sizeof(float));
  11217. for (int j = ith; j < n; j += nth) {
  11218. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11219. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11220. for (int i = 0; i < nc; i++) {
  11221. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11222. }
  11223. }
  11224. }
  11225. static void ggml_compute_forward_clamp(
  11226. const struct ggml_compute_params * params,
  11227. struct ggml_tensor * dst) {
  11228. const struct ggml_tensor * src0 = dst->src[0];
  11229. switch (src0->type) {
  11230. case GGML_TYPE_F32:
  11231. {
  11232. ggml_compute_forward_clamp_f32(params, dst);
  11233. } break;
  11234. case GGML_TYPE_F16:
  11235. case GGML_TYPE_BF16:
  11236. case GGML_TYPE_Q4_0:
  11237. case GGML_TYPE_Q4_1:
  11238. case GGML_TYPE_Q5_0:
  11239. case GGML_TYPE_Q5_1:
  11240. case GGML_TYPE_Q8_0:
  11241. case GGML_TYPE_Q8_1:
  11242. case GGML_TYPE_Q2_K:
  11243. case GGML_TYPE_Q3_K:
  11244. case GGML_TYPE_Q4_K:
  11245. case GGML_TYPE_Q5_K:
  11246. case GGML_TYPE_Q6_K:
  11247. case GGML_TYPE_IQ2_XXS:
  11248. case GGML_TYPE_IQ2_XS:
  11249. case GGML_TYPE_IQ3_XXS:
  11250. case GGML_TYPE_IQ1_S:
  11251. case GGML_TYPE_IQ1_M:
  11252. case GGML_TYPE_IQ4_NL:
  11253. case GGML_TYPE_IQ4_XS:
  11254. case GGML_TYPE_IQ3_S:
  11255. case GGML_TYPE_IQ2_S:
  11256. case GGML_TYPE_Q8_K:
  11257. case GGML_TYPE_I8:
  11258. case GGML_TYPE_I16:
  11259. case GGML_TYPE_I32:
  11260. case GGML_TYPE_I64:
  11261. case GGML_TYPE_F64:
  11262. case GGML_TYPE_COUNT:
  11263. {
  11264. GGML_ASSERT(false);
  11265. } break;
  11266. }
  11267. }
  11268. // ggml_compute_forward_rope
  11269. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11270. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11271. return 1 - MIN(1, MAX(0, y));
  11272. }
  11273. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11274. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11275. static void rope_yarn(
  11276. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11277. float * cos_theta, float * sin_theta
  11278. ) {
  11279. // Get n-d rotational scaling corrected for extrapolation
  11280. float theta_interp = freq_scale * theta_extrap;
  11281. float theta = theta_interp;
  11282. if (ext_factor != 0.0f) {
  11283. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11284. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11285. // Get n-d magnitude scaling corrected for interpolation
  11286. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11287. }
  11288. *cos_theta = cosf(theta) * mscale;
  11289. *sin_theta = sinf(theta) * mscale;
  11290. }
  11291. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11292. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11293. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11294. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11295. }
  11296. static void ggml_rope_cache_init(
  11297. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11298. float * cache, float sin_sign, float theta_scale
  11299. ) {
  11300. float theta = theta_base;
  11301. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11302. rope_yarn(
  11303. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11304. );
  11305. cache[i0 + 1] *= sin_sign;
  11306. theta *= theta_scale;
  11307. }
  11308. }
  11309. GGML_CALL void ggml_rope_yarn_corr_dims(
  11310. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11311. ) {
  11312. // start and end correction dims
  11313. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11314. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11315. dims[0] = MAX(0, start);
  11316. dims[1] = MIN(n_dims - 1, end);
  11317. }
  11318. static void ggml_compute_forward_rope_f32(
  11319. const struct ggml_compute_params * params,
  11320. struct ggml_tensor * dst,
  11321. const bool forward) {
  11322. const struct ggml_tensor * src0 = dst->src[0];
  11323. const struct ggml_tensor * src1 = dst->src[1];
  11324. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11325. return;
  11326. }
  11327. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11328. // these two only relevant for xPos RoPE:
  11329. float xpos_base;
  11330. bool xpos_down;
  11331. //const int n_past = ((int32_t *) dst->op_params)[0];
  11332. const int n_dims = ((int32_t *) dst->op_params)[1];
  11333. const int mode = ((int32_t *) dst->op_params)[2];
  11334. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11335. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11336. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11337. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11338. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11339. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11340. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11341. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11342. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11343. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11344. GGML_TENSOR_UNARY_OP_LOCALS
  11345. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11346. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11347. GGML_ASSERT(nb00 == sizeof(float));
  11348. const int ith = params->ith;
  11349. const int nth = params->nth;
  11350. const int nr = ggml_nrows(dst);
  11351. GGML_ASSERT(n_dims <= ne0);
  11352. GGML_ASSERT(n_dims % 2 == 0);
  11353. // rows per thread
  11354. const int dr = (nr + nth - 1)/nth;
  11355. // row range for this thread
  11356. const int ir0 = dr*ith;
  11357. const int ir1 = MIN(ir0 + dr, nr);
  11358. // row index used to determine which thread to use
  11359. int ir = 0;
  11360. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11361. const float inv_ndims = -1.f/n_dims;
  11362. float corr_dims[2];
  11363. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11364. const bool is_neox = mode & 2;
  11365. const bool is_glm = mode & 4;
  11366. // backward process uses inverse rotation by cos and sin.
  11367. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11368. // this essentially just switches the sign of sin.
  11369. const float sin_sign = forward ? 1.0f : -1.0f;
  11370. const int32_t * pos = (const int32_t *) src1->data;
  11371. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11372. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11373. const int64_t p = pos[i2];
  11374. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11375. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11376. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11377. }
  11378. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11379. if (ir++ < ir0) continue;
  11380. if (ir > ir1) break;
  11381. float theta_base = (float)p;
  11382. if (is_glm) {
  11383. theta_base = MIN(p, n_ctx - 2);
  11384. float block_theta = MAX(p - (n_ctx - 2), 0);
  11385. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11386. const float cos_theta = cosf(theta_base);
  11387. const float sin_theta = sinf(theta_base) * sin_sign;
  11388. const float cos_block_theta = cosf(block_theta);
  11389. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11390. theta_base *= theta_scale;
  11391. block_theta *= theta_scale;
  11392. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11393. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11394. const float x0 = src[0];
  11395. const float x1 = src[n_dims/2];
  11396. const float x2 = src[n_dims];
  11397. const float x3 = src[n_dims/2*3];
  11398. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11399. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11400. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11401. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11402. }
  11403. } else if (!is_neox) {
  11404. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11405. const float cos_theta = cache[i0 + 0];
  11406. const float sin_theta = cache[i0 + 1];
  11407. // zeta scaling for xPos only:
  11408. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11409. if (xpos_down) zeta = 1.0f / zeta;
  11410. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11411. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11412. const float x0 = src[0];
  11413. const float x1 = src[1];
  11414. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11415. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11416. }
  11417. } else {
  11418. // TODO: this might be wrong for ne0 != n_dims - need double check
  11419. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11420. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11421. theta_base *= freq_scale;
  11422. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11423. if (ic < n_dims) {
  11424. const int64_t ib = 0;
  11425. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11426. float cur_rot = inv_ndims * ic - ib;
  11427. float cos_theta, sin_theta;
  11428. rope_yarn(
  11429. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11430. &cos_theta, &sin_theta
  11431. );
  11432. sin_theta *= sin_sign;
  11433. theta_base *= theta_scale;
  11434. const int64_t i0 = ib*n_dims + ic/2;
  11435. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11436. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11437. const float x0 = src[0];
  11438. const float x1 = src[n_dims/2];
  11439. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11440. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11441. } else {
  11442. const int64_t i0 = ic;
  11443. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11444. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11445. dst_data[0] = src[0];
  11446. dst_data[1] = src[1];
  11447. }
  11448. }
  11449. }
  11450. }
  11451. }
  11452. }
  11453. }
  11454. static void ggml_compute_forward_rope_f16(
  11455. const struct ggml_compute_params * params,
  11456. struct ggml_tensor * dst,
  11457. const bool forward) {
  11458. const struct ggml_tensor * src0 = dst->src[0];
  11459. const struct ggml_tensor * src1 = dst->src[1];
  11460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11461. return;
  11462. }
  11463. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11464. //const int n_past = ((int32_t *) dst->op_params)[0];
  11465. const int n_dims = ((int32_t *) dst->op_params)[1];
  11466. const int mode = ((int32_t *) dst->op_params)[2];
  11467. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11468. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11469. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11470. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11471. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11472. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11473. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11474. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11475. GGML_TENSOR_UNARY_OP_LOCALS
  11476. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11477. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11478. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11479. const int ith = params->ith;
  11480. const int nth = params->nth;
  11481. const int nr = ggml_nrows(dst);
  11482. GGML_ASSERT(n_dims <= ne0);
  11483. GGML_ASSERT(n_dims % 2 == 0);
  11484. // rows per thread
  11485. const int dr = (nr + nth - 1)/nth;
  11486. // row range for this thread
  11487. const int ir0 = dr*ith;
  11488. const int ir1 = MIN(ir0 + dr, nr);
  11489. // row index used to determine which thread to use
  11490. int ir = 0;
  11491. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11492. const float inv_ndims = -1.f/n_dims;
  11493. float corr_dims[2];
  11494. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11495. const bool is_neox = mode & 2;
  11496. const bool is_glm = mode & 4;
  11497. // backward process uses inverse rotation by cos and sin.
  11498. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11499. // this essentially just switches the sign of sin.
  11500. const float sin_sign = forward ? 1.0f : -1.0f;
  11501. const int32_t * pos = (const int32_t *) src1->data;
  11502. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11503. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11504. const int64_t p = pos[i2];
  11505. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11506. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11507. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11508. }
  11509. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11510. if (ir++ < ir0) continue;
  11511. if (ir > ir1) break;
  11512. float theta_base = (float)p;
  11513. if (is_glm) {
  11514. theta_base = MIN(p, n_ctx - 2);
  11515. float block_theta = MAX(p - (n_ctx - 2), 0);
  11516. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11517. const float cos_theta = cosf(theta_base);
  11518. const float sin_theta = sinf(theta_base) * sin_sign;
  11519. const float cos_block_theta = cosf(block_theta);
  11520. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11521. theta_base *= theta_scale;
  11522. block_theta *= theta_scale;
  11523. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11524. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11525. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11526. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11527. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11528. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11529. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11530. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11531. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11532. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11533. }
  11534. } else if (!is_neox) {
  11535. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11536. const float cos_theta = cache[i0 + 0];
  11537. const float sin_theta = cache[i0 + 1];
  11538. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11539. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11540. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11541. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11542. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11543. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11544. }
  11545. } else {
  11546. // TODO: this might be wrong for ne0 != n_dims - need double check
  11547. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11548. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11549. theta_base *= freq_scale;
  11550. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11551. if (ic < n_dims) {
  11552. const int64_t ib = 0;
  11553. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11554. float cur_rot = inv_ndims * ic - ib;
  11555. float cos_theta, sin_theta;
  11556. rope_yarn(
  11557. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11558. &cos_theta, &sin_theta
  11559. );
  11560. sin_theta *= sin_sign;
  11561. theta_base *= theta_scale;
  11562. const int64_t i0 = ib*n_dims + ic/2;
  11563. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11564. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11565. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11566. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11567. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11568. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11569. } else {
  11570. const int64_t i0 = ic;
  11571. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11572. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11573. dst_data[0] = src[0];
  11574. dst_data[1] = src[1];
  11575. }
  11576. }
  11577. }
  11578. }
  11579. }
  11580. }
  11581. }
  11582. static void ggml_compute_forward_rope(
  11583. const struct ggml_compute_params * params,
  11584. struct ggml_tensor * dst) {
  11585. const struct ggml_tensor * src0 = dst->src[0];
  11586. switch (src0->type) {
  11587. case GGML_TYPE_F16:
  11588. {
  11589. ggml_compute_forward_rope_f16(params, dst, true);
  11590. } break;
  11591. case GGML_TYPE_F32:
  11592. {
  11593. ggml_compute_forward_rope_f32(params, dst, true);
  11594. } break;
  11595. default:
  11596. {
  11597. GGML_ASSERT(false);
  11598. } break;
  11599. }
  11600. }
  11601. // ggml_compute_forward_rope_back
  11602. static void ggml_compute_forward_rope_back(
  11603. const struct ggml_compute_params * params,
  11604. struct ggml_tensor * dst) {
  11605. const struct ggml_tensor * src0 = dst->src[0];
  11606. switch (src0->type) {
  11607. case GGML_TYPE_F16:
  11608. {
  11609. ggml_compute_forward_rope_f16(params, dst, false);
  11610. } break;
  11611. case GGML_TYPE_F32:
  11612. {
  11613. ggml_compute_forward_rope_f32(params, dst, false);
  11614. } break;
  11615. default:
  11616. {
  11617. GGML_ASSERT(false);
  11618. } break;
  11619. }
  11620. }
  11621. // ggml_compute_forward_conv_transpose_1d
  11622. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11623. const struct ggml_compute_params * params,
  11624. struct ggml_tensor * dst) {
  11625. const struct ggml_tensor * src0 = dst->src[0];
  11626. const struct ggml_tensor * src1 = dst->src[1];
  11627. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11628. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11629. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11630. int64_t t0 = ggml_perf_time_us();
  11631. UNUSED(t0);
  11632. GGML_TENSOR_BINARY_OP_LOCALS
  11633. const int ith = params->ith;
  11634. const int nth = params->nth;
  11635. const int nk = ne00*ne01*ne02;
  11636. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11637. GGML_ASSERT(nb10 == sizeof(float));
  11638. if (params->type == GGML_TASK_TYPE_INIT) {
  11639. if (ith != 0) {
  11640. return;
  11641. }
  11642. memset(params->wdata, 0, params->wsize);
  11643. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11644. {
  11645. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11646. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11647. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11648. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11649. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11650. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11651. dst_data[i00*ne02 + i02] = src[i00];
  11652. }
  11653. }
  11654. }
  11655. }
  11656. // permute source data (src1) from (L x Cin) to (Cin x L)
  11657. {
  11658. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11659. ggml_fp16_t * dst_data = wdata;
  11660. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11661. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11662. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11663. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11664. }
  11665. }
  11666. }
  11667. // need to zero dst since we are accumulating into it
  11668. memset(dst->data, 0, ggml_nbytes(dst));
  11669. return;
  11670. }
  11671. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11672. return;
  11673. }
  11674. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11675. // total rows in dst
  11676. const int nr = ne1;
  11677. // rows per thread
  11678. const int dr = (nr + nth - 1)/nth;
  11679. // row range for this thread
  11680. const int ir0 = dr*ith;
  11681. const int ir1 = MIN(ir0 + dr, nr);
  11682. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11683. ggml_fp16_t * const wdata_src = wdata + nk;
  11684. for (int i1 = ir0; i1 < ir1; i1++) {
  11685. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11686. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11687. for (int i10 = 0; i10 < ne10; i10++) {
  11688. const int i1n = i10*ne11;
  11689. for (int i00 = 0; i00 < ne00; i00++) {
  11690. float v = 0;
  11691. ggml_vec_dot_f16(ne02, &v, 0,
  11692. (ggml_fp16_t *) wdata_src + i1n, 0,
  11693. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11694. dst_data[i10*s0 + i00] += v;
  11695. }
  11696. }
  11697. }
  11698. }
  11699. static void ggml_compute_forward_conv_transpose_1d_f32(
  11700. const struct ggml_compute_params * params,
  11701. struct ggml_tensor * dst) {
  11702. const struct ggml_tensor * src0 = dst->src[0];
  11703. const struct ggml_tensor * src1 = dst->src[1];
  11704. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11705. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11706. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11707. int64_t t0 = ggml_perf_time_us();
  11708. UNUSED(t0);
  11709. GGML_TENSOR_BINARY_OP_LOCALS
  11710. const int ith = params->ith;
  11711. const int nth = params->nth;
  11712. const int nk = ne00*ne01*ne02;
  11713. GGML_ASSERT(nb00 == sizeof(float));
  11714. GGML_ASSERT(nb10 == sizeof(float));
  11715. if (params->type == GGML_TASK_TYPE_INIT) {
  11716. if (ith != 0) {
  11717. return;
  11718. }
  11719. memset(params->wdata, 0, params->wsize);
  11720. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11721. {
  11722. float * const wdata = (float *) params->wdata + 0;
  11723. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11724. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11725. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11726. float * dst_data = wdata + i01*ne00*ne02;
  11727. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11728. dst_data[i00*ne02 + i02] = src[i00];
  11729. }
  11730. }
  11731. }
  11732. }
  11733. // prepare source data (src1)
  11734. {
  11735. float * const wdata = (float *) params->wdata + nk;
  11736. float * dst_data = wdata;
  11737. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11738. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11739. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11740. dst_data[i10*ne11 + i11] = src[i10];
  11741. }
  11742. }
  11743. }
  11744. // need to zero dst since we are accumulating into it
  11745. memset(dst->data, 0, ggml_nbytes(dst));
  11746. return;
  11747. }
  11748. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11749. return;
  11750. }
  11751. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11752. // total rows in dst
  11753. const int nr = ne1;
  11754. // rows per thread
  11755. const int dr = (nr + nth - 1)/nth;
  11756. // row range for this thread
  11757. const int ir0 = dr*ith;
  11758. const int ir1 = MIN(ir0 + dr, nr);
  11759. float * const wdata = (float *) params->wdata + 0;
  11760. float * const wdata_src = wdata + nk;
  11761. for (int i1 = ir0; i1 < ir1; i1++) {
  11762. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11763. float * wdata_kernel = wdata + i1*ne02*ne00;
  11764. for (int i10 = 0; i10 < ne10; i10++) {
  11765. const int i1n = i10*ne11;
  11766. for (int i00 = 0; i00 < ne00; i00++) {
  11767. float v = 0;
  11768. ggml_vec_dot_f32(ne02, &v, 0,
  11769. wdata_src + i1n, 0,
  11770. wdata_kernel + i00*ne02, 0, 1);
  11771. dst_data[i10*s0 + i00] += v;
  11772. }
  11773. }
  11774. }
  11775. }
  11776. static void ggml_compute_forward_conv_transpose_1d(
  11777. const struct ggml_compute_params * params,
  11778. struct ggml_tensor * dst) {
  11779. const struct ggml_tensor * src0 = dst->src[0];
  11780. switch (src0->type) {
  11781. case GGML_TYPE_F16:
  11782. {
  11783. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11784. } break;
  11785. case GGML_TYPE_F32:
  11786. {
  11787. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11788. } break;
  11789. default:
  11790. {
  11791. GGML_ASSERT(false);
  11792. } break;
  11793. }
  11794. }
  11795. // src0: kernel [OC, IC, KH, KW]
  11796. // src1: image [N, IC, IH, IW]
  11797. // dst: result [N, OH, OW, IC*KH*KW]
  11798. static void ggml_compute_forward_im2col_f32(
  11799. const struct ggml_compute_params * params,
  11800. struct ggml_tensor * dst) {
  11801. const struct ggml_tensor * src0 = dst->src[0];
  11802. const struct ggml_tensor * src1 = dst->src[1];
  11803. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11804. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11805. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11806. int64_t t0 = ggml_perf_time_us();
  11807. UNUSED(t0);
  11808. GGML_TENSOR_BINARY_OP_LOCALS;
  11809. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11810. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11811. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11812. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11813. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11814. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11815. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11816. const int ith = params->ith;
  11817. const int nth = params->nth;
  11818. const int64_t N = is_2D ? ne13 : ne12;
  11819. const int64_t IC = is_2D ? ne12 : ne11;
  11820. const int64_t IH = is_2D ? ne11 : 1;
  11821. const int64_t IW = ne10;
  11822. const int64_t KH = is_2D ? ne01 : 1;
  11823. const int64_t KW = ne00;
  11824. const int64_t OH = is_2D ? ne2 : 1;
  11825. const int64_t OW = ne1;
  11826. int ofs0 = is_2D ? nb13 : nb12;
  11827. int ofs1 = is_2D ? nb12 : nb11;
  11828. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11829. GGML_ASSERT(nb10 == sizeof(float));
  11830. if (params->type == GGML_TASK_TYPE_INIT) {
  11831. return;
  11832. }
  11833. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11834. return;
  11835. }
  11836. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11837. {
  11838. float * const wdata = (float *) dst->data;
  11839. for (int64_t in = 0; in < N; in++) {
  11840. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11841. for (int64_t iow = 0; iow < OW; iow++) {
  11842. for (int64_t iic = ith; iic < IC; iic += nth) {
  11843. // micro kernel
  11844. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11845. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11846. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11847. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11848. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11849. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11850. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11851. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11852. } else {
  11853. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11854. }
  11855. }
  11856. }
  11857. }
  11858. }
  11859. }
  11860. }
  11861. }
  11862. }
  11863. // src0: kernel [OC, IC, KH, KW]
  11864. // src1: image [N, IC, IH, IW]
  11865. // dst: result [N, OH, OW, IC*KH*KW]
  11866. static void ggml_compute_forward_im2col_f16(
  11867. const struct ggml_compute_params * params,
  11868. struct ggml_tensor * dst) {
  11869. const struct ggml_tensor * src0 = dst->src[0];
  11870. const struct ggml_tensor * src1 = dst->src[1];
  11871. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11872. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11873. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11874. int64_t t0 = ggml_perf_time_us();
  11875. UNUSED(t0);
  11876. GGML_TENSOR_BINARY_OP_LOCALS;
  11877. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11878. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11879. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11880. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11881. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11882. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11883. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11884. const int ith = params->ith;
  11885. const int nth = params->nth;
  11886. const int64_t N = is_2D ? ne13 : ne12;
  11887. const int64_t IC = is_2D ? ne12 : ne11;
  11888. const int64_t IH = is_2D ? ne11 : 1;
  11889. const int64_t IW = ne10;
  11890. const int64_t KH = is_2D ? ne01 : 1;
  11891. const int64_t KW = ne00;
  11892. const int64_t OH = is_2D ? ne2 : 1;
  11893. const int64_t OW = ne1;
  11894. int ofs0 = is_2D ? nb13 : nb12;
  11895. int ofs1 = is_2D ? nb12 : nb11;
  11896. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11897. GGML_ASSERT(nb10 == sizeof(float));
  11898. if (params->type == GGML_TASK_TYPE_INIT) {
  11899. return;
  11900. }
  11901. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11902. return;
  11903. }
  11904. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11905. {
  11906. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11907. for (int64_t in = 0; in < N; in++) {
  11908. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11909. for (int64_t iow = 0; iow < OW; iow++) {
  11910. for (int64_t iic = ith; iic < IC; iic += nth) {
  11911. // micro kernel
  11912. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11913. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11914. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11915. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11916. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11917. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11918. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11919. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11920. } else {
  11921. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11922. }
  11923. }
  11924. }
  11925. }
  11926. }
  11927. }
  11928. }
  11929. }
  11930. }
  11931. static void ggml_compute_forward_im2col(
  11932. const struct ggml_compute_params * params,
  11933. struct ggml_tensor * dst) {
  11934. switch (dst->type) {
  11935. case GGML_TYPE_F16:
  11936. {
  11937. ggml_compute_forward_im2col_f16(params, dst);
  11938. } break;
  11939. case GGML_TYPE_F32:
  11940. {
  11941. ggml_compute_forward_im2col_f32(params, dst);
  11942. } break;
  11943. default:
  11944. {
  11945. GGML_ASSERT(false);
  11946. } break;
  11947. }
  11948. }
  11949. // ggml_compute_forward_conv_transpose_2d
  11950. static void ggml_compute_forward_conv_transpose_2d(
  11951. const struct ggml_compute_params * params,
  11952. struct ggml_tensor * dst) {
  11953. const struct ggml_tensor * src0 = dst->src[0];
  11954. const struct ggml_tensor * src1 = dst->src[1];
  11955. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11956. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11957. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11958. int64_t t0 = ggml_perf_time_us();
  11959. UNUSED(t0);
  11960. GGML_TENSOR_BINARY_OP_LOCALS
  11961. const int ith = params->ith;
  11962. const int nth = params->nth;
  11963. const int nk = ne00*ne01*ne02*ne03;
  11964. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11965. GGML_ASSERT(nb10 == sizeof(float));
  11966. if (params->type == GGML_TASK_TYPE_INIT) {
  11967. if (ith != 0) {
  11968. return;
  11969. }
  11970. memset(params->wdata, 0, params->wsize);
  11971. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11972. {
  11973. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11974. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11975. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11976. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11977. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11978. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11979. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11980. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11981. }
  11982. }
  11983. }
  11984. }
  11985. }
  11986. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11987. {
  11988. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11989. for (int i12 = 0; i12 < ne12; i12++) {
  11990. for (int i11 = 0; i11 < ne11; i11++) {
  11991. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11992. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11993. for (int i10 = 0; i10 < ne10; i10++) {
  11994. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11995. }
  11996. }
  11997. }
  11998. }
  11999. memset(dst->data, 0, ggml_nbytes(dst));
  12000. return;
  12001. }
  12002. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12003. return;
  12004. }
  12005. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12006. // total patches in dst
  12007. const int np = ne2;
  12008. // patches per thread
  12009. const int dp = (np + nth - 1)/nth;
  12010. // patch range for this thread
  12011. const int ip0 = dp*ith;
  12012. const int ip1 = MIN(ip0 + dp, np);
  12013. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12014. ggml_fp16_t * const wdata_src = wdata + nk;
  12015. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12016. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12017. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12018. for (int i11 = 0; i11 < ne11; i11++) {
  12019. for (int i10 = 0; i10 < ne10; i10++) {
  12020. const int i1n = i11*ne10*ne12 + i10*ne12;
  12021. for (int i01 = 0; i01 < ne01; i01++) {
  12022. for (int i00 = 0; i00 < ne00; i00++) {
  12023. float v = 0;
  12024. ggml_vec_dot_f16(ne03, &v, 0,
  12025. wdata_src + i1n, 0,
  12026. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12027. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12028. }
  12029. }
  12030. }
  12031. }
  12032. }
  12033. }
  12034. // ggml_compute_forward_pool_1d_sk_p0
  12035. static void ggml_compute_forward_pool_1d_sk_p0(
  12036. const struct ggml_compute_params * params,
  12037. const enum ggml_op_pool op,
  12038. const int k,
  12039. struct ggml_tensor * dst) {
  12040. const struct ggml_tensor * src = dst->src[0];
  12041. assert(src->type == GGML_TYPE_F32);
  12042. assert(params->ith == 0);
  12043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12044. return;
  12045. }
  12046. const char * cdata = (const char *)src->data;
  12047. const char * const data_end = cdata + ggml_nbytes(src);
  12048. float * drow = (float *)dst->data;
  12049. const int64_t rs = dst->ne[0];
  12050. while (cdata < data_end) {
  12051. const float * const srow = (const float *)cdata;
  12052. int j = 0;
  12053. for (int64_t i = 0; i < rs; ++i) {
  12054. switch (op) {
  12055. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12056. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12057. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12058. }
  12059. for (int ki = 0; ki < k; ++ki) {
  12060. switch (op) {
  12061. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12062. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12063. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12064. }
  12065. ++j;
  12066. }
  12067. switch (op) {
  12068. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12069. case GGML_OP_POOL_MAX: break;
  12070. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12071. }
  12072. }
  12073. cdata += src->nb[1];
  12074. drow += rs;
  12075. }
  12076. }
  12077. // ggml_compute_forward_pool_1d
  12078. static void ggml_compute_forward_pool_1d(
  12079. const struct ggml_compute_params * params,
  12080. struct ggml_tensor * dst) {
  12081. const int32_t * opts = (const int32_t *)dst->op_params;
  12082. enum ggml_op_pool op = opts[0];
  12083. const int k0 = opts[1];
  12084. const int s0 = opts[2];
  12085. const int p0 = opts[3];
  12086. GGML_ASSERT(p0 == 0); // padding not supported
  12087. GGML_ASSERT(k0 == s0); // only s = k supported
  12088. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12089. }
  12090. // ggml_compute_forward_pool_2d
  12091. static void ggml_compute_forward_pool_2d(
  12092. const struct ggml_compute_params * params,
  12093. struct ggml_tensor * dst) {
  12094. const struct ggml_tensor * src = dst->src[0];
  12095. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12096. GGML_ASSERT(params->ith == 0);
  12097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12098. return;
  12099. }
  12100. const int32_t * opts = (const int32_t *)dst->op_params;
  12101. enum ggml_op_pool op = opts[0];
  12102. const int k0 = opts[1];
  12103. const int k1 = opts[2];
  12104. const int s0 = opts[3];
  12105. const int s1 = opts[4];
  12106. const int p0 = opts[5];
  12107. const int p1 = opts[6];
  12108. const char * cdata = (const char*)src->data;
  12109. const char * const data_end = cdata + ggml_nbytes(src);
  12110. const int64_t px = dst->ne[0];
  12111. const int64_t py = dst->ne[1];
  12112. const int64_t pa = px * py;
  12113. float * dplane = (float *)dst->data;
  12114. const int ka = k0 * k1;
  12115. const int offset0 = -p0;
  12116. const int offset1 = -p1;
  12117. while (cdata < data_end) {
  12118. for (int oy = 0; oy < py; ++oy) {
  12119. float * const drow = dplane + oy * px;
  12120. for (int ox = 0; ox < px; ++ox) {
  12121. float * const out = drow + ox;
  12122. switch (op) {
  12123. case GGML_OP_POOL_AVG: *out = 0; break;
  12124. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12125. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12126. }
