| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502 |
- #include "server-common.h"
- #include "server-task.h"
- #include "common.h"
- #include "llama.h"
- #include "chat.h"
- #include "sampling.h"
- #include "json-schema-to-grammar.h"
- using json = nlohmann::ordered_json;
- //
- // task_params
- //
- json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
- json data = json::array();
- for (const auto & lb : logit_bias) {
- data.push_back(json{
- {"bias", lb.bias},
- {"token", lb.token},
- });
- }
- return data;
- }
- json task_params::to_json(bool only_metrics) const {
- std::vector<std::string> samplers;
- samplers.reserve(sampling.samplers.size());
- for (const auto & sampler : sampling.samplers) {
- samplers.emplace_back(common_sampler_type_to_str(sampler));
- }
- json lora = json::array();
- for (size_t i = 0; i < this->lora.size(); ++i) {
- lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
- }
- if (only_metrics) {
- return json {
- {"seed", sampling.seed},
- {"temperature", sampling.temp},
- {"dynatemp_range", sampling.dynatemp_range},
- {"dynatemp_exponent", sampling.dynatemp_exponent},
- {"top_k", sampling.top_k},
- {"top_p", sampling.top_p},
- {"min_p", sampling.min_p},
- {"top_n_sigma", sampling.top_n_sigma},
- {"xtc_probability", sampling.xtc_probability},
- {"xtc_threshold", sampling.xtc_threshold},
- {"typical_p", sampling.typ_p},
- {"repeat_last_n", sampling.penalty_last_n},
- {"repeat_penalty", sampling.penalty_repeat},
- {"presence_penalty", sampling.penalty_present},
- {"frequency_penalty", sampling.penalty_freq},
- {"dry_multiplier", sampling.dry_multiplier},
- {"dry_base", sampling.dry_base},
- {"dry_allowed_length", sampling.dry_allowed_length},
- {"dry_penalty_last_n", sampling.dry_penalty_last_n},
- {"mirostat", sampling.mirostat},
- {"mirostat_tau", sampling.mirostat_tau},
- {"mirostat_eta", sampling.mirostat_eta},
- {"max_tokens", n_predict},
- {"n_predict", n_predict}, // TODO: deduplicate?
- {"n_keep", n_keep},
- {"n_discard", n_discard},
- {"ignore_eos", sampling.ignore_eos},
- {"stream", stream},
- {"n_probs", sampling.n_probs},
- {"min_keep", sampling.min_keep},
- {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
- {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
- {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
- {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
- {"samplers", samplers},
- {"speculative.n_max", speculative.n_max},
- {"speculative.n_min", speculative.n_min},
- {"speculative.p_min", speculative.p_min},
- {"timings_per_token", timings_per_token},
- {"post_sampling_probs", post_sampling_probs},
- {"lora", lora},
- };
- }
- auto grammar_triggers = json::array();
- for (const auto & trigger : sampling.grammar_triggers) {
- server_grammar_trigger ct(trigger);
- grammar_triggers.push_back(ct.to_json());
- }
- return json {
- {"seed", sampling.seed},
- {"temperature", sampling.temp},
- {"dynatemp_range", sampling.dynatemp_range},
- {"dynatemp_exponent", sampling.dynatemp_exponent},
- {"top_k", sampling.top_k},
- {"top_p", sampling.top_p},
- {"min_p", sampling.min_p},
- {"top_n_sigma", sampling.top_n_sigma},
- {"xtc_probability", sampling.xtc_probability},
- {"xtc_threshold", sampling.xtc_threshold},
- {"typical_p", sampling.typ_p},
- {"repeat_last_n", sampling.penalty_last_n},
- {"repeat_penalty", sampling.penalty_repeat},
- {"presence_penalty", sampling.penalty_present},
- {"frequency_penalty", sampling.penalty_freq},
- {"dry_multiplier", sampling.dry_multiplier},
- {"dry_base", sampling.dry_base},
- {"dry_allowed_length", sampling.dry_allowed_length},
- {"dry_penalty_last_n", sampling.dry_penalty_last_n},
- {"dry_sequence_breakers", sampling.dry_sequence_breakers},
- {"mirostat", sampling.mirostat},
- {"mirostat_tau", sampling.mirostat_tau},
- {"mirostat_eta", sampling.mirostat_eta},
- {"stop", antiprompt},
- {"max_tokens", n_predict},
- {"n_predict", n_predict}, // TODO: deduplicate?
