convert_hf_to_gguf.py 411 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. dry_run: bool
  59. part_names: list[str]
  60. is_safetensors: bool
  61. hparams: dict[str, Any]
  62. tensor_names: set[str] | None
  63. gguf_writer: gguf.GGUFWriter
  64. model_name: str | None
  65. metadata_override: Path | None
  66. dir_model_card: Path
  67. remote_hf_model_id: str | None
  68. # subclasses should define this!
  69. model_arch: gguf.MODEL_ARCH
  70. # subclasses should initialize this!
  71. block_count: int
  72. tensor_map: gguf.TensorNameMap
  73. # Mistral format specifics
  74. is_mistral_format: bool = False
  75. disable_mistral_community_chat_template: bool = False
  76. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  77. use_temp_file: bool = False, eager: bool = False,
  78. metadata_override: Path | None = None, model_name: str | None = None,
  79. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  80. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  81. disable_mistral_community_chat_template: bool = False):
  82. if type(self) is ModelBase or \
  83. type(self) is TextModel or \
  84. type(self) is MmprojModel:
  85. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  86. self.dir_model = dir_model
  87. self.ftype = ftype
  88. self.fname_out = fname_out
  89. self.is_big_endian = is_big_endian
  90. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  91. self.use_temp_file = use_temp_file
  92. self.lazy = not eager or (remote_hf_model_id is not None)
  93. self.dry_run = dry_run
  94. self.remote_hf_model_id = remote_hf_model_id
  95. if remote_hf_model_id is not None:
  96. self.is_safetensors = True
  97. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  98. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  99. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  100. self.tensor_names = set(name for name in remote_tensors.keys())
  101. for name, remote_tensor in remote_tensors.items():
  102. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  103. self.get_tensors = get_remote_tensors
  104. else:
  105. prefix = "model" if not self.is_mistral_format else "consolidated"
  106. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  107. self.is_safetensors = len(self.part_names) > 0
  108. if not self.is_safetensors:
  109. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  110. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  111. self.tensor_names = None
  112. self.metadata_override = metadata_override
  113. self.model_name = model_name
  114. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  115. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  116. if self.ftype == gguf.LlamaFileType.GUESSED:
  117. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  118. _, first_tensor = next(self.get_tensors())
  119. if first_tensor.dtype == torch.float16:
  120. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  121. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  122. else:
  123. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. # Configure GGUF Writer
  126. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  127. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  128. # Mistral specific
  129. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  130. @classmethod
  131. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  132. stem, suffix = path.stem, path.suffix
  133. new_name = f"{prefix}{stem}{suffix}"
  134. return path.with_name(new_name)
  135. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  136. key = next((k for k in keys if k in self.hparams), None)
  137. if key is not None:
  138. return self.hparams[key]
  139. if optional:
  140. return None
  141. raise KeyError(f"could not find any of: {keys}")
  142. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  143. tensor_names_from_parts: set[str] = set()
  144. if not self.is_mistral_format:
  145. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  146. index_name += ".index.json"
  147. index_file = self.dir_model / index_name
  148. if index_file.is_file():
  149. self.tensor_names = set()
  150. logger.info(f"gguf: loading model weight map from '{index_name}'")
  151. with open(index_file, "r", encoding="utf-8") as f:
  152. index: dict[str, Any] = json.load(f)
  153. weight_map = index.get("weight_map")
  154. if weight_map is None or not isinstance(weight_map, dict):
  155. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  156. self.tensor_names.update(weight_map.keys())
  157. else:
  158. self.tensor_names = tensor_names_from_parts
  159. weight_map = {}
  160. else:
  161. self.tensor_names = tensor_names_from_parts
  162. weight_map = {}
  163. for part_name in self.part_names:
  164. logger.info(f"gguf: loading model part '{part_name}'")
  165. ctx: ContextManager[Any]
  166. if self.is_safetensors:
  167. from safetensors import safe_open
  168. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  169. else:
  170. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  171. with ctx as model_part:
  172. tensor_names_from_parts.update(model_part.keys())