  12127. const int ix = offset0 + ox * s0;
  12128. const int iy = offset1 + oy * s1;
  12129. for (int ky = 0; ky < k1; ++ky) {
  12130. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12131. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12132. for (int kx = 0; kx < k0; ++kx) {
  12133. int j = ix + kx;
  12134. if (j < 0 || j >= src->ne[0]) continue;
  12135. switch (op) {
  12136. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12137. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12138. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12139. }
  12140. }
  12141. }
  12142. switch (op) {
  12143. case GGML_OP_POOL_AVG: *out /= ka; break;
  12144. case GGML_OP_POOL_MAX: break;
  12145. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12146. }
  12147. }
  12148. }
  12149. cdata += src->nb[2];
  12150. dplane += pa;
  12151. }
  12152. }
  12153. // ggml_compute_forward_upscale
  12154. static void ggml_compute_forward_upscale_f32(
  12155. const struct ggml_compute_params * params,
  12156. struct ggml_tensor * dst) {
  12157. const struct ggml_tensor * src0 = dst->src[0];
  12158. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12159. return;
  12160. }
  12161. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12162. const int ith = params->ith;
  12163. const int nth = params->nth;
  12164. GGML_TENSOR_UNARY_OP_LOCALS
  12165. const float sf0 = (float)ne0/src0->ne[0];
  12166. const float sf1 = (float)ne1/src0->ne[1];
  12167. const float sf2 = (float)ne2/src0->ne[2];
  12168. const float sf3 = (float)ne3/src0->ne[3];
  12169. // TODO: optimize
  12170. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12171. const int64_t i03 = i3 / sf3;
  12172. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12173. const int64_t i02 = i2 / sf2;
  12174. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12175. const int64_t i01 = i1 / sf1;
  12176. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12177. const int64_t i00 = i0 / sf0;
  12178. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12179. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12180. *y = *x;
  12181. }
  12182. }
  12183. }
  12184. }
  12185. }
  12186. static void ggml_compute_forward_upscale(
  12187. const struct ggml_compute_params * params,
  12188. struct ggml_tensor * dst) {
  12189. const struct ggml_tensor * src0 = dst->src[0];
  12190. switch (src0->type) {
  12191. case GGML_TYPE_F32:
  12192. {
  12193. ggml_compute_forward_upscale_f32(params, dst);
  12194. } break;
  12195. default:
  12196. {
  12197. GGML_ASSERT(false);
  12198. } break;
  12199. }
  12200. }
  12201. // ggml_compute_forward_pad
  12202. static void ggml_compute_forward_pad_f32(
  12203. const struct ggml_compute_params * params,
  12204. struct ggml_tensor * dst) {
  12205. const struct ggml_tensor * src0 = dst->src[0];
  12206. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12207. return;
  12208. }
  12209. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12210. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12211. const int ith = params->ith;
  12212. const int nth = params->nth;
  12213. GGML_TENSOR_UNARY_OP_LOCALS
  12214. float * dst_ptr = (float *) dst->data;
  12215. // TODO: optimize
  12216. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12217. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12218. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12219. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12220. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12221. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12222. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12223. dst_ptr[dst_idx] = *src_ptr;
  12224. } else {
  12225. dst_ptr[dst_idx] = 0;
  12226. }
  12227. }
  12228. }
  12229. }
  12230. }
  12231. }
  12232. static void ggml_compute_forward_pad(
  12233. const struct ggml_compute_params * params,
  12234. struct ggml_tensor * dst) {
  12235. const struct ggml_tensor * src0 = dst->src[0];
  12236. switch (src0->type) {
  12237. case GGML_TYPE_F32:
  12238. {
  12239. ggml_compute_forward_pad_f32(params, dst);
  12240. } break;
  12241. default:
  12242. {
  12243. GGML_ASSERT(false);
  12244. } break;
  12245. }
  12246. }
  12247. // ggml_compute_forward_arange
  12248. static void ggml_compute_forward_arange_f32(
  12249. const struct ggml_compute_params * params,
  12250. struct ggml_tensor * dst) {
  12251. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12252. return;
  12253. }
  12254. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12255. const int ith = params->ith;
  12256. const int nth = params->nth;
  12257. const float start = ggml_get_op_params_f32(dst, 0);
  12258. const float stop = ggml_get_op_params_f32(dst, 1);
  12259. const float step = ggml_get_op_params_f32(dst, 2);
  12260. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12261. GGML_ASSERT(ggml_nelements(dst) == steps);
  12262. for (int64_t i = ith; i < steps; i+= nth) {
  12263. float value = start + step * i;
  12264. ((float *)dst->data)[i] = value;
  12265. }
  12266. }
  12267. static void ggml_compute_forward_arange(
  12268. const struct ggml_compute_params * params,
  12269. struct ggml_tensor * dst) {
  12270. switch (dst->type) {
  12271. case GGML_TYPE_F32:
  12272. {
  12273. ggml_compute_forward_arange_f32(params, dst);
  12274. } break;
  12275. default:
  12276. {
  12277. GGML_ASSERT(false);
  12278. } break;
  12279. }
  12280. }
  12281. static void ggml_compute_forward_timestep_embedding_f32(
  12282. const struct ggml_compute_params * params,
  12283. struct ggml_tensor * dst) {
  12284. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12285. return;
  12286. }
  12287. const struct ggml_tensor * src0 = dst->src[0];
  12288. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12289. const int ith = params->ith;
  12290. const int nth = params->nth;
  12291. GGML_TENSOR_UNARY_OP_LOCALS
  12292. const int dim = ggml_get_op_params_i32(dst, 0);
  12293. const int max_period = ggml_get_op_params_i32(dst, 1);
  12294. int half = dim / 2;
  12295. for (int64_t i = 0; i < ne00; i++) {
  12296. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12297. for (int64_t j = ith; j < half; j += nth) {
  12298. float timestep = ((float *)src0->data)[i];
  12299. float freq = (float)expf(-logf(max_period) * j / half);
  12300. float arg = timestep * freq;
  12301. embed_data[j] = cosf(arg);
  12302. embed_data[j + half] = sinf(arg);
  12303. }
  12304. if (dim % 2 != 0 && ith == 0) {
  12305. embed_data[dim] = 0.f;
  12306. }
  12307. }
  12308. }
  12309. static void ggml_compute_forward_timestep_embedding(
  12310. const struct ggml_compute_params * params,
  12311. struct ggml_tensor * dst) {
  12312. const struct ggml_tensor * src0 = dst->src[0];
  12313. switch (src0->type) {
  12314. case GGML_TYPE_F32:
  12315. {
  12316. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12317. } break;
  12318. default:
  12319. {
  12320. GGML_ASSERT(false);
  12321. } break;
  12322. }
  12323. }
  12324. // ggml_compute_forward_argsort
  12325. static void ggml_compute_forward_argsort_f32(
  12326. const struct ggml_compute_params * params,
  12327. struct ggml_tensor * dst) {
  12328. const struct ggml_tensor * src0 = dst->src[0];
  12329. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12330. return;
  12331. }
  12332. GGML_TENSOR_UNARY_OP_LOCALS
  12333. GGML_ASSERT(nb0 == sizeof(float));
  12334. const int ith = params->ith;
  12335. const int nth = params->nth;
  12336. const int64_t nr = ggml_nrows(src0);
  12337. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12338. for (int64_t i = ith; i < nr; i += nth) {
  12339. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12340. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12341. for (int64_t j = 0; j < ne0; j++) {
  12342. dst_data[j] = j;
  12343. }
  12344. // C doesn't have a functional sort, so we do a bubble sort instead
  12345. for (int64_t j = 0; j < ne0; j++) {
  12346. for (int64_t k = j + 1; k < ne0; k++) {
  12347. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12348. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12349. int32_t tmp = dst_data[j];
  12350. dst_data[j] = dst_data[k];
  12351. dst_data[k] = tmp;
  12352. }
  12353. }
  12354. }
  12355. }
  12356. }
  12357. static void ggml_compute_forward_argsort(
  12358. const struct ggml_compute_params * params,
  12359. struct ggml_tensor * dst) {
  12360. const struct ggml_tensor * src0 = dst->src[0];
  12361. switch (src0->type) {
  12362. case GGML_TYPE_F32:
  12363. {
  12364. ggml_compute_forward_argsort_f32(params, dst);
  12365. } break;
  12366. default:
  12367. {
  12368. GGML_ASSERT(false);
  12369. } break;
  12370. }
  12371. }
  12372. // ggml_compute_forward_flash_attn
  12373. static void ggml_compute_forward_flash_attn_f32(
  12374. const struct ggml_compute_params * params,
  12375. const bool masked,
  12376. struct ggml_tensor * dst) {
  12377. const struct ggml_tensor * q = dst->src[0];
  12378. const struct ggml_tensor * k = dst->src[1];
  12379. const struct ggml_tensor * v = dst->src[2];
  12380. int64_t t0 = ggml_perf_time_us();
  12381. UNUSED(t0);
  12382. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12383. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12384. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12385. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12386. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12387. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12388. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12389. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12390. const int ith = params->ith;
  12391. const int nth = params->nth;
  12392. const int64_t D = neq0;
  12393. const int64_t N = neq1;
  12394. const int64_t P = nek1 - N;
  12395. const int64_t M = P + N;
  12396. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12397. GGML_ASSERT(ne0 == D);
  12398. GGML_ASSERT(ne1 == N);
  12399. GGML_ASSERT(P >= 0);
  12400. GGML_ASSERT(nbq0 == sizeof(float));
  12401. GGML_ASSERT(nbk0 == sizeof(float));
  12402. GGML_ASSERT(nbv0 == sizeof(float));
  12403. GGML_ASSERT(neq0 == D);
  12404. GGML_ASSERT(nek0 == D);
  12405. GGML_ASSERT(nev1 == D);
  12406. GGML_ASSERT(neq1 == N);
  12407. GGML_ASSERT(nek1 == N + P);
  12408. GGML_ASSERT(nev1 == D);
  12409. // dst cannot be transposed or permuted
  12410. GGML_ASSERT(nb0 == sizeof(float));
  12411. GGML_ASSERT(nb0 <= nb1);
  12412. GGML_ASSERT(nb1 <= nb2);
  12413. GGML_ASSERT(nb2 <= nb3);
  12414. if (params->type == GGML_TASK_TYPE_INIT) {
  12415. return;
  12416. }
  12417. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12418. return;
  12419. }
  12420. // parallelize by q rows using ggml_vec_dot_f32
  12421. // total rows in q
  12422. const int nr = neq1*neq2*neq3;
  12423. // rows per thread
  12424. const int dr = (nr + nth - 1)/nth;
  12425. // row range for this thread
  12426. const int ir0 = dr*ith;
  12427. const int ir1 = MIN(ir0 + dr, nr);
  12428. const float scale = 1.0f/sqrtf(D);
  12429. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12430. for (int ir = ir0; ir < ir1; ++ir) {
  12431. // q indices
  12432. const int iq3 = ir/(neq2*neq1);
  12433. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12434. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12435. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12436. for (int i = M; i < Mup; ++i) {
  12437. S[i] = -INFINITY;
  12438. }
  12439. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12440. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12441. // k indices
  12442. const int ik3 = iq3;
  12443. const int ik2 = iq2 % nek2;
  12444. const int ik1 = ic;
  12445. // S indices
  12446. const int i1 = ik1;
  12447. ggml_vec_dot_f32(neq0,
  12448. S + i1, 0,
  12449. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12450. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12451. }
  12452. // scale
  12453. ggml_vec_scale_f32(masked_begin, S, scale);
  12454. for (int64_t i = masked_begin; i < M; i++) {
  12455. S[i] = -INFINITY;
  12456. }
  12457. // softmax
  12458. // exclude known -INF S[..] values from max and loop
  12459. // dont forget to set their SW values to zero
  12460. {
  12461. float max = -INFINITY;
  12462. ggml_vec_max_f32(masked_begin, &max, S);
  12463. ggml_float sum = 0.0;
  12464. {
  12465. #ifdef GGML_SOFT_MAX_ACCELERATE
  12466. max = -max;
  12467. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12468. vvexpf(S, S, &Mup);
  12469. ggml_vec_sum_f32(Mup, &sum, S);
  12470. #else
  12471. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12472. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12473. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12474. if (i >= masked_begin) {
  12475. break;
  12476. }
  12477. float * SS = S + i;
  12478. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12479. if (i + j >= masked_begin) {
  12480. break;
  12481. } else if (SS[j] == -INFINITY) {
  12482. SS[j] = 0.0f;
  12483. } else {
  12484. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12485. const float val = expf(SS[j] - max);
  12486. #else
  12487. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12488. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12489. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12490. #endif
  12491. sump[j] += (ggml_float)val;
  12492. SS[j] = val;
  12493. }
  12494. }
  12495. }
  12496. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12497. sum += sump[i];
  12498. }
  12499. #endif
  12500. }
  12501. assert(sum > 0.0);
  12502. sum = 1.0/sum;
  12503. ggml_vec_scale_f32(masked_begin, S, sum);
  12504. #ifndef NDEBUG
  12505. for (int i = 0; i < masked_begin; ++i) {
  12506. assert(!isnan(S[i]));
  12507. assert(!isinf(S[i]));
  12508. }
  12509. #endif
  12510. }
  12511. for (int64_t ic = 0; ic < nev1; ++ic) {
  12512. // dst indices
  12513. const int i1 = iq1;
  12514. const int i2 = iq2;
  12515. const int i3 = iq3;
  12516. // v indices
  12517. const int iv2 = iq2 % nev2;
  12518. const int iv3 = iq3;
  12519. ggml_vec_dot_f32(masked_begin,
  12520. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12521. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12522. S, 0, 1);
  12523. }
  12524. }
  12525. }
  12526. static void ggml_compute_forward_flash_attn_f16(
  12527. const struct ggml_compute_params * params,
  12528. const bool masked,
  12529. struct ggml_tensor * dst) {
  12530. const struct ggml_tensor * q = dst->src[0];
  12531. const struct ggml_tensor * k = dst->src[1];
  12532. const struct ggml_tensor * v = dst->src[2];
  12533. int64_t t0 = ggml_perf_time_us();
  12534. UNUSED(t0);
  12535. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12536. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12537. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12538. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12539. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12540. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12541. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12542. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12543. const int ith = params->ith;
  12544. const int nth = params->nth;
  12545. const int64_t D = neq0;
  12546. const int64_t N = neq1;
  12547. const int64_t P = nek1 - N;
  12548. const int64_t M = P + N;
  12549. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12550. GGML_ASSERT(ne0 == D);
  12551. GGML_ASSERT(ne1 == N);
  12552. GGML_ASSERT(P >= 0);
  12553. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12554. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12555. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12556. GGML_ASSERT(neq0 == D);
  12557. GGML_ASSERT(nek0 == D);
  12558. GGML_ASSERT(nev1 == D);
  12559. GGML_ASSERT(neq1 == N);
  12560. GGML_ASSERT(nek1 == N + P);
  12561. GGML_ASSERT(nev1 == D);
  12562. // dst cannot be transposed or permuted
  12563. GGML_ASSERT(nb0 == sizeof(float));
  12564. GGML_ASSERT(nb0 <= nb1);
  12565. GGML_ASSERT(nb1 <= nb2);
  12566. GGML_ASSERT(nb2 <= nb3);
  12567. if (params->type == GGML_TASK_TYPE_INIT) {
  12568. return;
  12569. }
  12570. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12571. return;
  12572. }
  12573. // parallelize by q rows using ggml_vec_dot_f32
  12574. // total rows in q
  12575. const int nr = neq1*neq2*neq3;
  12576. // rows per thread
  12577. const int dr = (nr + nth - 1)/nth;
  12578. // row range for this thread
  12579. const int ir0 = dr*ith;
  12580. const int ir1 = MIN(ir0 + dr, nr);
  12581. const float scale = 1.0f/sqrtf(D);
  12582. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12583. for (int ir = ir0; ir < ir1; ++ir) {
  12584. // q indices
  12585. const int iq3 = ir/(neq2*neq1);
  12586. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12587. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12588. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12589. for (int i = M; i < Mup; ++i) {
  12590. S[i] = -INFINITY;
  12591. }
  12592. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12593. for (int64_t ic = 0; ic < nek1; ++ic) {
  12594. // k indices
  12595. const int ik3 = iq3;
  12596. const int ik2 = iq2 % nek2;
  12597. const int ik1 = ic;
  12598. // S indices
  12599. const int i1 = ik1;
  12600. ggml_vec_dot_f16(neq0,
  12601. S + i1, 0,
  12602. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12603. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12604. }
  12605. } else {
  12606. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12607. // k indices
  12608. const int ik3 = iq3;
  12609. const int ik2 = iq2 % nek2;
  12610. const int ik1 = ic;
  12611. // S indices
  12612. const int i1 = ik1;
  12613. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12614. S + i1,
  12615. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12616. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12617. }
  12618. }
  12619. // scale
  12620. ggml_vec_scale_f32(nek1, S, scale);
  12621. if (masked) {
  12622. for (int64_t i = P; i < M; i++) {
  12623. if (i > P + iq1) {
  12624. S[i] = -INFINITY;
  12625. }
  12626. }
  12627. }
  12628. // softmax
  12629. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12630. // dont forget to set their S values to zero
  12631. {
  12632. float max = -INFINITY;
  12633. ggml_vec_max_f32(M, &max, S);
  12634. ggml_float sum = 0.0;
  12635. {
  12636. #ifdef GGML_SOFT_MAX_ACCELERATE
  12637. max = -max;
  12638. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12639. vvexpf(S, S, &Mup);
  12640. ggml_vec_sum_f32(Mup, &sum, S);
  12641. #else
  12642. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12643. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12644. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12645. float * SS = S + i;
  12646. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12647. if (SS[j] == -INFINITY) {
  12648. SS[j] = 0.0f;
  12649. } else {
  12650. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12651. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12652. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12653. sump[j] += (ggml_float)val;
  12654. SS[j] = val;
  12655. }
  12656. }
  12657. }
  12658. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12659. sum += sump[i];
  12660. }
  12661. #endif
  12662. }
  12663. assert(sum > 0.0);
  12664. sum = 1.0/sum;
  12665. ggml_vec_scale_f32(M, S, sum);
  12666. #ifndef NDEBUG
  12667. for (int i = 0; i < M; ++i) {
  12668. assert(!isnan(S[i]));
  12669. assert(!isinf(S[i]));
  12670. }
  12671. #endif
  12672. }
  12673. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12674. for (int64_t i = 0; i < M; i++) {
  12675. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12676. }
  12677. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12678. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12679. for (int64_t ic = 0; ic < nev1; ++ic) {
  12680. // dst indices
  12681. const int i1 = iq1;
  12682. const int i2 = iq2;
  12683. const int i3 = iq3;
  12684. // v indices
  12685. const int iv2 = iq2 % nev2;
  12686. const int iv3 = iq3;
  12687. ggml_vec_dot_f16(nev0,
  12688. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12689. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12690. S16, 0, 1);
  12691. }
  12692. } else {
  12693. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12694. // dst indices
  12695. const int i1 = iq1;
  12696. const int i2 = iq2;
  12697. const int i3 = iq3;
  12698. // v indices
  12699. const int iv2 = iq2 % nev2;
  12700. const int iv3 = iq3;
  12701. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12702. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12703. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12704. S16);
  12705. }
  12706. }
  12707. }
  12708. }
  12709. static void ggml_compute_forward_flash_attn(
  12710. const struct ggml_compute_params * params,
  12711. const bool masked,
  12712. struct ggml_tensor * dst) {
  12713. const struct ggml_tensor * q = dst->src[0];
  12714. switch (q->type) {
  12715. case GGML_TYPE_F16:
  12716. {
  12717. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12718. } break;
  12719. case GGML_TYPE_F32:
  12720. {
  12721. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12722. } break;
  12723. default:
  12724. {
  12725. GGML_ASSERT(false);
  12726. } break;
  12727. }
  12728. }
  12729. // ggml_compute_forward_flash_attn_ext
  12730. static void ggml_compute_forward_flash_attn_ext_f16(
  12731. const struct ggml_compute_params * params,
  12732. const struct ggml_tensor * q,
  12733. const struct ggml_tensor * k,
  12734. const struct ggml_tensor * v,
  12735. const struct ggml_tensor * mask,
  12736. struct ggml_tensor * dst) {
  12737. int64_t t0 = ggml_perf_time_us();
  12738. UNUSED(t0);
  12739. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12740. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12741. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12742. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12743. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12744. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12745. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12746. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12747. const int ith = params->ith;
  12748. const int nth = params->nth;
  12749. const int64_t D = neq0;
  12750. const int64_t N = neq1;
  12751. GGML_ASSERT(ne0 == D);
  12752. GGML_ASSERT(ne2 == N);
  12753. GGML_ASSERT(nbq0 == sizeof(float));
  12754. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12755. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12756. GGML_ASSERT(neq0 == D);
  12757. GGML_ASSERT(nek0 == D);
  12758. GGML_ASSERT(nev0 == D);
  12759. GGML_ASSERT(neq1 == N);
  12760. GGML_ASSERT(nev0 == D);
  12761. // dst cannot be transposed or permuted
  12762. GGML_ASSERT(nb0 == sizeof(float));
  12763. GGML_ASSERT(nb0 <= nb1);
  12764. GGML_ASSERT(nb1 <= nb2);
  12765. GGML_ASSERT(nb2 <= nb3);
  12766. // broadcast factors
  12767. const int64_t rk2 = neq2/nek2;
  12768. const int64_t rk3 = neq3/nek3;
  12769. const int64_t rv2 = neq2/nev2;
  12770. const int64_t rv3 = neq3/nev3;
  12771. if (params->type == GGML_TASK_TYPE_INIT) {
  12772. return;
  12773. }
  12774. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12775. return;
  12776. }
  12777. // parallelize by q rows using ggml_vec_dot_f32
  12778. // total rows in q
  12779. const int nr = neq1*neq2*neq3;
  12780. // rows per thread
  12781. const int dr = (nr + nth - 1)/nth;
  12782. // row range for this thread
  12783. const int ir0 = dr*ith;
  12784. const int ir1 = MIN(ir0 + dr, nr);
  12785. float scale = 1.0f;
  12786. float max_bias = 0.0f;
  12787. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12788. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12789. const uint32_t n_head = neq2;
  12790. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12791. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12792. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12793. // loop over n_batch and n_head
  12794. for (int ir = ir0; ir < ir1; ++ir) {
  12795. // q indices
  12796. const int iq3 = ir/(neq2*neq1);
  12797. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12798. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12799. const uint32_t h = iq2; // head
  12800. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12801. float S = 0.0f;
  12802. float M = -INFINITY;
  12803. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12804. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12805. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12806. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12807. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12808. // k indices
  12809. const int ik3 = iq3 / rk3;
  12810. const int ik2 = iq2 / rk2;
  12811. // v indices
  12812. const int iv3 = iq3 / rv3;
  12813. const int iv2 = iq2 / rv2;
  12814. // online softmax / attention
  12815. // loop over n_kv and n_head_kv
  12816. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12817. for (int64_t ic = 0; ic < nek1; ++ic) {
  12818. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12819. if (mv == -INFINITY) {
  12820. continue;
  12821. }
  12822. float s;
  12823. // convert Q to F16 in V32
  12824. {
  12825. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12826. for (int64_t d = 0; d < D; ++d) {
  12827. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  12828. }
  12829. }
  12830. ggml_vec_dot_f16(D,
  12831. &s, 0,
  12832. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12833. Q16, 0, 1);
  12834. s = s*scale + mv;
  12835. const float Mold = M;
  12836. float ms = 1.0f;
  12837. float vs = 1.0f;
  12838. if (s > M) {
  12839. M = s;
  12840. ms = expf(Mold - M);
  12841. // V = V*expf(Mold - M)
  12842. ggml_vec_scale_f16(D, V16, ms);
  12843. } else {
  12844. vs = expf(s - M);
  12845. }
  12846. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12847. // V += v*expf(s - M)
  12848. ggml_vec_mad_f16(D, V16, v16, vs);
  12849. S = S*ms + vs;
  12850. }
  12851. // V /= S
  12852. for (int64_t d = 0; d < D; ++d) {
  12853. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12854. }
  12855. // dst indices
  12856. const int i1 = iq1;
  12857. const int i2 = iq2;
  12858. const int i3 = iq3;
  12859. // original
  12860. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12861. // permute(0, 2, 1, 3)
  12862. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12863. }
  12864. }
  12865. static void ggml_compute_forward_flash_attn_ext(
  12866. const struct ggml_compute_params * params,
  12867. const struct ggml_tensor * q,
  12868. const struct ggml_tensor * k,
  12869. const struct ggml_tensor * v,
  12870. const struct ggml_tensor * mask,
  12871. struct ggml_tensor * dst) {
  12872. switch (dst->op_params[2]) {
  12873. case GGML_PREC_DEFAULT:
  12874. case GGML_PREC_F32:
  12875. {
  12876. // uses F32 accumulators
  12877. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12878. } break;
  12879. default:
  12880. {
  12881. GGML_ASSERT(false);
  12882. } break;
  12883. }
  12884. }
  12885. // ggml_compute_forward_flash_ff
  12886. static void ggml_compute_forward_flash_ff_f16(
  12887. const struct ggml_compute_params * params,
  12888. struct ggml_tensor * dst) {
  12889. const struct ggml_tensor * a = dst->src[0]; // F16
  12890. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12891. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12892. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12893. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12894. int64_t t0 = ggml_perf_time_us();
  12895. UNUSED(t0);
  12896. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12897. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12898. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12899. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12900. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12901. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12902. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12903. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12904. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12905. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12906. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12907. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12908. const int ith = params->ith;
  12909. const int nth = params->nth;
  12910. const int64_t D = nea0;
  12911. //const int64_t N = nea1;
  12912. const int64_t M = neb01;
  12913. GGML_ASSERT(ne0 == nea0);
  12914. GGML_ASSERT(ne1 == nea1);
  12915. GGML_ASSERT(ne2 == nea2);
  12916. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12917. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12918. GGML_ASSERT(nbb10 == sizeof(float));
  12919. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12920. GGML_ASSERT(nbc10 == sizeof(float));
  12921. GGML_ASSERT(neb00 == D);
  12922. GGML_ASSERT(neb01 == M);
  12923. GGML_ASSERT(neb10 == M);
  12924. GGML_ASSERT(neb11 == 1);
  12925. GGML_ASSERT(nec00 == M);
  12926. GGML_ASSERT(nec01 == D);
  12927. GGML_ASSERT(nec10 == D);
  12928. GGML_ASSERT(nec11 == 1);
  12929. // dst cannot be transposed or permuted
  12930. GGML_ASSERT(nb0 == sizeof(float));
  12931. GGML_ASSERT(nb0 <= nb1);
  12932. GGML_ASSERT(nb1 <= nb2);
  12933. GGML_ASSERT(nb2 <= nb3);
  12934. if (params->type == GGML_TASK_TYPE_INIT) {
  12935. return;
  12936. }
  12937. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12938. return;
  12939. }
  12940. // parallelize by a rows using ggml_vec_dot_f32
  12941. // total rows in a
  12942. const int nr = nea1*nea2*nea3;
  12943. // rows per thread
  12944. const int dr = (nr + nth - 1)/nth;
  12945. // row range for this thread
  12946. const int ir0 = dr*ith;
  12947. const int ir1 = MIN(ir0 + dr, nr);
  12948. for (int ir = ir0; ir < ir1; ++ir) {
  12949. // a indices
  12950. const int ia3 = ir/(nea2*nea1);
  12951. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12952. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12953. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12954. for (int64_t ic = 0; ic < neb01; ++ic) {
  12955. // b0 indices
  12956. const int ib03 = ia3;
  12957. const int ib02 = ia2;
  12958. const int ib01 = ic;
  12959. // S indices
  12960. const int i1 = ib01;
  12961. ggml_vec_dot_f16(nea0,
  12962. S + i1, 0,
  12963. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12964. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12965. }
  12966. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12967. //ggml_vec_gelu_f32(neb01, S, S);
  12968. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12969. for (int64_t i = 0; i < M; i++) {
  12970. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12971. }
  12972. ggml_vec_gelu_f16(neb01, S16, S16);
  12973. {
  12974. // dst indices
  12975. const int i1 = ia1;
  12976. const int i2 = ia2;
  12977. const int i3 = ia3;
  12978. for (int64_t ic = 0; ic < nec01; ++ic) {
  12979. ggml_vec_dot_f16(neb01,
  12980. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12981. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12982. S16, 0, 1);
  12983. }
  12984. ggml_vec_add_f32(nec01,
  12985. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12986. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12987. (float *) c1->data);
  12988. }
  12989. }
  12990. }
  12991. static void ggml_compute_forward_flash_ff(
  12992. const struct ggml_compute_params * params,
  12993. struct ggml_tensor * dst) {
  12994. const struct ggml_tensor * b0 = dst->src[1];
  12995. switch (b0->type) {
  12996. case GGML_TYPE_F16:
  12997. {
  12998. ggml_compute_forward_flash_ff_f16(params, dst);
  12999. } break;
  13000. case GGML_TYPE_F32:
  13001. {
  13002. GGML_ASSERT(false); // TODO
  13003. } break;
  13004. default:
  13005. {
  13006. GGML_ASSERT(false);
  13007. } break;
  13008. }
  13009. }
  13010. // ggml_compute_forward_flash_attn_back
  13011. static void ggml_compute_forward_flash_attn_back_f32(
  13012. const struct ggml_compute_params * params,
  13013. const bool masked,
  13014. struct ggml_tensor * dst) {
  13015. const struct ggml_tensor * q = dst->src[0];
  13016. const struct ggml_tensor * k = dst->src[1];
  13017. const struct ggml_tensor * v = dst->src[2];
  13018. const struct ggml_tensor * d = dst->src[3];
  13019. int64_t t0 = ggml_perf_time_us();
  13020. UNUSED(t0);
  13021. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13022. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13023. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13024. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13025. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13026. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13027. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13028. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13029. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13030. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13031. const int ith = params->ith;
  13032. const int nth = params->nth;
  13033. const int64_t D = neq0;
  13034. const int64_t N = neq1;
  13035. const int64_t P = nek1 - N;
  13036. const int64_t M = P + N;
  13037. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13038. const int mxDM = MAX(D, Mup);
  13039. // GGML_ASSERT(ne0 == D);
  13040. // GGML_ASSERT(ne1 == N);
  13041. GGML_ASSERT(P >= 0);
  13042. GGML_ASSERT(nbq0 == sizeof(float));
  13043. GGML_ASSERT(nbk0 == sizeof(float));
  13044. GGML_ASSERT(nbv0 == sizeof(float));
  13045. GGML_ASSERT(neq0 == D);
  13046. GGML_ASSERT(nek0 == D);
  13047. GGML_ASSERT(nev1 == D);
  13048. GGML_ASSERT(ned0 == D);
  13049. GGML_ASSERT(neq1 == N);
  13050. GGML_ASSERT(nek1 == N + P);
  13051. GGML_ASSERT(nev1 == D);
  13052. GGML_ASSERT(ned1 == N);
  13053. // dst cannot be transposed or permuted
  13054. GGML_ASSERT(nb0 == sizeof(float));
  13055. GGML_ASSERT(nb0 <= nb1);
  13056. GGML_ASSERT(nb1 <= nb2);
  13057. GGML_ASSERT(nb2 <= nb3);
  13058. if (params->type == GGML_TASK_TYPE_INIT) {
  13059. if (ith == 0) {
  13060. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13061. }
  13062. return;
  13063. }
  13064. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13065. return;
  13066. }
  13067. const int64_t elem_q = ggml_nelements(q);
  13068. const int64_t elem_k = ggml_nelements(k);
  13069. enum ggml_type result_type = dst->type;
  13070. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13071. const size_t tsize = ggml_type_size(result_type);
  13072. const size_t offs_q = 0;
  13073. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13074. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13075. void * grad_q = (char *) dst->data;
  13076. void * grad_k = (char *) dst->data + offs_k;
  13077. void * grad_v = (char *) dst->data + offs_v;
  13078. const size_t nbgq1 = nb0*neq0;
  13079. const size_t nbgq2 = nb0*neq0*neq1;
  13080. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13081. const size_t nbgk1 = nb0*nek0;
  13082. const size_t nbgk2 = nb0*nek0*nek1;
  13083. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13084. const size_t nbgv1 = nb0*nev0;
  13085. const size_t nbgv2 = nb0*nev0*nev1;
  13086. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13087. // parallelize by k rows using ggml_vec_dot_f32
  13088. // total rows in k
  13089. const int nr = nek2*nek3;
  13090. // rows per thread
  13091. const int dr = (nr + nth - 1)/nth;
  13092. // row range for this thread
  13093. const int ir0 = dr*ith;
  13094. const int ir1 = MIN(ir0 + dr, nr);
  13095. const float scale = 1.0f/sqrtf(D);
  13096. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13097. // how often k2 (and v2) is repeated in q2
  13098. int nrep = neq2/nek2;
  13099. for (int ir = ir0; ir < ir1; ++ir) {
  13100. // q indices
  13101. const int ik3 = ir/(nek2);
  13102. const int ik2 = ir - ik3*nek2;
  13103. const int iq3 = ik3;
  13104. const int id3 = ik3;
  13105. const int iv3 = ik3;
  13106. const int iv2 = ik2;
  13107. for (int irep = 0; irep < nrep; ++irep) {
  13108. const int iq2 = ik2 + irep*nek2;
  13109. const int id2 = iq2;
  13110. // (ik2 + irep*nek2) % nek2 == ik2
  13111. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13112. const int id1 = iq1;
  13113. // not sure about CACHE_LINE_SIZE_F32..