- {"n_keep", n_keep},
- {"n_discard", n_discard},
- {"ignore_eos", sampling.ignore_eos},
- {"stream", stream},
- {"logit_bias", format_logit_bias(sampling.logit_bias)},
- {"n_probs", sampling.n_probs},
- {"min_keep", sampling.min_keep},
- {"grammar", sampling.grammar},
- {"grammar_lazy", sampling.grammar_lazy},
- {"grammar_triggers", grammar_triggers},
- {"preserved_tokens", sampling.preserved_tokens},
- {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
- {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
- {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
- {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
- {"samplers", samplers},
- {"speculative.n_max", speculative.n_max},
- {"speculative.n_min", speculative.n_min},
- {"speculative.p_min", speculative.p_min},
- {"timings_per_token", timings_per_token},
- {"post_sampling_probs", post_sampling_probs},
- {"lora", lora},
- };
- }
- //
- // server_task
- //
- task_params server_task::params_from_json_cmpl(
- const llama_context * ctx,
- const common_params & params_base,
- const json & data) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- task_params params;
- // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
- task_params defaults;
- defaults.sampling = params_base.sampling;
- defaults.speculative = params_base.speculative;
- defaults.n_keep = params_base.n_keep;
- defaults.n_predict = params_base.n_predict;
- defaults.n_cache_reuse = params_base.n_cache_reuse;
- defaults.antiprompt = params_base.antiprompt;
- // enabling this will output extra debug information in the HTTP responses from the server
- params.verbose = params_base.verbosity > 9;
- params.timings_per_token = json_value(data, "timings_per_token", false);
- params.stream = json_value(data, "stream", false);
- auto stream_opt = json_value(data, "stream_options", json::object());
- params.include_usage = json_value(stream_opt, "include_usage", false);
- params.cache_prompt = json_value(data, "cache_prompt", true);
- params.return_tokens = json_value(data, "return_tokens", false);
- params.return_progress = json_value(data, "return_progress", false);
- params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
- params.n_indent = json_value(data, "n_indent", defaults.n_indent);
- params.n_keep = json_value(data, "n_keep", defaults.n_keep);
- params.n_discard = json_value(data, "n_discard", defaults.n_discard);
- params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
- params.n_cache_reuse = json_value(data, "n_cache_reuse", defaults.n_cache_reuse);
- //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
- params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
- params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
- params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
- params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
- params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
- params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
- params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
- params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
- params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
- params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
- params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
- params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
- params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
- params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
- params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
- params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
- params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
- params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
- params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
- params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
- params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
- params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
- params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
- params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
- params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
- params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
- params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
- params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
- params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
- params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
- params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
- params.speculative.n_min = std::max(params.speculative.n_min, 0);
- params.speculative.n_max = std::max(params.speculative.n_max, 0);
- // Use OpenAI API logprobs only if n_probs wasn't provided
- if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
- params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
- }
- if (data.contains("lora")) {
- if (data.at("lora").is_array()) {
- params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
- } else {
- throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
- }
- } else {
- params.lora = params_base.lora_adapters;
- }