  173. for name in model_part.keys():
  174. if self.is_safetensors:
  175. if self.lazy:
  176. data = model_part.get_slice(name)
  177. data = LazyTorchTensor.from_safetensors_slice(data)
  178. else:
  179. data = model_part.get_tensor(name)
  180. else:
  181. data = model_part[name]
  182. if self.lazy:
  183. data = LazyTorchTensor.from_eager(data)
  184. yield name, data
  185. # verify tensor name presence and identify potentially missing files
  186. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  187. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  188. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  189. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  190. if len(extra) == 0 and len(missing_files) > 0:
  191. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  192. f"Missing tensors: {missing}")
  193. else:
  194. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  195. f"Missing tensors: {missing}\n"
  196. f"Extra tensors: {extra}")
  197. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  198. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  199. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  200. name: str = gguf.TENSOR_NAMES[key]
  201. if "{bid}" in name:
  202. assert bid is not None
  203. name = name.format(bid=bid)
  204. return name + suffix
  205. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  206. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  207. return False
  208. key_name: str = gguf.TENSOR_NAMES[key]
  209. if "{bid}" in key_name:
  210. if bid is None:
  211. return False
  212. key_name = key_name.format(bid=bid)
  213. else:
  214. if bid is not None:
  215. return False
  216. return name == (key_name + suffix)
  217. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  218. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  219. if new_name is None:
  220. raise ValueError(f"Can not map tensor {name!r}")
  221. return new_name
  222. def set_gguf_parameters(self):
  223. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  225. del bid # unused
  226. return [(self.map_tensor_name(name), data_torch)]
  227. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  228. del name, new_name, bid, n_dims # unused
  229. return False
  230. # some models need extra generated tensors (like rope_freqs)
  231. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  232. return ()
  233. def prepare_tensors(self):
  234. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  235. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  236. # we don't need these
  237. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  238. continue
  239. old_dtype = data_torch.dtype
  240. # convert any unsupported data types to float32
  241. if data_torch.dtype not in (torch.float16, torch.float32):
  242. data_torch = data_torch.to(torch.float32)
  243. # use the first number-like part of the tensor name as the block id
  244. bid = None
  245. for part in name.split("."):
  246. if part.isdecimal():
  247. bid = int(part)
  248. break
  249. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  250. # TODO: why do we squeeze here?
  251. # data = data_torch.squeeze().numpy()
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  278. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  279. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  280. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  281. )
  282. )
  283. or not new_name.endswith(".weight")
  284. ):
  285. data_qtype = gguf.GGMLQuantizationType.F32
  286. if data_qtype is False and any(
  287. self.match_model_tensor_name(new_name, key, bid)
  288. for key in (
  289. gguf.MODEL_TENSOR.TOKEN_EMBD,
  290. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  291. gguf.MODEL_TENSOR.OUTPUT,
  292. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  293. gguf.MODEL_TENSOR.LAUREL_L,
  294. gguf.MODEL_TENSOR.LAUREL_R,
  295. )
  296. ):
  297. if self.ftype in (
  298. gguf.LlamaFileType.MOSTLY_TQ1_0,
  299. gguf.LlamaFileType.MOSTLY_TQ2_0,
  300. ):
  301. # TODO: use Q4_K and Q6_K
  302. data_qtype = gguf.GGMLQuantizationType.F16
  303. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  304. if isinstance(data_qtype, bool):
  305. if self.ftype == gguf.LlamaFileType.ALL_F32:
  306. data_qtype = gguf.GGMLQuantizationType.F32
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  308. data_qtype = gguf.GGMLQuantizationType.F16
  309. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  310. data_qtype = gguf.GGMLQuantizationType.BF16
  311. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  312. data_qtype = gguf.GGMLQuantizationType.Q8_0
  313. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  314. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  315. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  316. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  317. else:
  318. raise ValueError(f"Unknown file type: {self.ftype.name}")
  319. try:
  320. data = gguf.quants.quantize(data, data_qtype)
  321. except gguf.QuantError as e:
  322. logger.warning("%s, %s", e, "falling back to F16")
