ggml.c 654 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_IQ2_XXS] = {
  513. .type_name = "iq2_xxs",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_iq2_xxs),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  518. .from_float = NULL,
  519. .from_float_reference = NULL,
  520. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_IQ2_XS] = {
  524. .type_name = "iq2_xs",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_iq2_xs),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q8_K] = {
  535. .type_name = "q8_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q8_K),
  538. .is_quantized = true,
  539. .from_float = quantize_row_q8_K,
  540. }
  541. };
  542. // For internal test use
  543. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  544. GGML_ASSERT(type < GGML_TYPE_COUNT);
  545. return type_traits[type];
  546. }
  547. //
  548. // simd mappings
  549. //
  550. #if defined(__ARM_NEON)
  551. #if !defined(__aarch64__)
  552. // 64-bit compatibility
  553. inline static float vaddvq_f32(float32x4_t v) {
  554. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  555. }
  556. #endif
  557. #endif
  558. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  559. // we then implement the fundamental computation operations below using only these macros
  560. // adding support for new architectures requires to define the corresponding SIMD macros
  561. //
  562. // GGML_F32_STEP / GGML_F16_STEP
  563. // number of elements to process in a single step
  564. //
  565. // GGML_F32_EPR / GGML_F16_EPR
  566. // number of elements to fit in a single register
  567. //
  568. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  569. #define GGML_SIMD
  570. // F32 NEON
  571. #define GGML_F32_STEP 16
  572. #define GGML_F32_EPR 4
  573. #define GGML_F32x4 float32x4_t
  574. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  575. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  576. #define GGML_F32x4_LOAD vld1q_f32
  577. #define GGML_F32x4_STORE vst1q_f32
  578. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  579. #define GGML_F32x4_ADD vaddq_f32
  580. #define GGML_F32x4_MUL vmulq_f32
  581. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  582. #define GGML_F32x4_REDUCE(res, x) \
  583. { \
  584. int offset = GGML_F32_ARR >> 1; \
  585. for (int i = 0; i < offset; ++i) { \
  586. x[i] = vaddq_f32(x[i], x[offset+i]); \
  587. } \
  588. offset >>= 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  597. }
  598. #define GGML_F32_VEC GGML_F32x4
  599. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  600. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  601. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  602. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  603. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  604. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  605. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  606. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  607. // F16 NEON
  608. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  609. #define GGML_F16_STEP 32
  610. #define GGML_F16_EPR 8
  611. #define GGML_F16x8 float16x8_t
  612. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  613. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  614. #define GGML_F16x8_LOAD vld1q_f16
  615. #define GGML_F16x8_STORE vst1q_f16
  616. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  617. #define GGML_F16x8_ADD vaddq_f16
  618. #define GGML_F16x8_MUL vmulq_f16
  619. #define GGML_F16x8_REDUCE(res, x) \
  620. do { \
  621. int offset = GGML_F16_ARR >> 1; \
  622. for (int i = 0; i < offset; ++i) { \
  623. x[i] = vaddq_f16(x[i], x[offset+i]); \
  624. } \
  625. offset >>= 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  634. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  635. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  636. } while (0)
  637. #define GGML_F16_VEC GGML_F16x8
  638. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  639. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  640. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  641. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  642. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  643. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  644. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  645. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  646. #else
  647. // if FP16 vector arithmetic is not supported, we use FP32 instead
  648. // and take advantage of the vcvt_ functions to convert to/from FP16
  649. #define GGML_F16_STEP 16
  650. #define GGML_F16_EPR 4
  651. #define GGML_F32Cx4 float32x4_t
  652. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  653. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  654. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  655. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  656. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  657. #define GGML_F32Cx4_ADD vaddq_f32
  658. #define GGML_F32Cx4_MUL vmulq_f32
  659. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  660. #define GGML_F16_VEC GGML_F32Cx4
  661. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  662. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  663. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  664. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  665. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  666. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  667. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  668. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  669. #endif
  670. #elif defined(__AVX__)
  671. #define GGML_SIMD
  672. // F32 AVX
  673. #define GGML_F32_STEP 32
  674. #define GGML_F32_EPR 8
  675. #define GGML_F32x8 __m256
  676. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  677. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  678. #define GGML_F32x8_LOAD _mm256_loadu_ps
  679. #define GGML_F32x8_STORE _mm256_storeu_ps
  680. #if defined(__FMA__)
  681. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  682. #else
  683. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  684. #endif
  685. #define GGML_F32x8_ADD _mm256_add_ps
  686. #define GGML_F32x8_MUL _mm256_mul_ps
  687. #define GGML_F32x8_REDUCE(res, x) \
  688. do { \
  689. int offset = GGML_F32_ARR >> 1; \
  690. for (int i = 0; i < offset; ++i) { \
  691. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  692. } \
  693. offset >>= 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  702. _mm256_extractf128_ps(x[0], 1)); \
  703. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  704. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  705. } while (0)
  706. // TODO: is this optimal ?
  707. #define GGML_F32_VEC GGML_F32x8
  708. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  709. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  710. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  711. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  712. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  713. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  714. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  715. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  716. // F16 AVX
  717. #define GGML_F16_STEP 32
  718. #define GGML_F16_EPR 8
  719. // F16 arithmetic is not supported by AVX, so we use F32 instead
  720. #define GGML_F32Cx8 __m256
  721. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  722. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  723. #if defined(__F16C__)
  724. // the _mm256_cvt intrinsics require F16C
  725. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  726. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  727. #else
  728. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  729. float tmp[8];
  730. for (int i = 0; i < 8; i++) {
  731. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  732. }
  733. return _mm256_loadu_ps(tmp);
  734. }
  735. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  736. float arr[8];
  737. _mm256_storeu_ps(arr, y);
  738. for (int i = 0; i < 8; i++)
  739. x[i] = GGML_FP32_TO_FP16(arr[i]);
  740. }
  741. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  742. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  743. #endif
  744. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  745. #define GGML_F32Cx8_ADD _mm256_add_ps
  746. #define GGML_F32Cx8_MUL _mm256_mul_ps
  747. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  748. #define GGML_F16_VEC GGML_F32Cx8
  749. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  750. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  751. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  752. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  753. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  754. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  755. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  756. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  757. #elif defined(__POWER9_VECTOR__)
  758. #define GGML_SIMD
  759. // F32 POWER9
  760. #define GGML_F32_STEP 32
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 vector float
  763. #define GGML_F32x4_ZERO 0.0f
  764. #define GGML_F32x4_SET1 vec_splats
  765. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  766. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  767. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  768. #define GGML_F32x4_ADD vec_add
  769. #define GGML_F32x4_MUL vec_mul
  770. #define GGML_F32x4_REDUCE(res, x) \
  771. { \
  772. int offset = GGML_F32_ARR >> 1; \
  773. for (int i = 0; i < offset; ++i) { \
  774. x[i] = vec_add(x[i], x[offset+i]); \
  775. } \
  776. offset >>= 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. res = vec_extract(x[0], 0) + \
  785. vec_extract(x[0], 1) + \
  786. vec_extract(x[0], 2) + \
  787. vec_extract(x[0], 3); \
  788. }
  789. #define GGML_F32_VEC GGML_F32x4
  790. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  791. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  792. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  793. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  794. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  795. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  796. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  797. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  798. // F16 POWER9
  799. #define GGML_F16_STEP GGML_F32_STEP
  800. #define GGML_F16_EPR GGML_F32_EPR
  801. #define GGML_F16_VEC GGML_F32x4
  802. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  803. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  804. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  805. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  806. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  807. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  808. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  809. vec_extract_fp32_from_shortl(vec_xl(0, p))
  810. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  811. #define GGML_F16_VEC_STORE(p, r, i) \
  812. if (i & 0x1) \
  813. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  814. r[i - GGML_ENDIAN_BYTE(0)]), \
  815. 0, p - GGML_F16_EPR)
  816. #elif defined(__wasm_simd128__)
  817. #define GGML_SIMD
  818. // F32 WASM
  819. #define GGML_F32_STEP 16
  820. #define GGML_F32_EPR 4
  821. #define GGML_F32x4 v128_t
  822. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F32x4_LOAD wasm_v128_load
  825. #define GGML_F32x4_STORE wasm_v128_store
  826. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  827. #define GGML_F32x4_ADD wasm_f32x4_add
  828. #define GGML_F32x4_MUL wasm_f32x4_mul
  829. #define GGML_F32x4_REDUCE(res, x) \
  830. { \
  831. int offset = GGML_F32_ARR >> 1; \
  832. for (int i = 0; i < offset; ++i) { \
  833. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  834. } \
  835. offset >>= 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. res = wasm_f32x4_extract_lane(x[0], 0) + \
  844. wasm_f32x4_extract_lane(x[0], 1) + \
  845. wasm_f32x4_extract_lane(x[0], 2) + \
  846. wasm_f32x4_extract_lane(x[0], 3); \
  847. }
  848. #define GGML_F32_VEC GGML_F32x4
  849. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  850. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  851. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  852. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  853. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  854. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  855. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  856. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  857. // F16 WASM
  858. #define GGML_F16_STEP 16
  859. #define GGML_F16_EPR 4
  860. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  861. float tmp[4];
  862. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  863. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  864. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  865. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  866. return wasm_v128_load(tmp);
  867. }
  868. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  869. float tmp[4];
  870. wasm_v128_store(tmp, x);
  871. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  872. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  873. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  874. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  875. }
  876. #define GGML_F16x4 v128_t
  877. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  878. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  879. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  880. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  881. #define GGML_F16x4_FMA GGML_F32x4_FMA
  882. #define GGML_F16x4_ADD wasm_f32x4_add
  883. #define GGML_F16x4_MUL wasm_f32x4_mul
  884. #define GGML_F16x4_REDUCE(res, x) \
  885. { \
  886. int offset = GGML_F16_ARR >> 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  889. } \
  890. offset >>= 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. res = wasm_f32x4_extract_lane(x[0], 0) + \
  899. wasm_f32x4_extract_lane(x[0], 1) + \
  900. wasm_f32x4_extract_lane(x[0], 2) + \
  901. wasm_f32x4_extract_lane(x[0], 3); \
  902. }
  903. #define GGML_F16_VEC GGML_F16x4
  904. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  905. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  906. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  907. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  908. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  909. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  910. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  911. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  912. #elif defined(__SSE3__)
  913. #define GGML_SIMD
  914. // F32 SSE
  915. #define GGML_F32_STEP 32
  916. #define GGML_F32_EPR 4
  917. #define GGML_F32x4 __m128
  918. #define GGML_F32x4_ZERO _mm_setzero_ps()
  919. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  920. #define GGML_F32x4_LOAD _mm_loadu_ps
  921. #define GGML_F32x4_STORE _mm_storeu_ps
  922. #if defined(__FMA__)
  923. // TODO: Does this work?
  924. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  925. #else
  926. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  927. #endif
  928. #define GGML_F32x4_ADD _mm_add_ps
  929. #define GGML_F32x4_MUL _mm_mul_ps
  930. #define GGML_F32x4_REDUCE(res, x) \
  931. { \
  932. int offset = GGML_F32_ARR >> 1; \
  933. for (int i = 0; i < offset; ++i) { \
  934. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  935. } \
  936. offset >>= 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  945. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  946. }
  947. // TODO: is this optimal ?
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 SSE
  958. #define GGML_F16_STEP 32
  959. #define GGML_F16_EPR 4
  960. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  961. float tmp[4];
  962. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  963. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  964. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  965. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  966. return _mm_loadu_ps(tmp);
  967. }
  968. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  969. float arr[4];
  970. _mm_storeu_ps(arr, y);
  971. x[0] = GGML_FP32_TO_FP16(arr[0]);
  972. x[1] = GGML_FP32_TO_FP16(arr[1]);
  973. x[2] = GGML_FP32_TO_FP16(arr[2]);
  974. x[3] = GGML_FP32_TO_FP16(arr[3]);
  975. }
  976. #define GGML_F32Cx4 __m128
  977. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  978. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  979. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  980. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  981. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  982. #define GGML_F32Cx4_ADD _mm_add_ps
  983. #define GGML_F32Cx4_MUL _mm_mul_ps
  984. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  985. #define GGML_F16_VEC GGML_F32Cx4
  986. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  987. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  988. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  989. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  990. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  991. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  992. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  993. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  994. #endif
  995. // GGML_F32_ARR / GGML_F16_ARR
  996. // number of registers to use per step
  997. #ifdef GGML_SIMD
  998. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  999. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1000. #endif
  1001. //
  1002. // fundamental operations
  1003. //
  1004. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1005. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1006. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1008. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1009. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1010. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1011. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1012. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1013. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1014. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1015. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1016. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1017. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1018. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1019. #ifdef GGML_SIMD
  1020. float sumf = 0.0f;
  1021. const int np = (n & ~(GGML_F32_STEP - 1));
  1022. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1023. GGML_F32_VEC ax[GGML_F32_ARR];
  1024. GGML_F32_VEC ay[GGML_F32_ARR];
  1025. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1026. for (int j = 0; j < GGML_F32_ARR; j++) {
  1027. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1028. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1029. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1030. }
  1031. }
  1032. // reduce sum0..sum3 to sum0
  1033. GGML_F32_VEC_REDUCE(sumf, sum);
  1034. // leftovers
  1035. for (int i = np; i < n; ++i) {
  1036. sumf += x[i]*y[i];
  1037. }
  1038. #else
  1039. // scalar
  1040. ggml_float sumf = 0.0;
  1041. for (int i = 0; i < n; ++i) {
  1042. sumf += (ggml_float)(x[i]*y[i]);
  1043. }
  1044. #endif
  1045. *s = sumf;
  1046. }
  1047. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1048. ggml_float sumf = 0.0;
  1049. #if defined(GGML_SIMD)
  1050. const int np = (n & ~(GGML_F16_STEP - 1));
  1051. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1052. GGML_F16_VEC ax[GGML_F16_ARR];
  1053. GGML_F16_VEC ay[GGML_F16_ARR];
  1054. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1055. for (int j = 0; j < GGML_F16_ARR; j++) {
  1056. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1057. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1058. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1059. }
  1060. }
  1061. // reduce sum0..sum3 to sum0
  1062. GGML_F16_VEC_REDUCE(sumf, sum);
  1063. // leftovers
  1064. for (int i = np; i < n; ++i) {
  1065. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1066. }
  1067. #else
  1068. for (int i = 0; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #endif
  1072. *s = sumf;
  1073. }
  1074. // compute GGML_VEC_DOT_UNROLL dot products at once
  1075. // xs - x row stride in bytes
  1076. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1077. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1078. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1079. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1080. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1081. }
  1082. #if defined(GGML_SIMD)
  1083. const int np = (n & ~(GGML_F16_STEP - 1));
  1084. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1085. GGML_F16_VEC ax[GGML_F16_ARR];
  1086. GGML_F16_VEC ay[GGML_F16_ARR];
  1087. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1088. for (int j = 0; j < GGML_F16_ARR; j++) {
  1089. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1092. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1093. }
  1094. }
  1095. }
  1096. // reduce sum0..sum3 to sum0
  1097. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1098. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1099. }
  1100. // leftovers
  1101. for (int i = np; i < n; ++i) {
  1102. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1103. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1104. }
  1105. }
  1106. #else
  1107. for (int i = 0; i < n; ++i) {
  1108. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1109. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. }
  1112. #endif
  1113. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1114. s[i] = sumf[i];
  1115. }
  1116. }
  1117. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1118. #if defined(GGML_SIMD)
  1119. const int np = (n & ~(GGML_F32_STEP - 1));
  1120. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1121. GGML_F32_VEC ax[GGML_F32_ARR];
  1122. GGML_F32_VEC ay[GGML_F32_ARR];
  1123. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1124. for (int j = 0; j < GGML_F32_ARR; j++) {
  1125. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1126. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1127. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1128. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1129. }
  1130. }
  1131. // leftovers
  1132. for (int i = np; i < n; ++i) {
  1133. y[i] += x[i]*v;
  1134. }
  1135. #else
  1136. // scalar
  1137. for (int i = 0; i < n; ++i) {
  1138. y[i] += x[i]*v;
  1139. }
  1140. #endif
  1141. }
  1142. // xs and vs are byte strides of x and v
  1143. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1144. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1145. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1146. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1147. x[i] = (const float *) ((const char *) xv + i*xs);
  1148. v[i] = (const float *) ((const char *) vv + i*vs);
  1149. }
  1150. #if defined(GGML_SIMD)
  1151. const int np = (n & ~(GGML_F32_STEP - 1));
  1152. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1153. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1154. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1155. }
  1156. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1157. GGML_F32_VEC ay[GGML_F32_ARR];
  1158. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1159. for (int j = 0; j < GGML_F32_ARR; j++) {
  1160. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1161. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1162. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1163. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1164. }
  1165. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1166. }
  1167. }
  1168. // leftovers
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = np; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #else
  1175. // scalar
  1176. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1177. for (int i = 0; i < n; ++i) {
  1178. y[i] += x[k][i]*v[k][0];
  1179. }
  1180. }
  1181. #endif
  1182. }
  1183. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1184. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1185. #if defined(GGML_USE_ACCELERATE)
  1186. vDSP_vsmul(y, 1, &v, y, 1, n);
  1187. #elif defined(GGML_SIMD)
  1188. const int np = (n & ~(GGML_F32_STEP - 1));
  1189. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1190. GGML_F32_VEC ay[GGML_F32_ARR];
  1191. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1192. for (int j = 0; j < GGML_F32_ARR; j++) {
  1193. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1194. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1195. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1196. }
  1197. }
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. y[i] *= v;
  1201. }
  1202. #else
  1203. // scalar
  1204. for (int i = 0; i < n; ++i) {
  1205. y[i] *= v;
  1206. }
  1207. #endif
  1208. }
  1209. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1210. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1211. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1212. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1213. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1214. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1215. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1216. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1217. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1218. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1219. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1220. // TODO: optimize performance
  1221. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1222. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1223. static const float GELU_COEF_A = 0.044715f;
  1224. static const float GELU_QUICK_COEF = -1.702f;
  1225. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1226. inline static float ggml_gelu_f32(float x) {
  1227. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1228. }
  1229. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. const uint16_t * i16 = (const uint16_t *) x;
  1231. for (int i = 0; i < n; ++i) {
  1232. y[i] = ggml_table_gelu_f16[i16[i]];
  1233. }
  1234. }
  1235. #ifdef GGML_GELU_FP16
  1236. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. inline static float ggml_gelu_quick_f32(float x) {
  1252. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1253. }
  1254. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1255. // const uint16_t * i16 = (const uint16_t *) x;
  1256. // for (int i = 0; i < n; ++i) {
  1257. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1258. // }
  1259. //}
  1260. #ifdef GGML_GELU_QUICK_FP16
  1261. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1262. uint16_t t;
  1263. for (int i = 0; i < n; ++i) {
  1264. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1265. memcpy(&t, &fp16, sizeof(uint16_t));
  1266. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1267. }
  1268. }
  1269. #else
  1270. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1271. for (int i = 0; i < n; ++i) {
  1272. y[i] = ggml_gelu_quick_f32(x[i]);
  1273. }
  1274. }
  1275. #endif
  1276. // Sigmoid Linear Unit (SiLU) function
  1277. inline static float ggml_silu_f32(float x) {
  1278. return x/(1.0f + expf(-x));
  1279. }
  1280. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1281. // const uint16_t * i16 = (const uint16_t *) x;
  1282. // for (int i = 0; i < n; ++i) {
  1283. // y[i] = ggml_table_silu_f16[i16[i]];
  1284. // }
  1285. //}
  1286. #ifdef GGML_SILU_FP16
  1287. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1288. uint16_t t;
  1289. for (int i = 0; i < n; ++i) {
  1290. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1291. memcpy(&t, &fp16, sizeof(uint16_t));
  1292. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1293. }
  1294. }
  1295. #else
  1296. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1297. for (int i = 0; i < n; ++i) {
  1298. y[i] = ggml_silu_f32(x[i]);
  1299. }
  1300. }
  1301. #endif
  1302. inline static float ggml_silu_backward_f32(float x, float dy) {
  1303. const float s = 1.0f/(1.0f + expf(-x));
  1304. return dy*s*(1.0f + x*(1.0f - s));
  1305. }
  1306. #ifdef GGML_SILU_FP16
  1307. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1308. for (int i = 0; i < n; ++i) {
  1309. // we did not use x[i] to compute forward silu but its f16 equivalent
  1310. // take derivative at f16 of x[i]:
  1311. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1312. float usedx = GGML_FP16_TO_FP32(fp16);
  1313. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1314. }
  1315. }
  1316. #else
  1317. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1318. for (int i = 0; i < n; ++i) {
  1319. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1320. }
  1321. }
  1322. #endif
  1323. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. ggml_float sum = 0.0;
  1326. for (int i = 0; i < n; ++i) {
  1327. sum += (ggml_float)x[i];
  1328. }
  1329. *s = sum;
  1330. #else
  1331. vDSP_sve(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1335. ggml_float sum = 0.0;
  1336. for (int i = 0; i < n; ++i) {
  1337. sum += (ggml_float)x[i];
  1338. }
  1339. *s = sum;
  1340. }
  1341. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1342. float sum = 0.0f;
  1343. for (int i = 0; i < n; ++i) {
  1344. sum += GGML_FP16_TO_FP32(x[i]);
  1345. }
  1346. *s = sum;
  1347. }
  1348. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1349. #ifndef GGML_USE_ACCELERATE
  1350. float max = -INFINITY;
  1351. for (int i = 0; i < n; ++i) {
  1352. max = MAX(max, x[i]);
  1353. }
  1354. *s = max;
  1355. #else
  1356. vDSP_maxv(x, 1, s, n);
  1357. #endif
  1358. }
  1359. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1360. ggml_vec_norm_f32(n, s, x);
  1361. *s = 1.f/(*s);
  1362. }
  1363. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1364. float max = -INFINITY;
  1365. int idx = 0;
  1366. for (int i = 0; i < n; ++i) {
  1367. max = MAX(max, x[i]);
  1368. if (max == x[i]) { idx = i; }
  1369. }
  1370. *s = idx;
  1371. }
  1372. //
  1373. // data types
  1374. //
  1375. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1376. "NONE",
  1377. "DUP",
  1378. "ADD",
  1379. "ADD1",
  1380. "ACC",
  1381. "SUB",
  1382. "MUL",
  1383. "DIV",
  1384. "SQR",
  1385. "SQRT",
  1386. "LOG",
  1387. "SUM",
  1388. "SUM_ROWS",
  1389. "MEAN",
  1390. "ARGMAX",
  1391. "REPEAT",
  1392. "REPEAT_BACK",
  1393. "CONCAT",
  1394. "SILU_BACK",
  1395. "NORM",
  1396. "RMS_NORM",
  1397. "RMS_NORM_BACK",
  1398. "GROUP_NORM",
  1399. "MUL_MAT",
  1400. "MUL_MAT_ID",
  1401. "OUT_PROD",
  1402. "SCALE",
  1403. "SET",
  1404. "CPY",
  1405. "CONT",
  1406. "RESHAPE",
  1407. "VIEW",
  1408. "PERMUTE",
  1409. "TRANSPOSE",
  1410. "GET_ROWS",
  1411. "GET_ROWS_BACK",
  1412. "DIAG",
  1413. "DIAG_MASK_INF",
  1414. "DIAG_MASK_ZERO",
  1415. "SOFT_MAX",
  1416. "SOFT_MAX_BACK",
  1417. "ROPE",
  1418. "ROPE_BACK",
  1419. "ALIBI",
  1420. "CLAMP",
  1421. "CONV_TRANSPOSE_1D",
  1422. "IM2COL",
  1423. "CONV_TRANSPOSE_2D",
  1424. "POOL_1D",
  1425. "POOL_2D",
  1426. "UPSCALE",
  1427. "PAD",
  1428. "ARGSORT",
  1429. "LEAKY_RELU",
  1430. "FLASH_ATTN",
  1431. "FLASH_FF",
  1432. "FLASH_ATTN_BACK",
  1433. "WIN_PART",
  1434. "WIN_UNPART",
  1435. "GET_REL_POS",
  1436. "ADD_REL_POS",
  1437. "UNARY",
  1438. "MAP_UNARY",
  1439. "MAP_BINARY",
  1440. "MAP_CUSTOM1_F32",
  1441. "MAP_CUSTOM2_F32",
  1442. "MAP_CUSTOM3_F32",
  1443. "MAP_CUSTOM1",
  1444. "MAP_CUSTOM2",
  1445. "MAP_CUSTOM3",
  1446. "CROSS_ENTROPY_LOSS",
  1447. "CROSS_ENTROPY_LOSS_BACK",
  1448. };
  1449. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1450. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1451. "none",
  1452. "x",
  1453. "x+y",
  1454. "x+y",
  1455. "view(x,nb,offset)+=y->x",
  1456. "x-y",
  1457. "x*y",
  1458. "x/y",
  1459. "x^2",
  1460. "√x",
  1461. "log(x)",
  1462. "Σx",
  1463. "Σx_k",
  1464. "Σx/n",
  1465. "argmax(x)",
  1466. "repeat(x)",
  1467. "repeat_back(x)",
  1468. "concat(x, y)",
  1469. "silu_back(x)",
  1470. "norm(x)",
  1471. "rms_norm(x)",
  1472. "rms_norm_back(x)",
  1473. "group_norm(x)",
  1474. "X*Y",
  1475. "X[i]*Y",
  1476. "X*Y",
  1477. "x*v",
  1478. "y-\\>view(x)",
  1479. "x-\\>y",
  1480. "cont(x)",
  1481. "reshape(x)",
  1482. "view(x)",
  1483. "permute(x)",
  1484. "transpose(x)",
  1485. "get_rows(x)",
  1486. "get_rows_back(x)",
  1487. "diag(x)",
  1488. "diag_mask_inf(x)",
  1489. "diag_mask_zero(x)",
  1490. "soft_max(x)",
  1491. "soft_max_back(x)",
  1492. "rope(x)",
  1493. "rope_back(x)",
  1494. "alibi(x)",
  1495. "clamp(x)",
  1496. "conv_transpose_1d(x)",
  1497. "im2col(x)",
  1498. "conv_transpose_2d(x)",
  1499. "pool_1d(x)",
  1500. "pool_2d(x)",
  1501. "upscale(x)",
  1502. "pad(x)",
  1503. "argsort(x)",
  1504. "leaky_relu(x)",
  1505. "flash_attn(x)",
  1506. "flash_ff(x)",
  1507. "flash_attn_back(x)",
  1508. "win_part(x)",
  1509. "win_unpart(x)",
  1510. "get_rel_pos(x)",
  1511. "add_rel_pos(x)",
  1512. "unary(x)",
  1513. "f(x)",
  1514. "f(x,y)",
  1515. "custom_f32(x)",
  1516. "custom_f32(x,y)",
  1517. "custom_f32(x,y,z)",
  1518. "custom(x)",
  1519. "custom(x,y)",
  1520. "custom(x,y,z)",
  1521. "cross_entropy_loss(x,y)",
  1522. "cross_entropy_loss_back(x,y)",
  1523. };
  1524. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1525. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1526. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1527. "ABS",
  1528. "SGN",
  1529. "NEG",
  1530. "STEP",
  1531. "TANH",
  1532. "ELU",
  1533. "RELU",
  1534. "GELU",
  1535. "GELU_QUICK",
  1536. "SILU",
  1537. "HARDSWISH",
  1538. "HARDSIGMOID",
  1539. };
  1540. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1541. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1542. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1543. // WARN:
  1544. // Mis-configuration can lead to problem that's hard to reason about:
  1545. // * At best it crash or talks nosense.
  1546. // * At worst it talks slightly difference but hard to perceive.
  1547. //
  1548. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1549. // Take care about compile options (e.g., GGML_USE_xxx).
  1550. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1551. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1552. static void ggml_setup_op_has_task_pass(void) {
  1553. { // INIT
  1554. bool * p = GGML_OP_HAS_INIT;
  1555. p[GGML_OP_ACC ] = true;
  1556. p[GGML_OP_MUL_MAT ] = true;
  1557. p[GGML_OP_MUL_MAT_ID ] = true;
  1558. p[GGML_OP_OUT_PROD ] = true;
  1559. p[GGML_OP_SET ] = true;
  1560. p[GGML_OP_GET_ROWS_BACK ] = true;
  1561. p[GGML_OP_DIAG_MASK_INF ] = true;
  1562. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1563. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1564. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1565. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1566. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1567. p[GGML_OP_ADD_REL_POS ] = true;
  1568. }
  1569. { // FINALIZE
  1570. bool * p = GGML_OP_HAS_FINALIZE;
  1571. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1572. }
  1573. }
  1574. //
  1575. // ggml context
  1576. //
  1577. struct ggml_context {
  1578. size_t mem_size;
  1579. void * mem_buffer;
  1580. bool mem_buffer_owned;
  1581. bool no_alloc;
  1582. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1583. int n_objects;
  1584. struct ggml_object * objects_begin;
  1585. struct ggml_object * objects_end;
  1586. struct ggml_scratch scratch;
  1587. struct ggml_scratch scratch_save;
  1588. };
  1589. struct ggml_context_container {
  1590. bool used;
  1591. struct ggml_context context;
  1592. };
  1593. //
  1594. // NUMA support
  1595. //
  1596. #define GGML_NUMA_MAX_NODES 8
  1597. #define GGML_NUMA_MAX_CPUS 512
  1598. struct ggml_numa_node {
  1599. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1600. uint32_t n_cpus;
  1601. };
  1602. struct ggml_numa_nodes {
  1603. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1604. uint32_t n_nodes;
  1605. uint32_t total_cpus; // hardware threads on system
  1606. };
  1607. //
  1608. // ggml state
  1609. //
  1610. struct ggml_state {
  1611. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1612. struct ggml_numa_nodes numa;
  1613. };
  1614. // global state
  1615. static struct ggml_state g_state;
  1616. static atomic_int g_state_barrier = 0;
  1617. // barrier via spin lock
  1618. inline static void ggml_critical_section_start(void) {
  1619. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1620. while (processing > 0) {
  1621. // wait for other threads to finish
  1622. atomic_fetch_sub(&g_state_barrier, 1);
  1623. sched_yield(); // TODO: reconsider this
  1624. processing = atomic_fetch_add(&g_state_barrier, 1);
  1625. }
  1626. }
  1627. // TODO: make this somehow automatically executed
  1628. // some sort of "sentry" mechanism
  1629. inline static void ggml_critical_section_end(void) {
  1630. atomic_fetch_sub(&g_state_barrier, 1);
  1631. }
  1632. void ggml_numa_init(void) {
  1633. if (g_state.numa.n_nodes > 0) {
  1634. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1635. return;
  1636. }
  1637. #ifdef __linux__
  1638. struct stat st;
  1639. char path[256];
  1640. int rv;
  1641. // enumerate nodes
  1642. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1643. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1644. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1645. if (stat(path, &st) != 0) { break; }
  1646. ++g_state.numa.n_nodes;
  1647. }
  1648. // enumerate CPUs
  1649. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1650. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1651. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1652. if (stat(path, &st) != 0) { break; }
  1653. ++g_state.numa.total_cpus;
  1654. }
  1655. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1656. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1657. g_state.numa.n_nodes = 0;
  1658. return;
  1659. }
  1660. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1661. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1662. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1663. node->n_cpus = 0;
  1664. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1665. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1666. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1667. if (stat(path, &st) == 0) {
  1668. node->cpus[node->n_cpus++] = c;
  1669. GGML_PRINT_DEBUG(" %u", c);
  1670. }
  1671. }
  1672. GGML_PRINT_DEBUG("\n");
  1673. }
  1674. if (ggml_is_numa()) {
  1675. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1676. if (fptr != NULL) {
  1677. char buf[42];
  1678. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1679. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1680. }
  1681. fclose(fptr);
  1682. }
  1683. }
  1684. #else
  1685. // TODO
  1686. #endif
  1687. }
  1688. bool ggml_is_numa(void) {
  1689. return g_state.numa.n_nodes > 1;
  1690. }
  1691. ////////////////////////////////////////////////////////////////////////////////
  1692. void ggml_print_object(const struct ggml_object * obj) {
  1693. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1694. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1695. }
  1696. void ggml_print_objects(const struct ggml_context * ctx) {
  1697. struct ggml_object * obj = ctx->objects_begin;
  1698. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1699. while (obj != NULL) {
  1700. ggml_print_object(obj);
  1701. obj = obj->next;
  1702. }
  1703. GGML_PRINT("%s: --- end ---\n", __func__);
  1704. }
  1705. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1707. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1708. }
  1709. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1711. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1712. }
  1713. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1714. size_t nbytes;
  1715. size_t blck_size = ggml_blck_size(tensor->type);
  1716. if (blck_size == 1) {
  1717. nbytes = ggml_type_size(tensor->type);
  1718. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1719. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1720. }
  1721. }
  1722. else {
  1723. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1724. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1725. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1726. }
  1727. }
  1728. return nbytes;
  1729. }
  1730. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1731. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1732. }
  1733. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1734. return type_traits[type].blck_size;
  1735. }
  1736. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1737. return type_traits[type].type_size;
  1738. }
  1739. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1740. assert(ne % ggml_blck_size(type) == 0);
  1741. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1742. }
  1743. double ggml_type_sizef(enum ggml_type type) {
  1744. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1745. }
  1746. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1747. return type_traits[type].type_name;
  1748. }
  1749. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1750. return type_traits[type].is_quantized;
  1751. }
  1752. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1753. return GGML_OP_NAME[op];
  1754. }
  1755. const char * ggml_op_symbol(enum ggml_op op) {
  1756. return GGML_OP_SYMBOL[op];
  1757. }
  1758. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1759. return GGML_UNARY_OP_NAME[op];
  1760. }
  1761. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1762. if (t->op == GGML_OP_UNARY) {
  1763. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1764. return ggml_unary_op_name(uop);
  1765. }
  1766. else {
  1767. return ggml_op_name(t->op);
  1768. }
  1769. }
  1770. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1771. return ggml_type_size(tensor->type);
  1772. }
  1773. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1774. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1775. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1776. }
  1777. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1778. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1779. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1780. }
  1781. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1783. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1784. }
  1785. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1786. return tensor->ne[3] == 1;
  1787. }
  1788. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1789. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1790. if (tensor->ne[i] > 1) {
  1791. return i + 1;
  1792. }
  1793. }
  1794. return 1;
  1795. }
  1796. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1797. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1798. return (t0->ne[0] == t1->ne[0]) &&
  1799. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1800. (t1->ne[3]%t0->ne[3] == 0);
  1801. }
  1802. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1804. return (t0->ne[1] == t1->ne[1]) &&
  1805. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1806. (t1->ne[3]%t0->ne[3] == 0);
  1807. }
  1808. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1809. enum ggml_type wtype = GGML_TYPE_COUNT;
  1810. switch (ftype) {
  1811. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1812. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1813. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1814. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1815. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1816. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1817. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1818. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1819. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1820. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1821. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1822. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1823. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1824. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1825. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1826. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1827. }
  1828. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1829. return wtype;
  1830. }
  1831. size_t ggml_tensor_overhead(void) {
  1832. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1833. }
  1834. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1835. return tensor->nb[0] > tensor->nb[1];
  1836. }
  1837. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1839. return
  1840. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1841. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1842. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1843. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1844. }
  1845. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1847. return
  1848. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1849. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1850. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1851. }
  1852. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1853. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1854. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1855. }
  1856. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1857. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1858. return
  1859. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1860. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1861. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1862. }
  1863. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1864. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1865. return
  1866. (t0->ne[0] == t1->ne[0] ) &&
  1867. (t0->ne[1] == t1->ne[1] ) &&
  1868. (t0->ne[2] == t1->ne[2] ) &&
  1869. (t0->ne[3] == t1->ne[3] );
  1870. }
  1871. // check if t1 can be represented as a repeatition of t0
  1872. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1873. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1874. return
  1875. (t1->ne[0]%t0->ne[0] == 0) &&
  1876. (t1->ne[1]%t0->ne[1] == 0) &&
  1877. (t1->ne[2]%t0->ne[2] == 0) &&
  1878. (t1->ne[3]%t0->ne[3] == 0);
  1879. }
  1880. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1881. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1882. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1883. }
  1884. static inline int ggml_up32(int n) {
  1885. return (n + 31) & ~31;
  1886. }
  1887. //static inline int ggml_up64(int n) {
  1888. // return (n + 63) & ~63;
  1889. //}
  1890. static inline int ggml_up(int n, int m) {
  1891. // assert m is a power of 2
  1892. GGML_ASSERT((m & (m - 1)) == 0);
  1893. return (n + m - 1) & ~(m - 1);
  1894. }
  1895. // assert that pointer is aligned to GGML_MEM_ALIGN
  1896. #define ggml_assert_aligned(ptr) \
  1897. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1898. ////////////////////////////////////////////////////////////////////////////////
  1899. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1900. // make this function thread safe
  1901. ggml_critical_section_start();
  1902. static bool is_first_call = true;
  1903. if (is_first_call) {
  1904. // initialize time system (required on Windows)
  1905. ggml_time_init();
  1906. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1907. {
  1908. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1909. ggml_fp16_t ii;
  1910. for (int i = 0; i < (1 << 16); ++i) {
  1911. uint16_t ui = i;
  1912. memcpy(&ii, &ui, sizeof(ii));
  1913. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1914. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1915. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1916. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1917. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1918. }
  1919. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1920. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1921. }
  1922. // initialize g_state
  1923. {
  1924. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1925. g_state = (struct ggml_state) {
  1926. /*.contexts =*/ { { 0 } },
  1927. /*.numa =*/ {
  1928. .n_nodes = 0,
  1929. .total_cpus = 0,
  1930. },
  1931. };
  1932. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1933. g_state.contexts[i].used = false;
  1934. }
  1935. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1936. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1937. }
  1938. #if defined(GGML_USE_CUBLAS)
  1939. ggml_init_cublas();
  1940. #elif defined(GGML_USE_CLBLAST)
  1941. ggml_cl_init();
  1942. #endif
  1943. ggml_setup_op_has_task_pass();
  1944. is_first_call = false;
  1945. }
  1946. // find non-used context in g_state
  1947. struct ggml_context * ctx = NULL;
  1948. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1949. if (!g_state.contexts[i].used) {
  1950. g_state.contexts[i].used = true;
  1951. ctx = &g_state.contexts[i].context;
  1952. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1953. break;
  1954. }
  1955. }
  1956. if (ctx == NULL) {
  1957. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1958. ggml_critical_section_end();
  1959. return NULL;
  1960. }
  1961. // allow to call ggml_init with 0 size
  1962. if (params.mem_size == 0) {
  1963. params.mem_size = GGML_MEM_ALIGN;
  1964. }
  1965. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1966. *ctx = (struct ggml_context) {
  1967. /*.mem_size =*/ mem_size,
  1968. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1969. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1970. /*.no_alloc =*/ params.no_alloc,
  1971. /*.no_alloc_save =*/ params.no_alloc,
  1972. /*.n_objects =*/ 0,
  1973. /*.objects_begin =*/ NULL,
  1974. /*.objects_end =*/ NULL,
  1975. /*.scratch =*/ { 0, 0, NULL, },
  1976. /*.scratch_save =*/ { 0, 0, NULL, },
  1977. };
  1978. GGML_ASSERT(ctx->mem_buffer != NULL);
  1979. ggml_assert_aligned(ctx->mem_buffer);
  1980. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1981. ggml_critical_section_end();
  1982. return ctx;
  1983. }
  1984. void ggml_free(struct ggml_context * ctx) {
  1985. if (ctx == NULL) {
  1986. return;
  1987. }
  1988. // make this function thread safe
  1989. ggml_critical_section_start();
  1990. bool found = false;
  1991. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1992. if (&g_state.contexts[i].context == ctx) {
  1993. g_state.contexts[i].used = false;
  1994. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1995. __func__, i, ggml_used_mem(ctx));
  1996. if (ctx->mem_buffer_owned) {
  1997. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1998. }
  1999. found = true;
  2000. break;
  2001. }
  2002. }
  2003. if (!found) {
  2004. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2005. }
  2006. ggml_critical_section_end();
  2007. }
  2008. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2009. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2010. }
  2011. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2012. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2013. ctx->scratch = scratch;
  2014. return result;
  2015. }
  2016. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2017. return ctx->no_alloc;
  2018. }
  2019. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2020. ctx->no_alloc = no_alloc;
  2021. }
  2022. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2023. return ctx->mem_buffer;
  2024. }
  2025. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2026. return ctx->mem_size;
  2027. }
  2028. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2029. size_t max_size = 0;
  2030. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2031. max_size = MAX(max_size, ggml_nbytes(tensor));
  2032. }
  2033. return max_size;
  2034. }
  2035. // IMPORTANT:
  2036. // when creating "opt" tensors, always save and load the scratch buffer
  2037. // this is an error prone process, but it is necessary to support inplace
  2038. // operators when using scratch buffers
  2039. // TODO: implement a better way
  2040. static void ggml_scratch_save(struct ggml_context * ctx) {
  2041. // this is needed to allow opt tensors to store their data
  2042. // TODO: again, need to find a better way
  2043. ctx->no_alloc_save = ctx->no_alloc;
  2044. ctx->no_alloc = false;
  2045. ctx->scratch_save = ctx->scratch;
  2046. ctx->scratch.data = NULL;
  2047. }
  2048. static void ggml_scratch_load(struct ggml_context * ctx) {
  2049. ctx->no_alloc = ctx->no_alloc_save;
  2050. ctx->scratch = ctx->scratch_save;
  2051. }
  2052. ////////////////////////////////////////////////////////////////////////////////
  2053. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2054. // always insert objects at the end of the context's memory pool
  2055. struct ggml_object * obj_cur = ctx->objects_end;
  2056. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2057. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2058. const size_t cur_end = cur_offs + cur_size;
  2059. // align to GGML_MEM_ALIGN
  2060. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2061. char * const mem_buffer = ctx->mem_buffer;
  2062. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2063. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2064. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2065. __func__, cur_end + size_needed, ctx->mem_size);
  2066. assert(false);
  2067. return NULL;
  2068. }
  2069. *obj_new = (struct ggml_object) {
  2070. .offs = cur_end + GGML_OBJECT_SIZE,
  2071. .size = size_needed,
  2072. .next = NULL,
  2073. .type = type,
  2074. };
  2075. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2076. if (obj_cur != NULL) {
  2077. obj_cur->next = obj_new;
  2078. } else {
  2079. // this is the first object in this context
  2080. ctx->objects_begin = obj_new;
  2081. }
  2082. ctx->objects_end = obj_new;
  2083. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2084. return obj_new;
  2085. }
  2086. static struct ggml_tensor * ggml_new_tensor_impl(
  2087. struct ggml_context * ctx,
  2088. enum ggml_type type,
  2089. int n_dims,
  2090. const int64_t * ne,
  2091. struct ggml_tensor * view_src,
  2092. size_t view_offs) {
  2093. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2094. // find the base tensor and absolute offset
  2095. if (view_src != NULL && view_src->view_src != NULL) {
  2096. view_offs += view_src->view_offs;
  2097. view_src = view_src->view_src;
  2098. }
  2099. size_t data_size = ggml_row_size(type, ne[0]);
  2100. for (int i = 1; i < n_dims; i++) {
  2101. data_size *= ne[i];
  2102. }
  2103. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2104. void * data = view_src != NULL ? view_src->data : NULL;
  2105. if (data != NULL) {
  2106. data = (char *) data + view_offs;
  2107. }
  2108. size_t obj_alloc_size = 0;
  2109. if (view_src == NULL && !ctx->no_alloc) {
  2110. if (ctx->scratch.data != NULL) {
  2111. // allocate tensor data in the scratch buffer
  2112. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2113. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2114. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2115. assert(false);
  2116. return NULL;
  2117. }
  2118. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2119. ctx->scratch.offs += data_size;
  2120. } else {
  2121. // allocate tensor data in the context's memory pool
  2122. obj_alloc_size = data_size;
  2123. }
  2124. }
  2125. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2126. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2127. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2128. *result = (struct ggml_tensor) {
  2129. /*.type =*/ type,
  2130. /*.backend =*/ GGML_BACKEND_CPU,
  2131. /*.buffer =*/ NULL,
  2132. /*.ne =*/ { 1, 1, 1, 1 },
  2133. /*.nb =*/ { 0, 0, 0, 0 },
  2134. /*.op =*/ GGML_OP_NONE,
  2135. /*.op_params =*/ { 0 },
  2136. /*.is_param =*/ false,
  2137. /*.grad =*/ NULL,
  2138. /*.src =*/ { NULL },
  2139. /*.perf_runs =*/ 0,
  2140. /*.perf_cycles =*/ 0,
  2141. /*.perf_time_us =*/ 0,
  2142. /*.view_src =*/ view_src,
  2143. /*.view_offs =*/ view_offs,
  2144. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2145. /*.name =*/ { 0 },
  2146. /*.extra =*/ NULL,
  2147. /*.padding =*/ { 0 },
  2148. };
  2149. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2150. //ggml_assert_aligned(result->data);
  2151. for (int i = 0; i < n_dims; i++) {
  2152. result->ne[i] = ne[i];
  2153. }
  2154. result->nb[0] = ggml_type_size(type);
  2155. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2156. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2157. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2158. }
  2159. ctx->n_objects++;
  2160. return result;
  2161. }
  2162. struct ggml_tensor * ggml_new_tensor(
  2163. struct ggml_context * ctx,
  2164. enum ggml_type type,
  2165. int n_dims,
  2166. const int64_t * ne) {
  2167. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2168. }
  2169. struct ggml_tensor * ggml_new_tensor_1d(
  2170. struct ggml_context * ctx,
  2171. enum ggml_type type,
  2172. int64_t ne0) {
  2173. return ggml_new_tensor(ctx, type, 1, &ne0);
  2174. }
  2175. struct ggml_tensor * ggml_new_tensor_2d(
  2176. struct ggml_context * ctx,
  2177. enum ggml_type type,
  2178. int64_t ne0,
  2179. int64_t ne1) {
  2180. const int64_t ne[2] = { ne0, ne1 };
  2181. return ggml_new_tensor(ctx, type, 2, ne);
  2182. }
  2183. struct ggml_tensor * ggml_new_tensor_3d(
  2184. struct ggml_context * ctx,
  2185. enum ggml_type type,
  2186. int64_t ne0,
  2187. int64_t ne1,
  2188. int64_t ne2) {
  2189. const int64_t ne[3] = { ne0, ne1, ne2 };
  2190. return ggml_new_tensor(ctx, type, 3, ne);
  2191. }
  2192. struct ggml_tensor * ggml_new_tensor_4d(
  2193. struct ggml_context * ctx,
  2194. enum ggml_type type,
  2195. int64_t ne0,
  2196. int64_t ne1,
  2197. int64_t ne2,
  2198. int64_t ne3) {
  2199. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2200. return ggml_new_tensor(ctx, type, 4, ne);
  2201. }
  2202. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2203. ggml_scratch_save(ctx);
  2204. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2205. ggml_scratch_load(ctx);
  2206. ggml_set_i32(result, value);
  2207. return result;
  2208. }
  2209. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2210. ggml_scratch_save(ctx);
  2211. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2212. ggml_scratch_load(ctx);
  2213. ggml_set_f32(result, value);
  2214. return result;
  2215. }
  2216. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2217. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2218. }
  2219. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2220. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2221. assert(params_size <= GGML_MAX_OP_PARAMS);
  2222. memcpy(tensor->op_params, params, params_size);
  2223. }
  2224. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2225. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2226. return ((const int32_t *)(tensor->op_params))[i];
  2227. }
  2228. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2229. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2230. ((int32_t *)(tensor->op_params))[i] = value;
  2231. }
  2232. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2233. memset(tensor->data, 0, ggml_nbytes(tensor));
  2234. return tensor;
  2235. }
  2236. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2237. const int n = ggml_nrows(tensor);
  2238. const int nc = tensor->ne[0];
  2239. const size_t n1 = tensor->nb[1];
  2240. char * const data = tensor->data;
  2241. switch (tensor->type) {
  2242. case GGML_TYPE_I8:
  2243. {
  2244. assert(tensor->nb[0] == sizeof(int8_t));
  2245. for (int i = 0; i < n; i++) {
  2246. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2247. }
  2248. } break;
  2249. case GGML_TYPE_I16:
  2250. {
  2251. assert(tensor->nb[0] == sizeof(int16_t));
  2252. for (int i = 0; i < n; i++) {
  2253. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2254. }
  2255. } break;
  2256. case GGML_TYPE_I32:
  2257. {
  2258. assert(tensor->nb[0] == sizeof(int32_t));
  2259. for (int i = 0; i < n; i++) {
  2260. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2261. }
  2262. } break;
  2263. case GGML_TYPE_F16:
  2264. {
  2265. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2266. for (int i = 0; i < n; i++) {
  2267. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2268. }
  2269. } break;
  2270. case GGML_TYPE_F32:
  2271. {
  2272. assert(tensor->nb[0] == sizeof(float));
  2273. for (int i = 0; i < n; i++) {
  2274. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2275. }
  2276. } break;
  2277. default:
  2278. {
  2279. GGML_ASSERT(false);
  2280. } break;
  2281. }
  2282. return tensor;
  2283. }
  2284. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2285. const int n = ggml_nrows(tensor);
  2286. const int nc = tensor->ne[0];
  2287. const size_t n1 = tensor->nb[1];
  2288. char * const data = tensor->data;
  2289. switch (tensor->type) {
  2290. case GGML_TYPE_I8:
  2291. {
  2292. assert(tensor->nb[0] == sizeof(int8_t));
  2293. for (int i = 0; i < n; i++) {
  2294. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2295. }
  2296. } break;
  2297. case GGML_TYPE_I16:
  2298. {
  2299. assert(tensor->nb[0] == sizeof(int16_t));
  2300. for (int i = 0; i < n; i++) {
  2301. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2302. }
  2303. } break;
  2304. case GGML_TYPE_I32:
  2305. {
  2306. assert(tensor->nb[0] == sizeof(int32_t));
  2307. for (int i = 0; i < n; i++) {
  2308. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2309. }
  2310. } break;
  2311. case GGML_TYPE_F16:
  2312. {
  2313. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2314. for (int i = 0; i < n; i++) {
  2315. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2316. }
  2317. } break;
  2318. case GGML_TYPE_F32:
  2319. {
  2320. assert(tensor->nb[0] == sizeof(float));
  2321. for (int i = 0; i < n; i++) {
  2322. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2323. }
  2324. } break;
  2325. default:
  2326. {
  2327. GGML_ASSERT(false);
  2328. } break;
  2329. }
  2330. return tensor;
  2331. }
  2332. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2333. const int64_t ne2 = tensor->ne[2];
  2334. const int64_t ne1 = tensor->ne[1];
  2335. const int64_t ne0 = tensor->ne[0];
  2336. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2337. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2338. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2339. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2340. if (i0) {
  2341. * i0 = i0_;
  2342. }
  2343. if (i1) {
  2344. * i1 = i1_;
  2345. }
  2346. if (i2) {
  2347. * i2 = i2_;
  2348. }
  2349. if (i3) {
  2350. * i3 = i3_;
  2351. }
  2352. }
  2353. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2354. if (!ggml_is_contiguous(tensor)) {
  2355. int64_t id[4] = { 0, 0, 0, 0 };
  2356. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2357. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2358. }
  2359. switch (tensor->type) {
  2360. case GGML_TYPE_I8:
  2361. {
  2362. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2363. return ((int8_t *)(tensor->data))[i];
  2364. }
  2365. case GGML_TYPE_I16:
  2366. {
  2367. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2368. return ((int16_t *)(tensor->data))[i];
  2369. }
  2370. case GGML_TYPE_I32:
  2371. {
  2372. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2373. return ((int32_t *)(tensor->data))[i];
  2374. }
  2375. case GGML_TYPE_F16:
  2376. {
  2377. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2378. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2379. }
  2380. case GGML_TYPE_F32:
  2381. {
  2382. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2383. return ((float *)(tensor->data))[i];
  2384. }
  2385. default:
  2386. {
  2387. GGML_ASSERT(false);
  2388. }
  2389. }
  2390. return 0.0f;
  2391. }
  2392. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2393. if (!ggml_is_contiguous(tensor)) {
  2394. int64_t id[4] = { 0, 0, 0, 0 };
  2395. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2396. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2397. return;
  2398. }
  2399. switch (tensor->type) {
  2400. case GGML_TYPE_I8:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2403. ((int8_t *)(tensor->data))[i] = value;
  2404. } break;
  2405. case GGML_TYPE_I16:
  2406. {
  2407. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2408. ((int16_t *)(tensor->data))[i] = value;
  2409. } break;
  2410. case GGML_TYPE_I32:
  2411. {
  2412. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2413. ((int32_t *)(tensor->data))[i] = value;
  2414. } break;
  2415. case GGML_TYPE_F16:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2418. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2419. } break;
  2420. case GGML_TYPE_F32:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2423. ((float *)(tensor->data))[i] = value;
  2424. } break;
  2425. default:
  2426. {
  2427. GGML_ASSERT(false);
  2428. } break;
  2429. }
  2430. }
  2431. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2432. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2433. switch (tensor->type) {
  2434. case GGML_TYPE_I8:
  2435. return ((int8_t *) data)[0];
  2436. case GGML_TYPE_I16:
  2437. return ((int16_t *) data)[0];
  2438. case GGML_TYPE_I32:
  2439. return ((int32_t *) data)[0];
  2440. case GGML_TYPE_F16:
  2441. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2442. case GGML_TYPE_F32:
  2443. return ((float *) data)[0];
  2444. default:
  2445. GGML_ASSERT(false);
  2446. }
  2447. return 0.0f;
  2448. }
  2449. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2450. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2451. switch (tensor->type) {
  2452. case GGML_TYPE_I8:
  2453. {
  2454. ((int8_t *)(data))[0] = value;
  2455. } break;
  2456. case GGML_TYPE_I16:
  2457. {
  2458. ((int16_t *)(data))[0] = value;
  2459. } break;
  2460. case GGML_TYPE_I32:
  2461. {
  2462. ((int32_t *)(data))[0] = value;
  2463. } break;
  2464. case GGML_TYPE_F16:
  2465. {
  2466. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2467. } break;
  2468. case GGML_TYPE_F32:
  2469. {
  2470. ((float *)(data))[0] = value;
  2471. } break;
  2472. default:
  2473. {
  2474. GGML_ASSERT(false);
  2475. } break;
  2476. }
  2477. }
  2478. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2479. if (!ggml_is_contiguous(tensor)) {
  2480. int64_t id[4] = { 0, 0, 0, 0 };
  2481. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2482. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2483. }
  2484. switch (tensor->type) {
  2485. case GGML_TYPE_I8:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2488. return ((int8_t *)(tensor->data))[i];
  2489. }
  2490. case GGML_TYPE_I16:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2493. return ((int16_t *)(tensor->data))[i];
  2494. }
  2495. case GGML_TYPE_I32:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2498. return ((int32_t *)(tensor->data))[i];
  2499. }
  2500. case GGML_TYPE_F16:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2503. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2504. }
  2505. case GGML_TYPE_F32:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2508. return ((float *)(tensor->data))[i];
  2509. }
  2510. default:
  2511. {
  2512. GGML_ASSERT(false);
  2513. }
  2514. }
  2515. return 0.0f;
  2516. }
  2517. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2518. if (!ggml_is_contiguous(tensor)) {
  2519. int64_t id[4] = { 0, 0, 0, 0 };
  2520. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2521. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2522. return;
  2523. }
  2524. switch (tensor->type) {
  2525. case GGML_TYPE_I8:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2528. ((int8_t *)(tensor->data))[i] = value;
  2529. } break;
  2530. case GGML_TYPE_I16:
  2531. {
  2532. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2533. ((int16_t *)(tensor->data))[i] = value;