  13114. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13115. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13116. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13117. for (int i = M; i < Mup; ++i) {
  13118. S[i] = -INFINITY;
  13119. }
  13120. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13121. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13122. // k indices
  13123. const int ik1 = ic;
  13124. // S indices
  13125. const int i1 = ik1;
  13126. ggml_vec_dot_f32(neq0,
  13127. S + i1, 0,
  13128. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13129. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13130. }
  13131. // scale
  13132. ggml_vec_scale_f32(masked_begin, S, scale);
  13133. for (int64_t i = masked_begin; i < M; i++) {
  13134. S[i] = -INFINITY;
  13135. }
  13136. // softmax
  13137. // exclude known -INF S[..] values from max and loop
  13138. // dont forget to set their SM values to zero
  13139. {
  13140. float max = -INFINITY;
  13141. ggml_vec_max_f32(masked_begin, &max, S);
  13142. ggml_float sum = 0.0;
  13143. {
  13144. #ifdef GGML_SOFT_MAX_ACCELERATE
  13145. max = -max;
  13146. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13147. vvexpf(SM, SM, &Mup);
  13148. ggml_vec_sum_f32(Mup, &sum, SM);
  13149. #else
  13150. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  13151. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  13152. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  13153. if (i >= masked_begin) {
  13154. break;
  13155. }
  13156. float * SR = S + i;
  13157. float * SW = SM + i;
  13158. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  13159. if (i + j >= masked_begin) {
  13160. break;
  13161. } else if (SR[j] == -INFINITY) {
  13162. SW[j] = 0.0f;
  13163. } else {
  13164. #ifndef GGML_FLASH_ATTN_EXP_FP16
  13165. const float val = expf(SR[j] - max);
  13166. #else
  13167. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  13168. memcpy(&scvt[j], &s, sizeof(uint16_t));
  13169. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  13170. #endif
  13171. sump[j] += (ggml_float)val;
  13172. SW[j] = val;
  13173. }
  13174. }
  13175. }
  13176. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  13177. sum += sump[i];
  13178. }
  13179. #endif
  13180. }
  13181. assert(sum > 0.0);
  13182. sum = 1.0/sum;
  13183. ggml_vec_scale_f32(masked_begin, SM, sum);
  13184. }
  13185. // step-by-step explanation
  13186. {
  13187. // forward-process shape grads from backward process
  13188. // parallel_for ik2,ik3:
  13189. // for irep:
  13190. // iq2 = ik2 + irep*nek2
  13191. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13192. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13193. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13194. // for iq1:
  13195. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13196. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13197. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13198. // S0 = -Inf [D,1,1,1]
  13199. // ~S1[i] = dot(kcur[:D,i], qcur)
  13200. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13201. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13202. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13203. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13204. // ~S5[i] = dot(vcur[:,i], S4)
  13205. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13206. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13207. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13208. // dst backward-/ grad[dst] = d
  13209. //
  13210. // output gradients with their dependencies:
  13211. //
  13212. // grad[kcur] = grad[S1].T @ qcur
  13213. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13214. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13215. // grad[S4] = grad[S5] @ vcur
  13216. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13217. // grad[qcur] = grad[S1] @ kcur
  13218. // grad[vcur] = grad[S5].T @ S4
  13219. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13220. //
  13221. // in post-order:
  13222. //
  13223. // S1 = qcur @ kcur.T
  13224. // S2 = S1 * scale
  13225. // S3 = diag_mask_inf(S2, P)
  13226. // S4 = softmax(S3)
  13227. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13228. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13229. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13230. // grad[qcur] = grad[S1] @ kcur
  13231. // grad[kcur] = grad[S1].T @ qcur
  13232. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13233. //
  13234. // using less variables (SM=S4):
  13235. //
  13236. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13237. // SM = softmax(S)
  13238. // S = d[:D,iq1,iq2,iq3] @ vcur
  13239. // dot_SM_gradSM = dot(SM, S)
  13240. // S = SM * (S - dot(SM, S))
  13241. // S = diag_mask_zero(S, P) * scale
  13242. //
  13243. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13244. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13245. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13246. }
  13247. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13248. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13249. // for ic:
  13250. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13251. // exclude known future zero S[..] values from operation
  13252. ggml_vec_set_f32(masked_begin, S, 0);
  13253. for (int64_t ic = 0; ic < D; ++ic) {
  13254. ggml_vec_mad_f32(masked_begin,
  13255. S,
  13256. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13257. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13258. }
  13259. // S = SM * (S - dot(SM, S))
  13260. float dot_SM_gradSM = 0;
  13261. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13262. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13263. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13264. // S = diag_mask_zero(S, P) * scale
  13265. // already done by above ggml_vec_set_f32
  13266. // exclude known zero S[..] values from operation
  13267. ggml_vec_scale_f32(masked_begin, S, scale);
  13268. // S shape [M,1]
  13269. // SM shape [M,1]
  13270. // kcur shape [D,M]
  13271. // qcur shape [D,1]
  13272. // vcur shape [M,D]
  13273. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13274. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13275. // for ic:
  13276. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13277. // exclude known zero S[..] values from loop
  13278. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13279. ggml_vec_mad_f32(D,
  13280. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13281. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13282. S[ic]);
  13283. }
  13284. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13285. // for ic:
  13286. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13287. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13288. // exclude known zero S[..] values from loop
  13289. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13290. ggml_vec_mad_f32(D,
  13291. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13292. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13293. S[ic]);
  13294. }
  13295. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13296. // for ic:
  13297. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13298. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13299. // exclude known zero SM[..] values from mad
  13300. for (int64_t ic = 0; ic < D; ++ic) {
  13301. ggml_vec_mad_f32(masked_begin,
  13302. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13303. SM,
  13304. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13305. }
  13306. }
  13307. }
  13308. }
  13309. }
  13310. static void ggml_compute_forward_flash_attn_back(
  13311. const struct ggml_compute_params * params,
  13312. const bool masked,
  13313. struct ggml_tensor * dst) {
  13314. const struct ggml_tensor * q = dst->src[0];
  13315. switch (q->type) {
  13316. case GGML_TYPE_F32:
  13317. {
  13318. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13319. } break;
  13320. default:
  13321. {
  13322. GGML_ASSERT(false);
  13323. } break;
  13324. }
  13325. }
  13326. // ggml_compute_forward_ssm_conv
  13327. static void ggml_compute_forward_ssm_conv_f32(
  13328. const struct ggml_compute_params * params,
  13329. struct ggml_tensor * dst) {
  13330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13331. return;
  13332. }
  13333. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13334. const struct ggml_tensor * src1 = dst->src[1]; // x
  13335. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13336. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13337. const int ith = params->ith;
  13338. const int nth = params->nth;
  13339. const int nc = src2->ne[0]; // d_conv
  13340. const int nr = src0->ne[1]; // d_inner
  13341. const int n_t = src1->ne[1]; // n_tokens
  13342. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13343. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13344. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13345. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13346. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13347. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13348. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13349. // for use with the destination state offset between sequences
  13350. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13351. // rows per thread
  13352. const int dr = (nr + nth - 1)/nth;
  13353. // row range for this thread
  13354. const int ir0 = dr*ith;
  13355. const int ir1 = MIN(ir0 + dr, nr);
  13356. const int ir = ir1 - ir0;
  13357. if (n_kv > 1) {
  13358. // multiple sequences means it's hard to know when it's the first time a state is read,
  13359. // so copy them all over to the destination, just to be sure.
  13360. for (int i3 = 0; i3 < n_kv; ++i3) {
  13361. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13362. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13363. // can't use memcpy because of d_conv vs d_conv - 1
  13364. for (int i1 = 0; i1 < ir; ++i1) {
  13365. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13366. // copy s0 to last (d_conv - 1) columns of s
  13367. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13368. }
  13369. }
  13370. }
  13371. }
  13372. for (int i2 = 0; i2 < n_t; ++i2) {
  13373. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13374. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13375. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13376. float * s0; // {d_conv - 1, d_inner, n_kv}
  13377. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13378. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13379. int ne0s0;
  13380. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13381. // avoid needing to copy the state for the first token
  13382. if (i2 == 0) {
  13383. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13384. ne0s0 = src0->ne[0];
  13385. } else {
  13386. // the source is the last (d_conv - 1) columns of the destination
  13387. s0 = s + 1;
  13388. ne0s0 = nc;
  13389. }
  13390. // d_inner
  13391. for (int i1 = 0; i1 < ir; ++i1) {
  13392. // shift state left
  13393. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13394. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13395. }
  13396. // insert x on the last column
  13397. s[(nc - 1) + i1*nc] = x0[i1];
  13398. }
  13399. // handle copies when there are multiple output states
  13400. for (int i3 = 1; i3 < n_kv; ++i3) {
  13401. int32_t seq = sq[i3];
  13402. if (0 <= seq && seq < n_kv) {
  13403. float * s1 = s + (seq - sq[0])*nc*nr;
  13404. memcpy(s1, s, nc*ir*sizeof(float));
  13405. } else {
  13406. // stop at negative or too big seq_ids
  13407. break;
  13408. }
  13409. }
  13410. // it seems a little faster when this is separate from the state shift
  13411. for (int i1 = 0; i1 < ir; ++i1) {
  13412. // rowwise dot product
  13413. float sumf = 0.0f;
  13414. for (int i0 = 0; i0 < nc; ++i0) {
  13415. int i = i0 + i1*nc;
  13416. sumf += s[i] * c[i];
  13417. }
  13418. x[i1] = sumf;
  13419. }
  13420. }
  13421. }
  13422. static void ggml_compute_forward_ssm_conv(
  13423. const struct ggml_compute_params * params,
  13424. struct ggml_tensor * dst) {
  13425. switch (dst->src[0]->type) {
  13426. case GGML_TYPE_F32:
  13427. {
  13428. ggml_compute_forward_ssm_conv_f32(params, dst);
  13429. } break;
  13430. default:
  13431. {
  13432. GGML_ASSERT(false);
  13433. } break;
  13434. }
  13435. }
  13436. // ggml_compute_forward_ssm_scan
  13437. static void ggml_compute_forward_ssm_scan_f32(
  13438. const struct ggml_compute_params * params,
  13439. struct ggml_tensor * dst) {
  13440. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13441. return;
  13442. }
  13443. const struct ggml_tensor * src0 = dst->src[0]; // s
  13444. const struct ggml_tensor * src1 = dst->src[1]; // x
  13445. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13446. const struct ggml_tensor * src3 = dst->src[3]; // A
  13447. const struct ggml_tensor * src4 = dst->src[4]; // B
  13448. const struct ggml_tensor * src5 = dst->src[5]; // C
  13449. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13450. const int ith = params->ith;
  13451. const int nth = params->nth;
  13452. const int64_t nc = src0->ne[0]; // d_state
  13453. const int64_t nr = src0->ne[1]; // d_inner
  13454. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13455. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13456. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13457. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13458. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13459. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13460. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13461. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13462. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13463. // required for the dot product between s and C, and when copying the states
  13464. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13465. // required for per-sequence offsets for states
  13466. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13467. // required to get correct offset for state destination (i.e. src1->nb[2])
  13468. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13469. // rows per thread
  13470. const int dr = (nr + nth - 1)/nth;
  13471. // row range for this thread
  13472. const int ir0 = dr*ith;
  13473. const int ir1 = MIN(ir0 + dr, nr);
  13474. const int ir = ir1 - ir0;
  13475. if (n_kv > 1) {
  13476. // it's hard to know if the source states have already been copied
  13477. // when there are multiple, so copy them already.
  13478. for (int i3 = 0; i3 < n_kv; ++i3) {
  13479. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13480. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13481. memcpy(s, s0, nc*ir*sizeof(float));
  13482. }
  13483. }
  13484. for (int i2 = 0; i2 < n_t; ++i2) {
  13485. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13486. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13487. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13488. float * s0;
  13489. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13490. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13491. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13492. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13493. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13494. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13495. // avoid needing to copy the state for the first token
  13496. if (i2 == 0) {
  13497. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13498. } else {
  13499. // otherwise the source is the same as the destination
  13500. s0 = s;
  13501. }
  13502. // d_inner
  13503. for (int i1 = 0; i1 < ir; ++i1) {
  13504. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13505. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13506. float x_dt = x[i1] * dt_soft_plus;
  13507. float sumf = 0.0f;
  13508. // d_state
  13509. for (int i0 = 0; i0 < nc; ++i0) {
  13510. int i = i0 + i1*nc;
  13511. // state = prev_state * dA + dB * x
  13512. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13513. // y = rowwise_dotprod(state, C)
  13514. sumf += state * C[i0];
  13515. s[i] = state;
  13516. }
  13517. y[i1] = sumf;
  13518. }
  13519. // handle copies when there are multiple output states
  13520. for (int i3 = 1; i3 < n_kv; ++i3) {
  13521. int32_t seq = sq[i3];
  13522. if (0 <= seq && seq < n_kv) {
  13523. float * s1 = s + (seq - sq[0])*nc*nr;
  13524. memcpy(s1, s, nc*ir*sizeof(float));
  13525. } else {
  13526. // stop at negative or too big seq_ids
  13527. break;
  13528. }
  13529. }
  13530. }
  13531. }
  13532. static void ggml_compute_forward_ssm_scan(
  13533. const struct ggml_compute_params * params,
  13534. struct ggml_tensor * dst) {
  13535. switch (dst->src[0]->type) {
  13536. case GGML_TYPE_F32:
  13537. {
  13538. ggml_compute_forward_ssm_scan_f32(params, dst);
  13539. } break;
  13540. default:
  13541. {
  13542. GGML_ASSERT(false);
  13543. } break;
  13544. }
  13545. }
  13546. // ggml_compute_forward_win_part
  13547. static void ggml_compute_forward_win_part_f32(
  13548. const struct ggml_compute_params * params,
  13549. struct ggml_tensor * dst) {
  13550. const struct ggml_tensor * src0 = dst->src[0];
  13551. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13552. return;
  13553. }
  13554. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13555. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13556. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13557. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13558. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13559. assert(ne00 == ne0);
  13560. assert(ne3 == nep0*nep1);
  13561. // TODO: optimize / multi-thread
  13562. for (int py = 0; py < nep1; ++py) {
  13563. for (int px = 0; px < nep0; ++px) {
  13564. const int64_t i3 = py*nep0 + px;
  13565. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13566. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13567. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13568. const int64_t i02 = py*w + i2;
  13569. const int64_t i01 = px*w + i1;
  13570. const int64_t i00 = i0;
  13571. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13572. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13573. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13574. ((float *) dst->data)[i] = 0.0f;
  13575. } else {
  13576. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13577. }
  13578. }
  13579. }
  13580. }
  13581. }
  13582. }
  13583. }
  13584. static void ggml_compute_forward_win_part(
  13585. const struct ggml_compute_params * params,
  13586. struct ggml_tensor * dst) {
  13587. const struct ggml_tensor * src0 = dst->src[0];
  13588. switch (src0->type) {
  13589. case GGML_TYPE_F32:
  13590. {
  13591. ggml_compute_forward_win_part_f32(params, dst);
  13592. } break;
  13593. default:
  13594. {
  13595. GGML_ASSERT(false);
  13596. } break;
  13597. }
  13598. }
  13599. // ggml_compute_forward_win_unpart
  13600. static void ggml_compute_forward_win_unpart_f32(
  13601. const struct ggml_compute_params * params,
  13602. struct ggml_tensor * dst) {
  13603. const struct ggml_tensor * src0 = dst->src[0];
  13604. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13605. return;
  13606. }
  13607. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13608. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13609. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13610. // padding
  13611. const int px = (w - ne1%w)%w;
  13612. //const int py = (w - ne2%w)%w;
  13613. const int npx = (px + ne1)/w;
  13614. //const int npy = (py + ne2)/w;
  13615. assert(ne0 == ne00);
  13616. // TODO: optimize / multi-thread
  13617. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13618. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13619. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13620. const int ip2 = i2/w;
  13621. const int ip1 = i1/w;
  13622. const int64_t i02 = i2%w;
  13623. const int64_t i01 = i1%w;
  13624. const int64_t i00 = i0;
  13625. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13626. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13627. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13628. }
  13629. }
  13630. }
  13631. }
  13632. static void ggml_compute_forward_win_unpart(
  13633. const struct ggml_compute_params * params,
  13634. struct ggml_tensor * dst) {
  13635. const struct ggml_tensor * src0 = dst->src[0];
  13636. switch (src0->type) {
  13637. case GGML_TYPE_F32:
  13638. {
  13639. ggml_compute_forward_win_unpart_f32(params, dst);
  13640. } break;
  13641. default:
  13642. {
  13643. GGML_ASSERT(false);
  13644. } break;
  13645. }
  13646. }
  13647. //gmml_compute_forward_unary
  13648. static void ggml_compute_forward_unary(
  13649. const struct ggml_compute_params * params,
  13650. struct ggml_tensor * dst) {
  13651. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13652. switch (op) {
  13653. case GGML_UNARY_OP_ABS:
  13654. {
  13655. ggml_compute_forward_abs(params, dst);
  13656. } break;
  13657. case GGML_UNARY_OP_SGN:
  13658. {
  13659. ggml_compute_forward_sgn(params, dst);
  13660. } break;
  13661. case GGML_UNARY_OP_NEG:
  13662. {
  13663. ggml_compute_forward_neg(params, dst);
  13664. } break;
  13665. case GGML_UNARY_OP_STEP:
  13666. {
  13667. ggml_compute_forward_step(params, dst);
  13668. } break;
  13669. case GGML_UNARY_OP_TANH:
  13670. {
  13671. ggml_compute_forward_tanh(params, dst);
  13672. } break;
  13673. case GGML_UNARY_OP_ELU:
  13674. {
  13675. ggml_compute_forward_elu(params, dst);
  13676. } break;
  13677. case GGML_UNARY_OP_RELU:
  13678. {
  13679. ggml_compute_forward_relu(params, dst);
  13680. } break;
  13681. case GGML_UNARY_OP_SIGMOID:
  13682. {
  13683. ggml_compute_forward_sigmoid(params, dst);
  13684. } break;
  13685. case GGML_UNARY_OP_GELU:
  13686. {
  13687. ggml_compute_forward_gelu(params, dst);
  13688. } break;
  13689. case GGML_UNARY_OP_GELU_QUICK:
  13690. {
  13691. ggml_compute_forward_gelu_quick(params, dst);
  13692. } break;
  13693. case GGML_UNARY_OP_SILU:
  13694. {
  13695. ggml_compute_forward_silu(params, dst);
  13696. } break;
  13697. case GGML_UNARY_OP_HARDSWISH:
  13698. {
  13699. ggml_compute_forward_hardswish(params, dst);
  13700. } break;
  13701. case GGML_UNARY_OP_HARDSIGMOID:
  13702. {
  13703. ggml_compute_forward_hardsigmoid(params, dst);
  13704. } break;
  13705. default:
  13706. {
  13707. GGML_ASSERT(false);
  13708. } break;
  13709. }
  13710. }
  13711. // ggml_compute_forward_get_rel_pos
  13712. static void ggml_compute_forward_get_rel_pos_f16(
  13713. const struct ggml_compute_params * params,
  13714. struct ggml_tensor * dst) {
  13715. const struct ggml_tensor * src0 = dst->src[0];
  13716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13717. return;
  13718. }
  13719. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13720. GGML_TENSOR_UNARY_OP_LOCALS
  13721. const int64_t w = ne1;
  13722. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13723. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13724. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13725. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13726. const int64_t pos = (w - i1 - 1) + i2;
  13727. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13728. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13729. }
  13730. }
  13731. }
  13732. }
  13733. static void ggml_compute_forward_get_rel_pos(
  13734. const struct ggml_compute_params * params,
  13735. struct ggml_tensor * dst) {
  13736. const struct ggml_tensor * src0 = dst->src[0];
  13737. switch (src0->type) {
  13738. case GGML_TYPE_F16:
  13739. case GGML_TYPE_BF16:
  13740. {
  13741. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13742. } break;
  13743. default:
  13744. {
  13745. GGML_ASSERT(false);
  13746. } break;
  13747. }
  13748. }
  13749. // ggml_compute_forward_add_rel_pos
  13750. static void ggml_compute_forward_add_rel_pos_f32(
  13751. const struct ggml_compute_params * params,
  13752. struct ggml_tensor * dst) {
  13753. const struct ggml_tensor * src0 = dst->src[0];
  13754. const struct ggml_tensor * src1 = dst->src[1];
  13755. const struct ggml_tensor * src2 = dst->src[2];
  13756. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13757. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13758. if (params->ith != 0) {
  13759. return;
  13760. }
  13761. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13762. return;
  13763. }
  13764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13765. return;
  13766. }
  13767. int64_t t0 = ggml_perf_time_us();
  13768. UNUSED(t0);
  13769. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13770. float * src1_data = (float *) src1->data;
  13771. float * src2_data = (float *) src2->data;
  13772. float * dst_data = (float *) dst->data;
  13773. const int64_t ne10 = src1->ne[0];
  13774. const int64_t ne11 = src1->ne[1];
  13775. const int64_t ne12 = src1->ne[2];
  13776. const int64_t ne13 = src1->ne[3];
  13777. const int ith = params->ith;
  13778. const int nth = params->nth;
  13779. // total patches in dst
  13780. const int np = ne13;
  13781. // patches per thread
  13782. const int dp = (np + nth - 1)/nth;
  13783. // patch range for this thread
  13784. const int ip0 = dp*ith;
  13785. const int ip1 = MIN(ip0 + dp, np);
  13786. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13787. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13788. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13789. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13790. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13791. const int64_t jp0 = jp1 + i10;
  13792. const float src1_e = src1_data[jp0];
  13793. const float src2_e = src2_data[jp0];
  13794. const int64_t jdh = jp0 * ne10;
  13795. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13796. for (int64_t j = 0; j < ne10; ++j) {
  13797. dst_data[jdh + j ] += src2_e;
  13798. dst_data[jdw + j*ne10] += src1_e;
  13799. }
  13800. }
  13801. }
  13802. }
  13803. }
  13804. }
  13805. static void ggml_compute_forward_add_rel_pos(
  13806. const struct ggml_compute_params * params,
  13807. struct ggml_tensor * dst) {
  13808. const struct ggml_tensor * src0 = dst->src[0];
  13809. switch (src0->type) {
  13810. case GGML_TYPE_F32:
  13811. {
  13812. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13813. } break;
  13814. default:
  13815. {
  13816. GGML_ASSERT(false);
  13817. } break;
  13818. }
  13819. }
  13820. // ggml_compute_forward_map_unary
  13821. static void ggml_compute_forward_map_unary_f32(
  13822. const struct ggml_compute_params * params,
  13823. struct ggml_tensor * dst,
  13824. const ggml_unary_op_f32_t fun) {
  13825. const struct ggml_tensor * src0 = dst->src[0];
  13826. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13827. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13828. return;
  13829. }
  13830. const int n = ggml_nrows(src0);
  13831. const int nc = src0->ne[0];
  13832. assert( dst->nb[0] == sizeof(float));
  13833. assert(src0->nb[0] == sizeof(float));
  13834. for (int i = 0; i < n; i++) {
  13835. fun(nc,
  13836. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13837. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13838. }
  13839. }
  13840. static void ggml_compute_forward_map_unary(
  13841. const struct ggml_compute_params * params,
  13842. struct ggml_tensor * dst,
  13843. const ggml_unary_op_f32_t fun) {
  13844. const struct ggml_tensor * src0 = dst->src[0];
  13845. switch (src0->type) {
  13846. case GGML_TYPE_F32:
  13847. {
  13848. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13849. } break;
  13850. default:
  13851. {
  13852. GGML_ASSERT(false);
  13853. } break;
  13854. }
  13855. }
  13856. // ggml_compute_forward_map_binary
  13857. static void ggml_compute_forward_map_binary_f32(
  13858. const struct ggml_compute_params * params,
  13859. struct ggml_tensor * dst,
  13860. const ggml_binary_op_f32_t fun) {
  13861. const struct ggml_tensor * src0 = dst->src[0];
  13862. const struct ggml_tensor * src1 = dst->src[1];
  13863. assert(params->ith == 0);
  13864. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13865. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13866. return;
  13867. }
  13868. const int n = ggml_nrows(src0);
  13869. const int nc = src0->ne[0];
  13870. assert( dst->nb[0] == sizeof(float));
  13871. assert(src0->nb[0] == sizeof(float));
  13872. assert(src1->nb[0] == sizeof(float));
  13873. for (int i = 0; i < n; i++) {
  13874. fun(nc,
  13875. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13876. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13877. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13878. }
  13879. }
  13880. static void ggml_compute_forward_map_binary(
  13881. const struct ggml_compute_params * params,
  13882. struct ggml_tensor * dst,
  13883. const ggml_binary_op_f32_t fun) {
  13884. const struct ggml_tensor * src0 = dst->src[0];
  13885. switch (src0->type) {
  13886. case GGML_TYPE_F32:
  13887. {
  13888. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13889. } break;
  13890. default:
  13891. {
  13892. GGML_ASSERT(false);
  13893. } break;
  13894. }
  13895. }
  13896. // ggml_compute_forward_map_custom1
  13897. static void ggml_compute_forward_map_custom1_f32(
  13898. const struct ggml_compute_params * params,
  13899. struct ggml_tensor * dst,
  13900. const ggml_custom1_op_f32_t fun) {
  13901. const struct ggml_tensor * a = dst->src[0];
  13902. assert(params->ith == 0);
  13903. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13904. return;
  13905. }
  13906. fun(dst, a);
  13907. }
  13908. // ggml_compute_forward_map_custom2
  13909. static void ggml_compute_forward_map_custom2_f32(
  13910. const struct ggml_compute_params * params,
  13911. struct ggml_tensor * dst,
  13912. const ggml_custom2_op_f32_t fun) {
  13913. const struct ggml_tensor * a = dst->src[0];
  13914. const struct ggml_tensor * b = dst->src[1];
  13915. assert(params->ith == 0);
  13916. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13917. return;
  13918. }
  13919. fun(dst, a, b);
  13920. }
  13921. // ggml_compute_forward_map_custom3
  13922. static void ggml_compute_forward_map_custom3_f32(
  13923. const struct ggml_compute_params * params,
  13924. struct ggml_tensor * dst,
  13925. const ggml_custom3_op_f32_t fun) {
  13926. const struct ggml_tensor * a = dst->src[0];
  13927. const struct ggml_tensor * b = dst->src[1];
  13928. const struct ggml_tensor * c = dst->src[1];
  13929. assert(params->ith == 0);
  13930. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13931. return;
  13932. }
  13933. fun(dst, a, b, c);
  13934. }
  13935. // ggml_compute_forward_map_custom1
  13936. static void ggml_compute_forward_map_custom1(
  13937. const struct ggml_compute_params * params,
  13938. struct ggml_tensor * dst) {
  13939. const struct ggml_tensor * a = dst->src[0];