- // TODO: add more sanity checks for the input parameters
- if (params.sampling.penalty_last_n < -1) {
- throw std::runtime_error("Error: repeat_last_n must be >= -1");
- }
- if (params.sampling.dry_penalty_last_n < -1) {
- throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
- }
- if (params.sampling.penalty_last_n == -1) {
- // note: should be the slot's context and not the full context, but it's ok
- params.sampling.penalty_last_n = llama_n_ctx(ctx);
- }
- if (params.sampling.dry_penalty_last_n == -1) {
- params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
- }
- if (params.sampling.dry_base < 1.0f) {
- params.sampling.dry_base = defaults.sampling.dry_base;
- }
- // sequence breakers for DRY
- {
- // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
- // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
- if (data.contains("dry_sequence_breakers")) {
- params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
- if (params.sampling.dry_sequence_breakers.empty()) {
- throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
- }
- }
- }
- // process "json_schema" and "grammar"
- if (data.contains("json_schema") && !data.contains("grammar")) {
- try {
- auto schema = json_value(data, "json_schema", json::object());
- SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
- params.sampling.grammar = json_schema_to_grammar(schema);
- SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
- } catch (const std::exception & e) {
- throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
- }
- } else {
- params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
- SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
- params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
- SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
- }
- {
- auto it = data.find("chat_format");
- if (it != data.end()) {
- params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
- SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
- } else {
- params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
- }
- common_reasoning_format reasoning_format = params_base.reasoning_format;
- if (data.contains("reasoning_format")) {
- reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
- }
- params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
- params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
- params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
- params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
- if (data.contains("chat_parser")) {
- params.oaicompat_chat_syntax.parser.load(data.at("chat_parser").get<std::string>());
- }
- }
- {
- const auto preserved_tokens = data.find("preserved_tokens");
- if (preserved_tokens != data.end()) {
- for (const auto & t : *preserved_tokens) {
- auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
- if (ids.size() == 1) {
- SRV_DBG("Preserved token: %d\n", ids[0]);
- params.sampling.preserved_tokens.insert(ids[0]);
- } else {
- // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
- SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
- }
- }
- }
- const auto grammar_triggers = data.find("grammar_triggers");
- if (grammar_triggers != data.end()) {
- for (const auto & t : *grammar_triggers) {
- server_grammar_trigger ct(t);
- if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
- const auto & word = ct.value.value;
- auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
- if (ids.size() == 1) {
- auto token = ids[0];
- if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
- throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
- }
- SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
- common_grammar_trigger trigger;
- trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
- trigger.value = word;
- trigger.token = token;
- params.sampling.grammar_triggers.push_back(std::move(trigger));
- } else {
- SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
- params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
- }
- } else {
- if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
- SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
- } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
- SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
- } else {
- throw std::runtime_error("Unknown grammar trigger type");
- }
- params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
- }
- }
- }
- if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
- throw std::runtime_error("Error: no triggers set for lazy grammar!");
- }
- }
- {
- params.sampling.logit_bias.clear();
- const auto & logit_bias = data.find("logit_bias");
- if (logit_bias != data.end() && logit_bias->is_array()) {
- const int n_vocab = llama_vocab_n_tokens(vocab);
- for (const auto & el : *logit_bias) {
- // TODO: we may want to throw errors here, in case "el" is incorrect
- if (el.is_array() && el.size() == 2) {
- float bias;
- if (el[1].is_number()) {
- bias = el[1].get<float>();
- } else if (el[1].is_boolean() && !el[1].get<bool>()) {
- bias = -INFINITY;
- } else {
- continue;
- }
- if (el[0].is_number_integer()) {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab) {