  2534. } break;
  2535. case GGML_TYPE_I32:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2538. ((int32_t *)(tensor->data))[i] = value;
  2539. } break;
  2540. case GGML_TYPE_F16:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2543. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2544. } break;
  2545. case GGML_TYPE_F32:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2548. ((float *)(tensor->data))[i] = value;
  2549. } break;
  2550. default:
  2551. {
  2552. GGML_ASSERT(false);
  2553. } break;
  2554. }
  2555. }
  2556. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2557. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2558. switch (tensor->type) {
  2559. case GGML_TYPE_I8:
  2560. return ((int8_t *) data)[0];
  2561. case GGML_TYPE_I16:
  2562. return ((int16_t *) data)[0];
  2563. case GGML_TYPE_I32:
  2564. return ((int32_t *) data)[0];
  2565. case GGML_TYPE_F16:
  2566. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2567. case GGML_TYPE_F32:
  2568. return ((float *) data)[0];
  2569. default:
  2570. GGML_ASSERT(false);
  2571. }
  2572. return 0.0f;
  2573. }
  2574. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2575. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2576. switch (tensor->type) {
  2577. case GGML_TYPE_I8:
  2578. {
  2579. ((int8_t *)(data))[0] = value;
  2580. } break;
  2581. case GGML_TYPE_I16:
  2582. {
  2583. ((int16_t *)(data))[0] = value;
  2584. } break;
  2585. case GGML_TYPE_I32:
  2586. {
  2587. ((int32_t *)(data))[0] = value;
  2588. } break;
  2589. case GGML_TYPE_F16:
  2590. {
  2591. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2592. } break;
  2593. case GGML_TYPE_F32:
  2594. {
  2595. ((float *)(data))[0] = value;
  2596. } break;
  2597. default:
  2598. {
  2599. GGML_ASSERT(false);
  2600. } break;
  2601. }
  2602. }
  2603. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2604. return tensor->data;
  2605. }
  2606. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2607. assert(tensor->type == GGML_TYPE_F32);
  2608. return (float *)(tensor->data);
  2609. }
  2610. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2611. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2612. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2613. }
  2614. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2615. return tensor->name;
  2616. }
  2617. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2618. strncpy(tensor->name, name, sizeof(tensor->name));
  2619. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2620. return tensor;
  2621. }
  2622. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2623. va_list args;
  2624. va_start(args, fmt);
  2625. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2626. va_end(args);
  2627. return tensor;
  2628. }
  2629. struct ggml_tensor * ggml_view_tensor(
  2630. struct ggml_context * ctx,
  2631. struct ggml_tensor * src) {
  2632. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2633. ggml_format_name(result, "%s (view)", src->name);
  2634. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2635. result->nb[i] = src->nb[i];
  2636. }
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2640. struct ggml_object * obj = ctx->objects_begin;
  2641. char * const mem_buffer = ctx->mem_buffer;
  2642. while (obj != NULL) {
  2643. if (obj->type == GGML_OBJECT_TENSOR) {
  2644. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2645. }
  2646. obj = obj->next;
  2647. }
  2648. return NULL;
  2649. }
  2650. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2651. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2652. obj = obj->next;
  2653. char * const mem_buffer = ctx->mem_buffer;
  2654. while (obj != NULL) {
  2655. if (obj->type == GGML_OBJECT_TENSOR) {
  2656. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2657. }
  2658. obj = obj->next;
  2659. }
  2660. return NULL;
  2661. }
  2662. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2663. struct ggml_object * obj = ctx->objects_begin;
  2664. char * const mem_buffer = ctx->mem_buffer;
  2665. while (obj != NULL) {
  2666. if (obj->type == GGML_OBJECT_TENSOR) {
  2667. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2668. if (strcmp(cur->name, name) == 0) {
  2669. return cur;
  2670. }
  2671. }
  2672. obj = obj->next;
  2673. }
  2674. return NULL;
  2675. }
  2676. ////////////////////////////////////////////////////////////////////////////////
  2677. // ggml_dup
  2678. static struct ggml_tensor * ggml_dup_impl(
  2679. struct ggml_context * ctx,
  2680. struct ggml_tensor * a,
  2681. bool inplace) {
  2682. bool is_node = false;
  2683. if (!inplace && (a->grad)) {
  2684. is_node = true;
  2685. }
  2686. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2687. result->op = GGML_OP_DUP;
  2688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2689. result->src[0] = a;
  2690. return result;
  2691. }
  2692. struct ggml_tensor * ggml_dup(
  2693. struct ggml_context * ctx,
  2694. struct ggml_tensor * a) {
  2695. return ggml_dup_impl(ctx, a, false);
  2696. }
  2697. struct ggml_tensor * ggml_dup_inplace(
  2698. struct ggml_context * ctx,
  2699. struct ggml_tensor * a) {
  2700. return ggml_dup_impl(ctx, a, true);
  2701. }
  2702. // ggml_add
  2703. static struct ggml_tensor * ggml_add_impl(
  2704. struct ggml_context * ctx,
  2705. struct ggml_tensor * a,
  2706. struct ggml_tensor * b,
  2707. bool inplace) {
  2708. GGML_ASSERT(ggml_can_repeat(b, a));
  2709. bool is_node = false;
  2710. if (!inplace && (a->grad || b->grad)) {
  2711. // TODO: support backward pass for broadcasting
  2712. GGML_ASSERT(ggml_are_same_shape(a, b));
  2713. is_node = true;
  2714. }
  2715. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2716. result->op = GGML_OP_ADD;
  2717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2718. result->src[0] = a;
  2719. result->src[1] = b;
  2720. return result;
  2721. }
  2722. struct ggml_tensor * ggml_add(
  2723. struct ggml_context * ctx,
  2724. struct ggml_tensor * a,
  2725. struct ggml_tensor * b) {
  2726. return ggml_add_impl(ctx, a, b, false);
  2727. }
  2728. struct ggml_tensor * ggml_add_inplace(
  2729. struct ggml_context * ctx,
  2730. struct ggml_tensor * a,
  2731. struct ggml_tensor * b) {
  2732. return ggml_add_impl(ctx, a, b, true);
  2733. }
  2734. // ggml_add_cast
  2735. static struct ggml_tensor * ggml_add_cast_impl(
  2736. struct ggml_context * ctx,
  2737. struct ggml_tensor * a,
  2738. struct ggml_tensor * b,
  2739. enum ggml_type type) {
  2740. // TODO: support less-strict constraint
  2741. // GGML_ASSERT(ggml_can_repeat(b, a));
  2742. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2743. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2744. bool is_node = false;
  2745. if (a->grad || b->grad) {
  2746. // TODO: support backward pass for broadcasting
  2747. GGML_ASSERT(ggml_are_same_shape(a, b));
  2748. is_node = true;
  2749. }
  2750. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2751. result->op = GGML_OP_ADD;
  2752. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2753. result->src[0] = a;
  2754. result->src[1] = b;
  2755. return result;
  2756. }
  2757. struct ggml_tensor * ggml_add_cast(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a,
  2760. struct ggml_tensor * b,
  2761. enum ggml_type type) {
  2762. return ggml_add_cast_impl(ctx, a, b, type);
  2763. }
  2764. // ggml_add1
  2765. static struct ggml_tensor * ggml_add1_impl(
  2766. struct ggml_context * ctx,
  2767. struct ggml_tensor * a,
  2768. struct ggml_tensor * b,
  2769. bool inplace) {
  2770. GGML_ASSERT(ggml_is_scalar(b));
  2771. GGML_ASSERT(ggml_is_padded_1d(a));
  2772. bool is_node = false;
  2773. if (a->grad || b->grad) {
  2774. is_node = true;
  2775. }
  2776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2777. result->op = GGML_OP_ADD1;
  2778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2779. result->src[0] = a;
  2780. result->src[1] = b;
  2781. return result;
  2782. }
  2783. struct ggml_tensor * ggml_add1(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a,
  2786. struct ggml_tensor * b) {
  2787. return ggml_add1_impl(ctx, a, b, false);
  2788. }
  2789. struct ggml_tensor * ggml_add1_inplace(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a,
  2792. struct ggml_tensor * b) {
  2793. return ggml_add1_impl(ctx, a, b, true);
  2794. }
  2795. // ggml_acc
  2796. static struct ggml_tensor * ggml_acc_impl(
  2797. struct ggml_context * ctx,
  2798. struct ggml_tensor * a,
  2799. struct ggml_tensor * b,
  2800. size_t nb1,
  2801. size_t nb2,
  2802. size_t nb3,
  2803. size_t offset,
  2804. bool inplace) {
  2805. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2806. GGML_ASSERT(ggml_is_contiguous(a));
  2807. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2808. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2809. bool is_node = false;
  2810. if (!inplace && (a->grad || b->grad)) {
  2811. is_node = true;
  2812. }
  2813. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2814. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2815. ggml_set_op_params(result, params, sizeof(params));
  2816. result->op = GGML_OP_ACC;
  2817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2818. result->src[0] = a;
  2819. result->src[1] = b;
  2820. return result;
  2821. }
  2822. struct ggml_tensor * ggml_acc(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. struct ggml_tensor * b,
  2826. size_t nb1,
  2827. size_t nb2,
  2828. size_t nb3,
  2829. size_t offset) {
  2830. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2831. }
  2832. struct ggml_tensor * ggml_acc_inplace(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a,
  2835. struct ggml_tensor * b,
  2836. size_t nb1,
  2837. size_t nb2,
  2838. size_t nb3,
  2839. size_t offset) {
  2840. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2841. }
  2842. // ggml_sub
  2843. static struct ggml_tensor * ggml_sub_impl(
  2844. struct ggml_context * ctx,
  2845. struct ggml_tensor * a,
  2846. struct ggml_tensor * b,
  2847. bool inplace) {
  2848. GGML_ASSERT(ggml_are_same_shape(a, b));
  2849. bool is_node = false;
  2850. if (!inplace && (a->grad || b->grad)) {
  2851. is_node = true;
  2852. }
  2853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2854. result->op = GGML_OP_SUB;
  2855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2856. result->src[0] = a;
  2857. result->src[1] = b;
  2858. return result;
  2859. }
  2860. struct ggml_tensor * ggml_sub(
  2861. struct ggml_context * ctx,
  2862. struct ggml_tensor * a,
  2863. struct ggml_tensor * b) {
  2864. return ggml_sub_impl(ctx, a, b, false);
  2865. }
  2866. struct ggml_tensor * ggml_sub_inplace(
  2867. struct ggml_context * ctx,
  2868. struct ggml_tensor * a,
  2869. struct ggml_tensor * b) {
  2870. return ggml_sub_impl(ctx, a, b, true);
  2871. }
  2872. // ggml_mul
  2873. static struct ggml_tensor * ggml_mul_impl(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a,
  2876. struct ggml_tensor * b,
  2877. bool inplace) {
  2878. GGML_ASSERT(ggml_can_repeat(b, a));
  2879. bool is_node = false;
  2880. if (!inplace && (a->grad || b->grad)) {
  2881. // TODO: support backward pass for broadcasting
  2882. GGML_ASSERT(ggml_are_same_shape(a, b));
  2883. is_node = true;
  2884. }
  2885. if (inplace) {
  2886. GGML_ASSERT(!is_node);
  2887. }
  2888. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2889. result->op = GGML_OP_MUL;
  2890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2891. result->src[0] = a;
  2892. result->src[1] = b;
  2893. return result;
  2894. }
  2895. struct ggml_tensor * ggml_mul(
  2896. struct ggml_context * ctx,
  2897. struct ggml_tensor * a,
  2898. struct ggml_tensor * b) {
  2899. return ggml_mul_impl(ctx, a, b, false);
  2900. }
  2901. struct ggml_tensor * ggml_mul_inplace(
  2902. struct ggml_context * ctx,
  2903. struct ggml_tensor * a,
  2904. struct ggml_tensor * b) {
  2905. return ggml_mul_impl(ctx, a, b, true);
  2906. }
  2907. // ggml_div
  2908. static struct ggml_tensor * ggml_div_impl(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a,
  2911. struct ggml_tensor * b,
  2912. bool inplace) {
  2913. GGML_ASSERT(ggml_can_repeat(b, a));
  2914. bool is_node = false;
  2915. if (!inplace && (a->grad || b->grad)) {
  2916. is_node = true;
  2917. }
  2918. if (inplace) {
  2919. GGML_ASSERT(!is_node);
  2920. }
  2921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2922. result->op = GGML_OP_DIV;
  2923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2924. result->src[0] = a;
  2925. result->src[1] = b;
  2926. return result;
  2927. }
  2928. struct ggml_tensor * ggml_div(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a,
  2931. struct ggml_tensor * b) {
  2932. return ggml_div_impl(ctx, a, b, false);
  2933. }
  2934. struct ggml_tensor * ggml_div_inplace(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. struct ggml_tensor * b) {
  2938. return ggml_div_impl(ctx, a, b, true);
  2939. }
  2940. // ggml_sqr
  2941. static struct ggml_tensor * ggml_sqr_impl(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a,
  2944. bool inplace) {
  2945. bool is_node = false;
  2946. if (!inplace && (a->grad)) {
  2947. is_node = true;
  2948. }
  2949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2950. result->op = GGML_OP_SQR;
  2951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2952. result->src[0] = a;
  2953. return result;
  2954. }
  2955. struct ggml_tensor * ggml_sqr(
  2956. struct ggml_context * ctx,
  2957. struct ggml_tensor * a) {
  2958. return ggml_sqr_impl(ctx, a, false);
  2959. }
  2960. struct ggml_tensor * ggml_sqr_inplace(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_sqr_impl(ctx, a, true);
  2964. }
  2965. // ggml_sqrt
  2966. static struct ggml_tensor * ggml_sqrt_impl(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a,
  2969. bool inplace) {
  2970. bool is_node = false;
  2971. if (!inplace && (a->grad)) {
  2972. is_node = true;
  2973. }
  2974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2975. result->op = GGML_OP_SQRT;
  2976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2977. result->src[0] = a;
  2978. return result;
  2979. }
  2980. struct ggml_tensor * ggml_sqrt(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a) {
  2983. return ggml_sqrt_impl(ctx, a, false);
  2984. }
  2985. struct ggml_tensor * ggml_sqrt_inplace(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_sqrt_impl(ctx, a, true);
  2989. }
  2990. // ggml_log
  2991. static struct ggml_tensor * ggml_log_impl(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a,
  2994. bool inplace) {
  2995. bool is_node = false;
  2996. if (!inplace && (a->grad)) {
  2997. is_node = true;
  2998. }
  2999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3000. result->op = GGML_OP_LOG;
  3001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3002. result->src[0] = a;
  3003. return result;
  3004. }
  3005. struct ggml_tensor * ggml_log(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_log_impl(ctx, a, false);
  3009. }
  3010. struct ggml_tensor * ggml_log_inplace(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. return ggml_log_impl(ctx, a, true);
  3014. }
  3015. // ggml_sum
  3016. struct ggml_tensor * ggml_sum(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a) {
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. is_node = true;
  3022. }
  3023. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3024. result->op = GGML_OP_SUM;
  3025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3026. result->src[0] = a;
  3027. return result;
  3028. }
  3029. // ggml_sum_rows
  3030. struct ggml_tensor * ggml_sum_rows(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a) {
  3033. bool is_node = false;
  3034. if (a->grad) {
  3035. is_node = true;
  3036. }
  3037. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3038. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3039. ne[i] = a->ne[i];
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3042. result->op = GGML_OP_SUM_ROWS;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_mean
  3048. struct ggml_tensor * ggml_mean(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a) {
  3051. bool is_node = false;
  3052. if (a->grad) {
  3053. GGML_ASSERT(false); // TODO: implement
  3054. is_node = true;
  3055. }
  3056. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3057. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3058. result->op = GGML_OP_MEAN;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src[0] = a;
  3061. return result;
  3062. }
  3063. // ggml_argmax
  3064. struct ggml_tensor * ggml_argmax(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a) {
  3067. GGML_ASSERT(ggml_is_matrix(a));
  3068. bool is_node = false;
  3069. if (a->grad) {
  3070. GGML_ASSERT(false);
  3071. is_node = true;
  3072. }
  3073. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3074. result->op = GGML_OP_ARGMAX;
  3075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3076. result->src[0] = a;
  3077. return result;
  3078. }
  3079. // ggml_repeat
  3080. struct ggml_tensor * ggml_repeat(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a,
  3083. struct ggml_tensor * b) {
  3084. GGML_ASSERT(ggml_can_repeat(a, b));
  3085. bool is_node = false;
  3086. if (a->grad) {
  3087. is_node = true;
  3088. }
  3089. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3090. result->op = GGML_OP_REPEAT;
  3091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3092. result->src[0] = a;
  3093. return result;
  3094. }
  3095. // ggml_repeat_back
  3096. struct ggml_tensor * ggml_repeat_back(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a,
  3099. struct ggml_tensor * b) {
  3100. GGML_ASSERT(ggml_can_repeat(b, a));
  3101. bool is_node = false;
  3102. if (a->grad) {
  3103. is_node = true;
  3104. }
  3105. if (ggml_are_same_shape(a, b) && !is_node) {
  3106. return a;
  3107. }
  3108. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3109. result->op = GGML_OP_REPEAT_BACK;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src[0] = a;
  3112. return result;
  3113. }
  3114. // ggml_concat
  3115. struct ggml_tensor * ggml_concat(
  3116. struct ggml_context* ctx,
  3117. struct ggml_tensor* a,
  3118. struct ggml_tensor* b) {
  3119. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3120. bool is_node = false;
  3121. if (a->grad || b->grad) {
  3122. is_node = true;
  3123. }
  3124. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3125. result->op = GGML_OP_CONCAT;
  3126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3127. result->src[0] = a;
  3128. result->src[1] = b;
  3129. return result;
  3130. }
  3131. // ggml_abs
  3132. struct ggml_tensor * ggml_abs(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3136. }
  3137. struct ggml_tensor * ggml_abs_inplace(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3141. }
  3142. // ggml_sgn
  3143. struct ggml_tensor * ggml_sgn(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a) {
  3146. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3147. }
  3148. struct ggml_tensor * ggml_sgn_inplace(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a) {
  3151. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3152. }
  3153. // ggml_neg
  3154. struct ggml_tensor * ggml_neg(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3158. }
  3159. struct ggml_tensor * ggml_neg_inplace(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a) {
  3162. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3163. }
  3164. // ggml_step
  3165. struct ggml_tensor * ggml_step(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a) {
  3168. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3169. }
  3170. struct ggml_tensor * ggml_step_inplace(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a) {
  3173. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3174. }
  3175. // ggml_tanh
  3176. struct ggml_tensor * ggml_tanh(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a) {
  3179. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3180. }
  3181. struct ggml_tensor * ggml_tanh_inplace(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a) {
  3184. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3185. }
  3186. // ggml_elu
  3187. struct ggml_tensor * ggml_elu(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a) {
  3190. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3191. }
  3192. struct ggml_tensor * ggml_elu_inplace(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3196. }
  3197. // ggml_relu
  3198. struct ggml_tensor * ggml_relu(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3202. }
  3203. struct ggml_tensor * ggml_relu_inplace(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3207. }
  3208. // ggml_leaky_relu
  3209. struct ggml_tensor * ggml_leaky_relu(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3212. bool is_node = false;
  3213. if (!inplace && (a->grad)) {
  3214. is_node = true;
  3215. }
  3216. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3217. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3218. result->op = GGML_OP_LEAKY_RELU;
  3219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3220. result->src[0] = a;
  3221. return result;
  3222. }
  3223. // ggml_gelu
  3224. struct ggml_tensor * ggml_gelu(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a) {
  3227. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3228. }
  3229. struct ggml_tensor * ggml_gelu_inplace(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a) {
  3232. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3233. }
  3234. // ggml_gelu_quick
  3235. struct ggml_tensor * ggml_gelu_quick(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a) {
  3238. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3239. }
  3240. struct ggml_tensor * ggml_gelu_quick_inplace(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a) {
  3243. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3244. }
  3245. // ggml_silu
  3246. struct ggml_tensor * ggml_silu(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3250. }
  3251. struct ggml_tensor * ggml_silu_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3255. }
  3256. // ggml_silu_back
  3257. struct ggml_tensor * ggml_silu_back(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. struct ggml_tensor * b) {
  3261. bool is_node = false;
  3262. if (a->grad || b->grad) {
  3263. // TODO: implement backward
  3264. is_node = true;
  3265. }
  3266. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3267. result->op = GGML_OP_SILU_BACK;
  3268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3269. result->src[0] = a;
  3270. result->src[1] = b;
  3271. return result;
  3272. }
  3273. // ggml hardswish
  3274. struct ggml_tensor * ggml_hardswish(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3278. }
  3279. // ggml hardsigmoid
  3280. struct ggml_tensor * ggml_hardsigmoid(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a) {
  3283. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3284. }
  3285. // ggml_norm
  3286. static struct ggml_tensor * ggml_norm_impl(
  3287. struct ggml_context * ctx,
  3288. struct ggml_tensor * a,
  3289. float eps,
  3290. bool inplace) {
  3291. bool is_node = false;
  3292. if (!inplace && (a->grad)) {
  3293. GGML_ASSERT(false); // TODO: implement backward
  3294. is_node = true;
  3295. }
  3296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3297. ggml_set_op_params(result, &eps, sizeof(eps));
  3298. result->op = GGML_OP_NORM;
  3299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3300. result->src[0] = a;
  3301. return result;
  3302. }
  3303. struct ggml_tensor * ggml_norm(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a,
  3306. float eps) {
  3307. return ggml_norm_impl(ctx, a, eps, false);
  3308. }
  3309. struct ggml_tensor * ggml_norm_inplace(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. float eps) {
  3313. return ggml_norm_impl(ctx, a, eps, true);
  3314. }
  3315. // ggml_rms_norm
  3316. static struct ggml_tensor * ggml_rms_norm_impl(
  3317. struct ggml_context * ctx,
  3318. struct ggml_tensor * a,
  3319. float eps,
  3320. bool inplace) {
  3321. bool is_node = false;
  3322. if (!inplace && (a->grad)) {
  3323. is_node = true;
  3324. }
  3325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3326. ggml_set_op_params(result, &eps, sizeof(eps));
  3327. result->op = GGML_OP_RMS_NORM;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src[0] = a;
  3330. return result;
  3331. }
  3332. struct ggml_tensor * ggml_rms_norm(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. float eps) {
  3336. return ggml_rms_norm_impl(ctx, a, eps, false);
  3337. }
  3338. struct ggml_tensor * ggml_rms_norm_inplace(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a,
  3341. float eps) {
  3342. return ggml_rms_norm_impl(ctx, a, eps, true);
  3343. }
  3344. // ggml_rms_norm_back
  3345. struct ggml_tensor * ggml_rms_norm_back(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b,
  3349. float eps) {
  3350. bool is_node = false;
  3351. if (a->grad) {
  3352. // TODO: implement backward
  3353. is_node = true;
  3354. }
  3355. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3356. ggml_set_op_params(result, &eps, sizeof(eps));
  3357. result->op = GGML_OP_RMS_NORM_BACK;
  3358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3359. result->src[0] = a;
  3360. result->src[1] = b;
  3361. return result;
  3362. }
  3363. // ggml_group_norm
  3364. static struct ggml_tensor * ggml_group_norm_impl(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a,
  3367. int n_groups,
  3368. bool inplace) {
  3369. bool is_node = false;
  3370. if (!inplace && (a->grad)) {
  3371. GGML_ASSERT(false); // TODO: implement backward
  3372. is_node = true;
  3373. }
  3374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3375. result->op_params[0] = n_groups;
  3376. result->op = GGML_OP_GROUP_NORM;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. return result;
  3380. }
  3381. struct ggml_tensor * ggml_group_norm(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. int n_groups) {
  3385. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3386. }
  3387. struct ggml_tensor * ggml_group_norm_inplace(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. int n_groups) {
  3391. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3392. }
  3393. // ggml_mul_mat
  3394. struct ggml_tensor * ggml_mul_mat(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. struct ggml_tensor * b) {
  3398. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3399. GGML_ASSERT(!ggml_is_transposed(a));
  3400. bool is_node = false;
  3401. if (a->grad || b->grad) {
  3402. is_node = true;
  3403. }
  3404. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3406. result->op = GGML_OP_MUL_MAT;
  3407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3408. result->src[0] = a;
  3409. result->src[1] = b;
  3410. return result;
  3411. }
  3412. void ggml_mul_mat_set_prec(
  3413. struct ggml_tensor * a,
  3414. enum ggml_prec prec) {
  3415. const int32_t prec_i32 = (int32_t) prec;
  3416. ggml_set_op_params_i32(a, 0, prec_i32);
  3417. }
  3418. // ggml_mul_mat_id
  3419. struct ggml_tensor * ggml_mul_mat_id(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * const as[],
  3422. int n_as,
  3423. struct ggml_tensor * ids,
  3424. int id,
  3425. struct ggml_tensor * b) {
  3426. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3427. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3428. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3429. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3430. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3431. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3432. bool is_node = false;
  3433. if (as[0]->grad || b->grad) {
  3434. is_node = true;
  3435. }
  3436. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3437. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3438. ggml_set_op_params_i32(result, 0, id);
  3439. ggml_set_op_params_i32(result, 1, n_as);
  3440. result->op = GGML_OP_MUL_MAT_ID;
  3441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3442. result->src[0] = ids;
  3443. result->src[1] = b;
  3444. for (int i = 0; i < n_as; i++) {
  3445. struct ggml_tensor * a = as[i];
  3446. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3447. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3448. GGML_ASSERT(!ggml_is_transposed(a));
  3449. result->src[i + 2] = a;
  3450. }
  3451. return result;
  3452. }
  3453. // ggml_out_prod
  3454. struct ggml_tensor * ggml_out_prod(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b) {
  3458. GGML_ASSERT(ggml_can_out_prod(a, b));
  3459. GGML_ASSERT(!ggml_is_transposed(a));
  3460. bool is_node = false;
  3461. if (a->grad || b->grad) {
  3462. is_node = true;
  3463. }
  3464. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3465. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3466. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3467. result->op = GGML_OP_OUT_PROD;
  3468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3469. result->src[0] = a;
  3470. result->src[1] = b;
  3471. return result;
  3472. }
  3473. // ggml_scale
  3474. static struct ggml_tensor * ggml_scale_impl(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. float s,
  3478. bool inplace) {
  3479. GGML_ASSERT(ggml_is_padded_1d(a));
  3480. bool is_node = false;
  3481. if (a->grad) {
  3482. is_node = true;
  3483. }
  3484. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3485. ggml_set_op_params(result, &s, sizeof(s));
  3486. result->op = GGML_OP_SCALE;
  3487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3488. result->src[0] = a;
  3489. return result;
  3490. }
  3491. struct ggml_tensor * ggml_scale(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. float s) {
  3495. return ggml_scale_impl(ctx, a, s, false);
  3496. }
  3497. struct ggml_tensor * ggml_scale_inplace(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * a,
  3500. float s) {
  3501. return ggml_scale_impl(ctx, a, s, true);
  3502. }
  3503. // ggml_set
  3504. static struct ggml_tensor * ggml_set_impl(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b,
  3508. size_t nb1,
  3509. size_t nb2,
  3510. size_t nb3,
  3511. size_t offset,
  3512. bool inplace) {
  3513. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3514. bool is_node = false;
  3515. if (a->grad || b->grad) {
  3516. is_node = true;
  3517. }
  3518. // make a view of the destination
  3519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3520. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3521. ggml_set_op_params(result, params, sizeof(params));
  3522. result->op = GGML_OP_SET;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src[0] = a;
  3525. result->src[1] = b;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_set(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b,
  3532. size_t nb1,
  3533. size_t nb2,
  3534. size_t nb3,
  3535. size_t offset) {
  3536. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3537. }
  3538. struct ggml_tensor * ggml_set_inplace(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b,
  3542. size_t nb1,
  3543. size_t nb2,
  3544. size_t nb3,
  3545. size_t offset) {
  3546. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3547. }
  3548. struct ggml_tensor * ggml_set_1d(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a,
  3551. struct ggml_tensor * b,
  3552. size_t offset) {
  3553. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3554. }
  3555. struct ggml_tensor * ggml_set_1d_inplace(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. struct ggml_tensor * b,
  3559. size_t offset) {
  3560. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3561. }
  3562. struct ggml_tensor * ggml_set_2d(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a,
  3565. struct ggml_tensor * b,
  3566. size_t nb1,
  3567. size_t offset) {
  3568. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3569. }
  3570. struct ggml_tensor * ggml_set_2d_inplace(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b,
  3574. size_t nb1,
  3575. size_t offset) {
  3576. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3577. }
  3578. // ggml_cpy
  3579. static struct ggml_tensor * ggml_cpy_impl(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. struct ggml_tensor * b) {
  3583. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3584. bool is_node = false;
  3585. if (a->grad || b->grad) {
  3586. // inplace is false and either one have a grad
  3587. is_node = true;
  3588. }
  3589. // make a view of the destination
  3590. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3591. if (strlen(b->name) > 0) {
  3592. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3593. } else {
  3594. ggml_format_name(result, "%s (copy)", a->name);
  3595. }
  3596. result->op = GGML_OP_CPY;
  3597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3598. result->src[0] = a;
  3599. result->src[1] = b;
  3600. return result;
  3601. }
  3602. struct ggml_tensor * ggml_cpy(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a,
  3605. struct ggml_tensor * b) {
  3606. return ggml_cpy_impl(ctx, a, b);
  3607. }
  3608. struct ggml_tensor * ggml_cast(
  3609. struct ggml_context * ctx,
  3610. struct ggml_tensor * a,
  3611. enum ggml_type type) {
  3612. bool is_node = false;
  3613. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3614. ggml_format_name(result, "%s (copy)", a->name);
  3615. result->op = GGML_OP_CPY;
  3616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3617. result->src[0] = a;
  3618. result->src[1] = result;
  3619. return result;
  3620. }
  3621. // ggml_cont
  3622. static struct ggml_tensor * ggml_cont_impl(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. bool is_node = false;
  3626. if (a->grad) {
  3627. is_node = true;
  3628. }
  3629. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3630. ggml_format_name(result, "%s (cont)", a->name);
  3631. result->op = GGML_OP_CONT;
  3632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3633. result->src[0] = a;
  3634. return result;
  3635. }
  3636. struct ggml_tensor * ggml_cont(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a) {
  3639. return ggml_cont_impl(ctx, a);
  3640. }
  3641. // make contiguous, with new shape
  3642. GGML_API struct ggml_tensor * ggml_cont_1d(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a,
  3645. int64_t ne0) {
  3646. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3647. }
  3648. GGML_API struct ggml_tensor * ggml_cont_2d(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a,
  3651. int64_t ne0,
  3652. int64_t ne1) {
  3653. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3654. }
  3655. GGML_API struct ggml_tensor * ggml_cont_3d(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a,
  3658. int64_t ne0,
  3659. int64_t ne1,
  3660. int64_t ne2) {
  3661. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3662. }
  3663. struct ggml_tensor * ggml_cont_4d(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. int64_t ne0,
  3667. int64_t ne1,
  3668. int64_t ne2,
  3669. int64_t ne3) {
  3670. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3671. bool is_node = false;
  3672. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3673. ggml_format_name(result, "%s (cont)", a->name);
  3674. result->op = GGML_OP_CONT;
  3675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3676. result->src[0] = a;
  3677. return result;
  3678. }
  3679. // ggml_reshape
  3680. struct ggml_tensor * ggml_reshape(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. struct ggml_tensor * b) {
  3684. GGML_ASSERT(ggml_is_contiguous(a));
  3685. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3686. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3687. bool is_node = false;
  3688. if (a->grad) {
  3689. is_node = true;
  3690. }
  3691. if (b->grad) {
  3692. // gradient propagation is not supported
  3693. //GGML_ASSERT(false);
  3694. }
  3695. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3696. ggml_format_name(result, "%s (reshaped)", a->name);
  3697. result->op = GGML_OP_RESHAPE;
  3698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3699. result->src[0] = a;
  3700. return result;
  3701. }
  3702. struct ggml_tensor * ggml_reshape_1d(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. int64_t ne0) {
  3706. GGML_ASSERT(ggml_is_contiguous(a));
  3707. GGML_ASSERT(ggml_nelements(a) == ne0);
  3708. bool is_node = false;
  3709. if (a->grad) {
  3710. is_node = true;
  3711. }
  3712. const int64_t ne[1] = { ne0 };
  3713. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3714. ggml_format_name(result, "%s (reshaped)", a->name);
  3715. result->op = GGML_OP_RESHAPE;
  3716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3717. result->src[0] = a;
  3718. return result;
  3719. }
  3720. struct ggml_tensor * ggml_reshape_2d(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a,
  3723. int64_t ne0,
  3724. int64_t ne1) {
  3725. GGML_ASSERT(ggml_is_contiguous(a));
  3726. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3727. bool is_node = false;
  3728. if (a->grad) {
  3729. is_node = true;
  3730. }
  3731. const int64_t ne[2] = { ne0, ne1 };
  3732. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3733. ggml_format_name(result, "%s (reshaped)", a->name);
  3734. result->op = GGML_OP_RESHAPE;
  3735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3736. result->src[0] = a;
  3737. return result;
  3738. }
  3739. struct ggml_tensor * ggml_reshape_3d(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. int64_t ne0,
  3743. int64_t ne1,
  3744. int64_t ne2) {
  3745. GGML_ASSERT(ggml_is_contiguous(a));
  3746. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3747. bool is_node = false;
  3748. if (a->grad) {
  3749. is_node = true;
  3750. }
  3751. const int64_t ne[3] = { ne0, ne1, ne2 };
  3752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3753. ggml_format_name(result, "%s (reshaped)", a->name);
  3754. result->op = GGML_OP_RESHAPE;
  3755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3756. result->src[0] = a;
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_reshape_4d(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. int64_t ne0,
  3763. int64_t ne1,
  3764. int64_t ne2,
  3765. int64_t ne3) {
  3766. GGML_ASSERT(ggml_is_contiguous(a));
  3767. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3768. bool is_node = false;
  3769. if (a->grad) {
  3770. is_node = true;
  3771. }
  3772. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3774. ggml_format_name(result, "%s (reshaped)", a->name);
  3775. result->op = GGML_OP_RESHAPE;
  3776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3777. result->src[0] = a;
  3778. return result;
  3779. }
  3780. static struct ggml_tensor * ggml_view_impl(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. int n_dims,
  3784. const int64_t * ne,
  3785. size_t offset) {
  3786. bool is_node = false;
  3787. if (a->grad) {
  3788. is_node = true;
  3789. }
  3790. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3791. ggml_format_name(result, "%s (view)", a->name);
  3792. ggml_set_op_params(result, &offset, sizeof(offset));
  3793. result->op = GGML_OP_VIEW;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src[0] = a;
  3796. return result;
  3797. }
  3798. // ggml_view_1d
  3799. struct ggml_tensor * ggml_view_1d(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. int64_t ne0,
  3803. size_t offset) {
  3804. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3805. return result;
  3806. }
  3807. // ggml_view_2d
  3808. struct ggml_tensor * ggml_view_2d(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. int64_t ne0,
  3812. int64_t ne1,
  3813. size_t nb1,
  3814. size_t offset) {
  3815. const int64_t ne[2] = { ne0, ne1 };
  3816. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3817. result->nb[1] = nb1;
  3818. result->nb[2] = result->nb[1]*ne1;
  3819. result->nb[3] = result->nb[2];
  3820. return result;
  3821. }
  3822. // ggml_view_3d
  3823. struct ggml_tensor * ggml_view_3d(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a,
  3826. int64_t ne0,
  3827. int64_t ne1,
  3828. int64_t ne2,
  3829. size_t nb1,
  3830. size_t nb2,
  3831. size_t offset) {
  3832. const int64_t ne[3] = { ne0, ne1, ne2 };
  3833. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3834. result->nb[1] = nb1;
  3835. result->nb[2] = nb2;
  3836. result->nb[3] = result->nb[2]*ne2;
  3837. return result;
  3838. }
  3839. // ggml_view_4d
  3840. struct ggml_tensor * ggml_view_4d(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. int64_t ne0,
  3844. int64_t ne1,
  3845. int64_t ne2,
  3846. int64_t ne3,
  3847. size_t nb1,
  3848. size_t nb2,
  3849. size_t nb3,
  3850. size_t offset) {
  3851. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3852. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3853. result->nb[1] = nb1;
  3854. result->nb[2] = nb2;
  3855. result->nb[3] = nb3;
  3856. return result;
  3857. }
  3858. // ggml_permute
  3859. struct ggml_tensor * ggml_permute(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int axis0,
  3863. int axis1,
  3864. int axis2,
  3865. int axis3) {
  3866. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3867. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3868. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3869. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3870. GGML_ASSERT(axis0 != axis1);
  3871. GGML_ASSERT(axis0 != axis2);
  3872. GGML_ASSERT(axis0 != axis3);
  3873. GGML_ASSERT(axis1 != axis2);
  3874. GGML_ASSERT(axis1 != axis3);
  3875. GGML_ASSERT(axis2 != axis3);
  3876. bool is_node = false;
  3877. if (a->grad) {
  3878. is_node = true;
  3879. }
  3880. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3881. ggml_format_name(result, "%s (permuted)", a->name);
  3882. int ne[GGML_MAX_DIMS];
  3883. int nb[GGML_MAX_DIMS];
  3884. ne[axis0] = a->ne[0];
  3885. ne[axis1] = a->ne[1];
  3886. ne[axis2] = a->ne[2];
  3887. ne[axis3] = a->ne[3];
  3888. nb[axis0] = a->nb[0];
  3889. nb[axis1] = a->nb[1];
  3890. nb[axis2] = a->nb[2];
  3891. nb[axis3] = a->nb[3];
  3892. result->ne[0] = ne[0];
  3893. result->ne[1] = ne[1];
  3894. result->ne[2] = ne[2];
  3895. result->ne[3] = ne[3];
  3896. result->nb[0] = nb[0];
  3897. result->nb[1] = nb[1];
  3898. result->nb[2] = nb[2];
  3899. result->nb[3] = nb[3];
  3900. result->op = GGML_OP_PERMUTE;
  3901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3902. result->src[0] = a;
  3903. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3904. ggml_set_op_params(result, params, sizeof(params));
  3905. return result;
  3906. }
  3907. // ggml_transpose
  3908. struct ggml_tensor * ggml_transpose(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a) {
  3911. bool is_node = false;
  3912. if (a->grad) {
  3913. is_node = true;
  3914. }
  3915. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3916. ggml_format_name(result, "%s (transposed)", a->name);
  3917. result->ne[0] = a->ne[1];
  3918. result->ne[1] = a->ne[0];
  3919. result->nb[0] = a->nb[1];
  3920. result->nb[1] = a->nb[0];
  3921. result->op = GGML_OP_TRANSPOSE;
  3922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3923. result->src[0] = a;
  3924. return result;
  3925. }
  3926. // ggml_get_rows
  3927. struct ggml_tensor * ggml_get_rows(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. struct ggml_tensor * b) {
  3931. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3932. GGML_ASSERT(b->ne[3] == 1);
  3933. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3934. bool is_node = false;
  3935. if (a->grad || b->grad) {
  3936. is_node = true;
  3937. }
  3938. // TODO: implement non F32 return
  3939. enum ggml_type type = GGML_TYPE_F32;
  3940. if (a->type == GGML_TYPE_I32) {
  3941. type = a->type;
  3942. }
  3943. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3944. result->op = GGML_OP_GET_ROWS;
  3945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3946. result->src[0] = a;
  3947. result->src[1] = b;
  3948. return result;
  3949. }
  3950. // ggml_get_rows_back
  3951. struct ggml_tensor * ggml_get_rows_back(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. struct ggml_tensor * b,
  3955. struct ggml_tensor * c) {
  3956. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3957. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3958. bool is_node = false;
  3959. if (a->grad || b->grad) {
  3960. is_node = true;
  3961. }
  3962. // TODO: implement non F32 return
  3963. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3964. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3965. result->op = GGML_OP_GET_ROWS_BACK;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src[0] = a;
  3968. result->src[1] = b;
  3969. return result;
  3970. }
  3971. // ggml_diag
  3972. struct ggml_tensor * ggml_diag(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a) {
  3975. GGML_ASSERT(a->ne[1] == 1);
  3976. bool is_node = false;
  3977. if (a->grad) {
  3978. is_node = true;
  3979. }
  3980. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3981. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3982. result->op = GGML_OP_DIAG;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. return result;
  3986. }
  3987. // ggml_diag_mask_inf
  3988. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. int n_past,
  3992. bool inplace) {
  3993. bool is_node = false;
  3994. if (a->grad) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. int32_t params[] = { n_past };
  3999. ggml_set_op_params(result, params, sizeof(params));
  4000. result->op = GGML_OP_DIAG_MASK_INF;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src[0] = a;
  4003. return result;
  4004. }
  4005. struct ggml_tensor * ggml_diag_mask_inf(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. int n_past) {
  4009. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4010. }
  4011. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. int n_past) {
  4015. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4016. }
  4017. // ggml_diag_mask_zero
  4018. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a,
  4021. int n_past,
  4022. bool inplace) {
  4023. bool is_node = false;
  4024. if (a->grad) {
  4025. is_node = true;
  4026. }
  4027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4028. int32_t params[] = { n_past };
  4029. ggml_set_op_params(result, params, sizeof(params));
  4030. result->op = GGML_OP_DIAG_MASK_ZERO;
  4031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4032. result->src[0] = a;
  4033. return result;
  4034. }
  4035. struct ggml_tensor * ggml_diag_mask_zero(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. int n_past) {
  4039. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4040. }
  4041. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. int n_past) {
  4045. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4046. }
  4047. // ggml_soft_max
  4048. static struct ggml_tensor * ggml_soft_max_impl(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. struct ggml_tensor * mask,
  4052. float scale,
  4053. bool inplace) {
  4054. GGML_ASSERT(ggml_is_contiguous(a));
  4055. if (mask) {
  4056. GGML_ASSERT(ggml_is_contiguous(mask));
  4057. GGML_ASSERT(mask->ne[2] == 1);
  4058. GGML_ASSERT(mask->ne[3] == 1);
  4059. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4060. }
  4061. bool is_node = false;
  4062. if (a->grad) {
  4063. is_node = true;
  4064. }
  4065. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4066. float params[] = { scale };
  4067. ggml_set_op_params(result, params, sizeof(params));
  4068. result->op = GGML_OP_SOFT_MAX;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. result->src[1] = mask;
  4072. return result;
  4073. }
  4074. struct ggml_tensor * ggml_soft_max(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a) {
  4077. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4078. }
  4079. struct ggml_tensor * ggml_soft_max_inplace(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a) {
  4082. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4083. }
  4084. struct ggml_tensor * ggml_soft_max_ext(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. struct ggml_tensor * mask,
  4088. float scale) {
  4089. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4090. }
  4091. // ggml_soft_max_back
  4092. static struct ggml_tensor * ggml_soft_max_back_impl(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. struct ggml_tensor * b,
  4096. bool inplace) {
  4097. bool is_node = false;
  4098. if (a->grad || b->grad) {
  4099. is_node = true; // TODO : implement backward pass
  4100. }
  4101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4102. result->op = GGML_OP_SOFT_MAX_BACK;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. result->src[1] = b;
  4106. return result;
  4107. }
  4108. struct ggml_tensor * ggml_soft_max_back(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b) {
  4112. return ggml_soft_max_back_impl(ctx, a, b, false);
  4113. }
  4114. struct ggml_tensor * ggml_soft_max_back_inplace(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. struct ggml_tensor * b) {
  4118. return ggml_soft_max_back_impl(ctx, a, b, true);
  4119. }
  4120. // ggml_rope
  4121. static struct ggml_tensor * ggml_rope_impl(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b,
  4125. int n_dims,
  4126. int mode,
  4127. int n_ctx,
  4128. int n_orig_ctx,
  4129. float freq_base,
  4130. float freq_scale,
  4131. float ext_factor,
  4132. float attn_factor,
  4133. float beta_fast,
  4134. float beta_slow,
  4135. float xpos_base,
  4136. bool xpos_down,
  4137. bool inplace) {
  4138. GGML_ASSERT(ggml_is_vector(b));
  4139. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4140. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4141. bool is_node = false;
  4142. if (a->grad) {
  4143. is_node = true;
  4144. }
  4145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4146. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4147. memcpy(params + 5, &freq_base, sizeof(float));
  4148. memcpy(params + 6, &freq_scale, sizeof(float));
  4149. memcpy(params + 7, &ext_factor, sizeof(float));
  4150. memcpy(params + 8, &attn_factor, sizeof(float));
  4151. memcpy(params + 9, &beta_fast, sizeof(float));
  4152. memcpy(params + 10, &beta_slow, sizeof(float));
  4153. memcpy(params + 11, &xpos_base, sizeof(float));
  4154. memcpy(params + 12, &xpos_down, sizeof(bool));
  4155. ggml_set_op_params(result, params, sizeof(params));
  4156. result->op = GGML_OP_ROPE;
  4157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4158. result->src[0] = a;
  4159. result->src[1] = b;
  4160. return result;
  4161. }
  4162. struct ggml_tensor * ggml_rope(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b,
  4166. int n_dims,
  4167. int mode,
  4168. int n_ctx) {
  4169. return ggml_rope_impl(
  4170. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4171. );
  4172. }
  4173. struct ggml_tensor * ggml_rope_inplace(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. struct ggml_tensor * b,
  4177. int n_dims,
  4178. int mode,
  4179. int n_ctx) {
  4180. return ggml_rope_impl(
  4181. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4182. );
  4183. }
  4184. struct ggml_tensor * ggml_rope_custom(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b,
  4188. int n_dims,
  4189. int mode,
  4190. int n_ctx,
  4191. int n_orig_ctx,
  4192. float freq_base,
  4193. float freq_scale,
  4194. float ext_factor,
  4195. float attn_factor,
  4196. float beta_fast,
  4197. float beta_slow) {
  4198. return ggml_rope_impl(
  4199. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4200. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4201. );
  4202. }
  4203. struct ggml_tensor * ggml_rope_custom_inplace(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. struct ggml_tensor * b,
  4207. int n_dims,
  4208. int mode,
  4209. int n_ctx,
  4210. int n_orig_ctx,
  4211. float freq_base,
  4212. float freq_scale,
  4213. float ext_factor,
  4214. float attn_factor,
  4215. float beta_fast,
  4216. float beta_slow) {
  4217. return ggml_rope_impl(
  4218. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4219. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4220. );
  4221. }
  4222. struct ggml_tensor * ggml_rope_xpos_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. int n_dims,
  4227. float base,
  4228. bool down) {
  4229. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4230. }
  4231. // ggml_rope_back
  4232. struct ggml_tensor * ggml_rope_back(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a,
  4235. struct ggml_tensor * b,
  4236. int n_dims,
  4237. int mode,
  4238. int n_ctx,
  4239. int n_orig_ctx,
  4240. float freq_base,
  4241. float freq_scale,
  4242. float ext_factor,
  4243. float attn_factor,
  4244. float beta_fast,
  4245. float beta_slow,
  4246. float xpos_base,
  4247. bool xpos_down) {
  4248. GGML_ASSERT(ggml_is_vector(b));
  4249. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4250. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4251. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4252. bool is_node = false;
  4253. if (a->grad) {
  4254. is_node = false; // TODO: implement backward
  4255. }
  4256. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4257. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4258. memcpy(params + 5, &freq_base, sizeof(float));
  4259. memcpy(params + 6, &freq_scale, sizeof(float));
  4260. memcpy(params + 7, &ext_factor, sizeof(float));
  4261. memcpy(params + 8, &attn_factor, sizeof(float));
  4262. memcpy(params + 9, &beta_fast, sizeof(float));
  4263. memcpy(params + 10, &beta_slow, sizeof(float));
  4264. memcpy(params + 11, &xpos_base, sizeof(float));
  4265. memcpy(params + 12, &xpos_down, sizeof(bool));
  4266. ggml_set_op_params(result, params, sizeof(params));
  4267. result->op = GGML_OP_ROPE_BACK;
  4268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4269. result->src[0] = a;
  4270. result->src[1] = b;
  4271. return result;
  4272. }
  4273. // ggml_alibi
  4274. struct ggml_tensor * ggml_alibi(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. int n_past,
  4278. int n_head,
  4279. float bias_max) {
  4280. GGML_ASSERT(n_past >= 0);
  4281. bool is_node = false;
  4282. if (a->grad) {
  4283. GGML_ASSERT(false); // TODO: implement backward
  4284. is_node = true;
  4285. }
  4286. // TODO: when implement backward, fix this:
  4287. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4288. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4289. int32_t op_params[3] = { n_past, n_head };
  4290. memcpy(op_params + 2, &bias_max, sizeof(float));
  4291. ggml_set_op_params(result, op_params, sizeof(op_params));
  4292. result->op = GGML_OP_ALIBI;
  4293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4294. result->src[0] = a;
  4295. return result;
  4296. }
  4297. // ggml_clamp
  4298. struct ggml_tensor * ggml_clamp(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a,
  4301. float min,
  4302. float max) {
  4303. bool is_node = false;
  4304. if (a->grad) {
  4305. GGML_ASSERT(false); // TODO: implement backward
  4306. is_node = true;
  4307. }
  4308. // TODO: when implement backward, fix this:
  4309. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4310. float params[] = { min, max };
  4311. ggml_set_op_params(result, params, sizeof(params));
  4312. result->op = GGML_OP_CLAMP;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src[0] = a;
  4315. return result;
  4316. }
  4317. // ggml_conv_1d
  4318. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4319. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4320. }
  4321. GGML_API struct ggml_tensor * ggml_conv_1d(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b,
  4325. int s0,
  4326. int p0,
  4327. int d0) {
  4328. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4329. struct ggml_tensor * result =
  4330. ggml_mul_mat(ctx,
  4331. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4332. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4333. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4334. return result;
  4335. }
  4336. // ggml_conv_1d_ph
  4337. struct ggml_tensor* ggml_conv_1d_ph(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. int s,
  4342. int d) {
  4343. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4344. }
  4345. // ggml_conv_transpose_1d
  4346. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4347. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4348. }
  4349. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b,
  4353. int s0,
  4354. int p0,
  4355. int d0) {
  4356. GGML_ASSERT(ggml_is_matrix(b));
  4357. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4358. GGML_ASSERT(a->ne[3] == 1);
  4359. GGML_ASSERT(p0 == 0);
  4360. GGML_ASSERT(d0 == 1);
  4361. bool is_node = false;
  4362. if (a->grad || b->grad) {
  4363. GGML_ASSERT(false); // TODO: implement backward
  4364. is_node = true;
  4365. }
  4366. const int64_t ne[4] = {
  4367. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4368. a->ne[1], b->ne[2], 1,
  4369. };
  4370. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4371. int32_t params[] = { s0, p0, d0 };
  4372. ggml_set_op_params(result, params, sizeof(params));
  4373. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src[0] = a;
  4376. result->src[1] = b;
  4377. return result;
  4378. }
  4379. // ggml_conv_depthwise
  4380. struct ggml_tensor * ggml_conv_depthwise_2d(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b,
  4384. int s0,
  4385. int s1,
  4386. int p0,
  4387. int p1,
  4388. int d0,
  4389. int d1) {
  4390. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4391. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4392. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4393. s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
  4394. struct ggml_tensor * result =
  4395. ggml_mul_mat(ctx,
  4396. ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4397. ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4398. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4399. return result;
  4400. }
  4401. // ggml_conv_2d
  4402. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4403. // a: [OC,IC, KH, KW]
  4404. // b: [N, IC, IH, IW]
  4405. // result: [N, OH, OW, IC*KH*KW]
  4406. struct ggml_tensor * ggml_im2col(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. struct ggml_tensor * b,
  4410. int s0,
  4411. int s1,
  4412. int p0,
  4413. int p1,
  4414. int d0,
  4415. int d1,
  4416. bool is_2D) {
  4417. if(is_2D) {
  4418. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4419. } else {
  4420. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4421. }
  4422. bool is_node = false;
  4423. if (a->grad || b->grad) {
  4424. GGML_ASSERT(false); // TODO: implement backward
  4425. is_node = true;
  4426. }
  4427. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4428. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4429. const int64_t ne[4] = {
  4430. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4431. OW,
  4432. is_2D ? OH : b->ne[2],
  4433. is_2D ? b->ne[3] : 1,
  4434. };
  4435. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4436. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4437. ggml_set_op_params(result, params, sizeof(params));
  4438. result->op = GGML_OP_IM2COL;
  4439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4440. result->src[0] = a;
  4441. result->src[1] = b;
  4442. return result;
  4443. }
  4444. // a: [OC,IC, KH, KW]
  4445. // b: [N, IC, IH, IW]
  4446. // result: [N, OC, OH, OW]
  4447. struct ggml_tensor * ggml_conv_2d(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. int s0,
  4452. int s1,
  4453. int p0,
  4454. int p1,
  4455. int d0,
  4456. int d1) {
  4457. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4458. struct ggml_tensor * result =
  4459. ggml_mul_mat(ctx,
  4460. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4461. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4462. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4463. return result;
  4464. }
  4465. // ggml_conv_2d_sk_p0
  4466. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b) {
  4470. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4471. }
  4472. // ggml_conv_2d_s1_ph
  4473. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b) {
  4477. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4478. }
  4479. // ggml_conv_transpose_2d_p0
  4480. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4481. return (ins - 1) * s - 2 * p + ks;
  4482. }
  4483. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b,
  4487. int stride) {
  4488. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4489. bool is_node = false;
  4490. if (a->grad || b->grad) {
  4491. GGML_ASSERT(false); // TODO: implement backward
  4492. is_node = true;
  4493. }
  4494. const int64_t ne[4] = {
  4495. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4496. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4497. a->ne[2], b->ne[3],
  4498. };
  4499. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4500. ggml_set_op_params_i32(result, 0, stride);
  4501. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b;
  4505. return result;
  4506. }
  4507. // ggml_pool_*
  4508. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4509. return (ins + 2 * p - ks) / s + 1;
  4510. }
  4511. // ggml_pool_1d
  4512. struct ggml_tensor * ggml_pool_1d(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. enum ggml_op_pool op,
  4516. int k0,
  4517. int s0,
  4518. int p0) {
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. GGML_ASSERT(false); // TODO: implement backward
  4522. is_node = true;
  4523. }
  4524. const int64_t ne[2] = {
  4525. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4526. a->ne[1],
  4527. };
  4528. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4529. int32_t params[] = { op, k0, s0, p0 };
  4530. ggml_set_op_params(result, params, sizeof(params));
  4531. result->op = GGML_OP_POOL_1D;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. return result;
  4535. }
  4536. // ggml_pool_2d
  4537. struct ggml_tensor * ggml_pool_2d(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. enum ggml_op_pool op,
  4541. int k0,
  4542. int k1,
  4543. int s0,
  4544. int s1,
  4545. float p0,
  4546. float p1) {
  4547. bool is_node = false;
  4548. if (a->grad) {
  4549. GGML_ASSERT(false); // TODO: implement backward
  4550. is_node = true;
  4551. }
  4552. const int64_t ne[3] = {
  4553. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4554. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4555. a->ne[2],
  4556. };
  4557. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4558. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4559. ggml_set_op_params(result, params, sizeof(params));
  4560. result->op = GGML_OP_POOL_2D;
  4561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4562. result->src[0] = a;
  4563. return result;
  4564. }
  4565. // ggml_upscale
  4566. static struct ggml_tensor * ggml_upscale_impl(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a,
  4569. int scale_factor) {
  4570. bool is_node = false;
  4571. if (a->grad) {
  4572. GGML_ASSERT(false); // TODO: implement backward
  4573. is_node = true;
  4574. }
  4575. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4576. a->ne[0] * scale_factor,
  4577. a->ne[1] * scale_factor,
  4578. a->ne[2], a->ne[3]);
  4579. result->op = GGML_OP_UPSCALE;
  4580. result->op_params[0] = scale_factor;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src[0] = a;
  4583. return result;
  4584. }
  4585. struct ggml_tensor * ggml_pad(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. int p0, int p1, int p2, int p3) {
  4589. bool is_node = false;
  4590. if (a->grad) {
  4591. GGML_ASSERT(false); // TODO: implement backward
  4592. is_node = true;
  4593. }
  4594. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4595. a->ne[0] + p0,
  4596. a->ne[1] + p1,
  4597. a->ne[2] + p2,
  4598. a->ne[3] + p3);
  4599. result->op = GGML_OP_PAD;
  4600. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4601. result->src[0] = a;
  4602. return result;
  4603. }
  4604. struct ggml_tensor * ggml_upscale(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. int scale_factor) {
  4608. return ggml_upscale_impl(ctx, a, scale_factor);
  4609. }
  4610. // ggml_argsort
  4611. struct ggml_tensor * ggml_argsort(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. enum ggml_sort_order order) {
  4615. bool is_node = false;
  4616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4617. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4618. result->op = GGML_OP_ARGSORT;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = a;
  4621. return result;
  4622. }
  4623. // ggml_top_k
  4624. struct ggml_tensor * ggml_top_k(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. int k) {
  4628. GGML_ASSERT(a->ne[0] >= k);
  4629. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4630. result = ggml_view_4d(ctx, result,
  4631. k, result->ne[1], result->ne[2], result->ne[3],
  4632. result->nb[1], result->nb[2], result->nb[3],
  4633. 0);
  4634. return result;
  4635. }
  4636. // ggml_flash_attn
  4637. struct ggml_tensor * ggml_flash_attn(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * q,
  4640. struct ggml_tensor * k,
  4641. struct ggml_tensor * v,
  4642. bool masked) {
  4643. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4644. // TODO: check if vT can be multiplied by (k*qT)
  4645. bool is_node = false;
  4646. if (q->grad || k->grad || v->grad) {
  4647. is_node = true;
  4648. }
  4649. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4650. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4651. int32_t t = masked ? 1 : 0;
  4652. ggml_set_op_params(result, &t, sizeof(t));
  4653. result->op = GGML_OP_FLASH_ATTN;
  4654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4655. result->src[0] = q;
  4656. result->src[1] = k;
  4657. result->src[2] = v;
  4658. return result;
  4659. }
  4660. // ggml_flash_ff
  4661. struct ggml_tensor * ggml_flash_ff(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. struct ggml_tensor * b0,
  4665. struct ggml_tensor * b1,
  4666. struct ggml_tensor * c0,
  4667. struct ggml_tensor * c1) {
  4668. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4669. // TODO: more checks
  4670. bool is_node = false;
  4671. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4672. is_node = true;
  4673. }
  4674. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4676. result->op = GGML_OP_FLASH_FF;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src[0] = a;
  4679. result->src[1] = b0;
  4680. result->src[2] = b1;
  4681. result->src[3] = c0;
  4682. result->src[4] = c1;
  4683. return result;
  4684. }
  4685. // ggml_flash_attn_back
  4686. struct ggml_tensor * ggml_flash_attn_back(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * q,
  4689. struct ggml_tensor * k,
  4690. struct ggml_tensor * v,
  4691. struct ggml_tensor * d,
  4692. bool masked) {
  4693. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4694. // TODO: check if vT can be multiplied by (k*qT)
  4695. // d shape [D,N,ne2,ne3]
  4696. // q shape [D,N,ne2,ne3]
  4697. // k shape [D,M,kvne2,ne3]
  4698. // v shape [M,D,kvne2,ne3]
  4699. const int64_t D = q->ne[0];
  4700. const int64_t N = q->ne[1];
  4701. const int64_t M = k->ne[1];
  4702. const int64_t ne2 = q->ne[2];
  4703. const int64_t ne3 = q->ne[3];
  4704. const int64_t kvne2 = k->ne[2];
  4705. GGML_ASSERT(k->ne[0] == D);
  4706. GGML_ASSERT(v->ne[0] == M);
  4707. GGML_ASSERT(v->ne[1] == D);
  4708. GGML_ASSERT(d->ne[0] == D);
  4709. GGML_ASSERT(d->ne[1] == N);
  4710. GGML_ASSERT(k->ne[2] == kvne2);
  4711. GGML_ASSERT(k->ne[3] == ne3);
  4712. GGML_ASSERT(v->ne[2] == kvne2);
  4713. GGML_ASSERT(v->ne[3] == ne3);
  4714. GGML_ASSERT(d->ne[2] == ne2);
  4715. GGML_ASSERT(d->ne[3] == ne3);
  4716. GGML_ASSERT(ne2 % kvne2 == 0);
  4717. bool is_node = false;
  4718. if (q->grad || k->grad || v->grad) {
  4719. // when using this operation (in backwards pass) these grads are set.
  4720. // we don't want to create (big) grad of our result, so is_node is false.
  4721. is_node = false;
  4722. }
  4723. // store gradients of q, k and v as continuous tensors concatenated in result.