  13940. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13941. return;
  13942. }
  13943. struct ggml_map_custom1_op_params p;
  13944. memcpy(&p, dst->op_params, sizeof(p));
  13945. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13946. }
  13947. // ggml_compute_forward_map_custom2
  13948. static void ggml_compute_forward_map_custom2(
  13949. const struct ggml_compute_params * params,
  13950. struct ggml_tensor * dst) {
  13951. const struct ggml_tensor * a = dst->src[0];
  13952. const struct ggml_tensor * b = dst->src[1];
  13953. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13954. return;
  13955. }
  13956. struct ggml_map_custom2_op_params p;
  13957. memcpy(&p, dst->op_params, sizeof(p));
  13958. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13959. }
  13960. // ggml_compute_forward_map_custom3
  13961. static void ggml_compute_forward_map_custom3(
  13962. const struct ggml_compute_params * params,
  13963. struct ggml_tensor * dst) {
  13964. const struct ggml_tensor * a = dst->src[0];
  13965. const struct ggml_tensor * b = dst->src[1];
  13966. const struct ggml_tensor * c = dst->src[2];
  13967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13968. return;
  13969. }
  13970. struct ggml_map_custom3_op_params p;
  13971. memcpy(&p, dst->op_params, sizeof(p));
  13972. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13973. }
  13974. // ggml_compute_forward_cross_entropy_loss
  13975. static void ggml_compute_forward_cross_entropy_loss_f32(
  13976. const struct ggml_compute_params * params,
  13977. struct ggml_tensor * dst) {
  13978. const struct ggml_tensor * src0 = dst->src[0];
  13979. const struct ggml_tensor * src1 = dst->src[1];
  13980. GGML_ASSERT(ggml_is_contiguous(src0));
  13981. GGML_ASSERT(ggml_is_contiguous(src1));
  13982. GGML_ASSERT(ggml_is_scalar(dst));
  13983. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13984. const int ith = params->ith;
  13985. const int nth = params->nth;
  13986. float * sums = (float *) params->wdata;
  13987. // TODO: handle transposed/permuted matrices
  13988. const int nc = src0->ne[0];
  13989. const int nr = ggml_nrows(src0);
  13990. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13991. if (params->type == GGML_TASK_TYPE_INIT) {
  13992. if (ith == 0) {
  13993. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13994. }
  13995. return;
  13996. }
  13997. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13998. if (ith == 0) {
  13999. float * dp = (float *) dst->data;
  14000. ggml_vec_sum_f32(nth, dp, sums);
  14001. dp[0] *= -1.0f / (float) nr;
  14002. }
  14003. return;
  14004. }
  14005. const double eps = 1e-9;
  14006. // rows per thread
  14007. const int dr = (nr + nth - 1)/nth;
  14008. // row range for this thread
  14009. const int ir0 = dr*ith;
  14010. const int ir1 = MIN(ir0 + dr, nr);
  14011. for (int i1 = ir0; i1 < ir1; i1++) {
  14012. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14013. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14014. float * st = ((float *) params->wdata) + nth + ith*nc;
  14015. #ifndef NDEBUG
  14016. for (int i = 0; i < nc; ++i) {
  14017. //printf("p[%d] = %f\n", i, p[i]);
  14018. assert(!isnan(s0[i]));
  14019. assert(!isnan(s1[i]));
  14020. }
  14021. #endif
  14022. // soft_max
  14023. ggml_float sum = 0.0;
  14024. {
  14025. float max = -INFINITY;
  14026. ggml_vec_max_f32(nc, &max, s0);
  14027. uint16_t scvt; UNUSED(scvt);
  14028. for (int i = 0; i < nc; i++) {
  14029. if (s0[i] == -INFINITY) {
  14030. st[i] = 0.0f;
  14031. } else {
  14032. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  14033. const float s = s0[i] - max;
  14034. const float val = expf(s);
  14035. #else
  14036. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14037. memcpy(&scvt, &s, sizeof(scvt));
  14038. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14039. #endif
  14040. sum += (ggml_float)val;
  14041. st[i] = val;
  14042. }
  14043. }
  14044. assert(sum > 0.0);
  14045. // sum = 1.0/sum;
  14046. }
  14047. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14048. sum = (1.0 - eps) / sum;
  14049. ggml_vec_scale_f32(nc, st, sum);
  14050. ggml_vec_add1_f32(nc, st, st, eps);
  14051. ggml_vec_log_f32(nc, st, st);
  14052. ggml_vec_mul_f32(nc, st, st, s1);
  14053. float st_sum = 0;
  14054. ggml_vec_sum_f32(nc, &st_sum, st);
  14055. sums[ith] += st_sum;
  14056. #ifndef NDEBUG
  14057. for (int i = 0; i < nc; ++i) {
  14058. assert(!isnan(st[i]));
  14059. assert(!isinf(st[i]));
  14060. }
  14061. #endif
  14062. }
  14063. }
  14064. static void ggml_compute_forward_cross_entropy_loss(
  14065. const struct ggml_compute_params * params,
  14066. struct ggml_tensor * dst) {
  14067. const struct ggml_tensor * src0 = dst->src[0];
  14068. switch (src0->type) {
  14069. case GGML_TYPE_F32:
  14070. {
  14071. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14072. } break;
  14073. default:
  14074. {
  14075. GGML_ASSERT(false);
  14076. } break;
  14077. }
  14078. }
  14079. // ggml_compute_forward_cross_entropy_loss_back
  14080. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14081. const struct ggml_compute_params * params,
  14082. struct ggml_tensor * dst) {
  14083. const struct ggml_tensor * src0 = dst->src[0];
  14084. const struct ggml_tensor * src1 = dst->src[1];
  14085. const struct ggml_tensor * opt0 = dst->src[2];
  14086. GGML_ASSERT(ggml_is_contiguous(dst));
  14087. GGML_ASSERT(ggml_is_contiguous(src0));
  14088. GGML_ASSERT(ggml_is_contiguous(src1));
  14089. GGML_ASSERT(ggml_is_contiguous(opt0));
  14090. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14091. const int64_t ith = params->ith;
  14092. const int64_t nth = params->nth;
  14093. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14094. return;
  14095. }
  14096. const double eps = 1e-9;
  14097. // TODO: handle transposed/permuted matrices
  14098. const int64_t nc = src0->ne[0];
  14099. const int64_t nr = ggml_nrows(src0);
  14100. // rows per thread
  14101. const int64_t dr = (nr + nth - 1)/nth;
  14102. // row range for this thread
  14103. const int64_t ir0 = dr*ith;
  14104. const int64_t ir1 = MIN(ir0 + dr, nr);
  14105. float * d = (float *) opt0->data;
  14106. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14107. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14108. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14109. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14110. #ifndef NDEBUG
  14111. for (int i = 0; i < nc; ++i) {
  14112. //printf("p[%d] = %f\n", i, p[i]);
  14113. assert(!isnan(s0[i]));
  14114. assert(!isnan(s1[i]));
  14115. }
  14116. #endif
  14117. // soft_max
  14118. ggml_float sum = 0.0;
  14119. {
  14120. float max = -INFINITY;
  14121. ggml_vec_max_f32(nc, &max, s0);
  14122. uint16_t scvt; UNUSED(scvt);
  14123. for (int i = 0; i < nc; i++) {
  14124. if (s0[i] == -INFINITY) {
  14125. ds0[i] = 0.0f;
  14126. } else {
  14127. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  14128. const float s = s0[i] - max;
  14129. const float val = expf(s);
  14130. #else
  14131. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14132. memcpy(&scvt, &s, sizeof(scvt));
  14133. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14134. #endif
  14135. sum += (ggml_float)val;
  14136. ds0[i] = val;
  14137. }
  14138. }
  14139. assert(sum > 0.0);
  14140. sum = (1.0 - eps)/sum;
  14141. }
  14142. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14143. ggml_vec_scale_f32(nc, ds0, sum);
  14144. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14145. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14146. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14147. #ifndef NDEBUG
  14148. for (int i = 0; i < nc; ++i) {
  14149. assert(!isnan(ds0[i]));
  14150. assert(!isinf(ds0[i]));
  14151. }
  14152. #endif
  14153. }
  14154. }
  14155. static void ggml_compute_forward_cross_entropy_loss_back(
  14156. const struct ggml_compute_params * params,
  14157. struct ggml_tensor * dst) {
  14158. const struct ggml_tensor * src0 = dst->src[0];
  14159. switch (src0->type) {
  14160. case GGML_TYPE_F32:
  14161. {
  14162. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14163. } break;
  14164. default:
  14165. {
  14166. GGML_ASSERT(false);
  14167. } break;
  14168. }
  14169. }
  14170. /////////////////////////////////
  14171. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14172. GGML_ASSERT(params);
  14173. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14174. return;
  14175. }
  14176. switch (tensor->op) {
  14177. case GGML_OP_DUP:
  14178. {
  14179. ggml_compute_forward_dup(params, tensor);
  14180. } break;
  14181. case GGML_OP_ADD:
  14182. {
  14183. ggml_compute_forward_add(params, tensor);
  14184. } break;
  14185. case GGML_OP_ADD1:
  14186. {
  14187. ggml_compute_forward_add1(params, tensor);
  14188. } break;
  14189. case GGML_OP_ACC:
  14190. {
  14191. ggml_compute_forward_acc(params, tensor);
  14192. } break;
  14193. case GGML_OP_SUB:
  14194. {
  14195. ggml_compute_forward_sub(params, tensor);
  14196. } break;
  14197. case GGML_OP_MUL:
  14198. {
  14199. ggml_compute_forward_mul(params, tensor);
  14200. } break;
  14201. case GGML_OP_DIV:
  14202. {
  14203. ggml_compute_forward_div(params, tensor);
  14204. } break;
  14205. case GGML_OP_SQR:
  14206. {
  14207. ggml_compute_forward_sqr(params, tensor);
  14208. } break;
  14209. case GGML_OP_SQRT:
  14210. {
  14211. ggml_compute_forward_sqrt(params, tensor);
  14212. } break;
  14213. case GGML_OP_LOG:
  14214. {
  14215. ggml_compute_forward_log(params, tensor);
  14216. } break;
  14217. case GGML_OP_SUM:
  14218. {
  14219. ggml_compute_forward_sum(params, tensor);
  14220. } break;
  14221. case GGML_OP_SUM_ROWS:
  14222. {
  14223. ggml_compute_forward_sum_rows(params, tensor);
  14224. } break;
  14225. case GGML_OP_MEAN:
  14226. {
  14227. ggml_compute_forward_mean(params, tensor);
  14228. } break;
  14229. case GGML_OP_ARGMAX:
  14230. {
  14231. ggml_compute_forward_argmax(params, tensor);
  14232. } break;
  14233. case GGML_OP_REPEAT:
  14234. {
  14235. ggml_compute_forward_repeat(params, tensor);
  14236. } break;
  14237. case GGML_OP_REPEAT_BACK:
  14238. {
  14239. ggml_compute_forward_repeat_back(params, tensor);
  14240. } break;
  14241. case GGML_OP_CONCAT:
  14242. {
  14243. ggml_compute_forward_concat(params, tensor);
  14244. } break;
  14245. case GGML_OP_SILU_BACK:
  14246. {
  14247. ggml_compute_forward_silu_back(params, tensor);
  14248. } break;
  14249. case GGML_OP_NORM:
  14250. {
  14251. ggml_compute_forward_norm(params, tensor);
  14252. } break;
  14253. case GGML_OP_RMS_NORM:
  14254. {
  14255. ggml_compute_forward_rms_norm(params, tensor);
  14256. } break;
  14257. case GGML_OP_RMS_NORM_BACK:
  14258. {
  14259. ggml_compute_forward_rms_norm_back(params, tensor);
  14260. } break;
  14261. case GGML_OP_GROUP_NORM:
  14262. {
  14263. ggml_compute_forward_group_norm(params, tensor);
  14264. } break;
  14265. case GGML_OP_MUL_MAT:
  14266. {
  14267. ggml_compute_forward_mul_mat(params, tensor, state);
  14268. } break;
  14269. case GGML_OP_MUL_MAT_ID:
  14270. {
  14271. ggml_compute_forward_mul_mat_id(params, tensor);
  14272. } break;
  14273. case GGML_OP_OUT_PROD:
  14274. {
  14275. ggml_compute_forward_out_prod(params, tensor);
  14276. } break;
  14277. case GGML_OP_SCALE:
  14278. {
  14279. ggml_compute_forward_scale(params, tensor);
  14280. } break;
  14281. case GGML_OP_SET:
  14282. {
  14283. ggml_compute_forward_set(params, tensor);
  14284. } break;
  14285. case GGML_OP_CPY:
  14286. {
  14287. ggml_compute_forward_cpy(params, tensor);
  14288. } break;
  14289. case GGML_OP_CONT:
  14290. {
  14291. ggml_compute_forward_cont(params, tensor);
  14292. } break;
  14293. case GGML_OP_RESHAPE:
  14294. {
  14295. ggml_compute_forward_reshape(params, tensor);
  14296. } break;
  14297. case GGML_OP_VIEW:
  14298. {
  14299. ggml_compute_forward_view(params, tensor);
  14300. } break;
  14301. case GGML_OP_PERMUTE:
  14302. {
  14303. ggml_compute_forward_permute(params, tensor);
  14304. } break;
  14305. case GGML_OP_TRANSPOSE:
  14306. {
  14307. ggml_compute_forward_transpose(params, tensor);
  14308. } break;
  14309. case GGML_OP_GET_ROWS:
  14310. {
  14311. ggml_compute_forward_get_rows(params, tensor);
  14312. } break;
  14313. case GGML_OP_GET_ROWS_BACK:
  14314. {
  14315. ggml_compute_forward_get_rows_back(params, tensor);
  14316. } break;
  14317. case GGML_OP_DIAG:
  14318. {
  14319. ggml_compute_forward_diag(params, tensor);
  14320. } break;
  14321. case GGML_OP_DIAG_MASK_INF:
  14322. {
  14323. ggml_compute_forward_diag_mask_inf(params, tensor);
  14324. } break;
  14325. case GGML_OP_DIAG_MASK_ZERO:
  14326. {
  14327. ggml_compute_forward_diag_mask_zero(params, tensor);
  14328. } break;
  14329. case GGML_OP_SOFT_MAX:
  14330. {
  14331. ggml_compute_forward_soft_max(params, tensor);
  14332. } break;
  14333. case GGML_OP_SOFT_MAX_BACK:
  14334. {
  14335. ggml_compute_forward_soft_max_back(params, tensor);
  14336. } break;
  14337. case GGML_OP_ROPE:
  14338. {
  14339. ggml_compute_forward_rope(params, tensor);
  14340. } break;
  14341. case GGML_OP_ROPE_BACK:
  14342. {
  14343. ggml_compute_forward_rope_back(params, tensor);
  14344. } break;
  14345. case GGML_OP_CLAMP:
  14346. {
  14347. ggml_compute_forward_clamp(params, tensor);
  14348. } break;
  14349. case GGML_OP_CONV_TRANSPOSE_1D:
  14350. {
  14351. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14352. } break;
  14353. case GGML_OP_IM2COL:
  14354. {
  14355. ggml_compute_forward_im2col(params, tensor);
  14356. } break;
  14357. case GGML_OP_CONV_TRANSPOSE_2D:
  14358. {
  14359. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14360. } break;
  14361. case GGML_OP_POOL_1D:
  14362. {
  14363. ggml_compute_forward_pool_1d(params, tensor);
  14364. } break;
  14365. case GGML_OP_POOL_2D:
  14366. {
  14367. ggml_compute_forward_pool_2d(params, tensor);
  14368. } break;
  14369. case GGML_OP_UPSCALE:
  14370. {
  14371. ggml_compute_forward_upscale(params, tensor);
  14372. } break;
  14373. case GGML_OP_PAD:
  14374. {
  14375. ggml_compute_forward_pad(params, tensor);
  14376. } break;
  14377. case GGML_OP_ARANGE:
  14378. {
  14379. ggml_compute_forward_arange(params, tensor);
  14380. } break;
  14381. case GGML_OP_TIMESTEP_EMBEDDING:
  14382. {
  14383. ggml_compute_forward_timestep_embedding(params, tensor);
  14384. } break;
  14385. case GGML_OP_ARGSORT:
  14386. {
  14387. ggml_compute_forward_argsort(params, tensor);
  14388. } break;
  14389. case GGML_OP_LEAKY_RELU:
  14390. {
  14391. ggml_compute_forward_leaky_relu(params, tensor);
  14392. } break;
  14393. case GGML_OP_FLASH_ATTN:
  14394. {
  14395. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14396. GGML_ASSERT(t == 0 || t == 1);
  14397. const bool masked = t != 0;
  14398. ggml_compute_forward_flash_attn(params, masked, tensor);
  14399. } break;
  14400. case GGML_OP_FLASH_ATTN_EXT:
  14401. {
  14402. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14403. } break;
  14404. case GGML_OP_FLASH_FF:
  14405. {
  14406. ggml_compute_forward_flash_ff(params, tensor);
  14407. } break;
  14408. case GGML_OP_FLASH_ATTN_BACK:
  14409. {
  14410. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14411. GGML_ASSERT(t == 0 || t == 1);
  14412. bool masked = t != 0;
  14413. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14414. } break;
  14415. case GGML_OP_SSM_CONV:
  14416. {
  14417. ggml_compute_forward_ssm_conv(params, tensor);
  14418. } break;
  14419. case GGML_OP_SSM_SCAN:
  14420. {
  14421. ggml_compute_forward_ssm_scan(params, tensor);
  14422. } break;
  14423. case GGML_OP_WIN_PART:
  14424. {
  14425. ggml_compute_forward_win_part(params, tensor);
  14426. } break;
  14427. case GGML_OP_WIN_UNPART:
  14428. {
  14429. ggml_compute_forward_win_unpart(params, tensor);
  14430. } break;
  14431. case GGML_OP_UNARY:
  14432. {
  14433. ggml_compute_forward_unary(params, tensor);
  14434. } break;
  14435. case GGML_OP_GET_REL_POS:
  14436. {
  14437. ggml_compute_forward_get_rel_pos(params, tensor);
  14438. } break;
  14439. case GGML_OP_ADD_REL_POS:
  14440. {
  14441. ggml_compute_forward_add_rel_pos(params, tensor);
  14442. } break;
  14443. case GGML_OP_MAP_UNARY:
  14444. {
  14445. ggml_unary_op_f32_t fun;
  14446. memcpy(&fun, tensor->op_params, sizeof(fun));
  14447. ggml_compute_forward_map_unary(params, tensor, fun);
  14448. }
  14449. break;
  14450. case GGML_OP_MAP_BINARY:
  14451. {
  14452. ggml_binary_op_f32_t fun;
  14453. memcpy(&fun, tensor->op_params, sizeof(fun));
  14454. ggml_compute_forward_map_binary(params, tensor, fun);
  14455. }
  14456. break;
  14457. case GGML_OP_MAP_CUSTOM1_F32:
  14458. {
  14459. ggml_custom1_op_f32_t fun;
  14460. memcpy(&fun, tensor->op_params, sizeof(fun));
  14461. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14462. }
  14463. break;
  14464. case GGML_OP_MAP_CUSTOM2_F32:
  14465. {
  14466. ggml_custom2_op_f32_t fun;
  14467. memcpy(&fun, tensor->op_params, sizeof(fun));
  14468. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14469. }
  14470. break;
  14471. case GGML_OP_MAP_CUSTOM3_F32:
  14472. {
  14473. ggml_custom3_op_f32_t fun;
  14474. memcpy(&fun, tensor->op_params, sizeof(fun));
  14475. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14476. }
  14477. break;
  14478. case GGML_OP_MAP_CUSTOM1:
  14479. {
  14480. ggml_compute_forward_map_custom1(params, tensor);
  14481. }
  14482. break;
  14483. case GGML_OP_MAP_CUSTOM2:
  14484. {
  14485. ggml_compute_forward_map_custom2(params, tensor);
  14486. }
  14487. break;
  14488. case GGML_OP_MAP_CUSTOM3:
  14489. {
  14490. ggml_compute_forward_map_custom3(params, tensor);
  14491. }
  14492. break;
  14493. case GGML_OP_CROSS_ENTROPY_LOSS:
  14494. {
  14495. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14496. }
  14497. break;
  14498. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14499. {
  14500. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14501. }
  14502. break;
  14503. case GGML_OP_NONE:
  14504. {
  14505. // nop
  14506. } break;
  14507. case GGML_OP_COUNT:
  14508. {
  14509. GGML_ASSERT(false);
  14510. } break;
  14511. }
  14512. }
  14513. ////////////////////////////////////////////////////////////////////////////////
  14514. static size_t ggml_hash_size(size_t min_sz) {
  14515. // next primes after powers of two
  14516. static const size_t primes[] = {
  14517. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14518. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14519. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14520. 16777259, 33554467, 67108879, 134217757, 268435459,
  14521. 536870923, 1073741827, 2147483659
  14522. };
  14523. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14524. // find the smallest prime that is larger or equal to min_sz
  14525. size_t l = 0;
  14526. size_t r = n_primes;
  14527. while (l < r) {
  14528. size_t m = (l + r)/2;
  14529. if (primes[m] < min_sz) {
  14530. l = m + 1;
  14531. } else {
  14532. r = m;
  14533. }
  14534. }
  14535. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14536. return sz;
  14537. }
  14538. static size_t ggml_hash(const void * p) {
  14539. return (size_t)p;
  14540. }
  14541. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14542. size_t h = ggml_hash(key) % hash_set.size;
  14543. // linear probing
  14544. size_t i = h;
  14545. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14546. i = (i + 1) % hash_set.size;
  14547. if (i == h) {
  14548. // visited all hash table entries -> not found
  14549. return GGML_HASHTABLE_FULL;
  14550. }
  14551. }
  14552. return i;
  14553. }
  14554. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14555. size_t i = ggml_hash_find(hash_set, key);
  14556. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14557. }
  14558. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14559. size_t i = ggml_hash_find(hash_set, key);
  14560. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14561. if (hash_set.keys[i] == key) {
  14562. return GGML_HASHTABLE_ALREADY_EXISTS;
  14563. }
  14564. // insert
  14565. GGML_ASSERT(hash_set.keys[i] == NULL);
  14566. hash_set.keys[i] = key;
  14567. return i;
  14568. }
  14569. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14570. size_t i = ggml_hash_find(hash_set, key);
  14571. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14572. hash_set.keys[i] = key;
  14573. return i;
  14574. }
  14575. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14576. size = ggml_hash_size(size);
  14577. struct ggml_hash_set result;
  14578. result.size = size;
  14579. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14580. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14581. return result;
  14582. }
  14583. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14584. GGML_FREE(hash_set.keys);
  14585. }
  14586. struct hash_map {
  14587. struct ggml_hash_set set;
  14588. struct ggml_tensor ** vals;
  14589. };
  14590. static struct hash_map * ggml_new_hash_map(size_t size) {
  14591. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14592. result->set = ggml_hash_set_new(size);
  14593. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14594. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14595. return result;
  14596. }
  14597. static void ggml_hash_map_free(struct hash_map * map) {
  14598. ggml_hash_set_free(map->set);
  14599. GGML_FREE(map->vals);
  14600. GGML_FREE(map);
  14601. }
  14602. // gradient checkpointing
  14603. static struct ggml_tensor * ggml_recompute_graph_node(
  14604. struct ggml_context * ctx,
  14605. struct ggml_cgraph * graph,
  14606. struct hash_map * replacements,
  14607. struct ggml_tensor * node) {
  14608. if (node == NULL) {
  14609. return NULL;
  14610. }
  14611. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14612. return node;
  14613. }
  14614. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14615. return node;
  14616. }
  14617. int count_children = 0;
  14618. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14619. if (node->src[k]) {
  14620. ++count_children;
  14621. }
  14622. }
  14623. if (count_children == 0) {
  14624. return node;
  14625. }
  14626. size_t i = ggml_hash_find(replacements->set, node);
  14627. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14628. if (replacements->set.keys[i] == node) {
  14629. return replacements->vals[i];
  14630. }
  14631. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14632. // insert clone into replacements
  14633. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14634. replacements->set.keys[i] = node;
  14635. replacements->vals[i] = clone;
  14636. clone->op = node->op;
  14637. clone->grad = node->grad;
  14638. clone->flags = node->flags;
  14639. clone->extra = node->extra;
  14640. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14641. clone->nb[k] = node->nb[k];
  14642. }
  14643. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14644. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14645. }
  14646. if (node->view_src != NULL) {
  14647. clone->data = (node->view_src->data == NULL)
  14648. ? NULL // view_src not yet allocated
  14649. : (char *) node->view_src->data // view_src already allocated
  14650. + node->view_offs;
  14651. clone->view_src = node->view_src;
  14652. clone->view_offs = node->view_offs;
  14653. }
  14654. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14655. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14656. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14657. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14658. return clone;
  14659. }
  14660. void ggml_build_backward_gradient_checkpointing(
  14661. struct ggml_context * ctx,
  14662. struct ggml_cgraph * gf,
  14663. struct ggml_cgraph * gb,
  14664. struct ggml_cgraph * gb_tmp,
  14665. struct ggml_tensor * * checkpoints,
  14666. int n_checkpoints) {
  14667. ggml_graph_cpy(gf, gb_tmp);
  14668. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14669. if (n_checkpoints <= 0) {
  14670. ggml_graph_cpy(gb_tmp, gb);
  14671. return;
  14672. }
  14673. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14674. // insert checkpoints in replacements
  14675. for (int i = 0; i < n_checkpoints; ++i) {
  14676. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14677. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14678. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14679. replacements->set.keys[k] = checkpoints[i];
  14680. replacements->vals[k] = checkpoints[i];
  14681. }
  14682. ggml_graph_cpy(gf, gb);
  14683. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14684. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14685. // by recomputing them from checkpoints
  14686. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14687. struct ggml_tensor * node = gb_tmp->nodes[i];
  14688. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14689. // insert new tensors recomputing src, reusing already made replacements,
  14690. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14691. // recurse for input tensors,
  14692. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14693. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14694. }
  14695. // insert rewritten backward node with replacements made into resulting backward graph gb
  14696. ggml_build_forward_expand(gb, node);
  14697. }
  14698. ggml_hash_map_free(replacements);
  14699. }
  14700. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14701. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14702. if (ggml_hash_contains(zero_table, a)) {
  14703. return b;
  14704. } else {
  14705. return ggml_add_impl(ctx, a, b, false);
  14706. }
  14707. }
  14708. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14709. if (ggml_hash_contains(zero_table, a)) {
  14710. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14711. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14712. } else {
  14713. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14714. }
  14715. }
  14716. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14717. if (ggml_hash_contains(zero_table, a)) {
  14718. return ggml_repeat(ctx, b, a);
  14719. } else {
  14720. return ggml_add1_impl(ctx, a, b, false);
  14721. }
  14722. }
  14723. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14724. if (ggml_hash_contains(zero_table, a)) {
  14725. return ggml_neg(ctx, b);
  14726. } else {
  14727. return ggml_sub_impl(ctx, a, b, false);
  14728. }
  14729. }
  14730. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14731. struct ggml_tensor * src0 = tensor->src[0];
  14732. struct ggml_tensor * src1 = tensor->src[1];
  14733. switch (tensor->op) {
  14734. case GGML_OP_DUP:
  14735. {
  14736. if (src0->grad) {
  14737. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14738. }
  14739. } break;
  14740. case GGML_OP_ADD:
  14741. {
  14742. if (src0->grad) {
  14743. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14744. }
  14745. if (src1->grad) {
  14746. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14747. }
  14748. } break;
  14749. case GGML_OP_ADD1:
  14750. {
  14751. if (src0->grad) {
  14752. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14753. }
  14754. if (src1->grad) {
  14755. src1->grad = ggml_add_or_set(ctx,
  14756. src1->grad,
  14757. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14758. zero_table);
  14759. }
  14760. } break;
  14761. case GGML_OP_ACC:
  14762. {
  14763. if (src0->grad) {
  14764. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14765. }
  14766. if (src1->grad) {
  14767. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14768. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14769. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14770. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14771. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14772. tensor->grad,
  14773. src1->grad->ne[0],
  14774. src1->grad->ne[1],
  14775. src1->grad->ne[2],
  14776. src1->grad->ne[3],
  14777. nb1, nb2, nb3, offset);
  14778. src1->grad =
  14779. ggml_add_or_set(ctx,
  14780. src1->grad,
  14781. ggml_reshape(ctx,
  14782. ggml_cont(ctx, tensor_grad_view),
  14783. src1->grad),
  14784. zero_table);
  14785. }
  14786. } break;
  14787. case GGML_OP_SUB:
  14788. {
  14789. if (src0->grad) {
  14790. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14791. }
  14792. if (src1->grad) {
  14793. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14794. }
  14795. } break;
  14796. case GGML_OP_MUL:
  14797. {
  14798. if (src0->grad) {
  14799. src0->grad =
  14800. ggml_add_or_set(ctx,
  14801. src0->grad,
  14802. ggml_mul(ctx, src1, tensor->grad),
  14803. zero_table);
  14804. }
  14805. if (src1->grad) {
  14806. src1->grad =
  14807. ggml_add_or_set(ctx,
  14808. src1->grad,
  14809. ggml_mul(ctx, src0, tensor->grad),
  14810. zero_table);
  14811. }
  14812. } break;
  14813. case GGML_OP_DIV:
  14814. {
  14815. if (src0->grad) {
  14816. src0->grad =
  14817. ggml_add_or_set(ctx,
  14818. src0->grad,
  14819. ggml_div(ctx, tensor->grad, src1),
  14820. zero_table);
  14821. }
  14822. if (src1->grad) {
  14823. src1->grad =
  14824. ggml_sub_or_set(ctx,
  14825. src1->grad,
  14826. ggml_mul(ctx,
  14827. tensor->grad,
  14828. ggml_div(ctx, tensor, src1)),
  14829. zero_table);
  14830. }
  14831. } break;
  14832. case GGML_OP_SQR:
  14833. {
  14834. if (src0->grad) {
  14835. src0->grad =
  14836. ggml_add_or_set(ctx,
  14837. src0->grad,
  14838. ggml_scale(ctx,
  14839. ggml_mul(ctx, src0, tensor->grad),
  14840. 2.0f),
  14841. zero_table);
  14842. }
  14843. } break;
  14844. case GGML_OP_SQRT:
  14845. {
  14846. if (src0->grad) {
  14847. src0->grad =
  14848. ggml_add_or_set(ctx,
  14849. src0->grad,
  14850. ggml_scale(ctx,
  14851. ggml_div(ctx,
  14852. tensor->grad,
  14853. tensor),
  14854. 0.5f),
  14855. zero_table);
  14856. }
  14857. } break;
  14858. case GGML_OP_LOG:
  14859. {
  14860. if (src0->grad) {
  14861. src0->grad =
  14862. ggml_add_or_set(ctx,
  14863. src0->grad,
  14864. ggml_div(ctx,
  14865. tensor->grad,
  14866. src0),
  14867. zero_table);
  14868. }
  14869. } break;
  14870. case GGML_OP_SUM:
  14871. {
  14872. if (src0->grad) {
  14873. src0->grad =
  14874. ggml_add1_or_set(ctx,
  14875. src0->grad,
  14876. tensor->grad,
  14877. zero_table);
  14878. }
  14879. } break;
  14880. case GGML_OP_SUM_ROWS:
  14881. {
  14882. if (src0->grad) {
  14883. src0->grad =
  14884. ggml_add_or_set(ctx,
  14885. src0->grad,
  14886. ggml_repeat(ctx,
  14887. tensor->grad,
  14888. src0->grad),
  14889. zero_table);
  14890. }
  14891. } break;
  14892. case GGML_OP_MEAN:
  14893. case GGML_OP_ARGMAX:
  14894. {
  14895. GGML_ASSERT(false); // TODO: implement
  14896. } break;
  14897. case GGML_OP_REPEAT:
  14898. {
  14899. // necessary for llama
  14900. if (src0->grad) {
  14901. src0->grad = ggml_add_or_set(ctx,
  14902. src0->grad,