  323. data_qtype = gguf.GGMLQuantizationType.F16
  324. data = gguf.quants.quantize(data, data_qtype)
  325. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  326. # reverse shape to make it similar to the internal ggml dimension order
  327. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  328. # n_dims is implicit in the shape
  329. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  330. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  331. def set_type(self):
  332. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  333. def prepare_metadata(self, vocab_only: bool):
  334. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  335. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  336. # If we are using HF model id, set the metadata name to the model id
  337. if self.remote_hf_model_id:
  338. self.metadata.name = self.remote_hf_model_id
  339. # Fallback to model directory name if metadata name is still missing
  340. if self.metadata.name is None:
  341. self.metadata.name = self.dir_model.name
  342. # Generate parameter weight class (useful for leader boards) if not yet determined
  343. if self.metadata.size_label is None and total_params > 0:
  344. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model quantization version")
  351. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  352. def write_vocab(self):
  353. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. @staticmethod
  362. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  363. part_names: list[str] = []
  364. for filename in os.listdir(dir_model):
  365. if filename.startswith(prefix) and filename.endswith(suffix):
  366. part_names.append(filename)
  367. part_names.sort()
  368. return part_names
  369. @staticmethod
  370. def load_hparams(dir_model: Path, is_mistral_format: bool):
  371. if is_mistral_format:
  372. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  373. config = json.load(f)
  374. return config
  375. try:
  376. # for security reason, we don't allow loading remote code by default
  377. # if a model need remote code, we will fallback to config.json
  378. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  379. except Exception as e:
  380. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  381. logger.warning("Trying to load config.json instead")
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. config = json.load(f)
  384. if "llm_config" in config:
  385. # rename for InternVL
  386. config["text_config"] = config["llm_config"]
  387. if "thinker_config" in config:
  388. # rename for Qwen2.5-Omni
  389. config["text_config"] = config["thinker_config"]["text_config"]
  390. return config
  391. @classmethod
  392. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  393. assert names
  394. def func(modelcls: AnyModel) -> AnyModel:
  395. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  396. for name in names:
  397. cls._model_classes[model_type][name] = modelcls
  398. return modelcls
  399. return func
  400. @classmethod
  401. def print_registered_models(cls):
  402. for model_type, model_classes in cls._model_classes.items():
  403. logger.error(f"{model_type.name} models:")
  404. for name in sorted(model_classes.keys()):
  405. logger.error(f" - {name}")
  406. @classmethod
  407. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  408. try:
  409. return cls._model_classes[model_type][arch]
  410. except KeyError:
  411. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  412. class TextModel(ModelBase):
  413. model_type = ModelType.TEXT
  414. hf_arch: str
  415. def __init__(self, *args, **kwargs):
  416. super().__init__(*args, **kwargs)
  417. if not self.is_mistral_format:
  418. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  419. else:
  420. self.hf_arch = ""
  421. if "text_config" in self.hparams:
  422. # move the text_config to the root level
  423. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  424. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  425. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  426. @classmethod
  427. def __init_subclass__(cls):
  428. # can't use an abstract property, because overriding it without type errors
  429. # would require using decorated functions instead of simply defining the property
  430. if "model_arch" not in cls.__dict__:
  431. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  432. def set_vocab(self):
  433. self._set_vocab_gpt2()
  434. def prepare_metadata(self, vocab_only: bool):
  435. super().prepare_metadata(vocab_only=vocab_only)
  436. total_params = self.gguf_writer.get_total_parameter_count()[0]
  437. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  438. output_type: str = self.ftype.name.partition("_")[2]
  439. # Filename Output
  440. if self.fname_out.is_dir():
  441. # Generate default filename based on model specification and available metadata
  442. if not vocab_only:
  443. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  444. else:
  445. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  446. # Use the default filename