  4724. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4725. const int64_t elem_q = ggml_nelements(q);
  4726. const int64_t elem_k = ggml_nelements(k);
  4727. const int64_t elem_v = ggml_nelements(v);
  4728. enum ggml_type result_type = GGML_TYPE_F32;
  4729. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4730. const size_t tsize = ggml_type_size(result_type);
  4731. const size_t offs_q = 0;
  4732. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4733. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4734. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4735. const size_t nelements = (end + tsize - 1)/tsize;
  4736. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4737. int32_t masked_i = masked ? 1 : 0;
  4738. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4739. result->op = GGML_OP_FLASH_ATTN_BACK;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src[0] = q;
  4742. result->src[1] = k;
  4743. result->src[2] = v;
  4744. result->src[3] = d;
  4745. return result;
  4746. }
  4747. // ggml_win_part
  4748. struct ggml_tensor * ggml_win_part(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. int w) {
  4752. GGML_ASSERT(a->ne[3] == 1);
  4753. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4754. bool is_node = false;
  4755. if (a->grad) {
  4756. GGML_ASSERT(false); // TODO: implement backward
  4757. is_node = true;
  4758. }
  4759. // padding
  4760. const int px = (w - a->ne[1]%w)%w;
  4761. const int py = (w - a->ne[2]%w)%w;
  4762. const int npx = (px + a->ne[1])/w;
  4763. const int npy = (py + a->ne[2])/w;
  4764. const int np = npx*npy;
  4765. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4766. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4767. int32_t params[] = { npx, npy, w };
  4768. ggml_set_op_params(result, params, sizeof(params));
  4769. result->op = GGML_OP_WIN_PART;
  4770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4771. result->src[0] = a;
  4772. return result;
  4773. }
  4774. // ggml_win_unpart
  4775. struct ggml_tensor * ggml_win_unpart(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. int w0,
  4779. int h0,
  4780. int w) {
  4781. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4782. bool is_node = false;
  4783. if (a->grad) {
  4784. GGML_ASSERT(false); // TODO: implement backward
  4785. is_node = true;
  4786. }
  4787. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4788. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4789. int32_t params[] = { w };
  4790. ggml_set_op_params(result, params, sizeof(params));
  4791. result->op = GGML_OP_WIN_UNPART;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src[0] = a;
  4794. return result;
  4795. }
  4796. // ggml_get_rel_pos
  4797. struct ggml_tensor * ggml_get_rel_pos(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. int qh,
  4801. int kh) {
  4802. GGML_ASSERT(qh == kh);
  4803. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4804. bool is_node = false;
  4805. if (a->grad) {
  4806. GGML_ASSERT(false); // TODO: implement backward
  4807. is_node = true;
  4808. }
  4809. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4810. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4811. result->op = GGML_OP_GET_REL_POS;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src[0] = a;
  4814. return result;
  4815. }
  4816. // ggml_add_rel_pos
  4817. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * pw,
  4821. struct ggml_tensor * ph,
  4822. bool inplace) {
  4823. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4824. GGML_ASSERT(ggml_is_contiguous(a));
  4825. GGML_ASSERT(ggml_is_contiguous(pw));
  4826. GGML_ASSERT(ggml_is_contiguous(ph));
  4827. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4828. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4829. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4830. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4831. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4832. bool is_node = false;
  4833. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4834. is_node = true;
  4835. }
  4836. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4837. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4838. result->op = GGML_OP_ADD_REL_POS;
  4839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4840. result->src[0] = a;
  4841. result->src[1] = pw;
  4842. result->src[2] = ph;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_add_rel_pos(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * pw,
  4849. struct ggml_tensor * ph) {
  4850. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4851. }
  4852. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * pw,
  4856. struct ggml_tensor * ph) {
  4857. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4858. }
  4859. // gmml_unary
  4860. static struct ggml_tensor * ggml_unary_impl(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. enum ggml_unary_op op,
  4864. bool inplace) {
  4865. bool is_node = false;
  4866. if (!inplace && (a->grad)) {
  4867. is_node = true;
  4868. }
  4869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4870. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4871. result->op = GGML_OP_UNARY;
  4872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4873. result->src[0] = a;
  4874. return result;
  4875. }
  4876. struct ggml_tensor * ggml_unary(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. enum ggml_unary_op op) {
  4880. return ggml_unary_impl(ctx, a, op, false);
  4881. }
  4882. struct ggml_tensor * ggml_unary_inplace(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. enum ggml_unary_op op) {
  4886. return ggml_unary_impl(ctx, a, op, true);
  4887. }
  4888. // ggml_map_unary
  4889. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. const ggml_unary_op_f32_t fun,
  4893. bool inplace) {
  4894. bool is_node = false;
  4895. if (!inplace && a->grad) {
  4896. is_node = true;
  4897. }
  4898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4899. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4900. result->op = GGML_OP_MAP_UNARY;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. return result;
  4904. }
  4905. struct ggml_tensor * ggml_map_unary_f32(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. const ggml_unary_op_f32_t fun) {
  4909. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4910. }
  4911. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. const ggml_unary_op_f32_t fun) {
  4915. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4916. }
  4917. // ggml_map_binary
  4918. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. struct ggml_tensor * b,
  4922. const ggml_binary_op_f32_t fun,
  4923. bool inplace) {
  4924. GGML_ASSERT(ggml_are_same_shape(a, b));
  4925. bool is_node = false;
  4926. if (!inplace && (a->grad || b->grad)) {
  4927. is_node = true;
  4928. }
  4929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4930. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4931. result->op = GGML_OP_MAP_BINARY;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src[0] = a;
  4934. result->src[1] = b;
  4935. return result;
  4936. }
  4937. struct ggml_tensor * ggml_map_binary_f32(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a,
  4940. struct ggml_tensor * b,
  4941. const ggml_binary_op_f32_t fun) {
  4942. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4943. }
  4944. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. const ggml_binary_op_f32_t fun) {
  4949. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4950. }
  4951. // ggml_map_custom1_f32
  4952. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. const ggml_custom1_op_f32_t fun,
  4956. bool inplace) {
  4957. bool is_node = false;
  4958. if (!inplace && a->grad) {
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4962. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4963. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4965. result->src[0] = a;
  4966. return result;
  4967. }
  4968. struct ggml_tensor * ggml_map_custom1_f32(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. const ggml_custom1_op_f32_t fun) {
  4972. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4973. }
  4974. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. const ggml_custom1_op_f32_t fun) {
  4978. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4979. }
  4980. // ggml_map_custom2_f32
  4981. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. struct ggml_tensor * b,
  4985. const ggml_custom2_op_f32_t fun,
  4986. bool inplace) {
  4987. bool is_node = false;
  4988. if (!inplace && (a->grad || b->grad)) {
  4989. is_node = true;
  4990. }
  4991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4992. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4993. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4995. result->src[0] = a;
  4996. result->src[1] = b;
  4997. return result;
  4998. }
  4999. struct ggml_tensor * ggml_map_custom2_f32(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. const ggml_custom2_op_f32_t fun) {
  5004. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5005. }
  5006. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b,
  5010. const ggml_custom2_op_f32_t fun) {
  5011. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5012. }
  5013. // ggml_map_custom3_f32
  5014. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b,
  5018. struct ggml_tensor * c,
  5019. const ggml_custom3_op_f32_t fun,
  5020. bool inplace) {
  5021. bool is_node = false;
  5022. if (!inplace && (a->grad || b->grad || c->grad)) {
  5023. is_node = true;
  5024. }
  5025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5026. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5027. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src[0] = a;
  5030. result->src[1] = b;
  5031. result->src[2] = c;
  5032. return result;
  5033. }
  5034. struct ggml_tensor * ggml_map_custom3_f32(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b,
  5038. struct ggml_tensor * c,
  5039. const ggml_custom3_op_f32_t fun) {
  5040. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5041. }
  5042. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * b,
  5046. struct ggml_tensor * c,
  5047. const ggml_custom3_op_f32_t fun) {
  5048. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5049. }
  5050. // ggml_map_custom1
  5051. struct ggml_map_custom1_op_params {
  5052. ggml_custom1_op_t fun;
  5053. int n_tasks;
  5054. void * userdata;
  5055. };
  5056. static struct ggml_tensor * ggml_map_custom1_impl(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a,
  5059. const ggml_custom1_op_t fun,
  5060. int n_tasks,
  5061. void * userdata,
  5062. bool inplace) {
  5063. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5064. bool is_node = false;
  5065. if (!inplace && a->grad) {
  5066. is_node = true;
  5067. }
  5068. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5069. struct ggml_map_custom1_op_params params = {
  5070. /*.fun =*/ fun,
  5071. /*.n_tasks =*/ n_tasks,
  5072. /*.userdata =*/ userdata
  5073. };
  5074. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5075. result->op = GGML_OP_MAP_CUSTOM1;
  5076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5077. result->src[0] = a;
  5078. return result;
  5079. }
  5080. struct ggml_tensor * ggml_map_custom1(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. const ggml_custom1_op_t fun,
  5084. int n_tasks,
  5085. void * userdata) {
  5086. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5087. }
  5088. struct ggml_tensor * ggml_map_custom1_inplace(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. const ggml_custom1_op_t fun,
  5092. int n_tasks,
  5093. void * userdata) {
  5094. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5095. }
  5096. // ggml_map_custom2
  5097. struct ggml_map_custom2_op_params {
  5098. ggml_custom2_op_t fun;
  5099. int n_tasks;
  5100. void * userdata;
  5101. };
  5102. static struct ggml_tensor * ggml_map_custom2_impl(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b,
  5106. const ggml_custom2_op_t fun,
  5107. int n_tasks,
  5108. void * userdata,
  5109. bool inplace) {
  5110. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5111. bool is_node = false;
  5112. if (!inplace && (a->grad || b->grad)) {
  5113. is_node = true;
  5114. }
  5115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5116. struct ggml_map_custom2_op_params params = {
  5117. /*.fun =*/ fun,
  5118. /*.n_tasks =*/ n_tasks,
  5119. /*.userdata =*/ userdata
  5120. };
  5121. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5122. result->op = GGML_OP_MAP_CUSTOM2;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = b;
  5126. return result;
  5127. }
  5128. struct ggml_tensor * ggml_map_custom2(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. struct ggml_tensor * b,
  5132. const ggml_custom2_op_t fun,
  5133. int n_tasks,
  5134. void * userdata) {
  5135. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5136. }
  5137. struct ggml_tensor * ggml_map_custom2_inplace(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. struct ggml_tensor * b,
  5141. const ggml_custom2_op_t fun,
  5142. int n_tasks,
  5143. void * userdata) {
  5144. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5145. }
  5146. // ggml_map_custom3
  5147. struct ggml_map_custom3_op_params {
  5148. ggml_custom3_op_t fun;
  5149. int n_tasks;
  5150. void * userdata;
  5151. };
  5152. static struct ggml_tensor * ggml_map_custom3_impl(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. struct ggml_tensor * b,
  5156. struct ggml_tensor * c,
  5157. const ggml_custom3_op_t fun,
  5158. int n_tasks,
  5159. void * userdata,
  5160. bool inplace) {
  5161. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5162. bool is_node = false;
  5163. if (!inplace && (a->grad || b->grad || c->grad)) {
  5164. is_node = true;
  5165. }
  5166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5167. struct ggml_map_custom3_op_params params = {
  5168. /*.fun =*/ fun,
  5169. /*.n_tasks =*/ n_tasks,
  5170. /*.userdata =*/ userdata
  5171. };
  5172. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5173. result->op = GGML_OP_MAP_CUSTOM3;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src[0] = a;
  5176. result->src[1] = b;
  5177. result->src[2] = c;
  5178. return result;
  5179. }
  5180. struct ggml_tensor * ggml_map_custom3(
  5181. struct ggml_context * ctx,
  5182. struct ggml_tensor * a,
  5183. struct ggml_tensor * b,
  5184. struct ggml_tensor * c,
  5185. const ggml_custom3_op_t fun,
  5186. int n_tasks,
  5187. void * userdata) {
  5188. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5189. }
  5190. struct ggml_tensor * ggml_map_custom3_inplace(
  5191. struct ggml_context * ctx,
  5192. struct ggml_tensor * a,
  5193. struct ggml_tensor * b,
  5194. struct ggml_tensor * c,
  5195. const ggml_custom3_op_t fun,
  5196. int n_tasks,
  5197. void * userdata) {
  5198. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5199. }
  5200. // ggml_cross_entropy_loss
  5201. struct ggml_tensor * ggml_cross_entropy_loss(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. struct ggml_tensor * b) {
  5205. GGML_ASSERT(ggml_are_same_shape(a, b));
  5206. bool is_node = false;
  5207. if (a->grad || b->grad) {
  5208. is_node = true;
  5209. }
  5210. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5211. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5213. result->src[0] = a;
  5214. result->src[1] = b;
  5215. return result;
  5216. }
  5217. // ggml_cross_entropy_loss_back
  5218. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5219. struct ggml_context * ctx,
  5220. struct ggml_tensor * a,
  5221. struct ggml_tensor * b,
  5222. struct ggml_tensor * c) {
  5223. GGML_ASSERT(ggml_are_same_shape(a, b));
  5224. GGML_ASSERT(ggml_is_scalar(c));
  5225. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5226. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5227. result->grad = NULL;
  5228. result->src[0] = a;
  5229. result->src[1] = b;
  5230. result->src[2] = c;
  5231. return result;
  5232. }
  5233. ////////////////////////////////////////////////////////////////////////////////
  5234. void ggml_set_param(
  5235. struct ggml_context * ctx,
  5236. struct ggml_tensor * tensor) {
  5237. tensor->is_param = true;
  5238. GGML_ASSERT(tensor->grad == NULL);
  5239. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5240. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5241. }
  5242. // ggml_compute_forward_dup
  5243. static void ggml_compute_forward_dup_same_cont(
  5244. const struct ggml_compute_params * params,
  5245. const struct ggml_tensor * src0,
  5246. struct ggml_tensor * dst) {
  5247. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5248. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5249. GGML_ASSERT(src0->type == dst->type);
  5250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5251. return;
  5252. }
  5253. const size_t nb00 = src0->nb[0];
  5254. const size_t nb0 = dst->nb[0];
  5255. const int ith = params->ith; // thread index
  5256. const int nth = params->nth; // number of threads
  5257. // parallelize by elements
  5258. const int ne = ggml_nelements(dst);
  5259. const int dr = (ne + nth - 1) / nth;
  5260. const int ie0 = dr * ith;
  5261. const int ie1 = MIN(ie0 + dr, ne);
  5262. if (ie0 < ie1) {
  5263. memcpy(
  5264. ((char *) dst->data + ie0*nb0),
  5265. ((char *) src0->data + ie0*nb00),
  5266. (ie1 - ie0) * ggml_type_size(src0->type));
  5267. }
  5268. }
  5269. static void ggml_compute_forward_dup_f16(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. struct ggml_tensor * dst) {
  5273. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5275. return;
  5276. }
  5277. GGML_TENSOR_UNARY_OP_LOCALS
  5278. const int ith = params->ith; // thread index
  5279. const int nth = params->nth; // number of threads
  5280. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5281. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5282. return;
  5283. }
  5284. // parallelize by rows
  5285. const int nr = ne01;
  5286. // number of rows per thread
  5287. const int dr = (nr + nth - 1) / nth;
  5288. // row range for this thread
  5289. const int ir0 = dr * ith;
  5290. const int ir1 = MIN(ir0 + dr, nr);
  5291. if (src0->type == dst->type &&
  5292. ne00 == ne0 &&
  5293. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5294. // copy by rows
  5295. const size_t rs = ne00*nb00;
  5296. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5297. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5298. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5299. memcpy(
  5300. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5301. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5302. rs);
  5303. }
  5304. }
  5305. }
  5306. return;
  5307. }
  5308. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5309. if (ggml_is_contiguous(dst)) {
  5310. if (nb00 == sizeof(ggml_fp16_t)) {
  5311. if (dst->type == GGML_TYPE_F16) {
  5312. size_t id = 0;
  5313. const size_t rs = ne00 * nb00;
  5314. char * dst_ptr = (char *) dst->data;
  5315. for (int i03 = 0; i03 < ne03; i03++) {
  5316. for (int i02 = 0; i02 < ne02; i02++) {
  5317. id += rs * ir0;
  5318. for (int i01 = ir0; i01 < ir1; i01++) {
  5319. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5320. memcpy(dst_ptr + id, src0_ptr, rs);
  5321. id += rs;
  5322. }
  5323. id += rs * (ne01 - ir1);
  5324. }
  5325. }
  5326. } else if (dst->type == GGML_TYPE_F32) {
  5327. size_t id = 0;
  5328. float * dst_ptr = (float *) dst->data;
  5329. for (int i03 = 0; i03 < ne03; i03++) {
  5330. for (int i02 = 0; i02 < ne02; i02++) {
  5331. id += ne00 * ir0;
  5332. for (int i01 = ir0; i01 < ir1; i01++) {
  5333. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5334. for (int i00 = 0; i00 < ne00; i00++) {
  5335. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5336. id++;
  5337. }
  5338. }
  5339. id += ne00 * (ne01 - ir1);
  5340. }
  5341. }
  5342. } else if (type_traits[dst->type].from_float) {
  5343. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5344. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5345. size_t id = 0;
  5346. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5347. char * dst_ptr = (char *) dst->data;
  5348. for (int i03 = 0; i03 < ne03; i03++) {
  5349. for (int i02 = 0; i02 < ne02; i02++) {
  5350. id += rs * ir0;
  5351. for (int i01 = ir0; i01 < ir1; i01++) {
  5352. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5353. for (int i00 = 0; i00 < ne00; i00++) {
  5354. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5355. }
  5356. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5357. id += rs;
  5358. }
  5359. id += rs * (ne01 - ir1);
  5360. }
  5361. }
  5362. } else {
  5363. GGML_ASSERT(false); // TODO: implement
  5364. }
  5365. } else {
  5366. //printf("%s: this is not optimal - fix me\n", __func__);
  5367. if (dst->type == GGML_TYPE_F32) {
  5368. size_t id = 0;
  5369. float * dst_ptr = (float *) dst->data;
  5370. for (int i03 = 0; i03 < ne03; i03++) {
  5371. for (int i02 = 0; i02 < ne02; i02++) {
  5372. id += ne00 * ir0;
  5373. for (int i01 = ir0; i01 < ir1; i01++) {
  5374. for (int i00 = 0; i00 < ne00; i00++) {
  5375. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5376. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5377. id++;
  5378. }
  5379. }
  5380. id += ne00 * (ne01 - ir1);
  5381. }
  5382. }
  5383. } else if (dst->type == GGML_TYPE_F16) {
  5384. size_t id = 0;
  5385. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5386. for (int i03 = 0; i03 < ne03; i03++) {
  5387. for (int i02 = 0; i02 < ne02; i02++) {
  5388. id += ne00 * ir0;
  5389. for (int i01 = ir0; i01 < ir1; i01++) {
  5390. for (int i00 = 0; i00 < ne00; i00++) {
  5391. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5392. dst_ptr[id] = *src0_ptr;
  5393. id++;
  5394. }
  5395. }
  5396. id += ne00 * (ne01 - ir1);
  5397. }
  5398. }
  5399. } else {
  5400. GGML_ASSERT(false); // TODO: implement
  5401. }
  5402. }
  5403. return;
  5404. }
  5405. // dst counters
  5406. int64_t i10 = 0;
  5407. int64_t i11 = 0;
  5408. int64_t i12 = 0;
  5409. int64_t i13 = 0;
  5410. if (dst->type == GGML_TYPE_F16) {
  5411. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5412. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5413. i10 += ne00 * ir0;
  5414. while (i10 >= ne0) {
  5415. i10 -= ne0;
  5416. if (++i11 == ne1) {
  5417. i11 = 0;
  5418. if (++i12 == ne2) {
  5419. i12 = 0;
  5420. if (++i13 == ne3) {
  5421. i13 = 0;
  5422. }
  5423. }
  5424. }
  5425. }
  5426. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5428. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5429. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5430. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5431. if (++i10 == ne00) {
  5432. i10 = 0;
  5433. if (++i11 == ne01) {
  5434. i11 = 0;
  5435. if (++i12 == ne02) {
  5436. i12 = 0;
  5437. if (++i13 == ne03) {
  5438. i13 = 0;
  5439. }
  5440. }
  5441. }
  5442. }
  5443. }
  5444. }
  5445. i10 += ne00 * (ne01 - ir1);
  5446. while (i10 >= ne0) {
  5447. i10 -= ne0;
  5448. if (++i11 == ne1) {
  5449. i11 = 0;
  5450. if (++i12 == ne2) {
  5451. i12 = 0;
  5452. if (++i13 == ne3) {
  5453. i13 = 0;
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. }
  5460. } else if (dst->type == GGML_TYPE_F32) {
  5461. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5462. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5463. i10 += ne00 * ir0;
  5464. while (i10 >= ne0) {
  5465. i10 -= ne0;
  5466. if (++i11 == ne1) {
  5467. i11 = 0;
  5468. if (++i12 == ne2) {
  5469. i12 = 0;
  5470. if (++i13 == ne3) {
  5471. i13 = 0;
  5472. }
  5473. }
  5474. }
  5475. }
  5476. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5477. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5478. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5479. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5480. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5481. if (++i10 == ne0) {
  5482. i10 = 0;
  5483. if (++i11 == ne1) {
  5484. i11 = 0;
  5485. if (++i12 == ne2) {
  5486. i12 = 0;
  5487. if (++i13 == ne3) {
  5488. i13 = 0;
  5489. }
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. i10 += ne00 * (ne01 - ir1);
  5496. while (i10 >= ne0) {
  5497. i10 -= ne0;
  5498. if (++i11 == ne1) {
  5499. i11 = 0;
  5500. if (++i12 == ne2) {
  5501. i12 = 0;
  5502. if (++i13 == ne3) {
  5503. i13 = 0;
  5504. }
  5505. }
  5506. }
  5507. }
  5508. }
  5509. }
  5510. } else {
  5511. GGML_ASSERT(false); // TODO: implement
  5512. }
  5513. }
  5514. static void ggml_compute_forward_dup_f32(
  5515. const struct ggml_compute_params * params,
  5516. const struct ggml_tensor * src0,
  5517. struct ggml_tensor * dst) {
  5518. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5520. return;
  5521. }
  5522. GGML_TENSOR_UNARY_OP_LOCALS
  5523. const int ith = params->ith; // thread index
  5524. const int nth = params->nth; // number of threads
  5525. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5526. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5527. return;
  5528. }
  5529. // parallelize by rows
  5530. const int nr = ne01;
  5531. // number of rows per thread
  5532. const int dr = (nr + nth - 1) / nth;
  5533. // row range for this thread
  5534. const int ir0 = dr * ith;
  5535. const int ir1 = MIN(ir0 + dr, nr);
  5536. if (src0->type == dst->type &&
  5537. ne00 == ne0 &&
  5538. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5539. // copy by rows
  5540. const size_t rs = ne00*nb00;
  5541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5543. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5544. memcpy(
  5545. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5546. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5547. rs);
  5548. }
  5549. }
  5550. }
  5551. return;
  5552. }
  5553. if (ggml_is_contiguous(dst)) {
  5554. // TODO: simplify
  5555. if (nb00 == sizeof(float)) {
  5556. if (dst->type == GGML_TYPE_F32) {
  5557. size_t id = 0;
  5558. const size_t rs = ne00 * nb00;
  5559. char * dst_ptr = (char *) dst->data;
  5560. for (int i03 = 0; i03 < ne03; i03++) {
  5561. for (int i02 = 0; i02 < ne02; i02++) {
  5562. id += rs * ir0;
  5563. for (int i01 = ir0; i01 < ir1; i01++) {
  5564. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5565. memcpy(dst_ptr + id, src0_ptr, rs);
  5566. id += rs;
  5567. }
  5568. id += rs * (ne01 - ir1);
  5569. }
  5570. }
  5571. } else if (type_traits[dst->type].from_float) {
  5572. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5573. size_t id = 0;
  5574. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5575. char * dst_ptr = (char *) dst->data;
  5576. for (int i03 = 0; i03 < ne03; i03++) {
  5577. for (int i02 = 0; i02 < ne02; i02++) {
  5578. id += rs * ir0;
  5579. for (int i01 = ir0; i01 < ir1; i01++) {
  5580. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5581. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5582. id += rs;
  5583. }
  5584. id += rs * (ne01 - ir1);
  5585. }
  5586. }
  5587. } else {
  5588. GGML_ASSERT(false); // TODO: implement
  5589. }
  5590. } else {
  5591. //printf("%s: this is not optimal - fix me\n", __func__);
  5592. if (dst->type == GGML_TYPE_F32) {
  5593. size_t id = 0;
  5594. float * dst_ptr = (float *) dst->data;
  5595. for (int i03 = 0; i03 < ne03; i03++) {
  5596. for (int i02 = 0; i02 < ne02; i02++) {
  5597. id += ne00 * ir0;
  5598. for (int i01 = ir0; i01 < ir1; i01++) {
  5599. for (int i00 = 0; i00 < ne00; i00++) {
  5600. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5601. dst_ptr[id] = *src0_ptr;
  5602. id++;
  5603. }
  5604. }
  5605. id += ne00 * (ne01 - ir1);
  5606. }
  5607. }
  5608. } else if (dst->type == GGML_TYPE_F16) {
  5609. size_t id = 0;
  5610. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5611. for (int i03 = 0; i03 < ne03; i03++) {
  5612. for (int i02 = 0; i02 < ne02; i02++) {
  5613. id += ne00 * ir0;
  5614. for (int i01 = ir0; i01 < ir1; i01++) {
  5615. for (int i00 = 0; i00 < ne00; i00++) {
  5616. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5617. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5618. id++;
  5619. }
  5620. }
  5621. id += ne00 * (ne01 - ir1);
  5622. }
  5623. }
  5624. } else {
  5625. GGML_ASSERT(false); // TODO: implement
  5626. }
  5627. }
  5628. return;
  5629. }
  5630. // dst counters
  5631. int64_t i10 = 0;
  5632. int64_t i11 = 0;
  5633. int64_t i12 = 0;
  5634. int64_t i13 = 0;
  5635. if (dst->type == GGML_TYPE_F32) {
  5636. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5637. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5638. i10 += ne00 * ir0;
  5639. while (i10 >= ne0) {
  5640. i10 -= ne0;
  5641. if (++i11 == ne1) {
  5642. i11 = 0;
  5643. if (++i12 == ne2) {
  5644. i12 = 0;
  5645. if (++i13 == ne3) {
  5646. i13 = 0;
  5647. }
  5648. }
  5649. }
  5650. }
  5651. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5652. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5653. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5654. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5655. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5656. if (++i10 == ne0) {
  5657. i10 = 0;
  5658. if (++i11 == ne1) {
  5659. i11 = 0;
  5660. if (++i12 == ne2) {
  5661. i12 = 0;
  5662. if (++i13 == ne3) {
  5663. i13 = 0;
  5664. }
  5665. }
  5666. }
  5667. }
  5668. }
  5669. }
  5670. i10 += ne00 * (ne01 - ir1);
  5671. while (i10 >= ne0) {
  5672. i10 -= ne0;
  5673. if (++i11 == ne1) {
  5674. i11 = 0;
  5675. if (++i12 == ne2) {
  5676. i12 = 0;
  5677. if (++i13 == ne3) {
  5678. i13 = 0;
  5679. }
  5680. }
  5681. }
  5682. }
  5683. }
  5684. }
  5685. } else if (dst->type == GGML_TYPE_F16) {
  5686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5688. i10 += ne00 * ir0;
  5689. while (i10 >= ne0) {
  5690. i10 -= ne0;
  5691. if (++i11 == ne1) {
  5692. i11 = 0;
  5693. if (++i12 == ne2) {
  5694. i12 = 0;
  5695. if (++i13 == ne3) {
  5696. i13 = 0;
  5697. }
  5698. }
  5699. }
  5700. }
  5701. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5702. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5703. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5704. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5705. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5706. if (++i10 == ne0) {
  5707. i10 = 0;
  5708. if (++i11 == ne1) {
  5709. i11 = 0;
  5710. if (++i12 == ne2) {
  5711. i12 = 0;
  5712. if (++i13 == ne3) {
  5713. i13 = 0;
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. }
  5720. i10 += ne00 * (ne01 - ir1);
  5721. while (i10 >= ne0) {
  5722. i10 -= ne0;
  5723. if (++i11 == ne1) {
  5724. i11 = 0;
  5725. if (++i12 == ne2) {
  5726. i12 = 0;
  5727. if (++i13 == ne3) {
  5728. i13 = 0;
  5729. }
  5730. }
  5731. }
  5732. }
  5733. }
  5734. }
  5735. } else {
  5736. GGML_ASSERT(false); // TODO: implement
  5737. }
  5738. }
  5739. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5740. static void ggml_compute_forward_dup_bytes(
  5741. const struct ggml_compute_params * params,
  5742. const struct ggml_tensor * src0,
  5743. struct ggml_tensor * dst) {
  5744. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5745. GGML_ASSERT(src0->type == dst->type);
  5746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5747. return;
  5748. }
  5749. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5750. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5751. return;
  5752. }
  5753. GGML_TENSOR_UNARY_OP_LOCALS;
  5754. const size_t type_size = ggml_type_size(src0->type);
  5755. const int ith = params->ith; // thread index
  5756. const int nth = params->nth; // number of threads
  5757. // parallelize by rows
  5758. const int nr = ne01;
  5759. // number of rows per thread
  5760. const int dr = (nr + nth - 1) / nth;
  5761. // row range for this thread
  5762. const int ir0 = dr * ith;
  5763. const int ir1 = MIN(ir0 + dr, nr);
  5764. if (src0->type == dst->type &&
  5765. ne00 == ne0 &&
  5766. nb00 == type_size && nb0 == type_size) {
  5767. // copy by rows
  5768. const size_t rs = ne00 * type_size;
  5769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5771. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5772. memcpy(
  5773. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5774. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5775. rs);
  5776. }
  5777. }
  5778. }
  5779. return;
  5780. }
  5781. if (ggml_is_contiguous(dst)) {
  5782. size_t id = 0;
  5783. char * dst_ptr = (char *) dst->data;
  5784. const size_t rs = ne00 * type_size;
  5785. if (nb00 == type_size) {
  5786. // src0 is contigous on first dimension, copy by rows
  5787. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5788. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5789. id += rs * ir0;
  5790. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5791. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5792. memcpy(dst_ptr + id, src0_ptr, rs);
  5793. id += rs;
  5794. }
  5795. id += rs * (ne01 - ir1);
  5796. }
  5797. }
  5798. } else {
  5799. //printf("%s: this is not optimal - fix me\n", __func__);
  5800. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5801. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5802. id += rs * ir0;
  5803. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5804. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5805. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5806. memcpy(dst_ptr + id, src0_ptr, type_size);
  5807. id += type_size;
  5808. }
  5809. }
  5810. id += rs * (ne01 - ir1);
  5811. }
  5812. }
  5813. }
  5814. return;
  5815. }
  5816. // dst counters
  5817. int64_t i10 = 0;
  5818. int64_t i11 = 0;
  5819. int64_t i12 = 0;
  5820. int64_t i13 = 0;
  5821. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5822. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5823. i10 += ne00 * ir0;
  5824. while (i10 >= ne0) {
  5825. i10 -= ne0;
  5826. if (++i11 == ne1) {
  5827. i11 = 0;
  5828. if (++i12 == ne2) {
  5829. i12 = 0;
  5830. if (++i13 == ne3) {
  5831. i13 = 0;
  5832. }
  5833. }
  5834. }
  5835. }
  5836. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5837. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5838. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5839. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5840. memcpy(dst_ptr, src0_ptr, type_size);
  5841. if (++i10 == ne0) {
  5842. i10 = 0;
  5843. if (++i11 == ne1) {
  5844. i11 = 0;
  5845. if (++i12 == ne2) {
  5846. i12 = 0;
  5847. if (++i13 == ne3) {
  5848. i13 = 0;
  5849. }
  5850. }
  5851. }
  5852. }
  5853. }
  5854. }
  5855. i10 += ne00 * (ne01 - ir1);
  5856. while (i10 >= ne0) {
  5857. i10 -= ne0;
  5858. if (++i11 == ne1) {
  5859. i11 = 0;
  5860. if (++i12 == ne2) {
  5861. i12 = 0;
  5862. if (++i13 == ne3) {
  5863. i13 = 0;
  5864. }
  5865. }
  5866. }
  5867. }
  5868. }
  5869. }
  5870. }
  5871. static void ggml_compute_forward_dup(
  5872. const struct ggml_compute_params * params,
  5873. const struct ggml_tensor * src0,
  5874. struct ggml_tensor * dst) {
  5875. if (src0->type == dst->type) {
  5876. ggml_compute_forward_dup_bytes(params, src0, dst);
  5877. return;
  5878. }
  5879. switch (src0->type) {
  5880. case GGML_TYPE_F16:
  5881. {
  5882. ggml_compute_forward_dup_f16(params, src0, dst);
  5883. } break;
  5884. case GGML_TYPE_F32:
  5885. {
  5886. ggml_compute_forward_dup_f32(params, src0, dst);
  5887. } break;
  5888. default:
  5889. {
  5890. GGML_ASSERT(false);
  5891. } break;
  5892. }
  5893. }
  5894. // ggml_compute_forward_add
  5895. static void ggml_compute_forward_add_f32(
  5896. const struct ggml_compute_params * params,
  5897. const struct ggml_tensor * src0,
  5898. const struct ggml_tensor * src1,
  5899. struct ggml_tensor * dst) {
  5900. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5902. return;
  5903. }
  5904. const int ith = params->ith;
  5905. const int nth = params->nth;
  5906. const int nr = ggml_nrows(src0);
  5907. GGML_TENSOR_BINARY_OP_LOCALS
  5908. GGML_ASSERT( nb0 == sizeof(float));
  5909. GGML_ASSERT(nb00 == sizeof(float));
  5910. // rows per thread
  5911. const int dr = (nr + nth - 1)/nth;
  5912. // row range for this thread
  5913. const int ir0 = dr*ith;
  5914. const int ir1 = MIN(ir0 + dr, nr);
  5915. if (nb10 == sizeof(float)) {
  5916. for (int ir = ir0; ir < ir1; ++ir) {
  5917. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5918. const int64_t i03 = ir/(ne02*ne01);
  5919. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5920. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5921. const int64_t i13 = i03 % ne13;
  5922. const int64_t i12 = i02 % ne12;
  5923. const int64_t i11 = i01 % ne11;
  5924. const int64_t nr0 = ne00 / ne10;
  5925. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5926. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5927. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5928. for (int64_t r = 0; r < nr0; ++r) {
  5929. #ifdef GGML_USE_ACCELERATE
  5930. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5931. #else
  5932. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5933. #endif
  5934. }
  5935. }
  5936. } else {
  5937. // src1 is not contiguous
  5938. for (int ir = ir0; ir < ir1; ++ir) {
  5939. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5940. const int64_t i03 = ir/(ne02*ne01);
  5941. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5942. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5943. const int64_t i13 = i03 % ne13;
  5944. const int64_t i12 = i02 % ne12;
  5945. const int64_t i11 = i01 % ne11;
  5946. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5947. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5948. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5949. const int64_t i10 = i0 % ne10;
  5950. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5951. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5952. }
  5953. }
  5954. }
  5955. }
  5956. static void ggml_compute_forward_add_f16_f32(
  5957. const struct ggml_compute_params * params,
  5958. const struct ggml_tensor * src0,
  5959. const struct ggml_tensor * src1,
  5960. struct ggml_tensor * dst) {
  5961. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5962. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5963. return;
  5964. }
  5965. const int ith = params->ith;
  5966. const int nth = params->nth;
  5967. const int nr = ggml_nrows(src0);
  5968. GGML_TENSOR_BINARY_OP_LOCALS
  5969. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5970. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5971. if (dst->type == GGML_TYPE_F32) {
  5972. GGML_ASSERT( nb0 == sizeof(float));
  5973. }
  5974. else {
  5975. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5976. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5977. }
  5978. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5979. // rows per thread
  5980. const int dr = (nr + nth - 1)/nth;
  5981. // row range for this thread
  5982. const int ir0 = dr*ith;
  5983. const int ir1 = MIN(ir0 + dr, nr);
  5984. if (nb10 == sizeof(float)) {
  5985. if (dst->type == GGML_TYPE_F16) {
  5986. for (int ir = ir0; ir < ir1; ++ir) {
  5987. // src0, src1 and dst are same shape => same indices
  5988. const int i3 = ir/(ne2*ne1);
  5989. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5990. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5991. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5992. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5993. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5994. for (int i = 0; i < ne0; i++) {
  5995. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5996. }
  5997. }
  5998. } else {
  5999. for (int ir = ir0; ir < ir1; ++ir) {
  6000. // src0, src1 and dst are same shape => same indices
  6001. const int i3 = ir/(ne2*ne1);
  6002. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6003. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6004. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6005. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6006. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6007. for (int i = 0; i < ne0; i++) {
  6008. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6009. }
  6010. }
  6011. }
  6012. }
  6013. else {
  6014. // src1 is not contiguous
  6015. GGML_ASSERT(false);
  6016. }
  6017. }
  6018. static void ggml_compute_forward_add_f16_f16(
  6019. const struct ggml_compute_params * params,
  6020. const struct ggml_tensor * src0,
  6021. const struct ggml_tensor * src1,
  6022. struct ggml_tensor * dst) {
  6023. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6025. return;
  6026. }
  6027. const int ith = params->ith;
  6028. const int nth = params->nth;
  6029. const int nr = ggml_nrows(src0);
  6030. GGML_TENSOR_BINARY_OP_LOCALS
  6031. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6032. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6033. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6034. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6035. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6036. // rows per thread
  6037. const int dr = (nr + nth - 1)/nth;
  6038. // row range for this thread
  6039. const int ir0 = dr*ith;
  6040. const int ir1 = MIN(ir0 + dr, nr);
  6041. if (nb10 == sizeof(ggml_fp16_t)) {
  6042. for (int ir = ir0; ir < ir1; ++ir) {
  6043. // src0, src1 and dst are same shape => same indices
  6044. const int i3 = ir/(ne2*ne1);
  6045. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6046. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6047. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6048. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6049. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6050. for (int i = 0; i < ne0; i++) {
  6051. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6052. }
  6053. }
  6054. }
  6055. else {
  6056. // src1 is not contiguous
  6057. GGML_ASSERT(false);
  6058. }
  6059. }
  6060. static void ggml_compute_forward_add_q_f32(
  6061. const struct ggml_compute_params * params,
  6062. const struct ggml_tensor * src0,
  6063. const struct ggml_tensor * src1,
  6064. struct ggml_tensor * dst) {
  6065. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6067. return;
  6068. }
  6069. const int nr = ggml_nrows(src0);
  6070. GGML_TENSOR_BINARY_OP_LOCALS
  6071. const int ith = params->ith;
  6072. const int nth = params->nth;
  6073. const enum ggml_type type = src0->type;
  6074. const enum ggml_type dtype = dst->type;
  6075. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6076. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6077. // we don't support permuted src0 or src1
  6078. GGML_ASSERT(nb00 == ggml_type_size(type));
  6079. GGML_ASSERT(nb10 == sizeof(float));
  6080. // dst cannot be transposed or permuted
  6081. GGML_ASSERT(nb0 <= nb1);
  6082. GGML_ASSERT(nb1 <= nb2);
  6083. GGML_ASSERT(nb2 <= nb3);
  6084. GGML_ASSERT(ggml_is_quantized(src0->type));
  6085. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6086. // rows per thread
  6087. const int dr = (nr + nth - 1)/nth;
  6088. // row range for this thread
  6089. const int ir0 = dr*ith;
  6090. const int ir1 = MIN(ir0 + dr, nr);
  6091. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6092. for (int ir = ir0; ir < ir1; ++ir) {
  6093. // src0 indices
  6094. const int i03 = ir/(ne02*ne01);
  6095. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6096. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6097. // src1 and dst are same shape as src0 => same indices
  6098. const int i13 = i03;
  6099. const int i12 = i02;
  6100. const int i11 = i01;
  6101. const int i3 = i03;
  6102. const int i2 = i02;
  6103. const int i1 = i01;
  6104. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6105. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6106. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6107. assert(ne00 % 32 == 0);
  6108. // unquantize row from src0 to temp buffer
  6109. dequantize_row_q(src0_row, wdata, ne00);
  6110. // add src1
  6111. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6112. // quantize row to dst
  6113. if (quantize_row_q != NULL) {
  6114. quantize_row_q(wdata, dst_row, ne00);
  6115. } else {
  6116. memcpy(dst_row, wdata, ne0*nb0);
  6117. }
  6118. }
  6119. }
  6120. static void ggml_compute_forward_add(
  6121. const struct ggml_compute_params * params,
  6122. const struct ggml_tensor * src0,
  6123. const struct ggml_tensor * src1,
  6124. struct ggml_tensor * dst) {
  6125. switch (src0->type) {
  6126. case GGML_TYPE_F32:
  6127. {
  6128. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6129. } break;
  6130. case GGML_TYPE_F16:
  6131. {
  6132. if (src1->type == GGML_TYPE_F16) {
  6133. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6134. }
  6135. else if (src1->type == GGML_TYPE_F32) {
  6136. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6137. }
  6138. else {
  6139. GGML_ASSERT(false);
  6140. }
  6141. } break;
  6142. case GGML_TYPE_Q4_0:
  6143. case GGML_TYPE_Q4_1:
  6144. case GGML_TYPE_Q5_0:
  6145. case GGML_TYPE_Q5_1:
  6146. case GGML_TYPE_Q8_0:
  6147. case GGML_TYPE_Q2_K:
  6148. case GGML_TYPE_Q3_K:
  6149. case GGML_TYPE_Q4_K:
  6150. case GGML_TYPE_Q5_K:
  6151. case GGML_TYPE_Q6_K:
  6152. case GGML_TYPE_IQ2_XXS:
  6153. case GGML_TYPE_IQ2_XS:
  6154. {
  6155. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6156. } break;
  6157. default:
  6158. {
  6159. GGML_ASSERT(false);
  6160. } break;
  6161. }
  6162. }
  6163. // ggml_compute_forward_add1
  6164. static void ggml_compute_forward_add1_f32(
  6165. const struct ggml_compute_params * params,
  6166. const struct ggml_tensor * src0,
  6167. const struct ggml_tensor * src1,
  6168. struct ggml_tensor * dst) {
  6169. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6170. GGML_ASSERT(ggml_is_scalar(src1));
  6171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6172. return;
  6173. }
  6174. const int ith = params->ith;
  6175. const int nth = params->nth;
  6176. const int nr = ggml_nrows(src0);
  6177. GGML_TENSOR_UNARY_OP_LOCALS
  6178. GGML_ASSERT( nb0 == sizeof(float));
  6179. GGML_ASSERT(nb00 == sizeof(float));
  6180. // rows per thread
  6181. const int dr = (nr + nth - 1)/nth;
  6182. // row range for this thread
  6183. const int ir0 = dr*ith;
  6184. const int ir1 = MIN(ir0 + dr, nr);
  6185. for (int ir = ir0; ir < ir1; ++ir) {
  6186. // src0 and dst are same shape => same indices
  6187. const int i3 = ir/(ne2*ne1);
  6188. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6189. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6190. #ifdef GGML_USE_ACCELERATE
  6191. UNUSED(ggml_vec_add1_f32);
  6192. vDSP_vadd(
  6193. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6194. (float *) ((char *) src1->data), 0,
  6195. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6196. ne0);
  6197. #else
  6198. ggml_vec_add1_f32(ne0,
  6199. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6200. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6201. *(float *) src1->data);
  6202. #endif
  6203. }
  6204. }
  6205. static void ggml_compute_forward_add1_f16_f32(
  6206. const struct ggml_compute_params * params,
  6207. const struct ggml_tensor * src0,
  6208. const struct ggml_tensor * src1,
  6209. struct ggml_tensor * dst) {
  6210. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6211. GGML_ASSERT(ggml_is_scalar(src1));
  6212. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6213. return;
  6214. }
  6215. // scalar to add
  6216. const float v = *(float *) src1->data;
  6217. const int ith = params->ith;
  6218. const int nth = params->nth;
  6219. const int nr = ggml_nrows(src0);
  6220. GGML_TENSOR_UNARY_OP_LOCALS
  6221. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6222. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6223. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6224. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6225. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6226. // rows per thread
  6227. const int dr = (nr + nth - 1)/nth;
  6228. // row range for this thread
  6229. const int ir0 = dr*ith;
  6230. const int ir1 = MIN(ir0 + dr, nr);
  6231. for (int ir = ir0; ir < ir1; ++ir) {
  6232. // src0 and dst are same shape => same indices
  6233. const int i3 = ir/(ne2*ne1);
  6234. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6235. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6236. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6237. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6238. for (int i = 0; i < ne0; i++) {
  6239. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6240. }
  6241. }
  6242. }
  6243. static void ggml_compute_forward_add1_f16_f16(
  6244. const struct ggml_compute_params * params,
  6245. const struct ggml_tensor * src0,
  6246. const struct ggml_tensor * src1,
  6247. struct ggml_tensor * dst) {
  6248. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6249. GGML_ASSERT(ggml_is_scalar(src1));
  6250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6251. return;
  6252. }
  6253. // scalar to add
  6254. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6255. const int ith = params->ith;
  6256. const int nth = params->nth;
  6257. const int nr = ggml_nrows(src0);
  6258. GGML_TENSOR_UNARY_OP_LOCALS
  6259. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6260. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6261. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6262. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6263. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6264. // rows per thread
  6265. const int dr = (nr + nth - 1)/nth;
  6266. // row range for this thread
  6267. const int ir0 = dr*ith;
  6268. const int ir1 = MIN(ir0 + dr, nr);
  6269. for (int ir = ir0; ir < ir1; ++ir) {
  6270. // src0 and dst are same shape => same indices
  6271. const int i3 = ir/(ne2*ne1);
  6272. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6273. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6274. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6275. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6276. for (int i = 0; i < ne0; i++) {
  6277. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6278. }
  6279. }
  6280. }
  6281. static void ggml_compute_forward_add1_q_f32(
  6282. const struct ggml_compute_params * params,
  6283. const struct ggml_tensor * src0,
  6284. const struct ggml_tensor * src1,
  6285. struct ggml_tensor * dst) {
  6286. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6287. GGML_ASSERT(ggml_is_scalar(src1));
  6288. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6289. return;
  6290. }
  6291. // scalar to add
  6292. const float v = *(float *) src1->data;
  6293. const int ith = params->ith;
  6294. const int nth = params->nth;
  6295. const int nr = ggml_nrows(src0);
  6296. GGML_TENSOR_UNARY_OP_LOCALS
  6297. const enum ggml_type type = src0->type;
  6298. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6299. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6300. // we don't support permuted src0
  6301. GGML_ASSERT(nb00 == ggml_type_size(type));
  6302. // dst cannot be transposed or permuted
  6303. GGML_ASSERT(nb0 <= nb1);
  6304. GGML_ASSERT(nb1 <= nb2);
  6305. GGML_ASSERT(nb2 <= nb3);
  6306. GGML_ASSERT(ggml_is_quantized(src0->type));
  6307. GGML_ASSERT(dst->type == src0->type);
  6308. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6309. // rows per thread
  6310. const int dr = (nr + nth - 1)/nth;
  6311. // row range for this thread
  6312. const int ir0 = dr*ith;
  6313. const int ir1 = MIN(ir0 + dr, nr);
  6314. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6315. for (int ir = ir0; ir < ir1; ++ir) {
  6316. // src0 and dst are same shape => same indices
  6317. const int i3 = ir/(ne2*ne1);
  6318. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6319. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6320. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6321. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6322. assert(ne0 % 32 == 0);
  6323. // unquantize row from src0 to temp buffer
  6324. dequantize_row_q(src0_row, wdata, ne0);
  6325. // add src1
  6326. ggml_vec_acc1_f32(ne0, wdata, v);
  6327. // quantize row to dst
  6328. quantize_row_q(wdata, dst_row, ne0);
  6329. }
  6330. }
  6331. static void ggml_compute_forward_add1(
  6332. const struct ggml_compute_params * params,
  6333. const struct ggml_tensor * src0,
  6334. const struct ggml_tensor * src1,
  6335. struct ggml_tensor * dst) {
  6336. switch (src0->type) {
  6337. case GGML_TYPE_F32:
  6338. {
  6339. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6340. } break;
  6341. case GGML_TYPE_F16:
  6342. {
  6343. if (src1->type == GGML_TYPE_F16) {
  6344. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6345. }
  6346. else if (src1->type == GGML_TYPE_F32) {
  6347. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6348. }
  6349. else {
  6350. GGML_ASSERT(false);
  6351. }
  6352. } break;
  6353. case GGML_TYPE_Q4_0:
  6354. case GGML_TYPE_Q4_1:
  6355. case GGML_TYPE_Q5_0:
  6356. case GGML_TYPE_Q5_1:
  6357. case GGML_TYPE_Q8_0:
  6358. case GGML_TYPE_Q8_1:
  6359. case GGML_TYPE_Q2_K:
  6360. case GGML_TYPE_Q3_K:
  6361. case GGML_TYPE_Q4_K:
  6362. case GGML_TYPE_Q5_K:
  6363. case GGML_TYPE_Q6_K:
  6364. case GGML_TYPE_IQ2_XXS:
  6365. case GGML_TYPE_IQ2_XS:
  6366. {
  6367. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6368. } break;
  6369. default:
  6370. {
  6371. GGML_ASSERT(false);
  6372. } break;
  6373. }
  6374. }
  6375. // ggml_compute_forward_acc
  6376. static void ggml_compute_forward_acc_f32(
  6377. const struct ggml_compute_params * params,
  6378. const struct ggml_tensor * src0,
  6379. const struct ggml_tensor * src1,
  6380. struct ggml_tensor * dst) {
  6381. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6382. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6383. // view src0 and dst with these strides and data offset inbytes during acc
  6384. // nb0 is implicitly element_size because src0 and dst are contiguous
  6385. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6386. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6387. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6388. size_t offset = ((int32_t *) dst->op_params)[3];
  6389. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6390. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6391. if (params->ith != 0) {
  6392. return;
  6393. }
  6394. // memcpy needs to be synchronized across threads to avoid race conditions.
  6395. // => do it in INIT phase
  6396. memcpy(
  6397. ((char *) dst->data),
  6398. ((char *) src0->data),
  6399. ggml_nbytes(dst));
  6400. }
  6401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6402. return;
  6403. }
  6404. const int ith = params->ith;
  6405. const int nth = params->nth;
  6406. const int nr = ggml_nrows(src1);
  6407. const int nc = src1->ne[0];
  6408. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6409. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6410. // src0 and dst as viewed during acc
  6411. const size_t nb0 = ggml_element_size(src0);
  6412. const size_t nb00 = nb0;
  6413. const size_t nb01 = nb1;
  6414. const size_t nb02 = nb2;
  6415. const size_t nb03 = nb3;
  6416. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6417. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6418. GGML_ASSERT(nb10 == sizeof(float));
  6419. // rows per thread
  6420. const int dr = (nr + nth - 1)/nth;
  6421. // row range for this thread
  6422. const int ir0 = dr*ith;
  6423. const int ir1 = MIN(ir0 + dr, nr);
  6424. for (int ir = ir0; ir < ir1; ++ir) {
  6425. // src0 and dst are viewed with shape of src1 and offset
  6426. // => same indices
  6427. const int i3 = ir/(ne12*ne11);
  6428. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6429. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6430. #ifdef GGML_USE_ACCELERATE
  6431. vDSP_vadd(
  6432. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6433. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6434. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6435. #else
  6436. ggml_vec_add_f32(nc,
  6437. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6438. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6439. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6440. #endif
  6441. }
  6442. }
  6443. static void ggml_compute_forward_acc(
  6444. const struct ggml_compute_params * params,
  6445. const struct ggml_tensor * src0,
  6446. const struct ggml_tensor * src1,
  6447. struct ggml_tensor * dst) {
  6448. switch (src0->type) {
  6449. case GGML_TYPE_F32:
  6450. {
  6451. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6452. } break;
  6453. case GGML_TYPE_F16:
  6454. case GGML_TYPE_Q4_0:
  6455. case GGML_TYPE_Q4_1:
  6456. case GGML_TYPE_Q5_0:
  6457. case GGML_TYPE_Q5_1:
  6458. case GGML_TYPE_Q8_0:
  6459. case GGML_TYPE_Q8_1:
  6460. case GGML_TYPE_Q2_K:
  6461. case GGML_TYPE_Q3_K:
  6462. case GGML_TYPE_Q4_K:
  6463. case GGML_TYPE_Q5_K:
  6464. case GGML_TYPE_Q6_K:
  6465. case GGML_TYPE_IQ2_XXS:
  6466. case GGML_TYPE_IQ2_XS:
  6467. default:
  6468. {
  6469. GGML_ASSERT(false);
  6470. } break;
  6471. }
  6472. }
  6473. // ggml_compute_forward_sub
  6474. static void ggml_compute_forward_sub_f32(
  6475. const struct ggml_compute_params * params,
  6476. const struct ggml_tensor * src0,
  6477. const struct ggml_tensor * src1,
  6478. struct ggml_tensor * dst) {
  6479. assert(params->ith == 0);
  6480. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6482. return;
  6483. }
  6484. const int nr = ggml_nrows(src0);
  6485. GGML_TENSOR_BINARY_OP_LOCALS
  6486. GGML_ASSERT( nb0 == sizeof(float));
  6487. GGML_ASSERT(nb00 == sizeof(float));
  6488. if (nb10 == sizeof(float)) {
  6489. for (int ir = 0; ir < nr; ++ir) {
  6490. // src0, src1 and dst are same shape => same indices
  6491. const int i3 = ir/(ne2*ne1);
  6492. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6493. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6494. #ifdef GGML_USE_ACCELERATE
  6495. vDSP_vsub(
  6496. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6497. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6498. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6499. ne0);
  6500. #else
  6501. ggml_vec_sub_f32(ne0,
  6502. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6503. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6504. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6505. #endif
  6506. // }
  6507. // }
  6508. }
  6509. } else {
  6510. // src1 is not contiguous
  6511. for (int ir = 0; ir < nr; ++ir) {
  6512. // src0, src1 and dst are same shape => same indices
  6513. const int i3 = ir/(ne2*ne1);
  6514. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6515. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6516. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6517. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6518. for (int i0 = 0; i0 < ne0; i0++) {
  6519. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6520. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6521. }
  6522. }
  6523. }
  6524. }
  6525. static void ggml_compute_forward_sub(
  6526. const struct ggml_compute_params * params,
  6527. const struct ggml_tensor * src0,
  6528. const struct ggml_tensor * src1,
  6529. struct ggml_tensor * dst) {
  6530. switch (src0->type) {
  6531. case GGML_TYPE_F32:
  6532. {
  6533. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6534. } break;
  6535. default:
  6536. {
  6537. GGML_ASSERT(false);
  6538. } break;
  6539. }
  6540. }
  6541. // ggml_compute_forward_mul
  6542. static void ggml_compute_forward_mul_f32(
  6543. const struct ggml_compute_params * params,
  6544. const struct ggml_tensor * src0,
  6545. const struct ggml_tensor * src1,
  6546. struct ggml_tensor * dst) {
  6547. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6549. return;
  6550. }
  6551. const int ith = params->ith;
  6552. const int nth = params->nth;
  6553. #ifdef GGML_USE_CLBLAST
  6554. if (src1->backend == GGML_BACKEND_GPU) {
  6555. // TODO: OpenCL kernel support full broadcast
  6556. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6557. if (ith == 0) {
  6558. ggml_cl_mul(src0, src1, dst);
  6559. }
  6560. return;
  6561. }
  6562. #endif
  6563. const int64_t nr = ggml_nrows(src0);
  6564. GGML_TENSOR_BINARY_OP_LOCALS
  6565. GGML_ASSERT( nb0 == sizeof(float));
  6566. GGML_ASSERT(nb00 == sizeof(float));
  6567. if (nb10 == sizeof(float)) {
  6568. for (int64_t ir = ith; ir < nr; ir += nth) {
  6569. // src0 and dst are same shape => same indices
  6570. const int64_t i03 = ir/(ne02*ne01);
  6571. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6572. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6573. const int64_t i13 = i03 % ne13;
  6574. const int64_t i12 = i02 % ne12;
  6575. const int64_t i11 = i01 % ne11;
  6576. const int64_t nr0 = ne00 / ne10;
  6577. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6578. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6579. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6580. for (int64_t r = 0 ; r < nr0; ++r) {
  6581. #ifdef GGML_USE_ACCELERATE
  6582. UNUSED(ggml_vec_mul_f32);
  6583. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6584. #else
  6585. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6586. #endif
  6587. }
  6588. }
  6589. } else {
  6590. // src1 is not contiguous
  6591. for (int64_t ir = ith; ir < nr; ir += nth) {
  6592. // src0 and dst are same shape => same indices
  6593. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6594. const int64_t i03 = ir/(ne02*ne01);
  6595. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6596. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6597. const int64_t i13 = i03 % ne13;
  6598. const int64_t i12 = i02 % ne12;
  6599. const int64_t i11 = i01 % ne11;
  6600. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6601. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6602. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6603. const int64_t i10 = i0 % ne10;
  6604. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6605. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6606. }
  6607. }
  6608. }
  6609. }
  6610. static void ggml_compute_forward_mul(
  6611. const struct ggml_compute_params * params,
  6612. const struct ggml_tensor * src0,
  6613. const struct ggml_tensor * src1,
  6614. struct ggml_tensor * dst) {
  6615. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6616. switch (src0->type) {
  6617. case GGML_TYPE_F32:
  6618. {
  6619. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6620. } break;
  6621. default:
  6622. {
  6623. GGML_ASSERT(false);
  6624. } break;
  6625. }
  6626. }
  6627. // ggml_compute_forward_div
  6628. static void ggml_compute_forward_div_f32(
  6629. const struct ggml_compute_params * params,
  6630. const struct ggml_tensor * src0,
  6631. const struct ggml_tensor * src1,
  6632. struct ggml_tensor * dst) {
  6633. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6635. return;
  6636. }
  6637. const int ith = params->ith;
  6638. const int nth = params->nth;
  6639. const int64_t nr = ggml_nrows(src0);
  6640. GGML_TENSOR_BINARY_OP_LOCALS
  6641. GGML_ASSERT( nb0 == sizeof(float));
  6642. GGML_ASSERT(nb00 == sizeof(float));
  6643. if (nb10 == sizeof(float)) {
  6644. for (int64_t ir = ith; ir < nr; ir += nth) {
  6645. // src0 and dst are same shape => same indices
  6646. const int64_t i03 = ir/(ne02*ne01);
  6647. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6648. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6649. const int64_t i13 = i03 % ne13;
  6650. const int64_t i12 = i02 % ne12;
  6651. const int64_t i11 = i01 % ne11;
  6652. const int64_t nr0 = ne00 / ne10;
  6653. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6654. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6655. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6656. for (int64_t r = 0; r < nr0; ++r) {
  6657. #ifdef GGML_USE_ACCELERATE
  6658. UNUSED(ggml_vec_div_f32);
  6659. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6660. #else
  6661. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6662. #endif
  6663. }
  6664. }
  6665. } else {
  6666. // src1 is not contiguous
  6667. for (int64_t ir = ith; ir < nr; ir += nth) {
  6668. // src0 and dst are same shape => same indices
  6669. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6670. const int64_t i03 = ir/(ne02*ne01);
  6671. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6672. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6673. const int64_t i13 = i03 % ne13;
  6674. const int64_t i12 = i02 % ne12;
  6675. const int64_t i11 = i01 % ne11;
  6676. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6677. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6678. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6679. const int64_t i10 = i0 % ne10;
  6680. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6681. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6682. }
  6683. }
  6684. }
  6685. }
  6686. static void ggml_compute_forward_div(
  6687. const struct ggml_compute_params * params,
  6688. const struct ggml_tensor * src0,
  6689. const struct ggml_tensor * src1,
  6690. struct ggml_tensor * dst) {
  6691. switch (src0->type) {
  6692. case GGML_TYPE_F32:
  6693. {
  6694. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6695. } break;
  6696. default:
  6697. {
  6698. GGML_ASSERT(false);
  6699. } break;
  6700. }
  6701. }
  6702. // ggml_compute_forward_sqr
  6703. static void ggml_compute_forward_sqr_f32(
  6704. const struct ggml_compute_params * params,
  6705. const struct ggml_tensor * src0,
  6706. struct ggml_tensor * dst) {
  6707. assert(params->ith == 0);
  6708. assert(ggml_are_same_shape(src0, dst));
  6709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6710. return;
  6711. }
  6712. const int n = ggml_nrows(src0);
  6713. const int nc = src0->ne[0];
  6714. assert( dst->nb[0] == sizeof(float));
  6715. assert(src0->nb[0] == sizeof(float));
  6716. for (int i = 0; i < n; i++) {
  6717. ggml_vec_sqr_f32(nc,
  6718. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6719. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6720. }
  6721. }
  6722. static void ggml_compute_forward_sqr(
  6723. const struct ggml_compute_params * params,
  6724. const struct ggml_tensor * src0,
  6725. struct ggml_tensor * dst) {
  6726. switch (src0->type) {
  6727. case GGML_TYPE_F32:
  6728. {
  6729. ggml_compute_forward_sqr_f32(params, src0, dst);
  6730. } break;
  6731. default:
  6732. {
  6733. GGML_ASSERT(false);
  6734. } break;
  6735. }
  6736. }
  6737. // ggml_compute_forward_sqrt
  6738. static void ggml_compute_forward_sqrt_f32(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. struct ggml_tensor * dst) {
  6742. assert(params->ith == 0);
  6743. assert(ggml_are_same_shape(src0, dst));
  6744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6745. return;
  6746. }
  6747. const int n = ggml_nrows(src0);
  6748. const int nc = src0->ne[0];
  6749. assert( dst->nb[0] == sizeof(float));
  6750. assert(src0->nb[0] == sizeof(float));
  6751. for (int i = 0; i < n; i++) {
  6752. ggml_vec_sqrt_f32(nc,
  6753. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6754. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6755. }
  6756. }
  6757. static void ggml_compute_forward_sqrt(
  6758. const struct ggml_compute_params * params,
  6759. const struct ggml_tensor * src0,
  6760. struct ggml_tensor * dst) {
  6761. switch (src0->type) {
  6762. case GGML_TYPE_F32:
  6763. {
  6764. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6765. } break;
  6766. default:
  6767. {
  6768. GGML_ASSERT(false);
  6769. } break;
  6770. }
  6771. }
  6772. // ggml_compute_forward_log
  6773. static void ggml_compute_forward_log_f32(
  6774. const struct ggml_compute_params * params,
  6775. const struct ggml_tensor * src0,
  6776. struct ggml_tensor * dst) {
  6777. GGML_ASSERT(params->ith == 0);
  6778. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6780. return;
  6781. }
  6782. const int n = ggml_nrows(src0);
  6783. const int nc = src0->ne[0];
  6784. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6785. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6786. for (int i = 0; i < n; i++) {
  6787. ggml_vec_log_f32(nc,
  6788. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6789. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6790. }
  6791. }
  6792. static void ggml_compute_forward_log(
  6793. const struct ggml_compute_params * params,
  6794. const struct ggml_tensor * src0,
  6795. struct ggml_tensor * dst) {
  6796. switch (src0->type) {
  6797. case GGML_TYPE_F32:
  6798. {
  6799. ggml_compute_forward_log_f32(params, src0, dst);
  6800. } break;
  6801. default:
  6802. {
  6803. GGML_ASSERT(false);
  6804. } break;
  6805. }
  6806. }
  6807. // ggml_compute_forward_sum
  6808. static void ggml_compute_forward_sum_f32(
  6809. const struct ggml_compute_params * params,
  6810. const struct ggml_tensor * src0,
  6811. struct ggml_tensor * dst) {
  6812. assert(params->ith == 0);
  6813. assert(ggml_is_scalar(dst));
  6814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6815. return;
  6816. }
  6817. assert(ggml_is_scalar(dst));
  6818. assert(src0->nb[0] == sizeof(float));
  6819. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6820. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6821. ggml_float sum = 0;
  6822. ggml_float row_sum = 0;
  6823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6825. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6826. ggml_vec_sum_f32_ggf(ne00,
  6827. &row_sum,
  6828. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6829. sum += row_sum;
  6830. }
  6831. }
  6832. }
  6833. ((float *) dst->data)[0] = sum;
  6834. }
  6835. static void ggml_compute_forward_sum_f16(
  6836. const struct ggml_compute_params * params,
  6837. const struct ggml_tensor * src0,
  6838. struct ggml_tensor * dst) {
  6839. assert(params->ith == 0);
  6840. assert(ggml_is_scalar(dst));
  6841. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6842. return;
  6843. }
  6844. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6845. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6846. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6847. float sum = 0;
  6848. float row_sum = 0;
  6849. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6850. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6851. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6852. ggml_vec_sum_f16_ggf(ne00,
  6853. &row_sum,
  6854. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6855. sum += row_sum;
  6856. }
  6857. }
  6858. }
  6859. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6860. }
  6861. static void ggml_compute_forward_sum(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. struct ggml_tensor * dst) {
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_sum_f32(params, src0, dst);
  6869. } break;
  6870. case GGML_TYPE_F16:
  6871. {
  6872. ggml_compute_forward_sum_f16(params, src0, dst);
  6873. } break;
  6874. default:
  6875. {
  6876. GGML_ASSERT(false);
  6877. } break;
  6878. }
  6879. }
  6880. // ggml_compute_forward_sum_rows
  6881. static void ggml_compute_forward_sum_rows_f32(
  6882. const struct ggml_compute_params * params,
  6883. const struct ggml_tensor * src0,
  6884. struct ggml_tensor * dst) {
  6885. GGML_ASSERT(params->ith == 0);
  6886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6887. return;
  6888. }
  6889. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6890. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6891. GGML_TENSOR_UNARY_OP_LOCALS
  6892. GGML_ASSERT(ne0 == 1);
  6893. GGML_ASSERT(ne1 == ne01);
  6894. GGML_ASSERT(ne2 == ne02);
  6895. GGML_ASSERT(ne3 == ne03);
  6896. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6897. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6898. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6899. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6900. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6901. float row_sum = 0;
  6902. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6903. dst_row[0] = row_sum;
  6904. }
  6905. }
  6906. }
  6907. }
  6908. static void ggml_compute_forward_sum_rows(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. struct ggml_tensor * dst) {
  6912. switch (src0->type) {
  6913. case GGML_TYPE_F32:
  6914. {
  6915. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6916. } break;
  6917. default:
  6918. {
  6919. GGML_ASSERT(false);
  6920. } break;
  6921. }
  6922. }
  6923. // ggml_compute_forward_mean
  6924. static void ggml_compute_forward_mean_f32(
  6925. const struct ggml_compute_params * params,
  6926. const struct ggml_tensor * src0,
  6927. struct ggml_tensor * dst) {
  6928. assert(params->ith == 0);
  6929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6930. return;
  6931. }
  6932. assert(src0->nb[0] == sizeof(float));
  6933. GGML_TENSOR_UNARY_OP_LOCALS
  6934. assert(ne0 == 1);
  6935. assert(ne1 == ne01);
  6936. assert(ne2 == ne02);
  6937. assert(ne3 == ne03);
  6938. UNUSED(ne0);
  6939. UNUSED(ne1);
  6940. UNUSED(ne2);
  6941. UNUSED(ne3);
  6942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6944. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6945. ggml_vec_sum_f32(ne00,
  6946. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6947. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6948. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6949. }
  6950. }
  6951. }
  6952. }
  6953. static void ggml_compute_forward_mean(
  6954. const struct ggml_compute_params * params,
  6955. const struct ggml_tensor * src0,
  6956. struct ggml_tensor * dst) {
  6957. switch (src0->type) {
  6958. case GGML_TYPE_F32:
  6959. {
  6960. ggml_compute_forward_mean_f32(params, src0, dst);
  6961. } break;
  6962. default:
  6963. {
  6964. GGML_ASSERT(false);
  6965. } break;
  6966. }
  6967. }
  6968. // ggml_compute_forward_argmax
  6969. static void ggml_compute_forward_argmax_f32(
  6970. const struct ggml_compute_params * params,
  6971. const struct ggml_tensor * src0,
  6972. struct ggml_tensor * dst) {
  6973. assert(params->ith == 0);
  6974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6975. return;
  6976. }
  6977. assert(src0->nb[0] == sizeof(float));
  6978. assert(dst->nb[0] == sizeof(float));
  6979. const int64_t ne00 = src0->ne[0];
  6980. const int64_t ne01 = src0->ne[1];
  6981. const size_t nb01 = src0->nb[1];
  6982. const size_t nb0 = dst->nb[0];
  6983. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6984. float * src = (float *) ((char *) src0->data + i1*nb01);
  6985. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6986. int v = 0;
  6987. ggml_vec_argmax_f32(ne00, &v, src);
  6988. dst_[0] = v;
  6989. }
  6990. }
  6991. static void ggml_compute_forward_argmax(
  6992. const struct ggml_compute_params * params,
  6993. const struct ggml_tensor * src0,
  6994. struct ggml_tensor * dst) {
  6995. switch (src0->type) {
  6996. case GGML_TYPE_F32:
  6997. {
  6998. ggml_compute_forward_argmax_f32(params, src0, dst);
  6999. } break;
  7000. default:
  7001. {
  7002. GGML_ASSERT(false);
  7003. } break;
  7004. }
  7005. }
  7006. // ggml_compute_forward_repeat
  7007. static void ggml_compute_forward_repeat_f32(
  7008. const struct ggml_compute_params * params,
  7009. const struct ggml_tensor * src0,
  7010. struct ggml_tensor * dst) {
  7011. GGML_ASSERT(params->ith == 0);
  7012. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7014. return;
  7015. }
  7016. GGML_TENSOR_UNARY_OP_LOCALS
  7017. // guaranteed to be an integer due to the check in ggml_can_repeat
  7018. const int nr0 = (int)(ne0/ne00);
  7019. const int nr1 = (int)(ne1/ne01);
  7020. const int nr2 = (int)(ne2/ne02);
  7021. const int nr3 = (int)(ne3/ne03);
  7022. // TODO: support for transposed / permuted tensors
  7023. GGML_ASSERT(nb0 == sizeof(float));
  7024. GGML_ASSERT(nb00 == sizeof(float));
  7025. // TODO: maybe this is not optimal?
  7026. for (int i3 = 0; i3 < nr3; i3++) {
  7027. for (int k3 = 0; k3 < ne03; k3++) {
  7028. for (int i2 = 0; i2 < nr2; i2++) {
  7029. for (int k2 = 0; k2 < ne02; k2++) {
  7030. for (int i1 = 0; i1 < nr1; i1++) {
  7031. for (int k1 = 0; k1 < ne01; k1++) {
  7032. for (int i0 = 0; i0 < nr0; i0++) {
  7033. ggml_vec_cpy_f32(ne00,
  7034. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7035. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7036. }
  7037. }
  7038. }
  7039. }
  7040. }
  7041. }
  7042. }
  7043. }
  7044. static void ggml_compute_forward_repeat_f16(
  7045. const struct ggml_compute_params * params,
  7046. const struct ggml_tensor * src0,
  7047. struct ggml_tensor * dst) {
  7048. GGML_ASSERT(params->ith == 0);
  7049. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7051. return;
  7052. }
  7053. GGML_TENSOR_UNARY_OP_LOCALS
  7054. // guaranteed to be an integer due to the check in ggml_can_repeat
  7055. const int nr0 = (int)(ne0/ne00);
  7056. const int nr1 = (int)(ne1/ne01);
  7057. const int nr2 = (int)(ne2/ne02);
  7058. const int nr3 = (int)(ne3/ne03);
  7059. // TODO: support for transposed / permuted tensors
  7060. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7061. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7062. // TODO: maybe this is not optimal?