  14903. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14904. zero_table);
  14905. }
  14906. } break;
  14907. case GGML_OP_REPEAT_BACK:
  14908. {
  14909. if (src0->grad) {
  14910. // TODO: test this
  14911. src0->grad = ggml_add_or_set(ctx,
  14912. src0->grad,
  14913. ggml_repeat(ctx, tensor->grad, src0->grad),
  14914. zero_table);
  14915. }
  14916. } break;
  14917. case GGML_OP_CONCAT:
  14918. {
  14919. GGML_ASSERT(false); // TODO: implement
  14920. } break;
  14921. case GGML_OP_SILU_BACK:
  14922. {
  14923. GGML_ASSERT(false); // TODO: not implemented
  14924. } break;
  14925. case GGML_OP_NORM:
  14926. {
  14927. GGML_ASSERT(false); // TODO: not implemented
  14928. } break;
  14929. case GGML_OP_RMS_NORM:
  14930. {
  14931. // necessary for llama
  14932. if (src0->grad) {
  14933. float eps;
  14934. memcpy(&eps, tensor->op_params, sizeof(float));
  14935. src0->grad = ggml_add_or_set(ctx,
  14936. src0->grad,
  14937. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14938. zero_table);
  14939. }
  14940. } break;
  14941. case GGML_OP_RMS_NORM_BACK:
  14942. {
  14943. GGML_ASSERT(false); // TODO: not implemented
  14944. } break;
  14945. case GGML_OP_GROUP_NORM:
  14946. {
  14947. GGML_ASSERT(false); // TODO: not implemented
  14948. } break;
  14949. case GGML_OP_MUL_MAT:
  14950. {
  14951. // https://cs231n.github.io/optimization-2/#staged
  14952. // # forward pass
  14953. // s0 = np.random.randn(5, 10)
  14954. // s1 = np.random.randn(10, 3)
  14955. // t = s0.dot(s1)
  14956. // # now suppose we had the gradient on t from above in the circuit
  14957. // dt = np.random.randn(*t.shape) # same shape as t
  14958. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14959. // ds1 = t.T.dot(dt)
  14960. // tensor.shape [m,p,qq,rr]
  14961. // src0.shape [n,m,q1,r1]
  14962. // src1.shape [n,p,qq,rr]
  14963. // necessary for llama
  14964. if (src0->grad) {
  14965. struct ggml_tensor * s1_tg =
  14966. ggml_out_prod(ctx, // [n,m,qq,rr]
  14967. src1, // [n,p,qq,rr]
  14968. tensor->grad); // [m,p,qq,rr]
  14969. const int64_t qq = s1_tg->ne[2];
  14970. const int64_t rr = s1_tg->ne[3];
  14971. const int64_t q1 = src0->ne[2];
  14972. const int64_t r1 = src0->ne[3];
  14973. const bool ne2_broadcasted = qq > q1;
  14974. const bool ne3_broadcasted = rr > r1;
  14975. if (ne2_broadcasted || ne3_broadcasted) {
  14976. // sum broadcast repetitions of s1_tg into shape of src0
  14977. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14978. }
  14979. src0->grad =
  14980. ggml_add_or_set(ctx,
  14981. src0->grad, // [n,m,q1,r1]
  14982. s1_tg, // [n,m,q1,r1]
  14983. zero_table);
  14984. }
  14985. if (src1->grad) {
  14986. src1->grad =
  14987. ggml_add_or_set(ctx,
  14988. src1->grad, // [n,p,qq,rr]
  14989. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14990. // ggml_cont(ctx, // [m,n,q1,r1]
  14991. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14992. // tensor->grad), // [m,p,qq,rr]
  14993. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14994. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14995. // // and then use ggml_out_prod
  14996. ggml_out_prod(ctx, // [n,p,qq,rr]
  14997. src0, // [n,m,q1,r1]
  14998. ggml_transpose(ctx, // [p,m,qq,rr]
  14999. tensor->grad)), // [m,p,qq,rr]
  15000. zero_table);
  15001. }
  15002. } break;
  15003. case GGML_OP_MUL_MAT_ID:
  15004. {
  15005. GGML_ASSERT(false); // TODO: not implemented
  15006. } break;
  15007. case GGML_OP_OUT_PROD:
  15008. {
  15009. GGML_ASSERT(false); // TODO: not implemented
  15010. } break;
  15011. case GGML_OP_SCALE:
  15012. {
  15013. // necessary for llama
  15014. if (src0->grad) {
  15015. float s;
  15016. memcpy(&s, tensor->op_params, sizeof(float));
  15017. src0->grad =
  15018. ggml_add_or_set(ctx,
  15019. src0->grad,
  15020. ggml_scale_impl(ctx, tensor->grad, s, false),
  15021. zero_table);
  15022. }
  15023. } break;
  15024. case GGML_OP_SET:
  15025. {
  15026. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15027. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15028. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15029. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15030. struct ggml_tensor * tensor_grad_view = NULL;
  15031. if (src0->grad || src1->grad) {
  15032. GGML_ASSERT(src0->type == tensor->type);
  15033. GGML_ASSERT(tensor->grad->type == tensor->type);
  15034. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15035. tensor_grad_view = ggml_view_4d(ctx,
  15036. tensor->grad,
  15037. src1->grad->ne[0],
  15038. src1->grad->ne[1],
  15039. src1->grad->ne[2],
  15040. src1->grad->ne[3],
  15041. nb1, nb2, nb3, offset);
  15042. }
  15043. if (src0->grad) {
  15044. src0->grad = ggml_add_or_set(ctx,
  15045. src0->grad,
  15046. ggml_acc_impl(ctx,
  15047. tensor->grad,
  15048. ggml_neg(ctx, tensor_grad_view),
  15049. nb1, nb2, nb3, offset, false),
  15050. zero_table);
  15051. }
  15052. if (src1->grad) {
  15053. src1->grad =
  15054. ggml_add_or_set(ctx,
  15055. src1->grad,
  15056. ggml_reshape(ctx,
  15057. ggml_cont(ctx, tensor_grad_view),
  15058. src1->grad),
  15059. zero_table);
  15060. }
  15061. } break;
  15062. case GGML_OP_CPY:
  15063. {
  15064. // necessary for llama
  15065. // cpy overwrites value of src1 by src0 and returns view(src1)
  15066. // the overwriting is mathematically equivalent to:
  15067. // tensor = src0 * 1 + src1 * 0
  15068. if (src0->grad) {
  15069. // dsrc0 = dtensor * 1
  15070. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15071. }
  15072. if (src1->grad) {
  15073. // dsrc1 = dtensor * 0 -> noop
  15074. }
  15075. } break;
  15076. case GGML_OP_CONT:
  15077. {
  15078. // same as cpy
  15079. if (src0->grad) {
  15080. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15081. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15082. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15083. }
  15084. } break;
  15085. case GGML_OP_RESHAPE:
  15086. {
  15087. // necessary for llama
  15088. if (src0->grad) {
  15089. src0->grad =
  15090. ggml_add_or_set(ctx, src0->grad,
  15091. ggml_reshape(ctx,
  15092. ggml_is_contiguous(tensor->grad)
  15093. ? tensor->grad
  15094. : ggml_cont(ctx, tensor->grad),
  15095. src0->grad),
  15096. zero_table);
  15097. }
  15098. } break;
  15099. case GGML_OP_VIEW:
  15100. {
  15101. // necessary for llama
  15102. if (src0->grad) {
  15103. size_t offset;
  15104. memcpy(&offset, tensor->op_params, sizeof(offset));
  15105. size_t nb1 = tensor->nb[1];
  15106. size_t nb2 = tensor->nb[2];
  15107. size_t nb3 = tensor->nb[3];
  15108. if (src0->type != src0->grad->type) {
  15109. // gradient is typically F32, but src0 could be other type
  15110. size_t ng = ggml_element_size(src0->grad);
  15111. size_t n0 = ggml_element_size(src0);
  15112. GGML_ASSERT(offset % n0 == 0);
  15113. GGML_ASSERT(nb1 % n0 == 0);
  15114. GGML_ASSERT(nb2 % n0 == 0);
  15115. GGML_ASSERT(nb3 % n0 == 0);
  15116. offset = (offset / n0) * ng;
  15117. nb1 = (nb1 / n0) * ng;
  15118. nb2 = (nb2 / n0) * ng;
  15119. nb3 = (nb3 / n0) * ng;
  15120. }
  15121. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15122. }
  15123. } break;
  15124. case GGML_OP_PERMUTE:
  15125. {
  15126. // necessary for llama
  15127. if (src0->grad) {
  15128. int32_t * axes = (int32_t *) tensor->op_params;
  15129. int axis0 = axes[0] & 0x3;
  15130. int axis1 = axes[1] & 0x3;
  15131. int axis2 = axes[2] & 0x3;
  15132. int axis3 = axes[3] & 0x3;
  15133. int axes_backward[4] = {0,0,0,0};
  15134. axes_backward[axis0] = 0;
  15135. axes_backward[axis1] = 1;
  15136. axes_backward[axis2] = 2;
  15137. axes_backward[axis3] = 3;
  15138. src0->grad =
  15139. ggml_add_or_set(ctx, src0->grad,
  15140. ggml_permute(ctx,
  15141. tensor->grad,
  15142. axes_backward[0],
  15143. axes_backward[1],
  15144. axes_backward[2],
  15145. axes_backward[3]),
  15146. zero_table);
  15147. }
  15148. } break;
  15149. case GGML_OP_TRANSPOSE:
  15150. {
  15151. // necessary for llama
  15152. if (src0->grad) {
  15153. src0->grad =
  15154. ggml_add_or_set(ctx, src0->grad,
  15155. ggml_transpose(ctx, tensor->grad),
  15156. zero_table);
  15157. }
  15158. } break;
  15159. case GGML_OP_GET_ROWS:
  15160. {
  15161. // necessary for llama (only for tokenizer)
  15162. if (src0->grad) {
  15163. src0->grad =
  15164. ggml_add_or_set(ctx, src0->grad,
  15165. // last ggml_get_rows_back argument src0->grad is only
  15166. // necessary to setup correct output shape
  15167. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15168. zero_table);
  15169. }
  15170. if (src1->grad) {
  15171. // noop
  15172. }
  15173. } break;
  15174. case GGML_OP_GET_ROWS_BACK:
  15175. {
  15176. GGML_ASSERT(false); // TODO: not implemented
  15177. } break;
  15178. case GGML_OP_DIAG:
  15179. {
  15180. GGML_ASSERT(false); // TODO: not implemented
  15181. } break;
  15182. case GGML_OP_DIAG_MASK_INF:
  15183. {
  15184. // necessary for llama
  15185. if (src0->grad) {
  15186. const int n_past = ((int32_t *) tensor->op_params)[0];
  15187. src0->grad =
  15188. ggml_add_or_set(ctx, src0->grad,
  15189. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15190. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15191. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15192. zero_table);
  15193. }
  15194. } break;
  15195. case GGML_OP_DIAG_MASK_ZERO:
  15196. {
  15197. // necessary for llama
  15198. if (src0->grad) {
  15199. const int n_past = ((int32_t *) tensor->op_params)[0];
  15200. src0->grad =
  15201. ggml_add_or_set(ctx, src0->grad,
  15202. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15203. zero_table);
  15204. }
  15205. } break;
  15206. case GGML_OP_SOFT_MAX:
  15207. {
  15208. // necessary for llama
  15209. if (src0->grad) {
  15210. src0->grad =
  15211. ggml_add_or_set(ctx, src0->grad,
  15212. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15213. zero_table);
  15214. }
  15215. } break;
  15216. case GGML_OP_SOFT_MAX_BACK:
  15217. {
  15218. GGML_ASSERT(false); // TODO: not implemented
  15219. } break;
  15220. case GGML_OP_ROPE:
  15221. {
  15222. // necessary for llama
  15223. if (src0->grad) {
  15224. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15225. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15226. const int mode = ((int32_t *) tensor->op_params)[2];
  15227. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15228. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15229. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15230. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15231. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15232. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15233. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15234. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15235. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15236. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15237. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15238. src0->grad = ggml_add_or_set(ctx,
  15239. src0->grad,
  15240. ggml_rope_back(ctx,
  15241. tensor->grad,
  15242. src1,
  15243. n_dims,
  15244. mode,
  15245. n_ctx,
  15246. n_orig_ctx,
  15247. freq_base,
  15248. freq_scale,
  15249. ext_factor,
  15250. attn_factor,
  15251. beta_fast,
  15252. beta_slow,
  15253. xpos_base,
  15254. xpos_down),
  15255. zero_table);
  15256. }
  15257. } break;
  15258. case GGML_OP_ROPE_BACK:
  15259. {
  15260. if (src0->grad) {
  15261. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15262. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15263. const int mode = ((int32_t *) tensor->op_params)[2];
  15264. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15265. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15266. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15267. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15268. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15269. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15270. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15271. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15272. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15273. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15274. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15275. src0->grad = ggml_add_or_set(ctx,
  15276. src0->grad,
  15277. ggml_rope_impl(ctx,
  15278. tensor->grad,
  15279. src1,
  15280. n_dims,
  15281. mode,
  15282. n_ctx,
  15283. n_orig_ctx,
  15284. freq_base,
  15285. freq_scale,
  15286. ext_factor,
  15287. attn_factor,
  15288. beta_fast,
  15289. beta_slow,
  15290. xpos_base,
  15291. xpos_down,
  15292. false),
  15293. zero_table);
  15294. }
  15295. } break;
  15296. case GGML_OP_CLAMP:
  15297. {
  15298. GGML_ASSERT(false); // TODO: not implemented
  15299. } break;
  15300. case GGML_OP_CONV_TRANSPOSE_1D:
  15301. {
  15302. GGML_ASSERT(false); // TODO: not implemented
  15303. } break;
  15304. case GGML_OP_IM2COL:
  15305. {
  15306. GGML_ASSERT(false); // TODO: not implemented
  15307. } break;
  15308. case GGML_OP_CONV_TRANSPOSE_2D:
  15309. {
  15310. GGML_ASSERT(false); // TODO: not implemented
  15311. } break;
  15312. case GGML_OP_POOL_1D:
  15313. {
  15314. GGML_ASSERT(false); // TODO: not implemented
  15315. } break;
  15316. case GGML_OP_POOL_2D:
  15317. {
  15318. GGML_ASSERT(false); // TODO: not implemented
  15319. } break;
  15320. case GGML_OP_UPSCALE:
  15321. {
  15322. GGML_ASSERT(false); // TODO: not implemented
  15323. } break;
  15324. case GGML_OP_PAD:
  15325. {
  15326. GGML_ASSERT(false); // TODO: not implemented
  15327. } break;
  15328. case GGML_OP_ARANGE:
  15329. {
  15330. GGML_ASSERT(false); // TODO: not implemented
  15331. } break;
  15332. case GGML_OP_TIMESTEP_EMBEDDING:
  15333. {
  15334. GGML_ASSERT(false); // TODO: not implemented
  15335. } break;
  15336. case GGML_OP_ARGSORT:
  15337. {
  15338. GGML_ASSERT(false); // TODO: not implemented
  15339. } break;
  15340. case GGML_OP_LEAKY_RELU:
  15341. {
  15342. GGML_ASSERT(false); // TODO: not implemented
  15343. } break;
  15344. case GGML_OP_FLASH_ATTN:
  15345. case GGML_OP_FLASH_ATTN_EXT:
  15346. {
  15347. struct ggml_tensor * flash_grad = NULL;
  15348. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15349. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15350. GGML_ASSERT(t == 0 || t == 1);
  15351. bool masked = t != 0;
  15352. flash_grad =
  15353. ggml_flash_attn_back(ctx,
  15354. src0,
  15355. src1,
  15356. tensor->src[2],
  15357. tensor->grad,
  15358. masked);
  15359. }
  15360. struct ggml_tensor * src2 = tensor->src[2];
  15361. const int64_t elem_q = ggml_nelements(src0);
  15362. const int64_t elem_k = ggml_nelements(src1);
  15363. const int64_t elem_v = ggml_nelements(src2);
  15364. enum ggml_type result_type = flash_grad->type;
  15365. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15366. const size_t tsize = ggml_type_size(result_type);
  15367. const size_t offs_q = 0;
  15368. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15369. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15370. if (src0->grad) {
  15371. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15372. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15373. src0->grad = ggml_add_or_set(ctx,
  15374. src0->grad,
  15375. grad_q,
  15376. zero_table);
  15377. }
  15378. if (src1->grad) {
  15379. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15380. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15381. src1->grad = ggml_add_or_set(ctx,
  15382. src1->grad,
  15383. grad_k,
  15384. zero_table);
  15385. }
  15386. if (src2->grad) {
  15387. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15388. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15389. src2->grad = ggml_add_or_set(ctx,
  15390. src2->grad,
  15391. grad_v,
  15392. zero_table);
  15393. }
  15394. } break;
  15395. case GGML_OP_FLASH_FF:
  15396. {
  15397. GGML_ASSERT(false); // not supported
  15398. } break;
  15399. case GGML_OP_FLASH_ATTN_BACK:
  15400. {
  15401. GGML_ASSERT(false); // not supported
  15402. } break;
  15403. case GGML_OP_SSM_CONV:
  15404. case GGML_OP_SSM_SCAN:
  15405. {
  15406. GGML_ASSERT(false); // TODO: not implemented
  15407. } break;
  15408. case GGML_OP_WIN_PART:
  15409. case GGML_OP_WIN_UNPART:
  15410. case GGML_OP_UNARY:
  15411. {
  15412. switch (ggml_get_unary_op(tensor)) {
  15413. case GGML_UNARY_OP_ABS:
  15414. {
  15415. if (src0->grad) {
  15416. src0->grad =
  15417. ggml_add_or_set(ctx,
  15418. src0->grad,
  15419. ggml_mul(ctx,
  15420. ggml_sgn(ctx, src0),
  15421. tensor->grad),
  15422. zero_table);
  15423. }
  15424. } break;
  15425. case GGML_UNARY_OP_SGN:
  15426. {
  15427. if (src0->grad) {
  15428. // noop
  15429. }
  15430. } break;
  15431. case GGML_UNARY_OP_NEG:
  15432. {
  15433. if (src0->grad) {
  15434. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15435. }
  15436. } break;
  15437. case GGML_UNARY_OP_STEP:
  15438. {
  15439. if (src0->grad) {
  15440. // noop
  15441. }
  15442. } break;
  15443. case GGML_UNARY_OP_TANH:
  15444. {
  15445. GGML_ASSERT(false); // TODO: not implemented
  15446. } break;
  15447. case GGML_UNARY_OP_ELU:
  15448. {
  15449. GGML_ASSERT(false); // TODO: not implemented
  15450. } break;
  15451. case GGML_UNARY_OP_RELU:
  15452. {
  15453. if (src0->grad) {
  15454. src0->grad = ggml_add_or_set(ctx,
  15455. src0->grad,
  15456. ggml_mul(ctx,
  15457. ggml_step(ctx, src0),
  15458. tensor->grad),
  15459. zero_table);
  15460. }
  15461. } break;
  15462. case GGML_UNARY_OP_SIGMOID:
  15463. {
  15464. GGML_ASSERT(false); // TODO: not implemented
  15465. } break;
  15466. case GGML_UNARY_OP_GELU:
  15467. {
  15468. GGML_ASSERT(false); // TODO: not implemented
  15469. } break;
  15470. case GGML_UNARY_OP_GELU_QUICK:
  15471. {
  15472. GGML_ASSERT(false); // TODO: not implemented
  15473. } break;
  15474. case GGML_UNARY_OP_SILU:
  15475. {
  15476. // necessary for llama
  15477. if (src0->grad) {
  15478. src0->grad = ggml_add_or_set(ctx,
  15479. src0->grad,
  15480. ggml_silu_back(ctx, src0, tensor->grad),
  15481. zero_table);
  15482. }
  15483. } break;
  15484. default:
  15485. GGML_ASSERT(false);
  15486. }
  15487. } break;
  15488. case GGML_OP_GET_REL_POS:
  15489. case GGML_OP_ADD_REL_POS:
  15490. case GGML_OP_MAP_UNARY:
  15491. case GGML_OP_MAP_BINARY:
  15492. case GGML_OP_MAP_CUSTOM1_F32:
  15493. case GGML_OP_MAP_CUSTOM2_F32:
  15494. case GGML_OP_MAP_CUSTOM3_F32:
  15495. case GGML_OP_MAP_CUSTOM1:
  15496. case GGML_OP_MAP_CUSTOM2:
  15497. case GGML_OP_MAP_CUSTOM3:
  15498. {
  15499. GGML_ASSERT(false); // not supported
  15500. } break;
  15501. case GGML_OP_CROSS_ENTROPY_LOSS:
  15502. {
  15503. if (src0->grad) {
  15504. src0->grad = ggml_add_or_set(ctx,
  15505. src0->grad,
  15506. ggml_cross_entropy_loss_back(ctx,
  15507. src0,
  15508. src1,
  15509. tensor->grad),
  15510. zero_table);
  15511. }
  15512. } break;
  15513. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15514. {
  15515. GGML_ASSERT(false); // not supported
  15516. } break;
  15517. case GGML_OP_NONE:
  15518. {
  15519. // nop
  15520. } break;
  15521. case GGML_OP_COUNT:
  15522. {
  15523. GGML_ASSERT(false);
  15524. } break;
  15525. }
  15526. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15527. if (tensor->src[i] && tensor->src[i]->grad) {
  15528. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15529. }
  15530. }
  15531. }
  15532. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15533. if (node->grad == NULL) {
  15534. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15535. // it can also happen during forward pass, if the user performs computations with constants
  15536. if (node->op != GGML_OP_NONE) {
  15537. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15538. }
  15539. }
  15540. // check if already visited
  15541. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15542. return;
  15543. }
  15544. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15545. const int k =
  15546. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15547. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15548. /* unknown order, just fall back to using i*/ i;
  15549. if (node->src[k]) {
  15550. ggml_visit_parents(cgraph, node->src[k]);
  15551. }
  15552. }
  15553. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15554. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15555. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15556. if (strlen(node->name) == 0) {
  15557. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15558. }
  15559. cgraph->leafs[cgraph->n_leafs] = node;
  15560. cgraph->n_leafs++;
  15561. } else {
  15562. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15563. if (strlen(node->name) == 0) {
  15564. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15565. }
  15566. cgraph->nodes[cgraph->n_nodes] = node;
  15567. if (cgraph->grads) {
  15568. cgraph->grads[cgraph->n_nodes] = node->grad;
  15569. }
  15570. cgraph->n_nodes++;
  15571. }
  15572. }
  15573. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15574. if (!expand) {
  15575. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15576. ggml_graph_clear(cgraph);
  15577. }
  15578. const int n0 = cgraph->n_nodes;
  15579. UNUSED(n0);
  15580. ggml_visit_parents(cgraph, tensor);
  15581. const int n_new = cgraph->n_nodes - n0;
  15582. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15583. if (n_new > 0) {
  15584. // the last added node should always be starting point
  15585. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15586. }
  15587. }
  15588. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15589. ggml_build_forward_impl(cgraph, tensor, true);
  15590. }
  15591. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15592. GGML_ASSERT(gf->n_nodes > 0);
  15593. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15594. if (keep) {
  15595. for (int i = 0; i < gf->n_nodes; i++) {
  15596. struct ggml_tensor * node = gf->nodes[i];
  15597. if (node->grad) {
  15598. node->grad = ggml_dup_tensor(ctx, node);
  15599. gf->grads[i] = node->grad;
  15600. }
  15601. }
  15602. }
  15603. // remember original gradients which start with zero values
  15604. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15605. for (int i = 0; i < gf->n_nodes; i++) {
  15606. if (gf->grads[i]) {
  15607. ggml_hash_insert(zero_table, gf->grads[i]);
  15608. }
  15609. }
  15610. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15611. struct ggml_tensor * node = gf->nodes[i];
  15612. // inplace operations to add gradients are not created by ggml_compute_backward
  15613. // use allocator to automatically make inplace operations
  15614. if (node->grad) {
  15615. ggml_compute_backward(ctx, node, zero_table);
  15616. }
  15617. }
  15618. for (int i = 0; i < gf->n_nodes; i++) {
  15619. struct ggml_tensor * node = gf->nodes[i];
  15620. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15621. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15622. ggml_build_forward_expand(gb, node->grad);
  15623. }
  15624. }
  15625. ggml_hash_set_free(zero_table);
  15626. }
  15627. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15628. size_t nbytes = sizeof(struct ggml_cgraph);
  15629. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15630. if (grads) {
  15631. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15632. }
  15633. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15634. return nbytes;
  15635. }
  15636. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15637. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15638. }
  15639. size_t ggml_graph_overhead(void) {
  15640. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15641. }
  15642. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15643. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15644. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15645. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15646. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15647. size_t hash_size = ggml_hash_size(size * 2);
  15648. struct ggml_tensor ** nodes_ptr = data_start;
  15649. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15650. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15651. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15652. // check that we allocated the correct amount of memory
  15653. assert(obj_size == (size_t) (
  15654. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15655. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15656. *cgraph = (struct ggml_cgraph) {
  15657. /*.size =*/ size,
  15658. /*.n_nodes =*/ 0,
  15659. /*.n_leafs =*/ 0,
  15660. /*.nodes =*/ nodes_ptr,
  15661. /*.grads =*/ grads_ptr,
  15662. /*.leafs =*/ leafs_ptr,
  15663. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15664. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15665. /*.perf_runs =*/ 0,
  15666. /*.perf_cycles =*/ 0,
  15667. /*.perf_time_us =*/ 0,
  15668. };
  15669. return cgraph;
  15670. }
  15671. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15672. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15673. }
  15674. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15675. struct ggml_cgraph cgraph = {
  15676. /*.size =*/ 0,
  15677. /*.n_nodes =*/ i1 - i0,
  15678. /*.n_leafs =*/ 0,
  15679. /*.nodes =*/ cgraph0->nodes + i0,
  15680. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15681. /*.leafs =*/ NULL,
  15682. /*.hash_table =*/ { 0, NULL },
  15683. /*.order =*/ cgraph0->order,
  15684. /*.perf_runs =*/ 0,
  15685. /*.perf_cycles =*/ 0,
  15686. /*.perf_time_us =*/ 0,
  15687. };
  15688. return cgraph;
  15689. }
  15690. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15691. GGML_ASSERT(dst->size >= src->n_leafs);
  15692. GGML_ASSERT(dst->size >= src->n_nodes);
  15693. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15694. dst->n_leafs = src->n_leafs;
  15695. dst->n_nodes = src->n_nodes;
  15696. dst->order = src->order;
  15697. for (int i = 0; i < src->n_leafs; ++i) {
  15698. dst->leafs[i] = src->leafs[i];
  15699. }
  15700. for (int i = 0; i < src->n_nodes; ++i) {
  15701. dst->nodes[i] = src->nodes[i];
  15702. }
  15703. if (src->grads) {
  15704. GGML_ASSERT(dst->grads != NULL);
  15705. for (int i = 0; i < src->n_nodes; ++i) {
  15706. dst->grads[i] = src->grads[i];
  15707. }
  15708. }
  15709. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15710. if (src->visited_hash_table.keys[i]) {
  15711. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15712. }
  15713. }
  15714. }
  15715. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15716. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15717. ggml_graph_cpy(cgraph, result);
  15718. return result;
  15719. }
  15720. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15721. GGML_ASSERT(cgraph->grads != NULL);
  15722. for (int i = 0; i < cgraph->n_nodes; i++) {
  15723. struct ggml_tensor * grad = cgraph->grads[i];
  15724. if (grad) {
  15725. ggml_set_zero(grad);
  15726. }
  15727. }
  15728. }
  15729. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15730. cgraph->n_leafs = 0;
  15731. cgraph->n_nodes = 0;
  15732. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15733. }
  15734. //
  15735. // thread data
  15736. //
  15737. // synchronization is done via busy loops
  15738. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15739. //
  15740. #ifdef __APPLE__
  15741. //#include <os/lock.h>
  15742. //
  15743. //typedef os_unfair_lock ggml_lock_t;
  15744. //
  15745. //#define ggml_lock_init(x) UNUSED(x)
  15746. //#define ggml_lock_destroy(x) UNUSED(x)
  15747. //#define ggml_lock_lock os_unfair_lock_lock
  15748. //#define ggml_lock_unlock os_unfair_lock_unlock
  15749. //
  15750. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15751. typedef int ggml_lock_t;
  15752. #define ggml_lock_init(x) UNUSED(x)
  15753. #define ggml_lock_destroy(x) UNUSED(x)
  15754. #define ggml_lock_lock(x) UNUSED(x)
  15755. #define ggml_lock_unlock(x) UNUSED(x)
  15756. #define GGML_LOCK_INITIALIZER 0
  15757. #define ggml_thread_create pthread_create
  15758. #define ggml_thread_join pthread_join
  15759. #else
  15760. //typedef pthread_spinlock_t ggml_lock_t;
  15761. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15762. //#define ggml_lock_destroy pthread_spin_destroy
  15763. //#define ggml_lock_lock pthread_spin_lock
  15764. //#define ggml_lock_unlock pthread_spin_unlock
  15765. typedef int ggml_lock_t;
  15766. #define ggml_lock_init(x) UNUSED(x)
  15767. #define ggml_lock_destroy(x) UNUSED(x)
  15768. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15769. #define ggml_lock_lock(x) _mm_pause()
  15770. #else
  15771. #define ggml_lock_lock(x) UNUSED(x)
  15772. #endif
  15773. #define ggml_lock_unlock(x) UNUSED(x)
  15774. #define GGML_LOCK_INITIALIZER 0
  15775. #define ggml_thread_create pthread_create
  15776. #define ggml_thread_join pthread_join
  15777. #endif
  15778. // Android's libc implementation "bionic" does not support setting affinity
  15779. #if defined(__gnu_linux__)
  15780. static void set_numa_thread_affinity(int thread_n) {
  15781. if (!ggml_is_numa()) {
  15782. return;
  15783. }
  15784. int node_num;
  15785. int rv;
  15786. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15787. switch(g_state.numa.numa_strategy) {
  15788. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15789. // run thread on node_num thread_n / (threads per node)
  15790. node_num = thread_n % g_state.numa.n_nodes;
  15791. break;
  15792. case GGML_NUMA_STRATEGY_ISOLATE:
  15793. // run thread on current_node
  15794. node_num = g_state.numa.current_node;
  15795. break;
  15796. case GGML_NUMA_STRATEGY_NUMACTL:
  15797. // use the cpuset that numactl gave us
  15798. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15799. if (rv) {
  15800. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15801. }
  15802. return;
  15803. default:
  15804. return;
  15805. }
  15806. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15807. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15808. CPU_ZERO_S(setsize, cpus);
  15809. for (size_t i = 0; i < node->n_cpus; ++i) {
  15810. CPU_SET_S(node->cpus[i], setsize, cpus);
  15811. }
  15812. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15813. if (rv) {
  15814. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15815. }
  15816. CPU_FREE(cpus);
  15817. }
  15818. static void clear_numa_thread_affinity(void) {
  15819. if (!ggml_is_numa()) {
  15820. return;
  15821. }
  15822. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15823. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15824. CPU_ZERO_S(setsize, cpus);
  15825. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15826. CPU_SET_S(i, setsize, cpus);
  15827. }
  15828. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15829. if (rv) {
  15830. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15831. }
  15832. CPU_FREE(cpus);
  15833. }
  15834. #else
  15835. // TODO: Windows etc.