  447. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  448. else:
  449. # Output path is a custom defined templated filename
  450. # Note: `not is_dir()` is used because `.is_file()` will not detect
  451. # file template strings as it doesn't actually exist as a file
  452. # Process templated file name with the output ftype, useful with the "auto" ftype
  453. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  454. logger.info("Set model tokenizer")
  455. self.set_vocab()
  456. def set_gguf_parameters(self):
  457. self.gguf_writer.add_block_count(self.block_count)
  458. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  459. self.gguf_writer.add_context_length(n_ctx)
  460. logger.info(f"gguf: context length = {n_ctx}")
  461. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  462. self.gguf_writer.add_embedding_length(n_embd)
  463. logger.info(f"gguf: embedding length = {n_embd}")
  464. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  465. self.gguf_writer.add_feed_forward_length(n_ff)
  466. logger.info(f"gguf: feed forward length = {n_ff}")
  467. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  468. self.gguf_writer.add_head_count(n_head)
  469. logger.info(f"gguf: head count = {n_head}")
  470. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  471. self.gguf_writer.add_head_count_kv(n_head_kv)
  472. logger.info(f"gguf: key-value head count = {n_head_kv}")
  473. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  474. self.gguf_writer.add_rope_freq_base(rope_theta)
  475. logger.info(f"gguf: rope theta = {rope_theta}")
  476. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  477. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  478. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  479. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  480. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  481. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  482. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  483. self.gguf_writer.add_expert_count(n_experts)
  484. logger.info(f"gguf: expert count = {n_experts}")
  485. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  486. self.gguf_writer.add_expert_used_count(n_experts_used)
  487. logger.info(f"gguf: experts used count = {n_experts_used}")
  488. if (head_dim := self.hparams.get("head_dim")) is not None:
  489. self.gguf_writer.add_key_length(head_dim)
  490. self.gguf_writer.add_value_length(head_dim)
  491. self.gguf_writer.add_file_type(self.ftype)
  492. logger.info(f"gguf: file type = {self.ftype}")
  493. def write_vocab(self):
  494. if len(self.gguf_writer.tensors) != 1:
  495. raise ValueError('Splitting the vocabulary is not supported')
  496. self.prepare_metadata(vocab_only=True)
  497. self.gguf_writer.write_header_to_file(path=self.fname_out)
  498. self.gguf_writer.write_kv_data_to_file()
  499. self.gguf_writer.close()
  500. def does_token_look_special(self, token: str | bytes) -> bool:
  501. if isinstance(token, (bytes, bytearray)):
  502. token_text = token.decode(encoding="utf-8")
  503. elif isinstance(token, memoryview):
  504. token_text = token.tobytes().decode(encoding="utf-8")
  505. else:
  506. token_text = token
  507. # Some models mark some added tokens which ought to be control tokens as not special.
  508. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  509. seems_special = token_text in (
  510. "<pad>", # deepseek-coder
  511. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  512. )
  513. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  514. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  515. # TODO: should these be marked as UNUSED instead? (maybe not)
  516. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  517. return seems_special
  518. # used for GPT-2 BPE and WordPiece vocabs
  519. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  520. tokens: list[str] = []
  521. toktypes: list[int] = []
  522. from transformers import AutoTokenizer
  523. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  524. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  525. assert max(tokenizer.vocab.values()) < vocab_size
  526. tokpre = self.get_vocab_base_pre(tokenizer)
  527. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  528. added_vocab = tokenizer.get_added_vocab()
  529. added_tokens_decoder = tokenizer.added_tokens_decoder
  530. for i in range(vocab_size):
  531. if i not in reverse_vocab:
  532. tokens.append(f"[PAD{i}]")
  533. toktypes.append(gguf.TokenType.UNUSED)
  534. else:
  535. token: str = reverse_vocab[i]
  536. if token in added_vocab:
  537. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  538. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  539. if not added_tokens_decoder[i].normalized:
  540. previous_token = token
  541. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  542. if previous_token != token:
  543. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  544. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  545. toktypes.append(gguf.TokenType.CONTROL)
  546. else:
  547. # NOTE: this was added for Gemma.