  7063. for (int i3 = 0; i3 < nr3; i3++) {
  7064. for (int k3 = 0; k3 < ne03; k3++) {
  7065. for (int i2 = 0; i2 < nr2; i2++) {
  7066. for (int k2 = 0; k2 < ne02; k2++) {
  7067. for (int i1 = 0; i1 < nr1; i1++) {
  7068. for (int k1 = 0; k1 < ne01; k1++) {
  7069. for (int i0 = 0; i0 < nr0; i0++) {
  7070. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7071. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7072. // ggml_vec_cpy_f16(ne00, y, x)
  7073. for (int i = 0; i < ne00; ++i) {
  7074. y[i] = x[i];
  7075. }
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. }
  7084. static void ggml_compute_forward_repeat(
  7085. const struct ggml_compute_params * params,
  7086. const struct ggml_tensor * src0,
  7087. struct ggml_tensor * dst) {
  7088. switch (src0->type) {
  7089. case GGML_TYPE_F16:
  7090. case GGML_TYPE_I16:
  7091. {
  7092. ggml_compute_forward_repeat_f16(params, src0, dst);
  7093. } break;
  7094. case GGML_TYPE_F32:
  7095. case GGML_TYPE_I32:
  7096. {
  7097. ggml_compute_forward_repeat_f32(params, src0, dst);
  7098. } break;
  7099. default:
  7100. {
  7101. GGML_ASSERT(false);
  7102. } break;
  7103. }
  7104. }
  7105. // ggml_compute_forward_repeat_back
  7106. static void ggml_compute_forward_repeat_back_f32(
  7107. const struct ggml_compute_params * params,
  7108. const struct ggml_tensor * src0,
  7109. struct ggml_tensor * dst) {
  7110. GGML_ASSERT(params->ith == 0);
  7111. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7113. return;
  7114. }
  7115. GGML_TENSOR_UNARY_OP_LOCALS
  7116. // guaranteed to be an integer due to the check in ggml_can_repeat
  7117. const int nr0 = (int)(ne00/ne0);
  7118. const int nr1 = (int)(ne01/ne1);
  7119. const int nr2 = (int)(ne02/ne2);
  7120. const int nr3 = (int)(ne03/ne3);
  7121. // TODO: support for transposed / permuted tensors
  7122. GGML_ASSERT(nb0 == sizeof(float));
  7123. GGML_ASSERT(nb00 == sizeof(float));
  7124. if (ggml_is_contiguous(dst)) {
  7125. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7126. } else {
  7127. for (int k3 = 0; k3 < ne3; k3++) {
  7128. for (int k2 = 0; k2 < ne2; k2++) {
  7129. for (int k1 = 0; k1 < ne1; k1++) {
  7130. ggml_vec_set_f32(ne0,
  7131. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7132. 0);
  7133. }
  7134. }
  7135. }
  7136. }
  7137. // TODO: maybe this is not optimal?
  7138. for (int i3 = 0; i3 < nr3; i3++) {
  7139. for (int k3 = 0; k3 < ne3; k3++) {
  7140. for (int i2 = 0; i2 < nr2; i2++) {
  7141. for (int k2 = 0; k2 < ne2; k2++) {
  7142. for (int i1 = 0; i1 < nr1; i1++) {
  7143. for (int k1 = 0; k1 < ne1; k1++) {
  7144. for (int i0 = 0; i0 < nr0; i0++) {
  7145. ggml_vec_acc_f32(ne0,
  7146. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7147. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7148. }
  7149. }
  7150. }
  7151. }
  7152. }
  7153. }
  7154. }
  7155. }
  7156. static void ggml_compute_forward_repeat_back(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. struct ggml_tensor * dst) {
  7160. switch (src0->type) {
  7161. case GGML_TYPE_F32:
  7162. {
  7163. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7164. } break;
  7165. default:
  7166. {
  7167. GGML_ASSERT(false);
  7168. } break;
  7169. }
  7170. }
  7171. // ggml_compute_forward_concat
  7172. static void ggml_compute_forward_concat_f32(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. const struct ggml_tensor * src1,
  7176. struct ggml_tensor * dst) {
  7177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7178. return;
  7179. }
  7180. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7181. const int ith = params->ith;
  7182. const int nth = params->nth;
  7183. GGML_TENSOR_BINARY_OP_LOCALS
  7184. // TODO: support for transposed / permuted tensors
  7185. GGML_ASSERT(nb0 == sizeof(float));
  7186. GGML_ASSERT(nb00 == sizeof(float));
  7187. GGML_ASSERT(nb10 == sizeof(float));
  7188. for (int i3 = 0; i3 < ne3; i3++) {
  7189. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7190. if (i2 < ne02) { // src0
  7191. for (int i1 = 0; i1 < ne1; i1++) {
  7192. for (int i0 = 0; i0 < ne0; i0++) {
  7193. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7194. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7195. *y = *x;
  7196. }
  7197. }
  7198. } // src1
  7199. else {
  7200. for (int i1 = 0; i1 < ne1; i1++) {
  7201. for (int i0 = 0; i0 < ne0; i0++) {
  7202. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7203. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7204. *y = *x;
  7205. }
  7206. }
  7207. }
  7208. }
  7209. }
  7210. }
  7211. static void ggml_compute_forward_concat(
  7212. const struct ggml_compute_params* params,
  7213. const struct ggml_tensor* src0,
  7214. const struct ggml_tensor* src1,
  7215. struct ggml_tensor* dst) {
  7216. switch (src0->type) {
  7217. case GGML_TYPE_F32:
  7218. case GGML_TYPE_I32:
  7219. {
  7220. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7221. } break;
  7222. default:
  7223. {
  7224. GGML_ASSERT(false);
  7225. } break;
  7226. }
  7227. }
  7228. // ggml_compute_forward_abs
  7229. static void ggml_compute_forward_abs_f32(
  7230. const struct ggml_compute_params * params,
  7231. const struct ggml_tensor * src0,
  7232. struct ggml_tensor * dst) {
  7233. assert(params->ith == 0);
  7234. assert(ggml_are_same_shape(src0, dst));
  7235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7236. return;
  7237. }
  7238. const int n = ggml_nrows(src0);
  7239. const int nc = src0->ne[0];
  7240. assert(dst->nb[0] == sizeof(float));
  7241. assert(src0->nb[0] == sizeof(float));
  7242. for (int i = 0; i < n; i++) {
  7243. ggml_vec_abs_f32(nc,
  7244. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7245. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7246. }
  7247. }
  7248. static void ggml_compute_forward_abs(
  7249. const struct ggml_compute_params * params,
  7250. const struct ggml_tensor * src0,
  7251. struct ggml_tensor * dst) {
  7252. switch (src0->type) {
  7253. case GGML_TYPE_F32:
  7254. {
  7255. ggml_compute_forward_abs_f32(params, src0, dst);
  7256. } break;
  7257. default:
  7258. {
  7259. GGML_ASSERT(false);
  7260. } break;
  7261. }
  7262. }
  7263. // ggml_compute_forward_sgn
  7264. static void ggml_compute_forward_sgn_f32(
  7265. const struct ggml_compute_params * params,
  7266. const struct ggml_tensor * src0,
  7267. struct ggml_tensor * dst) {
  7268. assert(params->ith == 0);
  7269. assert(ggml_are_same_shape(src0, dst));
  7270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7271. return;
  7272. }
  7273. const int n = ggml_nrows(src0);
  7274. const int nc = src0->ne[0];
  7275. assert(dst->nb[0] == sizeof(float));
  7276. assert(src0->nb[0] == sizeof(float));
  7277. for (int i = 0; i < n; i++) {
  7278. ggml_vec_sgn_f32(nc,
  7279. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7280. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7281. }
  7282. }
  7283. static void ggml_compute_forward_sgn(
  7284. const struct ggml_compute_params * params,
  7285. const struct ggml_tensor * src0,
  7286. struct ggml_tensor * dst) {
  7287. switch (src0->type) {
  7288. case GGML_TYPE_F32:
  7289. {
  7290. ggml_compute_forward_sgn_f32(params, src0, dst);
  7291. } break;
  7292. default:
  7293. {
  7294. GGML_ASSERT(false);
  7295. } break;
  7296. }
  7297. }
  7298. // ggml_compute_forward_neg
  7299. static void ggml_compute_forward_neg_f32(
  7300. const struct ggml_compute_params * params,
  7301. const struct ggml_tensor * src0,
  7302. struct ggml_tensor * dst) {
  7303. assert(params->ith == 0);
  7304. assert(ggml_are_same_shape(src0, dst));
  7305. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7306. return;
  7307. }
  7308. const int n = ggml_nrows(src0);
  7309. const int nc = src0->ne[0];
  7310. assert(dst->nb[0] == sizeof(float));
  7311. assert(src0->nb[0] == sizeof(float));
  7312. for (int i = 0; i < n; i++) {
  7313. ggml_vec_neg_f32(nc,
  7314. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7315. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7316. }
  7317. }
  7318. static void ggml_compute_forward_neg(
  7319. const struct ggml_compute_params * params,
  7320. const struct ggml_tensor * src0,
  7321. struct ggml_tensor * dst) {
  7322. switch (src0->type) {
  7323. case GGML_TYPE_F32:
  7324. {
  7325. ggml_compute_forward_neg_f32(params, src0, dst);
  7326. } break;
  7327. default:
  7328. {
  7329. GGML_ASSERT(false);
  7330. } break;
  7331. }
  7332. }
  7333. // ggml_compute_forward_step
  7334. static void ggml_compute_forward_step_f32(
  7335. const struct ggml_compute_params * params,
  7336. const struct ggml_tensor * src0,
  7337. struct ggml_tensor * dst) {
  7338. assert(params->ith == 0);
  7339. assert(ggml_are_same_shape(src0, dst));
  7340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7341. return;
  7342. }
  7343. const int n = ggml_nrows(src0);
  7344. const int nc = src0->ne[0];
  7345. assert(dst->nb[0] == sizeof(float));
  7346. assert(src0->nb[0] == sizeof(float));
  7347. for (int i = 0; i < n; i++) {
  7348. ggml_vec_step_f32(nc,
  7349. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7350. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7351. }
  7352. }
  7353. static void ggml_compute_forward_step(
  7354. const struct ggml_compute_params * params,
  7355. const struct ggml_tensor * src0,
  7356. struct ggml_tensor * dst) {
  7357. switch (src0->type) {
  7358. case GGML_TYPE_F32:
  7359. {
  7360. ggml_compute_forward_step_f32(params, src0, dst);
  7361. } break;
  7362. default:
  7363. {
  7364. GGML_ASSERT(false);
  7365. } break;
  7366. }
  7367. }
  7368. // ggml_compute_forward_tanh
  7369. static void ggml_compute_forward_tanh_f32(
  7370. const struct ggml_compute_params * params,
  7371. const struct ggml_tensor * src0,
  7372. struct ggml_tensor * dst) {
  7373. assert(params->ith == 0);
  7374. assert(ggml_are_same_shape(src0, dst));
  7375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7376. return;
  7377. }
  7378. const int n = ggml_nrows(src0);
  7379. const int nc = src0->ne[0];
  7380. assert(dst->nb[0] == sizeof(float));
  7381. assert(src0->nb[0] == sizeof(float));
  7382. for (int i = 0; i < n; i++) {
  7383. ggml_vec_tanh_f32(nc,
  7384. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7385. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7386. }
  7387. }
  7388. static void ggml_compute_forward_tanh(
  7389. const struct ggml_compute_params * params,
  7390. const struct ggml_tensor * src0,
  7391. struct ggml_tensor * dst) {
  7392. switch (src0->type) {
  7393. case GGML_TYPE_F32:
  7394. {
  7395. ggml_compute_forward_tanh_f32(params, src0, dst);
  7396. } break;
  7397. default:
  7398. {
  7399. GGML_ASSERT(false);
  7400. } break;
  7401. }
  7402. }
  7403. // ggml_compute_forward_elu
  7404. static void ggml_compute_forward_elu_f32(
  7405. const struct ggml_compute_params * params,
  7406. const struct ggml_tensor * src0,
  7407. struct ggml_tensor * dst) {
  7408. assert(params->ith == 0);
  7409. assert(ggml_are_same_shape(src0, dst));
  7410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7411. return;
  7412. }
  7413. const int n = ggml_nrows(src0);
  7414. const int nc = src0->ne[0];
  7415. assert(dst->nb[0] == sizeof(float));
  7416. assert(src0->nb[0] == sizeof(float));
  7417. for (int i = 0; i < n; i++) {
  7418. ggml_vec_elu_f32(nc,
  7419. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7420. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7421. }
  7422. }
  7423. static void ggml_compute_forward_elu(
  7424. const struct ggml_compute_params * params,
  7425. const struct ggml_tensor * src0,
  7426. struct ggml_tensor * dst) {
  7427. switch (src0->type) {
  7428. case GGML_TYPE_F32:
  7429. {
  7430. ggml_compute_forward_elu_f32(params, src0, dst);
  7431. } break;
  7432. default:
  7433. {
  7434. GGML_ASSERT(false);
  7435. } break;
  7436. }
  7437. }
  7438. // ggml_compute_forward_relu
  7439. static void ggml_compute_forward_relu_f32(
  7440. const struct ggml_compute_params * params,
  7441. const struct ggml_tensor * src0,
  7442. struct ggml_tensor * dst) {
  7443. assert(params->ith == 0);
  7444. assert(ggml_are_same_shape(src0, dst));
  7445. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7446. return;
  7447. }
  7448. const int n = ggml_nrows(src0);
  7449. const int nc = src0->ne[0];
  7450. assert(dst->nb[0] == sizeof(float));
  7451. assert(src0->nb[0] == sizeof(float));
  7452. for (int i = 0; i < n; i++) {
  7453. ggml_vec_relu_f32(nc,
  7454. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7455. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7456. }
  7457. }
  7458. static void ggml_compute_forward_relu(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. struct ggml_tensor * dst) {
  7462. switch (src0->type) {
  7463. case GGML_TYPE_F32:
  7464. {
  7465. ggml_compute_forward_relu_f32(params, src0, dst);
  7466. } break;
  7467. default:
  7468. {
  7469. GGML_ASSERT(false);
  7470. } break;
  7471. }
  7472. }
  7473. // ggml_compute_forward_gelu
  7474. static void ggml_compute_forward_gelu_f32(
  7475. const struct ggml_compute_params * params,
  7476. const struct ggml_tensor * src0,
  7477. struct ggml_tensor * dst) {
  7478. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7479. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7480. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7482. return;
  7483. }
  7484. const int ith = params->ith;
  7485. const int nth = params->nth;
  7486. const int nc = src0->ne[0];
  7487. const int nr = ggml_nrows(src0);
  7488. // rows per thread
  7489. const int dr = (nr + nth - 1)/nth;
  7490. // row range for this thread
  7491. const int ir0 = dr*ith;
  7492. const int ir1 = MIN(ir0 + dr, nr);
  7493. for (int i1 = ir0; i1 < ir1; i1++) {
  7494. ggml_vec_gelu_f32(nc,
  7495. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7496. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7497. #ifndef NDEBUG
  7498. for (int k = 0; k < nc; k++) {
  7499. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7500. UNUSED(x);
  7501. assert(!isnan(x));
  7502. assert(!isinf(x));
  7503. }
  7504. #endif
  7505. }
  7506. }
  7507. static void ggml_compute_forward_gelu(
  7508. const struct ggml_compute_params * params,
  7509. const struct ggml_tensor * src0,
  7510. struct ggml_tensor * dst) {
  7511. switch (src0->type) {
  7512. case GGML_TYPE_F32:
  7513. {
  7514. ggml_compute_forward_gelu_f32(params, src0, dst);
  7515. } break;
  7516. default:
  7517. {
  7518. GGML_ASSERT(false);
  7519. } break;
  7520. }
  7521. }
  7522. // ggml_compute_forward_gelu_quick
  7523. static void ggml_compute_forward_gelu_quick_f32(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7528. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7529. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7530. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7531. return;
  7532. }
  7533. const int ith = params->ith;
  7534. const int nth = params->nth;
  7535. const int nc = src0->ne[0];
  7536. const int nr = ggml_nrows(src0);
  7537. // rows per thread
  7538. const int dr = (nr + nth - 1)/nth;
  7539. // row range for this thread
  7540. const int ir0 = dr*ith;
  7541. const int ir1 = MIN(ir0 + dr, nr);
  7542. for (int i1 = ir0; i1 < ir1; i1++) {
  7543. ggml_vec_gelu_quick_f32(nc,
  7544. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7545. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7546. #ifndef NDEBUG
  7547. for (int k = 0; k < nc; k++) {
  7548. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7549. UNUSED(x);
  7550. assert(!isnan(x));
  7551. assert(!isinf(x));
  7552. }
  7553. #endif
  7554. }
  7555. }
  7556. static void ggml_compute_forward_gelu_quick(
  7557. const struct ggml_compute_params * params,
  7558. const struct ggml_tensor * src0,
  7559. struct ggml_tensor * dst) {
  7560. switch (src0->type) {
  7561. case GGML_TYPE_F32:
  7562. {
  7563. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7564. } break;
  7565. default:
  7566. {
  7567. GGML_ASSERT(false);
  7568. } break;
  7569. }
  7570. }
  7571. // ggml_compute_forward_silu
  7572. static void ggml_compute_forward_silu_f32(
  7573. const struct ggml_compute_params * params,
  7574. const struct ggml_tensor * src0,
  7575. struct ggml_tensor * dst) {
  7576. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7577. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7578. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7579. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7580. return;
  7581. }
  7582. const int ith = params->ith;
  7583. const int nth = params->nth;
  7584. const int nc = src0->ne[0];
  7585. const int nr = ggml_nrows(src0);
  7586. // rows per thread
  7587. const int dr = (nr + nth - 1)/nth;
  7588. // row range for this thread
  7589. const int ir0 = dr*ith;
  7590. const int ir1 = MIN(ir0 + dr, nr);
  7591. for (int i1 = ir0; i1 < ir1; i1++) {
  7592. ggml_vec_silu_f32(nc,
  7593. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7594. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7595. #ifndef NDEBUG
  7596. for (int k = 0; k < nc; k++) {
  7597. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7598. UNUSED(x);
  7599. assert(!isnan(x));
  7600. assert(!isinf(x));
  7601. }
  7602. #endif
  7603. }
  7604. }
  7605. static void ggml_compute_forward_silu(
  7606. const struct ggml_compute_params * params,
  7607. const struct ggml_tensor * src0,
  7608. struct ggml_tensor * dst) {
  7609. switch (src0->type) {
  7610. case GGML_TYPE_F32:
  7611. {
  7612. ggml_compute_forward_silu_f32(params, src0, dst);
  7613. } break;
  7614. default:
  7615. {
  7616. GGML_ASSERT(false);
  7617. } break;
  7618. }
  7619. }
  7620. // ggml_compute_forward_leaky_relu
  7621. static void ggml_compute_forward_leaky_relu_f32(
  7622. const struct ggml_compute_params * params,
  7623. const struct ggml_tensor * src0,
  7624. struct ggml_tensor * dst) {
  7625. assert(params->ith == 0);
  7626. assert(ggml_are_same_shape(src0, dst));
  7627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7628. return;
  7629. }
  7630. const int n = ggml_nrows(src0);
  7631. const int nc = src0->ne[0];
  7632. float negative_slope;
  7633. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7634. assert(dst->nb[0] == sizeof(float));
  7635. assert(src0->nb[0] == sizeof(float));
  7636. for (int i = 0; i < n; i++) {
  7637. ggml_vec_leaky_relu_f32(nc,
  7638. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7639. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7640. }
  7641. }
  7642. static void ggml_compute_forward_leaky_relu(
  7643. const struct ggml_compute_params * params,
  7644. const struct ggml_tensor * src0,
  7645. struct ggml_tensor * dst) {
  7646. switch (src0->type) {
  7647. case GGML_TYPE_F32:
  7648. {
  7649. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7650. } break;
  7651. default:
  7652. {
  7653. GGML_ASSERT(false);
  7654. } break;
  7655. }
  7656. }
  7657. // ggml_compute_forward_silu_back
  7658. static void ggml_compute_forward_silu_back_f32(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. const struct ggml_tensor * grad,
  7662. struct ggml_tensor * dst) {
  7663. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7664. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7665. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7666. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7667. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7669. return;
  7670. }
  7671. const int ith = params->ith;
  7672. const int nth = params->nth;
  7673. const int nc = src0->ne[0];
  7674. const int nr = ggml_nrows(src0);
  7675. // rows per thread
  7676. const int dr = (nr + nth - 1)/nth;
  7677. // row range for this thread
  7678. const int ir0 = dr*ith;
  7679. const int ir1 = MIN(ir0 + dr, nr);
  7680. for (int i1 = ir0; i1 < ir1; i1++) {
  7681. ggml_vec_silu_backward_f32(nc,
  7682. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7683. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7684. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7685. #ifndef NDEBUG
  7686. for (int k = 0; k < nc; k++) {
  7687. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7688. UNUSED(x);
  7689. assert(!isnan(x));
  7690. assert(!isinf(x));
  7691. }
  7692. #endif
  7693. }
  7694. }
  7695. static void ggml_compute_forward_silu_back(
  7696. const struct ggml_compute_params * params,
  7697. const struct ggml_tensor * src0,
  7698. const struct ggml_tensor * grad,
  7699. struct ggml_tensor * dst) {
  7700. switch (src0->type) {
  7701. case GGML_TYPE_F32:
  7702. {
  7703. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7704. } break;
  7705. default:
  7706. {
  7707. GGML_ASSERT(false);
  7708. } break;
  7709. }
  7710. }
  7711. static void ggml_compute_forward_hardswish_f32(
  7712. const struct ggml_compute_params * params,
  7713. const struct ggml_tensor * src0,
  7714. struct ggml_tensor * dst) {
  7715. assert(params->ith == 0);
  7716. assert(ggml_are_same_shape(src0, dst));
  7717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7718. return;
  7719. }
  7720. const int n = ggml_nrows(src0);
  7721. const int nc = src0->ne[0];
  7722. assert(dst->nb[0] == sizeof(float));
  7723. assert(src0->nb[0] == sizeof(float));
  7724. for (int i = 0; i < n; i++) {
  7725. ggml_vec_hardswish_f32(nc,
  7726. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7727. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7728. }
  7729. }
  7730. static void ggml_compute_forward_hardswish(
  7731. const struct ggml_compute_params * params,
  7732. const struct ggml_tensor * src0,
  7733. struct ggml_tensor * dst) {
  7734. switch (src0->type) {
  7735. case GGML_TYPE_F32:
  7736. {
  7737. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7738. } break;
  7739. default:
  7740. {
  7741. GGML_ASSERT(false);
  7742. } break;
  7743. }
  7744. }
  7745. static void ggml_compute_forward_hardsigmoid_f32(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. assert(params->ith == 0);
  7750. assert(ggml_are_same_shape(src0, dst));
  7751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7752. return;
  7753. }
  7754. const int n = ggml_nrows(src0);
  7755. const int nc = src0->ne[0];
  7756. assert(dst->nb[0] == sizeof(float));
  7757. assert(src0->nb[0] == sizeof(float));
  7758. for (int i = 0; i < n; i++) {
  7759. ggml_vec_hardsigmoid_f32(nc,
  7760. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7761. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7762. }
  7763. }
  7764. static void ggml_compute_forward_hardsigmoid(
  7765. const struct ggml_compute_params * params,
  7766. const struct ggml_tensor * src0,
  7767. struct ggml_tensor * dst) {
  7768. switch (src0->type) {
  7769. case GGML_TYPE_F32:
  7770. {
  7771. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7772. } break;
  7773. default:
  7774. {
  7775. GGML_ASSERT(false);
  7776. } break;
  7777. }
  7778. }
  7779. // ggml_compute_forward_norm
  7780. static void ggml_compute_forward_norm_f32(
  7781. const struct ggml_compute_params * params,
  7782. const struct ggml_tensor * src0,
  7783. struct ggml_tensor * dst) {
  7784. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7786. return;
  7787. }
  7788. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7789. const int ith = params->ith;
  7790. const int nth = params->nth;
  7791. GGML_TENSOR_UNARY_OP_LOCALS
  7792. float eps;
  7793. memcpy(&eps, dst->op_params, sizeof(float));
  7794. GGML_ASSERT(eps > 0.0f);
  7795. // TODO: optimize
  7796. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7797. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7798. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7799. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7800. ggml_float sum = 0.0;
  7801. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7802. sum += (ggml_float)x[i00];
  7803. }
  7804. float mean = sum/ne00;
  7805. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7806. ggml_float sum2 = 0.0;
  7807. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7808. float v = x[i00] - mean;
  7809. y[i00] = v;
  7810. sum2 += (ggml_float)(v*v);
  7811. }
  7812. float variance = sum2/ne00;
  7813. const float scale = 1.0f/sqrtf(variance + eps);
  7814. ggml_vec_scale_f32(ne00, y, scale);
  7815. }
  7816. }
  7817. }
  7818. }
  7819. static void ggml_compute_forward_norm(
  7820. const struct ggml_compute_params * params,
  7821. const struct ggml_tensor * src0,
  7822. struct ggml_tensor * dst) {
  7823. switch (src0->type) {
  7824. case GGML_TYPE_F32:
  7825. {
  7826. ggml_compute_forward_norm_f32(params, src0, dst);
  7827. } break;
  7828. default:
  7829. {
  7830. GGML_ASSERT(false);
  7831. } break;
  7832. }
  7833. }
  7834. // ggml_compute_forward_group_rms_norm
  7835. static void ggml_compute_forward_rms_norm_f32(
  7836. const struct ggml_compute_params * params,
  7837. const struct ggml_tensor * src0,
  7838. struct ggml_tensor * dst) {
  7839. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7841. return;
  7842. }
  7843. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7844. const int ith = params->ith;
  7845. const int nth = params->nth;
  7846. GGML_TENSOR_UNARY_OP_LOCALS
  7847. float eps;
  7848. memcpy(&eps, dst->op_params, sizeof(float));
  7849. GGML_ASSERT(eps > 0.0f);
  7850. // TODO: optimize
  7851. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7852. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7853. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7854. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7855. ggml_float sum = 0.0;
  7856. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7857. sum += (ggml_float)(x[i00] * x[i00]);
  7858. }
  7859. const float mean = sum/ne00;
  7860. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7861. memcpy(y, x, ne00 * sizeof(float));
  7862. // for (int i00 = 0; i00 < ne00; i00++) {
  7863. // y[i00] = x[i00];
  7864. // }
  7865. const float scale = 1.0f/sqrtf(mean + eps);
  7866. ggml_vec_scale_f32(ne00, y, scale);
  7867. }
  7868. }
  7869. }
  7870. }
  7871. static void ggml_compute_forward_rms_norm(
  7872. const struct ggml_compute_params * params,
  7873. const struct ggml_tensor * src0,
  7874. struct ggml_tensor * dst) {
  7875. switch (src0->type) {
  7876. case GGML_TYPE_F32:
  7877. {
  7878. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7879. } break;
  7880. default:
  7881. {
  7882. GGML_ASSERT(false);
  7883. } break;
  7884. }
  7885. }
  7886. static void ggml_compute_forward_rms_norm_back_f32(
  7887. const struct ggml_compute_params * params,
  7888. const struct ggml_tensor * src0,
  7889. const struct ggml_tensor * src1,
  7890. struct ggml_tensor * dst) {
  7891. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7893. return;
  7894. }
  7895. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7896. const int ith = params->ith;
  7897. const int nth = params->nth;
  7898. GGML_TENSOR_BINARY_OP_LOCALS
  7899. float eps;
  7900. memcpy(&eps, dst->op_params, sizeof(float));
  7901. // TODO: optimize
  7902. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7903. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7904. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7905. // src1 is same shape as src0 => same indices
  7906. const int64_t i11 = i01;
  7907. const int64_t i12 = i02;
  7908. const int64_t i13 = i03;
  7909. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7910. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7911. ggml_float sum_xx = 0.0;
  7912. ggml_float sum_xdz = 0.0;
  7913. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7914. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7915. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7916. }
  7917. //const float mean = (float)(sum_xx)/ne00;
  7918. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7919. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7920. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7921. // we could cache rms from forward pass to improve performance.
  7922. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7923. //const float rms = sqrtf(mean_eps);
  7924. const float rrms = 1.0f / sqrtf(mean_eps);
  7925. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7926. {
  7927. // z = rms_norm(x)
  7928. //
  7929. // rms_norm(src0) =
  7930. // scale(
  7931. // src0,
  7932. // div(
  7933. // 1,
  7934. // sqrt(
  7935. // add(
  7936. // scale(
  7937. // sum(
  7938. // sqr(
  7939. // src0)),
  7940. // (1.0/N)),
  7941. // eps))));
  7942. // postorder:
  7943. // ## op args grad
  7944. // 00 param src0 grad[#00]
  7945. // 01 const 1
  7946. // 02 sqr (#00) grad[#02]
  7947. // 03 sum (#02) grad[#03]
  7948. // 04 const 1/N
  7949. // 05 scale (#03, #04) grad[#05]
  7950. // 06 const eps
  7951. // 07 add (#05, #06) grad[#07]
  7952. // 08 sqrt (#07) grad[#08]
  7953. // 09 div (#01,#08) grad[#09]
  7954. // 10 scale (#00,#09) grad[#10]
  7955. //
  7956. // backward pass, given grad[#10]
  7957. // #10: scale
  7958. // grad[#00] += scale(grad[#10],#09)
  7959. // grad[#09] += sum(mul(grad[#10],#00))
  7960. // #09: div
  7961. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7962. // #08: sqrt
  7963. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7964. // #07: add
  7965. // grad[#05] += grad[#07]
  7966. // #05: scale
  7967. // grad[#03] += scale(grad[#05],#04)
  7968. // #03: sum
  7969. // grad[#02] += repeat(grad[#03], #02)
  7970. // #02:
  7971. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7972. //
  7973. // substitute and simplify:
  7974. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7975. // grad[#02] = repeat(grad[#03], #02)
  7976. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7977. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7978. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7979. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7980. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7981. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7982. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7983. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7984. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7985. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7986. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7987. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7988. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7989. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7990. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7991. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7992. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7993. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7994. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7995. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7996. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7997. // a = b*c + d*e
  7998. // a = b*c*f/f + d*e*f/f
  7999. // a = (b*c*f + d*e*f)*(1/f)
  8000. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8001. // a = (b + d*e/c)*c
  8002. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8003. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8004. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8005. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8006. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8007. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8008. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8009. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8010. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8011. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8012. }
  8013. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8014. // post-order:
  8015. // dx := x
  8016. // dx := scale(dx,-mean_xdz/mean_eps)
  8017. // dx := add(dx, dz)
  8018. // dx := scale(dx, rrms)
  8019. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8020. ggml_vec_cpy_f32 (ne00, dx, x);
  8021. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8022. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8023. ggml_vec_acc_f32 (ne00, dx, dz);
  8024. ggml_vec_scale_f32(ne00, dx, rrms);
  8025. }
  8026. }
  8027. }
  8028. }
  8029. static void ggml_compute_forward_rms_norm_back(
  8030. const struct ggml_compute_params * params,
  8031. const struct ggml_tensor * src0,
  8032. const struct ggml_tensor * src1,
  8033. struct ggml_tensor * dst) {
  8034. switch (src0->type) {
  8035. case GGML_TYPE_F32:
  8036. {
  8037. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8038. } break;
  8039. default:
  8040. {
  8041. GGML_ASSERT(false);
  8042. } break;
  8043. }
  8044. }
  8045. // ggml_compute_forward_group_norm
  8046. static void ggml_compute_forward_group_norm_f32(
  8047. const struct ggml_compute_params * params,
  8048. const struct ggml_tensor * src0,
  8049. struct ggml_tensor * dst) {
  8050. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8052. return;
  8053. }
  8054. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8055. const int ith = params->ith;
  8056. const int nth = params->nth;
  8057. GGML_TENSOR_UNARY_OP_LOCALS
  8058. const float eps = 1e-6f; // TODO: make this a parameter
  8059. // TODO: optimize
  8060. int n_channels = src0->ne[2];
  8061. int n_groups = dst->op_params[0];
  8062. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8063. for (int i = ith; i < n_groups; i+=nth) {
  8064. int start = i * n_channels_per_group;
  8065. int end = start + n_channels_per_group;
  8066. if (end > n_channels) {
  8067. end = n_channels;
  8068. }
  8069. int step = end - start;
  8070. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8071. ggml_float sum = 0.0;
  8072. for (int64_t i02 = start; i02 < end; i02++) {
  8073. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8074. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8075. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8076. sum += (ggml_float)x[i00];
  8077. }
  8078. }
  8079. }
  8080. float mean = sum / (ne00 * ne01 * step);
  8081. ggml_float sum2 = 0.0;
  8082. for (int64_t i02 = start; i02 < end; i02++) {
  8083. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8084. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8085. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8086. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8087. float v = x[i00] - mean;
  8088. y[i00] = v;
  8089. sum2 += (ggml_float)(v * v);
  8090. }
  8091. }
  8092. }
  8093. float variance = sum2 / (ne00 * ne01 * step);
  8094. const float scale = 1.0f / sqrtf(variance + eps);
  8095. for (int64_t i02 = start; i02 < end; i02++) {
  8096. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8097. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8098. ggml_vec_scale_f32(ne00, y, scale);
  8099. }
  8100. }
  8101. }
  8102. }
  8103. }
  8104. static void ggml_compute_forward_group_norm(
  8105. const struct ggml_compute_params * params,
  8106. const struct ggml_tensor * src0,
  8107. struct ggml_tensor * dst) {
  8108. switch (src0->type) {
  8109. case GGML_TYPE_F32:
  8110. {
  8111. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8112. } break;
  8113. default:
  8114. {
  8115. GGML_ASSERT(false);
  8116. } break;
  8117. }
  8118. }
  8119. // ggml_compute_forward_mul_mat
  8120. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8121. // helper function to determine if it is better to use BLAS or not
  8122. // for large matrices, BLAS is faster
  8123. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8124. const struct ggml_tensor * src0 = dst->src[0];
  8125. const struct ggml_tensor * src1 = dst->src[1];
  8126. //const int64_t ne00 = src0->ne[0];
  8127. //const int64_t ne01 = src0->ne[1];
  8128. const int64_t ne10 = src1->ne[0];
  8129. const int64_t ne0 = dst->ne[0];
  8130. const int64_t ne1 = dst->ne[1];
  8131. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8132. // all the experts for each batch element and the processing would become incredibly slow
  8133. // TODO: find the optimal values for these
  8134. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8135. ggml_is_contiguous(src0) &&
  8136. ggml_is_contiguous(src1) &&
  8137. //src0->type == GGML_TYPE_F32 &&
  8138. src1->type == GGML_TYPE_F32 &&
  8139. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8140. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8141. return true;
  8142. }
  8143. return false;
  8144. }
  8145. #endif
  8146. static void ggml_compute_forward_mul_mat(
  8147. const struct ggml_compute_params * params,
  8148. const struct ggml_tensor * src0,
  8149. const struct ggml_tensor * src1,
  8150. struct ggml_tensor * dst) {
  8151. int64_t t0 = ggml_perf_time_us();
  8152. UNUSED(t0);
  8153. GGML_TENSOR_BINARY_OP_LOCALS
  8154. const int ith = params->ith;
  8155. const int nth = params->nth;
  8156. const enum ggml_type type = src0->type;
  8157. const bool src1_cont = ggml_is_contiguous(src1);
  8158. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8159. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8160. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8161. GGML_ASSERT(ne0 == ne01);
  8162. GGML_ASSERT(ne1 == ne11);
  8163. GGML_ASSERT(ne2 == ne12);
  8164. GGML_ASSERT(ne3 == ne13);
  8165. // we don't support permuted src0 or src1
  8166. GGML_ASSERT(nb00 == ggml_type_size(type));
  8167. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8168. // dst cannot be transposed or permuted
  8169. GGML_ASSERT(nb0 == sizeof(float));
  8170. GGML_ASSERT(nb0 <= nb1);
  8171. GGML_ASSERT(nb1 <= nb2);
  8172. GGML_ASSERT(nb2 <= nb3);
  8173. // broadcast factors
  8174. const int64_t r2 = ne12/ne02;
  8175. const int64_t r3 = ne13/ne03;
  8176. // nb01 >= nb00 - src0 is not transposed
  8177. // compute by src0 rows
  8178. #if defined(GGML_USE_CLBLAST)
  8179. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8180. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8181. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8182. }
  8183. return;
  8184. }
  8185. #endif
  8186. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8187. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8188. const int64_t ne_plane = ne01*ne00;
  8189. const int64_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8190. UNUSED(desired_wsize);
  8191. if (params->type == GGML_TASK_INIT) {
  8192. if (type != GGML_TYPE_F32) {
  8193. assert(params->wsize >= desired_wsize);
  8194. // parallelize by src0 rows
  8195. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8196. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8197. // broadcast src0 into src1 across 2nd,3rd dimension
  8198. const int64_t i03 = i13/r3;
  8199. const int64_t i02 = i12/r2;
  8200. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8201. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8202. ggml_to_float_t const to_float = type_traits[type].to_float;
  8203. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8204. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8205. }
  8206. }
  8207. }
  8208. }
  8209. return;
  8210. }
  8211. if (params->type == GGML_TASK_FINALIZE) {
  8212. return;
  8213. }
  8214. // perform sgemm, parallelization controlled by blas lib
  8215. if (ith != 0) {
  8216. return;
  8217. }
  8218. //const int64_t tgemm0 = ggml_perf_time_us();
  8219. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8220. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8221. const int64_t i03 = i13/r3;
  8222. const int64_t i02 = i12/r2;
  8223. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8224. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8225. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8226. if (type != GGML_TYPE_F32) {
  8227. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8228. }
  8229. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8230. ne1, ne01, ne10,
  8231. 1.0f, y, ne10,
  8232. x, ne00,
  8233. 0.0f, d, ne01);
  8234. }
  8235. }
  8236. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8237. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8238. return;
  8239. }
  8240. #endif
  8241. if (params->type == GGML_TASK_INIT) {
  8242. if (ith != 0) {
  8243. return;
  8244. }
  8245. if (src1->type != vec_dot_type) {
  8246. char * wdata = params->wdata;
  8247. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8248. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8249. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8250. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8251. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8252. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8253. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8254. wdata += row_size;
  8255. }
  8256. }
  8257. }
  8258. }
  8259. return;
  8260. }
  8261. if (params->type == GGML_TASK_FINALIZE) {
  8262. return;
  8263. }
  8264. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8265. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8266. const int64_t nr0 = ne01; // src0 rows
  8267. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8268. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8269. // distribute the thread work across the inner or outer loop based on which one is larger
  8270. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8271. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8272. const int64_t ith0 = ith % nth0;
  8273. const int64_t ith1 = ith / nth0;
  8274. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8275. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8276. const int64_t ir010 = dr0*ith0;
  8277. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8278. const int64_t ir110 = dr1*ith1;
  8279. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8280. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8281. // threads with no work simply yield (not sure if it helps)
  8282. if (ir010 >= ir011 || ir110 >= ir111) {
  8283. sched_yield();
  8284. return;
  8285. }
  8286. assert(ne12 % ne02 == 0);
  8287. assert(ne13 % ne03 == 0);
  8288. // block-tiling attempt
  8289. const int64_t blck_0 = 16;
  8290. const int64_t blck_1 = 16;
  8291. // attempt to reduce false-sharing (does not seem to make a difference)
  8292. float tmp[16];
  8293. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8294. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8295. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8296. const int64_t i13 = (ir1/(ne12*ne1));
  8297. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8298. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8299. // broadcast src0 into src1
  8300. const int64_t i03 = i13/r3;
  8301. const int64_t i02 = i12/r2;
  8302. const int64_t i1 = i11;
  8303. const int64_t i2 = i12;
  8304. const int64_t i3 = i13;
  8305. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8306. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8307. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8308. // the original src1 data pointer, so we should index using the indices directly
  8309. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8310. const char * src1_col = (const char *) wdata +
  8311. (src1_cont || src1->type != vec_dot_type
  8312. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8313. : (i11*nb11 + i12*nb12 + i13*nb13));
  8314. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8315. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8316. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8317. //}
  8318. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8319. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8320. }
  8321. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8322. }
  8323. }
  8324. }
  8325. }
  8326. // ggml_compute_forward_mul_mat_id
  8327. static void ggml_compute_forward_mul_mat_id(
  8328. const struct ggml_compute_params * params,
  8329. const struct ggml_tensor * ids,
  8330. const struct ggml_tensor * src1,
  8331. struct ggml_tensor * dst) {
  8332. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8333. GGML_TENSOR_BINARY_OP_LOCALS
  8334. const int ith = params->ith;
  8335. const int nth = params->nth;
  8336. const enum ggml_type type = src0->type;
  8337. const bool src1_cont = ggml_is_contiguous(src1);
  8338. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8339. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8340. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8341. GGML_ASSERT(ne0 == ne01);
  8342. GGML_ASSERT(ne1 == ne11);
  8343. GGML_ASSERT(ne2 == ne12);
  8344. GGML_ASSERT(ne3 == ne13);
  8345. // we don't support permuted src0 or src1
  8346. GGML_ASSERT(nb00 == ggml_type_size(type));
  8347. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8348. // dst cannot be transposed or permuted
  8349. GGML_ASSERT(nb0 == sizeof(float));
  8350. GGML_ASSERT(nb0 <= nb1);
  8351. GGML_ASSERT(nb1 <= nb2);
  8352. GGML_ASSERT(nb2 <= nb3);
  8353. // broadcast factors
  8354. const int64_t r2 = ne12/ne02;
  8355. const int64_t r3 = ne13/ne03;
  8356. // row groups
  8357. const int id = ggml_get_op_params_i32(dst, 0);
  8358. const int n_as = ggml_get_op_params_i32(dst, 1);
  8359. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8360. (char *) params->wdata :
  8361. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8362. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8363. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8364. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8365. if (params->type == GGML_TASK_INIT) {
  8366. if (ith != 0) {
  8367. return;
  8368. }
  8369. char * wdata = params->wdata;
  8370. if (src1->type != vec_dot_type) {
  8371. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8372. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8373. assert(src1->type == GGML_TYPE_F32);
  8374. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8375. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8376. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8377. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8378. wdata += row_size;
  8379. }
  8380. }
  8381. }
  8382. }
  8383. // initialize matrix_row_counts
  8384. GGML_ASSERT(wdata == wdata_src1_end);
  8385. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8386. // group rows by src0 matrix
  8387. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8388. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8389. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8390. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8391. matrix_row_counts[row_id] += 1;
  8392. }
  8393. return;
  8394. }
  8395. if (params->type == GGML_TASK_FINALIZE) {
  8396. return;
  8397. }
  8398. // compute each matrix multiplication in sequence
  8399. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8400. const int64_t cne1 = matrix_row_counts[cur_a];
  8401. if (cne1 == 0) {
  8402. continue;
  8403. }
  8404. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8405. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8406. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8407. const int64_t nr0 = ne01; // src0 rows
  8408. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8409. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8410. // distribute the thread work across the inner or outer loop based on which one is larger
  8411. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8412. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8413. const int64_t ith0 = ith % nth0;
  8414. const int64_t ith1 = ith / nth0;
  8415. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8416. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8417. const int64_t ir010 = dr0*ith0;
  8418. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8419. const int64_t ir110 = dr1*ith1;
  8420. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8421. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8422. // threads with no work simply yield (not sure if it helps)
  8423. if (ir010 >= ir011 || ir110 >= ir111) {
  8424. sched_yield();
  8425. continue;
  8426. }
  8427. assert(ne12 % ne02 == 0);
  8428. assert(ne13 % ne03 == 0);
  8429. // block-tiling attempt
  8430. const int64_t blck_0 = 16;
  8431. const int64_t blck_1 = 16;
  8432. // attempt to reduce false-sharing (does not seem to make a difference)
  8433. float tmp[16];
  8434. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8435. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8436. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8437. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8438. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8439. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8440. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8441. // broadcast src0 into src1
  8442. const int64_t i03 = i13/r3;
  8443. const int64_t i02 = i12/r2;
  8444. const int64_t i1 = i11;
  8445. const int64_t i2 = i12;
  8446. const int64_t i3 = i13;
  8447. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8448. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8449. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8450. // the original src1 data pointer, so we should index using the indices directly
  8451. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8452. const char * src1_col = (const char *) wdata +
  8453. (src1_cont || src1->type != vec_dot_type
  8454. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8455. : (i11*nb11 + i12*nb12 + i13*nb13));
  8456. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8457. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8458. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8459. //}
  8460. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8461. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8462. }
  8463. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8464. }
  8465. }
  8466. }
  8467. }
  8468. #undef MMID_MATRIX_ROW
  8469. }
  8470. // ggml_compute_forward_out_prod
  8471. static void ggml_compute_forward_out_prod_f32(
  8472. const struct ggml_compute_params * params,
  8473. const struct ggml_tensor * src0,
  8474. const struct ggml_tensor * src1,
  8475. struct ggml_tensor * dst) {
  8476. // int64_t t0 = ggml_perf_time_us();
  8477. // UNUSED(t0);
  8478. GGML_TENSOR_BINARY_OP_LOCALS
  8479. const int ith = params->ith;
  8480. const int nth = params->nth;
  8481. GGML_ASSERT(ne0 == ne00);
  8482. GGML_ASSERT(ne1 == ne10);
  8483. GGML_ASSERT(ne2 == ne02);
  8484. GGML_ASSERT(ne02 == ne12);
  8485. GGML_ASSERT(ne3 == ne13);
  8486. GGML_ASSERT(ne03 == ne13);
  8487. // we don't support permuted src0 or src1
  8488. GGML_ASSERT(nb00 == sizeof(float));
  8489. // dst cannot be transposed or permuted
  8490. GGML_ASSERT(nb0 == sizeof(float));
  8491. // GGML_ASSERT(nb0 <= nb1);
  8492. // GGML_ASSERT(nb1 <= nb2);
  8493. // GGML_ASSERT(nb2 <= nb3);
  8494. // nb01 >= nb00 - src0 is not transposed
  8495. // compute by src0 rows
  8496. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8497. // TODO: #if defined(GGML_USE_CLBLAST)
  8498. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8499. bool use_blas = ggml_is_matrix(src0) &&
  8500. ggml_is_matrix(src1) &&
  8501. ggml_is_contiguous(src0) &&
  8502. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8503. #endif
  8504. if (params->type == GGML_TASK_INIT) {
  8505. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8506. if (use_blas) {
  8507. return;
  8508. }
  8509. #endif
  8510. if (ith != 0) {
  8511. return;
  8512. }
  8513. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8514. return;
  8515. }
  8516. if (params->type == GGML_TASK_FINALIZE) {
  8517. return;
  8518. }
  8519. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8520. if (use_blas) {
  8521. if (params->ith != 0) { // All threads other than the first do no work.
  8522. return;
  8523. }
  8524. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8525. // src0: (k,n)
  8526. // src1: (k,m)
  8527. // dst: (m,n)
  8528. //
  8529. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8530. // Also expressed as (major,minor)
  8531. // a: (m,k): so src1 transposed
  8532. // b: (k,n): so src0
  8533. // c: (m,n)
  8534. //
  8535. // However, if ggml_is_transposed(src1) is true, then
  8536. // src1->data already contains a transposed version, so sgemm mustn't
  8537. // transpose it further.
  8538. int n = src0->ne[0];
  8539. int k = src0->ne[1];
  8540. int m = src1->ne[0];
  8541. int transposeA, lda;
  8542. if (!ggml_is_transposed(src1)) {
  8543. transposeA = CblasTrans;
  8544. lda = m;
  8545. } else {
  8546. transposeA = CblasNoTrans;
  8547. lda = k;
  8548. }
  8549. float * a = (float *) ((char *) src1->data);
  8550. float * b = (float *) ((char *) src0->data);
  8551. float * c = (float *) ((char *) dst->data);
  8552. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8553. return;
  8554. }
  8555. #endif
  8556. // dst[:,:,:,:] = 0
  8557. // for i2,i3:
  8558. // for i1:
  8559. // for i01:
  8560. // for i0:
  8561. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8562. // parallelize by last three dimensions
  8563. // total rows in dst
  8564. const int64_t nr = ne1*ne2*ne3;
  8565. // rows per thread
  8566. const int64_t dr = (nr + nth - 1)/nth;
  8567. // row range for this thread
  8568. const int64_t ir0 = dr*ith;
  8569. const int64_t ir1 = MIN(ir0 + dr, nr);
  8570. // block-tiling attempt
  8571. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8572. const int64_t blck_1 = 16;
  8573. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8574. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8575. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8576. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8577. for (int64_t ir = bir; ir < bir1; ++ir) {
  8578. // dst indices
  8579. const int64_t i3 = ir/(ne2*ne1);
  8580. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8581. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8582. const int64_t i02 = i2;
  8583. const int64_t i03 = i3;
  8584. //const int64_t i10 = i1;
  8585. const int64_t i12 = i2;
  8586. const int64_t i13 = i3;
  8587. #if GGML_VEC_MAD_UNROLL > 2
  8588. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8589. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8590. const int64_t i11 = i01;
  8591. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8592. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8593. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8594. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8595. }
  8596. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8597. const int64_t i11 = i01;
  8598. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8599. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8600. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8601. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8602. }
  8603. #else
  8604. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8605. const int64_t i11 = i01;
  8606. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8607. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8608. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8609. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8610. }
  8611. #endif
  8612. }
  8613. }
  8614. }
  8615. //int64_t t1 = ggml_perf_time_us();
  8616. //static int64_t acc = 0;
  8617. //acc += t1 - t0;
  8618. //if (t1 - t0 > 10) {
  8619. // printf("\n");
  8620. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8621. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8622. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8623. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8624. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8625. //}
  8626. }
  8627. static void ggml_compute_forward_out_prod_q_f32(
  8628. const struct ggml_compute_params * params,
  8629. const struct ggml_tensor * src0,
  8630. const struct ggml_tensor * src1,
  8631. struct ggml_tensor * dst) {
  8632. // int64_t t0 = ggml_perf_time_us();
  8633. // UNUSED(t0);
  8634. GGML_TENSOR_BINARY_OP_LOCALS;
  8635. const int ith = params->ith;
  8636. const int nth = params->nth;
  8637. const enum ggml_type type = src0->type;
  8638. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8639. GGML_ASSERT(ne02 == ne12);
  8640. GGML_ASSERT(ne03 == ne13);
  8641. GGML_ASSERT(ne2 == ne12);
  8642. GGML_ASSERT(ne3 == ne13);
  8643. // we don't support permuted src0 dim0
  8644. GGML_ASSERT(nb00 == ggml_type_size(type));
  8645. // dst dim0 cannot be transposed or permuted
  8646. GGML_ASSERT(nb0 == sizeof(float));
  8647. // GGML_ASSERT(nb0 <= nb1);
  8648. // GGML_ASSERT(nb1 <= nb2);
  8649. // GGML_ASSERT(nb2 <= nb3);
  8650. GGML_ASSERT(ne0 == ne00);
  8651. GGML_ASSERT(ne1 == ne10);
  8652. GGML_ASSERT(ne2 == ne02);
  8653. GGML_ASSERT(ne3 == ne03);
  8654. // nb01 >= nb00 - src0 is not transposed
  8655. // compute by src0 rows
  8656. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8657. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8658. if (params->type == GGML_TASK_INIT) {
  8659. if (ith != 0) {
  8660. return;
  8661. }
  8662. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8663. return;
  8664. }
  8665. if (params->type == GGML_TASK_FINALIZE) {
  8666. return;
  8667. }
  8668. // parallelize by last three dimensions
  8669. // total rows in dst
  8670. const int64_t nr = ne1*ne2*ne3;
  8671. // rows per thread
  8672. const int64_t dr = (nr + nth - 1)/nth;
  8673. // row range for this thread
  8674. const int64_t ir0 = dr*ith;
  8675. const int64_t ir1 = MIN(ir0 + dr, nr);
  8676. // dst[:,:,:,:] = 0
  8677. // for i2,i3:
  8678. // for i1:
  8679. // for i01:
  8680. // for i0:
  8681. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8682. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8683. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8684. // dst indices
  8685. const int64_t i3 = ir/(ne2*ne1);
  8686. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8687. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8688. const int64_t i02 = i2;
  8689. const int64_t i03 = i3;
  8690. //const int64_t i10 = i1;
  8691. const int64_t i12 = i2;
  8692. const int64_t i13 = i3;
  8693. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8694. const int64_t i11 = i01;
  8695. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8696. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8697. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8698. dequantize_row_q(s0, wdata, ne0);
  8699. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8700. }
  8701. }
  8702. //int64_t t1 = ggml_perf_time_us();
  8703. //static int64_t acc = 0;
  8704. //acc += t1 - t0;
  8705. //if (t1 - t0 > 10) {
  8706. // printf("\n");
  8707. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8708. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8709. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8710. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8711. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8712. //}
  8713. }
  8714. static void ggml_compute_forward_out_prod(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. const struct ggml_tensor * src1,
  8718. struct ggml_tensor * dst) {
  8719. switch (src0->type) {
  8720. case GGML_TYPE_Q4_0:
  8721. case GGML_TYPE_Q4_1:
  8722. case GGML_TYPE_Q5_0:
  8723. case GGML_TYPE_Q5_1:
  8724. case GGML_TYPE_Q8_0:
  8725. case GGML_TYPE_Q2_K:
  8726. case GGML_TYPE_Q3_K:
  8727. case GGML_TYPE_Q4_K:
  8728. case GGML_TYPE_Q5_K:
  8729. case GGML_TYPE_Q6_K:
  8730. case GGML_TYPE_IQ2_XXS:
  8731. case GGML_TYPE_IQ2_XS:
  8732. {
  8733. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8734. } break;
  8735. case GGML_TYPE_F16:
  8736. {
  8737. GGML_ASSERT(false); // todo
  8738. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8739. } break;
  8740. case GGML_TYPE_F32:
  8741. {
  8742. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8743. } break;
  8744. default:
  8745. {
  8746. GGML_ASSERT(false);
  8747. } break;
  8748. }
  8749. }
  8750. // ggml_compute_forward_scale
  8751. static void ggml_compute_forward_scale_f32(
  8752. const struct ggml_compute_params * params,
  8753. const struct ggml_tensor * src0,
  8754. struct ggml_tensor * dst) {
  8755. GGML_ASSERT(ggml_is_contiguous(src0));
  8756. GGML_ASSERT(ggml_is_contiguous(dst));
  8757. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8759. return;
  8760. }
  8761. // scale factor
  8762. float v;
  8763. memcpy(&v, dst->op_params, sizeof(float));
  8764. const int ith = params->ith;
  8765. const int nth = params->nth;
  8766. const int nc = src0->ne[0];
  8767. const int nr = ggml_nrows(src0);
  8768. // rows per thread
  8769. const int dr = (nr + nth - 1)/nth;
  8770. // row range for this thread
  8771. const int ir0 = dr*ith;
  8772. const int ir1 = MIN(ir0 + dr, nr);
  8773. const size_t nb01 = src0->nb[1];
  8774. const size_t nb1 = dst->nb[1];
  8775. for (int i1 = ir0; i1 < ir1; i1++) {
  8776. if (dst->data != src0->data) {
  8777. // src0 is same shape as dst => same indices
  8778. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8779. }
  8780. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8781. }
  8782. }
  8783. static void ggml_compute_forward_scale(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0,
  8786. struct ggml_tensor * dst) {
  8787. switch (src0->type) {
  8788. case GGML_TYPE_F32:
  8789. {
  8790. ggml_compute_forward_scale_f32(params, src0, dst);
  8791. } break;
  8792. default:
  8793. {
  8794. GGML_ASSERT(false);
  8795. } break;
  8796. }
  8797. }
  8798. // ggml_compute_forward_set
  8799. static void ggml_compute_forward_set_f32(
  8800. const struct ggml_compute_params * params,
  8801. const struct ggml_tensor * src0,
  8802. const struct ggml_tensor * src1,
  8803. struct ggml_tensor * dst) {
  8804. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8805. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8806. // view src0 and dst with these strides and data offset inbytes during set
  8807. // nb0 is implicitly element_size because src0 and dst are contiguous
  8808. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8809. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8810. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8811. size_t offset = ((int32_t *) dst->op_params)[3];
  8812. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8813. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8814. if (params->ith != 0) {
  8815. return;
  8816. }
  8817. // memcpy needs to be synchronized across threads to avoid race conditions.