- params.sampling.logit_bias.push_back({tok, bias});
- }
- } else if (el[0].is_string()) {
- auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
- for (auto tok : toks) {
- params.sampling.logit_bias.push_back({tok, bias});
- }
- }
- }
- }
- } else if (logit_bias != data.end() && logit_bias->is_object()) {
- const int n_vocab = llama_vocab_n_tokens(vocab);
- for (const auto & el : logit_bias->items()) {
- float bias;
- const auto & key = el.key();
- const auto & value = el.value();
- if (value.is_number()) {
- bias = value.get<float>();
- } else if (value.is_boolean() && !value.get<bool>()) {
- bias = -INFINITY;
- } else {
- continue;
- }
- char *end;
- llama_token tok = strtol(key.c_str(), &end, 10);
- if (*end == 0) {
- if (tok >= 0 && tok < n_vocab) {
- params.sampling.logit_bias.push_back({tok, bias});
- }
- } else {
- auto toks = common_tokenize(vocab, key, false);
- for (auto tok : toks) {
- params.sampling.logit_bias.push_back({tok, bias});
- }
- }
- }
- }
- params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
- if (params.sampling.ignore_eos) {
- params.sampling.logit_bias.insert(
- params.sampling.logit_bias.end(),
- defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
- }
- }
- {
- params.antiprompt.clear();
- const auto & stop = data.find("stop");
- if (stop != data.end() && stop->is_array()) {
- for (const auto & word : *stop) {
- if (!word.empty()) {
- params.antiprompt.push_back(word);
- }
- }
- }
- // set reverse prompt from cli args if not set in the request
- if (params.antiprompt.empty()) {
- params.antiprompt = defaults.antiprompt;
- }
- }
- {
- const auto samplers = data.find("samplers");
- if (samplers != data.end()) {
- if (samplers->is_array()) {
- params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
- } else if (samplers->is_string()){
- params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
- }
- } else {
- params.sampling.samplers = defaults.sampling.samplers;
- }
- }
- if (params.n_cmpl > params_base.n_parallel) {
- throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
- }
- return params;
- }
- //
- // result_timings
- //
- json result_timings::to_json() const {
- json base = {
- {"cache_n", cache_n},
- {"prompt_n", prompt_n},
- {"prompt_ms", prompt_ms},
- {"prompt_per_token_ms", prompt_per_token_ms},
- {"prompt_per_second", prompt_per_second},
- {"predicted_n", predicted_n},
- {"predicted_ms", predicted_ms},
- {"predicted_per_token_ms", predicted_per_token_ms},
- {"predicted_per_second", predicted_per_second},
- };
- if (draft_n > 0) {
- base["draft_n"] = draft_n;
- base["draft_n_accepted"] = draft_n_accepted;
- }
- return base;
- }
- //
- // result_prompt_progress
- //
- json result_prompt_progress::to_json() const {
- return json {
- {"total", total},
- {"cache", cache},
- {"processed", processed},
- {"time_ms", time_ms},
- };
- }
- static inline std::string stop_type_to_str(stop_type type) {
- switch (type) {
- case STOP_TYPE_EOS: return "eos";
- case STOP_TYPE_WORD: return "word";
- case STOP_TYPE_LIMIT: return "limit";
- default: return "none";
- }
- }
- //
- // completion_token_output
- //
- json completion_token_output::to_json(bool post_sampling_probs) const {
- json probs_for_token = json::array();
- for (const auto & p : probs) {
- std::string txt(p.txt);
- txt.resize(validate_utf8(txt));
- probs_for_token.push_back(json {
- {"id", p.tok},
- {"token", txt},
- {"bytes", str_to_bytes(p.txt)},
- {
- post_sampling_probs ? "prob" : "logprob",
- post_sampling_probs ? p.prob : logarithm(p.prob)
- },
- });
- }
- return probs_for_token;
- }
- json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
- json out = json::array();
- for (const auto & p : probs) {
- std::string txt(p.text_to_send);
- txt.resize(validate_utf8(txt));
- out.push_back(json {
- {"id", p.tok},
- {"token", txt},
- {"bytes", str_to_bytes(p.text_to_send)},
- {
- post_sampling_probs ? "prob" : "logprob",
- post_sampling_probs ? p.prob : logarithm(p.prob)
- },
- {
- post_sampling_probs ? "top_probs" : "top_logprobs",
- p.to_json(post_sampling_probs)
- },
- });
- }
- return out;
- }
- float completion_token_output::logarithm(float x) {
- // nlohmann::json converts -inf to null, so we need to prevent that
- return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
- }
- std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
- std::vector<unsigned char> bytes;
- for (unsigned char c : str) {
- bytes.push_back(c);
- }
- return bytes;
- }
- //
- // server_task_result_cmpl_final
- //
- json server_task_result_cmpl_final::to_json() {
- GGML_ASSERT(is_updated && "update() must be called before to_json()");
- switch (res_type) {
- case TASK_RESPONSE_TYPE_NONE:
- return to_json_non_oaicompat();
- case TASK_RESPONSE_TYPE_OAI_CMPL:
- return to_json_oaicompat();
- case TASK_RESPONSE_TYPE_OAI_CHAT:
- return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
- case TASK_RESPONSE_TYPE_ANTHROPIC:
- return stream ? to_json_anthropic_stream() : to_json_anthropic();
- default:
- GGML_ASSERT(false && "Invalid task_response_type");
- }
- }
- json server_task_result_cmpl_final::to_json_non_oaicompat() {