  548. # Encoding and decoding the tokens above isn't sufficient for this case.
  549. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  550. toktypes.append(gguf.TokenType.USER_DEFINED)
  551. else:
  552. toktypes.append(gguf.TokenType.NORMAL)
  553. tokens.append(token)
  554. return tokens, toktypes, tokpre
  555. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  556. # do not modify it manually!
  557. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  558. # Marker: Start get_vocab_base_pre
  559. def get_vocab_base_pre(self, tokenizer) -> str:
  560. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  561. # is specific for the BPE pre-tokenizer used by the model
  562. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  563. # use in llama.cpp to implement the same pre-tokenizer
  564. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  565. chktok = tokenizer.encode(chktxt)
  566. chkhsh = sha256(str(chktok).encode()).hexdigest()
  567. logger.debug(f"chktok: {chktok}")
  568. logger.debug(f"chkhsh: {chkhsh}")
  569. res = None
  570. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  571. # or pull the latest version of the model from Huggingface
  572. # don't edit the hashes manually!
  573. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  574. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  575. res = "chatglm-bpe"
  576. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  577. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  578. res = "chatglm-bpe"
  579. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  580. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  581. res = "glm4"
  582. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  583. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  584. res = "glm4"
  585. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  586. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  587. res = "minerva-7b"
  588. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  589. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  590. res = "hunyuan"
  591. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  592. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  593. res = "hunyuan-dense"
  594. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  595. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  596. res = "falcon-h1"
  597. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  598. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  599. res = "falcon-h1"
  600. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  601. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  602. res = "falcon-h1"
  603. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  604. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  605. res = "falcon-h1"
  606. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  607. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  608. res = "kimi-k2"
  609. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  610. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  611. res = "qwen2"
  612. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  613. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  614. res = "llama-bpe"
  615. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  616. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  617. res = "deepseek-llm"
  618. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  619. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  620. res = "deepseek-coder"
  621. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  622. # ref: https://huggingface.co/tiiuae/falcon-7b
  623. res = "falcon"
  624. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  625. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  626. res = "bert-bge"
  627. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  628. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  629. res = "falcon3"
  630. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  631. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  632. res = "bert-bge-large"
  633. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  634. # ref: https://huggingface.co/mosaicml/mpt-7b
  635. res = "mpt"
  636. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  637. # ref: https://huggingface.co/bigcode/starcoder2-3b
  638. res = "starcoder"
  639. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  640. # ref: https://huggingface.co/openai-community/gpt2
  641. res = "gpt-2"
  642. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  643. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  644. res = "stablelm2"
  645. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  646. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  647. res = "refact"
  648. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  649. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  650. res = "command-r"
  651. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  652. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  653. res = "qwen2"
  654. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  655. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  656. res = "olmo"
  657. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  658. # ref: https://huggingface.co/databricks/dbrx-base
  659. res = "dbrx"
  660. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  661. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  662. res = "jina-v1-en"
  663. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  664. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  665. res = "jina-v2-en"
  666. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  667. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  668. res = "jina-v2-es"
  669. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  670. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  671. res = "jina-v2-de"
  672. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  673. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  674. res = "smaug-bpe"
  675. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  676. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  677. res = "poro-chat"
  678. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  679. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  680. res = "jina-v2-code"
  681. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  682. # ref: https://huggingface.co/LumiOpen/Viking-7B
  683. res = "viking"
  684. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  685. # ref: https://huggingface.co/core42/jais-13b