  8818. // => do it in INIT phase
  8819. memcpy(
  8820. ((char *) dst->data),
  8821. ((char *) src0->data),
  8822. ggml_nbytes(dst));
  8823. }
  8824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8825. return;
  8826. }
  8827. const int ith = params->ith;
  8828. const int nth = params->nth;
  8829. const int nr = ggml_nrows(src1);
  8830. const int nc = src1->ne[0];
  8831. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8832. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8833. // src0 and dst as viewed during set
  8834. const size_t nb0 = ggml_element_size(src0);
  8835. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8836. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8837. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8838. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8839. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8840. GGML_ASSERT(nb10 == sizeof(float));
  8841. // rows per thread
  8842. const int dr = (nr + nth - 1)/nth;
  8843. // row range for this thread
  8844. const int ir0 = dr*ith;
  8845. const int ir1 = MIN(ir0 + dr, nr);
  8846. for (int ir = ir0; ir < ir1; ++ir) {
  8847. // src0 and dst are viewed with shape of src1 and offset
  8848. // => same indices
  8849. const int i3 = ir/(ne12*ne11);
  8850. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8851. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8852. ggml_vec_cpy_f32(nc,
  8853. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8854. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8855. }
  8856. }
  8857. static void ggml_compute_forward_set(
  8858. const struct ggml_compute_params * params,
  8859. const struct ggml_tensor * src0,
  8860. const struct ggml_tensor * src1,
  8861. struct ggml_tensor * dst) {
  8862. switch (src0->type) {
  8863. case GGML_TYPE_F32:
  8864. {
  8865. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8866. } break;
  8867. case GGML_TYPE_F16:
  8868. case GGML_TYPE_Q4_0:
  8869. case GGML_TYPE_Q4_1:
  8870. case GGML_TYPE_Q5_0:
  8871. case GGML_TYPE_Q5_1:
  8872. case GGML_TYPE_Q8_0:
  8873. case GGML_TYPE_Q8_1:
  8874. case GGML_TYPE_Q2_K:
  8875. case GGML_TYPE_Q3_K:
  8876. case GGML_TYPE_Q4_K:
  8877. case GGML_TYPE_Q5_K:
  8878. case GGML_TYPE_Q6_K:
  8879. case GGML_TYPE_IQ2_XXS:
  8880. case GGML_TYPE_IQ2_XS:
  8881. default:
  8882. {
  8883. GGML_ASSERT(false);
  8884. } break;
  8885. }
  8886. }
  8887. // ggml_compute_forward_cpy
  8888. static void ggml_compute_forward_cpy(
  8889. const struct ggml_compute_params * params,
  8890. const struct ggml_tensor * src0,
  8891. struct ggml_tensor * dst) {
  8892. ggml_compute_forward_dup(params, src0, dst);
  8893. }
  8894. // ggml_compute_forward_cont
  8895. static void ggml_compute_forward_cont(
  8896. const struct ggml_compute_params * params,
  8897. const struct ggml_tensor * src0,
  8898. struct ggml_tensor * dst) {
  8899. ggml_compute_forward_dup(params, src0, dst);
  8900. }
  8901. // ggml_compute_forward_reshape
  8902. static void ggml_compute_forward_reshape(
  8903. const struct ggml_compute_params * params,
  8904. const struct ggml_tensor * src0,
  8905. struct ggml_tensor * dst) {
  8906. // NOP
  8907. UNUSED(params);
  8908. UNUSED(src0);
  8909. UNUSED(dst);
  8910. }
  8911. // ggml_compute_forward_view
  8912. static void ggml_compute_forward_view(
  8913. const struct ggml_compute_params * params,
  8914. const struct ggml_tensor * src0) {
  8915. // NOP
  8916. UNUSED(params);
  8917. UNUSED(src0);
  8918. }
  8919. // ggml_compute_forward_permute
  8920. static void ggml_compute_forward_permute(
  8921. const struct ggml_compute_params * params,
  8922. const struct ggml_tensor * src0) {
  8923. // NOP
  8924. UNUSED(params);
  8925. UNUSED(src0);
  8926. }
  8927. // ggml_compute_forward_transpose
  8928. static void ggml_compute_forward_transpose(
  8929. const struct ggml_compute_params * params,
  8930. const struct ggml_tensor * src0) {
  8931. // NOP
  8932. UNUSED(params);
  8933. UNUSED(src0);
  8934. }
  8935. // ggml_compute_forward_get_rows
  8936. static void ggml_compute_forward_get_rows_q(
  8937. const struct ggml_compute_params * params,
  8938. const struct ggml_tensor * src0,
  8939. const struct ggml_tensor * src1,
  8940. struct ggml_tensor * dst) {
  8941. assert(params->ith == 0);
  8942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8943. return;
  8944. }
  8945. GGML_TENSOR_BINARY_OP_LOCALS
  8946. const int64_t nc = ne00;
  8947. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8948. const enum ggml_type type = src0->type;
  8949. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8950. assert(ne0 == nc);
  8951. assert(ne02 == ne11);
  8952. assert(nb00 == ggml_type_size(type));
  8953. assert(ggml_nrows(dst) == nr);
  8954. // TODO: multi-thread
  8955. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8956. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8957. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8958. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8959. dequantize_row_q(
  8960. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8961. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8962. }
  8963. }
  8964. }
  8965. }
  8966. static void ggml_compute_forward_get_rows_f16(
  8967. const struct ggml_compute_params * params,
  8968. const struct ggml_tensor * src0,
  8969. const struct ggml_tensor * src1,
  8970. struct ggml_tensor * dst) {
  8971. assert(params->ith == 0);
  8972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8973. return;
  8974. }
  8975. GGML_TENSOR_BINARY_OP_LOCALS
  8976. const int64_t nc = ne00;
  8977. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8978. assert(ne0 == nc);
  8979. assert(ne02 == ne11);
  8980. assert(nb00 == sizeof(ggml_fp16_t));
  8981. assert(ggml_nrows(dst) == nr);
  8982. // TODO: multi-thread
  8983. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8984. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8985. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8986. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8987. ggml_fp16_to_fp32_row(
  8988. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8989. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8990. }
  8991. }
  8992. }
  8993. }
  8994. static void ggml_compute_forward_get_rows_f32(
  8995. const struct ggml_compute_params * params,
  8996. const struct ggml_tensor * src0,
  8997. const struct ggml_tensor * src1,
  8998. struct ggml_tensor * dst) {
  8999. assert(params->ith == 0);
  9000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9001. return;
  9002. }
  9003. GGML_TENSOR_BINARY_OP_LOCALS
  9004. const int64_t nc = ne00;
  9005. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9006. assert(ne0 == nc);
  9007. assert(ne02 == ne11);
  9008. assert(nb00 == sizeof(float));
  9009. assert(ggml_nrows(dst) == nr);
  9010. // TODO: multi-thread
  9011. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9012. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9013. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9014. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9015. ggml_vec_cpy_f32(nc,
  9016. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9017. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9018. }
  9019. }
  9020. }
  9021. }
  9022. static void ggml_compute_forward_get_rows(
  9023. const struct ggml_compute_params * params,
  9024. const struct ggml_tensor * src0,
  9025. const struct ggml_tensor * src1,
  9026. struct ggml_tensor * dst) {
  9027. switch (src0->type) {
  9028. case GGML_TYPE_Q4_0:
  9029. case GGML_TYPE_Q4_1:
  9030. case GGML_TYPE_Q5_0:
  9031. case GGML_TYPE_Q5_1:
  9032. case GGML_TYPE_Q8_0:
  9033. case GGML_TYPE_Q8_1:
  9034. case GGML_TYPE_Q2_K:
  9035. case GGML_TYPE_Q3_K:
  9036. case GGML_TYPE_Q4_K:
  9037. case GGML_TYPE_Q5_K:
  9038. case GGML_TYPE_Q6_K:
  9039. case GGML_TYPE_IQ2_XXS:
  9040. case GGML_TYPE_IQ2_XS:
  9041. {
  9042. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9043. } break;
  9044. case GGML_TYPE_F16:
  9045. {
  9046. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9047. } break;
  9048. case GGML_TYPE_F32:
  9049. case GGML_TYPE_I32:
  9050. {
  9051. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9052. } break;
  9053. default:
  9054. {
  9055. GGML_ASSERT(false);
  9056. } break;
  9057. }
  9058. //static bool first = true;
  9059. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9060. //if (first) {
  9061. // first = false;
  9062. //} else {
  9063. // for (int k = 0; k < dst->ne[1]; ++k) {
  9064. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9065. // for (int i = 0; i < 16; ++i) {
  9066. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9067. // }
  9068. // printf("\n");
  9069. // }
  9070. // printf("\n");
  9071. // }
  9072. // printf("\n");
  9073. // exit(0);
  9074. //}
  9075. }
  9076. // ggml_compute_forward_get_rows_back
  9077. static void ggml_compute_forward_get_rows_back_f32_f16(
  9078. const struct ggml_compute_params * params,
  9079. const struct ggml_tensor * src0,
  9080. const struct ggml_tensor * src1,
  9081. struct ggml_tensor * dst) {
  9082. GGML_ASSERT(params->ith == 0);
  9083. GGML_ASSERT(ggml_is_contiguous(dst));
  9084. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9085. if (params->type == GGML_TASK_INIT) {
  9086. if (params->ith != 0) {
  9087. return;
  9088. }
  9089. memset(dst->data, 0, ggml_nbytes(dst));
  9090. }
  9091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9092. return;
  9093. }
  9094. const int nc = src0->ne[0];
  9095. const int nr = ggml_nelements(src1);
  9096. GGML_ASSERT( dst->ne[0] == nc);
  9097. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9098. for (int i = 0; i < nr; ++i) {
  9099. const int r = ((int32_t *) src1->data)[i];
  9100. for (int j = 0; j < nc; ++j) {
  9101. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9102. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9103. }
  9104. }
  9105. }
  9106. static void ggml_compute_forward_get_rows_back_f32(
  9107. const struct ggml_compute_params * params,
  9108. const struct ggml_tensor * src0,
  9109. const struct ggml_tensor * src1,
  9110. struct ggml_tensor * dst) {
  9111. GGML_ASSERT(params->ith == 0);
  9112. GGML_ASSERT(ggml_is_contiguous(dst));
  9113. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9114. if (params->type == GGML_TASK_INIT) {
  9115. if (params->ith != 0) {
  9116. return;
  9117. }
  9118. memset(dst->data, 0, ggml_nbytes(dst));
  9119. }
  9120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9121. return;
  9122. }
  9123. const int nc = src0->ne[0];
  9124. const int nr = ggml_nelements(src1);
  9125. GGML_ASSERT( dst->ne[0] == nc);
  9126. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9127. for (int i = 0; i < nr; ++i) {
  9128. const int r = ((int32_t *) src1->data)[i];
  9129. ggml_vec_add_f32(nc,
  9130. (float *) ((char *) dst->data + r*dst->nb[1]),
  9131. (float *) ((char *) dst->data + r*dst->nb[1]),
  9132. (float *) ((char *) src0->data + i*src0->nb[1]));
  9133. }
  9134. }
  9135. static void ggml_compute_forward_get_rows_back(
  9136. const struct ggml_compute_params * params,
  9137. const struct ggml_tensor * src0,
  9138. const struct ggml_tensor * src1,
  9139. struct ggml_tensor * dst) {
  9140. switch (src0->type) {
  9141. case GGML_TYPE_F16:
  9142. {
  9143. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9144. } break;
  9145. case GGML_TYPE_F32:
  9146. {
  9147. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9148. } break;
  9149. default:
  9150. {
  9151. GGML_ASSERT(false);
  9152. } break;
  9153. }
  9154. //static bool first = true;
  9155. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9156. //if (first) {
  9157. // first = false;
  9158. //} else {
  9159. // for (int k = 0; k < dst->ne[1]; ++k) {
  9160. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9161. // for (int i = 0; i < 16; ++i) {
  9162. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9163. // }
  9164. // printf("\n");
  9165. // }
  9166. // printf("\n");
  9167. // }
  9168. // printf("\n");
  9169. // exit(0);
  9170. //}
  9171. }
  9172. // ggml_compute_forward_diag
  9173. static void ggml_compute_forward_diag_f32(
  9174. const struct ggml_compute_params * params,
  9175. const struct ggml_tensor * src0,
  9176. struct ggml_tensor * dst) {
  9177. GGML_ASSERT(params->ith == 0);
  9178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9179. return;
  9180. }
  9181. // TODO: handle transposed/permuted matrices
  9182. GGML_TENSOR_UNARY_OP_LOCALS
  9183. GGML_ASSERT(ne00 == ne0);
  9184. GGML_ASSERT(ne00 == ne1);
  9185. GGML_ASSERT(ne01 == 1);
  9186. GGML_ASSERT(ne02 == ne2);
  9187. GGML_ASSERT(ne03 == ne3);
  9188. GGML_ASSERT(nb00 == sizeof(float));
  9189. GGML_ASSERT(nb0 == sizeof(float));
  9190. for (int i3 = 0; i3 < ne3; i3++) {
  9191. for (int i2 = 0; i2 < ne2; i2++) {
  9192. for (int i1 = 0; i1 < ne1; i1++) {
  9193. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9194. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9195. for (int i0 = 0; i0 < i1; i0++) {
  9196. d[i0] = 0;
  9197. }
  9198. d[i1] = s[i1];
  9199. for (int i0 = i1+1; i0 < ne0; i0++) {
  9200. d[i0] = 0;
  9201. }
  9202. }
  9203. }
  9204. }
  9205. }
  9206. static void ggml_compute_forward_diag(
  9207. const struct ggml_compute_params * params,
  9208. const struct ggml_tensor * src0,
  9209. struct ggml_tensor * dst) {
  9210. switch (src0->type) {
  9211. case GGML_TYPE_F32:
  9212. {
  9213. ggml_compute_forward_diag_f32(params, src0, dst);
  9214. } break;
  9215. default:
  9216. {
  9217. GGML_ASSERT(false);
  9218. } break;
  9219. }
  9220. }
  9221. // ggml_compute_forward_diag_mask_inf
  9222. static void ggml_compute_forward_diag_mask_f32(
  9223. const struct ggml_compute_params * params,
  9224. const struct ggml_tensor * src0,
  9225. struct ggml_tensor * dst,
  9226. const float value) {
  9227. const int ith = params->ith;
  9228. const int nth = params->nth;
  9229. const int n_past = ((int32_t *) dst->op_params)[0];
  9230. const bool inplace = src0->data == dst->data;
  9231. GGML_ASSERT(n_past >= 0);
  9232. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9233. if (ith != 0) {
  9234. return;
  9235. }
  9236. // memcpy needs to be synchronized across threads to avoid race conditions.
  9237. // => do it in INIT phase
  9238. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9239. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9240. memcpy(
  9241. ((char *) dst->data),
  9242. ((char *) src0->data),
  9243. ggml_nbytes(dst));
  9244. }
  9245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9246. return;
  9247. }
  9248. // TODO: handle transposed/permuted matrices
  9249. const int n = ggml_nrows(src0);
  9250. const int nc = src0->ne[0];
  9251. const int nr = src0->ne[1];
  9252. const int nz = n/nr;
  9253. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9254. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9255. for (int k = 0; k < nz; k++) {
  9256. for (int j = ith; j < nr; j += nth) {
  9257. for (int i = n_past; i < nc; i++) {
  9258. if (i > n_past + j) {
  9259. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9260. }
  9261. }
  9262. }
  9263. }
  9264. }
  9265. static void ggml_compute_forward_diag_mask_inf(
  9266. const struct ggml_compute_params * params,
  9267. const struct ggml_tensor * src0,
  9268. struct ggml_tensor * dst) {
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F32:
  9271. {
  9272. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9273. } break;
  9274. default:
  9275. {
  9276. GGML_ASSERT(false);
  9277. } break;
  9278. }
  9279. }
  9280. static void ggml_compute_forward_diag_mask_zero(
  9281. const struct ggml_compute_params * params,
  9282. const struct ggml_tensor * src0,
  9283. struct ggml_tensor * dst) {
  9284. switch (src0->type) {
  9285. case GGML_TYPE_F32:
  9286. {
  9287. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9288. } break;
  9289. default:
  9290. {
  9291. GGML_ASSERT(false);
  9292. } break;
  9293. }
  9294. }
  9295. // ggml_compute_forward_soft_max
  9296. static void ggml_compute_forward_soft_max_f32(
  9297. const struct ggml_compute_params * params,
  9298. const struct ggml_tensor * src0,
  9299. const struct ggml_tensor * src1,
  9300. struct ggml_tensor * dst) {
  9301. assert(ggml_is_contiguous(dst));
  9302. assert(ggml_are_same_shape(src0, dst));
  9303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9304. return;
  9305. }
  9306. float scale = 1.0f;
  9307. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9308. // TODO: handle transposed/permuted matrices
  9309. const int ith = params->ith;
  9310. const int nth = params->nth;
  9311. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9312. const int nc = src0->ne[0];
  9313. const int nr = ggml_nrows(src0);
  9314. // rows per thread
  9315. const int dr = (nr + nth - 1)/nth;
  9316. // row range for this thread
  9317. const int ir0 = dr*ith;
  9318. const int ir1 = MIN(ir0 + dr, nr);
  9319. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9320. for (int i1 = ir0; i1 < ir1; i1++) {
  9321. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9322. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9323. // broadcast the mask across rows
  9324. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9325. ggml_vec_cpy_f32 (nc, wp, sp);
  9326. ggml_vec_scale_f32(nc, wp, scale);
  9327. if (mp) {
  9328. ggml_vec_acc_f32(nc, wp, mp);
  9329. }
  9330. #ifndef NDEBUG
  9331. for (int i = 0; i < nc; ++i) {
  9332. //printf("p[%d] = %f\n", i, p[i]);
  9333. assert(!isnan(wp[i]));
  9334. }
  9335. #endif
  9336. float max = -INFINITY;
  9337. ggml_vec_max_f32(nc, &max, wp);
  9338. ggml_float sum = 0.0;
  9339. uint16_t scvt;
  9340. for (int i = 0; i < nc; i++) {
  9341. if (wp[i] == -INFINITY) {
  9342. dp[i] = 0.0f;
  9343. } else {
  9344. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9345. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9346. memcpy(&scvt, &s, sizeof(scvt));
  9347. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9348. sum += (ggml_float)val;
  9349. dp[i] = val;
  9350. }
  9351. }
  9352. assert(sum > 0.0);
  9353. sum = 1.0/sum;
  9354. ggml_vec_scale_f32(nc, dp, sum);
  9355. #ifndef NDEBUG
  9356. for (int i = 0; i < nc; ++i) {
  9357. assert(!isnan(dp[i]));
  9358. assert(!isinf(dp[i]));
  9359. }
  9360. #endif
  9361. }
  9362. }
  9363. static void ggml_compute_forward_soft_max(
  9364. const struct ggml_compute_params * params,
  9365. const struct ggml_tensor * src0,
  9366. const struct ggml_tensor * src1,
  9367. struct ggml_tensor * dst) {
  9368. switch (src0->type) {
  9369. case GGML_TYPE_F32:
  9370. {
  9371. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9372. } break;
  9373. default:
  9374. {
  9375. GGML_ASSERT(false);
  9376. } break;
  9377. }
  9378. }
  9379. // ggml_compute_forward_soft_max_back
  9380. static void ggml_compute_forward_soft_max_back_f32(
  9381. const struct ggml_compute_params * params,
  9382. const struct ggml_tensor * src0,
  9383. const struct ggml_tensor * src1,
  9384. struct ggml_tensor * dst) {
  9385. GGML_ASSERT(ggml_is_contiguous(src0));
  9386. GGML_ASSERT(ggml_is_contiguous(src1));
  9387. GGML_ASSERT(ggml_is_contiguous(dst));
  9388. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9389. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9391. return;
  9392. }
  9393. // TODO: handle transposed/permuted matrices
  9394. const int ith = params->ith;
  9395. const int nth = params->nth;
  9396. const int nc = src0->ne[0];
  9397. const int nr = ggml_nrows(src0);
  9398. // rows per thread
  9399. const int dr = (nr + nth - 1)/nth;
  9400. // row range for this thread
  9401. const int ir0 = dr*ith;
  9402. const int ir1 = MIN(ir0 + dr, nr);
  9403. for (int i1 = ir0; i1 < ir1; i1++) {
  9404. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9405. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9406. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9407. #ifndef NDEBUG
  9408. for (int i = 0; i < nc; ++i) {
  9409. //printf("p[%d] = %f\n", i, p[i]);
  9410. assert(!isnan(dy[i]));
  9411. assert(!isnan(y[i]));
  9412. }
  9413. #endif
  9414. // Jii = yi - yi*yi
  9415. // Jij = -yi*yj
  9416. // J = diag(y)-y.T*y
  9417. // dx = J * dy
  9418. // dxk = sum_i(Jki * dyi)
  9419. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9420. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9421. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9422. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9423. // dxk = -yk * dot(y, dy) + yk*dyk
  9424. // dxk = yk * (- dot(y, dy) + dyk)
  9425. // dxk = yk * (dyk - dot(y, dy))
  9426. //
  9427. // post-order:
  9428. // dot_y_dy := dot(y, dy)
  9429. // dx := dy
  9430. // dx := dx - dot_y_dy
  9431. // dx := dx * y
  9432. // linear runtime, no additional memory
  9433. float dot_y_dy = 0;
  9434. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9435. ggml_vec_cpy_f32 (nc, dx, dy);
  9436. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9437. ggml_vec_mul_f32 (nc, dx, dx, y);
  9438. #ifndef NDEBUG
  9439. for (int i = 0; i < nc; ++i) {
  9440. assert(!isnan(dx[i]));
  9441. assert(!isinf(dx[i]));
  9442. }
  9443. #endif
  9444. }
  9445. }
  9446. static void ggml_compute_forward_soft_max_back(
  9447. const struct ggml_compute_params * params,
  9448. const struct ggml_tensor * src0,
  9449. const struct ggml_tensor * src1,
  9450. struct ggml_tensor * dst) {
  9451. switch (src0->type) {
  9452. case GGML_TYPE_F32:
  9453. {
  9454. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9455. } break;
  9456. default:
  9457. {
  9458. GGML_ASSERT(false);
  9459. } break;
  9460. }
  9461. }
  9462. // ggml_compute_forward_alibi
  9463. static void ggml_compute_forward_alibi_f32(
  9464. const struct ggml_compute_params * params,
  9465. const struct ggml_tensor * src0,
  9466. struct ggml_tensor * dst) {
  9467. assert(params->ith == 0);
  9468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9469. return;
  9470. }
  9471. //const int n_past = ((int32_t *) dst->op_params)[0];
  9472. const int n_head = ((int32_t *) dst->op_params)[1];
  9473. float max_bias;
  9474. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9475. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9476. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9477. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9478. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9479. const int64_t n = ggml_nrows(src0);
  9480. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9481. const size_t nb0 = src0->nb[0];
  9482. const size_t nb1 = src0->nb[1];
  9483. const size_t nb2 = src0->nb[2];
  9484. //const int nb3 = src0->nb[3];
  9485. GGML_ASSERT(nb0 == sizeof(float));
  9486. GGML_ASSERT(n_head == ne2);
  9487. // add alibi to src0 (KQ_scaled)
  9488. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9489. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9490. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9491. for (int64_t i = 0; i < ne0; i++) {
  9492. for (int64_t j = 0; j < ne1; j++) {
  9493. for (int64_t k = 0; k < ne2_ne3; k++) {
  9494. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9495. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9496. // TODO: k*nb2 or k*nb3
  9497. float m_k;
  9498. if (k < n_heads_log2_floor) {
  9499. m_k = powf(m0, k + 1);
  9500. } else {
  9501. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9502. }
  9503. pdst[0] = i * m_k + src[0];
  9504. }
  9505. }
  9506. }
  9507. }
  9508. static void ggml_compute_forward_alibi_f16(
  9509. const struct ggml_compute_params * params,
  9510. const struct ggml_tensor * src0,
  9511. struct ggml_tensor * dst) {
  9512. assert(params->ith == 0);
  9513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9514. return;
  9515. }
  9516. //const int n_past = ((int32_t *) dst->op_params)[0];
  9517. const int n_head = ((int32_t *) dst->op_params)[1];
  9518. float max_bias;
  9519. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9520. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9521. const int ne1 = src0->ne[1]; // seq_len_without_past
  9522. const int ne2 = src0->ne[2]; // n_head -> this is k
  9523. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9524. const int n = ggml_nrows(src0);
  9525. const int ne2_ne3 = n/ne1; // ne2*ne3
  9526. const int nb0 = src0->nb[0];
  9527. const int nb1 = src0->nb[1];
  9528. const int nb2 = src0->nb[2];
  9529. //const int nb3 = src0->nb[3];
  9530. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9531. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9532. GGML_ASSERT(n_head == ne2);
  9533. // add alibi to src0 (KQ_scaled)
  9534. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9535. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9536. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9537. for (int i = 0; i < ne0; i++) {
  9538. for (int j = 0; j < ne1; j++) {
  9539. for (int k = 0; k < ne2_ne3; k++) {
  9540. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9541. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9542. // TODO: k*nb2 or k*nb3
  9543. float m_k;
  9544. if (k < n_heads_log2_floor) {
  9545. m_k = powf(m0, k + 1);
  9546. } else {
  9547. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9548. }
  9549. // we return F32
  9550. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9551. }
  9552. }
  9553. }
  9554. }
  9555. static void ggml_compute_forward_alibi(
  9556. const struct ggml_compute_params * params,
  9557. const struct ggml_tensor * src0,
  9558. struct ggml_tensor * dst) {
  9559. switch (src0->type) {
  9560. case GGML_TYPE_F16:
  9561. {
  9562. ggml_compute_forward_alibi_f16(params, src0, dst);
  9563. } break;
  9564. case GGML_TYPE_F32:
  9565. {
  9566. ggml_compute_forward_alibi_f32(params, src0, dst);
  9567. } break;
  9568. case GGML_TYPE_Q4_0:
  9569. case GGML_TYPE_Q4_1:
  9570. case GGML_TYPE_Q5_0:
  9571. case GGML_TYPE_Q5_1:
  9572. case GGML_TYPE_Q8_0:
  9573. case GGML_TYPE_Q8_1:
  9574. case GGML_TYPE_Q2_K:
  9575. case GGML_TYPE_Q3_K:
  9576. case GGML_TYPE_Q4_K:
  9577. case GGML_TYPE_Q5_K:
  9578. case GGML_TYPE_Q6_K:
  9579. case GGML_TYPE_IQ2_XXS:
  9580. case GGML_TYPE_IQ2_XS:
  9581. case GGML_TYPE_Q8_K:
  9582. case GGML_TYPE_I8:
  9583. case GGML_TYPE_I16:
  9584. case GGML_TYPE_I32:
  9585. case GGML_TYPE_COUNT:
  9586. {
  9587. GGML_ASSERT(false);
  9588. } break;
  9589. }
  9590. }
  9591. // ggml_compute_forward_clamp
  9592. static void ggml_compute_forward_clamp_f32(
  9593. const struct ggml_compute_params * params,
  9594. const struct ggml_tensor * src0,
  9595. struct ggml_tensor * dst) {
  9596. assert(params->ith == 0);
  9597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9598. return;
  9599. }
  9600. float min;
  9601. float max;
  9602. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9603. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9604. const int ith = params->ith;
  9605. const int nth = params->nth;
  9606. const int n = ggml_nrows(src0);
  9607. const int nc = src0->ne[0];
  9608. const size_t nb00 = src0->nb[0];
  9609. const size_t nb01 = src0->nb[1];
  9610. const size_t nb0 = dst->nb[0];
  9611. const size_t nb1 = dst->nb[1];
  9612. GGML_ASSERT( nb0 == sizeof(float));
  9613. GGML_ASSERT(nb00 == sizeof(float));
  9614. for (int j = ith; j < n; j += nth) {
  9615. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9616. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9617. for (int i = 0; i < nc; i++) {
  9618. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9619. }
  9620. }
  9621. }
  9622. static void ggml_compute_forward_clamp(
  9623. const struct ggml_compute_params * params,
  9624. const struct ggml_tensor * src0,
  9625. struct ggml_tensor * dst) {
  9626. switch (src0->type) {
  9627. case GGML_TYPE_F32:
  9628. {
  9629. ggml_compute_forward_clamp_f32(params, src0, dst);
  9630. } break;
  9631. case GGML_TYPE_F16:
  9632. case GGML_TYPE_Q4_0:
  9633. case GGML_TYPE_Q4_1:
  9634. case GGML_TYPE_Q5_0:
  9635. case GGML_TYPE_Q5_1:
  9636. case GGML_TYPE_Q8_0:
  9637. case GGML_TYPE_Q8_1:
  9638. case GGML_TYPE_Q2_K:
  9639. case GGML_TYPE_Q3_K:
  9640. case GGML_TYPE_Q4_K:
  9641. case GGML_TYPE_Q5_K:
  9642. case GGML_TYPE_Q6_K:
  9643. case GGML_TYPE_IQ2_XXS:
  9644. case GGML_TYPE_IQ2_XS:
  9645. case GGML_TYPE_Q8_K:
  9646. case GGML_TYPE_I8:
  9647. case GGML_TYPE_I16:
  9648. case GGML_TYPE_I32:
  9649. case GGML_TYPE_COUNT:
  9650. {
  9651. GGML_ASSERT(false);
  9652. } break;
  9653. }
  9654. }
  9655. // ggml_compute_forward_rope
  9656. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9657. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9658. return 1 - MIN(1, MAX(0, y));
  9659. }
  9660. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9661. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9662. static void rope_yarn(
  9663. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9664. float * cos_theta, float * sin_theta
  9665. ) {
  9666. // Get n-d rotational scaling corrected for extrapolation
  9667. float theta_interp = freq_scale * theta_extrap;
  9668. float theta = theta_interp;
  9669. if (ext_factor != 0.0f) {
  9670. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9671. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9672. // Get n-d magnitude scaling corrected for interpolation
  9673. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9674. }
  9675. *cos_theta = cosf(theta) * mscale;
  9676. *sin_theta = sinf(theta) * mscale;
  9677. }
  9678. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9679. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9680. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9681. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9682. }
  9683. static void ggml_rope_cache_init(
  9684. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9685. float * cache, float sin_sign, float theta_scale
  9686. ) {
  9687. float theta = theta_base;
  9688. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9689. rope_yarn(
  9690. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9691. );
  9692. cache[i0 + 1] *= sin_sign;
  9693. theta *= theta_scale;
  9694. }
  9695. }
  9696. GGML_CALL void ggml_rope_yarn_corr_dims(
  9697. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9698. ) {
  9699. // start and end correction dims
  9700. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9701. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9702. }
  9703. static void ggml_compute_forward_rope_f32(
  9704. const struct ggml_compute_params * params,
  9705. const struct ggml_tensor * src0,
  9706. const struct ggml_tensor * src1,
  9707. struct ggml_tensor * dst,
  9708. const bool forward) {
  9709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9710. return;
  9711. }
  9712. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9713. // these two only relevant for xPos RoPE:
  9714. float xpos_base;
  9715. bool xpos_down;
  9716. //const int n_past = ((int32_t *) dst->op_params)[0];
  9717. const int n_dims = ((int32_t *) dst->op_params)[1];
  9718. const int mode = ((int32_t *) dst->op_params)[2];
  9719. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9720. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9721. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9722. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9723. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9724. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9725. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9726. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9727. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9728. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9729. GGML_TENSOR_UNARY_OP_LOCALS
  9730. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9731. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9732. GGML_ASSERT(nb00 == sizeof(float));
  9733. const int ith = params->ith;
  9734. const int nth = params->nth;
  9735. const int nr = ggml_nrows(dst);
  9736. GGML_ASSERT(n_dims <= ne0);
  9737. GGML_ASSERT(n_dims % 2 == 0);
  9738. // rows per thread
  9739. const int dr = (nr + nth - 1)/nth;
  9740. // row range for this thread
  9741. const int ir0 = dr*ith;
  9742. const int ir1 = MIN(ir0 + dr, nr);
  9743. // row index used to determine which thread to use
  9744. int ir = 0;
  9745. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9746. const float inv_ndims = -1.f/n_dims;
  9747. float corr_dims[2];
  9748. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9749. const bool is_neox = mode & 2;
  9750. const bool is_glm = mode & 4;
  9751. // backward process uses inverse rotation by cos and sin.
  9752. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9753. // this essentially just switches the sign of sin.
  9754. const float sin_sign = forward ? 1.0f : -1.0f;
  9755. const int32_t * pos = (const int32_t *) src1->data;
  9756. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9757. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9758. const int64_t p = pos[i2];
  9759. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9760. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9761. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9762. }
  9763. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9764. if (ir++ < ir0) continue;
  9765. if (ir > ir1) break;
  9766. float theta_base = (float)p;
  9767. if (is_glm) {
  9768. theta_base = MIN(p, n_ctx - 2);
  9769. float block_theta = MAX(p - (n_ctx - 2), 0);
  9770. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9771. const float cos_theta = cosf(theta_base);
  9772. const float sin_theta = sinf(theta_base) * sin_sign;
  9773. const float cos_block_theta = cosf(block_theta);
  9774. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9775. theta_base *= theta_scale;
  9776. block_theta *= theta_scale;
  9777. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9778. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9779. const float x0 = src[0];
  9780. const float x1 = src[n_dims/2];
  9781. const float x2 = src[n_dims];
  9782. const float x3 = src[n_dims/2*3];
  9783. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9784. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9785. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9786. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9787. }
  9788. } else if (!is_neox) {
  9789. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9790. const float cos_theta = cache[i0 + 0];
  9791. const float sin_theta = cache[i0 + 1];
  9792. // zeta scaling for xPos only:
  9793. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9794. if (xpos_down) zeta = 1.0f / zeta;
  9795. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9796. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9797. const float x0 = src[0];
  9798. const float x1 = src[1];
  9799. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9800. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9801. }
  9802. } else {
  9803. // TODO: this might be wrong for ne0 != n_dims - need double check
  9804. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9805. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9806. theta_base *= freq_scale;
  9807. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9808. if (ic < n_dims) {
  9809. const int64_t ib = 0;
  9810. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9811. float cur_rot = inv_ndims * ic - ib;
  9812. float cos_theta, sin_theta;
  9813. rope_yarn(
  9814. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9815. &cos_theta, &sin_theta
  9816. );
  9817. sin_theta *= sin_sign;
  9818. theta_base *= theta_scale;
  9819. const int64_t i0 = ib*n_dims + ic/2;
  9820. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9821. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9822. const float x0 = src[0];
  9823. const float x1 = src[n_dims/2];
  9824. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9825. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9826. } else {
  9827. const int64_t i0 = ic;
  9828. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9829. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9830. dst_data[0] = src[0];
  9831. dst_data[1] = src[1];
  9832. }
  9833. }
  9834. }
  9835. }
  9836. }
  9837. }
  9838. }
  9839. static void ggml_compute_forward_rope_f16(
  9840. const struct ggml_compute_params * params,
  9841. const struct ggml_tensor * src0,
  9842. const struct ggml_tensor * src1,
  9843. struct ggml_tensor * dst,
  9844. const bool forward) {
  9845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9846. return;
  9847. }
  9848. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9849. //const int n_past = ((int32_t *) dst->op_params)[0];
  9850. const int n_dims = ((int32_t *) dst->op_params)[1];
  9851. const int mode = ((int32_t *) dst->op_params)[2];
  9852. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9853. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9854. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9855. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9856. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9857. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9858. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9859. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9860. GGML_TENSOR_UNARY_OP_LOCALS
  9861. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9862. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9863. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9864. const int ith = params->ith;
  9865. const int nth = params->nth;
  9866. const int nr = ggml_nrows(dst);
  9867. GGML_ASSERT(n_dims <= ne0);
  9868. GGML_ASSERT(n_dims % 2 == 0);
  9869. // rows per thread
  9870. const int dr = (nr + nth - 1)/nth;
  9871. // row range for this thread
  9872. const int ir0 = dr*ith;
  9873. const int ir1 = MIN(ir0 + dr, nr);
  9874. // row index used to determine which thread to use
  9875. int ir = 0;
  9876. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9877. const float inv_ndims = -1.f/n_dims;
  9878. float corr_dims[2];
  9879. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9880. const bool is_neox = mode & 2;
  9881. const bool is_glm = mode & 4;
  9882. // backward process uses inverse rotation by cos and sin.
  9883. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9884. // this essentially just switches the sign of sin.
  9885. const float sin_sign = forward ? 1.0f : -1.0f;
  9886. const int32_t * pos = (const int32_t *) src1->data;
  9887. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9888. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9889. const int64_t p = pos[i2];
  9890. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9891. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9892. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9893. }
  9894. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9895. if (ir++ < ir0) continue;
  9896. if (ir > ir1) break;
  9897. float theta_base = (float)p;
  9898. if (is_glm) {
  9899. theta_base = MIN(p, n_ctx - 2);
  9900. float block_theta = MAX(p - (n_ctx - 2), 0);
  9901. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9902. const float cos_theta = cosf(theta_base);
  9903. const float sin_theta = sinf(theta_base) * sin_sign;
  9904. const float cos_block_theta = cosf(block_theta);
  9905. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9906. theta_base *= theta_scale;
  9907. block_theta *= theta_scale;
  9908. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9909. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9910. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9911. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9912. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9913. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9914. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9915. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9916. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9917. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9918. }
  9919. } else if (!is_neox) {
  9920. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9921. const float cos_theta = cache[i0 + 0];
  9922. const float sin_theta = cache[i0 + 1];
  9923. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9924. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9925. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9926. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9927. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9928. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9929. }
  9930. } else {
  9931. // TODO: this might be wrong for ne0 != n_dims - need double check
  9932. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9933. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9934. theta_base *= freq_scale;
  9935. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9936. if (ic < n_dims) {
  9937. const int64_t ib = 0;
  9938. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9939. float cur_rot = inv_ndims * ic - ib;
  9940. float cos_theta, sin_theta;
  9941. rope_yarn(
  9942. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9943. &cos_theta, &sin_theta
  9944. );
  9945. sin_theta *= sin_sign;
  9946. theta_base *= theta_scale;
  9947. const int64_t i0 = ib*n_dims + ic/2;
  9948. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9949. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9950. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9951. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9952. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9953. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9954. } else {
  9955. const int64_t i0 = ic;
  9956. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9957. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9958. dst_data[0] = src[0];
  9959. dst_data[1] = src[1];
  9960. }
  9961. }
  9962. }
  9963. }
  9964. }
  9965. }
  9966. }
  9967. static void ggml_compute_forward_rope(
  9968. const struct ggml_compute_params * params,
  9969. const struct ggml_tensor * src0,
  9970. const struct ggml_tensor * src1,
  9971. struct ggml_tensor * dst) {
  9972. switch (src0->type) {
  9973. case GGML_TYPE_F16:
  9974. {
  9975. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9976. } break;
  9977. case GGML_TYPE_F32:
  9978. {
  9979. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9980. } break;
  9981. default:
  9982. {
  9983. GGML_ASSERT(false);
  9984. } break;
  9985. }
  9986. }
  9987. // ggml_compute_forward_rope_back
  9988. static void ggml_compute_forward_rope_back(
  9989. const struct ggml_compute_params * params,
  9990. const struct ggml_tensor * src0,
  9991. const struct ggml_tensor * src1,
  9992. struct ggml_tensor * dst) {
  9993. switch (src0->type) {
  9994. case GGML_TYPE_F16:
  9995. {
  9996. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9997. } break;
  9998. case GGML_TYPE_F32:
  9999. {
  10000. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10001. } break;
  10002. default:
  10003. {
  10004. GGML_ASSERT(false);
  10005. } break;
  10006. }
  10007. }
  10008. // ggml_compute_forward_conv_transpose_1d
  10009. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10010. const struct ggml_compute_params * params,
  10011. const struct ggml_tensor * src0,
  10012. const struct ggml_tensor * src1,
  10013. struct ggml_tensor * dst) {
  10014. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10015. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10016. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10017. int64_t t0 = ggml_perf_time_us();
  10018. UNUSED(t0);
  10019. GGML_TENSOR_BINARY_OP_LOCALS
  10020. const int ith = params->ith;
  10021. const int nth = params->nth;
  10022. const int nk = ne00*ne01*ne02;
  10023. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10024. GGML_ASSERT(nb10 == sizeof(float));
  10025. if (params->type == GGML_TASK_INIT) {
  10026. if (ith != 0) {
  10027. return;
  10028. }
  10029. memset(params->wdata, 0, params->wsize);
  10030. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10031. {
  10032. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10033. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10035. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10036. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10037. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10038. dst_data[i00*ne02 + i02] = src[i00];
  10039. }
  10040. }
  10041. }
  10042. }
  10043. // permute source data (src1) from (L x Cin) to (Cin x L)
  10044. {
  10045. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10046. ggml_fp16_t * dst_data = wdata;
  10047. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10048. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10049. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10050. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10051. }
  10052. }
  10053. }
  10054. // need to zero dst since we are accumulating into it
  10055. memset(dst->data, 0, ggml_nbytes(dst));
  10056. return;
  10057. }
  10058. if (params->type == GGML_TASK_FINALIZE) {
  10059. return;
  10060. }
  10061. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10062. // total rows in dst
  10063. const int nr = ne1;
  10064. // rows per thread
  10065. const int dr = (nr + nth - 1)/nth;
  10066. // row range for this thread
  10067. const int ir0 = dr*ith;
  10068. const int ir1 = MIN(ir0 + dr, nr);
  10069. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10070. ggml_fp16_t * const wdata_src = wdata + nk;
  10071. for (int i1 = ir0; i1 < ir1; i1++) {
  10072. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10073. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10074. for (int i10 = 0; i10 < ne10; i10++) {
  10075. const int i1n = i10*ne11;
  10076. for (int i00 = 0; i00 < ne00; i00++) {
  10077. float v = 0;
  10078. ggml_vec_dot_f16(ne02, &v,
  10079. (ggml_fp16_t *) wdata_src + i1n,
  10080. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10081. dst_data[i10*s0 + i00] += v;
  10082. }
  10083. }
  10084. }
  10085. }
  10086. static void ggml_compute_forward_conv_transpose_1d_f32(
  10087. const struct ggml_compute_params * params,
  10088. const struct ggml_tensor * src0,
  10089. const struct ggml_tensor * src1,
  10090. struct ggml_tensor * dst) {
  10091. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10092. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10093. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10094. int64_t t0 = ggml_perf_time_us();
  10095. UNUSED(t0);
  10096. GGML_TENSOR_BINARY_OP_LOCALS
  10097. const int ith = params->ith;
  10098. const int nth = params->nth;
  10099. const int nk = ne00*ne01*ne02;
  10100. GGML_ASSERT(nb00 == sizeof(float));
  10101. GGML_ASSERT(nb10 == sizeof(float));
  10102. if (params->type == GGML_TASK_INIT) {
  10103. if (ith != 0) {
  10104. return;
  10105. }
  10106. memset(params->wdata, 0, params->wsize);
  10107. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10108. {
  10109. float * const wdata = (float *) params->wdata + 0;
  10110. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10112. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10113. float * dst_data = wdata + i01*ne00*ne02;
  10114. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10115. dst_data[i00*ne02 + i02] = src[i00];
  10116. }
  10117. }
  10118. }
  10119. }
  10120. // prepare source data (src1)
  10121. {
  10122. float * const wdata = (float *) params->wdata + nk;
  10123. float * dst_data = wdata;
  10124. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10125. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10126. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10127. dst_data[i10*ne11 + i11] = src[i10];
  10128. }
  10129. }
  10130. }
  10131. // need to zero dst since we are accumulating into it
  10132. memset(dst->data, 0, ggml_nbytes(dst));
  10133. return;
  10134. }
  10135. if (params->type == GGML_TASK_FINALIZE) {
  10136. return;
  10137. }
  10138. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10139. // total rows in dst
  10140. const int nr = ne1;
  10141. // rows per thread
  10142. const int dr = (nr + nth - 1)/nth;
  10143. // row range for this thread
  10144. const int ir0 = dr*ith;
  10145. const int ir1 = MIN(ir0 + dr, nr);
  10146. float * const wdata = (float *) params->wdata + 0;
  10147. float * const wdata_src = wdata + nk;
  10148. for (int i1 = ir0; i1 < ir1; i1++) {
  10149. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10150. float * wdata_kernel = wdata + i1*ne02*ne00;
  10151. for (int i10 = 0; i10 < ne10; i10++) {
  10152. const int i1n = i10*ne11;
  10153. for (int i00 = 0; i00 < ne00; i00++) {
  10154. float v = 0;
  10155. ggml_vec_dot_f32(ne02, &v,
  10156. wdata_src + i1n,
  10157. wdata_kernel + i00*ne02);
  10158. dst_data[i10*s0 + i00] += v;
  10159. }
  10160. }
  10161. }
  10162. }
  10163. static void ggml_compute_forward_conv_transpose_1d(
  10164. const struct ggml_compute_params * params,
  10165. const struct ggml_tensor * src0,
  10166. const struct ggml_tensor * src1,
  10167. struct ggml_tensor * dst) {
  10168. switch (src0->type) {
  10169. case GGML_TYPE_F16:
  10170. {
  10171. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10172. } break;
  10173. case GGML_TYPE_F32:
  10174. {
  10175. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10176. } break;
  10177. default:
  10178. {
  10179. GGML_ASSERT(false);
  10180. } break;
  10181. }
  10182. }
  10183. // src0: kernel [OC, IC, KH, KW]
  10184. // src1: image [N, IC, IH, IW]
  10185. // dst: result [N, OH, OW, IC*KH*KW]
  10186. static void ggml_compute_forward_im2col_f16(
  10187. const struct ggml_compute_params * params,
  10188. const struct ggml_tensor * src0,
  10189. const struct ggml_tensor * src1,
  10190. struct ggml_tensor * dst) {
  10191. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10192. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10193. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10194. int64_t t0 = ggml_perf_time_us();
  10195. UNUSED(t0);
  10196. GGML_TENSOR_BINARY_OP_LOCALS;
  10197. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10198. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10199. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10200. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10201. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10202. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10203. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10204. const int ith = params->ith;
  10205. const int nth = params->nth;
  10206. const int64_t N = is_2D ? ne13 : ne12;
  10207. const int64_t IC = is_2D ? ne12 : ne11;
  10208. const int64_t IH = is_2D ? ne11 : 1;
  10209. const int64_t IW = ne10;
  10210. const int64_t KH = is_2D ? ne01 : 1;
  10211. const int64_t KW = ne00;
  10212. const int64_t OH = is_2D ? ne2 : 1;
  10213. const int64_t OW = ne1;
  10214. int ofs0 = is_2D ? nb13 : nb12;
  10215. int ofs1 = is_2D ? nb12 : nb11;
  10216. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10217. GGML_ASSERT(nb10 == sizeof(float));
  10218. if (params->type == GGML_TASK_INIT) {
  10219. return;
  10220. }
  10221. if (params->type == GGML_TASK_FINALIZE) {
  10222. return;
  10223. }
  10224. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10225. {
  10226. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10227. for (int64_t in = 0; in < N; in++) {
  10228. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10229. for (int64_t iow = 0; iow < OW; iow++) {
  10230. for (int64_t iic = ith; iic < IC; iic += nth) {
  10231. // micro kernel
  10232. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10233. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10234. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10235. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10236. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10237. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10238. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10239. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10240. } else {
  10241. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10242. }
  10243. }
  10244. }
  10245. }
  10246. }
  10247. }
  10248. }
  10249. }
  10250. }
  10251. static void ggml_compute_forward_im2col(
  10252. const struct ggml_compute_params * params,
  10253. const struct ggml_tensor * src0,
  10254. const struct ggml_tensor * src1,
  10255. struct ggml_tensor * dst) {
  10256. switch (src0->type) {
  10257. case GGML_TYPE_F16:
  10258. {
  10259. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10260. } break;
  10261. case GGML_TYPE_F32:
  10262. {
  10263. GGML_ASSERT(false);
  10264. } break;
  10265. default:
  10266. {
  10267. GGML_ASSERT(false);
  10268. } break;
  10269. }
  10270. }
  10271. // ggml_compute_forward_conv_transpose_2d
  10272. static void ggml_compute_forward_conv_transpose_2d(
  10273. const struct ggml_compute_params * params,
  10274. const struct ggml_tensor * src0,
  10275. const struct ggml_tensor * src1,
  10276. struct ggml_tensor * dst) {
  10277. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10278. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10279. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10280. int64_t t0 = ggml_perf_time_us();
  10281. UNUSED(t0);
  10282. GGML_TENSOR_BINARY_OP_LOCALS
  10283. const int ith = params->ith;
  10284. const int nth = params->nth;
  10285. const int nk = ne00*ne01*ne02*ne03;
  10286. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10287. GGML_ASSERT(nb10 == sizeof(float));
  10288. if (params->type == GGML_TASK_INIT) {
  10289. if (ith != 0) {
  10290. return;
  10291. }
  10292. memset(params->wdata, 0, params->wsize);
  10293. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10294. {
  10295. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10296. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10297. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10298. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10299. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10300. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10301. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10302. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10303. }
  10304. }
  10305. }
  10306. }
  10307. }
  10308. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10309. {
  10310. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10311. for (int i12 = 0; i12 < ne12; i12++) {
  10312. for (int i11 = 0; i11 < ne11; i11++) {
  10313. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10314. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10315. for (int i10 = 0; i10 < ne10; i10++) {
  10316. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10317. }
  10318. }
  10319. }
  10320. }
  10321. memset(dst->data, 0, ggml_nbytes(dst));
  10322. return;
  10323. }
  10324. if (params->type == GGML_TASK_FINALIZE) {
  10325. return;
  10326. }
  10327. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10328. // total patches in dst
  10329. const int np = ne2;
  10330. // patches per thread
  10331. const int dp = (np + nth - 1)/nth;
  10332. // patch range for this thread
  10333. const int ip0 = dp*ith;
  10334. const int ip1 = MIN(ip0 + dp, np);
  10335. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10336. ggml_fp16_t * const wdata_src = wdata + nk;
  10337. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10338. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10339. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10340. for (int i11 = 0; i11 < ne11; i11++) {
  10341. for (int i10 = 0; i10 < ne10; i10++) {
  10342. const int i1n = i11*ne10*ne12 + i10*ne12;
  10343. for (int i01 = 0; i01 < ne01; i01++) {
  10344. for (int i00 = 0; i00 < ne00; i00++) {
  10345. float v = 0;
  10346. ggml_vec_dot_f16(ne03, &v,
  10347. wdata_src + i1n,
  10348. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10349. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10350. }
  10351. }
  10352. }
  10353. }
  10354. }
  10355. }
  10356. // ggml_compute_forward_pool_1d_sk_p0
  10357. static void ggml_compute_forward_pool_1d_sk_p0(
  10358. const struct ggml_compute_params * params,
  10359. const enum ggml_op_pool op,
  10360. const struct ggml_tensor * src,
  10361. const int k,
  10362. struct ggml_tensor * dst) {
  10363. assert(src->type == GGML_TYPE_F32);
  10364. assert(params->ith == 0);
  10365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10366. return;
  10367. }
  10368. const char * cdata = (const char *)src->data;
  10369. const char * const data_end = cdata + ggml_nbytes(src);
  10370. float * drow = (float *)dst->data;
  10371. const int64_t rs = dst->ne[0];
  10372. while (cdata < data_end) {
  10373. const float * const srow = (const float *)cdata;
  10374. int j = 0;
  10375. for (int64_t i = 0; i < rs; ++i) {
  10376. switch (op) {
  10377. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10378. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10379. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10380. }
  10381. for (int ki = 0; ki < k; ++ki) {
  10382. switch (op) {
  10383. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10384. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10385. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10386. }
  10387. ++j;
  10388. }
  10389. switch (op) {
  10390. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10391. case GGML_OP_POOL_MAX: break;
  10392. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10393. }
  10394. }
  10395. cdata += src->nb[1];
  10396. drow += rs;
  10397. }
  10398. }
  10399. // ggml_compute_forward_pool_1d
  10400. static void ggml_compute_forward_pool_1d(
  10401. const struct ggml_compute_params * params,
  10402. const struct ggml_tensor * src0,
  10403. struct ggml_tensor * dst) {
  10404. const int32_t * opts = (const int32_t *)dst->op_params;
  10405. enum ggml_op_pool op = opts[0];
  10406. const int k0 = opts[1];
  10407. const int s0 = opts[2];
  10408. const int p0 = opts[3];
  10409. GGML_ASSERT(p0 == 0); // padding not supported
  10410. GGML_ASSERT(k0 == s0); // only s = k supported
  10411. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10412. }
  10413. // ggml_compute_forward_pool_2d
  10414. static void ggml_compute_forward_pool_2d(
  10415. const struct ggml_compute_params * params,
  10416. const struct ggml_tensor * src,
  10417. struct ggml_tensor * dst) {
  10418. assert(src->type == GGML_TYPE_F32);
  10419. assert(params->ith == 0);
  10420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10421. return;
  10422. }
  10423. const int32_t * opts = (const int32_t *)dst->op_params;
  10424. enum ggml_op_pool op = opts[0];
  10425. const int k0 = opts[1];
  10426. const int k1 = opts[2];
  10427. const int s0 = opts[3];
  10428. const int s1 = opts[4];
  10429. const int p0 = opts[5];
  10430. const int p1 = opts[6];
  10431. const char * cdata = (const char*)src->data;
  10432. const char * const data_end = cdata + ggml_nbytes(src);
  10433. const int64_t px = dst->ne[0];
  10434. const int64_t py = dst->ne[1];
  10435. const int64_t pa = px * py;
  10436. float * dplane = (float *)dst->data;
  10437. const int ka = k0 * k1;
  10438. const int offset0 = -p0;
  10439. const int offset1 = -p1;
  10440. while (cdata < data_end) {
  10441. for (int oy = 0; oy < py; ++oy) {
  10442. float * const drow = dplane + oy * px;
  10443. for (int ox = 0; ox < px; ++ox) {
  10444. float * const out = drow + ox;
  10445. switch (op) {
  10446. case GGML_OP_POOL_AVG: *out = 0; break;
  10447. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10448. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10449. }
  10450. const int ix = offset0 + ox * s0;
  10451. const int iy = offset1 + oy * s1;
  10452. for (int ky = 0; ky < k1; ++ky) {
  10453. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10454. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10455. for (int kx = 0; kx < k0; ++kx) {
  10456. int j = ix + kx;
  10457. if (j < 0 || j >= src->ne[0]) continue;
  10458. switch (op) {
  10459. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10460. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10461. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10462. }
  10463. }
  10464. }
  10465. switch (op) {
  10466. case GGML_OP_POOL_AVG: *out /= ka; break;
  10467. case GGML_OP_POOL_MAX: break;
  10468. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10469. }
  10470. }
  10471. }
  10472. cdata += src->nb[2];
  10473. dplane += pa;
  10474. }
  10475. }
  10476. // ggml_compute_forward_upscale
  10477. static void ggml_compute_forward_upscale_f32(
  10478. const struct ggml_compute_params * params,
  10479. const struct ggml_tensor * src0,
  10480. struct ggml_tensor * dst) {
  10481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10482. return;
  10483. }
  10484. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10485. const int ith = params->ith;
  10486. const int nth = params->nth;
  10487. GGML_TENSOR_UNARY_OP_LOCALS
  10488. const int scale_factor = dst->op_params[0];
  10489. // TODO: optimize
  10490. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10491. const int64_t i03 = i3;
  10492. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10493. const int64_t i02 = i2;
  10494. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10495. const int64_t i01 = i1 / scale_factor;
  10496. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10497. const int64_t i00 = i0 / scale_factor;
  10498. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10499. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10500. *y = *x;
  10501. }
  10502. }
  10503. }
  10504. }
  10505. }
  10506. static void ggml_compute_forward_upscale(
  10507. const struct ggml_compute_params * params,
  10508. const struct ggml_tensor * src0,
  10509. struct ggml_tensor * dst) {
  10510. switch (src0->type) {
  10511. case GGML_TYPE_F32:
  10512. {
  10513. ggml_compute_forward_upscale_f32(params, src0, dst);
  10514. } break;
  10515. default:
  10516. {
  10517. GGML_ASSERT(false);
  10518. } break;
  10519. }
  10520. }
  10521. // ggml_compute_forward_pad
  10522. static void ggml_compute_forward_pad_f32(
  10523. const struct ggml_compute_params * params,
  10524. const struct ggml_tensor * src0,
  10525. struct ggml_tensor * dst) {
  10526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10527. return;
  10528. }
  10529. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10530. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10531. const int ith = params->ith;
  10532. const int nth = params->nth;
  10533. GGML_TENSOR_UNARY_OP_LOCALS
  10534. float * dst_ptr = (float *) dst->data;
  10535. // TODO: optimize
  10536. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10537. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10538. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10539. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10540. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10541. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10542. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10543. dst_ptr[dst_idx] = *src_ptr;
  10544. } else {
  10545. dst_ptr[dst_idx] = 0;
  10546. }
  10547. }
  10548. }
  10549. }
  10550. }
  10551. }
  10552. static void ggml_compute_forward_pad(
  10553. const struct ggml_compute_params * params,
  10554. const struct ggml_tensor * src0,
  10555. struct ggml_tensor * dst) {
  10556. switch (src0->type) {
  10557. case GGML_TYPE_F32:
  10558. {
  10559. ggml_compute_forward_pad_f32(params, src0, dst);
  10560. } break;
  10561. default:
  10562. {
  10563. GGML_ASSERT(false);
  10564. } break;
  10565. }
  10566. }
  10567. // ggml_compute_forward_argsort
  10568. static void ggml_compute_forward_argsort_f32(
  10569. const struct ggml_compute_params * params,
  10570. const struct ggml_tensor * src0,
  10571. struct ggml_tensor * dst) {
  10572. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10573. return;
  10574. }
  10575. GGML_TENSOR_UNARY_OP_LOCALS
  10576. GGML_ASSERT(nb0 == sizeof(float));
  10577. const int ith = params->ith;
  10578. const int nth = params->nth;
  10579. const int64_t nr = ggml_nrows(src0);
  10580. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10581. for (int64_t i = ith; i < nr; i += nth) {
  10582. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10583. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10584. for (int64_t j = 0; j < ne0; j++) {
  10585. dst_data[j] = j;
  10586. }
  10587. // C doesn't have a functional sort, so we do a bubble sort instead
  10588. for (int64_t j = 0; j < ne0; j++) {
  10589. for (int64_t k = j + 1; k < ne0; k++) {
  10590. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10591. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10592. int32_t tmp = dst_data[j];
  10593. dst_data[j] = dst_data[k];
  10594. dst_data[k] = tmp;
  10595. }
  10596. }
  10597. }
  10598. }
  10599. }
  10600. static void ggml_compute_forward_argsort(
  10601. const struct ggml_compute_params * params,
  10602. const struct ggml_tensor * src0,
  10603. struct ggml_tensor * dst) {
  10604. switch (src0->type) {
  10605. case GGML_TYPE_F32:
  10606. {
  10607. ggml_compute_forward_argsort_f32(params, src0, dst);
  10608. } break;
  10609. default:
  10610. {
  10611. GGML_ASSERT(false);
  10612. } break;
  10613. }
  10614. }
  10615. // ggml_compute_forward_flash_attn
  10616. static void ggml_compute_forward_flash_attn_f32(
  10617. const struct ggml_compute_params * params,
  10618. const struct ggml_tensor * q,
  10619. const struct ggml_tensor * k,
  10620. const struct ggml_tensor * v,
  10621. const bool masked,
  10622. struct ggml_tensor * dst) {
  10623. int64_t t0 = ggml_perf_time_us();
  10624. UNUSED(t0);
  10625. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10626. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10627. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10628. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10629. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10630. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10631. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10632. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10633. const int ith = params->ith;
  10634. const int nth = params->nth;
  10635. const int64_t D = neq0;
  10636. const int64_t N = neq1;
  10637. const int64_t P = nek1 - N;
  10638. const int64_t M = P + N;
  10639. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10640. GGML_ASSERT(ne0 == D);
  10641. GGML_ASSERT(ne1 == N);
  10642. GGML_ASSERT(P >= 0);
  10643. GGML_ASSERT(nbq0 == sizeof(float));
  10644. GGML_ASSERT(nbk0 == sizeof(float));
  10645. GGML_ASSERT(nbv0 == sizeof(float));
  10646. GGML_ASSERT(neq0 == D);
  10647. GGML_ASSERT(nek0 == D);
  10648. GGML_ASSERT(nev1 == D);
  10649. GGML_ASSERT(neq1 == N);
  10650. GGML_ASSERT(nek1 == N + P);
  10651. GGML_ASSERT(nev1 == D);
  10652. // dst cannot be transposed or permuted
  10653. GGML_ASSERT(nb0 == sizeof(float));
  10654. GGML_ASSERT(nb0 <= nb1);
  10655. GGML_ASSERT(nb1 <= nb2);
  10656. GGML_ASSERT(nb2 <= nb3);
  10657. if (params->type == GGML_TASK_INIT) {
  10658. return;
  10659. }
  10660. if (params->type == GGML_TASK_FINALIZE) {
  10661. return;
  10662. }
  10663. // parallelize by q rows using ggml_vec_dot_f32
  10664. // total rows in q
  10665. const int nr = neq1*neq2*neq3;
  10666. // rows per thread
  10667. const int dr = (nr + nth - 1)/nth;
  10668. // row range for this thread
  10669. const int ir0 = dr*ith;
  10670. const int ir1 = MIN(ir0 + dr, nr);
  10671. const float scale = 1.0f/sqrtf(D);
  10672. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10673. for (int ir = ir0; ir < ir1; ++ir) {
  10674. // q indices
  10675. const int iq3 = ir/(neq2*neq1);
  10676. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10677. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10678. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10679. for (int i = M; i < Mup; ++i) {
  10680. S[i] = -INFINITY;
  10681. }
  10682. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10683. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10684. // k indices
  10685. const int ik3 = iq3;
  10686. const int ik2 = iq2 % nek2;
  10687. const int ik1 = ic;
  10688. // S indices
  10689. const int i1 = ik1;
  10690. ggml_vec_dot_f32(neq0,
  10691. S + i1,
  10692. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10693. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10694. }
  10695. // scale
  10696. ggml_vec_scale_f32(masked_begin, S, scale);
  10697. for (int64_t i = masked_begin; i < M; i++) {
  10698. S[i] = -INFINITY;
  10699. }
  10700. // softmax
  10701. // exclude known -INF S[..] values from max and loop
  10702. // dont forget to set their SW values to zero
  10703. {
  10704. float max = -INFINITY;
  10705. ggml_vec_max_f32(masked_begin, &max, S);
  10706. ggml_float sum = 0.0;
  10707. {
  10708. #ifdef GGML_SOFT_MAX_ACCELERATE
  10709. max = -max;
  10710. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10711. vvexpf(S, S, &Mup);
  10712. ggml_vec_sum_f32(Mup, &sum, S);
  10713. #else
  10714. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10715. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10716. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10717. if (i >= masked_begin) {
  10718. break;
  10719. }
  10720. float * SS = S + i;
  10721. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10722. if (i + j >= masked_begin) {
  10723. break;
  10724. } else if (SS[j] == -INFINITY) {
  10725. SS[j] = 0.0f;
  10726. } else {
  10727. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10728. const float val = expf(SS[j] - max);
  10729. #else
  10730. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10731. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10732. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10733. #endif
  10734. sump[j] += (ggml_float)val;
  10735. SS[j] = val;
  10736. }
  10737. }
  10738. }
  10739. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10740. sum += sump[i];
  10741. }
  10742. #endif
  10743. }
  10744. assert(sum > 0.0);
  10745. sum = 1.0/sum;
  10746. ggml_vec_scale_f32(masked_begin, S, sum);
  10747. #ifndef NDEBUG
  10748. for (int i = 0; i < masked_begin; ++i) {
  10749. assert(!isnan(S[i]));
  10750. assert(!isinf(S[i]));
  10751. }
  10752. #endif
  10753. }
  10754. for (int64_t ic = 0; ic < nev1; ++ic) {
  10755. // dst indices
  10756. const int i1 = iq1;
  10757. const int i2 = iq2;
  10758. const int i3 = iq3;
  10759. // v indices
  10760. const int iv2 = iq2 % nev2;
  10761. const int iv3 = iq3;
  10762. ggml_vec_dot_f32(masked_begin,
  10763. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10764. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10765. S);
  10766. }
  10767. }
  10768. }
  10769. static void ggml_compute_forward_flash_attn_f16(
  10770. const struct ggml_compute_params * params,
  10771. const struct ggml_tensor * q,
  10772. const struct ggml_tensor * k,
  10773. const struct ggml_tensor * v,
  10774. const bool masked,
  10775. struct ggml_tensor * dst) {
  10776. int64_t t0 = ggml_perf_time_us();
  10777. UNUSED(t0);
  10778. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10779. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10780. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10781. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10782. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10783. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10784. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10785. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10786. const int ith = params->ith;
  10787. const int nth = params->nth;
  10788. const int64_t D = neq0;
  10789. const int64_t N = neq1;
  10790. const int64_t P = nek1 - N;
  10791. const int64_t M = P + N;
  10792. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10793. GGML_ASSERT(ne0 == D);
  10794. GGML_ASSERT(ne1 == N);
  10795. GGML_ASSERT(P >= 0);
  10796. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10797. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10798. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10799. GGML_ASSERT(neq0 == D);
  10800. GGML_ASSERT(nek0 == D);
  10801. GGML_ASSERT(nev1 == D);
  10802. GGML_ASSERT(neq1 == N);
  10803. GGML_ASSERT(nek1 == N + P);
  10804. GGML_ASSERT(nev1 == D);
  10805. // dst cannot be transposed or permuted
  10806. GGML_ASSERT(nb0 == sizeof(float));
  10807. GGML_ASSERT(nb0 <= nb1);
  10808. GGML_ASSERT(nb1 <= nb2);
  10809. GGML_ASSERT(nb2 <= nb3);
  10810. if (params->type == GGML_TASK_INIT) {
  10811. return;
  10812. }
  10813. if (params->type == GGML_TASK_FINALIZE) {
  10814. return;
  10815. }
  10816. // parallelize by q rows using ggml_vec_dot_f32
  10817. // total rows in q
  10818. const int nr = neq1*neq2*neq3;
  10819. // rows per thread
  10820. const int dr = (nr + nth - 1)/nth;
  10821. // row range for this thread
  10822. const int ir0 = dr*ith;
  10823. const int ir1 = MIN(ir0 + dr, nr);
  10824. const float scale = 1.0f/sqrtf(D);
  10825. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10826. for (int ir = ir0; ir < ir1; ++ir) {
  10827. // q indices
  10828. const int iq3 = ir/(neq2*neq1);
  10829. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10830. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10831. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10832. for (int i = M; i < Mup; ++i) {
  10833. S[i] = -INFINITY;
  10834. }
  10835. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10836. for (int64_t ic = 0; ic < nek1; ++ic) {
  10837. // k indices
  10838. const int ik3 = iq3;
  10839. const int ik2 = iq2 % nek2;
  10840. const int ik1 = ic;
  10841. // S indices
  10842. const int i1 = ik1;
  10843. ggml_vec_dot_f16(neq0,
  10844. S + i1,
  10845. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10846. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10847. }
  10848. } else {
  10849. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10850. // k indices
  10851. const int ik3 = iq3;
  10852. const int ik2 = iq2 % nek2;
  10853. const int ik1 = ic;
  10854. // S indices
  10855. const int i1 = ik1;
  10856. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10857. S + i1,
  10858. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10859. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10860. }
  10861. }
  10862. // scale
  10863. ggml_vec_scale_f32(nek1, S, scale);
  10864. if (masked) {
  10865. for (int64_t i = P; i < M; i++) {
  10866. if (i > P + iq1) {
  10867. S[i] = -INFINITY;
  10868. }
  10869. }
  10870. }
  10871. // softmax
  10872. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10873. // dont forget to set their S values to zero
  10874. {
  10875. float max = -INFINITY;
  10876. ggml_vec_max_f32(M, &max, S);
  10877. ggml_float sum = 0.0;
  10878. {
  10879. #ifdef GGML_SOFT_MAX_ACCELERATE
  10880. max = -max;
  10881. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10882. vvexpf(S, S, &Mup);
  10883. ggml_vec_sum_f32(Mup, &sum, S);
  10884. #else
  10885. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10886. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10887. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10888. float * SS = S + i;
  10889. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10890. if (SS[j] == -INFINITY) {
  10891. SS[j] = 0.0f;
  10892. } else {
  10893. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10894. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10895. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10896. sump[j] += (ggml_float)val;
  10897. SS[j] = val;
  10898. }
  10899. }
  10900. }
  10901. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10902. sum += sump[i];
  10903. }
  10904. #endif
  10905. }
  10906. assert(sum > 0.0);
  10907. sum = 1.0/sum;
  10908. ggml_vec_scale_f32(M, S, sum);
  10909. #ifndef NDEBUG
  10910. for (int i = 0; i < M; ++i) {
  10911. assert(!isnan(S[i]));
  10912. assert(!isinf(S[i]));
  10913. }
  10914. #endif
  10915. }
  10916. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10917. for (int64_t i = 0; i < M; i++) {
  10918. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10919. }
  10920. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10921. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10922. for (int64_t ic = 0; ic < nev1; ++ic) {
  10923. // dst indices
  10924. const int i1 = iq1;
  10925. const int i2 = iq2;
  10926. const int i3 = iq3;
  10927. // v indices
  10928. const int iv2 = iq2 % nev2;
  10929. const int iv3 = iq3;
  10930. ggml_vec_dot_f16(nev0,
  10931. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10932. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10933. S16);
  10934. }
  10935. } else {
  10936. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10937. // dst indices
  10938. const int i1 = iq1;
  10939. const int i2 = iq2;
  10940. const int i3 = iq3;
  10941. // v indices
  10942. const int iv2 = iq2 % nev2;
  10943. const int iv3 = iq3;
  10944. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10945. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10946. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10947. S16);
  10948. }
  10949. }
  10950. }
  10951. }
  10952. static void ggml_compute_forward_flash_attn(
  10953. const struct ggml_compute_params * params,
  10954. const struct ggml_tensor * q,
  10955. const struct ggml_tensor * k,
  10956. const struct ggml_tensor * v,
  10957. const bool masked,
  10958. struct ggml_tensor * dst) {
  10959. switch (q->type) {
  10960. case GGML_TYPE_F16:
  10961. {
  10962. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10963. } break;
  10964. case GGML_TYPE_F32:
  10965. {
  10966. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10967. } break;
  10968. default:
  10969. {
  10970. GGML_ASSERT(false);
  10971. } break;
  10972. }
  10973. }
  10974. // ggml_compute_forward_flash_ff
  10975. static void ggml_compute_forward_flash_ff_f16(
  10976. const struct ggml_compute_params * params,
  10977. const struct ggml_tensor * a, // F16
  10978. const struct ggml_tensor * b0, // F16 fc_w
  10979. const struct ggml_tensor * b1, // F32 fc_b
  10980. const struct ggml_tensor * c0, // F16 proj_w
  10981. const struct ggml_tensor * c1, // F32 proj_b
  10982. struct ggml_tensor * dst) {
  10983. int64_t t0 = ggml_perf_time_us();
  10984. UNUSED(t0);
  10985. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10986. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10987. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10988. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10989. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10990. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10991. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10992. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10993. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10994. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10995. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10996. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10997. const int ith = params->ith;
  10998. const int nth = params->nth;
  10999. const int64_t D = nea0;
  11000. //const int64_t N = nea1;
  11001. const int64_t M = neb01;
  11002. GGML_ASSERT(ne0 == nea0);
  11003. GGML_ASSERT(ne1 == nea1);
  11004. GGML_ASSERT(ne2 == nea2);
  11005. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11006. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11007. GGML_ASSERT(nbb10 == sizeof(float));
  11008. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11009. GGML_ASSERT(nbc10 == sizeof(float));
  11010. GGML_ASSERT(neb00 == D);
  11011. GGML_ASSERT(neb01 == M);
  11012. GGML_ASSERT(neb10 == M);
  11013. GGML_ASSERT(neb11 == 1);
  11014. GGML_ASSERT(nec00 == M);
  11015. GGML_ASSERT(nec01 == D);
  11016. GGML_ASSERT(nec10 == D);
  11017. GGML_ASSERT(nec11 == 1);
  11018. // dst cannot be transposed or permuted
  11019. GGML_ASSERT(nb0 == sizeof(float));
  11020. GGML_ASSERT(nb0 <= nb1);
  11021. GGML_ASSERT(nb1 <= nb2);
  11022. GGML_ASSERT(nb2 <= nb3);
  11023. if (params->type == GGML_TASK_INIT) {
  11024. return;
  11025. }
  11026. if (params->type == GGML_TASK_FINALIZE) {
  11027. return;
  11028. }
  11029. // parallelize by a rows using ggml_vec_dot_f32
  11030. // total rows in a
  11031. const int nr = nea1*nea2*nea3;
  11032. // rows per thread
  11033. const int dr = (nr + nth - 1)/nth;
  11034. // row range for this thread
  11035. const int ir0 = dr*ith;
  11036. const int ir1 = MIN(ir0 + dr, nr);
  11037. for (int ir = ir0; ir < ir1; ++ir) {
  11038. // a indices
  11039. const int ia3 = ir/(nea2*nea1);
  11040. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11041. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11042. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11043. for (int64_t ic = 0; ic < neb01; ++ic) {
  11044. // b0 indices
  11045. const int ib03 = ia3;
  11046. const int ib02 = ia2;
  11047. const int ib01 = ic;
  11048. // S indices
  11049. const int i1 = ib01;
  11050. ggml_vec_dot_f16(nea0,
  11051. S + i1,
  11052. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11053. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11054. }
  11055. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11056. //ggml_vec_gelu_f32(neb01, S, S);
  11057. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11058. for (int64_t i = 0; i < M; i++) {
  11059. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11060. }
  11061. ggml_vec_gelu_f16(neb01, S16, S16);
  11062. {
  11063. // dst indices
  11064. const int i1 = ia1;
  11065. const int i2 = ia2;
  11066. const int i3 = ia3;
  11067. for (int64_t ic = 0; ic < nec01; ++ic) {
  11068. ggml_vec_dot_f16(neb01,
  11069. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11070. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11071. S16);
  11072. }
  11073. ggml_vec_add_f32(nec01,
  11074. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11075. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11076. (float *) c1->data);
  11077. }
  11078. }
  11079. }
  11080. static void ggml_compute_forward_flash_ff(
  11081. const struct ggml_compute_params * params,
  11082. const struct ggml_tensor * a,
  11083. const struct ggml_tensor * b0,
  11084. const struct ggml_tensor * b1,
  11085. const struct ggml_tensor * c0,
  11086. const struct ggml_tensor * c1,
  11087. struct ggml_tensor * dst) {
  11088. switch (b0->type) {
  11089. case GGML_TYPE_F16:
  11090. {
  11091. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11092. } break;
  11093. case GGML_TYPE_F32:
  11094. {
  11095. GGML_ASSERT(false); // TODO
  11096. } break;
  11097. default:
  11098. {
  11099. GGML_ASSERT(false);
  11100. } break;
  11101. }
  11102. }
  11103. // ggml_compute_forward_flash_attn_back
  11104. static void ggml_compute_forward_flash_attn_back_f32(
  11105. const struct ggml_compute_params * params,
  11106. const struct ggml_tensor * q,
  11107. const struct ggml_tensor * k,
  11108. const struct ggml_tensor * v,
  11109. const struct ggml_tensor * d,
  11110. const bool masked,
  11111. struct ggml_tensor * dst) {
  11112. int64_t t0 = ggml_perf_time_us();
  11113. UNUSED(t0);
  11114. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11115. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11116. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11117. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11118. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11119. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11120. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11121. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11122. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11123. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11124. const int ith = params->ith;
  11125. const int nth = params->nth;
  11126. const int64_t D = neq0;
  11127. const int64_t N = neq1;
  11128. const int64_t P = nek1 - N;
  11129. const int64_t M = P + N;
  11130. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11131. const int mxDM = MAX(D, Mup);
  11132. // GGML_ASSERT(ne0 == D);
  11133. // GGML_ASSERT(ne1 == N);
  11134. GGML_ASSERT(P >= 0);
  11135. GGML_ASSERT(nbq0 == sizeof(float));
  11136. GGML_ASSERT(nbk0 == sizeof(float));
  11137. GGML_ASSERT(nbv0 == sizeof(float));
  11138. GGML_ASSERT(neq0 == D);
  11139. GGML_ASSERT(nek0 == D);
  11140. GGML_ASSERT(nev1 == D);
  11141. GGML_ASSERT(ned0 == D);
  11142. GGML_ASSERT(neq1 == N);
  11143. GGML_ASSERT(nek1 == N + P);
  11144. GGML_ASSERT(nev1 == D);
  11145. GGML_ASSERT(ned1 == N);
  11146. // dst cannot be transposed or permuted
  11147. GGML_ASSERT(nb0 == sizeof(float));
  11148. GGML_ASSERT(nb0 <= nb1);
  11149. GGML_ASSERT(nb1 <= nb2);
  11150. GGML_ASSERT(nb2 <= nb3);
  11151. if (params->type == GGML_TASK_INIT) {
  11152. if (ith == 0) {
  11153. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11154. }
  11155. return;
  11156. }
  11157. if (params->type == GGML_TASK_FINALIZE) {
  11158. return;
  11159. }
  11160. const int64_t elem_q = ggml_nelements(q);
  11161. const int64_t elem_k = ggml_nelements(k);
  11162. enum ggml_type result_type = dst->type;
  11163. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11164. const size_t tsize = ggml_type_size(result_type);
  11165. const size_t offs_q = 0;
  11166. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11167. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11168. void * grad_q = (char *) dst->data;
  11169. void * grad_k = (char *) dst->data + offs_k;
  11170. void * grad_v = (char *) dst->data + offs_v;
  11171. const size_t nbgq1 = nb0*neq0;
  11172. const size_t nbgq2 = nb0*neq0*neq1;
  11173. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11174. const size_t nbgk1 = nb0*nek0;
  11175. const size_t nbgk2 = nb0*nek0*nek1;
  11176. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11177. const size_t nbgv1 = nb0*nev0;
  11178. const size_t nbgv2 = nb0*nev0*nev1;
  11179. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11180. // parallelize by k rows using ggml_vec_dot_f32
  11181. // total rows in k
  11182. const int nr = nek2*nek3;
  11183. // rows per thread
  11184. const int dr = (nr + nth - 1)/nth;
  11185. // row range for this thread
  11186. const int ir0 = dr*ith;
  11187. const int ir1 = MIN(ir0 + dr, nr);
  11188. const float scale = 1.0f/sqrtf(D);
  11189. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11190. // how often k2 (and v2) is repeated in q2
  11191. int nrep = neq2/nek2;
  11192. for (int ir = ir0; ir < ir1; ++ir) {
  11193. // q indices
  11194. const int ik3 = ir/(nek2);
  11195. const int ik2 = ir - ik3*nek2;
  11196. const int iq3 = ik3;
  11197. const int id3 = ik3;
  11198. const int iv3 = ik3;
  11199. const int iv2 = ik2;
  11200. for (int irep = 0; irep < nrep; ++irep) {
  11201. const int iq2 = ik2 + irep*nek2;
  11202. const int id2 = iq2;
  11203. // (ik2 + irep*nek2) % nek2 == ik2
  11204. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11205. const int id1 = iq1;
  11206. // not sure about CACHE_LINE_SIZE_F32..