- json res = json {
- {"index", index},
- {"content", content},
- {"tokens", tokens},
- {"id_slot", id_slot},
- {"stop", true},
- {"model", oaicompat_model},
- {"tokens_predicted", n_decoded},
- {"tokens_evaluated", n_prompt_tokens},
- {"generation_settings", generation_params.to_json()},
- {"prompt", prompt},
- {"has_new_line", has_new_line},
- {"truncated", truncated},
- {"stop_type", stop_type_to_str(stop)},
- {"stopping_word", stopping_word},
- {"tokens_cached", n_tokens_cached},
- {"timings", timings.to_json()},
- };
- if (!stream && !probs_output.empty()) {
- res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
- }
- return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
- }
- json server_task_result_cmpl_final::to_json_oaicompat() {
- std::time_t t = std::time(0);
- json logprobs = json(nullptr); // OAI default to null
- if (!stream && probs_output.size() > 0) {
- logprobs = json{
- {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
- };
- }
- json finish_reason = "length";
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- finish_reason = "stop";
- }
- json res = json {
- {"choices", json::array({
- json{
- {"text", content},
- {"index", index},
- {"logprobs", logprobs},
- {"finish_reason", finish_reason},
- }
- })},
- {"created", t},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "text_completion"},
- {"usage", json {
- {"completion_tokens", n_decoded},
- {"prompt_tokens", n_prompt_tokens},
- {"total_tokens", n_decoded + n_prompt_tokens}
- }},
- {"id", oaicompat_cmpl_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = to_json_non_oaicompat();
- }
- if (timings.prompt_n >= 0) {
- res.push_back({"timings", timings.to_json()});
- }
- return res;
- }
- json server_task_result_cmpl_final::to_json_oaicompat_chat() {
- std::string finish_reason = "length";
- common_chat_msg msg;
- if (!oaicompat_msg.empty()) {
- msg = oaicompat_msg;
- } else {
- msg.role = "assistant";
- msg.content = content;
- }
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
- }
- json choice {
- {"finish_reason", finish_reason},
- {"index", index},
- {"message", msg.to_json_oaicompat<json>()},
- };
- if (!stream && probs_output.size() > 0) {
- choice["logprobs"] = json{
- {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
- };
- }
- std::time_t t = std::time(0);
- json res = json {
- {"choices", json::array({choice})},
- {"created", t},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion"},
- {"usage", json {
- {"completion_tokens", n_decoded},
- {"prompt_tokens", n_prompt_tokens},
- {"total_tokens", n_decoded + n_prompt_tokens}
- }},
- {"id", oaicompat_cmpl_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = to_json_non_oaicompat();
- }
- if (timings.prompt_n >= 0) {
- res.push_back({"timings", timings.to_json()});
- }
- return res;
- }
- common_chat_msg task_result_state::update_chat_msg(
- const std::string & text_added,
- bool is_partial,
- std::vector<common_chat_msg_diff> & diffs) {
- generated_text += text_added;
- auto msg_prv_copy = chat_msg;
- SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
- auto new_msg = common_chat_parse(
- generated_text,
- is_partial,
- oaicompat_chat_syntax);
- if (!new_msg.empty()) {
- new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
- chat_msg = new_msg;
- diffs = common_chat_msg_diff::compute_diffs(msg_prv_copy, new_msg.empty() ? msg_prv_copy : new_msg);
- }
- return chat_msg;
- }
- json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
- std::time_t t = std::time(0);
- std::string finish_reason = "length";
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
- }
- json deltas = json::array();
- for (const auto & diff : oaicompat_msg_diffs) {
- deltas.push_back({
- {"choices", json::array({
- json {
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
- },
- })},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion.chunk"},
- });
- }
- deltas.push_back({
- {"choices", json::array({
- json {
- {"finish_reason", finish_reason},
- {"index", 0},
- {"delta", json::object()},
- },
- })},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion.chunk"},
- });
- if (include_usage) {
- // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
- // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
- deltas.push_back({
- {"choices", json::array()},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion.chunk"},
- {"usage", json {
- {"completion_tokens", n_decoded},
- {"prompt_tokens", n_prompt_tokens},
- {"total_tokens", n_decoded + n_prompt_tokens},
- }},
- });
- }
- if (timings.prompt_n >= 0) {
- deltas.back().push_back({"timings", timings.to_json()});
- }
- // extra fields for debugging purposes
- if (verbose && !deltas.empty()) {
- deltas.front()["__verbose"] = to_json_non_oaicompat();
- }
- return deltas;
- }
- json server_task_result_cmpl_final::to_json_anthropic() {
- std::string stop_reason = "max_tokens";
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
- }
- json content_blocks = json::array();
- common_chat_msg msg;
- if (!oaicompat_msg.empty()) {
- msg = oaicompat_msg;
- } else {
- msg.role = "assistant";