  15836. // (the linux implementation may also work on BSD, someone should test)
  15837. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15838. static void clear_numa_thread_affinity(void) {}
  15839. #endif
  15840. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15841. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15842. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15843. node->perf_runs++;
  15844. node->perf_cycles += cycles_cur;
  15845. node->perf_time_us += time_us_cur;
  15846. }
  15847. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15848. int n_tasks = 0;
  15849. if (ggml_is_empty(node)) {
  15850. // no need to multi-thread a no-op
  15851. n_tasks = 1;
  15852. return n_tasks;
  15853. }
  15854. switch (node->op) {
  15855. case GGML_OP_CPY:
  15856. case GGML_OP_DUP:
  15857. case GGML_OP_ADD:
  15858. case GGML_OP_ADD1:
  15859. case GGML_OP_ACC:
  15860. {
  15861. n_tasks = n_threads;
  15862. } break;
  15863. case GGML_OP_SUB:
  15864. case GGML_OP_SQR:
  15865. case GGML_OP_SQRT:
  15866. case GGML_OP_LOG:
  15867. case GGML_OP_SUM:
  15868. case GGML_OP_SUM_ROWS:
  15869. case GGML_OP_MEAN:
  15870. case GGML_OP_ARGMAX:
  15871. case GGML_OP_REPEAT:
  15872. case GGML_OP_REPEAT_BACK:
  15873. case GGML_OP_LEAKY_RELU:
  15874. {
  15875. n_tasks = 1;
  15876. } break;
  15877. case GGML_OP_UNARY:
  15878. switch (ggml_get_unary_op(node)) {
  15879. case GGML_UNARY_OP_ABS:
  15880. case GGML_UNARY_OP_SGN:
  15881. case GGML_UNARY_OP_NEG:
  15882. case GGML_UNARY_OP_STEP:
  15883. case GGML_UNARY_OP_TANH:
  15884. case GGML_UNARY_OP_ELU:
  15885. case GGML_UNARY_OP_RELU:
  15886. case GGML_UNARY_OP_SIGMOID:
  15887. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15888. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15889. {
  15890. n_tasks = 1;
  15891. } break;
  15892. case GGML_UNARY_OP_GELU:
  15893. case GGML_UNARY_OP_GELU_QUICK:
  15894. case GGML_UNARY_OP_SILU:
  15895. {
  15896. n_tasks = n_threads;
  15897. } break;
  15898. default:
  15899. GGML_ASSERT(false);
  15900. }
  15901. break;
  15902. case GGML_OP_SILU_BACK:
  15903. case GGML_OP_MUL:
  15904. case GGML_OP_DIV:
  15905. case GGML_OP_NORM:
  15906. case GGML_OP_RMS_NORM:
  15907. case GGML_OP_RMS_NORM_BACK:
  15908. case GGML_OP_GROUP_NORM:
  15909. case GGML_OP_CONCAT:
  15910. {
  15911. n_tasks = n_threads;
  15912. } break;
  15913. case GGML_OP_MUL_MAT:
  15914. {
  15915. n_tasks = n_threads;
  15916. // TODO: use different scheduling for different matrix sizes
  15917. //const int nr0 = ggml_nrows(node->src[0]);
  15918. //const int nr1 = ggml_nrows(node->src[1]);
  15919. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15920. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15921. } break;
  15922. case GGML_OP_MUL_MAT_ID:
  15923. {
  15924. n_tasks = n_threads;
  15925. } break;
  15926. case GGML_OP_OUT_PROD:
  15927. {
  15928. n_tasks = n_threads;
  15929. } break;
  15930. case GGML_OP_GET_ROWS:
  15931. {
  15932. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15933. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15934. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15935. } break;
  15936. case GGML_OP_SCALE:
  15937. case GGML_OP_SET:
  15938. case GGML_OP_CONT:
  15939. case GGML_OP_RESHAPE:
  15940. case GGML_OP_VIEW:
  15941. case GGML_OP_PERMUTE:
  15942. case GGML_OP_TRANSPOSE:
  15943. case GGML_OP_GET_ROWS_BACK:
  15944. case GGML_OP_DIAG:
  15945. {
  15946. n_tasks = 1;
  15947. } break;
  15948. case GGML_OP_DIAG_MASK_ZERO:
  15949. case GGML_OP_DIAG_MASK_INF:
  15950. case GGML_OP_SOFT_MAX_BACK:
  15951. case GGML_OP_ROPE:
  15952. case GGML_OP_ROPE_BACK:
  15953. case GGML_OP_ADD_REL_POS:
  15954. {
  15955. n_tasks = n_threads;
  15956. } break;
  15957. case GGML_OP_CLAMP:
  15958. {
  15959. n_tasks = 1; //TODO
  15960. } break;
  15961. case GGML_OP_SOFT_MAX:
  15962. {
  15963. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15964. } break;
  15965. case GGML_OP_CONV_TRANSPOSE_1D:
  15966. {
  15967. n_tasks = n_threads;
  15968. } break;
  15969. case GGML_OP_IM2COL:
  15970. {
  15971. n_tasks = n_threads;
  15972. } break;
  15973. case GGML_OP_CONV_TRANSPOSE_2D:
  15974. {
  15975. n_tasks = n_threads;
  15976. } break;
  15977. case GGML_OP_POOL_1D:
  15978. case GGML_OP_POOL_2D:
  15979. {
  15980. n_tasks = 1;
  15981. } break;
  15982. case GGML_OP_UPSCALE:
  15983. {
  15984. n_tasks = n_threads;
  15985. } break;
  15986. case GGML_OP_PAD:
  15987. {
  15988. n_tasks = n_threads;
  15989. } break;
  15990. case GGML_OP_ARANGE:
  15991. {
  15992. n_tasks = n_threads;
  15993. } break;
  15994. case GGML_OP_TIMESTEP_EMBEDDING:
  15995. {
  15996. n_tasks = n_threads;
  15997. } break;
  15998. case GGML_OP_ARGSORT:
  15999. {
  16000. n_tasks = n_threads;
  16001. } break;
  16002. case GGML_OP_FLASH_ATTN:
  16003. case GGML_OP_FLASH_ATTN_EXT:
  16004. {
  16005. n_tasks = n_threads;
  16006. } break;
  16007. case GGML_OP_FLASH_FF:
  16008. {
  16009. n_tasks = n_threads;
  16010. } break;
  16011. case GGML_OP_FLASH_ATTN_BACK:
  16012. {
  16013. n_tasks = n_threads;
  16014. } break;
  16015. case GGML_OP_SSM_CONV:
  16016. case GGML_OP_SSM_SCAN:
  16017. {
  16018. n_tasks = n_threads;
  16019. } break;
  16020. case GGML_OP_WIN_PART:
  16021. case GGML_OP_WIN_UNPART:
  16022. case GGML_OP_GET_REL_POS:
  16023. case GGML_OP_MAP_UNARY:
  16024. case GGML_OP_MAP_BINARY:
  16025. case GGML_OP_MAP_CUSTOM1_F32:
  16026. case GGML_OP_MAP_CUSTOM2_F32:
  16027. case GGML_OP_MAP_CUSTOM3_F32:
  16028. {
  16029. n_tasks = 1;
  16030. } break;
  16031. case GGML_OP_MAP_CUSTOM1:
  16032. {
  16033. struct ggml_map_custom1_op_params p;
  16034. memcpy(&p, node->op_params, sizeof(p));
  16035. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16036. n_tasks = n_threads;
  16037. } else {
  16038. n_tasks = MIN(p.n_tasks, n_threads);
  16039. }
  16040. } break;
  16041. case GGML_OP_MAP_CUSTOM2:
  16042. {
  16043. struct ggml_map_custom2_op_params p;
  16044. memcpy(&p, node->op_params, sizeof(p));
  16045. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16046. n_tasks = n_threads;
  16047. } else {
  16048. n_tasks = MIN(p.n_tasks, n_threads);
  16049. }
  16050. } break;
  16051. case GGML_OP_MAP_CUSTOM3:
  16052. {
  16053. struct ggml_map_custom3_op_params p;
  16054. memcpy(&p, node->op_params, sizeof(p));
  16055. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16056. n_tasks = n_threads;
  16057. } else {
  16058. n_tasks = MIN(p.n_tasks, n_threads);
  16059. }
  16060. } break;
  16061. case GGML_OP_CROSS_ENTROPY_LOSS:
  16062. {
  16063. n_tasks = n_threads;
  16064. } break;
  16065. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16066. {
  16067. n_tasks = n_threads;
  16068. } break;
  16069. case GGML_OP_NONE:
  16070. {
  16071. n_tasks = 1;
  16072. } break;
  16073. case GGML_OP_COUNT:
  16074. {
  16075. GGML_ASSERT(false);
  16076. } break;
  16077. default:
  16078. {
  16079. fprintf(stderr, "%s: op not implemented: ", __func__);
  16080. if (node->op < GGML_OP_COUNT) {
  16081. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16082. } else {
  16083. fprintf(stderr, "%d\n", node->op);
  16084. }
  16085. GGML_ASSERT(false);
  16086. } break;
  16087. }
  16088. assert(n_tasks > 0);
  16089. return n_tasks;
  16090. }
  16091. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16092. // wait for other threads to finish
  16093. const int last_node_n = * node_n;
  16094. while (true) {
  16095. if (do_yield) {
  16096. sched_yield();
  16097. }
  16098. * node_n = atomic_load(&state->shared->node_n);
  16099. if (* node_n != last_node_n) break;
  16100. #if defined(__SSE3__)
  16101. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16102. _mm_pause();
  16103. #endif
  16104. }
  16105. }
  16106. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16107. // wait for other threads to finish
  16108. const int last_task_phase = * task_phase;
  16109. while (true) {
  16110. if (do_yield) {
  16111. sched_yield();
  16112. }
  16113. * task_phase = atomic_load(&state->shared->node_task);
  16114. if (* task_phase != last_task_phase) break;
  16115. #if defined(__SSE3__)
  16116. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16117. _mm_pause();
  16118. #endif
  16119. }
  16120. }
  16121. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16122. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16123. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16124. const struct ggml_cplan * cplan = state->shared->cplan;
  16125. const int n_threads = state->shared->n_threads;
  16126. set_numa_thread_affinity(state->ith);
  16127. int node_n = -1;
  16128. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16129. while (true) {
  16130. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16131. state->shared->node_n += 1;
  16132. state->ec = GGML_STATUS_ABORTED;
  16133. return 0;
  16134. }
  16135. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16136. // all other threads are finished and spinning
  16137. // do finalize and init here so we don't have synchronize again
  16138. struct ggml_compute_params params = {
  16139. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16140. /*.ith =*/ 0,
  16141. /*.nth =*/ 0,
  16142. /*.wsize =*/ cplan->work_size,
  16143. /*.wdata =*/ cplan->work_data,
  16144. };
  16145. if (node_n != -1) {
  16146. /* FINALIZE */
  16147. struct ggml_tensor * node = cgraph->nodes[node_n];
  16148. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16149. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16150. ggml_compute_forward(&params, node, state);
  16151. }
  16152. ggml_graph_compute_perf_stats_node(node, state->shared);
  16153. }
  16154. // distribute new work or execute it direct if 1T
  16155. while (++node_n < cgraph->n_nodes) {
  16156. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16157. struct ggml_tensor * node = cgraph->nodes[node_n];
  16158. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16159. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16160. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16161. params.nth = n_tasks;
  16162. if (n_tasks == 1) {
  16163. /* INIT */
  16164. if (GGML_OP_HAS_INIT[node->op]) {
  16165. params.type = GGML_TASK_TYPE_INIT;
  16166. ggml_compute_forward(&params, node, state);
  16167. }
  16168. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16169. // they do something more efficient than spinning (?)
  16170. params.type = GGML_TASK_TYPE_COMPUTE;
  16171. ggml_compute_forward(&params, node, state);
  16172. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16173. params.type = GGML_TASK_TYPE_FINALIZE;
  16174. ggml_compute_forward(&params, node, state);
  16175. }
  16176. ggml_graph_compute_perf_stats_node(node, state->shared);
  16177. } else {
  16178. break;
  16179. }
  16180. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16181. break;
  16182. }
  16183. }
  16184. task_phase = GGML_TASK_TYPE_INIT;
  16185. atomic_store(&state->shared->n_active, n_threads);
  16186. atomic_store(&state->shared->node_n, node_n);
  16187. atomic_store(&state->shared->node_task, task_phase);
  16188. } else {
  16189. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16190. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16191. }
  16192. // check if we should stop
  16193. if (node_n >= cgraph->n_nodes) break;
  16194. /* INIT & COMPUTE */
  16195. struct ggml_tensor * node = cgraph->nodes[node_n];
  16196. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16197. struct ggml_compute_params params = {
  16198. /*.type =*/ GGML_TASK_TYPE_INIT,
  16199. /*.ith =*/ state->ith,
  16200. /*.nth =*/ n_tasks,
  16201. /*.wsize =*/ cplan->work_size,
  16202. /*.wdata =*/ cplan->work_data,
  16203. };
  16204. if (state->ith < n_tasks) {
  16205. if (GGML_OP_HAS_INIT[node->op]) {
  16206. ggml_compute_forward(&params, node, state);
  16207. }
  16208. }
  16209. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16210. task_phase = GGML_TASK_TYPE_COMPUTE;
  16211. atomic_store(&state->shared->n_active, n_threads);
  16212. atomic_store(&state->shared->node_task, task_phase);
  16213. }
  16214. else {
  16215. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16216. // depending on the workload and the operating system.
  16217. // since it is not clear what is the best approach, it should potentially become user-configurable
  16218. // ref: https://github.com/ggerganov/ggml/issues/291
  16219. // UPD: adding the do_yield flag seems to resolve the issue universally
  16220. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16221. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16222. }
  16223. if (state->ith < n_tasks) {
  16224. params.type = GGML_TASK_TYPE_COMPUTE;
  16225. ggml_compute_forward(&params, node, state);
  16226. }
  16227. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16228. task_phase = GGML_TASK_TYPE_FINALIZE;
  16229. atomic_store(&state->shared->n_active, n_threads);
  16230. atomic_store(&state->shared->node_task, task_phase);
  16231. }
  16232. else {
  16233. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16234. }
  16235. }
  16236. return 0;
  16237. }
  16238. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16239. if (n_threads <= 0) {
  16240. n_threads = GGML_DEFAULT_N_THREADS;
  16241. }
  16242. size_t work_size = 0;
  16243. struct ggml_cplan cplan;
  16244. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16245. int max_tasks = 1;
  16246. // thread scheduling for the different operations + work buffer size estimation
  16247. for (int i = 0; i < cgraph->n_nodes; i++) {
  16248. struct ggml_tensor * node = cgraph->nodes[i];
  16249. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16250. max_tasks = MAX(max_tasks, n_tasks);
  16251. size_t cur = 0;
  16252. switch (node->op) {
  16253. case GGML_OP_CPY:
  16254. case GGML_OP_DUP:
  16255. {
  16256. if (ggml_is_quantized(node->type) ||
  16257. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16258. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16259. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16260. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16261. }
  16262. } break;
  16263. case GGML_OP_ADD:
  16264. case GGML_OP_ADD1:
  16265. {
  16266. if (ggml_is_quantized(node->src[0]->type)) {
  16267. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16268. }
  16269. } break;
  16270. case GGML_OP_ACC:
  16271. {
  16272. if (ggml_is_quantized(node->src[0]->type)) {
  16273. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16274. }
  16275. } break;
  16276. case GGML_OP_MUL_MAT:
  16277. {
  16278. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16279. #if defined(GGML_USE_CLBLAST)
  16280. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16281. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16282. } else
  16283. #endif
  16284. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16285. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16286. if (node->src[0]->type != GGML_TYPE_F32) {
  16287. // here we need memory for fully dequantized matrix from src0
  16288. // take into account that src0 can be broadcasted into src1[2,3]
  16289. cur = ggml_type_size(GGML_TYPE_F32)
  16290. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16291. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16292. }
  16293. } else
  16294. #endif
  16295. if (node->src[1]->type != vec_dot_type) {
  16296. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16297. }
  16298. } break;
  16299. case GGML_OP_MUL_MAT_ID:
  16300. {
  16301. cur = 0;
  16302. const struct ggml_tensor * src0 = node->src[0];
  16303. const struct ggml_tensor * src1 = node->src[1];
  16304. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16305. if (src1->type != vec_dot_type) {
  16306. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16307. }
  16308. const int n_as = src0->ne[2];
  16309. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16310. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16311. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16312. } break;
  16313. case GGML_OP_OUT_PROD:
  16314. {
  16315. if (ggml_is_quantized(node->src[0]->type)) {
  16316. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16317. }
  16318. } break;
  16319. case GGML_OP_SOFT_MAX:
  16320. case GGML_OP_ROPE:
  16321. {
  16322. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16323. } break;
  16324. case GGML_OP_CONV_TRANSPOSE_1D:
  16325. {
  16326. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16327. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16328. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16329. const int64_t ne00 = node->src[0]->ne[0]; // K
  16330. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16331. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16332. const int64_t ne10 = node->src[1]->ne[0]; // L
  16333. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16334. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16335. node->src[0]->type == GGML_TYPE_BF16) &&
  16336. node->src[1]->type == GGML_TYPE_F32) {
  16337. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16338. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16339. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16340. node->src[1]->type == GGML_TYPE_F32) {
  16341. cur += sizeof(float)*ne00*ne01*ne02;
  16342. cur += sizeof(float)*ne10*ne11;
  16343. } else {
  16344. GGML_ASSERT(false);
  16345. }
  16346. } break;
  16347. case GGML_OP_CONV_TRANSPOSE_2D:
  16348. {
  16349. const int64_t ne00 = node->src[0]->ne[0]; // W
  16350. const int64_t ne01 = node->src[0]->ne[1]; // H
  16351. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16352. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16353. const int64_t ne10 = node->src[1]->ne[0]; // W
  16354. const int64_t ne11 = node->src[1]->ne[1]; // H
  16355. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16356. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16357. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16358. } break;
  16359. case GGML_OP_FLASH_ATTN:
  16360. {
  16361. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16362. if (node->src[1]->type == GGML_TYPE_F32) {
  16363. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16364. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16365. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16366. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16367. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16368. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16369. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16370. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16371. }
  16372. } break;
  16373. case GGML_OP_FLASH_ATTN_EXT:
  16374. {
  16375. const int64_t ne00 = node->src[0]->ne[0]; // D
  16376. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16377. } break;
  16378. case GGML_OP_FLASH_FF:
  16379. {
  16380. if (node->src[1]->type == GGML_TYPE_F32) {
  16381. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16382. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16383. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16384. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16385. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16386. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16387. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16388. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16389. }
  16390. } break;
  16391. case GGML_OP_FLASH_ATTN_BACK:
  16392. {
  16393. const int64_t D = node->src[0]->ne[0];
  16394. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16395. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16396. if (node->src[1]->type == GGML_TYPE_F32) {
  16397. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16398. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16399. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16400. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16401. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16402. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16403. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16404. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16405. }
  16406. } break;
  16407. case GGML_OP_CROSS_ENTROPY_LOSS:
  16408. {
  16409. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16410. } break;
  16411. case GGML_OP_COUNT:
  16412. {
  16413. GGML_ASSERT(false);
  16414. } break;
  16415. default:
  16416. break;
  16417. }
  16418. work_size = MAX(work_size, cur);
  16419. }
  16420. if (work_size > 0) {
  16421. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16422. }
  16423. cplan.n_threads = MIN(max_tasks, n_threads);
  16424. cplan.work_size = work_size;
  16425. cplan.work_data = NULL;
  16426. return cplan;
  16427. }
  16428. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16429. {
  16430. GGML_ASSERT(cplan);
  16431. GGML_ASSERT(cplan->n_threads > 0);
  16432. if (cplan->work_size > 0) {
  16433. GGML_ASSERT(cplan->work_data);
  16434. }
  16435. }
  16436. const int n_threads = cplan->n_threads;
  16437. struct ggml_compute_state_shared state_shared = {
  16438. /*.cgraph =*/ cgraph,
  16439. /*.cgraph_plan =*/ cplan,
  16440. /*.perf_node_start_cycles =*/ 0,
  16441. /*.perf_node_start_time_us =*/ 0,
  16442. /*.n_threads =*/ n_threads,
  16443. /*.n_active =*/ n_threads,
  16444. /*.node_n =*/ -1,
  16445. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16446. /*.abort_callback =*/ NULL,
  16447. /*.abort_callback_data =*/ NULL,
  16448. /*.current_chunk; =*/ 0,
  16449. };
  16450. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16451. // create thread pool
  16452. if (n_threads > 1) {
  16453. for (int j = 1; j < n_threads; ++j) {
  16454. workers[j] = (struct ggml_compute_state) {
  16455. .thrd = 0,
  16456. .ith = j,
  16457. .shared = &state_shared,
  16458. .ec = GGML_STATUS_SUCCESS,
  16459. };
  16460. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16461. GGML_ASSERT(rc == 0);
  16462. UNUSED(rc);
  16463. }
  16464. }
  16465. workers[0].ith = 0;
  16466. workers[0].shared = &state_shared;
  16467. workers[0].ec = GGML_STATUS_SUCCESS;
  16468. const int64_t perf_start_cycles = ggml_perf_cycles();
  16469. const int64_t perf_start_time_us = ggml_perf_time_us();
  16470. // this is a work thread too
  16471. ggml_graph_compute_thread(&workers[0]);
  16472. enum ggml_status compute_status = workers[0].ec;
  16473. // don't leave affinity set on the main thread
  16474. clear_numa_thread_affinity();
  16475. // join or kill thread pool
  16476. if (n_threads > 1) {
  16477. for (int j = 1; j < n_threads; j++) {
  16478. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16479. GGML_ASSERT(rc == 0);
  16480. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16481. compute_status = workers[j].ec;
  16482. }
  16483. }
  16484. // performance stats (graph)
  16485. {
  16486. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16487. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16488. cgraph->perf_runs++;
  16489. cgraph->perf_cycles += perf_cycles_cur;
  16490. cgraph->perf_time_us += perf_time_us_cur;
  16491. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16492. __func__, cgraph->perf_runs,
  16493. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16494. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16495. (double) perf_time_us_cur / 1000.0,
  16496. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16497. }
  16498. return compute_status;
  16499. }
  16500. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16501. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16502. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16503. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16504. return ggml_graph_compute(cgraph, &cplan);
  16505. }
  16506. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16507. for (int i = 0; i < cgraph->n_leafs; i++) {
  16508. struct ggml_tensor * leaf = cgraph->leafs[i];
  16509. if (strcmp(leaf->name, name) == 0) {
  16510. return leaf;
  16511. }
  16512. }
  16513. for (int i = 0; i < cgraph->n_nodes; i++) {
  16514. struct ggml_tensor * node = cgraph->nodes[i];
  16515. if (strcmp(node->name, name) == 0) {
  16516. return node;
  16517. }
  16518. }
  16519. return NULL;
  16520. }
  16521. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16522. const int64_t * ne = tensor->ne;
  16523. const size_t * nb = tensor->nb;
  16524. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16525. ggml_type_name(tensor->type),
  16526. ggml_op_name (tensor->op),
  16527. ggml_n_dims(tensor),
  16528. ne[0], ne[1], ne[2], ne[3],
  16529. nb[0], nb[1], nb[2], nb[3],
  16530. tensor->data,
  16531. tensor->name);
  16532. }
  16533. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16534. const int64_t * ne = tensor->ne;
  16535. const size_t * nb = tensor->nb;
  16536. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16537. arg,
  16538. ggml_type_name(tensor->type),
  16539. ggml_op_name (tensor->op),
  16540. ggml_n_dims(tensor),
  16541. ne[0], ne[1], ne[2], ne[3],
  16542. nb[0], nb[1], nb[2], nb[3],
  16543. tensor->data,
  16544. tensor->name);
  16545. }
  16546. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16547. uint64_t size_eval = 0;
  16548. // compute size of intermediate results
  16549. // TODO: does not take into account scratch buffers !!!!
  16550. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16551. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16552. }
  16553. // print
  16554. {
  16555. FILE * fout = stdout;
  16556. fprintf(fout, "\n");
  16557. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16558. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16559. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16560. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16561. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16562. // header
  16563. fprintf(fout, "\n");
  16564. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16565. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16566. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16567. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16568. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16569. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16570. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16571. }
  16572. // header
  16573. fprintf(fout, "\n");
  16574. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16575. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16576. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16577. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16578. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16579. if (cgraph->nodes[i]->src[j]) {
  16580. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16581. }
  16582. }
  16583. fprintf(fout, "\n");
  16584. }
  16585. fprintf(fout, "\n");
  16586. }
  16587. // write binary data
  16588. {
  16589. FILE * fout = ggml_fopen(fname, "wb");
  16590. if (!fout) {
  16591. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16592. return;
  16593. }
  16594. // header
  16595. {
  16596. const uint32_t magic = GGML_FILE_MAGIC;
  16597. const uint32_t version = GGML_FILE_VERSION;
  16598. const uint32_t n_leafs = cgraph->n_leafs;
  16599. const uint32_t n_nodes = cgraph->n_nodes;
  16600. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16601. fwrite(&version, sizeof(uint32_t), 1, fout);
  16602. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16603. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16604. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16605. }
  16606. // leafs
  16607. {
  16608. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16609. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16610. const uint32_t type = tensor->type;
  16611. const uint32_t op = tensor->op;
  16612. fwrite(&type, sizeof(uint32_t), 1, fout);
  16613. fwrite(&op, sizeof(uint32_t), 1, fout);
  16614. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16615. const uint64_t ne = tensor->ne[j];
  16616. const uint64_t nb = tensor->nb[j];
  16617. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16618. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16619. }
  16620. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16621. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16622. // dump the data
  16623. // TODO: pad this to 32 byte boundary
  16624. {
  16625. const size_t size = ggml_nbytes(tensor);
  16626. fwrite(tensor->data, sizeof(char), size, fout);
  16627. }
  16628. }
  16629. }
  16630. // nodes
  16631. {
  16632. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16633. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16634. const uint32_t type = tensor->type;
  16635. const uint32_t op = tensor->op;
  16636. fwrite(&type, sizeof(uint32_t), 1, fout);
  16637. fwrite(&op, sizeof(uint32_t), 1, fout);
  16638. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16639. const uint64_t ne = tensor->ne[j];
  16640. const uint64_t nb = tensor->nb[j];
  16641. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16642. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16643. }
  16644. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16645. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16646. // output the op arguments
  16647. {
  16648. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16649. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16650. args[j] = tensor->src[j];
  16651. }
  16652. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16653. if (args[j]) {
  16654. int32_t idx = -1;
  16655. // check if leaf
  16656. {
  16657. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16658. if (args[j] == cgraph->leafs[k]) {
  16659. idx = k;
  16660. break;
  16661. }
  16662. }
  16663. }
  16664. // check if node
  16665. if (idx == -1) {
  16666. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16667. if (args[j] == cgraph->nodes[k]) {
  16668. idx = cgraph->n_leafs + k;
  16669. break;
  16670. }
  16671. }
  16672. }
  16673. if (idx == -1) {
  16674. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16675. fclose(fout);
  16676. return;
  16677. }
  16678. fwrite(&idx, sizeof(int32_t), 1, fout);
  16679. } else {
  16680. const int32_t nul = -1;
  16681. fwrite(&nul, sizeof(int32_t), 1, fout);
  16682. }
  16683. }
  16684. }
  16685. }
  16686. }
  16687. fclose(fout);
  16688. }
  16689. }
  16690. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16691. assert(*ctx_data == NULL);
  16692. assert(*ctx_eval == NULL);
  16693. struct ggml_cgraph * result = NULL;
  16694. struct ggml_tensor * data = NULL;
  16695. // read file into data
  16696. {
  16697. FILE * fin = ggml_fopen(fname, "rb");
  16698. if (!fin) {
  16699. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16700. return result;
  16701. }
  16702. size_t fsize = 0;
  16703. fseek(fin, 0, SEEK_END);
  16704. fsize = ftell(fin);
  16705. fseek(fin, 0, SEEK_SET);
  16706. // create the data context
  16707. {
  16708. const size_t overhead = 1*ggml_tensor_overhead();
  16709. struct ggml_init_params params = {
  16710. .mem_size = fsize + overhead,
  16711. .mem_buffer = NULL,
  16712. .no_alloc = false,
  16713. };
  16714. *ctx_data = ggml_init(params);
  16715. if (!*ctx_data) {
  16716. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16717. fclose(fin);
  16718. return result;
  16719. }
  16720. }
  16721. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16722. {
  16723. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16724. if (ret != fsize) {
  16725. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16726. fclose(fin);
  16727. return result;
  16728. }
  16729. }
  16730. fclose(fin);
  16731. }
  16732. // populate result
  16733. {
  16734. char * ptr = (char *) data->data;
  16735. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16736. if (magic != GGML_FILE_MAGIC) {
  16737. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16738. return result;
  16739. }
  16740. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16741. if (version != GGML_FILE_VERSION) {
  16742. fprintf(stderr, "%s: invalid version number\n", __func__);
  16743. return result;
  16744. }
  16745. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16746. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16747. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16748. const int graph_size = MAX(n_leafs, n_nodes);
  16749. // create the data context
  16750. {
  16751. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16752. struct ggml_init_params params = {
  16753. .mem_size = size_eval + overhead,
  16754. .mem_buffer = NULL,
  16755. .no_alloc = true,
  16756. };
  16757. *ctx_eval = ggml_init(params);
  16758. if (!*ctx_eval) {
  16759. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16760. return result;
  16761. }
  16762. }
  16763. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16764. result->n_leafs = n_leafs;
  16765. result->n_nodes = n_nodes;
  16766. // leafs
  16767. {
  16768. uint32_t type;
  16769. uint32_t op;
  16770. for (uint32_t i = 0; i < n_leafs; ++i) {
  16771. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16772. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16773. int64_t ne[GGML_MAX_DIMS];
  16774. size_t nb[GGML_MAX_DIMS];
  16775. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16776. uint64_t ne_cur;
  16777. uint64_t nb_cur;
  16778. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16779. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16780. ne[j] = ne_cur;
  16781. nb[j] = nb_cur;
  16782. }
  16783. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16784. tensor->op = (enum ggml_op) op;
  16785. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16786. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16787. tensor->data = (void *) ptr;
  16788. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16789. tensor->nb[j] = nb[j];
  16790. }
  16791. result->leafs[i] = tensor;
  16792. ptr += ggml_nbytes(tensor);
  16793. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16794. }
  16795. }
  16796. ggml_set_no_alloc(*ctx_eval, false);
  16797. // nodes
  16798. {
  16799. uint32_t type;
  16800. uint32_t op;
  16801. for (uint32_t i = 0; i < n_nodes; ++i) {
  16802. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16803. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16804. enum ggml_op eop = (enum ggml_op) op;
  16805. int64_t ne[GGML_MAX_DIMS];
  16806. size_t nb[GGML_MAX_DIMS];
  16807. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16808. uint64_t ne_cur;
  16809. uint64_t nb_cur;
  16810. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16811. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16812. ne[j] = ne_cur;
  16813. nb[j] = nb_cur;
  16814. }
  16815. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16816. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16817. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16818. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16819. // parse args
  16820. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16821. const int32_t arg_idx = ptr_arg_idx[j];
  16822. if (arg_idx == -1) {
  16823. continue;
  16824. }
  16825. if (arg_idx < result->n_leafs) {
  16826. args[j] = result->leafs[arg_idx];
  16827. } else {
  16828. args[j] = result->nodes[arg_idx - result->n_leafs];
  16829. }
  16830. }
  16831. // create the tensor
  16832. // "view" operations are handled differently
  16833. // TODO: handle inplace ops - currently a copy is always made
  16834. struct ggml_tensor * tensor = NULL;
  16835. switch (eop) {
  16836. // TODO: implement other view ops
  16837. case GGML_OP_RESHAPE:
  16838. {
  16839. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16840. } break;
  16841. case GGML_OP_VIEW:
  16842. {
  16843. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16844. size_t offs;
  16845. memcpy(&offs, ptr_op_params, sizeof(offs));
  16846. tensor->data = ((char *) tensor->data) + offs;
  16847. } break;
  16848. case GGML_OP_TRANSPOSE:
  16849. {
  16850. tensor = ggml_transpose(*ctx_eval, args[0]);
  16851. } break;
  16852. case GGML_OP_PERMUTE:
  16853. {
  16854. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16855. } break;
  16856. default:
  16857. {
  16858. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16859. tensor->op = eop;
  16860. } break;
  16861. }
  16862. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16863. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16864. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16865. tensor->nb[j] = nb[j];
  16866. }
  16867. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16868. tensor->src[j] = args[j];
  16869. }
  16870. result->nodes[i] = tensor;
  16871. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16872. }
  16873. }
  16874. }
  16875. return result;
  16876. }
  16877. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16878. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16879. GGML_PRINT("=== GRAPH ===\n");
  16880. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16881. for (int i = 0; i < cgraph->n_nodes; i++) {
  16882. struct ggml_tensor * node = cgraph->nodes[i];
  16883. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16884. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16885. i,
  16886. node->ne[0], node->ne[1], node->ne[2],
  16887. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16888. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16889. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16890. (double) node->perf_time_us / 1000.0,
  16891. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16892. }
  16893. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16894. for (int i = 0; i < cgraph->n_leafs; i++) {
  16895. struct ggml_tensor * node = cgraph->leafs[i];
  16896. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16897. i,
  16898. node->ne[0], node->ne[1],
  16899. ggml_op_name(node->op),
  16900. ggml_get_name(node));
  16901. }
  16902. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16903. if (perf_total_per_op_us[i] == 0) {
  16904. continue;
  16905. }
  16906. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16907. }
  16908. GGML_PRINT("========================================\n");
  16909. }
  16910. // check if node is part of the graph
  16911. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16912. if (cgraph == NULL) {