  11207. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11208. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11209. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11210. for (int i = M; i < Mup; ++i) {
  11211. S[i] = -INFINITY;
  11212. }
  11213. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11214. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11215. // k indices
  11216. const int ik1 = ic;
  11217. // S indices
  11218. const int i1 = ik1;
  11219. ggml_vec_dot_f32(neq0,
  11220. S + i1,
  11221. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11222. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11223. }
  11224. // scale
  11225. ggml_vec_scale_f32(masked_begin, S, scale);
  11226. for (int64_t i = masked_begin; i < M; i++) {
  11227. S[i] = -INFINITY;
  11228. }
  11229. // softmax
  11230. // exclude known -INF S[..] values from max and loop
  11231. // dont forget to set their SM values to zero
  11232. {
  11233. float max = -INFINITY;
  11234. ggml_vec_max_f32(masked_begin, &max, S);
  11235. ggml_float sum = 0.0;
  11236. {
  11237. #ifdef GGML_SOFT_MAX_ACCELERATE
  11238. max = -max;
  11239. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11240. vvexpf(SM, SM, &Mup);
  11241. ggml_vec_sum_f32(Mup, &sum, SM);
  11242. #else
  11243. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11244. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11245. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11246. if (i >= masked_begin) {
  11247. break;
  11248. }
  11249. float * SR = S + i;
  11250. float * SW = SM + i;
  11251. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11252. if (i + j >= masked_begin) {
  11253. break;
  11254. } else if (SR[j] == -INFINITY) {
  11255. SW[j] = 0.0f;
  11256. } else {
  11257. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11258. const float val = expf(SR[j] - max);
  11259. #else
  11260. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11261. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11262. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11263. #endif
  11264. sump[j] += (ggml_float)val;
  11265. SW[j] = val;
  11266. }
  11267. }
  11268. }
  11269. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11270. sum += sump[i];
  11271. }
  11272. #endif
  11273. }
  11274. assert(sum > 0.0);
  11275. sum = 1.0/sum;
  11276. ggml_vec_scale_f32(masked_begin, SM, sum);
  11277. }
  11278. // step-by-step explanation
  11279. {
  11280. // forward-process shape grads from backward process
  11281. // parallel_for ik2,ik3:
  11282. // for irep:
  11283. // iq2 = ik2 + irep*nek2
  11284. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11285. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11286. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11287. // for iq1:
  11288. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11289. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11290. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11291. // S0 = -Inf [D,1,1,1]
  11292. // ~S1[i] = dot(kcur[:D,i], qcur)
  11293. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11294. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11295. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11296. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11297. // ~S5[i] = dot(vcur[:,i], S4)
  11298. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11299. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11300. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11301. // dst backward-/ grad[dst] = d
  11302. //
  11303. // output gradients with their dependencies:
  11304. //
  11305. // grad[kcur] = grad[S1].T @ qcur
  11306. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11307. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11308. // grad[S4] = grad[S5] @ vcur
  11309. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11310. // grad[qcur] = grad[S1] @ kcur
  11311. // grad[vcur] = grad[S5].T @ S4
  11312. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11313. //
  11314. // in post-order:
  11315. //
  11316. // S1 = qcur @ kcur.T
  11317. // S2 = S1 * scale
  11318. // S3 = diag_mask_inf(S2, P)
  11319. // S4 = softmax(S3)
  11320. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11321. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11322. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11323. // grad[qcur] = grad[S1] @ kcur
  11324. // grad[kcur] = grad[S1].T @ qcur
  11325. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11326. //
  11327. // using less variables (SM=S4):
  11328. //
  11329. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11330. // SM = softmax(S)
  11331. // S = d[:D,iq1,iq2,iq3] @ vcur
  11332. // dot_SM_gradSM = dot(SM, S)
  11333. // S = SM * (S - dot(SM, S))
  11334. // S = diag_mask_zero(S, P) * scale
  11335. //
  11336. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11337. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11338. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11339. }
  11340. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11341. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11342. // for ic:
  11343. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11344. // exclude known future zero S[..] values from operation
  11345. ggml_vec_set_f32(masked_begin, S, 0);
  11346. for (int64_t ic = 0; ic < D; ++ic) {
  11347. ggml_vec_mad_f32(masked_begin,
  11348. S,
  11349. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11350. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11351. }
  11352. // S = SM * (S - dot(SM, S))
  11353. float dot_SM_gradSM = 0;
  11354. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11355. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11356. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11357. // S = diag_mask_zero(S, P) * scale
  11358. // already done by above ggml_vec_set_f32
  11359. // exclude known zero S[..] values from operation
  11360. ggml_vec_scale_f32(masked_begin, S, scale);
  11361. // S shape [M,1]
  11362. // SM shape [M,1]
  11363. // kcur shape [D,M]
  11364. // qcur shape [D,1]
  11365. // vcur shape [M,D]
  11366. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11367. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11368. // for ic:
  11369. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11370. // exclude known zero S[..] values from loop
  11371. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11372. ggml_vec_mad_f32(D,
  11373. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11374. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11375. S[ic]);
  11376. }
  11377. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11378. // for ic:
  11379. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11380. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11381. // exclude known zero S[..] values from loop
  11382. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11383. ggml_vec_mad_f32(D,
  11384. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11385. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11386. S[ic]);
  11387. }
  11388. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11389. // for ic:
  11390. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11391. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11392. // exclude known zero SM[..] values from mad
  11393. for (int64_t ic = 0; ic < D; ++ic) {
  11394. ggml_vec_mad_f32(masked_begin,
  11395. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11396. SM,
  11397. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11398. }
  11399. }
  11400. }
  11401. }
  11402. }
  11403. static void ggml_compute_forward_flash_attn_back(
  11404. const struct ggml_compute_params * params,
  11405. const struct ggml_tensor * q,
  11406. const struct ggml_tensor * k,
  11407. const struct ggml_tensor * v,
  11408. const struct ggml_tensor * d,
  11409. const bool masked,
  11410. struct ggml_tensor * dst) {
  11411. switch (q->type) {
  11412. case GGML_TYPE_F32:
  11413. {
  11414. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11415. } break;
  11416. default:
  11417. {
  11418. GGML_ASSERT(false);
  11419. } break;
  11420. }
  11421. }
  11422. // ggml_compute_forward_win_part
  11423. static void ggml_compute_forward_win_part_f32(
  11424. const struct ggml_compute_params * params,
  11425. const struct ggml_tensor * src0,
  11426. struct ggml_tensor * dst) {
  11427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11428. return;
  11429. }
  11430. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11431. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11432. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11433. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11434. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11435. assert(ne00 == ne0);
  11436. assert(ne3 == nep0*nep1);
  11437. // TODO: optimize / multi-thread
  11438. for (int py = 0; py < nep1; ++py) {
  11439. for (int px = 0; px < nep0; ++px) {
  11440. const int64_t i3 = py*nep0 + px;
  11441. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11442. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11443. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11444. const int64_t i02 = py*w + i2;
  11445. const int64_t i01 = px*w + i1;
  11446. const int64_t i00 = i0;
  11447. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11448. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11449. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11450. ((float *) dst->data)[i] = 0.0f;
  11451. } else {
  11452. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11453. }
  11454. }
  11455. }
  11456. }
  11457. }
  11458. }
  11459. }
  11460. static void ggml_compute_forward_win_part(
  11461. const struct ggml_compute_params * params,
  11462. const struct ggml_tensor * src0,
  11463. struct ggml_tensor * dst) {
  11464. switch (src0->type) {
  11465. case GGML_TYPE_F32:
  11466. {
  11467. ggml_compute_forward_win_part_f32(params, src0, dst);
  11468. } break;
  11469. default:
  11470. {
  11471. GGML_ASSERT(false);
  11472. } break;
  11473. }
  11474. }
  11475. // ggml_compute_forward_win_unpart
  11476. static void ggml_compute_forward_win_unpart_f32(
  11477. const struct ggml_compute_params * params,
  11478. const struct ggml_tensor * src0,
  11479. struct ggml_tensor * dst) {
  11480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11481. return;
  11482. }
  11483. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11484. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11485. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11486. // padding
  11487. const int px = (w - ne1%w)%w;
  11488. //const int py = (w - ne2%w)%w;
  11489. const int npx = (px + ne1)/w;
  11490. //const int npy = (py + ne2)/w;
  11491. assert(ne0 == ne00);
  11492. // TODO: optimize / multi-thread
  11493. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11494. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11495. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11496. const int ip2 = i2/w;
  11497. const int ip1 = i1/w;
  11498. const int64_t i02 = i2%w;
  11499. const int64_t i01 = i1%w;
  11500. const int64_t i00 = i0;
  11501. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11502. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11503. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11504. }
  11505. }
  11506. }
  11507. }
  11508. static void ggml_compute_forward_win_unpart(
  11509. const struct ggml_compute_params * params,
  11510. const struct ggml_tensor * src0,
  11511. struct ggml_tensor * dst) {
  11512. switch (src0->type) {
  11513. case GGML_TYPE_F32:
  11514. {
  11515. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11516. } break;
  11517. default:
  11518. {
  11519. GGML_ASSERT(false);
  11520. } break;
  11521. }
  11522. }
  11523. //gmml_compute_forward_unary
  11524. static void ggml_compute_forward_unary(
  11525. const struct ggml_compute_params * params,
  11526. const struct ggml_tensor * src0,
  11527. struct ggml_tensor * dst) {
  11528. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11529. switch (op) {
  11530. case GGML_UNARY_OP_ABS:
  11531. {
  11532. ggml_compute_forward_abs(params, src0, dst);
  11533. } break;
  11534. case GGML_UNARY_OP_SGN:
  11535. {
  11536. ggml_compute_forward_sgn(params, src0, dst);
  11537. } break;
  11538. case GGML_UNARY_OP_NEG:
  11539. {
  11540. ggml_compute_forward_neg(params, src0, dst);
  11541. } break;
  11542. case GGML_UNARY_OP_STEP:
  11543. {
  11544. ggml_compute_forward_step(params, src0, dst);
  11545. } break;
  11546. case GGML_UNARY_OP_TANH:
  11547. {
  11548. ggml_compute_forward_tanh(params, src0, dst);
  11549. } break;
  11550. case GGML_UNARY_OP_ELU:
  11551. {
  11552. ggml_compute_forward_elu(params, src0, dst);
  11553. } break;
  11554. case GGML_UNARY_OP_RELU:
  11555. {
  11556. ggml_compute_forward_relu(params, src0, dst);
  11557. } break;
  11558. case GGML_UNARY_OP_GELU:
  11559. {
  11560. ggml_compute_forward_gelu(params, src0, dst);
  11561. } break;
  11562. case GGML_UNARY_OP_GELU_QUICK:
  11563. {
  11564. ggml_compute_forward_gelu_quick(params, src0, dst);
  11565. } break;
  11566. case GGML_UNARY_OP_SILU:
  11567. {
  11568. ggml_compute_forward_silu(params, src0, dst);
  11569. } break;
  11570. case GGML_UNARY_OP_HARDSWISH:
  11571. {
  11572. ggml_compute_forward_hardswish(params, src0, dst);
  11573. } break;
  11574. case GGML_UNARY_OP_HARDSIGMOID:
  11575. {
  11576. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11577. } break;
  11578. default:
  11579. {
  11580. GGML_ASSERT(false);
  11581. } break;
  11582. }
  11583. }
  11584. // ggml_compute_forward_get_rel_pos
  11585. static void ggml_compute_forward_get_rel_pos_f16(
  11586. const struct ggml_compute_params * params,
  11587. const struct ggml_tensor * src0,
  11588. struct ggml_tensor * dst) {
  11589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11590. return;
  11591. }
  11592. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11593. GGML_TENSOR_UNARY_OP_LOCALS
  11594. const int64_t w = ne1;
  11595. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11596. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11597. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11598. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11599. const int64_t pos = (w - i1 - 1) + i2;
  11600. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11601. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11602. }
  11603. }
  11604. }
  11605. }
  11606. static void ggml_compute_forward_get_rel_pos(
  11607. const struct ggml_compute_params * params,
  11608. const struct ggml_tensor * src0,
  11609. struct ggml_tensor * dst) {
  11610. switch (src0->type) {
  11611. case GGML_TYPE_F16:
  11612. {
  11613. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11614. } break;
  11615. default:
  11616. {
  11617. GGML_ASSERT(false);
  11618. } break;
  11619. }
  11620. }
  11621. // ggml_compute_forward_add_rel_pos
  11622. static void ggml_compute_forward_add_rel_pos_f32(
  11623. const struct ggml_compute_params * params,
  11624. const struct ggml_tensor * src0,
  11625. const struct ggml_tensor * src1,
  11626. const struct ggml_tensor * src2,
  11627. struct ggml_tensor * dst) {
  11628. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11629. if (!inplace && params->type == GGML_TASK_INIT) {
  11630. if (params->ith != 0) {
  11631. return;
  11632. }
  11633. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11634. return;
  11635. }
  11636. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11637. return;
  11638. }
  11639. int64_t t0 = ggml_perf_time_us();
  11640. UNUSED(t0);
  11641. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11642. float * src1_data = (float *) src1->data;
  11643. float * src2_data = (float *) src2->data;
  11644. float * dst_data = (float *) dst->data;
  11645. const int64_t ne10 = src1->ne[0];
  11646. const int64_t ne11 = src1->ne[1];
  11647. const int64_t ne12 = src1->ne[2];
  11648. const int64_t ne13 = src1->ne[3];
  11649. const int ith = params->ith;
  11650. const int nth = params->nth;
  11651. // total patches in dst
  11652. const int np = ne13;
  11653. // patches per thread
  11654. const int dp = (np + nth - 1)/nth;
  11655. // patch range for this thread
  11656. const int ip0 = dp*ith;
  11657. const int ip1 = MIN(ip0 + dp, np);
  11658. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11659. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11660. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11661. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11662. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11663. const int64_t jp0 = jp1 + i10;
  11664. const float src1_e = src1_data[jp0];
  11665. const float src2_e = src2_data[jp0];
  11666. const int64_t jdh = jp0 * ne10;
  11667. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11668. for (int64_t j = 0; j < ne10; ++j) {
  11669. dst_data[jdh + j ] += src2_e;
  11670. dst_data[jdw + j*ne10] += src1_e;
  11671. }
  11672. }
  11673. }
  11674. }
  11675. }
  11676. }
  11677. static void ggml_compute_forward_add_rel_pos(
  11678. const struct ggml_compute_params * params,
  11679. const struct ggml_tensor * src0,
  11680. const struct ggml_tensor * src1,
  11681. const struct ggml_tensor * src2,
  11682. struct ggml_tensor * dst) {
  11683. switch (src0->type) {
  11684. case GGML_TYPE_F32:
  11685. {
  11686. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11687. } break;
  11688. default:
  11689. {
  11690. GGML_ASSERT(false);
  11691. } break;
  11692. }
  11693. }
  11694. // ggml_compute_forward_map_unary
  11695. static void ggml_compute_forward_map_unary_f32(
  11696. const struct ggml_compute_params * params,
  11697. const struct ggml_tensor * src0,
  11698. struct ggml_tensor * dst,
  11699. const ggml_unary_op_f32_t fun) {
  11700. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11702. return;
  11703. }
  11704. const int n = ggml_nrows(src0);
  11705. const int nc = src0->ne[0];
  11706. assert( dst->nb[0] == sizeof(float));
  11707. assert(src0->nb[0] == sizeof(float));
  11708. for (int i = 0; i < n; i++) {
  11709. fun(nc,
  11710. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11711. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11712. }
  11713. }
  11714. static void ggml_compute_forward_map_unary(
  11715. const struct ggml_compute_params * params,
  11716. const struct ggml_tensor * src0,
  11717. struct ggml_tensor * dst,
  11718. const ggml_unary_op_f32_t fun) {
  11719. switch (src0->type) {
  11720. case GGML_TYPE_F32:
  11721. {
  11722. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11723. } break;
  11724. default:
  11725. {
  11726. GGML_ASSERT(false);
  11727. } break;
  11728. }
  11729. }
  11730. // ggml_compute_forward_map_binary
  11731. static void ggml_compute_forward_map_binary_f32(
  11732. const struct ggml_compute_params * params,
  11733. const struct ggml_tensor * src0,
  11734. const struct ggml_tensor * src1,
  11735. struct ggml_tensor * dst,
  11736. const ggml_binary_op_f32_t fun) {
  11737. assert(params->ith == 0);
  11738. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11739. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11740. return;
  11741. }
  11742. const int n = ggml_nrows(src0);
  11743. const int nc = src0->ne[0];
  11744. assert( dst->nb[0] == sizeof(float));
  11745. assert(src0->nb[0] == sizeof(float));
  11746. assert(src1->nb[0] == sizeof(float));
  11747. for (int i = 0; i < n; i++) {
  11748. fun(nc,
  11749. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11750. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11751. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11752. }
  11753. }
  11754. static void ggml_compute_forward_map_binary(
  11755. const struct ggml_compute_params * params,
  11756. const struct ggml_tensor * src0,
  11757. const struct ggml_tensor * src1,
  11758. struct ggml_tensor * dst,
  11759. const ggml_binary_op_f32_t fun) {
  11760. switch (src0->type) {
  11761. case GGML_TYPE_F32:
  11762. {
  11763. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11764. } break;
  11765. default:
  11766. {
  11767. GGML_ASSERT(false);
  11768. } break;
  11769. }
  11770. }
  11771. // ggml_compute_forward_map_custom1
  11772. static void ggml_compute_forward_map_custom1_f32(
  11773. const struct ggml_compute_params * params,
  11774. const struct ggml_tensor * a,
  11775. struct ggml_tensor * dst,
  11776. const ggml_custom1_op_f32_t fun) {
  11777. assert(params->ith == 0);
  11778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11779. return;
  11780. }
  11781. fun(dst, a);
  11782. }
  11783. // ggml_compute_forward_map_custom2
  11784. static void ggml_compute_forward_map_custom2_f32(
  11785. const struct ggml_compute_params * params,
  11786. const struct ggml_tensor * a,
  11787. const struct ggml_tensor * b,
  11788. struct ggml_tensor * dst,
  11789. const ggml_custom2_op_f32_t fun) {
  11790. assert(params->ith == 0);
  11791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11792. return;
  11793. }
  11794. fun(dst, a, b);
  11795. }
  11796. // ggml_compute_forward_map_custom3
  11797. static void ggml_compute_forward_map_custom3_f32(
  11798. const struct ggml_compute_params * params,
  11799. const struct ggml_tensor * a,
  11800. const struct ggml_tensor * b,
  11801. const struct ggml_tensor * c,
  11802. struct ggml_tensor * dst,
  11803. const ggml_custom3_op_f32_t fun) {
  11804. assert(params->ith == 0);
  11805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11806. return;
  11807. }
  11808. fun(dst, a, b, c);
  11809. }
  11810. // ggml_compute_forward_map_custom1
  11811. static void ggml_compute_forward_map_custom1(
  11812. const struct ggml_compute_params * params,
  11813. const struct ggml_tensor * a,
  11814. struct ggml_tensor * dst) {
  11815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11816. return;
  11817. }
  11818. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11819. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11820. }
  11821. // ggml_compute_forward_map_custom2
  11822. static void ggml_compute_forward_map_custom2(
  11823. const struct ggml_compute_params * params,
  11824. const struct ggml_tensor * a,
  11825. const struct ggml_tensor * b,
  11826. struct ggml_tensor * dst) {
  11827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11828. return;
  11829. }
  11830. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11831. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11832. }
  11833. // ggml_compute_forward_map_custom3
  11834. static void ggml_compute_forward_map_custom3(
  11835. const struct ggml_compute_params * params,
  11836. const struct ggml_tensor * a,
  11837. const struct ggml_tensor * b,
  11838. const struct ggml_tensor * c,
  11839. struct ggml_tensor * dst) {
  11840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11841. return;
  11842. }
  11843. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11844. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11845. }
  11846. // ggml_compute_forward_cross_entropy_loss
  11847. static void ggml_compute_forward_cross_entropy_loss_f32(
  11848. const struct ggml_compute_params * params,
  11849. const struct ggml_tensor * src0,
  11850. const struct ggml_tensor * src1,
  11851. struct ggml_tensor * dst) {
  11852. GGML_ASSERT(ggml_is_contiguous(src0));
  11853. GGML_ASSERT(ggml_is_contiguous(src1));
  11854. GGML_ASSERT(ggml_is_scalar(dst));
  11855. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11856. const int ith = params->ith;
  11857. const int nth = params->nth;
  11858. float * sums = (float *) params->wdata;
  11859. // TODO: handle transposed/permuted matrices
  11860. const int nc = src0->ne[0];
  11861. const int nr = ggml_nrows(src0);
  11862. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11863. if (params->type == GGML_TASK_INIT) {
  11864. if (ith == 0) {
  11865. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11866. }
  11867. return;
  11868. }
  11869. if (params->type == GGML_TASK_FINALIZE) {
  11870. if (ith == 0) {
  11871. float * dp = (float *) dst->data;
  11872. ggml_vec_sum_f32(nth, dp, sums);
  11873. dp[0] *= -1.0f / (float) nr;
  11874. }
  11875. return;
  11876. }
  11877. const double eps = 1e-9;
  11878. // rows per thread
  11879. const int dr = (nr + nth - 1)/nth;
  11880. // row range for this thread
  11881. const int ir0 = dr*ith;
  11882. const int ir1 = MIN(ir0 + dr, nr);
  11883. for (int i1 = ir0; i1 < ir1; i1++) {
  11884. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11885. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11886. float * st = ((float *) params->wdata) + nth + ith*nc;
  11887. #ifndef NDEBUG
  11888. for (int i = 0; i < nc; ++i) {
  11889. //printf("p[%d] = %f\n", i, p[i]);
  11890. assert(!isnan(s0[i]));
  11891. assert(!isnan(s1[i]));
  11892. }
  11893. #endif
  11894. // soft_max
  11895. ggml_float sum = 0.0;
  11896. {
  11897. float max = -INFINITY;
  11898. ggml_vec_max_f32(nc, &max, s0);
  11899. uint16_t scvt; UNUSED(scvt);
  11900. for (int i = 0; i < nc; i++) {
  11901. if (s0[i] == -INFINITY) {
  11902. st[i] = 0.0f;
  11903. } else {
  11904. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11905. const float s = s0[i] - max;
  11906. const float val = expf(s);
  11907. #else
  11908. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11909. memcpy(&scvt, &s, sizeof(scvt));
  11910. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11911. #endif
  11912. sum += (ggml_float)val;
  11913. st[i] = val;
  11914. }
  11915. }
  11916. assert(sum > 0.0);
  11917. // sum = 1.0/sum;
  11918. }
  11919. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11920. sum = (1.0 - eps) / sum;
  11921. ggml_vec_scale_f32(nc, st, sum);
  11922. ggml_vec_add1_f32(nc, st, st, eps);
  11923. ggml_vec_log_f32(nc, st, st);
  11924. ggml_vec_mul_f32(nc, st, st, s1);
  11925. float st_sum = 0;
  11926. ggml_vec_sum_f32(nc, &st_sum, st);
  11927. sums[ith] += st_sum;
  11928. #ifndef NDEBUG
  11929. for (int i = 0; i < nc; ++i) {
  11930. assert(!isnan(st[i]));
  11931. assert(!isinf(st[i]));
  11932. }
  11933. #endif
  11934. }
  11935. }
  11936. static void ggml_compute_forward_cross_entropy_loss(
  11937. const struct ggml_compute_params * params,
  11938. const struct ggml_tensor * src0,
  11939. const struct ggml_tensor * src1,
  11940. struct ggml_tensor * dst) {
  11941. switch (src0->type) {
  11942. case GGML_TYPE_F32:
  11943. {
  11944. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11945. } break;
  11946. default:
  11947. {
  11948. GGML_ASSERT(false);
  11949. } break;
  11950. }
  11951. }
  11952. // ggml_compute_forward_cross_entropy_loss_back
  11953. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11954. const struct ggml_compute_params * params,
  11955. const struct ggml_tensor * src0,
  11956. const struct ggml_tensor * src1,
  11957. const struct ggml_tensor * opt0,
  11958. struct ggml_tensor * dst) {
  11959. GGML_ASSERT(ggml_is_contiguous(dst));
  11960. GGML_ASSERT(ggml_is_contiguous(src0));
  11961. GGML_ASSERT(ggml_is_contiguous(src1));
  11962. GGML_ASSERT(ggml_is_contiguous(opt0));
  11963. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11964. const int64_t ith = params->ith;
  11965. const int64_t nth = params->nth;
  11966. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11967. return;
  11968. }
  11969. const double eps = 1e-9;
  11970. // TODO: handle transposed/permuted matrices
  11971. const int64_t nc = src0->ne[0];
  11972. const int64_t nr = ggml_nrows(src0);
  11973. // rows per thread
  11974. const int64_t dr = (nr + nth - 1)/nth;
  11975. // row range for this thread
  11976. const int64_t ir0 = dr*ith;
  11977. const int64_t ir1 = MIN(ir0 + dr, nr);
  11978. float * d = (float *) opt0->data;
  11979. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11980. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11981. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11982. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11983. #ifndef NDEBUG
  11984. for (int i = 0; i < nc; ++i) {
  11985. //printf("p[%d] = %f\n", i, p[i]);
  11986. assert(!isnan(s0[i]));
  11987. assert(!isnan(s1[i]));
  11988. }
  11989. #endif
  11990. // soft_max
  11991. ggml_float sum = 0.0;
  11992. {
  11993. float max = -INFINITY;
  11994. ggml_vec_max_f32(nc, &max, s0);
  11995. uint16_t scvt; UNUSED(scvt);
  11996. for (int i = 0; i < nc; i++) {
  11997. if (s0[i] == -INFINITY) {
  11998. ds0[i] = 0.0f;
  11999. } else {
  12000. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12001. const float s = s0[i] - max;
  12002. const float val = expf(s);
  12003. #else
  12004. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12005. memcpy(&scvt, &s, sizeof(scvt));
  12006. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12007. #endif
  12008. sum += (ggml_float)val;
  12009. ds0[i] = val;
  12010. }
  12011. }
  12012. assert(sum > 0.0);
  12013. sum = (1.0 - eps)/sum;
  12014. }
  12015. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12016. ggml_vec_scale_f32(nc, ds0, sum);
  12017. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12018. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12019. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12020. #ifndef NDEBUG
  12021. for (int i = 0; i < nc; ++i) {
  12022. assert(!isnan(ds0[i]));
  12023. assert(!isinf(ds0[i]));
  12024. }
  12025. #endif
  12026. }
  12027. }
  12028. static void ggml_compute_forward_cross_entropy_loss_back(
  12029. const struct ggml_compute_params * params,
  12030. const struct ggml_tensor * src0,
  12031. const struct ggml_tensor * src1,
  12032. const struct ggml_tensor * opt0,
  12033. struct ggml_tensor * dst) {
  12034. switch (src0->type) {
  12035. case GGML_TYPE_F32:
  12036. {
  12037. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12038. } break;
  12039. default:
  12040. {
  12041. GGML_ASSERT(false);
  12042. } break;
  12043. }
  12044. }
  12045. /////////////////////////////////
  12046. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12047. GGML_ASSERT(params);
  12048. if (tensor->op == GGML_OP_NONE) {
  12049. return;
  12050. }
  12051. #ifdef GGML_USE_CUBLAS
  12052. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12053. if (skip_cpu) {
  12054. return;
  12055. }
  12056. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12057. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12058. #endif // GGML_USE_CUBLAS
  12059. switch (tensor->op) {
  12060. case GGML_OP_DUP:
  12061. {
  12062. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12063. } break;
  12064. case GGML_OP_ADD:
  12065. {
  12066. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12067. } break;
  12068. case GGML_OP_ADD1:
  12069. {
  12070. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12071. } break;
  12072. case GGML_OP_ACC:
  12073. {
  12074. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12075. } break;
  12076. case GGML_OP_SUB:
  12077. {
  12078. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12079. } break;
  12080. case GGML_OP_MUL:
  12081. {
  12082. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12083. } break;
  12084. case GGML_OP_DIV:
  12085. {
  12086. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12087. } break;
  12088. case GGML_OP_SQR:
  12089. {
  12090. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12091. } break;
  12092. case GGML_OP_SQRT:
  12093. {
  12094. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12095. } break;
  12096. case GGML_OP_LOG:
  12097. {
  12098. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12099. } break;
  12100. case GGML_OP_SUM:
  12101. {
  12102. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12103. } break;
  12104. case GGML_OP_SUM_ROWS:
  12105. {
  12106. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12107. } break;
  12108. case GGML_OP_MEAN:
  12109. {
  12110. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12111. } break;
  12112. case GGML_OP_ARGMAX:
  12113. {
  12114. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12115. } break;
  12116. case GGML_OP_REPEAT:
  12117. {
  12118. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12119. } break;
  12120. case GGML_OP_REPEAT_BACK:
  12121. {
  12122. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12123. } break;
  12124. case GGML_OP_CONCAT:
  12125. {
  12126. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12127. } break;
  12128. case GGML_OP_SILU_BACK:
  12129. {
  12130. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12131. } break;
  12132. case GGML_OP_NORM:
  12133. {
  12134. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12135. } break;
  12136. case GGML_OP_RMS_NORM:
  12137. {
  12138. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12139. } break;
  12140. case GGML_OP_RMS_NORM_BACK:
  12141. {
  12142. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12143. } break;
  12144. case GGML_OP_GROUP_NORM:
  12145. {
  12146. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12147. } break;
  12148. case GGML_OP_MUL_MAT:
  12149. {
  12150. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12151. } break;
  12152. case GGML_OP_MUL_MAT_ID:
  12153. {
  12154. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12155. } break;
  12156. case GGML_OP_OUT_PROD:
  12157. {
  12158. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12159. } break;
  12160. case GGML_OP_SCALE:
  12161. {
  12162. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12163. } break;
  12164. case GGML_OP_SET:
  12165. {
  12166. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12167. } break;
  12168. case GGML_OP_CPY:
  12169. {
  12170. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12171. } break;
  12172. case GGML_OP_CONT:
  12173. {
  12174. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12175. } break;
  12176. case GGML_OP_RESHAPE:
  12177. {
  12178. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12179. } break;
  12180. case GGML_OP_VIEW:
  12181. {
  12182. ggml_compute_forward_view(params, tensor->src[0]);
  12183. } break;
  12184. case GGML_OP_PERMUTE:
  12185. {
  12186. ggml_compute_forward_permute(params, tensor->src[0]);
  12187. } break;
  12188. case GGML_OP_TRANSPOSE:
  12189. {
  12190. ggml_compute_forward_transpose(params, tensor->src[0]);
  12191. } break;
  12192. case GGML_OP_GET_ROWS:
  12193. {
  12194. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12195. } break;
  12196. case GGML_OP_GET_ROWS_BACK:
  12197. {
  12198. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12199. } break;
  12200. case GGML_OP_DIAG:
  12201. {
  12202. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12203. } break;
  12204. case GGML_OP_DIAG_MASK_INF:
  12205. {
  12206. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12207. } break;
  12208. case GGML_OP_DIAG_MASK_ZERO:
  12209. {
  12210. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12211. } break;
  12212. case GGML_OP_SOFT_MAX:
  12213. {
  12214. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12215. } break;
  12216. case GGML_OP_SOFT_MAX_BACK:
  12217. {
  12218. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12219. } break;
  12220. case GGML_OP_ROPE:
  12221. {
  12222. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12223. } break;
  12224. case GGML_OP_ROPE_BACK:
  12225. {
  12226. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12227. } break;
  12228. case GGML_OP_ALIBI:
  12229. {
  12230. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12231. } break;
  12232. case GGML_OP_CLAMP:
  12233. {
  12234. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12235. } break;
  12236. case GGML_OP_CONV_TRANSPOSE_1D:
  12237. {
  12238. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12239. } break;
  12240. case GGML_OP_IM2COL:
  12241. {
  12242. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12243. } break;
  12244. case GGML_OP_CONV_TRANSPOSE_2D:
  12245. {
  12246. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12247. } break;
  12248. case GGML_OP_POOL_1D:
  12249. {
  12250. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12251. } break;
  12252. case GGML_OP_POOL_2D:
  12253. {
  12254. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12255. } break;
  12256. case GGML_OP_UPSCALE:
  12257. {
  12258. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12259. } break;
  12260. case GGML_OP_PAD:
  12261. {
  12262. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12263. } break;
  12264. case GGML_OP_ARGSORT:
  12265. {
  12266. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12267. } break;
  12268. case GGML_OP_LEAKY_RELU:
  12269. {
  12270. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12271. } break;
  12272. case GGML_OP_FLASH_ATTN:
  12273. {
  12274. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12275. GGML_ASSERT(t == 0 || t == 1);
  12276. const bool masked = t != 0;
  12277. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12278. } break;
  12279. case GGML_OP_FLASH_FF:
  12280. {
  12281. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12282. } break;
  12283. case GGML_OP_FLASH_ATTN_BACK:
  12284. {
  12285. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12286. GGML_ASSERT(t == 0 || t == 1);
  12287. bool masked = t != 0;
  12288. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12289. } break;
  12290. case GGML_OP_WIN_PART:
  12291. {
  12292. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12293. } break;
  12294. case GGML_OP_WIN_UNPART:
  12295. {
  12296. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12297. } break;
  12298. case GGML_OP_UNARY:
  12299. {
  12300. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12301. } break;
  12302. case GGML_OP_GET_REL_POS:
  12303. {
  12304. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12305. } break;
  12306. case GGML_OP_ADD_REL_POS:
  12307. {
  12308. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12309. } break;
  12310. case GGML_OP_MAP_UNARY:
  12311. {
  12312. ggml_unary_op_f32_t fun;
  12313. memcpy(&fun, tensor->op_params, sizeof(fun));
  12314. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12315. }
  12316. break;
  12317. case GGML_OP_MAP_BINARY:
  12318. {
  12319. ggml_binary_op_f32_t fun;
  12320. memcpy(&fun, tensor->op_params, sizeof(fun));
  12321. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12322. }
  12323. break;
  12324. case GGML_OP_MAP_CUSTOM1_F32:
  12325. {
  12326. ggml_custom1_op_f32_t fun;
  12327. memcpy(&fun, tensor->op_params, sizeof(fun));
  12328. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12329. }
  12330. break;
  12331. case GGML_OP_MAP_CUSTOM2_F32:
  12332. {
  12333. ggml_custom2_op_f32_t fun;
  12334. memcpy(&fun, tensor->op_params, sizeof(fun));
  12335. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12336. }
  12337. break;
  12338. case GGML_OP_MAP_CUSTOM3_F32:
  12339. {
  12340. ggml_custom3_op_f32_t fun;
  12341. memcpy(&fun, tensor->op_params, sizeof(fun));
  12342. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12343. }
  12344. break;
  12345. case GGML_OP_MAP_CUSTOM1:
  12346. {
  12347. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12348. }
  12349. break;
  12350. case GGML_OP_MAP_CUSTOM2:
  12351. {
  12352. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12353. }
  12354. break;
  12355. case GGML_OP_MAP_CUSTOM3:
  12356. {
  12357. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12358. }
  12359. break;
  12360. case GGML_OP_CROSS_ENTROPY_LOSS:
  12361. {
  12362. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12363. }
  12364. break;
  12365. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12366. {
  12367. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12368. }
  12369. break;
  12370. case GGML_OP_NONE:
  12371. {
  12372. // nop
  12373. } break;
  12374. case GGML_OP_COUNT:
  12375. {
  12376. GGML_ASSERT(false);
  12377. } break;
  12378. }
  12379. }
  12380. ////////////////////////////////////////////////////////////////////////////////
  12381. static size_t ggml_hash_size(size_t min_sz) {
  12382. // next primes after powers of two
  12383. static const size_t primes[] = {
  12384. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12385. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12386. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12387. 16777259, 33554467, 67108879, 134217757, 268435459,
  12388. 536870923, 1073741827, 2147483659
  12389. };
  12390. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12391. // find the smallest prime that is larger or equal to min_sz
  12392. size_t l = 0;
  12393. size_t r = n_primes;
  12394. while (l < r) {
  12395. size_t m = (l + r)/2;
  12396. if (primes[m] < min_sz) {
  12397. l = m + 1;
  12398. } else {
  12399. r = m;
  12400. }
  12401. }
  12402. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12403. return sz;
  12404. }
  12405. static size_t ggml_hash(const void * p) {
  12406. return (size_t)p;
  12407. }
  12408. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12409. size_t h = ggml_hash(key) % hash_set.size;
  12410. // linear probing
  12411. size_t i = h;
  12412. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12413. i = (i + 1) % hash_set.size;
  12414. if (i == h) {
  12415. // visited all hash table entries -> not found
  12416. return GGML_HASHTABLE_FULL;
  12417. }
  12418. }
  12419. return i;
  12420. }
  12421. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12422. size_t i = ggml_hash_find(hash_set, key);
  12423. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12424. }
  12425. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12426. size_t i = ggml_hash_find(hash_set, key);
  12427. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12428. if (hash_set.keys[i] == key) {
  12429. return GGML_HASHTABLE_ALREADY_EXISTS;
  12430. }
  12431. // insert
  12432. GGML_ASSERT(hash_set.keys[i] == NULL);
  12433. hash_set.keys[i] = key;
  12434. return i;
  12435. }
  12436. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12437. size_t i = ggml_hash_find(hash_set, key);
  12438. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12439. hash_set.keys[i] = key;
  12440. return i;
  12441. }
  12442. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12443. size = ggml_hash_size(size);
  12444. struct ggml_hash_set result;
  12445. result.size = size;
  12446. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12447. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12448. return result;
  12449. }
  12450. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12451. free(hash_set.keys);
  12452. }
  12453. struct hash_map {
  12454. struct ggml_hash_set set;
  12455. struct ggml_tensor ** vals;
  12456. };
  12457. static struct hash_map * ggml_new_hash_map(size_t size) {
  12458. struct hash_map * result = malloc(sizeof(struct hash_map));
  12459. result->set = ggml_hash_set_new(size);
  12460. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12461. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12462. return result;
  12463. }
  12464. static void ggml_hash_map_free(struct hash_map * map) {
  12465. ggml_hash_set_free(map->set);
  12466. free(map->vals);
  12467. free(map);
  12468. }
  12469. // gradient checkpointing
  12470. static struct ggml_tensor * ggml_recompute_graph_node(
  12471. struct ggml_context * ctx,
  12472. struct ggml_cgraph * graph,
  12473. struct hash_map * replacements,
  12474. struct ggml_tensor * node) {
  12475. if (node == NULL) {
  12476. return NULL;
  12477. }
  12478. if (node->is_param) {
  12479. return node;
  12480. }
  12481. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12482. return node;
  12483. }
  12484. int count_children = 0;
  12485. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12486. if (node->src[k]) {
  12487. ++count_children;
  12488. }
  12489. }
  12490. if (count_children == 0) {
  12491. return node;
  12492. }
  12493. size_t i = ggml_hash_find(replacements->set, node);
  12494. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12495. if (replacements->set.keys[i] == node) {
  12496. return replacements->vals[i];
  12497. }
  12498. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12499. // insert clone into replacements
  12500. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12501. replacements->set.keys[i] = node;
  12502. replacements->vals[i] = clone;
  12503. clone->op = node->op;
  12504. clone->grad = node->grad;
  12505. clone->is_param = node->is_param;
  12506. clone->extra = node->extra;
  12507. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12508. clone->nb[k] = node->nb[k];
  12509. }
  12510. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12511. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12512. }
  12513. if (node->view_src != NULL) {
  12514. clone->data = (node->view_src->data == NULL)
  12515. ? NULL // view_src not yet allocated
  12516. : (char *) node->view_src->data // view_src already allocated
  12517. + node->view_offs;
  12518. clone->view_src = node->view_src;
  12519. clone->view_offs = node->view_offs;
  12520. }
  12521. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12522. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12523. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12524. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12525. return clone;
  12526. }
  12527. void ggml_build_backward_gradient_checkpointing(
  12528. struct ggml_context * ctx,
  12529. struct ggml_cgraph * gf,
  12530. struct ggml_cgraph * gb,
  12531. struct ggml_cgraph * gb_tmp,
  12532. struct ggml_tensor * * checkpoints,
  12533. int n_checkpoints) {
  12534. ggml_graph_cpy(gf, gb_tmp);
  12535. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12536. if (n_checkpoints <= 0) {
  12537. ggml_graph_cpy(gb_tmp, gb);
  12538. return;
  12539. }
  12540. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12541. // insert checkpoints in replacements
  12542. for (int i = 0; i < n_checkpoints; ++i) {
  12543. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12544. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12545. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12546. replacements->set.keys[k] = checkpoints[i];
  12547. replacements->vals[k] = checkpoints[i];
  12548. }
  12549. ggml_graph_cpy(gf, gb);
  12550. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12551. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12552. // by recomputing them from checkpoints
  12553. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12554. struct ggml_tensor * node = gb_tmp->nodes[i];
  12555. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12556. // insert new tensors recomputing src, reusing already made replacements,
  12557. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12558. // recurse for input tensors,
  12559. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12560. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12561. }
  12562. // insert rewritten backward node with replacements made into resulting backward graph gb
  12563. ggml_build_forward_expand(gb, node);
  12564. }
  12565. ggml_hash_map_free(replacements);
  12566. }
  12567. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12568. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12569. if (ggml_hash_contains(zero_table, a)) {
  12570. return b;
  12571. } else {
  12572. return ggml_add_impl(ctx, a, b, false);
  12573. }
  12574. }
  12575. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12576. if (ggml_hash_contains(zero_table, a)) {
  12577. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12578. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12579. } else {
  12580. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12581. }
  12582. }
  12583. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12584. if (ggml_hash_contains(zero_table, a)) {
  12585. return ggml_repeat(ctx, b, a);
  12586. } else {
  12587. return ggml_add1_impl(ctx, a, b, false);
  12588. }
  12589. }
  12590. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12591. if (ggml_hash_contains(zero_table, a)) {
  12592. return ggml_neg(ctx, b);
  12593. } else {
  12594. return ggml_sub_impl(ctx, a, b, false);
  12595. }
  12596. }
  12597. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12598. struct ggml_tensor * src0 = tensor->src[0];
  12599. struct ggml_tensor * src1 = tensor->src[1];
  12600. switch (tensor->op) {
  12601. case GGML_OP_DUP:
  12602. {
  12603. if (src0->grad) {
  12604. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12605. }
  12606. } break;
  12607. case GGML_OP_ADD:
  12608. {
  12609. if (src0->grad) {
  12610. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12611. }
  12612. if (src1->grad) {
  12613. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12614. }
  12615. } break;
  12616. case GGML_OP_ADD1:
  12617. {
  12618. if (src0->grad) {
  12619. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12620. }
  12621. if (src1->grad) {
  12622. src1->grad = ggml_add_or_set(ctx,
  12623. src1->grad,
  12624. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12625. zero_table);
  12626. }
  12627. } break;
  12628. case GGML_OP_ACC:
  12629. {
  12630. if (src0->grad) {
  12631. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12632. }
  12633. if (src1->grad) {
  12634. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12635. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12636. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12637. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12638. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12639. tensor->grad,
  12640. src1->grad->ne[0],
  12641. src1->grad->ne[1],
  12642. src1->grad->ne[2],
  12643. src1->grad->ne[3],
  12644. nb1, nb2, nb3, offset);
  12645. src1->grad =
  12646. ggml_add_or_set(ctx,
  12647. src1->grad,
  12648. ggml_reshape(ctx,
  12649. ggml_cont(ctx, tensor_grad_view),
  12650. src1->grad),
  12651. zero_table);
  12652. }
  12653. } break;
  12654. case GGML_OP_SUB:
  12655. {
  12656. if (src0->grad) {
  12657. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12658. }
  12659. if (src1->grad) {
  12660. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12661. }
  12662. } break;
  12663. case GGML_OP_MUL:
  12664. {
  12665. if (src0->grad) {
  12666. src0->grad =
  12667. ggml_add_or_set(ctx,
  12668. src0->grad,
  12669. ggml_mul(ctx, src1, tensor->grad),
  12670. zero_table);
  12671. }
  12672. if (src1->grad) {
  12673. src1->grad =
  12674. ggml_add_or_set(ctx,
  12675. src1->grad,
  12676. ggml_mul(ctx, src0, tensor->grad),
  12677. zero_table);
  12678. }
  12679. } break;
  12680. case GGML_OP_DIV:
  12681. {
  12682. if (src0->grad) {
  12683. src0->grad =
  12684. ggml_add_or_set(ctx,
  12685. src0->grad,
  12686. ggml_div(ctx, tensor->grad, src1),
  12687. zero_table);
  12688. }
  12689. if (src1->grad) {
  12690. src1->grad =
  12691. ggml_sub_or_set(ctx,
  12692. src1->grad,
  12693. ggml_mul(ctx,
  12694. tensor->grad,
  12695. ggml_div(ctx, tensor, src1)),
  12696. zero_table);
  12697. }
  12698. } break;
  12699. case GGML_OP_SQR:
  12700. {
  12701. if (src0->grad) {
  12702. src0->grad =
  12703. ggml_add_or_set(ctx,
  12704. src0->grad,
  12705. ggml_scale(ctx,
  12706. ggml_mul(ctx, src0, tensor->grad),
  12707. 2.0f),
  12708. zero_table);
  12709. }
  12710. } break;
  12711. case GGML_OP_SQRT:
  12712. {
  12713. if (src0->grad) {
  12714. src0->grad =
  12715. ggml_add_or_set(ctx,
  12716. src0->grad,
  12717. ggml_scale(ctx,
  12718. ggml_div(ctx,
  12719. tensor->grad,
  12720. tensor),
  12721. 0.5f),
  12722. zero_table);
  12723. }
  12724. } break;
  12725. case GGML_OP_LOG:
  12726. {
  12727. if (src0->grad) {
  12728. src0->grad =
  12729. ggml_add_or_set(ctx,
  12730. src0->grad,
  12731. ggml_div(ctx,
  12732. tensor->grad,
  12733. src0),
  12734. zero_table);
  12735. }
  12736. } break;
  12737. case GGML_OP_SUM:
  12738. {
  12739. if (src0->grad) {
  12740. src0->grad =
  12741. ggml_add1_or_set(ctx,
  12742. src0->grad,
  12743. tensor->grad,
  12744. zero_table);
  12745. }
  12746. } break;
  12747. case GGML_OP_SUM_ROWS:
  12748. {
  12749. if (src0->grad) {
  12750. src0->grad =
  12751. ggml_add_or_set(ctx,
  12752. src0->grad,
  12753. ggml_repeat(ctx,
  12754. tensor->grad,
  12755. src0->grad),
  12756. zero_table);
  12757. }
  12758. } break;
  12759. case GGML_OP_MEAN:
  12760. case GGML_OP_ARGMAX:
  12761. {
  12762. GGML_ASSERT(false); // TODO: implement
  12763. } break;
  12764. case GGML_OP_REPEAT:
  12765. {
  12766. // necessary for llama
  12767. if (src0->grad) {
  12768. src0->grad = ggml_add_or_set(ctx,
  12769. src0->grad,
  12770. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12771. zero_table);
  12772. }
  12773. } break;
  12774. case GGML_OP_REPEAT_BACK:
  12775. {
  12776. if (src0->grad) {
  12777. // TODO: test this
  12778. src0->grad = ggml_add_or_set(ctx,
  12779. src0->grad,
  12780. ggml_repeat(ctx, tensor->grad, src0->grad),
  12781. zero_table);
  12782. }
  12783. } break;
  12784. case GGML_OP_CONCAT:
  12785. {
  12786. GGML_ASSERT(false); // TODO: implement
  12787. } break;
  12788. case GGML_OP_SILU_BACK:
  12789. {
  12790. GGML_ASSERT(false); // TODO: not implemented