- msg.content = content;
- }
- if (!msg.content.empty()) {
- content_blocks.push_back({
- {"type", "text"},
- {"text", msg.content}
- });
- }
- for (const auto & tool_call : msg.tool_calls) {
- json tool_use_block = {
- {"type", "tool_use"},
- {"id", tool_call.id},
- {"name", tool_call.name}
- };
- try {
- tool_use_block["input"] = json::parse(tool_call.arguments);
- } catch (const std::exception &) {
- tool_use_block["input"] = json::object();
- }
- content_blocks.push_back(tool_use_block);
- }
- json res = {
- {"id", oaicompat_cmpl_id},
- {"type", "message"},
- {"role", "assistant"},
- {"content", content_blocks},
- {"model", oaicompat_model},
- {"stop_reason", stop_reason},
- {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
- {"usage", {
- {"input_tokens", n_prompt_tokens},
- {"output_tokens", n_decoded}
- }}
- };
- return res;
- }
- json server_task_result_cmpl_final::to_json_anthropic_stream() {
- json events = json::array();
- std::string stop_reason = "max_tokens";
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
- }
- bool has_text = !oaicompat_msg.content.empty();
- size_t num_tool_calls = oaicompat_msg.tool_calls.size();
- bool text_block_started = false;
- std::unordered_set<size_t> tool_calls_started;
- for (const auto & diff : oaicompat_msg_diffs) {
- if (!diff.content_delta.empty()) {
- if (!text_block_started) {
- events.push_back({
- {"event", "content_block_start"},
- {"data", {
- {"type", "content_block_start"},
- {"index", 0},
- {"content_block", {
- {"type", "text"},
- {"text", ""}
- }}
- }}
- });
- text_block_started = true;
- }
- events.push_back({
- {"event", "content_block_delta"},
- {"data", {
- {"type", "content_block_delta"},
- {"index", 0},
- {"delta", {
- {"type", "text_delta"},
- {"text", diff.content_delta}
- }}
- }}
- });
- }
- if (diff.tool_call_index != std::string::npos) {
- size_t content_block_index = (has_text ? 1 : 0) + diff.tool_call_index;
- if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
- const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
- events.push_back({
- {"event", "content_block_start"},
- {"data", {
- {"type", "content_block_start"},
- {"index", content_block_index},
- {"content_block", {
- {"type", "tool_use"},
- {"id", full_tool_call.id},
- {"name", full_tool_call.name}
- }}
- }}
- });
- tool_calls_started.insert(diff.tool_call_index);
- }
- if (!diff.tool_call_delta.arguments.empty()) {
- events.push_back({
- {"event", "content_block_delta"},
- {"data", {
- {"type", "content_block_delta"},
- {"index", content_block_index},
- {"delta", {
- {"type", "input_json_delta"},
- {"partial_json", diff.tool_call_delta.arguments}
- }}
- }}
- });
- }
- }
- }
- if (has_text) {
- events.push_back({
- {"event", "content_block_stop"},
- {"data", {
- {"type", "content_block_stop"},
- {"index", 0}
- }}
- });
- }
- for (size_t i = 0; i < num_tool_calls; i++) {
- size_t content_block_index = (has_text ? 1 : 0) + i;
- events.push_back({
- {"event", "content_block_stop"},
- {"data", {
- {"type", "content_block_stop"},
- {"index", content_block_index}
- }}
- });
- }
- events.push_back({
- {"event", "message_delta"},
- {"data", {
- {"type", "message_delta"},
- {"delta", {
- {"stop_reason", stop_reason},
- {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
- }},
- {"usage", {
- {"output_tokens", n_decoded}
- }}
- }}
- });
- events.push_back({
- {"event", "message_stop"},
- {"data", {
- {"type", "message_stop"}
- }}
- });
- return events;
- }
- //
- // server_task_result_cmpl_partial
- //
- json server_task_result_cmpl_partial::to_json() {
- GGML_ASSERT(is_updated && "update() must be called before to_json()");
- switch (res_type) {
- case TASK_RESPONSE_TYPE_NONE:
- return to_json_non_oaicompat();
- case TASK_RESPONSE_TYPE_OAI_CMPL:
- return to_json_oaicompat();
- case TASK_RESPONSE_TYPE_OAI_CHAT:
- return to_json_oaicompat_chat();
- case TASK_RESPONSE_TYPE_ANTHROPIC:
- return to_json_anthropic();
- default:
- GGML_ASSERT(false && "Invalid task_response_type");
- }
- }
- json server_task_result_cmpl_partial::to_json_non_oaicompat() {
- // non-OAI-compat JSON
- json res = json {
- {"index", index},
- {"content", content},
- {"tokens", tokens},
- {"stop", false},
- {"id_slot", id_slot},
- {"tokens_predicted", n_decoded},
- {"tokens_evaluated", n_prompt_tokens},
- };
- // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
- if (timings.prompt_n > 0) {
- res.push_back({"timings", timings.to_json()});
- }
- if (is_progress) {
- res.push_back({"prompt_progress", progress.to_json()});
- }
- if (!prob_output.probs.empty()) {
- res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
- }
- return res;
- }
- json server_task_result_cmpl_partial::to_json_oaicompat() {
- std::time_t t = std::time(0);
- json logprobs = json(nullptr); // OAI default to null
- if (prob_output.probs.size() > 0) {
- logprobs = json{
- {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
- };
- }
- json res = json {
- {"choices", json::array({
- json{
- {"text", content},
- {"index", index},
- {"logprobs", logprobs},
- {"finish_reason", nullptr},
- }
- })},