  16913. return true;
  16914. }
  16915. for (int i = 0; i < cgraph->n_nodes; i++) {
  16916. if (cgraph->nodes[i] == node) {
  16917. return true;
  16918. }
  16919. }
  16920. return false;
  16921. }
  16922. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16923. for (int i = 0; i < cgraph->n_nodes; i++) {
  16924. struct ggml_tensor * parent = cgraph->nodes[i];
  16925. if (parent->grad == node) {
  16926. return parent;
  16927. }
  16928. }
  16929. return NULL;
  16930. }
  16931. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16932. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16933. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16934. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16935. gparent0 ? (void *) gparent0 : (void *) parent,
  16936. gparent0 ? "g" : "x",
  16937. gparent ? (void *) gparent : (void *) node,
  16938. gparent ? "g" : "x",
  16939. gparent ? "empty" : "vee",
  16940. gparent ? "dashed" : "solid",
  16941. label);
  16942. }
  16943. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16944. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16945. (void *) parent, "x",
  16946. (void *) node, "x",
  16947. label);
  16948. }
  16949. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16950. char color[16];
  16951. FILE * fp = ggml_fopen(filename, "w");
  16952. GGML_ASSERT(fp);
  16953. fprintf(fp, "digraph G {\n");
  16954. fprintf(fp, " newrank = true;\n");
  16955. fprintf(fp, " rankdir = LR;\n");
  16956. for (int i = 0; i < gb->n_nodes; i++) {
  16957. struct ggml_tensor * node = gb->nodes[i];
  16958. if (ggml_graph_get_parent(gb, node) != NULL) {
  16959. continue;
  16960. }
  16961. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16962. snprintf(color, sizeof(color), "yellow");
  16963. } else if (node->grad) {
  16964. if (ggml_graph_find(gf, node)) {
  16965. snprintf(color, sizeof(color), "green");
  16966. } else {
  16967. snprintf(color, sizeof(color), "lightblue");
  16968. }
  16969. } else {
  16970. snprintf(color, sizeof(color), "white");
  16971. }
  16972. fprintf(fp, " \"%p\" [ "
  16973. "style = filled; fillcolor = %s; shape = record; "
  16974. "label=\"",
  16975. (void *) node, color);
  16976. if (strlen(node->name) > 0) {
  16977. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16978. } else {
  16979. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16980. }
  16981. if (ggml_is_matrix(node)) {
  16982. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16983. } else {
  16984. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16985. }
  16986. if (node->grad) {
  16987. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16988. } else {
  16989. fprintf(fp, "\"; ]\n");
  16990. }
  16991. }
  16992. for (int i = 0; i < gb->n_leafs; i++) {
  16993. struct ggml_tensor * node = gb->leafs[i];
  16994. snprintf(color, sizeof(color), "pink");
  16995. fprintf(fp, " \"%p\" [ "
  16996. "style = filled; fillcolor = %s; shape = record; "
  16997. "label=\"<x>",
  16998. (void *) node, color);
  16999. if (strlen(node->name) > 0) {
  17000. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17001. } else {
  17002. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17003. }
  17004. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17005. if (ggml_nelements(node) < 5) {
  17006. fprintf(fp, " | (");
  17007. for (int j = 0; j < ggml_nelements(node); j++) {
  17008. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17009. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17010. }
  17011. else if (node->type == GGML_TYPE_F32 ||
  17012. node->type == GGML_TYPE_F16 ||
  17013. node->type == GGML_TYPE_BF16) {
  17014. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17015. }
  17016. else {
  17017. fprintf(fp, "#");
  17018. }
  17019. if (j < ggml_nelements(node) - 1) {
  17020. fprintf(fp, ", ");
  17021. }
  17022. }
  17023. fprintf(fp, ")");
  17024. }
  17025. fprintf(fp, "\"; ]\n");
  17026. }
  17027. for (int i = 0; i < gb->n_nodes; i++) {
  17028. struct ggml_tensor * node = gb->nodes[i];
  17029. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17030. if (node->src[j]) {
  17031. char label[16];
  17032. snprintf(label, sizeof(label), "src %d", j);
  17033. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17034. }
  17035. }
  17036. }
  17037. for (int i = 0; i < gb->n_leafs; i++) {
  17038. struct ggml_tensor * node = gb->leafs[i];
  17039. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17040. if (node->src[j]) {
  17041. char label[16];
  17042. snprintf(label, sizeof(label), "src %d", j);
  17043. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17044. }
  17045. }
  17046. }
  17047. fprintf(fp, "}\n");
  17048. fclose(fp);
  17049. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17050. }
  17051. ////////////////////////////////////////////////////////////////////////////////
  17052. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17053. int i = 0;
  17054. for (int p = 0; p < np; ++p) {
  17055. const int64_t ne = ggml_nelements(ps[p]) ;
  17056. // TODO: add function to set tensor from array
  17057. for (int64_t j = 0; j < ne; ++j) {
  17058. ggml_set_f32_1d(ps[p], j, x[i++]);
  17059. }
  17060. }
  17061. }
  17062. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17063. int i = 0;
  17064. for (int p = 0; p < np; ++p) {
  17065. const int64_t ne = ggml_nelements(ps[p]) ;
  17066. // TODO: add function to get all elements at once
  17067. for (int64_t j = 0; j < ne; ++j) {
  17068. x[i++] = ggml_get_f32_1d(ps[p], j);
  17069. }
  17070. }
  17071. }
  17072. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17073. int64_t i = 0;
  17074. for (int p = 0; p < np; ++p) {
  17075. const int64_t ne = ggml_nelements(ps[p]) ;
  17076. // TODO: add function to get all elements at once
  17077. for (int64_t j = 0; j < ne; ++j) {
  17078. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17079. }
  17080. }
  17081. }
  17082. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17083. int64_t i = 0;
  17084. for (int p = 0; p < np; ++p) {
  17085. const int64_t ne = ggml_nelements(ps[p]) ;
  17086. // TODO: add function to get all elements at once
  17087. for (int64_t j = 0; j < ne; ++j) {
  17088. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17089. }
  17090. }
  17091. }
  17092. //
  17093. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17094. //
  17095. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17096. //
  17097. static enum ggml_opt_result ggml_opt_adam(
  17098. struct ggml_context * ctx,
  17099. struct ggml_opt_context * opt,
  17100. struct ggml_opt_params params,
  17101. struct ggml_tensor * f,
  17102. struct ggml_cgraph * gf,
  17103. struct ggml_cgraph * gb,
  17104. ggml_opt_callback callback,
  17105. void * callback_data) {
  17106. GGML_ASSERT(ggml_is_scalar(f));
  17107. // these will store the parameters we want to optimize
  17108. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17109. int np = 0;
  17110. int64_t nx = 0;
  17111. for (int i = 0; i < gf->n_nodes; ++i) {
  17112. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17113. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17114. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17115. ps[np++] = gf->nodes[i];
  17116. nx += ggml_nelements(gf->nodes[i]);
  17117. }
  17118. }
  17119. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17120. int iter = opt->iter;
  17121. ggml_opt_init(opt->ctx, opt, params, nx);
  17122. opt->iter = iter;
  17123. }
  17124. // constants
  17125. float sched = params.adam.sched;
  17126. const float alpha = params.adam.alpha;
  17127. const float decay = params.adam.decay * alpha;
  17128. const float beta1 = params.adam.beta1;
  17129. const float beta2 = params.adam.beta2;
  17130. const float eps = params.adam.eps;
  17131. const float gclip = params.adam.gclip;
  17132. const int decay_min_ndim = params.adam.decay_min_ndim;
  17133. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17134. const float accum_norm = 1.0f / (float) n_accum;
  17135. float * g = opt->adam.g->data; // gradients
  17136. float * m = opt->adam.m->data; // first moment
  17137. float * v = opt->adam.v->data; // second moment
  17138. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17139. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17140. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17141. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17142. bool cancel = false;
  17143. // compute the function value
  17144. float fx = 0;
  17145. ggml_set_zero(opt->adam.g);
  17146. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17147. if (callback) {
  17148. callback(callback_data, accum_step, &sched, &cancel);
  17149. if (cancel) {
  17150. return GGML_OPT_RESULT_CANCEL;
  17151. }
  17152. }
  17153. // ggml_graph_reset (gf);
  17154. ggml_set_f32 (f->grad, 1.0f);
  17155. ggml_graph_compute(gb, &cplan);
  17156. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17157. fx += ggml_get_f32_1d(f, 0);
  17158. }
  17159. fx *= accum_norm;
  17160. opt->adam.fx_prev = fx;
  17161. opt->adam.fx_best = opt->adam.fx_prev;
  17162. if (pf) {
  17163. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17164. }
  17165. opt->loss_before = opt->adam.fx_prev;
  17166. opt->loss_after = opt->adam.fx_prev;
  17167. // initialize
  17168. if (opt->just_initialized) {
  17169. opt->adam.n_no_improvement = 0;
  17170. opt->just_initialized = false;
  17171. }
  17172. float * fx_best = &opt->adam.fx_best;
  17173. float * fx_prev = &opt->adam.fx_prev;
  17174. int * n_no_improvement = &opt->adam.n_no_improvement;
  17175. int iter0 = opt->iter;
  17176. // run the optimizer
  17177. for (int t = 0; t < params.adam.n_iter; ++t) {
  17178. opt->iter = iter0 + t + 1;
  17179. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17180. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17181. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17182. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17183. for (int i = 0; i < np; ++i) {
  17184. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17185. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17186. }
  17187. const int64_t t_start_wall = ggml_time_us();
  17188. const int64_t t_start_cpu = ggml_cycles();
  17189. UNUSED(t_start_wall);
  17190. UNUSED(t_start_cpu);
  17191. {
  17192. float gnorm = 1.0f;
  17193. if (gclip > 0.0f) {
  17194. // gradient clipping
  17195. ggml_float sum = 0.0;
  17196. for (int64_t i = 0; i < nx; ++i) {
  17197. sum += (ggml_float)(g[i]*g[i]);
  17198. }
  17199. ggml_float norm = sqrt(sum);
  17200. if (norm > (ggml_float) gclip) {
  17201. gnorm = (float) ((ggml_float) gclip / norm);
  17202. }
  17203. }
  17204. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17205. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17206. int64_t i = 0;
  17207. for (int p = 0; p < np; ++p) {
  17208. const int64_t ne = ggml_nelements(ps[p]);
  17209. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17210. for (int64_t j = 0; j < ne; ++j) {
  17211. float x = ggml_get_f32_1d(ps[p], j);
  17212. float g_ = g[i]*gnorm;
  17213. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17214. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17215. float mh = m[i]*beta1h;
  17216. float vh = v[i]*beta2h;
  17217. vh = sqrtf(vh) + eps;
  17218. x = x*(1.0f - p_decay) - mh/vh;
  17219. ggml_set_f32_1d(ps[p], j, x);
  17220. ++i;
  17221. }
  17222. }
  17223. }
  17224. fx = 0;
  17225. ggml_set_zero(opt->adam.g);
  17226. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17227. if (callback) {
  17228. callback(callback_data, accum_step, &sched, &cancel);
  17229. if (cancel) {
  17230. return GGML_OPT_RESULT_CANCEL;;
  17231. }
  17232. }
  17233. // ggml_graph_reset (gf);
  17234. ggml_set_f32 (f->grad, 1.0f);
  17235. ggml_graph_compute(gb, &cplan);
  17236. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17237. fx += ggml_get_f32_1d(f, 0);
  17238. }
  17239. fx *= accum_norm;
  17240. opt->loss_after = fx;
  17241. // check convergence
  17242. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17243. GGML_PRINT_DEBUG("converged\n");
  17244. return GGML_OPT_RESULT_OK;
  17245. }
  17246. // delta-based convergence test
  17247. if (pf != NULL) {
  17248. // need at least params.past iterations to start checking for convergence
  17249. if (params.past <= iter0 + t) {
  17250. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17251. if (fabsf(rate) < params.delta) {
  17252. return GGML_OPT_RESULT_OK;
  17253. }
  17254. }
  17255. pf[(iter0 + t)%params.past] = fx;
  17256. }
  17257. // check for improvement
  17258. if (params.max_no_improvement > 0) {
  17259. if (fx_best[0] > fx) {
  17260. fx_best[0] = fx;
  17261. n_no_improvement[0] = 0;
  17262. } else {
  17263. ++n_no_improvement[0];
  17264. if (n_no_improvement[0] >= params.max_no_improvement) {
  17265. return GGML_OPT_RESULT_OK;
  17266. }
  17267. }
  17268. }
  17269. fx_prev[0] = fx;
  17270. {
  17271. const int64_t t_end_cpu = ggml_cycles();
  17272. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17273. UNUSED(t_end_cpu);
  17274. const int64_t t_end_wall = ggml_time_us();
  17275. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17276. UNUSED(t_end_wall);
  17277. }
  17278. }
  17279. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17280. }
  17281. //
  17282. // L-BFGS
  17283. //
  17284. // the L-BFGS implementation below is based on the following implementation:
  17285. //
  17286. // https://github.com/chokkan/liblbfgs
  17287. //
  17288. struct ggml_lbfgs_iteration_data {
  17289. float alpha;
  17290. float ys;
  17291. float * s;
  17292. float * y;
  17293. };
  17294. static enum ggml_opt_result linesearch_backtracking(
  17295. const struct ggml_opt_params * params,
  17296. int nx,
  17297. float * x,
  17298. float * fx,
  17299. float * g,
  17300. float * d,
  17301. float * step,
  17302. const float * xp,
  17303. struct ggml_tensor * f,
  17304. struct ggml_cgraph * gb,
  17305. struct ggml_cplan * cplan,
  17306. const int np,
  17307. struct ggml_tensor * ps[],
  17308. bool * cancel,
  17309. ggml_opt_callback callback,
  17310. void * callback_data) {
  17311. int count = 0;
  17312. float width = 0.0f;
  17313. float dg = 0.0f;
  17314. float finit = 0.0f;
  17315. float dginit = 0.0f;
  17316. float dgtest = 0.0f;
  17317. const float dec = 0.5f;
  17318. const float inc = 2.1f;
  17319. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17320. const float accum_norm = 1.0f / (float) n_accum;
  17321. if (*step <= 0.f) {
  17322. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17323. }
  17324. // compute the initial gradient in the search direction
  17325. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17326. // make sure that d points to a descent direction
  17327. if (0 < dginit) {
  17328. return GGML_LINESEARCH_FAIL;
  17329. }
  17330. // initialize local variables
  17331. finit = *fx;
  17332. dgtest = params->lbfgs.ftol*dginit;
  17333. while (true) {
  17334. ggml_vec_cpy_f32(nx, x, xp);
  17335. ggml_vec_mad_f32(nx, x, d, *step);
  17336. // evaluate the function and gradient values
  17337. {
  17338. ggml_opt_set_params(np, ps, x);
  17339. *fx = 0;
  17340. memset(g, 0, sizeof(float)*nx);
  17341. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17342. if (callback) {
  17343. // LBFG-S does not support learning rate -> ignore learning schedule
  17344. float sched = 0;
  17345. callback(callback_data, accum_step, &sched, cancel);
  17346. if (*cancel) {
  17347. return GGML_OPT_RESULT_CANCEL;
  17348. }
  17349. }
  17350. // ggml_graph_reset (gf);
  17351. ggml_set_f32 (f->grad, 1.0f);
  17352. ggml_graph_compute(gb, cplan);
  17353. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17354. *fx += ggml_get_f32_1d(f, 0);
  17355. }
  17356. *fx *= accum_norm;
  17357. }
  17358. ++count;
  17359. if (*fx > finit + (*step)*dgtest) {
  17360. width = dec;
  17361. } else {
  17362. // Armijo condition is satisfied
  17363. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17364. return count;
  17365. }
  17366. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17367. // check the Wolfe condition
  17368. if (dg < params->lbfgs.wolfe * dginit) {
  17369. width = inc;
  17370. } else {
  17371. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17372. // regular Wolfe conditions
  17373. return count;
  17374. }
  17375. if(dg > -params->lbfgs.wolfe*dginit) {
  17376. width = dec;
  17377. } else {
  17378. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17379. return count;
  17380. }
  17381. }
  17382. }
  17383. if (*step < params->lbfgs.min_step) {
  17384. return GGML_LINESEARCH_MINIMUM_STEP;
  17385. }
  17386. if (*step > params->lbfgs.max_step) {
  17387. return GGML_LINESEARCH_MAXIMUM_STEP;
  17388. }
  17389. if (params->lbfgs.max_linesearch <= count) {
  17390. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17391. }
  17392. (*step) *= width;
  17393. }
  17394. GGML_ASSERT(false && "line search failed");
  17395. return GGML_LINESEARCH_FAIL;
  17396. }
  17397. static enum ggml_opt_result ggml_opt_lbfgs(
  17398. struct ggml_context * ctx,
  17399. struct ggml_opt_context * opt,
  17400. struct ggml_opt_params params,
  17401. struct ggml_tensor * f,
  17402. struct ggml_cgraph * gf,
  17403. struct ggml_cgraph * gb,
  17404. ggml_opt_callback callback,
  17405. void * callback_data) {
  17406. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17407. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17408. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17409. return GGML_OPT_RESULT_INVALID_WOLFE;
  17410. }
  17411. }
  17412. const int m = params.lbfgs.m;
  17413. // these will store the parameters we want to optimize
  17414. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17415. int np = 0;
  17416. int nx = 0;
  17417. for (int i = 0; i < gf->n_nodes; ++i) {
  17418. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17419. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17420. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17421. ps[np++] = gf->nodes[i];
  17422. nx += ggml_nelements(gf->nodes[i]);
  17423. }
  17424. }
  17425. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17426. int iter = opt->iter;
  17427. ggml_opt_init(ctx, opt, params, nx);
  17428. opt->iter = iter;
  17429. }
  17430. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17431. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17432. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17433. float * x = opt->lbfgs.x->data; // current parameters
  17434. float * xp = opt->lbfgs.xp->data; // previous parameters
  17435. float * g = opt->lbfgs.g->data; // current gradient
  17436. float * gp = opt->lbfgs.gp->data; // previous gradient
  17437. float * d = opt->lbfgs.d->data; // search direction
  17438. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17439. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17440. const float accum_norm = 1.0f / (float) n_accum;
  17441. float fx = 0.0f; // cost function value
  17442. float xnorm = 0.0f; // ||x||
  17443. float gnorm = 0.0f; // ||g||
  17444. // initialize x from the graph nodes
  17445. ggml_opt_get_params(np, ps, x);
  17446. // the L-BFGS memory
  17447. float * lm_alpha = opt->lbfgs.lmal->data;
  17448. float * lm_ys = opt->lbfgs.lmys->data;
  17449. float * lm_s = opt->lbfgs.lms->data;
  17450. float * lm_y = opt->lbfgs.lmy->data;
  17451. bool cancel = false;
  17452. // evaluate the function value and its gradient
  17453. {
  17454. ggml_opt_set_params(np, ps, x);
  17455. fx = 0;
  17456. memset(g, 0, sizeof(float)*nx);
  17457. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17458. if (callback) {
  17459. // LBFG-S does not support learning rate -> ignore learning schedule
  17460. float sched = 0;
  17461. callback(callback_data, accum_step, &sched, &cancel);
  17462. if (cancel) {
  17463. return GGML_OPT_RESULT_CANCEL;
  17464. }
  17465. }
  17466. // ggml_graph_reset (gf);
  17467. ggml_set_f32 (f->grad, 1.0f);
  17468. ggml_graph_compute(gb, &cplan);
  17469. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17470. fx += ggml_get_f32_1d(f, 0);
  17471. }
  17472. fx *= accum_norm;
  17473. opt->loss_before = fx;
  17474. opt->loss_after = fx;
  17475. }
  17476. // search direction = -gradient
  17477. ggml_vec_neg_f32(nx, d, g);
  17478. // ||x||, ||g||
  17479. ggml_vec_norm_f32(nx, &xnorm, x);
  17480. ggml_vec_norm_f32(nx, &gnorm, g);
  17481. if (xnorm < 1.0f) {
  17482. xnorm = 1.0f;
  17483. }
  17484. // already optimized
  17485. if (gnorm/xnorm <= params.lbfgs.eps) {
  17486. return GGML_OPT_RESULT_OK;
  17487. }
  17488. if (opt->just_initialized) {
  17489. if (pf) {
  17490. pf[0] = fx;
  17491. }
  17492. opt->lbfgs.fx_best = fx;
  17493. // initial step
  17494. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17495. opt->lbfgs.j = 0;
  17496. opt->lbfgs.k = 1;
  17497. opt->lbfgs.end = 0;
  17498. opt->lbfgs.n_no_improvement = 0;
  17499. opt->just_initialized = false;
  17500. }
  17501. float * fx_best = &opt->lbfgs.fx_best;
  17502. float * step = &opt->lbfgs.step;
  17503. int * j = &opt->lbfgs.j;
  17504. int * k = &opt->lbfgs.k;
  17505. int * end = &opt->lbfgs.end;
  17506. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17507. int ls = 0;
  17508. int bound = 0;
  17509. float ys = 0.0f;
  17510. float yy = 0.0f;
  17511. float beta = 0.0f;
  17512. int it = 0;
  17513. while (true) {
  17514. // store the current position and gradient vectors
  17515. ggml_vec_cpy_f32(nx, xp, x);
  17516. ggml_vec_cpy_f32(nx, gp, g);
  17517. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17518. // to determine if the optimization should be cancelled
  17519. // this is a simple change, but not doing this atm, since I don't have a nice
  17520. // way to test and don't want to break something with so many changes lined up
  17521. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17522. if (cancel) {
  17523. return GGML_OPT_RESULT_CANCEL;
  17524. }
  17525. if (ls < 0) {
  17526. // linesearch failed - go back to the previous point and return
  17527. ggml_vec_cpy_f32(nx, x, xp);
  17528. ggml_vec_cpy_f32(nx, g, gp);
  17529. return ls;
  17530. }
  17531. opt->loss_after = fx;
  17532. ggml_vec_norm_f32(nx, &xnorm, x);
  17533. ggml_vec_norm_f32(nx, &gnorm, g);
  17534. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17535. if (xnorm < 1.0f) {
  17536. xnorm = 1.0f;
  17537. }
  17538. if (gnorm/xnorm <= params.lbfgs.eps) {
  17539. // converged
  17540. return GGML_OPT_RESULT_OK;
  17541. }
  17542. // delta-based convergence test
  17543. if (pf != NULL) {
  17544. // need at least params.past iterations to start checking for convergence
  17545. if (params.past <= k[0]) {
  17546. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17547. if (fabsf(rate) < params.delta) {
  17548. return GGML_OPT_RESULT_OK;
  17549. }
  17550. }
  17551. pf[k[0]%params.past] = fx;
  17552. }
  17553. // check for improvement
  17554. if (params.max_no_improvement > 0) {
  17555. if (fx < fx_best[0]) {
  17556. fx_best[0] = fx;
  17557. n_no_improvement[0] = 0;
  17558. } else {
  17559. n_no_improvement[0]++;
  17560. if (n_no_improvement[0] >= params.max_no_improvement) {
  17561. return GGML_OPT_RESULT_OK;
  17562. }
  17563. }
  17564. }
  17565. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17566. // reached the maximum number of iterations
  17567. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17568. }
  17569. // update vectors s and y:
  17570. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17571. // y_{k+1} = g_{k+1} - g_{k}.
  17572. //
  17573. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17574. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17575. // compute scalars ys and yy:
  17576. // ys = y^t \cdot s -> 1 / \rho.
  17577. // yy = y^t \cdot y.
  17578. //
  17579. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17580. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17581. lm_ys[end[0]] = ys;
  17582. // find new search direction
  17583. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17584. bound = (m <= k[0]) ? m : k[0];
  17585. k[0]++;
  17586. it++;
  17587. end[0] = (end[0] + 1)%m;
  17588. // initialize search direction with -g
  17589. ggml_vec_neg_f32(nx, d, g);
  17590. j[0] = end[0];
  17591. for (int i = 0; i < bound; ++i) {
  17592. j[0] = (j[0] + m - 1) % m;
  17593. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17594. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17595. lm_alpha[j[0]] /= lm_ys[j[0]];
  17596. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17597. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17598. }
  17599. ggml_vec_scale_f32(nx, d, ys/yy);
  17600. for (int i = 0; i < bound; ++i) {
  17601. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17602. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17603. beta /= lm_ys[j[0]];
  17604. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17605. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17606. j[0] = (j[0] + 1)%m;
  17607. }
  17608. step[0] = 1.0;
  17609. }
  17610. GGML_ASSERT(false && "lbfgs failed");
  17611. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17612. }
  17613. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17614. struct ggml_opt_params result;
  17615. switch (type) {
  17616. case GGML_OPT_TYPE_ADAM:
  17617. {
  17618. result = (struct ggml_opt_params) {
  17619. .type = GGML_OPT_TYPE_ADAM,
  17620. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17621. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17622. .past = 0,
  17623. .delta = 1e-5f,
  17624. .max_no_improvement = 100,
  17625. .print_forward_graph = true,
  17626. .print_backward_graph = true,
  17627. .n_gradient_accumulation = 1,
  17628. .adam = {
  17629. .n_iter = 10000,
  17630. .sched = 1.000f,
  17631. .decay = 0.0f,
  17632. .decay_min_ndim = 2,
  17633. .alpha = 0.001f,
  17634. .beta1 = 0.9f,
  17635. .beta2 = 0.999f,
  17636. .eps = 1e-8f,
  17637. .eps_f = 1e-5f,
  17638. .eps_g = 1e-3f,
  17639. .gclip = 0.0f,
  17640. },
  17641. };
  17642. } break;
  17643. case GGML_OPT_TYPE_LBFGS:
  17644. {
  17645. result = (struct ggml_opt_params) {
  17646. .type = GGML_OPT_TYPE_LBFGS,
  17647. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17648. .n_threads = 1,
  17649. .past = 0,
  17650. .delta = 1e-5f,
  17651. .max_no_improvement = 0,
  17652. .print_forward_graph = true,
  17653. .print_backward_graph = true,
  17654. .n_gradient_accumulation = 1,
  17655. .lbfgs = {
  17656. .m = 6,
  17657. .n_iter = 100,
  17658. .max_linesearch = 20,
  17659. .eps = 1e-5f,
  17660. .ftol = 1e-4f,
  17661. .wolfe = 0.9f,
  17662. .min_step = 1e-20f,
  17663. .max_step = 1e+20f,
  17664. .linesearch = GGML_LINESEARCH_DEFAULT,
  17665. },
  17666. };
  17667. } break;
  17668. }
  17669. return result;
  17670. }
  17671. GGML_API void ggml_opt_init(
  17672. struct ggml_context * ctx,
  17673. struct ggml_opt_context * opt,
  17674. struct ggml_opt_params params,
  17675. int64_t nx) {
  17676. opt->ctx = ctx;
  17677. opt->params = params;
  17678. opt->iter = 0;
  17679. opt->nx = nx;
  17680. opt->just_initialized = true;
  17681. if (opt->ctx == NULL) {
  17682. struct ggml_init_params ctx_opt_params;
  17683. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17684. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17685. if (opt->params.past > 0) {
  17686. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17687. }
  17688. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17689. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17690. if (opt->params.past > 0) {
  17691. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17692. }
  17693. }
  17694. ctx_opt_params.mem_buffer = NULL;
  17695. ctx_opt_params.no_alloc = false;
  17696. opt->ctx = ggml_init(ctx_opt_params);
  17697. }
  17698. switch (opt->params.type) {
  17699. case GGML_OPT_TYPE_ADAM:
  17700. {
  17701. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17702. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17703. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17704. opt->adam.pf = params.past > 0
  17705. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17706. : NULL;
  17707. ggml_set_zero(opt->adam.m);
  17708. ggml_set_zero(opt->adam.v);
  17709. if (opt->adam.pf) {
  17710. ggml_set_zero(opt->adam.pf);
  17711. }
  17712. } break;
  17713. case GGML_OPT_TYPE_LBFGS:
  17714. {
  17715. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17716. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17717. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17718. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17719. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17720. opt->lbfgs.pf = params.past > 0
  17721. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17722. : NULL;
  17723. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17724. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17725. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17726. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17727. ggml_set_zero(opt->lbfgs.x);
  17728. ggml_set_zero(opt->lbfgs.xp);
  17729. ggml_set_zero(opt->lbfgs.g);
  17730. ggml_set_zero(opt->lbfgs.gp);
  17731. ggml_set_zero(opt->lbfgs.d);
  17732. if (opt->lbfgs.pf) {
  17733. ggml_set_zero(opt->lbfgs.pf);
  17734. }
  17735. ggml_set_zero(opt->lbfgs.lmal);
  17736. ggml_set_zero(opt->lbfgs.lmys);
  17737. ggml_set_zero(opt->lbfgs.lms);
  17738. ggml_set_zero(opt->lbfgs.lmy);
  17739. } break;
  17740. }
  17741. }
  17742. enum ggml_opt_result ggml_opt(
  17743. struct ggml_context * ctx,
  17744. struct ggml_opt_params params,
  17745. struct ggml_tensor * f) {
  17746. bool free_ctx = false;
  17747. if (ctx == NULL) {
  17748. struct ggml_init_params params_ctx = {
  17749. .mem_size = 16*1024*1024,
  17750. .mem_buffer = NULL,
  17751. .no_alloc = false,
  17752. };
  17753. ctx = ggml_init(params_ctx);
  17754. if (ctx == NULL) {
  17755. return GGML_OPT_RESULT_NO_CONTEXT;
  17756. }
  17757. free_ctx = true;
  17758. }
  17759. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17760. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17761. ggml_opt_init(ctx, opt, params, 0);
  17762. result = ggml_opt_resume(ctx, opt, f);
  17763. if (free_ctx) {
  17764. ggml_free(ctx);
  17765. }
  17766. return result;
  17767. }
  17768. enum ggml_opt_result ggml_opt_resume(
  17769. struct ggml_context * ctx,
  17770. struct ggml_opt_context * opt,
  17771. struct ggml_tensor * f) {
  17772. // build forward + backward compute graphs
  17773. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17774. ggml_build_forward_expand(gf, f);
  17775. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17776. ggml_build_backward_expand(ctx, gf, gb, true);
  17777. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17778. }
  17779. enum ggml_opt_result ggml_opt_resume_g(
  17780. struct ggml_context * ctx,
  17781. struct ggml_opt_context * opt,
  17782. struct ggml_tensor * f,
  17783. struct ggml_cgraph * gf,
  17784. struct ggml_cgraph * gb,
  17785. ggml_opt_callback callback,
  17786. void * callback_data) {
  17787. // build forward + backward compute graphs
  17788. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17789. switch (opt->params.type) {
  17790. case GGML_OPT_TYPE_ADAM:
  17791. {
  17792. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17793. } break;
  17794. case GGML_OPT_TYPE_LBFGS:
  17795. {
  17796. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17797. } break;
  17798. }
  17799. if (opt->params.print_forward_graph) {
  17800. ggml_graph_print (gf);
  17801. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17802. }
  17803. if (opt->params.print_backward_graph) {
  17804. ggml_graph_print (gb);
  17805. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17806. }
  17807. return result;
  17808. }
  17809. ////////////////////////////////////////////////////////////////////////////////
  17810. void ggml_set_input(struct ggml_tensor * tensor) {
  17811. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17812. }
  17813. void ggml_set_output(struct ggml_tensor * tensor) {
  17814. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17815. }
  17816. ////////////////////////////////////////////////////////////////////////////////
  17817. void ggml_quantize_init(enum ggml_type type) {
  17818. ggml_critical_section_start();
  17819. switch (type) {
  17820. case GGML_TYPE_IQ2_XXS:
  17821. case GGML_TYPE_IQ2_XS:
  17822. case GGML_TYPE_IQ2_S:
  17823. case GGML_TYPE_IQ1_S:
  17824. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17825. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17826. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17827. default: // nothing
  17828. break;
  17829. }
  17830. ggml_critical_section_end();
  17831. }
  17832. void ggml_quantize_free(void) {
  17833. ggml_critical_section_start();
  17834. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17835. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17836. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17837. iq3xs_free_impl(256);
  17838. ggml_critical_section_end();
  17839. }
  17840. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17841. return
  17842. type == GGML_TYPE_IQ2_XXS ||
  17843. type == GGML_TYPE_IQ2_XS ||
  17844. type == GGML_TYPE_IQ1_S;// ||
  17845. //type == GGML_TYPE_IQ1_M;
  17846. }
  17847. size_t ggml_quantize_chunk(
  17848. enum ggml_type type,
  17849. const float * src,
  17850. void * dst,
  17851. int64_t start,
  17852. int64_t nrows,
  17853. int64_t n_per_row,
  17854. const float * imatrix) {
  17855. const int64_t n = (int64_t) nrows * n_per_row;
  17856. if (ggml_quantize_requires_imatrix(type)) {
  17857. GGML_ASSERT(imatrix != NULL);
  17858. }
  17859. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17860. GGML_ASSERT(start % n_per_row == 0);
  17861. ggml_quantize_init(type); // this is noop if already initialized
  17862. const size_t start_row = start / n_per_row;
  17863. const size_t row_size = ggml_row_size(type, n_per_row);
  17864. size_t result = 0;
  17865. switch (type) {
  17866. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17867. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17868. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17869. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17870. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17871. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17872. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17873. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17874. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17875. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17876. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17877. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17878. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17879. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17880. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17881. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17882. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17883. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17884. #if QK_K == 64
  17885. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17886. #else
  17887. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17888. #endif
  17889. case GGML_TYPE_F16:
  17890. {
  17891. size_t elemsize = sizeof(ggml_fp16_t);
  17892. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17893. result = n * elemsize;
  17894. } break;
  17895. case GGML_TYPE_BF16:
  17896. {
  17897. size_t elemsize = sizeof(ggml_bf16_t);
  17898. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17899. result = n * elemsize;
  17900. } break;
  17901. case GGML_TYPE_F32:
  17902. {
  17903. size_t elemsize = sizeof(float);
  17904. result = n * elemsize;
  17905. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17906. } break;
  17907. default:
  17908. assert(false);
  17909. }
  17910. GGML_ASSERT(result == nrows * row_size);
  17911. return result;
  17912. }
  17913. ////////////////////////////////////////////////////////////////////////////////
  17914. struct gguf_str {
  17915. uint64_t n; // GGUFv2
  17916. char * data;
  17917. };
  17918. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17919. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17920. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17921. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17922. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17923. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17924. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17925. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17926. [GGUF_TYPE_BOOL] = sizeof(bool),
  17927. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17928. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17929. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17930. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17931. [GGUF_TYPE_ARRAY] = 0, // undefined
  17932. };
  17933. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17934. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17935. [GGUF_TYPE_UINT8] = "u8",
  17936. [GGUF_TYPE_INT8] = "i8",
  17937. [GGUF_TYPE_UINT16] = "u16",
  17938. [GGUF_TYPE_INT16] = "i16",
  17939. [GGUF_TYPE_UINT32] = "u32",
  17940. [GGUF_TYPE_INT32] = "i32",
  17941. [GGUF_TYPE_FLOAT32] = "f32",
  17942. [GGUF_TYPE_BOOL] = "bool",
  17943. [GGUF_TYPE_STRING] = "str",
  17944. [GGUF_TYPE_ARRAY] = "arr",
  17945. [GGUF_TYPE_UINT64] = "u64",
  17946. [GGUF_TYPE_INT64] = "i64",
  17947. [GGUF_TYPE_FLOAT64] = "f64",
  17948. };
  17949. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17950. union gguf_value {
  17951. uint8_t uint8;
  17952. int8_t int8;
  17953. uint16_t uint16;
  17954. int16_t int16;
  17955. uint32_t uint32;
  17956. int32_t int32;
  17957. float float32;
  17958. uint64_t uint64;
  17959. int64_t int64;
  17960. double float64;
  17961. bool bool_;
  17962. struct gguf_str str;
  17963. struct {
  17964. enum gguf_type type;
  17965. uint64_t n; // GGUFv2
  17966. void * data;
  17967. } arr;
  17968. };
  17969. struct gguf_kv {
  17970. struct gguf_str key;
  17971. enum gguf_type type;
  17972. union gguf_value value;
  17973. };
  17974. struct gguf_header {
  17975. char magic[4];