  12791. } break;
  12792. case GGML_OP_NORM:
  12793. {
  12794. GGML_ASSERT(false); // TODO: not implemented
  12795. } break;
  12796. case GGML_OP_RMS_NORM:
  12797. {
  12798. // necessary for llama
  12799. if (src0->grad) {
  12800. float eps;
  12801. memcpy(&eps, tensor->op_params, sizeof(float));
  12802. src0->grad = ggml_add_or_set(ctx,
  12803. src0->grad,
  12804. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12805. zero_table);
  12806. }
  12807. } break;
  12808. case GGML_OP_RMS_NORM_BACK:
  12809. {
  12810. GGML_ASSERT(false); // TODO: not implemented
  12811. } break;
  12812. case GGML_OP_GROUP_NORM:
  12813. {
  12814. GGML_ASSERT(false); // TODO: not implemented
  12815. } break;
  12816. case GGML_OP_MUL_MAT:
  12817. {
  12818. // https://cs231n.github.io/optimization-2/#staged
  12819. // # forward pass
  12820. // s0 = np.random.randn(5, 10)
  12821. // s1 = np.random.randn(10, 3)
  12822. // t = s0.dot(s1)
  12823. // # now suppose we had the gradient on t from above in the circuit
  12824. // dt = np.random.randn(*t.shape) # same shape as t
  12825. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12826. // ds1 = t.T.dot(dt)
  12827. // tensor.shape [m,p,qq,rr]
  12828. // src0.shape [n,m,q1,r1]
  12829. // src1.shape [n,p,qq,rr]
  12830. // necessary for llama
  12831. if (src0->grad) {
  12832. struct ggml_tensor * s1_tg =
  12833. ggml_out_prod(ctx, // [n,m,qq,rr]
  12834. src1, // [n,p,qq,rr]
  12835. tensor->grad); // [m,p,qq,rr]
  12836. const int64_t qq = s1_tg->ne[2];
  12837. const int64_t rr = s1_tg->ne[3];
  12838. const int64_t q1 = src0->ne[2];
  12839. const int64_t r1 = src0->ne[3];
  12840. const bool ne2_broadcasted = qq > q1;
  12841. const bool ne3_broadcasted = rr > r1;
  12842. if (ne2_broadcasted || ne3_broadcasted) {
  12843. // sum broadcast repetitions of s1_tg into shape of src0
  12844. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12845. }
  12846. src0->grad =
  12847. ggml_add_or_set(ctx,
  12848. src0->grad, // [n,m,q1,r1]
  12849. s1_tg, // [n,m,q1,r1]
  12850. zero_table);
  12851. }
  12852. if (src1->grad) {
  12853. src1->grad =
  12854. ggml_add_or_set(ctx,
  12855. src1->grad, // [n,p,qq,rr]
  12856. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12857. // ggml_cont(ctx, // [m,n,q1,r1]
  12858. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12859. // tensor->grad), // [m,p,qq,rr]
  12860. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12861. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12862. // // and then use ggml_out_prod
  12863. ggml_out_prod(ctx, // [n,p,qq,rr]
  12864. src0, // [n,m,q1,r1]
  12865. ggml_transpose(ctx, // [p,m,qq,rr]
  12866. tensor->grad)), // [m,p,qq,rr]
  12867. zero_table);
  12868. }
  12869. } break;
  12870. case GGML_OP_MUL_MAT_ID:
  12871. {
  12872. GGML_ASSERT(false); // TODO: not implemented
  12873. } break;
  12874. case GGML_OP_OUT_PROD:
  12875. {
  12876. GGML_ASSERT(false); // TODO: not implemented
  12877. } break;
  12878. case GGML_OP_SCALE:
  12879. {
  12880. // necessary for llama
  12881. if (src0->grad) {
  12882. float s;
  12883. memcpy(&s, tensor->op_params, sizeof(float));
  12884. src0->grad =
  12885. ggml_add_or_set(ctx,
  12886. src0->grad,
  12887. ggml_scale_impl(ctx, tensor->grad, s, false),
  12888. zero_table);
  12889. }
  12890. } break;
  12891. case GGML_OP_SET:
  12892. {
  12893. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12894. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12895. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12896. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12897. struct ggml_tensor * tensor_grad_view = NULL;
  12898. if (src0->grad || src1->grad) {
  12899. GGML_ASSERT(src0->type == tensor->type);
  12900. GGML_ASSERT(tensor->grad->type == tensor->type);
  12901. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12902. tensor_grad_view = ggml_view_4d(ctx,
  12903. tensor->grad,
  12904. src1->grad->ne[0],
  12905. src1->grad->ne[1],
  12906. src1->grad->ne[2],
  12907. src1->grad->ne[3],
  12908. nb1, nb2, nb3, offset);
  12909. }
  12910. if (src0->grad) {
  12911. src0->grad = ggml_add_or_set(ctx,
  12912. src0->grad,
  12913. ggml_acc_impl(ctx,
  12914. tensor->grad,
  12915. ggml_neg(ctx, tensor_grad_view),
  12916. nb1, nb2, nb3, offset, false),
  12917. zero_table);
  12918. }
  12919. if (src1->grad) {
  12920. src1->grad =
  12921. ggml_add_or_set(ctx,
  12922. src1->grad,
  12923. ggml_reshape(ctx,
  12924. ggml_cont(ctx, tensor_grad_view),
  12925. src1->grad),
  12926. zero_table);
  12927. }
  12928. } break;
  12929. case GGML_OP_CPY:
  12930. {
  12931. // necessary for llama
  12932. // cpy overwrites value of src1 by src0 and returns view(src1)
  12933. // the overwriting is mathematically equivalent to:
  12934. // tensor = src0 * 1 + src1 * 0
  12935. if (src0->grad) {
  12936. // dsrc0 = dtensor * 1
  12937. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12938. }
  12939. if (src1->grad) {
  12940. // dsrc1 = dtensor * 0 -> noop
  12941. }
  12942. } break;
  12943. case GGML_OP_CONT:
  12944. {
  12945. // same as cpy
  12946. if (src0->grad) {
  12947. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12948. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12949. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12950. }
  12951. } break;
  12952. case GGML_OP_RESHAPE:
  12953. {
  12954. // necessary for llama
  12955. if (src0->grad) {
  12956. src0->grad =
  12957. ggml_add_or_set(ctx, src0->grad,
  12958. ggml_reshape(ctx,
  12959. ggml_is_contiguous(tensor->grad)
  12960. ? tensor->grad
  12961. : ggml_cont(ctx, tensor->grad),
  12962. src0->grad),
  12963. zero_table);
  12964. }
  12965. } break;
  12966. case GGML_OP_VIEW:
  12967. {
  12968. // necessary for llama
  12969. if (src0->grad) {
  12970. size_t offset;
  12971. memcpy(&offset, tensor->op_params, sizeof(offset));
  12972. size_t nb1 = tensor->nb[1];
  12973. size_t nb2 = tensor->nb[2];
  12974. size_t nb3 = tensor->nb[3];
  12975. if (src0->type != src0->grad->type) {
  12976. // gradient is typically F32, but src0 could be other type
  12977. size_t ng = ggml_element_size(src0->grad);
  12978. size_t n0 = ggml_element_size(src0);
  12979. GGML_ASSERT(offset % n0 == 0);
  12980. GGML_ASSERT(nb1 % n0 == 0);
  12981. GGML_ASSERT(nb2 % n0 == 0);
  12982. GGML_ASSERT(nb3 % n0 == 0);
  12983. offset = (offset / n0) * ng;
  12984. nb1 = (nb1 / n0) * ng;
  12985. nb2 = (nb2 / n0) * ng;
  12986. nb3 = (nb3 / n0) * ng;
  12987. }
  12988. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12989. }
  12990. } break;
  12991. case GGML_OP_PERMUTE:
  12992. {
  12993. // necessary for llama
  12994. if (src0->grad) {
  12995. int32_t * axes = (int32_t *) tensor->op_params;
  12996. int axis0 = axes[0] & 0x3;
  12997. int axis1 = axes[1] & 0x3;
  12998. int axis2 = axes[2] & 0x3;
  12999. int axis3 = axes[3] & 0x3;
  13000. int axes_backward[4] = {0,0,0,0};
  13001. axes_backward[axis0] = 0;
  13002. axes_backward[axis1] = 1;
  13003. axes_backward[axis2] = 2;
  13004. axes_backward[axis3] = 3;
  13005. src0->grad =
  13006. ggml_add_or_set(ctx, src0->grad,
  13007. ggml_permute(ctx,
  13008. tensor->grad,
  13009. axes_backward[0],
  13010. axes_backward[1],
  13011. axes_backward[2],
  13012. axes_backward[3]),
  13013. zero_table);
  13014. }
  13015. } break;
  13016. case GGML_OP_TRANSPOSE:
  13017. {
  13018. // necessary for llama
  13019. if (src0->grad) {
  13020. src0->grad =
  13021. ggml_add_or_set(ctx, src0->grad,
  13022. ggml_transpose(ctx, tensor->grad),
  13023. zero_table);
  13024. }
  13025. } break;
  13026. case GGML_OP_GET_ROWS:
  13027. {
  13028. // necessary for llama (only for tokenizer)
  13029. if (src0->grad) {
  13030. src0->grad =
  13031. ggml_add_or_set(ctx, src0->grad,
  13032. // last ggml_get_rows_back argument src0->grad is only
  13033. // necessary to setup correct output shape
  13034. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13035. zero_table);
  13036. }
  13037. if (src1->grad) {
  13038. // noop
  13039. }
  13040. } break;
  13041. case GGML_OP_GET_ROWS_BACK:
  13042. {
  13043. GGML_ASSERT(false); // TODO: not implemented
  13044. } break;
  13045. case GGML_OP_DIAG:
  13046. {
  13047. GGML_ASSERT(false); // TODO: not implemented
  13048. } break;
  13049. case GGML_OP_DIAG_MASK_INF:
  13050. {
  13051. // necessary for llama
  13052. if (src0->grad) {
  13053. const int n_past = ((int32_t *) tensor->op_params)[0];
  13054. src0->grad =
  13055. ggml_add_or_set(ctx, src0->grad,
  13056. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13057. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13058. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13059. zero_table);
  13060. }
  13061. } break;
  13062. case GGML_OP_DIAG_MASK_ZERO:
  13063. {
  13064. // necessary for llama
  13065. if (src0->grad) {
  13066. const int n_past = ((int32_t *) tensor->op_params)[0];
  13067. src0->grad =
  13068. ggml_add_or_set(ctx, src0->grad,
  13069. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13070. zero_table);
  13071. }
  13072. } break;
  13073. case GGML_OP_SOFT_MAX:
  13074. {
  13075. // necessary for llama
  13076. if (src0->grad) {
  13077. src0->grad =
  13078. ggml_add_or_set(ctx, src0->grad,
  13079. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13080. zero_table);
  13081. }
  13082. } break;
  13083. case GGML_OP_SOFT_MAX_BACK:
  13084. {
  13085. GGML_ASSERT(false); // TODO: not implemented
  13086. } break;
  13087. case GGML_OP_ROPE:
  13088. {
  13089. // necessary for llama
  13090. if (src0->grad) {
  13091. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13092. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13093. const int mode = ((int32_t *) tensor->op_params)[2];
  13094. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13095. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13096. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13097. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13098. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13099. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13100. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13101. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13102. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13103. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13104. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13105. src0->grad = ggml_add_or_set(ctx,
  13106. src0->grad,
  13107. ggml_rope_back(ctx,
  13108. tensor->grad,
  13109. src1,
  13110. n_dims,
  13111. mode,
  13112. n_ctx,
  13113. n_orig_ctx,
  13114. freq_base,
  13115. freq_scale,
  13116. ext_factor,
  13117. attn_factor,
  13118. beta_fast,
  13119. beta_slow,
  13120. xpos_base,
  13121. xpos_down),
  13122. zero_table);
  13123. }
  13124. } break;
  13125. case GGML_OP_ROPE_BACK:
  13126. {
  13127. if (src0->grad) {
  13128. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13129. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13130. const int mode = ((int32_t *) tensor->op_params)[2];
  13131. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13132. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13133. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13134. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13135. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13136. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13137. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13138. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13139. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13140. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13141. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13142. src0->grad = ggml_add_or_set(ctx,
  13143. src0->grad,
  13144. ggml_rope_impl(ctx,
  13145. tensor->grad,
  13146. src1,
  13147. n_dims,
  13148. mode,
  13149. n_ctx,
  13150. n_orig_ctx,
  13151. freq_base,
  13152. freq_scale,
  13153. ext_factor,
  13154. attn_factor,
  13155. beta_fast,
  13156. beta_slow,
  13157. xpos_base,
  13158. xpos_down,
  13159. false),
  13160. zero_table);
  13161. }
  13162. } break;
  13163. case GGML_OP_ALIBI:
  13164. {
  13165. GGML_ASSERT(false); // TODO: not implemented
  13166. } break;
  13167. case GGML_OP_CLAMP:
  13168. {
  13169. GGML_ASSERT(false); // TODO: not implemented
  13170. } break;
  13171. case GGML_OP_CONV_TRANSPOSE_1D:
  13172. {
  13173. GGML_ASSERT(false); // TODO: not implemented
  13174. } break;
  13175. case GGML_OP_IM2COL:
  13176. {
  13177. GGML_ASSERT(false); // TODO: not implemented
  13178. } break;
  13179. case GGML_OP_CONV_TRANSPOSE_2D:
  13180. {
  13181. GGML_ASSERT(false); // TODO: not implemented
  13182. } break;
  13183. case GGML_OP_POOL_1D:
  13184. {
  13185. GGML_ASSERT(false); // TODO: not implemented
  13186. } break;
  13187. case GGML_OP_POOL_2D:
  13188. {
  13189. GGML_ASSERT(false); // TODO: not implemented
  13190. } break;
  13191. case GGML_OP_UPSCALE:
  13192. {
  13193. GGML_ASSERT(false); // TODO: not implemented
  13194. } break;
  13195. case GGML_OP_PAD:
  13196. {
  13197. GGML_ASSERT(false); // TODO: not implemented
  13198. } break;
  13199. case GGML_OP_ARGSORT:
  13200. {
  13201. GGML_ASSERT(false); // TODO: not implemented
  13202. } break;
  13203. case GGML_OP_LEAKY_RELU:
  13204. {
  13205. GGML_ASSERT(false); // TODO: not implemented
  13206. } break;
  13207. case GGML_OP_FLASH_ATTN:
  13208. {
  13209. struct ggml_tensor * flash_grad = NULL;
  13210. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13211. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13212. GGML_ASSERT(t == 0 || t == 1);
  13213. bool masked = t != 0;
  13214. flash_grad =
  13215. ggml_flash_attn_back(ctx,
  13216. src0,
  13217. src1,
  13218. tensor->src[2],
  13219. tensor->grad,
  13220. masked);
  13221. }
  13222. struct ggml_tensor * src2 = tensor->src[2];
  13223. const int64_t elem_q = ggml_nelements(src0);
  13224. const int64_t elem_k = ggml_nelements(src1);
  13225. const int64_t elem_v = ggml_nelements(src2);
  13226. enum ggml_type result_type = flash_grad->type;
  13227. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13228. const size_t tsize = ggml_type_size(result_type);
  13229. const size_t offs_q = 0;
  13230. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13231. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13232. if (src0->grad) {
  13233. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13234. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13235. src0->grad = ggml_add_or_set(ctx,
  13236. src0->grad,
  13237. grad_q,
  13238. zero_table);
  13239. }
  13240. if (src1->grad) {
  13241. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13242. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13243. src1->grad = ggml_add_or_set(ctx,
  13244. src1->grad,
  13245. grad_k,
  13246. zero_table);
  13247. }
  13248. if (src2->grad) {
  13249. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13250. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13251. src2->grad = ggml_add_or_set(ctx,
  13252. src2->grad,
  13253. grad_v,
  13254. zero_table);
  13255. }
  13256. } break;
  13257. case GGML_OP_FLASH_FF:
  13258. {
  13259. GGML_ASSERT(false); // not supported
  13260. } break;
  13261. case GGML_OP_FLASH_ATTN_BACK:
  13262. {
  13263. GGML_ASSERT(false); // not supported
  13264. } break;
  13265. case GGML_OP_WIN_PART:
  13266. case GGML_OP_WIN_UNPART:
  13267. case GGML_OP_UNARY:
  13268. {
  13269. switch (ggml_get_unary_op(tensor)) {
  13270. case GGML_UNARY_OP_ABS:
  13271. {
  13272. if (src0->grad) {
  13273. src0->grad =
  13274. ggml_add_or_set(ctx,
  13275. src0->grad,
  13276. ggml_mul(ctx,
  13277. ggml_sgn(ctx, src0),
  13278. tensor->grad),
  13279. zero_table);
  13280. }
  13281. } break;
  13282. case GGML_UNARY_OP_SGN:
  13283. {
  13284. if (src0->grad) {
  13285. // noop
  13286. }
  13287. } break;
  13288. case GGML_UNARY_OP_NEG:
  13289. {
  13290. if (src0->grad) {
  13291. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13292. }
  13293. } break;
  13294. case GGML_UNARY_OP_STEP:
  13295. {
  13296. if (src0->grad) {
  13297. // noop
  13298. }
  13299. } break;
  13300. case GGML_UNARY_OP_TANH:
  13301. {
  13302. GGML_ASSERT(false); // TODO: not implemented
  13303. } break;
  13304. case GGML_UNARY_OP_ELU:
  13305. {
  13306. GGML_ASSERT(false); // TODO: not implemented
  13307. } break;
  13308. case GGML_UNARY_OP_RELU:
  13309. {
  13310. if (src0->grad) {
  13311. src0->grad = ggml_add_or_set(ctx,
  13312. src0->grad,
  13313. ggml_mul(ctx,
  13314. ggml_step(ctx, src0),
  13315. tensor->grad),
  13316. zero_table);
  13317. }
  13318. } break;
  13319. case GGML_UNARY_OP_GELU:
  13320. {
  13321. GGML_ASSERT(false); // TODO: not implemented
  13322. } break;
  13323. case GGML_UNARY_OP_GELU_QUICK:
  13324. {
  13325. GGML_ASSERT(false); // TODO: not implemented
  13326. } break;
  13327. case GGML_UNARY_OP_SILU:
  13328. {
  13329. // necessary for llama
  13330. if (src0->grad) {
  13331. src0->grad = ggml_add_or_set(ctx,
  13332. src0->grad,
  13333. ggml_silu_back(ctx, src0, tensor->grad),
  13334. zero_table);
  13335. }
  13336. } break;
  13337. default:
  13338. GGML_ASSERT(false);
  13339. }
  13340. } break;
  13341. case GGML_OP_GET_REL_POS:
  13342. case GGML_OP_ADD_REL_POS:
  13343. case GGML_OP_MAP_UNARY:
  13344. case GGML_OP_MAP_BINARY:
  13345. case GGML_OP_MAP_CUSTOM1_F32:
  13346. case GGML_OP_MAP_CUSTOM2_F32:
  13347. case GGML_OP_MAP_CUSTOM3_F32:
  13348. case GGML_OP_MAP_CUSTOM1:
  13349. case GGML_OP_MAP_CUSTOM2:
  13350. case GGML_OP_MAP_CUSTOM3:
  13351. {
  13352. GGML_ASSERT(false); // not supported
  13353. } break;
  13354. case GGML_OP_CROSS_ENTROPY_LOSS:
  13355. {
  13356. if (src0->grad) {
  13357. src0->grad = ggml_add_or_set(ctx,
  13358. src0->grad,
  13359. ggml_cross_entropy_loss_back(ctx,
  13360. src0,
  13361. src1,
  13362. tensor->grad),
  13363. zero_table);
  13364. }
  13365. } break;
  13366. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13367. {
  13368. GGML_ASSERT(false); // not supported
  13369. } break;
  13370. case GGML_OP_NONE:
  13371. {
  13372. // nop
  13373. } break;
  13374. case GGML_OP_COUNT:
  13375. {
  13376. GGML_ASSERT(false);
  13377. } break;
  13378. }
  13379. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13380. if (tensor->src[i] && tensor->src[i]->grad) {
  13381. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13382. }
  13383. }
  13384. }
  13385. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13386. if (node->grad == NULL) {
  13387. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13388. // it can also happen during forward pass, if the user performs computations with constants
  13389. if (node->op != GGML_OP_NONE) {
  13390. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13391. }
  13392. }
  13393. // check if already visited
  13394. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13395. return;
  13396. }
  13397. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13398. const int k =
  13399. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13400. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13401. /* unknown order, just fall back to using i*/ i;
  13402. if (node->src[k]) {
  13403. ggml_visit_parents(cgraph, node->src[k]);
  13404. }
  13405. }
  13406. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13407. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13408. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13409. if (strlen(node->name) == 0) {
  13410. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13411. }
  13412. cgraph->leafs[cgraph->n_leafs] = node;
  13413. cgraph->n_leafs++;
  13414. } else {
  13415. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13416. if (strlen(node->name) == 0) {
  13417. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13418. }
  13419. cgraph->nodes[cgraph->n_nodes] = node;
  13420. if (cgraph->grads) {
  13421. cgraph->grads[cgraph->n_nodes] = node->grad;
  13422. }
  13423. cgraph->n_nodes++;
  13424. }
  13425. }
  13426. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13427. if (!expand) {
  13428. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13429. ggml_graph_clear(cgraph);
  13430. }
  13431. const int n0 = cgraph->n_nodes;
  13432. UNUSED(n0);
  13433. ggml_visit_parents(cgraph, tensor);
  13434. const int n_new = cgraph->n_nodes - n0;
  13435. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13436. if (n_new > 0) {
  13437. // the last added node should always be starting point
  13438. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13439. }
  13440. }
  13441. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13442. ggml_build_forward_impl(cgraph, tensor, true);
  13443. }
  13444. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13445. GGML_ASSERT(gf->n_nodes > 0);
  13446. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13447. if (keep) {
  13448. for (int i = 0; i < gf->n_nodes; i++) {
  13449. struct ggml_tensor * node = gf->nodes[i];
  13450. if (node->grad) {
  13451. node->grad = ggml_dup_tensor(ctx, node);
  13452. gf->grads[i] = node->grad;
  13453. }
  13454. }
  13455. }
  13456. // remember original gradients which start with zero values
  13457. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13458. for (int i = 0; i < gf->n_nodes; i++) {
  13459. if (gf->grads[i]) {
  13460. ggml_hash_insert(zero_table, gf->grads[i]);
  13461. }
  13462. }
  13463. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13464. struct ggml_tensor * node = gf->nodes[i];
  13465. // inplace operations to add gradients are not created by ggml_compute_backward
  13466. // use allocator to automatically make inplace operations
  13467. if (node->grad) {
  13468. ggml_compute_backward(ctx, node, zero_table);
  13469. }
  13470. }
  13471. for (int i = 0; i < gf->n_nodes; i++) {
  13472. struct ggml_tensor * node = gf->nodes[i];
  13473. if (node->is_param) {
  13474. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13475. ggml_build_forward_expand(gb, node->grad);
  13476. }
  13477. }
  13478. ggml_hash_set_free(zero_table);
  13479. }
  13480. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13481. size_t nbytes = sizeof(struct ggml_cgraph);
  13482. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13483. if (grads) {
  13484. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13485. }
  13486. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13487. return nbytes;
  13488. }
  13489. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13490. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13491. }
  13492. size_t ggml_graph_overhead(void) {
  13493. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13494. }
  13495. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13496. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13497. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13498. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13499. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13500. size_t hash_size = ggml_hash_size(size * 2);
  13501. struct ggml_tensor ** nodes_ptr = data_start;
  13502. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13503. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13504. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13505. // check that we allocated the correct amount of memory
  13506. assert(obj_size == (size_t) (
  13507. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13508. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13509. *cgraph = (struct ggml_cgraph) {
  13510. /*.size =*/ size,
  13511. /*.n_nodes =*/ 0,
  13512. /*.n_leafs =*/ 0,
  13513. /*.nodes =*/ nodes_ptr,
  13514. /*.grads =*/ grads_ptr,
  13515. /*.leafs =*/ leafs_ptr,
  13516. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13517. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13518. /*.perf_runs =*/ 0,
  13519. /*.perf_cycles =*/ 0,
  13520. /*.perf_time_us =*/ 0,
  13521. };
  13522. return cgraph;
  13523. }
  13524. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13525. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13526. }
  13527. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13528. struct ggml_cgraph cgraph = {
  13529. /*.size =*/ 0,
  13530. /*.n_nodes =*/ i1 - i0,
  13531. /*.n_leafs =*/ 0,
  13532. /*.nodes =*/ cgraph0->nodes + i0,
  13533. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13534. /*.leafs =*/ NULL,
  13535. /*.hash_table =*/ { 0, NULL },
  13536. /*.order =*/ cgraph0->order,
  13537. /*.perf_runs =*/ 0,
  13538. /*.perf_cycles =*/ 0,
  13539. /*.perf_time_us =*/ 0,
  13540. };
  13541. return cgraph;
  13542. }
  13543. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13544. GGML_ASSERT(dst->size >= src->n_leafs);
  13545. GGML_ASSERT(dst->size >= src->n_nodes);
  13546. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13547. dst->n_leafs = src->n_leafs;
  13548. dst->n_nodes = src->n_nodes;
  13549. dst->order = src->order;
  13550. for (int i = 0; i < src->n_leafs; ++i) {
  13551. dst->leafs[i] = src->leafs[i];
  13552. }
  13553. for (int i = 0; i < src->n_nodes; ++i) {
  13554. dst->nodes[i] = src->nodes[i];
  13555. }
  13556. if (src->grads) {
  13557. GGML_ASSERT(dst->grads != NULL);
  13558. for (int i = 0; i < src->n_nodes; ++i) {
  13559. dst->grads[i] = src->grads[i];
  13560. }
  13561. }
  13562. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13563. if (src->visited_hash_table.keys[i]) {
  13564. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13565. }
  13566. }
  13567. }
  13568. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13569. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13570. ggml_graph_cpy(cgraph, result);
  13571. return result;
  13572. }
  13573. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13574. GGML_ASSERT(cgraph->grads != NULL);
  13575. for (int i = 0; i < cgraph->n_nodes; i++) {
  13576. struct ggml_tensor * grad = cgraph->grads[i];
  13577. if (grad) {
  13578. ggml_set_zero(grad);
  13579. }
  13580. }
  13581. }
  13582. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13583. cgraph->n_leafs = 0;
  13584. cgraph->n_nodes = 0;
  13585. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13586. }
  13587. //
  13588. // thread data
  13589. //
  13590. // synchronization is done via busy loops
  13591. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13592. //
  13593. #ifdef __APPLE__
  13594. //#include <os/lock.h>
  13595. //
  13596. //typedef os_unfair_lock ggml_lock_t;
  13597. //
  13598. //#define ggml_lock_init(x) UNUSED(x)
  13599. //#define ggml_lock_destroy(x) UNUSED(x)
  13600. //#define ggml_lock_lock os_unfair_lock_lock
  13601. //#define ggml_lock_unlock os_unfair_lock_unlock
  13602. //
  13603. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13604. typedef int ggml_lock_t;
  13605. #define ggml_lock_init(x) UNUSED(x)
  13606. #define ggml_lock_destroy(x) UNUSED(x)
  13607. #define ggml_lock_lock(x) UNUSED(x)
  13608. #define ggml_lock_unlock(x) UNUSED(x)
  13609. #define GGML_LOCK_INITIALIZER 0
  13610. typedef pthread_t ggml_thread_t;
  13611. #define ggml_thread_create pthread_create
  13612. #define ggml_thread_join pthread_join
  13613. #else
  13614. //typedef pthread_spinlock_t ggml_lock_t;
  13615. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13616. //#define ggml_lock_destroy pthread_spin_destroy
  13617. //#define ggml_lock_lock pthread_spin_lock
  13618. //#define ggml_lock_unlock pthread_spin_unlock
  13619. typedef int ggml_lock_t;
  13620. #define ggml_lock_init(x) UNUSED(x)
  13621. #define ggml_lock_destroy(x) UNUSED(x)
  13622. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13623. #define ggml_lock_lock(x) _mm_pause()
  13624. #else
  13625. #define ggml_lock_lock(x) UNUSED(x)
  13626. #endif
  13627. #define ggml_lock_unlock(x) UNUSED(x)
  13628. #define GGML_LOCK_INITIALIZER 0
  13629. typedef pthread_t ggml_thread_t;
  13630. #define ggml_thread_create pthread_create
  13631. #define ggml_thread_join pthread_join
  13632. #endif
  13633. // Android's libc implementation "bionic" does not support setting affinity
  13634. #if defined(__linux__) && !defined(__BIONIC__)
  13635. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13636. if (!ggml_is_numa()) {
  13637. return;
  13638. }
  13639. // run thread on node_num thread_n / (threads per node)
  13640. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13641. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13642. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13643. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13644. CPU_ZERO_S(setsize, cpus);
  13645. for (size_t i = 0; i < node->n_cpus; ++i) {
  13646. CPU_SET_S(node->cpus[i], setsize, cpus);
  13647. }
  13648. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13649. if (rv) {
  13650. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13651. strerror(rv));
  13652. }
  13653. CPU_FREE(cpus);
  13654. }
  13655. static void clear_numa_thread_affinity(void) {
  13656. if (!ggml_is_numa()) {
  13657. return;
  13658. }
  13659. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13660. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13661. CPU_ZERO_S(setsize, cpus);
  13662. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13663. CPU_SET_S(i, setsize, cpus);
  13664. }
  13665. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13666. if (rv) {
  13667. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13668. strerror(rv));
  13669. }
  13670. CPU_FREE(cpus);
  13671. }
  13672. #else
  13673. // TODO: Windows etc.
  13674. // (the linux implementation may also work on BSD, someone should test)
  13675. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13676. static void clear_numa_thread_affinity(void) {}
  13677. #endif
  13678. struct ggml_compute_state_shared {
  13679. const struct ggml_cgraph * cgraph;
  13680. const struct ggml_cplan * cplan;
  13681. int64_t perf_node_start_cycles;
  13682. int64_t perf_node_start_time_us;
  13683. const int n_threads;
  13684. // synchronization primitives
  13685. atomic_int n_active; // num active threads
  13686. atomic_int node_n; // active graph node
  13687. atomic_int node_task; // active graph node task phase
  13688. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13689. void * abort_callback_data;
  13690. };
  13691. struct ggml_compute_state {
  13692. ggml_thread_t thrd;
  13693. int ith;
  13694. struct ggml_compute_state_shared * shared;
  13695. };
  13696. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13697. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13698. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13699. node->perf_runs++;
  13700. node->perf_cycles += cycles_cur;
  13701. node->perf_time_us += time_us_cur;
  13702. }
  13703. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13704. int n_tasks = 0;
  13705. switch (node->op) {
  13706. case GGML_OP_CPY:
  13707. case GGML_OP_DUP:
  13708. case GGML_OP_ADD:
  13709. case GGML_OP_ADD1:
  13710. case GGML_OP_ACC:
  13711. {
  13712. n_tasks = n_threads;
  13713. } break;
  13714. case GGML_OP_SUB:
  13715. case GGML_OP_SQR:
  13716. case GGML_OP_SQRT:
  13717. case GGML_OP_LOG:
  13718. case GGML_OP_SUM:
  13719. case GGML_OP_SUM_ROWS:
  13720. case GGML_OP_MEAN:
  13721. case GGML_OP_ARGMAX:
  13722. case GGML_OP_REPEAT:
  13723. case GGML_OP_REPEAT_BACK:
  13724. case GGML_OP_LEAKY_RELU:
  13725. {
  13726. n_tasks = 1;
  13727. } break;
  13728. case GGML_OP_UNARY:
  13729. switch (ggml_get_unary_op(node)) {
  13730. case GGML_UNARY_OP_ABS:
  13731. case GGML_UNARY_OP_SGN:
  13732. case GGML_UNARY_OP_NEG:
  13733. case GGML_UNARY_OP_STEP:
  13734. case GGML_UNARY_OP_TANH:
  13735. case GGML_UNARY_OP_ELU:
  13736. case GGML_UNARY_OP_RELU:
  13737. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13738. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13739. {
  13740. n_tasks = 1;
  13741. } break;
  13742. case GGML_UNARY_OP_GELU:
  13743. case GGML_UNARY_OP_GELU_QUICK:
  13744. case GGML_UNARY_OP_SILU:
  13745. {
  13746. n_tasks = n_threads;
  13747. } break;
  13748. default:
  13749. GGML_ASSERT(false);
  13750. }
  13751. break;
  13752. case GGML_OP_SILU_BACK:
  13753. case GGML_OP_MUL:
  13754. case GGML_OP_DIV:
  13755. case GGML_OP_NORM:
  13756. case GGML_OP_RMS_NORM:
  13757. case GGML_OP_RMS_NORM_BACK:
  13758. case GGML_OP_GROUP_NORM:
  13759. case GGML_OP_CONCAT:
  13760. {
  13761. n_tasks = n_threads;
  13762. } break;
  13763. case GGML_OP_MUL_MAT:
  13764. {
  13765. n_tasks = n_threads;
  13766. // TODO: use different scheduling for different matrix sizes
  13767. //const int nr0 = ggml_nrows(node->src[0]);
  13768. //const int nr1 = ggml_nrows(node->src[1]);
  13769. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13770. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13771. } break;
  13772. case GGML_OP_MUL_MAT_ID:
  13773. {
  13774. n_tasks = n_threads;
  13775. } break;
  13776. case GGML_OP_OUT_PROD:
  13777. {
  13778. n_tasks = n_threads;
  13779. } break;
  13780. case GGML_OP_SCALE:
  13781. case GGML_OP_SET:
  13782. case GGML_OP_CONT:
  13783. case GGML_OP_RESHAPE:
  13784. case GGML_OP_VIEW:
  13785. case GGML_OP_PERMUTE:
  13786. case GGML_OP_TRANSPOSE:
  13787. case GGML_OP_GET_ROWS:
  13788. case GGML_OP_GET_ROWS_BACK:
  13789. case GGML_OP_DIAG:
  13790. {
  13791. n_tasks = 1;
  13792. } break;
  13793. case GGML_OP_DIAG_MASK_ZERO:
  13794. case GGML_OP_DIAG_MASK_INF:
  13795. case GGML_OP_SOFT_MAX_BACK:
  13796. case GGML_OP_ROPE:
  13797. case GGML_OP_ROPE_BACK:
  13798. case GGML_OP_ADD_REL_POS:
  13799. {
  13800. n_tasks = n_threads;
  13801. } break;
  13802. case GGML_OP_ALIBI:
  13803. {
  13804. n_tasks = 1; //TODO
  13805. } break;
  13806. case GGML_OP_CLAMP:
  13807. {
  13808. n_tasks = 1; //TODO
  13809. } break;
  13810. case GGML_OP_SOFT_MAX:
  13811. {
  13812. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13813. } break;
  13814. case GGML_OP_CONV_TRANSPOSE_1D:
  13815. {
  13816. n_tasks = n_threads;
  13817. } break;
  13818. case GGML_OP_IM2COL:
  13819. {
  13820. n_tasks = n_threads;
  13821. } break;
  13822. case GGML_OP_CONV_TRANSPOSE_2D:
  13823. {
  13824. n_tasks = n_threads;
  13825. } break;
  13826. case GGML_OP_POOL_1D:
  13827. case GGML_OP_POOL_2D:
  13828. {
  13829. n_tasks = 1;
  13830. } break;
  13831. case GGML_OP_UPSCALE:
  13832. {
  13833. n_tasks = n_threads;
  13834. } break;
  13835. case GGML_OP_PAD:
  13836. {
  13837. n_tasks = n_threads;
  13838. } break;
  13839. case GGML_OP_ARGSORT:
  13840. {
  13841. n_tasks = n_threads;
  13842. } break;
  13843. case GGML_OP_FLASH_ATTN:
  13844. {
  13845. n_tasks = n_threads;
  13846. } break;
  13847. case GGML_OP_FLASH_FF:
  13848. {
  13849. n_tasks = n_threads;
  13850. } break;
  13851. case GGML_OP_FLASH_ATTN_BACK:
  13852. {
  13853. n_tasks = n_threads;
  13854. } break;
  13855. case GGML_OP_WIN_PART:
  13856. case GGML_OP_WIN_UNPART:
  13857. case GGML_OP_GET_REL_POS:
  13858. case GGML_OP_MAP_UNARY:
  13859. case GGML_OP_MAP_BINARY:
  13860. case GGML_OP_MAP_CUSTOM1_F32:
  13861. case GGML_OP_MAP_CUSTOM2_F32:
  13862. case GGML_OP_MAP_CUSTOM3_F32:
  13863. {
  13864. n_tasks = 1;
  13865. } break;
  13866. case GGML_OP_MAP_CUSTOM1:
  13867. {
  13868. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13869. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13870. n_tasks = n_threads;
  13871. } else {
  13872. n_tasks = MIN(p->n_tasks, n_threads);
  13873. }
  13874. } break;
  13875. case GGML_OP_MAP_CUSTOM2:
  13876. {
  13877. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13878. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13879. n_tasks = n_threads;
  13880. } else {
  13881. n_tasks = MIN(p->n_tasks, n_threads);
  13882. }
  13883. } break;
  13884. case GGML_OP_MAP_CUSTOM3:
  13885. {
  13886. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13887. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13888. n_tasks = n_threads;
  13889. } else {
  13890. n_tasks = MIN(p->n_tasks, n_threads);
  13891. }
  13892. } break;
  13893. case GGML_OP_CROSS_ENTROPY_LOSS:
  13894. {
  13895. n_tasks = n_threads;
  13896. } break;
  13897. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13898. {
  13899. n_tasks = n_threads;
  13900. } break;
  13901. case GGML_OP_NONE:
  13902. {
  13903. n_tasks = 1;
  13904. } break;
  13905. case GGML_OP_COUNT:
  13906. {
  13907. GGML_ASSERT(false);
  13908. } break;
  13909. default:
  13910. {
  13911. fprintf(stderr, "%s: op not implemented: ", __func__);
  13912. if (node->op < GGML_OP_COUNT) {
  13913. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13914. } else {
  13915. fprintf(stderr, "%d\n", node->op);
  13916. }
  13917. GGML_ASSERT(false);
  13918. } break;
  13919. }
  13920. assert(n_tasks > 0);
  13921. return n_tasks;
  13922. }
  13923. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  13924. // wait for other threads to finish
  13925. const int last_node_n = * node_n;
  13926. while (true) {
  13927. if (do_yield) {
  13928. sched_yield();
  13929. }
  13930. * node_n = atomic_load(&state->shared->node_n);
  13931. if (* node_n != last_node_n) break;
  13932. }
  13933. }
  13934. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  13935. // wait for other threads to finish
  13936. const int last_task_phase = * task_phase;
  13937. while (true) {
  13938. if (do_yield) {
  13939. sched_yield();
  13940. }
  13941. * task_phase = atomic_load(&state->shared->node_task);
  13942. if (* task_phase != last_task_phase) break;
  13943. }
  13944. }
  13945. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13946. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13947. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13948. const struct ggml_cplan * cplan = state->shared->cplan;
  13949. const int n_threads = state->shared->n_threads;
  13950. set_numa_thread_affinity(state->ith, n_threads);
  13951. int node_n = -1;
  13952. int task_phase = GGML_TASK_FINALIZE;
  13953. while (true) {
  13954. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13955. state->shared->node_n += 1;
  13956. return (thread_ret_t) GGML_EXIT_ABORTED;
  13957. }
  13958. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13959. // all other threads are finished and spinning
  13960. // do finalize and init here so we don't have synchronize again
  13961. struct ggml_compute_params params = {
  13962. /*.type =*/ GGML_TASK_FINALIZE,
  13963. /*.ith =*/ 0,
  13964. /*.nth =*/ 0,
  13965. /*.wsize =*/ cplan->work_size,
  13966. /*.wdata =*/ cplan->work_data,
  13967. };
  13968. if (node_n != -1) {
  13969. /* FINALIZE */
  13970. struct ggml_tensor * node = cgraph->nodes[node_n];
  13971. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13972. params.nth = ggml_get_n_tasks(node, n_threads);
  13973. ggml_compute_forward(&params, node);
  13974. }
  13975. ggml_graph_compute_perf_stats_node(node, state->shared);
  13976. }
  13977. // distribute new work or execute it direct if 1T
  13978. while (++node_n < cgraph->n_nodes) {
  13979. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13980. struct ggml_tensor * node = cgraph->nodes[node_n];
  13981. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13982. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13983. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13984. params.nth = n_tasks;
  13985. if (n_tasks == 1) {
  13986. /* INIT */
  13987. if (GGML_OP_HAS_INIT[node->op]) {
  13988. params.type = GGML_TASK_INIT;
  13989. ggml_compute_forward(&params, node);
  13990. }
  13991. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13992. // they do something more efficient than spinning (?)
  13993. params.type = GGML_TASK_COMPUTE;
  13994. ggml_compute_forward(&params, node);
  13995. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13996. params.type = GGML_TASK_FINALIZE;
  13997. ggml_compute_forward(&params, node);
  13998. }
  13999. ggml_graph_compute_perf_stats_node(node, state->shared);
  14000. } else {
  14001. break;
  14002. }
  14003. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14004. break;
  14005. }
  14006. }
  14007. task_phase = GGML_TASK_INIT;
  14008. atomic_store(&state->shared->n_active, n_threads);
  14009. atomic_store(&state->shared->node_n, node_n);
  14010. atomic_store(&state->shared->node_task, task_phase);
  14011. } else {
  14012. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14013. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14014. }
  14015. // check if we should stop
  14016. if (node_n >= cgraph->n_nodes) break;
  14017. /* INIT & COMPUTE */
  14018. struct ggml_tensor * node = cgraph->nodes[node_n];
  14019. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14020. struct ggml_compute_params params = {
  14021. /*.type =*/ GGML_TASK_INIT,
  14022. /*.ith =*/ state->ith,
  14023. /*.nth =*/ n_tasks,
  14024. /*.wsize =*/ cplan->work_size,
  14025. /*.wdata =*/ cplan->work_data,
  14026. };
  14027. if (state->ith < n_tasks) {
  14028. if (GGML_OP_HAS_INIT[node->op]) {
  14029. ggml_compute_forward(&params, node);
  14030. }
  14031. }
  14032. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14033. task_phase = GGML_TASK_COMPUTE;
  14034. atomic_store(&state->shared->n_active, n_threads);
  14035. atomic_store(&state->shared->node_task, task_phase);
  14036. }
  14037. else {
  14038. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14039. // depending on the workload and the operating system.
  14040. // since it is not clear what is the best approach, it should potentially become user-configurable
  14041. // ref: https://github.com/ggerganov/ggml/issues/291
  14042. // UPD: adding the do_yield flag seems to resolve the issue universally
  14043. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14044. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14045. }
  14046. if (state->ith < n_tasks) {
  14047. params.type = GGML_TASK_COMPUTE;
  14048. ggml_compute_forward(&params, node);
  14049. }
  14050. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14051. task_phase = GGML_TASK_FINALIZE;
  14052. atomic_store(&state->shared->n_active, n_threads);
  14053. atomic_store(&state->shared->node_task, task_phase);
  14054. }
  14055. else {
  14056. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14057. }
  14058. }
  14059. return GGML_EXIT_SUCCESS;
  14060. }
  14061. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14062. if (n_threads <= 0) {
  14063. n_threads = GGML_DEFAULT_N_THREADS;
  14064. }
  14065. size_t work_size = 0;
  14066. struct ggml_cplan cplan;
  14067. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14068. // thread scheduling for the different operations + work buffer size estimation
  14069. for (int i = 0; i < cgraph->n_nodes; i++) {
  14070. struct ggml_tensor * node = cgraph->nodes[i];
  14071. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14072. size_t cur = 0;
  14073. switch (node->op) {
  14074. case GGML_OP_CPY:
  14075. case GGML_OP_DUP:
  14076. {
  14077. if (ggml_is_quantized(node->type)) {
  14078. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14079. }
  14080. } break;
  14081. case GGML_OP_ADD:
  14082. case GGML_OP_ADD1:
  14083. {
  14084. if (ggml_is_quantized(node->src[0]->type)) {
  14085. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14086. }
  14087. } break;
  14088. case GGML_OP_ACC:
  14089. {
  14090. if (ggml_is_quantized(node->src[0]->type)) {
  14091. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14092. }
  14093. } break;
  14094. case GGML_OP_MUL_MAT:
  14095. {
  14096. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14097. #if defined(GGML_USE_CLBLAST)
  14098. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14099. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14100. } else
  14101. #endif
  14102. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14103. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14104. if (node->src[0]->type != GGML_TYPE_F32) {
  14105. // here we need memory for fully dequantized matrix from src0
  14106. // take into account that src0 can be broadcasted into src1[2,3]
  14107. cur = ggml_type_size(GGML_TYPE_F32)
  14108. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14109. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14110. }
  14111. } else
  14112. #endif
  14113. if (node->src[1]->type != vec_dot_type) {
  14114. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14115. }
  14116. } break;
  14117. case GGML_OP_MUL_MAT_ID:
  14118. {
  14119. cur = 0;
  14120. const struct ggml_tensor * src0 = node->src[2];
  14121. const struct ggml_tensor * src1 = node->src[1];
  14122. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14123. if (src1->type != vec_dot_type) {
  14124. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14125. }
  14126. const int n_as = ggml_get_op_params_i32(node, 1);
  14127. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14128. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14129. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14130. } break;
  14131. case GGML_OP_OUT_PROD:
  14132. {
  14133. if (ggml_is_quantized(node->src[0]->type)) {
  14134. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14135. }
  14136. } break;
  14137. case GGML_OP_SOFT_MAX:
  14138. case GGML_OP_ROPE:
  14139. {
  14140. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14141. } break;
  14142. case GGML_OP_CONV_TRANSPOSE_1D:
  14143. {
  14144. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14145. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14146. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14147. const int64_t ne00 = node->src[0]->ne[0]; // K
  14148. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14149. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14150. const int64_t ne10 = node->src[1]->ne[0]; // L
  14151. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14152. if (node->src[0]->type == GGML_TYPE_F16 &&
  14153. node->src[1]->type == GGML_TYPE_F32) {
  14154. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14155. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14156. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14157. node->src[1]->type == GGML_TYPE_F32) {
  14158. cur += sizeof(float)*ne00*ne01*ne02;
  14159. cur += sizeof(float)*ne10*ne11;
  14160. } else {
  14161. GGML_ASSERT(false);
  14162. }
  14163. } break;
  14164. case GGML_OP_CONV_TRANSPOSE_2D:
  14165. {
  14166. const int64_t ne00 = node->src[0]->ne[0]; // W
  14167. const int64_t ne01 = node->src[0]->ne[1]; // H
  14168. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14169. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14170. const int64_t ne10 = node->src[1]->ne[0]; // W
  14171. const int64_t ne11 = node->src[1]->ne[1]; // H
  14172. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14173. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14174. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14175. } break;
  14176. case GGML_OP_FLASH_ATTN:
  14177. {
  14178. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14179. if (node->src[1]->type == GGML_TYPE_F32) {
  14180. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14181. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14182. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14183. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14184. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14185. }
  14186. } break;
  14187. case GGML_OP_FLASH_FF:
  14188. {
  14189. if (node->src[1]->type == GGML_TYPE_F32) {
  14190. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14191. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14192. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14193. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14194. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14195. }
  14196. } break;
  14197. case GGML_OP_FLASH_ATTN_BACK:
  14198. {
  14199. const int64_t D = node->src[0]->ne[0];
  14200. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14201. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14202. if (node->src[1]->type == GGML_TYPE_F32) {
  14203. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14204. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14205. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14206. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14207. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14208. }
  14209. } break;
  14210. case GGML_OP_CROSS_ENTROPY_LOSS:
  14211. {
  14212. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14213. } break;
  14214. case GGML_OP_COUNT:
  14215. {
  14216. GGML_ASSERT(false);
  14217. } break;
  14218. default:
  14219. break;
  14220. }
  14221. work_size = MAX(work_size, cur);
  14222. }
  14223. if (work_size > 0) {
  14224. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14225. }
  14226. cplan.n_threads = n_threads;
  14227. cplan.work_size = work_size;
  14228. cplan.work_data = NULL;
  14229. return cplan;
  14230. }
  14231. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14232. {
  14233. GGML_ASSERT(cplan);
  14234. GGML_ASSERT(cplan->n_threads > 0);
  14235. if (cplan->work_size > 0) {
  14236. GGML_ASSERT(cplan->work_data);
  14237. }
  14238. }
  14239. const int n_threads = cplan->n_threads;
  14240. struct ggml_compute_state_shared state_shared = {
  14241. /*.cgraph =*/ cgraph,
  14242. /*.cgraph_plan =*/ cplan,
  14243. /*.perf_node_start_cycles =*/ 0,
  14244. /*.perf_node_start_time_us =*/ 0,
  14245. /*.n_threads =*/ n_threads,
  14246. /*.n_active =*/ n_threads,
  14247. /*.node_n =*/ -1,
  14248. /*.node_task =*/ GGML_TASK_FINALIZE,
  14249. /*.abort_callback =*/ NULL,
  14250. /*.abort_callback_data =*/ NULL,
  14251. };
  14252. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14253. // create thread pool
  14254. if (n_threads > 1) {
  14255. for (int j = 1; j < n_threads; ++j) {
  14256. workers[j] = (struct ggml_compute_state) {
  14257. .thrd = 0,
  14258. .ith = j,
  14259. .shared = &state_shared,
  14260. };
  14261. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14262. GGML_ASSERT(rc == 0);
  14263. UNUSED(rc);
  14264. }
  14265. }
  14266. workers[0].ith = 0;
  14267. workers[0].shared = &state_shared;
  14268. const int64_t perf_start_cycles = ggml_perf_cycles();
  14269. const int64_t perf_start_time_us = ggml_perf_time_us();
  14270. // this is a work thread too
  14271. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14272. // don't leave affinity set on the main thread
  14273. clear_numa_thread_affinity();
  14274. // join or kill thread pool
  14275. if (n_threads > 1) {
  14276. for (int j = 1; j < n_threads; j++) {
  14277. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14278. GGML_ASSERT(rc == 0);
  14279. }
  14280. }
  14281. // performance stats (graph)
  14282. {
  14283. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14284. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14285. cgraph->perf_runs++;
  14286. cgraph->perf_cycles += perf_cycles_cur;
  14287. cgraph->perf_time_us += perf_time_us_cur;
  14288. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14289. __func__, cgraph->perf_runs,
  14290. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14291. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14292. (double) perf_time_us_cur / 1000.0,
  14293. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14294. }
  14295. return compute_status;
  14296. }
  14297. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14298. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14299. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14300. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14301. ggml_graph_compute(cgraph, &cplan);
  14302. }
  14303. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14304. for (int i = 0; i < cgraph->n_leafs; i++) {
  14305. struct ggml_tensor * leaf = cgraph->leafs[i];
  14306. if (strcmp(leaf->name, name) == 0) {
  14307. return leaf;
  14308. }
  14309. }
  14310. for (int i = 0; i < cgraph->n_nodes; i++) {
  14311. struct ggml_tensor * node = cgraph->nodes[i];
  14312. if (strcmp(node->name, name) == 0) {
  14313. return node;
  14314. }
  14315. }
  14316. return NULL;
  14317. }
  14318. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14319. const int64_t * ne = tensor->ne;
  14320. const size_t * nb = tensor->nb;
  14321. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14322. ggml_type_name(tensor->type),
  14323. ggml_op_name (tensor->op),
  14324. ggml_n_dims(tensor),
  14325. ne[0], ne[1], ne[2], ne[3],
  14326. nb[0], nb[1], nb[2], nb[3],
  14327. tensor->data,
  14328. tensor->name);
  14329. }
  14330. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14331. const int64_t * ne = tensor->ne;
  14332. const size_t * nb = tensor->nb;
  14333. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14334. arg,
  14335. ggml_type_name(tensor->type),
  14336. ggml_op_name (tensor->op),
  14337. ggml_n_dims(tensor),
  14338. ne[0], ne[1], ne[2], ne[3],
  14339. nb[0], nb[1], nb[2], nb[3],
  14340. tensor->data,
  14341. tensor->name);
  14342. }
  14343. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14344. uint64_t size_eval = 0;
  14345. // compute size of intermediate results
  14346. // TODO: does not take into account scratch buffers !!!!