- {"created", t},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "text_completion"},
- {"id", oaicompat_cmpl_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = to_json_non_oaicompat();
- }
- if (timings.prompt_n >= 0) {
- res.push_back({"timings", timings.to_json()});
- }
- if (is_progress) {
- res.push_back({"prompt_progress", progress.to_json()});
- }
- return res;
- }
- json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
- bool first = n_decoded == 1;
- std::time_t t = std::time(0);
- json choices;
- std::vector<json> deltas;
- auto add_delta = [&](const json & delta) {
- deltas.push_back({
- {"choices", json::array({
- json {
- {"finish_reason", nullptr},
- {"index", index},
- {"delta", delta},
- },
- })},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion.chunk"},
- });
- };
- // We have to send an initial update to conform to openai behavior
- if (first || is_progress) {
- add_delta({
- {"role", "assistant"},
- {"content", nullptr},
- });
- }
- for (const auto & diff : oaicompat_msg_diffs) {
- add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
- }
- if (!deltas.empty()) {
- auto & last_json = deltas[deltas.size() - 1];
- GGML_ASSERT(last_json.at("choices").size() >= 1);
- if (prob_output.probs.size() > 0) {
- last_json.at("choices").at(0)["logprobs"] = json {
- {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
- };
- }
- if (timings.prompt_n >= 0) {
- last_json.push_back({"timings", timings.to_json()});
- }
- if (is_progress) {
- last_json.push_back({"prompt_progress", progress.to_json()});
- }
- }
- return deltas;
- }
- //
- // server_task_result_embd
- //
- json server_task_result_embd::to_json() {
- return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
- ? to_json_oaicompat()
- : to_json_non_oaicompat();
- }
- json server_task_result_embd::to_json_non_oaicompat() {
- return json {
- {"index", index},
- {"embedding", embedding},
- };
- }
- json server_task_result_embd::to_json_oaicompat() {
- return json {
- {"index", index},
- {"embedding", embedding[0]},
- {"tokens_evaluated", n_tokens},
- };
- }
- //
- // server_task_result_rerank
- //
- json server_task_result_rerank::to_json() {
- return json {
- {"index", index},
- {"score", score},
- {"tokens_evaluated", n_tokens},
- };
- }
- json server_task_result_cmpl_partial::to_json_anthropic() {
- json events = json::array();
- bool first = (n_decoded == 1);
- static bool text_block_started = false;
- if (first) {
- text_block_started = false;
- events.push_back({
- {"event", "message_start"},
- {"data", {
- {"type", "message_start"},
- {"message", {
- {"id", oaicompat_cmpl_id},
- {"type", "message"},
- {"role", "assistant"},
- {"content", json::array()},
- {"model", oaicompat_model},
- {"stop_reason", nullptr},
- {"stop_sequence", nullptr},
- {"usage", {
- {"input_tokens", n_prompt_tokens},
- {"output_tokens", 0}
- }}
- }}
- }}
- });
- }
- for (const auto & diff : oaicompat_msg_diffs) {
- if (!diff.content_delta.empty()) {
- if (!text_block_started) {
- events.push_back({
- {"event", "content_block_start"},
- {"data", {
- {"type", "content_block_start"},
- {"index", 0},
- {"content_block", {
- {"type", "text"},
- {"text", ""}
- }}
- }}
- });
- text_block_started = true;
- }
- events.push_back({
- {"event", "content_block_delta"},
- {"data", {
- {"type", "content_block_delta"},
- {"index", 0},
- {"delta", {
- {"type", "text_delta"},
- {"text", diff.content_delta}
- }}
- }}
- });
- }
- if (diff.tool_call_index != std::string::npos) {
- size_t content_block_index = (text_block_started ? 1 : 0) + diff.tool_call_index;
- if (!diff.tool_call_delta.name.empty()) {
- events.push_back({
- {"event", "content_block_start"},
- {"data", {
- {"type", "content_block_start"},
- {"index", content_block_index},
- {"content_block", {
- {"type", "tool_use"},
- {"id", diff.tool_call_delta.id},
- {"name", diff.tool_call_delta.name}
- }}
- }}
- });
- }
- if (!diff.tool_call_delta.arguments.empty()) {
- events.push_back({
- {"event", "content_block_delta"},
- {"data", {
- {"type", "content_block_delta"},
- {"index", content_block_index},
- {"delta", {
- {"type", "input_json_delta"},
- {"partial_json", diff.tool_call_delta.arguments}
- }}
- }}
- });
- }
- }
- }
- return events;
- }
- //
- // server_task_result_error
- //
- json server_task_result_error::to_json() {
- json res = format_error_response(err_msg, err_type);
- if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
- res["n_prompt_tokens"] = n_prompt_tokens;
- res["n_ctx"] = n_ctx;
- }
- return res;
- }
- //
- // server_task_result_metrics
- //
- json server_task_result_metrics::to_json() {
- return json {
- { "idle", n_idle_slots },
- { "processing", n_processing_slots },
- { "deferred", n_tasks_deferred },
- { "t_start", t_start },
- { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
- { "t_tokens_generation_total", t_tokens_generation_total },
- { "n_tokens_predicted_total", n_tokens_predicted_total },
- { "t_prompt_processing_total", t_prompt_processing_total },
- { "n_tokens_max", n_tokens_max },
- { "n_prompt_tokens_processed", n_prompt_tokens_processed },
- { "t_prompt_processing", t_prompt_processing },