  17976. uint32_t version;
  17977. uint64_t n_tensors; // GGUFv2
  17978. uint64_t n_kv; // GGUFv2
  17979. };
  17980. struct gguf_tensor_info {
  17981. struct gguf_str name;
  17982. uint32_t n_dims;
  17983. uint64_t ne[GGML_MAX_DIMS];
  17984. enum ggml_type type;
  17985. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17986. // for writing API
  17987. const void * data;
  17988. size_t size;
  17989. };
  17990. struct gguf_context {
  17991. struct gguf_header header;
  17992. struct gguf_kv * kv;
  17993. struct gguf_tensor_info * infos;
  17994. size_t alignment;
  17995. size_t offset; // offset of `data` from beginning of file
  17996. size_t size; // size of `data` in bytes
  17997. //uint8_t * padding;
  17998. void * data;
  17999. };
  18000. static size_t gguf_type_size(enum gguf_type type) {
  18001. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18002. return GGUF_TYPE_SIZE[type];
  18003. }
  18004. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18005. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18006. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18007. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18008. GGML_ASSERT(info->ne[i] > 0);
  18009. }
  18010. // prevent overflow for total number of elements
  18011. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18012. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18013. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18014. }
  18015. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18016. const size_t n = fread(dst, 1, size, file);
  18017. *offset += n;
  18018. return n == size;
  18019. }
  18020. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18021. p->n = 0;
  18022. p->data = NULL;
  18023. bool ok = true;
  18024. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18025. // early exit if string length is invalid, prevents from integer overflow
  18026. if (p->n == SIZE_MAX) {
  18027. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18028. return false;
  18029. }
  18030. p->data = GGML_CALLOC(p->n + 1, 1);
  18031. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18032. return ok;
  18033. }
  18034. static void gguf_free_kv(struct gguf_kv * kv) {
  18035. if (kv->key.data) {
  18036. GGML_FREE(kv->key.data);
  18037. }
  18038. if (kv->type == GGUF_TYPE_STRING) {
  18039. if (kv->value.str.data) {
  18040. GGML_FREE(kv->value.str.data);
  18041. }
  18042. }
  18043. if (kv->type == GGUF_TYPE_ARRAY) {
  18044. if (kv->value.arr.data) {
  18045. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18046. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18047. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18048. if (str->data) {
  18049. GGML_FREE(str->data);
  18050. }
  18051. }
  18052. }
  18053. GGML_FREE(kv->value.arr.data);
  18054. }
  18055. }
  18056. }
  18057. struct gguf_context * gguf_init_empty(void) {
  18058. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18059. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18060. ctx->header.version = GGUF_VERSION;
  18061. ctx->header.n_tensors = 0;
  18062. ctx->header.n_kv = 0;
  18063. ctx->kv = NULL;
  18064. ctx->infos = NULL;
  18065. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18066. ctx->offset = 0;
  18067. ctx->size = 0;
  18068. ctx->data = NULL;
  18069. return ctx;
  18070. }
  18071. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18072. FILE * file = ggml_fopen(fname, "rb");
  18073. if (!file) {
  18074. return NULL;
  18075. }
  18076. // offset from start of file
  18077. size_t offset = 0;
  18078. char magic[4];
  18079. // check the magic before making allocations
  18080. {
  18081. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18082. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18083. if (magic[i] != GGUF_MAGIC[i]) {
  18084. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18085. fclose(file);
  18086. return NULL;
  18087. }
  18088. }
  18089. }
  18090. bool ok = true;
  18091. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18092. // read the header
  18093. {
  18094. strncpy(ctx->header.magic, magic, 4);
  18095. ctx->kv = NULL;
  18096. ctx->infos = NULL;
  18097. ctx->data = NULL;
  18098. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18099. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18100. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18101. if (ctx->header.version == 1) {
  18102. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18103. fclose(file);
  18104. gguf_free(ctx);
  18105. return NULL;
  18106. }
  18107. // sanity-checks to prevent from integer/buffer overflows
  18108. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18109. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18110. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18111. if (!ok) {
  18112. fprintf(stderr, "%s: failed to read header\n", __func__);
  18113. fclose(file);
  18114. gguf_free(ctx);
  18115. return NULL;
  18116. }
  18117. }
  18118. // read the kv pairs
  18119. {
  18120. const uint64_t n_kv = ctx->header.n_kv;
  18121. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18122. ctx->header.n_kv = 0;
  18123. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18124. for (uint64_t i = 0; i < n_kv; ++i) {
  18125. struct gguf_kv * kv = &ctx->kv[i];
  18126. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18127. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18128. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18129. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18130. switch (kv->type) {
  18131. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18132. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18133. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18134. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18135. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18136. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18137. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18138. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18139. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18140. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18141. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18142. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18143. case GGUF_TYPE_ARRAY:
  18144. {
  18145. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18146. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18147. switch (kv->value.arr.type) {
  18148. case GGUF_TYPE_UINT8:
  18149. case GGUF_TYPE_INT8:
  18150. case GGUF_TYPE_UINT16:
  18151. case GGUF_TYPE_INT16:
  18152. case GGUF_TYPE_UINT32:
  18153. case GGUF_TYPE_INT32:
  18154. case GGUF_TYPE_FLOAT32:
  18155. case GGUF_TYPE_UINT64:
  18156. case GGUF_TYPE_INT64:
  18157. case GGUF_TYPE_FLOAT64:
  18158. case GGUF_TYPE_BOOL:
  18159. {
  18160. // prevent from integer overflow in the malloc below
  18161. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18162. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18163. fclose(file);
  18164. gguf_free(ctx);
  18165. return NULL;
  18166. }
  18167. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18168. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18169. } break;
  18170. case GGUF_TYPE_STRING:
  18171. {
  18172. // prevent from integer overflow in the malloc below
  18173. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18174. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18175. fclose(file);
  18176. gguf_free(ctx);
  18177. return NULL;
  18178. }
  18179. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18180. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18181. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18182. }
  18183. } break;
  18184. case GGUF_TYPE_ARRAY:
  18185. default: GGML_ASSERT(false && "invalid type"); break;
  18186. }
  18187. } break;
  18188. default: GGML_ASSERT(false && "invalid type");
  18189. }
  18190. if (!ok) {
  18191. break;
  18192. }
  18193. ctx->header.n_kv++;
  18194. }
  18195. if (!ok) {
  18196. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18197. fclose(file);
  18198. gguf_free(ctx);
  18199. return NULL;
  18200. }
  18201. }
  18202. // read the tensor infos
  18203. if (ctx->header.n_tensors > 0) {
  18204. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18205. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18206. struct gguf_tensor_info * info = &ctx->infos[i];
  18207. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18208. info->ne[j] = 1;
  18209. }
  18210. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18211. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18212. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18213. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18214. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18215. }
  18216. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18217. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18218. // TODO: return an error instead of crashing with GGML_ASSERT
  18219. gguf_tensor_info_sanitize(info);
  18220. // make sure there is no duplicated tensor names
  18221. for (uint64_t j = 0; j < i; ++j) {
  18222. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18223. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18224. ok = false;
  18225. }
  18226. }
  18227. if (!ok) {
  18228. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18229. fclose(file);
  18230. gguf_free(ctx);
  18231. return NULL;
  18232. }
  18233. }
  18234. }
  18235. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18236. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18237. if (alignment_idx != -1) {
  18238. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18239. }
  18240. // we require the data section to be aligned, so take into account any padding
  18241. {
  18242. const size_t offset_pad = offset % ctx->alignment;
  18243. if (offset_pad != 0) {
  18244. offset += ctx->alignment - offset_pad;
  18245. fseek(file, offset, SEEK_SET);
  18246. }
  18247. }
  18248. // store the current file offset - this is where the data section starts
  18249. ctx->offset = offset;
  18250. // compute the total size of the data section, taking into account the alignment
  18251. {
  18252. ctx->size = 0;
  18253. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18254. struct gguf_tensor_info * info = &ctx->infos[i];
  18255. const int64_t ne =
  18256. (int64_t) info->ne[0] *
  18257. (int64_t) info->ne[1] *
  18258. (int64_t) info->ne[2] *
  18259. (int64_t) info->ne[3];
  18260. if (ne % ggml_blck_size(info->type) != 0) {
  18261. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18262. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18263. fclose(file);
  18264. gguf_free(ctx);
  18265. return NULL;
  18266. }
  18267. const size_t size_cur = ggml_row_size(info->type, ne);
  18268. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18269. }
  18270. }
  18271. // load the tensor data only if requested
  18272. if (params.ctx != NULL) {
  18273. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18274. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18275. // the ggml_tensor structs to the appropriate locations in the binary blob
  18276. // compute the exact size needed for the new ggml_context
  18277. const size_t mem_size =
  18278. params.no_alloc ?
  18279. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18280. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18281. struct ggml_init_params pdata = {
  18282. .mem_size = mem_size,
  18283. .mem_buffer = NULL,
  18284. .no_alloc = params.no_alloc,
  18285. };
  18286. *params.ctx = ggml_init(pdata);
  18287. struct ggml_context * ctx_data = *params.ctx;
  18288. struct ggml_tensor * data = NULL;
  18289. if (!params.no_alloc) {
  18290. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18291. ok = ok && data != NULL;
  18292. // read the binary blob with the tensor data
  18293. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18294. if (!ok) {
  18295. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18296. fclose(file);
  18297. ggml_free(ctx_data);
  18298. gguf_free(ctx);
  18299. return NULL;
  18300. }
  18301. ctx->data = data->data;
  18302. }
  18303. ggml_set_no_alloc(ctx_data, true);
  18304. // create the tensors
  18305. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18306. const int64_t ne[GGML_MAX_DIMS] = {
  18307. ctx->infos[i].ne[0],
  18308. ctx->infos[i].ne[1],
  18309. ctx->infos[i].ne[2],
  18310. ctx->infos[i].ne[3],
  18311. };
  18312. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18313. ok = ok && cur != NULL;
  18314. if (!ok) {
  18315. break;
  18316. }
  18317. ggml_set_name(cur, ctx->infos[i].name.data);
  18318. // point the data member to the appropriate location in the binary blob using the tensor infos
  18319. if (!params.no_alloc) {
  18320. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18321. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18322. }
  18323. }
  18324. if (!ok) {
  18325. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18326. fclose(file);
  18327. ggml_free(ctx_data);
  18328. gguf_free(ctx);
  18329. return NULL;
  18330. }
  18331. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18332. }
  18333. fclose(file);
  18334. return ctx;
  18335. }
  18336. void gguf_free(struct gguf_context * ctx) {
  18337. if (ctx == NULL) {
  18338. return;
  18339. }
  18340. if (ctx->kv) {
  18341. // free string memory - not great..
  18342. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18343. gguf_free_kv(&ctx->kv[i]);
  18344. }
  18345. GGML_FREE(ctx->kv);
  18346. }
  18347. if (ctx->infos) {
  18348. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18349. struct gguf_tensor_info * info = &ctx->infos[i];
  18350. if (info->name.data) {
  18351. GGML_FREE(info->name.data);
  18352. }
  18353. }
  18354. GGML_FREE(ctx->infos);
  18355. }
  18356. GGML_FREE(ctx);
  18357. }
  18358. const char * gguf_type_name(enum gguf_type type) {
  18359. return GGUF_TYPE_NAME[type];
  18360. }
  18361. int gguf_get_version(const struct gguf_context * ctx) {
  18362. return ctx->header.version;
  18363. }
  18364. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18365. return ctx->alignment;
  18366. }
  18367. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18368. return ctx->offset;
  18369. }
  18370. void * gguf_get_data(const struct gguf_context * ctx) {
  18371. return ctx->data;
  18372. }
  18373. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18374. return ctx->header.n_kv;
  18375. }
  18376. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18377. // return -1 if key not found
  18378. int keyfound = -1;
  18379. const int n_kv = gguf_get_n_kv(ctx);
  18380. for (int i = 0; i < n_kv; ++i) {
  18381. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18382. keyfound = i;
  18383. break;
  18384. }
  18385. }
  18386. return keyfound;
  18387. }
  18388. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18389. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18390. return ctx->kv[key_id].key.data;
  18391. }
  18392. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18393. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18394. return ctx->kv[key_id].type;
  18395. }
  18396. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18397. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18398. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18399. return ctx->kv[key_id].value.arr.type;
  18400. }
  18401. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18402. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18403. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18404. return ctx->kv[key_id].value.arr.data;
  18405. }
  18406. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18407. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18408. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18409. struct gguf_kv * kv = &ctx->kv[key_id];
  18410. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18411. return str->data;
  18412. }
  18413. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18414. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18415. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18416. return ctx->kv[key_id].value.arr.n;
  18417. }
  18418. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18419. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18420. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18421. return ctx->kv[key_id].value.uint8;
  18422. }
  18423. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18424. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18425. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18426. return ctx->kv[key_id].value.int8;
  18427. }
  18428. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18429. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18430. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18431. return ctx->kv[key_id].value.uint16;
  18432. }
  18433. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18434. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18435. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18436. return ctx->kv[key_id].value.int16;
  18437. }
  18438. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18439. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18440. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18441. return ctx->kv[key_id].value.uint32;
  18442. }
  18443. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18444. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18445. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18446. return ctx->kv[key_id].value.int32;
  18447. }
  18448. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18449. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18450. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18451. return ctx->kv[key_id].value.float32;
  18452. }
  18453. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18454. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18455. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18456. return ctx->kv[key_id].value.uint64;
  18457. }
  18458. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18459. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18460. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18461. return ctx->kv[key_id].value.int64;
  18462. }
  18463. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18464. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18465. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18466. return ctx->kv[key_id].value.float64;
  18467. }
  18468. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18469. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18470. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18471. return ctx->kv[key_id].value.bool_;
  18472. }
  18473. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18474. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18475. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18476. return ctx->kv[key_id].value.str.data;
  18477. }
  18478. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18479. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18480. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18481. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18482. return &ctx->kv[key_id].value;
  18483. }
  18484. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18485. return ctx->header.n_tensors;
  18486. }
  18487. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18488. // return -1 if tensor not found
  18489. int tensorfound = -1;
  18490. const int n_tensors = gguf_get_n_tensors(ctx);
  18491. for (int i = 0; i < n_tensors; ++i) {
  18492. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18493. tensorfound = i;
  18494. break;
  18495. }
  18496. }
  18497. return tensorfound;
  18498. }
  18499. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18500. return ctx->infos[i].offset;
  18501. }
  18502. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18503. return ctx->infos[i].name.data;
  18504. }
  18505. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18506. return ctx->infos[i].type;
  18507. }
  18508. // returns the index
  18509. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18510. const int idx = gguf_find_key(ctx, key);
  18511. if (idx >= 0) {
  18512. return idx;
  18513. }
  18514. const int n_kv = gguf_get_n_kv(ctx);
  18515. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18516. ctx->kv[n_kv].key.n = strlen(key);
  18517. ctx->kv[n_kv].key.data = strdup(key);
  18518. ctx->header.n_kv++;
  18519. return n_kv;
  18520. }
  18521. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18522. const int idx = gguf_find_key(ctx, key);
  18523. if (idx >= 0) {
  18524. const int n_kv = gguf_get_n_kv(ctx);
  18525. gguf_free_kv(&ctx->kv[idx]);
  18526. for (int i = idx; i < n_kv-1; ++i) {
  18527. ctx->kv[i] = ctx->kv[i+1];
  18528. }
  18529. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18530. ctx->header.n_kv--;
  18531. }
  18532. }
  18533. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18534. const int idx = gguf_get_or_add_key(ctx, key);
  18535. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18536. ctx->kv[idx].value.uint8 = val;
  18537. }
  18538. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18539. const int idx = gguf_get_or_add_key(ctx, key);
  18540. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18541. ctx->kv[idx].value.int8 = val;
  18542. }
  18543. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18544. const int idx = gguf_get_or_add_key(ctx, key);
  18545. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18546. ctx->kv[idx].value.uint16 = val;
  18547. }
  18548. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18549. const int idx = gguf_get_or_add_key(ctx, key);
  18550. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18551. ctx->kv[idx].value.int16 = val;
  18552. }
  18553. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18554. const int idx = gguf_get_or_add_key(ctx, key);
  18555. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18556. ctx->kv[idx].value.uint32 = val;
  18557. }
  18558. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18559. const int idx = gguf_get_or_add_key(ctx, key);
  18560. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18561. ctx->kv[idx].value.int32 = val;
  18562. }
  18563. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18564. const int idx = gguf_get_or_add_key(ctx, key);
  18565. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18566. ctx->kv[idx].value.float32 = val;
  18567. }
  18568. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18569. const int idx = gguf_get_or_add_key(ctx, key);
  18570. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18571. ctx->kv[idx].value.uint64 = val;
  18572. }
  18573. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18574. const int idx = gguf_get_or_add_key(ctx, key);
  18575. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18576. ctx->kv[idx].value.int64 = val;
  18577. }
  18578. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18579. const int idx = gguf_get_or_add_key(ctx, key);
  18580. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18581. ctx->kv[idx].value.float64 = val;
  18582. }
  18583. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18584. const int idx = gguf_get_or_add_key(ctx, key);
  18585. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18586. ctx->kv[idx].value.bool_ = val;
  18587. }
  18588. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18589. const int idx = gguf_get_or_add_key(ctx, key);
  18590. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18591. ctx->kv[idx].value.str.n = strlen(val);
  18592. ctx->kv[idx].value.str.data = strdup(val);
  18593. }
  18594. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18595. const int idx = gguf_get_or_add_key(ctx, key);
  18596. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18597. ctx->kv[idx].value.arr.type = type;
  18598. ctx->kv[idx].value.arr.n = n;
  18599. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18600. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18601. }
  18602. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18603. const int idx = gguf_get_or_add_key(ctx, key);
  18604. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18605. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18606. ctx->kv[idx].value.arr.n = n;
  18607. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18608. for (int i = 0; i < n; i++) {
  18609. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18610. str->n = strlen(data[i]);
  18611. str->data = strdup(data[i]);
  18612. }
  18613. }
  18614. // set or add KV pairs from another context
  18615. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18616. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18617. switch (src->kv[i].type) {
  18618. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18619. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18620. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18621. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18622. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18623. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18624. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18625. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18626. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18627. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18628. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18629. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18630. case GGUF_TYPE_ARRAY:
  18631. {
  18632. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18633. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18634. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18635. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18636. }
  18637. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18638. GGML_FREE((void *)data);
  18639. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18640. GGML_ASSERT(false && "nested arrays not supported");
  18641. } else {
  18642. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18643. }
  18644. } break;
  18645. default: GGML_ASSERT(false && "invalid type"); break;
  18646. }
  18647. }
  18648. }
  18649. void gguf_add_tensor(
  18650. struct gguf_context * ctx,
  18651. const struct ggml_tensor * tensor) {
  18652. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18653. GGML_ASSERT(false && "duplicated tensor name");
  18654. }
  18655. const int idx = ctx->header.n_tensors;
  18656. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18657. ctx->infos[idx].name.n = strlen(tensor->name);
  18658. ctx->infos[idx].name.data = strdup(tensor->name);
  18659. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18660. ctx->infos[idx].ne[i] = 1;
  18661. }
  18662. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18663. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18664. ctx->infos[idx].ne[i] = tensor->ne[i];
  18665. }
  18666. ctx->infos[idx].type = tensor->type;
  18667. ctx->infos[idx].offset = 0;
  18668. ctx->infos[idx].data = tensor->data;
  18669. ctx->infos[idx].size = ggml_nbytes(tensor);
  18670. if (ctx->header.n_tensors > 0) {
  18671. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18672. }
  18673. ctx->header.n_tensors++;
  18674. }
  18675. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18676. const int idx = gguf_find_tensor(ctx, name);
  18677. if (idx < 0) {
  18678. GGML_ASSERT(false && "tensor not found");
  18679. }
  18680. ctx->infos[idx].type = type;
  18681. }
  18682. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18683. const int idx = gguf_find_tensor(ctx, name);
  18684. if (idx < 0) {
  18685. GGML_ASSERT(false && "tensor not found");
  18686. }
  18687. ctx->infos[idx].data = data;
  18688. ctx->infos[idx].size = size;
  18689. // update offsets
  18690. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18691. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18692. }
  18693. }
  18694. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18695. // fwrite(&val->n, sizeof(val->n), 1, file);
  18696. // fwrite(val->data, sizeof(char), val->n, file);
  18697. //}
  18698. //
  18699. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18700. // fwrite(val, sizeof(char), size, file);
  18701. //}
  18702. struct gguf_buf {
  18703. void * data;
  18704. size_t size;
  18705. size_t offset;
  18706. };
  18707. static struct gguf_buf gguf_buf_init(size_t size) {
  18708. struct gguf_buf buf = {
  18709. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18710. /*buf.size =*/ size,
  18711. /*buf.offset =*/ 0,
  18712. };
  18713. return buf;
  18714. }
  18715. static void gguf_buf_free(struct gguf_buf buf) {
  18716. if (buf.data) {
  18717. GGML_FREE(buf.data);
  18718. }
  18719. }
  18720. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18721. if (buf->offset + size > buf->size) {
  18722. buf->size = 1.5*(buf->offset + size);
  18723. if (buf->data) {
  18724. buf->data = realloc(buf->data, buf->size);
  18725. }
  18726. }
  18727. }
  18728. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18729. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18730. if (buf->data) {
  18731. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18732. }
  18733. buf->offset += sizeof(val->n);
  18734. if (buf->data) {
  18735. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18736. }
  18737. buf->offset += val->n;
  18738. }
  18739. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18740. gguf_buf_grow(buf, el_size);
  18741. if (buf->data) {
  18742. memcpy((char *) buf->data + buf->offset, val, el_size);
  18743. }
  18744. buf->offset += el_size;
  18745. }
  18746. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18747. // write header
  18748. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18749. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18750. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18751. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18752. // write key-value pairs
  18753. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18754. struct gguf_kv * kv = &ctx->kv[i];
  18755. gguf_bwrite_str(buf, &kv->key);
  18756. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18757. switch (kv->type) {
  18758. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18759. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18760. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18761. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18762. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18763. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18764. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18765. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18766. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18767. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18768. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18769. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18770. case GGUF_TYPE_ARRAY:
  18771. {
  18772. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18773. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18774. switch (kv->value.arr.type) {
  18775. case GGUF_TYPE_UINT8:
  18776. case GGUF_TYPE_INT8:
  18777. case GGUF_TYPE_UINT16:
  18778. case GGUF_TYPE_INT16:
  18779. case GGUF_TYPE_UINT32:
  18780. case GGUF_TYPE_INT32:
  18781. case GGUF_TYPE_FLOAT32:
  18782. case GGUF_TYPE_UINT64:
  18783. case GGUF_TYPE_INT64:
  18784. case GGUF_TYPE_FLOAT64:
  18785. case GGUF_TYPE_BOOL:
  18786. {
  18787. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18788. } break;
  18789. case GGUF_TYPE_STRING:
  18790. {
  18791. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18792. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18793. }
  18794. } break;
  18795. case GGUF_TYPE_ARRAY:
  18796. default: GGML_ASSERT(false && "invalid type"); break;
  18797. }
  18798. } break;
  18799. default: GGML_ASSERT(false && "invalid type");
  18800. }
  18801. }
  18802. // write tensor infos
  18803. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18804. struct gguf_tensor_info * info = &ctx->infos[i];
  18805. gguf_bwrite_str(buf, &info->name);
  18806. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18807. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18808. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18809. }
  18810. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18811. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18812. }
  18813. // we require the data section to be aligned, so take into account any padding
  18814. {
  18815. const size_t offset = buf->offset;
  18816. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18817. if (offset_pad != offset) {
  18818. uint8_t pad = 0;
  18819. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18820. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18821. }
  18822. }
  18823. }
  18824. if (only_meta) {
  18825. return;
  18826. }
  18827. size_t offset = 0;
  18828. // write tensor data
  18829. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18830. struct gguf_tensor_info * info = &ctx->infos[i];
  18831. const size_t size = info->size;
  18832. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18833. gguf_bwrite_el(buf, info->data, size);
  18834. if (size_pad != size) {
  18835. uint8_t pad = 0;
  18836. for (size_t j = 0; j < size_pad - size; ++j) {
  18837. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18838. }
  18839. }
  18840. GGML_ASSERT(offset == info->offset);
  18841. offset += size_pad;
  18842. }
  18843. }
  18844. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18845. FILE * file = ggml_fopen(fname, "wb");
  18846. if (!file) {
  18847. GGML_ASSERT(false && "failed to open file for writing");
  18848. }
  18849. struct gguf_buf buf = gguf_buf_init(16*1024);
  18850. gguf_write_to_buf(ctx, &buf, only_meta);
  18851. fwrite(buf.data, 1, buf.offset, file);
  18852. gguf_buf_free(buf);
  18853. fclose(file);
  18854. }
  18855. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18856. // no allocs - only compute size
  18857. struct gguf_buf buf = gguf_buf_init(0);
  18858. gguf_write_to_buf(ctx, &buf, true);
  18859. return buf.offset;
  18860. }
  18861. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18862. struct gguf_buf buf = gguf_buf_init(16*1024);
  18863. gguf_write_to_buf(ctx, &buf, true);
  18864. memcpy(data, buf.data, buf.offset);
  18865. gguf_buf_free(buf);
  18866. }
  18867. ////////////////////////////////////////////////////////////////////////////////
  18868. int ggml_cpu_has_avx(void) {
  18869. #if defined(__AVX__)
  18870. return 1;
  18871. #else
  18872. return 0;
  18873. #endif
  18874. }
  18875. int ggml_cpu_has_avx_vnni(void) {
  18876. #if defined(__AVXVNNI__)
  18877. return 1;
  18878. #else
  18879. return 0;
  18880. #endif
  18881. }
  18882. int ggml_cpu_has_avx2(void) {
  18883. #if defined(__AVX2__)
  18884. return 1;
  18885. #else
  18886. return 0;
  18887. #endif
  18888. }
  18889. int ggml_cpu_has_avx512(void) {
  18890. #if defined(__AVX512F__)
  18891. return 1;
  18892. #else
  18893. return 0;
  18894. #endif
  18895. }
  18896. int ggml_cpu_has_avx512_vbmi(void) {
  18897. #if defined(__AVX512VBMI__)
  18898. return 1;
  18899. #else
  18900. return 0;
  18901. #endif
  18902. }
  18903. int ggml_cpu_has_avx512_vnni(void) {
  18904. #if defined(__AVX512VNNI__)
  18905. return 1;
  18906. #else
  18907. return 0;
  18908. #endif
  18909. }
  18910. int ggml_cpu_has_fma(void) {
  18911. #if defined(__FMA__)
  18912. return 1;
  18913. #else
  18914. return 0;
  18915. #endif
  18916. }
  18917. int ggml_cpu_has_neon(void) {
  18918. #if defined(__ARM_NEON)
  18919. return 1;
  18920. #else
  18921. return 0;
  18922. #endif
  18923. }
  18924. int ggml_cpu_has_arm_fma(void) {
  18925. #if defined(__ARM_FEATURE_FMA)
  18926. return 1;
  18927. #else
  18928. return 0;
  18929. #endif
  18930. }
  18931. int ggml_cpu_has_metal(void) {
  18932. #if defined(GGML_USE_METAL)
  18933. return 1;
  18934. #else
  18935. return 0;
  18936. #endif
  18937. }
  18938. int ggml_cpu_has_f16c(void) {
  18939. #if defined(__F16C__)
  18940. return 1;
  18941. #else
  18942. return 0;
  18943. #endif
  18944. }
  18945. int ggml_cpu_has_fp16_va(void) {
  18946. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18947. return 1;
  18948. #else
  18949. return 0;
  18950. #endif
  18951. }
  18952. int ggml_cpu_has_wasm_simd(void) {
  18953. #if defined(__wasm_simd128__)
  18954. return 1;
  18955. #else
  18956. return 0;
  18957. #endif
  18958. }
  18959. int ggml_cpu_has_blas(void) {
  18960. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18961. return 1;
  18962. #else
  18963. return 0;
  18964. #endif
  18965. }
  18966. int ggml_cpu_has_cuda(void) {
  18967. #if defined(GGML_USE_CUDA)
  18968. return 1;
  18969. #else
  18970. return 0;
  18971. #endif
  18972. }
  18973. int ggml_cpu_has_clblast(void) {
  18974. #if defined(GGML_USE_CLBLAST)
  18975. return 1;
  18976. #else
  18977. return 0;
  18978. #endif
  18979. }
  18980. int ggml_cpu_has_vulkan(void) {
  18981. #if defined(GGML_USE_VULKAN)
  18982. return 1;
  18983. #else
  18984. return 0;
  18985. #endif
  18986. }
  18987. int ggml_cpu_has_kompute(void) {
  18988. #if defined(GGML_USE_KOMPUTE)
  18989. return 1;
  18990. #else
  18991. return 0;
  18992. #endif
  18993. }
  18994. int ggml_cpu_has_sycl(void) {
  18995. #if defined(GGML_USE_SYCL)
  18996. return 1;
  18997. #else
  18998. return 0;
  18999. #endif
  19000. }
  19001. int ggml_cpu_has_gpublas(void) {
  19002. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19003. ggml_cpu_has_sycl();
  19004. }
  19005. int ggml_cpu_has_sse3(void) {
  19006. #if defined(__SSE3__)
  19007. return 1;
  19008. #else
  19009. return 0;
  19010. #endif
  19011. }
  19012. int ggml_cpu_has_ssse3(void) {
  19013. #if defined(__SSSE3__)
  19014. return 1;
  19015. #else
  19016. return 0;
  19017. #endif
  19018. }
  19019. int ggml_cpu_has_vsx(void) {
  19020. #if defined(__POWER9_VECTOR__)
  19021. return 1;
  19022. #else
  19023. return 0;
  19024. #endif
  19025. }
  19026. int ggml_cpu_has_matmul_int8(void) {
  19027. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19028. return 1;
  19029. #else
  19030. return 0;
  19031. #endif
  19032. }
  19033. ////////////////////////////////////////////////////////////////////////////////