  14347. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14348. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14349. }
  14350. // print
  14351. {
  14352. FILE * fout = stdout;
  14353. fprintf(fout, "\n");
  14354. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14355. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14356. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14357. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14358. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14359. // header
  14360. fprintf(fout, "\n");
  14361. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14362. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14363. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14364. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14365. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14366. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14367. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14368. }
  14369. // header
  14370. fprintf(fout, "\n");
  14371. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14372. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14373. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14374. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14375. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14376. if (cgraph->nodes[i]->src[j]) {
  14377. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14378. }
  14379. }
  14380. fprintf(fout, "\n");
  14381. }
  14382. fprintf(fout, "\n");
  14383. }
  14384. // write binary data
  14385. {
  14386. FILE * fout = fopen(fname, "wb");
  14387. if (!fout) {
  14388. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14389. return;
  14390. }
  14391. // header
  14392. {
  14393. const uint32_t magic = GGML_FILE_MAGIC;
  14394. const uint32_t version = GGML_FILE_VERSION;
  14395. const uint32_t n_leafs = cgraph->n_leafs;
  14396. const uint32_t n_nodes = cgraph->n_nodes;
  14397. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14398. fwrite(&version, sizeof(uint32_t), 1, fout);
  14399. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14400. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14401. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14402. }
  14403. // leafs
  14404. {
  14405. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14406. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14407. const uint32_t type = tensor->type;
  14408. const uint32_t op = tensor->op;
  14409. fwrite(&type, sizeof(uint32_t), 1, fout);
  14410. fwrite(&op, sizeof(uint32_t), 1, fout);
  14411. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14412. const uint64_t ne = tensor->ne[j];
  14413. const uint64_t nb = tensor->nb[j];
  14414. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14415. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14416. }
  14417. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14418. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14419. // dump the data
  14420. // TODO: pad this to 32 byte boundary
  14421. {
  14422. const size_t size = ggml_nbytes(tensor);
  14423. fwrite(tensor->data, sizeof(char), size, fout);
  14424. }
  14425. }
  14426. }
  14427. // nodes
  14428. {
  14429. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14430. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14431. const uint32_t type = tensor->type;
  14432. const uint32_t op = tensor->op;
  14433. fwrite(&type, sizeof(uint32_t), 1, fout);
  14434. fwrite(&op, sizeof(uint32_t), 1, fout);
  14435. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14436. const uint64_t ne = tensor->ne[j];
  14437. const uint64_t nb = tensor->nb[j];
  14438. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14439. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14440. }
  14441. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14442. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14443. // output the op arguments
  14444. {
  14445. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14446. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14447. args[j] = tensor->src[j];
  14448. }
  14449. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14450. if (args[j]) {
  14451. int32_t idx = -1;
  14452. // check if leaf
  14453. {
  14454. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14455. if (args[j] == cgraph->leafs[k]) {
  14456. idx = k;
  14457. break;
  14458. }
  14459. }
  14460. }
  14461. // check if node
  14462. if (idx == -1) {
  14463. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14464. if (args[j] == cgraph->nodes[k]) {
  14465. idx = cgraph->n_leafs + k;
  14466. break;
  14467. }
  14468. }
  14469. }
  14470. if (idx == -1) {
  14471. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14472. fclose(fout);
  14473. return;
  14474. }
  14475. fwrite(&idx, sizeof(int32_t), 1, fout);
  14476. } else {
  14477. const int32_t nul = -1;
  14478. fwrite(&nul, sizeof(int32_t), 1, fout);
  14479. }
  14480. }
  14481. }
  14482. }
  14483. }
  14484. fclose(fout);
  14485. }
  14486. }
  14487. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14488. assert(*ctx_data == NULL);
  14489. assert(*ctx_eval == NULL);
  14490. struct ggml_cgraph * result = NULL;
  14491. struct ggml_tensor * data = NULL;
  14492. // read file into data
  14493. {
  14494. FILE * fin = fopen(fname, "rb");
  14495. if (!fin) {
  14496. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14497. return result;
  14498. }
  14499. size_t fsize = 0;
  14500. fseek(fin, 0, SEEK_END);
  14501. fsize = ftell(fin);
  14502. fseek(fin, 0, SEEK_SET);
  14503. // create the data context
  14504. {
  14505. const size_t overhead = 1*ggml_tensor_overhead();
  14506. struct ggml_init_params params = {
  14507. .mem_size = fsize + overhead,
  14508. .mem_buffer = NULL,
  14509. .no_alloc = false,
  14510. };
  14511. *ctx_data = ggml_init(params);
  14512. if (!*ctx_data) {
  14513. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14514. fclose(fin);
  14515. return result;
  14516. }
  14517. }
  14518. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14519. {
  14520. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14521. if (ret != fsize) {
  14522. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14523. fclose(fin);
  14524. return result;
  14525. }
  14526. }
  14527. fclose(fin);
  14528. }
  14529. // populate result
  14530. {
  14531. char * ptr = (char *) data->data;
  14532. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14533. if (magic != GGML_FILE_MAGIC) {
  14534. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14535. return result;
  14536. }
  14537. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14538. if (version != GGML_FILE_VERSION) {
  14539. fprintf(stderr, "%s: invalid version number\n", __func__);
  14540. return result;
  14541. }
  14542. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14543. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14544. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14545. const int graph_size = MAX(n_leafs, n_nodes);
  14546. // create the data context
  14547. {
  14548. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14549. struct ggml_init_params params = {
  14550. .mem_size = size_eval + overhead,
  14551. .mem_buffer = NULL,
  14552. .no_alloc = true,
  14553. };
  14554. *ctx_eval = ggml_init(params);
  14555. if (!*ctx_eval) {
  14556. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14557. return result;
  14558. }
  14559. }
  14560. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14561. result->n_leafs = n_leafs;
  14562. result->n_nodes = n_nodes;
  14563. // leafs
  14564. {
  14565. uint32_t type;
  14566. uint32_t op;
  14567. for (uint32_t i = 0; i < n_leafs; ++i) {
  14568. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14569. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14570. int64_t ne[GGML_MAX_DIMS];
  14571. size_t nb[GGML_MAX_DIMS];
  14572. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14573. uint64_t ne_cur;
  14574. uint64_t nb_cur;
  14575. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14576. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14577. ne[j] = ne_cur;
  14578. nb[j] = nb_cur;
  14579. }
  14580. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14581. tensor->op = (enum ggml_op) op;
  14582. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14583. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14584. tensor->data = (void *) ptr;
  14585. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14586. tensor->nb[j] = nb[j];
  14587. }
  14588. result->leafs[i] = tensor;
  14589. ptr += ggml_nbytes(tensor);
  14590. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14591. }
  14592. }
  14593. ggml_set_no_alloc(*ctx_eval, false);
  14594. // nodes
  14595. {
  14596. uint32_t type;
  14597. uint32_t op;
  14598. for (uint32_t i = 0; i < n_nodes; ++i) {
  14599. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14600. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14601. enum ggml_op eop = (enum ggml_op) op;
  14602. int64_t ne[GGML_MAX_DIMS];
  14603. size_t nb[GGML_MAX_DIMS];
  14604. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14605. uint64_t ne_cur;
  14606. uint64_t nb_cur;
  14607. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14608. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14609. ne[j] = ne_cur;
  14610. nb[j] = nb_cur;
  14611. }
  14612. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14613. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14614. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14615. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14616. // parse args
  14617. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14618. const int32_t arg_idx = ptr_arg_idx[j];
  14619. if (arg_idx == -1) {
  14620. continue;
  14621. }
  14622. if (arg_idx < result->n_leafs) {
  14623. args[j] = result->leafs[arg_idx];
  14624. } else {
  14625. args[j] = result->nodes[arg_idx - result->n_leafs];
  14626. }
  14627. }
  14628. // create the tensor
  14629. // "view" operations are handled differently
  14630. // TODO: handle inplace ops - currently a copy is always made
  14631. struct ggml_tensor * tensor = NULL;
  14632. switch (eop) {
  14633. // TODO: implement other view ops
  14634. case GGML_OP_RESHAPE:
  14635. {
  14636. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14637. } break;
  14638. case GGML_OP_VIEW:
  14639. {
  14640. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14641. size_t offs;
  14642. memcpy(&offs, ptr_op_params, sizeof(offs));
  14643. tensor->data = ((char *) tensor->data) + offs;
  14644. } break;
  14645. case GGML_OP_TRANSPOSE:
  14646. {
  14647. tensor = ggml_transpose(*ctx_eval, args[0]);
  14648. } break;
  14649. case GGML_OP_PERMUTE:
  14650. {
  14651. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14652. } break;
  14653. default:
  14654. {
  14655. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14656. tensor->op = eop;
  14657. } break;
  14658. }
  14659. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14660. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14661. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14662. tensor->nb[j] = nb[j];
  14663. }
  14664. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14665. tensor->src[j] = args[j];
  14666. }
  14667. result->nodes[i] = tensor;
  14668. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14669. }
  14670. }
  14671. }
  14672. return result;
  14673. }
  14674. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14675. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14676. GGML_PRINT("=== GRAPH ===\n");
  14677. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14678. for (int i = 0; i < cgraph->n_nodes; i++) {
  14679. struct ggml_tensor * node = cgraph->nodes[i];
  14680. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14681. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14682. i,
  14683. node->ne[0], node->ne[1], node->ne[2],
  14684. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14685. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14686. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14687. (double) node->perf_time_us / 1000.0,
  14688. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14689. }
  14690. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14691. for (int i = 0; i < cgraph->n_leafs; i++) {
  14692. struct ggml_tensor * node = cgraph->leafs[i];
  14693. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14694. i,
  14695. node->ne[0], node->ne[1],
  14696. ggml_op_name(node->op),
  14697. ggml_get_name(node));
  14698. }
  14699. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14700. if (perf_total_per_op_us[i] == 0) {
  14701. continue;
  14702. }
  14703. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14704. }
  14705. GGML_PRINT("========================================\n");
  14706. }
  14707. // check if node is part of the graph
  14708. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14709. if (cgraph == NULL) {
  14710. return true;
  14711. }
  14712. for (int i = 0; i < cgraph->n_nodes; i++) {
  14713. if (cgraph->nodes[i] == node) {
  14714. return true;
  14715. }
  14716. }
  14717. return false;
  14718. }
  14719. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14720. for (int i = 0; i < cgraph->n_nodes; i++) {
  14721. struct ggml_tensor * parent = cgraph->nodes[i];
  14722. if (parent->grad == node) {
  14723. return parent;
  14724. }
  14725. }
  14726. return NULL;
  14727. }
  14728. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14729. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14730. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14731. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14732. gparent0 ? (void *) gparent0 : (void *) parent,
  14733. gparent0 ? "g" : "x",
  14734. gparent ? (void *) gparent : (void *) node,
  14735. gparent ? "g" : "x",
  14736. gparent ? "empty" : "vee",
  14737. gparent ? "dashed" : "solid",
  14738. label);
  14739. }
  14740. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14741. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14742. (void *) parent, "x",
  14743. (void *) node, "x",
  14744. label);
  14745. }
  14746. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14747. char color[16];
  14748. FILE * fp = fopen(filename, "w");
  14749. GGML_ASSERT(fp);
  14750. fprintf(fp, "digraph G {\n");
  14751. fprintf(fp, " newrank = true;\n");
  14752. fprintf(fp, " rankdir = LR;\n");
  14753. for (int i = 0; i < gb->n_nodes; i++) {
  14754. struct ggml_tensor * node = gb->nodes[i];
  14755. if (ggml_graph_get_parent(gb, node) != NULL) {
  14756. continue;
  14757. }
  14758. if (node->is_param) {
  14759. snprintf(color, sizeof(color), "yellow");
  14760. } else if (node->grad) {
  14761. if (ggml_graph_find(gf, node)) {
  14762. snprintf(color, sizeof(color), "green");
  14763. } else {
  14764. snprintf(color, sizeof(color), "lightblue");
  14765. }
  14766. } else {
  14767. snprintf(color, sizeof(color), "white");
  14768. }
  14769. fprintf(fp, " \"%p\" [ "
  14770. "style = filled; fillcolor = %s; shape = record; "
  14771. "label=\"",
  14772. (void *) node, color);
  14773. if (strlen(node->name) > 0) {
  14774. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14775. } else {
  14776. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14777. }
  14778. if (ggml_is_matrix(node)) {
  14779. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14780. } else {
  14781. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14782. }
  14783. if (node->grad) {
  14784. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14785. } else {
  14786. fprintf(fp, "\"; ]\n");
  14787. }
  14788. }
  14789. for (int i = 0; i < gb->n_leafs; i++) {
  14790. struct ggml_tensor * node = gb->leafs[i];
  14791. snprintf(color, sizeof(color), "pink");
  14792. fprintf(fp, " \"%p\" [ "
  14793. "style = filled; fillcolor = %s; shape = record; "
  14794. "label=\"<x>",
  14795. (void *) node, color);
  14796. if (strlen(node->name) > 0) {
  14797. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14798. } else {
  14799. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14800. }
  14801. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14802. if (ggml_nelements(node) < 5) {
  14803. fprintf(fp, " | (");
  14804. for (int j = 0; j < ggml_nelements(node); j++) {
  14805. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14806. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14807. }
  14808. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14809. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14810. }
  14811. else {
  14812. fprintf(fp, "#");
  14813. }
  14814. if (j < ggml_nelements(node) - 1) {
  14815. fprintf(fp, ", ");
  14816. }
  14817. }
  14818. fprintf(fp, ")");
  14819. }
  14820. fprintf(fp, "\"; ]\n");
  14821. }
  14822. for (int i = 0; i < gb->n_nodes; i++) {
  14823. struct ggml_tensor * node = gb->nodes[i];
  14824. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14825. if (node->src[j]) {
  14826. char label[16];
  14827. snprintf(label, sizeof(label), "src %d", j);
  14828. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14829. }
  14830. }
  14831. }
  14832. for (int i = 0; i < gb->n_leafs; i++) {
  14833. struct ggml_tensor * node = gb->leafs[i];
  14834. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14835. if (node->src[j]) {
  14836. char label[16];
  14837. snprintf(label, sizeof(label), "src %d", j);
  14838. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14839. }
  14840. }
  14841. }
  14842. fprintf(fp, "}\n");
  14843. fclose(fp);
  14844. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14845. }
  14846. ////////////////////////////////////////////////////////////////////////////////
  14847. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14848. int i = 0;
  14849. for (int p = 0; p < np; ++p) {
  14850. const int64_t ne = ggml_nelements(ps[p]) ;
  14851. // TODO: add function to set tensor from array
  14852. for (int64_t j = 0; j < ne; ++j) {
  14853. ggml_set_f32_1d(ps[p], j, x[i++]);
  14854. }
  14855. }
  14856. }
  14857. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14858. int i = 0;
  14859. for (int p = 0; p < np; ++p) {
  14860. const int64_t ne = ggml_nelements(ps[p]) ;
  14861. // TODO: add function to get all elements at once
  14862. for (int64_t j = 0; j < ne; ++j) {
  14863. x[i++] = ggml_get_f32_1d(ps[p], j);
  14864. }
  14865. }
  14866. }
  14867. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14868. int64_t i = 0;
  14869. for (int p = 0; p < np; ++p) {
  14870. const int64_t ne = ggml_nelements(ps[p]) ;
  14871. // TODO: add function to get all elements at once
  14872. for (int64_t j = 0; j < ne; ++j) {
  14873. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14874. }
  14875. }
  14876. }
  14877. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14878. int64_t i = 0;
  14879. for (int p = 0; p < np; ++p) {
  14880. const int64_t ne = ggml_nelements(ps[p]) ;
  14881. // TODO: add function to get all elements at once
  14882. for (int64_t j = 0; j < ne; ++j) {
  14883. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14884. }
  14885. }
  14886. }
  14887. //
  14888. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14889. //
  14890. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14891. //
  14892. static enum ggml_opt_result ggml_opt_adam(
  14893. struct ggml_context * ctx,
  14894. struct ggml_opt_context * opt,
  14895. struct ggml_opt_params params,
  14896. struct ggml_tensor * f,
  14897. struct ggml_cgraph * gf,
  14898. struct ggml_cgraph * gb,
  14899. ggml_opt_callback callback,
  14900. void * callback_data) {
  14901. GGML_ASSERT(ggml_is_scalar(f));
  14902. // these will store the parameters we want to optimize
  14903. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14904. int np = 0;
  14905. int64_t nx = 0;
  14906. for (int i = 0; i < gf->n_nodes; ++i) {
  14907. if (gf->nodes[i]->is_param) {
  14908. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14909. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14910. ps[np++] = gf->nodes[i];
  14911. nx += ggml_nelements(gf->nodes[i]);
  14912. }
  14913. }
  14914. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14915. int iter = opt->iter;
  14916. ggml_opt_init(opt->ctx, opt, params, nx);
  14917. opt->iter = iter;
  14918. }
  14919. // constants
  14920. float sched = params.adam.sched;
  14921. const float alpha = params.adam.alpha;
  14922. const float decay = params.adam.decay * alpha;
  14923. const float beta1 = params.adam.beta1;
  14924. const float beta2 = params.adam.beta2;
  14925. const float eps = params.adam.eps;
  14926. const float gclip = params.adam.gclip;
  14927. const int decay_min_ndim = params.adam.decay_min_ndim;
  14928. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14929. const float accum_norm = 1.0f / (float) n_accum;
  14930. float * g = opt->adam.g->data; // gradients
  14931. float * m = opt->adam.m->data; // first moment
  14932. float * v = opt->adam.v->data; // second moment
  14933. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14934. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14935. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14936. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14937. bool cancel = false;
  14938. // compute the function value
  14939. float fx = 0;
  14940. ggml_set_zero(opt->adam.g);
  14941. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14942. if (callback) {
  14943. callback(callback_data, accum_step, &sched, &cancel);
  14944. if (cancel) {
  14945. return GGML_OPT_CANCEL;
  14946. }
  14947. }
  14948. // ggml_graph_reset (gf);
  14949. ggml_set_f32 (f->grad, 1.0f);
  14950. ggml_graph_compute(gb, &cplan);
  14951. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14952. fx += ggml_get_f32_1d(f, 0);
  14953. }
  14954. fx *= accum_norm;
  14955. opt->adam.fx_prev = fx;
  14956. opt->adam.fx_best = opt->adam.fx_prev;
  14957. if (pf) {
  14958. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14959. }
  14960. opt->loss_before = opt->adam.fx_prev;
  14961. opt->loss_after = opt->adam.fx_prev;
  14962. // initialize
  14963. if (opt->just_initialized) {
  14964. opt->adam.n_no_improvement = 0;
  14965. opt->just_initialized = false;
  14966. }
  14967. float * fx_best = &opt->adam.fx_best;
  14968. float * fx_prev = &opt->adam.fx_prev;
  14969. int * n_no_improvement = &opt->adam.n_no_improvement;
  14970. int iter0 = opt->iter;
  14971. // run the optimizer
  14972. for (int t = 0; t < params.adam.n_iter; ++t) {
  14973. opt->iter = iter0 + t + 1;
  14974. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14975. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14976. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14977. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14978. for (int i = 0; i < np; ++i) {
  14979. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14980. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14981. }
  14982. const int64_t t_start_wall = ggml_time_us();
  14983. const int64_t t_start_cpu = ggml_cycles();
  14984. UNUSED(t_start_wall);
  14985. UNUSED(t_start_cpu);
  14986. {
  14987. float gnorm = 1.0f;
  14988. if (gclip > 0.0f) {
  14989. // gradient clipping
  14990. ggml_float sum = 0.0;
  14991. for (int64_t i = 0; i < nx; ++i) {
  14992. sum += (ggml_float)(g[i]*g[i]);
  14993. }
  14994. ggml_float norm = sqrt(sum);
  14995. if (norm > (ggml_float) gclip) {
  14996. gnorm = (float) ((ggml_float) gclip / norm);
  14997. }
  14998. }
  14999. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15000. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15001. int64_t i = 0;
  15002. for (int p = 0; p < np; ++p) {
  15003. const int64_t ne = ggml_nelements(ps[p]);
  15004. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15005. for (int64_t j = 0; j < ne; ++j) {
  15006. float x = ggml_get_f32_1d(ps[p], j);
  15007. float g_ = g[i]*gnorm;
  15008. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15009. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15010. float mh = m[i]*beta1h;
  15011. float vh = v[i]*beta2h;
  15012. vh = sqrtf(vh) + eps;
  15013. x = x*(1.0f - p_decay) - mh/vh;
  15014. ggml_set_f32_1d(ps[p], j, x);
  15015. ++i;
  15016. }
  15017. }
  15018. }
  15019. fx = 0;
  15020. ggml_set_zero(opt->adam.g);
  15021. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15022. if (callback) {
  15023. callback(callback_data, accum_step, &sched, &cancel);
  15024. if (cancel) {
  15025. return GGML_OPT_CANCEL;;
  15026. }
  15027. }
  15028. // ggml_graph_reset (gf);
  15029. ggml_set_f32 (f->grad, 1.0f);
  15030. ggml_graph_compute(gb, &cplan);
  15031. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15032. fx += ggml_get_f32_1d(f, 0);
  15033. }
  15034. fx *= accum_norm;
  15035. opt->loss_after = fx;
  15036. // check convergence
  15037. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15038. GGML_PRINT_DEBUG("converged\n");
  15039. return GGML_OPT_OK;
  15040. }
  15041. // delta-based convergence test
  15042. if (pf != NULL) {
  15043. // need at least params.past iterations to start checking for convergence
  15044. if (params.past <= iter0 + t) {
  15045. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15046. if (fabsf(rate) < params.delta) {
  15047. return GGML_OPT_OK;
  15048. }
  15049. }
  15050. pf[(iter0 + t)%params.past] = fx;
  15051. }
  15052. // check for improvement
  15053. if (params.max_no_improvement > 0) {
  15054. if (fx_best[0] > fx) {
  15055. fx_best[0] = fx;
  15056. n_no_improvement[0] = 0;
  15057. } else {
  15058. ++n_no_improvement[0];
  15059. if (n_no_improvement[0] >= params.max_no_improvement) {
  15060. return GGML_OPT_OK;
  15061. }
  15062. }
  15063. }
  15064. fx_prev[0] = fx;
  15065. {
  15066. const int64_t t_end_cpu = ggml_cycles();
  15067. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15068. UNUSED(t_end_cpu);
  15069. const int64_t t_end_wall = ggml_time_us();
  15070. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15071. UNUSED(t_end_wall);
  15072. }
  15073. }
  15074. return GGML_OPT_DID_NOT_CONVERGE;
  15075. }
  15076. //
  15077. // L-BFGS
  15078. //
  15079. // the L-BFGS implementation below is based on the following implementation:
  15080. //
  15081. // https://github.com/chokkan/liblbfgs
  15082. //
  15083. struct ggml_lbfgs_iteration_data {
  15084. float alpha;
  15085. float ys;
  15086. float * s;
  15087. float * y;
  15088. };
  15089. static enum ggml_opt_result linesearch_backtracking(
  15090. const struct ggml_opt_params * params,
  15091. int nx,
  15092. float * x,
  15093. float * fx,
  15094. float * g,
  15095. float * d,
  15096. float * step,
  15097. const float * xp,
  15098. struct ggml_tensor * f,
  15099. struct ggml_cgraph * gb,
  15100. struct ggml_cplan * cplan,
  15101. const int np,
  15102. struct ggml_tensor * ps[],
  15103. bool * cancel,
  15104. ggml_opt_callback callback,
  15105. void * callback_data) {
  15106. int count = 0;
  15107. float width = 0.0f;
  15108. float dg = 0.0f;
  15109. float finit = 0.0f;
  15110. float dginit = 0.0f;
  15111. float dgtest = 0.0f;
  15112. const float dec = 0.5f;
  15113. const float inc = 2.1f;
  15114. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15115. const float accum_norm = 1.0f / (float) n_accum;
  15116. if (*step <= 0.f) {
  15117. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15118. }
  15119. // compute the initial gradient in the search direction
  15120. ggml_vec_dot_f32(nx, &dginit, g, d);
  15121. // make sure that d points to a descent direction
  15122. if (0 < dginit) {
  15123. return GGML_LINESEARCH_FAIL;
  15124. }
  15125. // initialize local variables
  15126. finit = *fx;
  15127. dgtest = params->lbfgs.ftol*dginit;
  15128. while (true) {
  15129. ggml_vec_cpy_f32(nx, x, xp);
  15130. ggml_vec_mad_f32(nx, x, d, *step);
  15131. // evaluate the function and gradient values
  15132. {
  15133. ggml_opt_set_params(np, ps, x);
  15134. *fx = 0;
  15135. memset(g, 0, sizeof(float)*nx);
  15136. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15137. if (callback) {
  15138. // LBFG-S does not support learning rate -> ignore learning schedule
  15139. float sched = 0;
  15140. callback(callback_data, accum_step, &sched, cancel);
  15141. if (*cancel) {
  15142. return GGML_OPT_CANCEL;
  15143. }
  15144. }
  15145. // ggml_graph_reset (gf);
  15146. ggml_set_f32 (f->grad, 1.0f);
  15147. ggml_graph_compute(gb, cplan);
  15148. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15149. *fx += ggml_get_f32_1d(f, 0);
  15150. }
  15151. *fx *= accum_norm;
  15152. }
  15153. ++count;
  15154. if (*fx > finit + (*step)*dgtest) {
  15155. width = dec;
  15156. } else {
  15157. // Armijo condition is satisfied
  15158. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15159. return count;
  15160. }
  15161. ggml_vec_dot_f32(nx, &dg, g, d);
  15162. // check the Wolfe condition
  15163. if (dg < params->lbfgs.wolfe * dginit) {
  15164. width = inc;
  15165. } else {
  15166. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15167. // regular Wolfe conditions
  15168. return count;
  15169. }
  15170. if(dg > -params->lbfgs.wolfe*dginit) {
  15171. width = dec;
  15172. } else {
  15173. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15174. return count;
  15175. }
  15176. }
  15177. }
  15178. if (*step < params->lbfgs.min_step) {
  15179. return GGML_LINESEARCH_MINIMUM_STEP;
  15180. }
  15181. if (*step > params->lbfgs.max_step) {
  15182. return GGML_LINESEARCH_MAXIMUM_STEP;
  15183. }
  15184. if (params->lbfgs.max_linesearch <= count) {
  15185. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15186. }
  15187. (*step) *= width;
  15188. }
  15189. GGML_UNREACHABLE();
  15190. }
  15191. static enum ggml_opt_result ggml_opt_lbfgs(
  15192. struct ggml_context * ctx,
  15193. struct ggml_opt_context * opt,
  15194. struct ggml_opt_params params,
  15195. struct ggml_tensor * f,
  15196. struct ggml_cgraph * gf,
  15197. struct ggml_cgraph * gb,
  15198. ggml_opt_callback callback,
  15199. void * callback_data) {
  15200. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15201. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15202. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15203. return GGML_OPT_INVALID_WOLFE;
  15204. }
  15205. }
  15206. const int m = params.lbfgs.m;
  15207. // these will store the parameters we want to optimize
  15208. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15209. int np = 0;
  15210. int nx = 0;
  15211. for (int i = 0; i < gf->n_nodes; ++i) {
  15212. if (gf->nodes[i]->is_param) {
  15213. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15214. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15215. ps[np++] = gf->nodes[i];
  15216. nx += ggml_nelements(gf->nodes[i]);
  15217. }
  15218. }
  15219. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15220. int iter = opt->iter;
  15221. ggml_opt_init(ctx, opt, params, nx);
  15222. opt->iter = iter;
  15223. }
  15224. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15225. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15226. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15227. float * x = opt->lbfgs.x->data; // current parameters
  15228. float * xp = opt->lbfgs.xp->data; // previous parameters
  15229. float * g = opt->lbfgs.g->data; // current gradient
  15230. float * gp = opt->lbfgs.gp->data; // previous gradient
  15231. float * d = opt->lbfgs.d->data; // search direction
  15232. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15233. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15234. const float accum_norm = 1.0f / (float) n_accum;
  15235. float fx = 0.0f; // cost function value
  15236. float xnorm = 0.0f; // ||x||
  15237. float gnorm = 0.0f; // ||g||
  15238. // initialize x from the graph nodes
  15239. ggml_opt_get_params(np, ps, x);
  15240. // the L-BFGS memory
  15241. float * lm_alpha = opt->lbfgs.lmal->data;
  15242. float * lm_ys = opt->lbfgs.lmys->data;
  15243. float * lm_s = opt->lbfgs.lms->data;
  15244. float * lm_y = opt->lbfgs.lmy->data;
  15245. bool cancel = false;
  15246. // evaluate the function value and its gradient
  15247. {
  15248. ggml_opt_set_params(np, ps, x);
  15249. fx = 0;
  15250. memset(g, 0, sizeof(float)*nx);
  15251. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15252. if (callback) {
  15253. // LBFG-S does not support learning rate -> ignore learning schedule
  15254. float sched = 0;
  15255. callback(callback_data, accum_step, &sched, &cancel);
  15256. if (cancel) {
  15257. return GGML_OPT_CANCEL;
  15258. }
  15259. }
  15260. // ggml_graph_reset (gf);
  15261. ggml_set_f32 (f->grad, 1.0f);
  15262. ggml_graph_compute(gb, &cplan);
  15263. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15264. fx += ggml_get_f32_1d(f, 0);
  15265. }
  15266. fx *= accum_norm;
  15267. opt->loss_before = fx;
  15268. opt->loss_after = fx;
  15269. }
  15270. // search direction = -gradient
  15271. ggml_vec_neg_f32(nx, d, g);
  15272. // ||x||, ||g||
  15273. ggml_vec_norm_f32(nx, &xnorm, x);
  15274. ggml_vec_norm_f32(nx, &gnorm, g);
  15275. if (xnorm < 1.0f) {
  15276. xnorm = 1.0f;
  15277. }
  15278. // already optimized
  15279. if (gnorm/xnorm <= params.lbfgs.eps) {
  15280. return GGML_OPT_OK;
  15281. }
  15282. if (opt->just_initialized) {
  15283. if (pf) {
  15284. pf[0] = fx;
  15285. }
  15286. opt->lbfgs.fx_best = fx;
  15287. // initial step
  15288. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15289. opt->lbfgs.j = 0;
  15290. opt->lbfgs.k = 1;
  15291. opt->lbfgs.end = 0;
  15292. opt->lbfgs.n_no_improvement = 0;
  15293. opt->just_initialized = false;
  15294. }
  15295. float * fx_best = &opt->lbfgs.fx_best;
  15296. float * step = &opt->lbfgs.step;
  15297. int * j = &opt->lbfgs.j;
  15298. int * k = &opt->lbfgs.k;
  15299. int * end = &opt->lbfgs.end;
  15300. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15301. int ls = 0;
  15302. int bound = 0;
  15303. float ys = 0.0f;
  15304. float yy = 0.0f;
  15305. float beta = 0.0f;
  15306. int it = 0;
  15307. while (true) {
  15308. // store the current position and gradient vectors
  15309. ggml_vec_cpy_f32(nx, xp, x);
  15310. ggml_vec_cpy_f32(nx, gp, g);
  15311. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15312. // to determine if the optimization should be cancelled
  15313. // this is a simple change, but not doing this atm, since I don't have a nice
  15314. // way to test and don't want to break something with so many changes lined up
  15315. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15316. if (cancel) {
  15317. return GGML_OPT_CANCEL;
  15318. }
  15319. if (ls < 0) {
  15320. // linesearch failed - go back to the previous point and return
  15321. ggml_vec_cpy_f32(nx, x, xp);
  15322. ggml_vec_cpy_f32(nx, g, gp);
  15323. return ls;
  15324. }
  15325. opt->loss_after = fx;
  15326. ggml_vec_norm_f32(nx, &xnorm, x);
  15327. ggml_vec_norm_f32(nx, &gnorm, g);
  15328. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15329. if (xnorm < 1.0f) {
  15330. xnorm = 1.0f;
  15331. }
  15332. if (gnorm/xnorm <= params.lbfgs.eps) {
  15333. // converged
  15334. return GGML_OPT_OK;
  15335. }
  15336. // delta-based convergence test
  15337. if (pf != NULL) {
  15338. // need at least params.past iterations to start checking for convergence
  15339. if (params.past <= k[0]) {
  15340. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15341. if (fabsf(rate) < params.delta) {
  15342. return GGML_OPT_OK;
  15343. }
  15344. }
  15345. pf[k[0]%params.past] = fx;
  15346. }
  15347. // check for improvement
  15348. if (params.max_no_improvement > 0) {
  15349. if (fx < fx_best[0]) {
  15350. fx_best[0] = fx;
  15351. n_no_improvement[0] = 0;
  15352. } else {
  15353. n_no_improvement[0]++;
  15354. if (n_no_improvement[0] >= params.max_no_improvement) {
  15355. return GGML_OPT_OK;
  15356. }
  15357. }
  15358. }
  15359. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15360. // reached the maximum number of iterations
  15361. return GGML_OPT_DID_NOT_CONVERGE;
  15362. }
  15363. // update vectors s and y:
  15364. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15365. // y_{k+1} = g_{k+1} - g_{k}.
  15366. //
  15367. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15368. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15369. // compute scalars ys and yy:
  15370. // ys = y^t \cdot s -> 1 / \rho.
  15371. // yy = y^t \cdot y.
  15372. //
  15373. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15374. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15375. lm_ys[end[0]] = ys;
  15376. // find new search direction
  15377. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15378. bound = (m <= k[0]) ? m : k[0];
  15379. k[0]++;
  15380. it++;
  15381. end[0] = (end[0] + 1)%m;
  15382. // initialize search direction with -g
  15383. ggml_vec_neg_f32(nx, d, g);
  15384. j[0] = end[0];
  15385. for (int i = 0; i < bound; ++i) {
  15386. j[0] = (j[0] + m - 1) % m;
  15387. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15388. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15389. lm_alpha[j[0]] /= lm_ys[j[0]];
  15390. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15391. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15392. }
  15393. ggml_vec_scale_f32(nx, d, ys/yy);
  15394. for (int i = 0; i < bound; ++i) {
  15395. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15396. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15397. beta /= lm_ys[j[0]];
  15398. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15399. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15400. j[0] = (j[0] + 1)%m;
  15401. }
  15402. step[0] = 1.0;
  15403. }
  15404. GGML_UNREACHABLE();
  15405. }
  15406. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15407. struct ggml_opt_params result;
  15408. switch (type) {
  15409. case GGML_OPT_ADAM:
  15410. {
  15411. result = (struct ggml_opt_params) {
  15412. .type = GGML_OPT_ADAM,
  15413. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15414. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15415. .past = 0,
  15416. .delta = 1e-5f,
  15417. .max_no_improvement = 100,
  15418. .print_forward_graph = true,
  15419. .print_backward_graph = true,
  15420. .n_gradient_accumulation = 1,
  15421. .adam = {
  15422. .n_iter = 10000,
  15423. .sched = 1.000f,
  15424. .decay = 0.0f,
  15425. .decay_min_ndim = 2,
  15426. .alpha = 0.001f,
  15427. .beta1 = 0.9f,
  15428. .beta2 = 0.999f,
  15429. .eps = 1e-8f,
  15430. .eps_f = 1e-5f,
  15431. .eps_g = 1e-3f,
  15432. .gclip = 0.0f,
  15433. },
  15434. };
  15435. } break;
  15436. case GGML_OPT_LBFGS:
  15437. {
  15438. result = (struct ggml_opt_params) {
  15439. .type = GGML_OPT_LBFGS,
  15440. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15441. .n_threads = 1,
  15442. .past = 0,
  15443. .delta = 1e-5f,
  15444. .max_no_improvement = 0,
  15445. .print_forward_graph = true,
  15446. .print_backward_graph = true,
  15447. .n_gradient_accumulation = 1,
  15448. .lbfgs = {
  15449. .m = 6,
  15450. .n_iter = 100,
  15451. .max_linesearch = 20,
  15452. .eps = 1e-5f,
  15453. .ftol = 1e-4f,
  15454. .wolfe = 0.9f,
  15455. .min_step = 1e-20f,
  15456. .max_step = 1e+20f,
  15457. .linesearch = GGML_LINESEARCH_DEFAULT,
  15458. },
  15459. };
  15460. } break;
  15461. }
  15462. return result;
  15463. }
  15464. GGML_API void ggml_opt_init(
  15465. struct ggml_context * ctx,
  15466. struct ggml_opt_context * opt,
  15467. struct ggml_opt_params params,
  15468. int64_t nx) {
  15469. opt->ctx = ctx;
  15470. opt->params = params;
  15471. opt->iter = 0;
  15472. opt->nx = nx;
  15473. opt->just_initialized = true;
  15474. if (opt->ctx == NULL) {
  15475. struct ggml_init_params ctx_opt_params;
  15476. if (opt->params.type == GGML_OPT_ADAM) {
  15477. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15478. if (opt->params.past > 0) {
  15479. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15480. }
  15481. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15482. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15483. if (opt->params.past > 0) {
  15484. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15485. }
  15486. }
  15487. ctx_opt_params.mem_buffer = NULL;
  15488. ctx_opt_params.no_alloc = false;
  15489. opt->ctx = ggml_init(ctx_opt_params);
  15490. }
  15491. switch (opt->params.type) {
  15492. case GGML_OPT_ADAM:
  15493. {
  15494. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15495. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15496. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15497. opt->adam.pf = params.past > 0
  15498. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15499. : NULL;
  15500. ggml_set_zero(opt->adam.m);
  15501. ggml_set_zero(opt->adam.v);
  15502. if (opt->adam.pf) {
  15503. ggml_set_zero(opt->adam.pf);
  15504. }
  15505. } break;
  15506. case GGML_OPT_LBFGS:
  15507. {
  15508. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15509. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15510. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15511. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15512. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15513. opt->lbfgs.pf = params.past > 0
  15514. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15515. : NULL;
  15516. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15517. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15518. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15519. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15520. ggml_set_zero(opt->lbfgs.x);
  15521. ggml_set_zero(opt->lbfgs.xp);
  15522. ggml_set_zero(opt->lbfgs.g);
  15523. ggml_set_zero(opt->lbfgs.gp);
  15524. ggml_set_zero(opt->lbfgs.d);
  15525. if (opt->lbfgs.pf) {
  15526. ggml_set_zero(opt->lbfgs.pf);
  15527. }
  15528. ggml_set_zero(opt->lbfgs.lmal);
  15529. ggml_set_zero(opt->lbfgs.lmys);
  15530. ggml_set_zero(opt->lbfgs.lms);
  15531. ggml_set_zero(opt->lbfgs.lmy);
  15532. } break;
  15533. }
  15534. }
  15535. enum ggml_opt_result ggml_opt(
  15536. struct ggml_context * ctx,
  15537. struct ggml_opt_params params,
  15538. struct ggml_tensor * f) {
  15539. bool free_ctx = false;
  15540. if (ctx == NULL) {
  15541. struct ggml_init_params params_ctx = {
  15542. .mem_size = 16*1024*1024,
  15543. .mem_buffer = NULL,
  15544. .no_alloc = false,
  15545. };
  15546. ctx = ggml_init(params_ctx);
  15547. if (ctx == NULL) {
  15548. return GGML_OPT_NO_CONTEXT;
  15549. }
  15550. free_ctx = true;
  15551. }
  15552. enum ggml_opt_result result = GGML_OPT_OK;
  15553. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15554. ggml_opt_init(ctx, opt, params, 0);
  15555. result = ggml_opt_resume(ctx, opt, f);
  15556. if (free_ctx) {
  15557. ggml_free(ctx);
  15558. }
  15559. return result;
  15560. }
  15561. enum ggml_opt_result ggml_opt_resume(
  15562. struct ggml_context * ctx,
  15563. struct ggml_opt_context * opt,
  15564. struct ggml_tensor * f) {
  15565. // build forward + backward compute graphs
  15566. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15567. ggml_build_forward_expand(gf, f);
  15568. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15569. ggml_build_backward_expand(ctx, gf, gb, true);
  15570. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15571. }
  15572. enum ggml_opt_result ggml_opt_resume_g(
  15573. struct ggml_context * ctx,
  15574. struct ggml_opt_context * opt,
  15575. struct ggml_tensor * f,
  15576. struct ggml_cgraph * gf,
  15577. struct ggml_cgraph * gb,
  15578. ggml_opt_callback callback,
  15579. void * callback_data) {
  15580. // build forward + backward compute graphs
  15581. enum ggml_opt_result result = GGML_OPT_OK;
  15582. switch (opt->params.type) {
  15583. case GGML_OPT_ADAM:
  15584. {
  15585. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15586. } break;
  15587. case GGML_OPT_LBFGS:
  15588. {
  15589. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15590. } break;
  15591. }
  15592. if (opt->params.print_forward_graph) {
  15593. ggml_graph_print (gf);
  15594. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15595. }
  15596. if (opt->params.print_backward_graph) {
  15597. ggml_graph_print (gb);
  15598. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15599. }
  15600. return result;
  15601. }
  15602. ////////////////////////////////////////////////////////////////////////////////
  15603. void ggml_quantize_init(enum ggml_type type) {
  15604. ggml_critical_section_start();
  15605. switch (type) {
  15606. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15607. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15608. default: // nothing
  15609. break;
  15610. }
  15611. ggml_critical_section_end();
  15612. }
  15613. void ggml_quantize_free(void) {
  15614. ggml_critical_section_start();
  15615. iq2xs_free_impl(256);
  15616. iq2xs_free_impl(512);
  15617. ggml_critical_section_end();
  15618. }
  15619. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15620. assert(k % QK4_0 == 0);
  15621. const int nb = k / QK4_0;
  15622. for (int b = 0; b < n; b += k) {
  15623. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15624. quantize_row_q4_0_reference(src + b, y, k);
  15625. for (int i = 0; i < nb; i++) {
  15626. for (int j = 0; j < QK4_0; j += 2) {
  15627. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15628. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15629. hist[vi0]++;
  15630. hist[vi1]++;
  15631. }
  15632. }
  15633. }
  15634. return (n/QK4_0*sizeof(block_q4_0));
  15635. }
  15636. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15637. assert(k % QK4_1 == 0);
  15638. const int nb = k / QK4_1;
  15639. for (int b = 0; b < n; b += k) {
  15640. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15641. quantize_row_q4_1_reference(src + b, y, k);
  15642. for (int i = 0; i < nb; i++) {
  15643. for (int j = 0; j < QK4_1; j += 2) {
  15644. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15645. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15646. hist[vi0]++;
  15647. hist[vi1]++;
  15648. }
  15649. }
  15650. }
  15651. return (n/QK4_1*sizeof(block_q4_1));
  15652. }
  15653. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15654. assert(k % QK5_0 == 0);
  15655. const int nb = k / QK5_0;
  15656. for (int b = 0; b < n; b += k) {
  15657. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15658. quantize_row_q5_0_reference(src + b, y, k);
  15659. for (int i = 0; i < nb; i++) {
  15660. uint32_t qh;
  15661. memcpy(&qh, &y[i].qh, sizeof(qh));
  15662. for (int j = 0; j < QK5_0; j += 2) {
  15663. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15664. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15665. // cast to 16 bins
  15666. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15667. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15668. hist[vi0]++;
  15669. hist[vi1]++;
  15670. }
  15671. }
  15672. }
  15673. return (n/QK5_0*sizeof(block_q5_0));
  15674. }
  15675. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15676. assert(k % QK5_1 == 0);
  15677. const int nb = k / QK5_1;
  15678. for (int b = 0; b < n; b += k) {
  15679. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15680. quantize_row_q5_1_reference(src + b, y, k);
  15681. for (int i = 0; i < nb; i++) {
  15682. uint32_t qh;
  15683. memcpy(&qh, &y[i].qh, sizeof(qh));
  15684. for (int j = 0; j < QK5_1; j += 2) {
  15685. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15686. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15687. // cast to 16 bins
  15688. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15689. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15690. hist[vi0]++;
  15691. hist[vi1]++;
  15692. }
  15693. }
  15694. }
  15695. return (n/QK5_1*sizeof(block_q5_1));
  15696. }
  15697. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15698. assert(k % QK8_0 == 0);
  15699. const int nb = k / QK8_0;
  15700. for (int b = 0; b < n; b += k) {
  15701. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15702. quantize_row_q8_0_reference(src + b, y, k);
  15703. for (int i = 0; i < nb; i++) {
  15704. for (int j = 0; j < QK8_0; ++j) {
  15705. const int8_t vi = y[i].qs[j];
  15706. hist[vi/16 + 8]++;
  15707. }
  15708. }
  15709. }
  15710. return (n/QK8_0*sizeof(block_q8_0));
  15711. }
  15712. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15713. return
  15714. type == GGML_TYPE_IQ2_XXS ||
  15715. type == GGML_TYPE_IQ2_XS;
  15716. }
  15717. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15718. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15719. ggml_quantize_init(type); // this is noop if already initialized
  15720. size_t result = 0;
  15721. int n = nrows * n_per_row;
  15722. switch (type) {
  15723. case GGML_TYPE_Q4_0:
  15724. {
  15725. GGML_ASSERT(start % QK4_0 == 0);
  15726. GGML_ASSERT(start % n_per_row == 0);
  15727. size_t start_row = start / n_per_row;
  15728. size_t row_size = ggml_row_size(type, n_per_row);
  15729. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15730. GGML_ASSERT(result == row_size * nrows);
  15731. } break;
  15732. case GGML_TYPE_Q4_1:
  15733. {
  15734. GGML_ASSERT(start % QK4_1 == 0);
  15735. GGML_ASSERT(start % n_per_row == 0);
  15736. size_t start_row = start / n_per_row;
  15737. size_t row_size = ggml_row_size(type, n_per_row);
  15738. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15739. GGML_ASSERT(result == row_size * nrows);
  15740. } break;
  15741. case GGML_TYPE_Q5_0:
  15742. {
  15743. GGML_ASSERT(start % QK5_0 == 0);
  15744. GGML_ASSERT(start % n_per_row == 0);
  15745. size_t start_row = start / n_per_row;
  15746. size_t row_size = ggml_row_size(type, n_per_row);
  15747. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15748. GGML_ASSERT(result == row_size * nrows);
  15749. } break;
  15750. case GGML_TYPE_Q5_1:
  15751. {
  15752. GGML_ASSERT(start % QK5_1 == 0);
  15753. GGML_ASSERT(start % n_per_row == 0);
  15754. size_t start_row = start / n_per_row;
  15755. size_t row_size = ggml_row_size(type, n_per_row);
  15756. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15757. GGML_ASSERT(result == row_size * nrows);
  15758. } break;
  15759. case GGML_TYPE_Q8_0:
  15760. {
  15761. GGML_ASSERT(start % QK8_0 == 0);
  15762. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15763. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15764. } break;
  15765. case GGML_TYPE_Q2_K:
  15766. {
  15767. GGML_ASSERT(start % QK_K == 0);
  15768. GGML_ASSERT(start % n_per_row == 0);
  15769. size_t start_row = start / n_per_row;
  15770. size_t row_size = ggml_row_size(type, n_per_row);
  15771. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15772. GGML_ASSERT(result == row_size * nrows);
  15773. } break;
  15774. case GGML_TYPE_Q3_K:
  15775. {
  15776. GGML_ASSERT(start % QK_K == 0);
  15777. GGML_ASSERT(start % n_per_row == 0);
  15778. size_t start_row = start / n_per_row;
  15779. size_t row_size = ggml_row_size(type, n_per_row);
  15780. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15781. GGML_ASSERT(result == row_size * nrows);
  15782. } break;
  15783. case GGML_TYPE_Q4_K:
  15784. {
  15785. GGML_ASSERT(start % QK_K == 0);
  15786. GGML_ASSERT(start % n_per_row == 0);
  15787. size_t start_row = start / n_per_row;
  15788. size_t row_size = ggml_row_size(type, n_per_row);
  15789. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15790. GGML_ASSERT(result == row_size * nrows);
  15791. } break;
  15792. case GGML_TYPE_Q5_K:
  15793. {
  15794. GGML_ASSERT(start % QK_K == 0);
  15795. GGML_ASSERT(start % n_per_row == 0);
  15796. size_t start_row = start / n_per_row;
  15797. size_t row_size = ggml_row_size(type, n_per_row);
  15798. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15799. GGML_ASSERT(result == row_size * nrows);
  15800. } break;
  15801. case GGML_TYPE_Q6_K:
  15802. {
  15803. GGML_ASSERT(start % QK_K == 0);
  15804. GGML_ASSERT(start % n_per_row == 0);
  15805. size_t start_row = start / n_per_row;
  15806. size_t row_size = ggml_row_size(type, n_per_row);
  15807. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15808. GGML_ASSERT(result == row_size * nrows);
  15809. } break;
  15810. case GGML_TYPE_IQ2_XXS:
  15811. {
  15812. GGML_ASSERT(start % QK_K == 0);
  15813. GGML_ASSERT(start % n_per_row == 0);
  15814. GGML_ASSERT(imatrix);
  15815. size_t start_row = start / n_per_row;
  15816. size_t row_size = ggml_row_size(type, n_per_row);
  15817. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15818. GGML_ASSERT(result == row_size * nrows);
  15819. } break;
  15820. case GGML_TYPE_IQ2_XS:
  15821. {
  15822. GGML_ASSERT(start % QK_K == 0);
  15823. GGML_ASSERT(start % n_per_row == 0);
  15824. GGML_ASSERT(imatrix);
  15825. size_t start_row = start / n_per_row;
  15826. size_t row_size = ggml_row_size(type, n_per_row);
  15827. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15828. GGML_ASSERT(result == row_size * nrows);
  15829. } break;
  15830. case GGML_TYPE_F16:
  15831. {
  15832. size_t elemsize = sizeof(ggml_fp16_t);
  15833. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15834. result = n * elemsize;
  15835. } break;
  15836. case GGML_TYPE_F32:
  15837. {
  15838. size_t elemsize = sizeof(float);
  15839. result = n * elemsize;
  15840. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15841. } break;
  15842. default:
  15843. assert(false);
  15844. }
  15845. return result;
  15846. }
  15847. ////////////////////////////////////////////////////////////////////////////////
  15848. struct gguf_str {
  15849. uint64_t n; // GGUFv2
  15850. char * data;
  15851. };
  15852. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15853. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15854. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15855. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15856. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15857. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15858. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15859. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15860. [GGUF_TYPE_BOOL] = sizeof(bool),
  15861. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15862. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15863. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15864. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15865. [GGUF_TYPE_ARRAY] = 0, // undefined
  15866. };
  15867. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15868. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15869. [GGUF_TYPE_UINT8] = "u8",
  15870. [GGUF_TYPE_INT8] = "i8",
  15871. [GGUF_TYPE_UINT16] = "u16",
  15872. [GGUF_TYPE_INT16] = "i16",
  15873. [GGUF_TYPE_UINT32] = "u32",
  15874. [GGUF_TYPE_INT32] = "i32",
  15875. [GGUF_TYPE_FLOAT32] = "f32",
  15876. [GGUF_TYPE_BOOL] = "bool",
  15877. [GGUF_TYPE_STRING] = "str",
  15878. [GGUF_TYPE_ARRAY] = "arr",
  15879. [GGUF_TYPE_UINT64] = "u64",
  15880. [GGUF_TYPE_INT64] = "i64",
  15881. [GGUF_TYPE_FLOAT64] = "f64",
  15882. };
  15883. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15884. union gguf_value {
  15885. uint8_t uint8;
  15886. int8_t int8;
  15887. uint16_t uint16;
  15888. int16_t int16;
  15889. uint32_t uint32;
  15890. int32_t int32;
  15891. float float32;
  15892. uint64_t uint64;
  15893. int64_t int64;
  15894. double float64;
  15895. bool bool_;
  15896. struct gguf_str str;
  15897. struct {
  15898. enum gguf_type type;
  15899. uint64_t n; // GGUFv2
  15900. void * data;
  15901. } arr;
  15902. };
  15903. struct gguf_kv {
  15904. struct gguf_str key;
  15905. enum gguf_type type;
  15906. union gguf_value value;
  15907. };
  15908. struct gguf_header {
  15909. char magic[4];
  15910. uint32_t version;
  15911. uint64_t n_tensors; // GGUFv2
  15912. uint64_t n_kv; // GGUFv2
  15913. };
  15914. struct gguf_tensor_info {
  15915. struct gguf_str name;
  15916. uint32_t n_dims;
  15917. uint64_t ne[GGML_MAX_DIMS];
  15918. enum ggml_type type;
  15919. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15920. // for writing API
  15921. const void * data;
  15922. size_t size;
  15923. };
  15924. struct gguf_context {
  15925. struct gguf_header header;
  15926. struct gguf_kv * kv;
  15927. struct gguf_tensor_info * infos;
  15928. size_t alignment;
  15929. size_t offset; // offset of `data` from beginning of file
  15930. size_t size; // size of `data` in bytes
  15931. //uint8_t * padding;
  15932. void * data;
  15933. };
  15934. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15935. const size_t n = fread(dst, 1, size, file);
  15936. *offset += n;
  15937. return n == size;
  15938. }
  15939. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15940. p->n = 0;
  15941. p->data = NULL;
  15942. bool ok = true;
  15943. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15944. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15945. return ok;
  15946. }
  15947. struct gguf_context * gguf_init_empty(void) {
  15948. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15949. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15950. ctx->header.version = GGUF_VERSION;
  15951. ctx->header.n_tensors = 0;
  15952. ctx->header.n_kv = 0;
  15953. ctx->kv = NULL;
  15954. ctx->infos = NULL;
  15955. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15956. ctx->offset = 0;
  15957. ctx->size = 0;
  15958. ctx->data = NULL;
  15959. return ctx;
  15960. }
  15961. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15962. FILE * file = fopen(fname, "rb");
  15963. if (!file) {
  15964. return NULL;
  15965. }
  15966. // offset from start of file
  15967. size_t offset = 0;
  15968. char magic[4];
  15969. // check the magic before making allocations
  15970. {
  15971. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15972. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15973. if (magic[i] != GGUF_MAGIC[i]) {
  15974. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15975. fclose(file);
  15976. return NULL;
  15977. }
  15978. }
  15979. }
  15980. bool ok = true;
  15981. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15982. // read the header
  15983. {
  15984. strncpy(ctx->header.magic, magic, 4);
  15985. ctx->kv = NULL;
  15986. ctx->infos = NULL;
  15987. ctx->data = NULL;
  15988. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15989. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15990. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15991. if (ctx->header.version == 1) {
  15992. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15993. fclose(file);
  15994. gguf_free(ctx);
  15995. return NULL;
  15996. }
  15997. if (!ok) {
  15998. fprintf(stderr, "%s: failed to read header\n", __func__);
  15999. fclose(file);
  16000. gguf_free(ctx);
  16001. return NULL;
  16002. }
  16003. }
  16004. // read the kv pairs
  16005. {
  16006. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16007. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16008. struct gguf_kv * kv = &ctx->kv[i];
  16009. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16010. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16011. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16012. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16013. switch (kv->type) {
  16014. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16015. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16016. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16017. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16018. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16019. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16020. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16021. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16022. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16023. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16024. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16025. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16026. case GGUF_TYPE_ARRAY:
  16027. {
  16028. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16029. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16030. switch (kv->value.arr.type) {
  16031. case GGUF_TYPE_UINT8:
  16032. case GGUF_TYPE_INT8:
  16033. case GGUF_TYPE_UINT16:
  16034. case GGUF_TYPE_INT16:
  16035. case GGUF_TYPE_UINT32:
  16036. case GGUF_TYPE_INT32:
  16037. case GGUF_TYPE_FLOAT32:
  16038. case GGUF_TYPE_UINT64:
  16039. case GGUF_TYPE_INT64:
  16040. case GGUF_TYPE_FLOAT64:
  16041. case GGUF_TYPE_BOOL:
  16042. {
  16043. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16044. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16045. } break;
  16046. case GGUF_TYPE_STRING:
  16047. {
  16048. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16049. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16050. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16051. }
  16052. } break;
  16053. case GGUF_TYPE_ARRAY:
  16054. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16055. }
  16056. } break;
  16057. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16058. }
  16059. if (!ok) {
  16060. break;
  16061. }
  16062. }
  16063. if (!ok) {
  16064. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16065. fclose(file);
  16066. gguf_free(ctx);
  16067. return NULL;
  16068. }
  16069. }
  16070. // read the tensor infos
  16071. {
  16072. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16073. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16074. struct gguf_tensor_info * info = &ctx->infos[i];
  16075. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16076. info->ne[j] = 1;
  16077. }
  16078. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16079. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16080. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16081. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16082. }
  16083. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16084. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16085. if (!ok) {
  16086. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16087. fclose(file);
  16088. gguf_free(ctx);
  16089. return NULL;
  16090. }
  16091. }
  16092. }
  16093. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16094. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16095. if (alignment_idx != -1) {
  16096. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16097. }
  16098. // we require the data section to be aligned, so take into account any padding
  16099. {
  16100. const size_t offset_pad = offset % ctx->alignment;
  16101. if (offset_pad != 0) {
  16102. offset += ctx->alignment - offset_pad;
  16103. fseek(file, offset, SEEK_SET);
  16104. }
  16105. }
  16106. // store the current file offset - this is where the data section starts
  16107. ctx->offset = offset;
  16108. // compute the total size of the data section, taking into account the alignment
  16109. {
  16110. ctx->size = 0;
  16111. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16112. struct gguf_tensor_info * info = &ctx->infos[i];
  16113. const int64_t ne =
  16114. (int64_t) info->ne[0] *
  16115. (int64_t) info->ne[1] *
  16116. (int64_t) info->ne[2] *
  16117. (int64_t) info->ne[3];
  16118. if (ne % ggml_blck_size(info->type) != 0) {
  16119. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16120. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16121. fclose(file);
  16122. gguf_free(ctx);
  16123. return NULL;
  16124. }
  16125. const size_t size_cur = ggml_row_size(info->type, ne);
  16126. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16127. }
  16128. }
  16129. // load the tensor data only if requested
  16130. if (params.ctx != NULL) {
  16131. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16132. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16133. // the ggml_tensor structs to the appropriate locations in the binary blob
  16134. // compute the exact size needed for the new ggml_context
  16135. const size_t mem_size =
  16136. params.no_alloc ?
  16137. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16138. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16139. struct ggml_init_params pdata = {
  16140. .mem_size = mem_size,
  16141. .mem_buffer = NULL,
  16142. .no_alloc = params.no_alloc,
  16143. };
  16144. *params.ctx = ggml_init(pdata);
  16145. struct ggml_context * ctx_data = *params.ctx;
  16146. struct ggml_tensor * data = NULL;
  16147. if (!params.no_alloc) {
  16148. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16149. ok = ok && data != NULL;
  16150. // read the binary blob with the tensor data
  16151. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16152. if (!ok) {
  16153. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16154. fclose(file);
  16155. ggml_free(ctx_data);
  16156. gguf_free(ctx);
  16157. return NULL;
  16158. }
  16159. ctx->data = data->data;
  16160. }
  16161. ggml_set_no_alloc(ctx_data, true);
  16162. // create the tensors
  16163. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16164. const int64_t ne[GGML_MAX_DIMS] = {
  16165. ctx->infos[i].ne[0],
  16166. ctx->infos[i].ne[1],
  16167. ctx->infos[i].ne[2],
  16168. ctx->infos[i].ne[3],
  16169. };
  16170. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16171. ok = ok && cur != NULL;
  16172. ggml_set_name(cur, ctx->infos[i].name.data);
  16173. if (!ok) {
  16174. break;
  16175. }
  16176. // point the data member to the appropriate location in the binary blob using the tensor infos
  16177. if (!params.no_alloc) {
  16178. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16179. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16180. }
  16181. }
  16182. if (!ok) {
  16183. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16184. fclose(file);
  16185. ggml_free(ctx_data);
  16186. gguf_free(ctx);
  16187. return NULL;
  16188. }
  16189. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16190. }
  16191. fclose(file);
  16192. return ctx;
  16193. }
  16194. void gguf_free(struct gguf_context * ctx) {
  16195. if (ctx == NULL) {
  16196. return;
  16197. }
  16198. if (ctx->kv) {
  16199. // free string memory - not great..
  16200. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16201. struct gguf_kv * kv = &ctx->kv[i];
  16202. if (kv->key.data) {
  16203. free(kv->key.data);
  16204. }
  16205. if (kv->type == GGUF_TYPE_STRING) {
  16206. if (kv->value.str.data) {
  16207. free(kv->value.str.data);
  16208. }
  16209. }
  16210. if (kv->type == GGUF_TYPE_ARRAY) {
  16211. if (kv->value.arr.data) {
  16212. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16213. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16214. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16215. if (str->data) {
  16216. free(str->data);
  16217. }
  16218. }
  16219. }
  16220. free(kv->value.arr.data);
  16221. }
  16222. }
  16223. }
  16224. free(ctx->kv);
  16225. }
  16226. if (ctx->infos) {
  16227. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16228. struct gguf_tensor_info * info = &ctx->infos[i];
  16229. if (info->name.data) {
  16230. free(info->name.data);
  16231. }
  16232. }
  16233. free(ctx->infos);
  16234. }
  16235. GGML_ALIGNED_FREE(ctx);
  16236. }
  16237. const char * gguf_type_name(enum gguf_type type) {
  16238. return GGUF_TYPE_NAME[type];
  16239. }
  16240. int gguf_get_version(const struct gguf_context * ctx) {
  16241. return ctx->header.version;
  16242. }
  16243. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16244. return ctx->alignment;
  16245. }
  16246. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16247. return ctx->offset;
  16248. }
  16249. void * gguf_get_data(const struct gguf_context * ctx) {
  16250. return ctx->data;
  16251. }
  16252. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16253. return ctx->header.n_kv;
  16254. }
  16255. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16256. // return -1 if key not found
  16257. int keyfound = -1;
  16258. const int n_kv = gguf_get_n_kv(ctx);
  16259. for (int i = 0; i < n_kv; ++i) {
  16260. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16261. keyfound = i;
  16262. break;
  16263. }
  16264. }
  16265. return keyfound;
  16266. }
  16267. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16268. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16269. return ctx->kv[key_id].key.data;
  16270. }
  16271. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16272. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16273. return ctx->kv[key_id].type;
  16274. }
  16275. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16276. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16277. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16278. return ctx->kv[key_id].value.arr.type;
  16279. }
  16280. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16281. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16282. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16283. return ctx->kv[key_id].value.arr.data;
  16284. }
  16285. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16286. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16287. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16288. struct gguf_kv * kv = &ctx->kv[key_id];
  16289. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16290. return str->data;
  16291. }
  16292. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16293. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16294. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16295. return ctx->kv[key_id].value.arr.n;
  16296. }
  16297. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16298. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16299. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16300. return ctx->kv[key_id].value.uint8;
  16301. }
  16302. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16303. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16304. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16305. return ctx->kv[key_id].value.int8;
  16306. }
  16307. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16308. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16309. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16310. return ctx->kv[key_id].value.uint16;
  16311. }
  16312. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16313. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16314. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16315. return ctx->kv[key_id].value.int16;
  16316. }
  16317. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16318. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16319. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16320. return ctx->kv[key_id].value.uint32;
  16321. }
  16322. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16323. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16324. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16325. return ctx->kv[key_id].value.int32;
  16326. }
  16327. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16328. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16329. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16330. return ctx->kv[key_id].value.float32;
  16331. }
  16332. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16333. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16334. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16335. return ctx->kv[key_id].value.uint64;
  16336. }
  16337. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16338. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16339. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16340. return ctx->kv[key_id].value.int64;
  16341. }
  16342. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16343. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16344. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16345. return ctx->kv[key_id].value.float64;
  16346. }
  16347. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16348. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16349. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16350. return ctx->kv[key_id].value.bool_;
  16351. }
  16352. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16353. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16354. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16355. return ctx->kv[key_id].value.str.data;
  16356. }
  16357. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16358. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16359. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16360. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16361. return &ctx->kv[key_id].value;
  16362. }
  16363. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16364. return ctx->header.n_tensors;
  16365. }
  16366. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16367. // return -1 if tensor not found
  16368. int tensorfound = -1;
  16369. const int n_tensors = gguf_get_n_tensors(ctx);
  16370. for (int i = 0; i < n_tensors; ++i) {
  16371. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16372. tensorfound = i;
  16373. break;
  16374. }
  16375. }
  16376. return tensorfound;
  16377. }
  16378. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16379. return ctx->infos[i].offset;
  16380. }
  16381. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16382. return ctx->infos[i].name.data;
  16383. }
  16384. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16385. return ctx->infos[i].type;
  16386. }
  16387. // returns the index
  16388. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16389. const int idx = gguf_find_key(ctx, key);
  16390. if (idx >= 0) {
  16391. return idx;
  16392. }
  16393. const int n_kv = gguf_get_n_kv(ctx);
  16394. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16395. ctx->kv[n_kv].key.n = strlen(key);
  16396. ctx->kv[n_kv].key.data = strdup(key);
  16397. ctx->header.n_kv++;
  16398. return n_kv;
  16399. }
  16400. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16401. const int idx = gguf_get_or_add_key(ctx, key);
  16402. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16403. ctx->kv[idx].value.uint8 = val;
  16404. }
  16405. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16406. const int idx = gguf_get_or_add_key(ctx, key);
  16407. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16408. ctx->kv[idx].value.int8 = val;
  16409. }
  16410. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16411. const int idx = gguf_get_or_add_key(ctx, key);
  16412. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16413. ctx->kv[idx].value.uint16 = val;
  16414. }
  16415. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16416. const int idx = gguf_get_or_add_key(ctx, key);
  16417. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16418. ctx->kv[idx].value.int16 = val;
  16419. }
  16420. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16421. const int idx = gguf_get_or_add_key(ctx, key);
  16422. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16423. ctx->kv[idx].value.uint32 = val;
  16424. }
  16425. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16426. const int idx = gguf_get_or_add_key(ctx, key);
  16427. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16428. ctx->kv[idx].value.int32 = val;
  16429. }
  16430. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16431. const int idx = gguf_get_or_add_key(ctx, key);
  16432. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16433. ctx->kv[idx].value.float32 = val;
  16434. }
  16435. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16436. const int idx = gguf_get_or_add_key(ctx, key);
  16437. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16438. ctx->kv[idx].value.uint64 = val;
  16439. }
  16440. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16441. const int idx = gguf_get_or_add_key(ctx, key);
  16442. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16443. ctx->kv[idx].value.int64 = val;
  16444. }
  16445. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16446. const int idx = gguf_get_or_add_key(ctx, key);
  16447. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16448. ctx->kv[idx].value.float64 = val;
  16449. }
  16450. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16451. const int idx = gguf_get_or_add_key(ctx, key);
  16452. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16453. ctx->kv[idx].value.bool_ = val;
  16454. }
  16455. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16456. const int idx = gguf_get_or_add_key(ctx, key);
  16457. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16458. ctx->kv[idx].value.str.n = strlen(val);
  16459. ctx->kv[idx].value.str.data = strdup(val);
  16460. }
  16461. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16462. const int idx = gguf_get_or_add_key(ctx, key);
  16463. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16464. ctx->kv[idx].value.arr.type = type;
  16465. ctx->kv[idx].value.arr.n = n;
  16466. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16467. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16468. }
  16469. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16470. const int idx = gguf_get_or_add_key(ctx, key);
  16471. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16472. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16473. ctx->kv[idx].value.arr.n = n;
  16474. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16475. for (int i = 0; i < n; i++) {
  16476. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16477. str->n = strlen(data[i]);
  16478. str->data = strdup(data[i]);
  16479. }
  16480. }
  16481. // set or add KV pairs from another context
  16482. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16483. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16484. switch (src->kv[i].type) {
  16485. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16486. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16487. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16488. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16489. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16490. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16491. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16492. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16493. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16494. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16495. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16496. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16497. case GGUF_TYPE_ARRAY:
  16498. {
  16499. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16500. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16501. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16502. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16503. }
  16504. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16505. free((void *)data);
  16506. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16507. GGML_ASSERT(false && "nested arrays not supported");
  16508. } else {
  16509. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16510. }
  16511. } break;
  16512. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16513. }
  16514. }
  16515. }
  16516. void gguf_add_tensor(
  16517. struct gguf_context * ctx,
  16518. const struct ggml_tensor * tensor) {
  16519. const int idx = ctx->header.n_tensors;
  16520. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16521. ctx->infos[idx].name.n = strlen(tensor->name);
  16522. ctx->infos[idx].name.data = strdup(tensor->name);
  16523. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16524. ctx->infos[idx].ne[i] = 1;
  16525. }
  16526. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16527. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16528. ctx->infos[idx].ne[i] = tensor->ne[i];
  16529. }
  16530. ctx->infos[idx].type = tensor->type;
  16531. ctx->infos[idx].offset = 0;
  16532. ctx->infos[idx].data = tensor->data;
  16533. ctx->infos[idx].size = ggml_nbytes(tensor);
  16534. if (ctx->header.n_tensors > 0) {
  16535. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16536. }
  16537. ctx->header.n_tensors++;
  16538. }
  16539. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16540. const int idx = gguf_find_tensor(ctx, name);
  16541. if (idx < 0) {
  16542. GGML_ASSERT(false && "tensor not found");
  16543. }
  16544. ctx->infos[idx].type = type;
  16545. }
  16546. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16547. const int idx = gguf_find_tensor(ctx, name);
  16548. if (idx < 0) {
  16549. GGML_ASSERT(false && "tensor not found");
  16550. }
  16551. ctx->infos[idx].data = data;
  16552. ctx->infos[idx].size = size;
  16553. // update offsets
  16554. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16555. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16556. }
  16557. }
  16558. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16559. // fwrite(&val->n, sizeof(val->n), 1, file);
  16560. // fwrite(val->data, sizeof(char), val->n, file);
  16561. //}
  16562. //
  16563. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16564. // fwrite(val, sizeof(char), size, file);
  16565. //}
  16566. struct gguf_buf {
  16567. void * data;
  16568. size_t size;
  16569. size_t offset;
  16570. };
  16571. static struct gguf_buf gguf_buf_init(size_t size) {
  16572. struct gguf_buf buf = {
  16573. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16574. /*buf.size =*/ size,
  16575. /*buf.offset =*/ 0,
  16576. };
  16577. return buf;
  16578. }
  16579. static void gguf_buf_free(struct gguf_buf buf) {
  16580. if (buf.data) {
  16581. free(buf.data);
  16582. }
  16583. }
  16584. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16585. if (buf->offset + size > buf->size) {
  16586. buf->size = 1.5*(buf->offset + size);
  16587. if (buf->data) {
  16588. buf->data = realloc(buf->data, buf->size);
  16589. }
  16590. }
  16591. }
  16592. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16593. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16594. if (buf->data) {
  16595. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16596. }
  16597. buf->offset += sizeof(val->n);
  16598. if (buf->data) {
  16599. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16600. }
  16601. buf->offset += val->n;
  16602. }
  16603. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16604. gguf_buf_grow(buf, el_size);
  16605. if (buf->data) {
  16606. memcpy((char *) buf->data + buf->offset, val, el_size);
  16607. }
  16608. buf->offset += el_size;
  16609. }
  16610. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16611. // write header
  16612. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16613. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16614. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16615. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16616. // write key-value pairs
  16617. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16618. struct gguf_kv * kv = &ctx->kv[i];
  16619. gguf_bwrite_str(buf, &kv->key);
  16620. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16621. switch (kv->type) {
  16622. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16623. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16624. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16625. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16626. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16627. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16628. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16629. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16630. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16631. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16632. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16633. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16634. case GGUF_TYPE_ARRAY:
  16635. {
  16636. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16637. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16638. switch (kv->value.arr.type) {
  16639. case GGUF_TYPE_UINT8:
  16640. case GGUF_TYPE_INT8:
  16641. case GGUF_TYPE_UINT16:
  16642. case GGUF_TYPE_INT16:
  16643. case GGUF_TYPE_UINT32:
  16644. case GGUF_TYPE_INT32:
  16645. case GGUF_TYPE_FLOAT32:
  16646. case GGUF_TYPE_UINT64:
  16647. case GGUF_TYPE_INT64:
  16648. case GGUF_TYPE_FLOAT64:
  16649. case GGUF_TYPE_BOOL:
  16650. {
  16651. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16652. } break;
  16653. case GGUF_TYPE_STRING:
  16654. {
  16655. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16656. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16657. }
  16658. } break;
  16659. case GGUF_TYPE_ARRAY:
  16660. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16661. }
  16662. } break;
  16663. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16664. }
  16665. }
  16666. // write tensor infos
  16667. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16668. struct gguf_tensor_info * info = &ctx->infos[i];
  16669. gguf_bwrite_str(buf, &info->name);
  16670. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16671. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16672. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16673. }
  16674. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16675. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16676. }
  16677. // we require the data section to be aligned, so take into account any padding
  16678. {
  16679. const size_t offset = buf->offset;
  16680. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16681. if (offset_pad != offset) {
  16682. uint8_t pad = 0;
  16683. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16684. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16685. }
  16686. }
  16687. }
  16688. if (only_meta) {
  16689. return;
  16690. }
  16691. size_t offset = 0;
  16692. // write tensor data
  16693. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16694. struct gguf_tensor_info * info = &ctx->infos[i];
  16695. const size_t size = info->size;
  16696. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16697. gguf_bwrite_el(buf, info->data, size);
  16698. if (size_pad != size) {
  16699. uint8_t pad = 0;
  16700. for (size_t j = 0; j < size_pad - size; ++j) {
  16701. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16702. }
  16703. }
  16704. GGML_ASSERT(offset == info->offset);
  16705. offset += size_pad;
  16706. }
  16707. }
  16708. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16709. FILE * file = fopen(fname, "wb");
  16710. if (!file) {
  16711. GGML_ASSERT(false && "failed to open file for writing");
  16712. }
  16713. struct gguf_buf buf = gguf_buf_init(16*1024);
  16714. gguf_write_to_buf(ctx, &buf, only_meta);
  16715. fwrite(buf.data, 1, buf.offset, file);
  16716. gguf_buf_free(buf);
  16717. fclose(file);
  16718. }
  16719. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16720. // no allocs - only compute size
  16721. struct gguf_buf buf = gguf_buf_init(0);
  16722. gguf_write_to_buf(ctx, &buf, true);
  16723. return buf.offset;
  16724. }
  16725. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16726. struct gguf_buf buf = gguf_buf_init(16*1024);
  16727. gguf_write_to_buf(ctx, &buf, true);
  16728. memcpy(data, buf.data, buf.offset);
  16729. gguf_buf_free(buf);
  16730. }
  16731. ////////////////////////////////////////////////////////////////////////////////
  16732. int ggml_cpu_has_avx(void) {
  16733. #if defined(__AVX__)
  16734. return 1;
  16735. #else
  16736. return 0;
  16737. #endif
  16738. }
  16739. int ggml_cpu_has_avx_vnni(void) {
  16740. #if defined(__AVXVNNI__)
  16741. return 1;
  16742. #else
  16743. return 0;
  16744. #endif
  16745. }
  16746. int ggml_cpu_has_avx2(void) {
  16747. #if defined(__AVX2__)
  16748. return 1;
  16749. #else
  16750. return 0;
  16751. #endif
  16752. }
  16753. int ggml_cpu_has_avx512(void) {
  16754. #if defined(__AVX512F__)
  16755. return 1;
  16756. #else
  16757. return 0;
  16758. #endif
  16759. }
  16760. int ggml_cpu_has_avx512_vbmi(void) {
  16761. #if defined(__AVX512VBMI__)
  16762. return 1;
  16763. #else
  16764. return 0;
  16765. #endif
  16766. }
  16767. int ggml_cpu_has_avx512_vnni(void) {
  16768. #if defined(__AVX512VNNI__)
  16769. return 1;
  16770. #else
  16771. return 0;
  16772. #endif
  16773. }
  16774. int ggml_cpu_has_fma(void) {
  16775. #if defined(__FMA__)
  16776. return 1;
  16777. #else
  16778. return 0;
  16779. #endif
  16780. }
  16781. int ggml_cpu_has_neon(void) {
  16782. #if defined(__ARM_NEON)
  16783. return 1;
  16784. #else
  16785. return 0;
  16786. #endif
  16787. }
  16788. int ggml_cpu_has_arm_fma(void) {
  16789. #if defined(__ARM_FEATURE_FMA)
  16790. return 1;
  16791. #else
  16792. return 0;
  16793. #endif
  16794. }
  16795. int ggml_cpu_has_metal(void) {
  16796. #if defined(GGML_USE_METAL)
  16797. return 1;
  16798. #else
  16799. return 0;
  16800. #endif
  16801. }
  16802. int ggml_cpu_has_f16c(void) {
  16803. #if defined(__F16C__)
  16804. return 1;
  16805. #else
  16806. return 0;
  16807. #endif
  16808. }
  16809. int ggml_cpu_has_fp16_va(void) {
  16810. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16811. return 1;
  16812. #else
  16813. return 0;
  16814. #endif
  16815. }
  16816. int ggml_cpu_has_wasm_simd(void) {
  16817. #if defined(__wasm_simd128__)
  16818. return 1;
  16819. #else
  16820. return 0;
  16821. #endif
  16822. }
  16823. int ggml_cpu_has_blas(void) {
  16824. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16825. return 1;
  16826. #else
  16827. return 0;
  16828. #endif
  16829. }
  16830. int ggml_cpu_has_cublas(void) {
  16831. #if defined(GGML_USE_CUBLAS)
  16832. return 1;
  16833. #else
  16834. return 0;
  16835. #endif
  16836. }
  16837. int ggml_cpu_has_clblast(void) {
  16838. #if defined(GGML_USE_CLBLAST)
  16839. return 1;
  16840. #else
  16841. return 0;
  16842. #endif
  16843. }
  16844. int ggml_cpu_has_gpublas(void) {
  16845. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16846. }
  16847. int ggml_cpu_has_sse3(void) {
  16848. #if defined(__SSE3__)
  16849. return 1;
  16850. #else
  16851. return 0;
  16852. #endif
  16853. }
  16854. int ggml_cpu_has_ssse3(void) {
  16855. #if defined(__SSSE3__)
  16856. return 1;
  16857. #else
  16858. return 0;
  16859. #endif
  16860. }
  16861. int ggml_cpu_has_vsx(void) {
  16862. #if defined(__POWER9_VECTOR__)
  16863. return 1;
  16864. #else
  16865. return 0;
  16866. #endif
  16867. }
  16868. ////////////////////////////////////////////////////////////////////////////////