- { "n_tokens_predicted", n_tokens_predicted },
- { "t_tokens_generation", t_tokens_generation },
- { "n_decode_total", n_decode_total },
- { "n_busy_slots_total", n_busy_slots_total },
- { "slots", slots_data },
- };
- }
- //
- // server_task_result_slot_save_load
- //
- json server_task_result_slot_save_load::to_json() {
- if (is_save) {
- return json {
- { "id_slot", id_slot },
- { "filename", filename },
- { "n_saved", n_tokens },
- { "n_written", n_bytes },
- { "timings", {
- { "save_ms", t_ms }
- }},
- };
- }
- return json {
- { "id_slot", id_slot },
- { "filename", filename },
- { "n_restored", n_tokens },
- { "n_read", n_bytes },
- { "timings", {
- { "restore_ms", t_ms }
- }},
- };
- }
- //
- // server_task_result_slot_erase
- //
- json server_task_result_slot_erase::to_json() {
- return json {
- { "id_slot", id_slot },
- { "n_erased", n_erased },
- };
- }
- //
- // server_task_result_apply_lora
- //
- json server_task_result_apply_lora::to_json() {
- return json {{ "success", true }};
- }
- //
- // server_prompt_cache
- //
- size_t server_prompt_cache::size() const {
- size_t res = 0;
- for (const auto & state : states) {
- res += state.size();
- }
- return res;
- }
- size_t server_prompt_cache::n_tokens() const {
- size_t res = 0;
- for (const auto & state : states) {
- res += state.n_tokens();
- }
- return res;
- }
- server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
- // first check if the current state is contained fully in the cache
- for (auto it = states.begin(); it != states.end(); ++it) {
- const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
- if (cur_lcp_len == (int) prompt.tokens.size()) {
- SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
- return nullptr;
- }
- }
- // next, remove any cached prompts that are fully contained in the current prompt
- for (auto it = states.begin(); it != states.end();) {
- const int len = it->tokens.get_common_prefix(prompt.tokens);
- if (len == (int) it->tokens.size()) {
- SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
- it = states.erase(it);
- } else {
- ++it;
- }
- }
- std::vector<uint8_t> state_data;
- // check if we can allocate enough memory for the new state
- try {
- state_data.resize(state_size);
- } catch (const std::bad_alloc & e) {
- SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
- limit_size = std::max<size_t>(1, 0.4*size());
- SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
- update();
- return nullptr;
- }
- // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
- auto & cur = states.emplace_back();
- cur = {
- /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
- /*.data =*/ std::move(state_data),
- /*.checkpoints =*/ prompt.checkpoints,
- };
- return &cur;
- }
- bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
- const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
- float f_keep_best = float(lcp_best) / prompt.tokens.size();
- float sim_best = float(lcp_best) / tokens_new.size();
- SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
- auto it_best = states.end();
- // find the most similar cached prompt, that would also preserve the most context
- for (auto it = states.begin(); it != states.end(); ++it) {
- const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
- const float f_keep_cur = float(lcp_cur) / it->tokens.size();
- const float sim_cur = float(lcp_cur) / tokens_new.size();
- // don't trash large prompts
- if (f_keep_cur < 0.25f) {
- continue;
- }
- if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
- f_keep_best = f_keep_cur;
- sim_best = sim_cur;
- it_best = it;
- }
- }
- if (it_best != states.end()) {
- SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
- const size_t size = it_best->data.size();
- const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
- if (n != size) {
- SRV_WRN("failed to restore state with size %zu\n", size);
- return false;
- }
- it_best->data.clear();
- it_best->data.shrink_to_fit();
- prompt = std::move(*it_best);
- states.erase(it_best);
- }
- return true;
- }
- void server_prompt_cache::update() {
- if (limit_size > 0) {
- // always keep at least one state, regardless of the limits
- while (states.size() > 1 && size() > limit_size) {
- if (states.empty()) {
- break;
- }
- SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
- states.pop_front();
- }
- }
- // average size per token
- const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
- // dynamically increase the token limit if it can fit in the memory limit
- const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
- if (limit_tokens > 0) {
- while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
- if (states.empty()) {
- break;
- }
- SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
- limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
- states.pop_front();
- }
- }
- SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
- states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
- for (const auto & state : states) {
- SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
- (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
- }
- }
|