  686. res = "jais"
  687. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  688. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  689. res = "codeshell"
  690. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  691. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  692. res = "tekken"
  693. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  694. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  695. res = "smollm"
  696. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  697. # ref: https://huggingface.co/bigscience/bloom
  698. res = "bloom"
  699. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  700. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  701. res = "gpt3-finnish"
  702. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  703. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  704. res = "exaone"
  705. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  706. # ref: https://huggingface.co/microsoft/phi-2
  707. res = "phi-2"
  708. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  709. # ref: https://huggingface.co/facebook/chameleon-7b
  710. res = "chameleon"
  711. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  712. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  713. res = "roberta-bpe"
  714. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  715. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  716. res = "gigachat"
  717. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  718. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  719. res = "megrez"
  720. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  721. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  722. res = "deepseek-v3"
  723. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  724. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  725. res = "deepseek-r1-qwen"
  726. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  727. # ref: https://huggingface.co/Xenova/gpt-4o
  728. res = "gpt-4o"
  729. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  730. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  731. res = "superbpe"
  732. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  733. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  734. res = "trillion"
  735. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  736. # ref: https://huggingface.co/inclusionAI/Ling-lite
  737. res = "bailingmoe"
  738. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  739. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  740. res = "llama4"
  741. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  742. # ref: https://huggingface.co/mistral-community/pixtral-12b
  743. res = "pixtral"
  744. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  745. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  746. res = "seed-coder"
  747. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  748. # ref: https://huggingface.co/skt/A.X-4.0
  749. res = "a.x-4.0"
  750. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  751. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  752. res = "midm-2.0"
  753. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  754. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  755. res = "lfm2"
  756. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  757. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  758. res = "exaone4"
  759. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  760. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  761. res = "mellum"
  762. if res is None:
  763. logger.warning("\n")
  764. logger.warning("**************************************************************************************")
  765. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  766. logger.warning("** There are 2 possible reasons for this:")
  767. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  768. logger.warning("** - the pre-tokenization config has changed upstream")
  769. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  770. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  771. logger.warning("**")
  772. logger.warning(f"** chkhsh: {chkhsh}")
  773. logger.warning("**************************************************************************************")
  774. logger.warning("\n")
  775. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  776. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  777. logger.debug(f"chkhsh: {chkhsh}")
  778. return res
  779. # Marker: End get_vocab_base_pre
  780. def _set_vocab_none(self) -> None:
  781. self.gguf_writer.add_tokenizer_model("none")
  782. def _set_vocab_gpt2(self) -> None:
  783. tokens, toktypes, tokpre = self.get_vocab_base()
  784. self.gguf_writer.add_tokenizer_model("gpt2")
  785. self.gguf_writer.add_tokenizer_pre(tokpre)
  786. self.gguf_writer.add_token_list(tokens)
  787. self.gguf_writer.add_token_types(toktypes)
  788. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  789. special_vocab.add_to_gguf(self.gguf_writer)
  790. def _set_vocab_qwen(self):
  791. dir_model = self.dir_model
  792. hparams = self.hparams
  793. tokens: list[str] = []
  794. toktypes: list[int] = []
  795. from transformers import AutoTokenizer
  796. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  797. vocab_size = hparams["vocab_size"]
  798. assert max(tokenizer.get_vocab().values()) < vocab_size
  799. tokpre = self.get_vocab_base_pre(tokenizer)
  800. merges = []
  801. vocab = {}
  802. mergeable_ranks = tokenizer.mergeable_ranks
  803. for token, rank in mergeable_ranks.items():
  804. vocab[QwenModel.token_bytes_to_string(token)] = rank
  805. if len(token) == 1:
  806. continue
  807. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  808. assert len(merged) == 2
  809. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  810. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  811. added_vocab = tokenizer.special_tokens
  812. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  813. for i in range(vocab_size):
  814. if i not in reverse_vocab:
  815. tokens.append(f"[PAD{i}]")
  816. toktypes.append(gguf.TokenType.UNUSED)
  817. elif reverse_vocab[i] in added_vocab:
  818. tokens.append(reverse_vocab[i])
  819. toktypes.append(gguf.TokenType.CONTROL)
  820. else:
  821. tokens.append(reverse_vocab[i])
  822. toktypes.append(gguf.TokenType.NORMAL)
  823. self.gguf_writer.add_tokenizer_model("gpt2")
  824. self.gguf_writer.add_tokenizer_pre(tokpre)
  825. self.gguf_writer.add_token_list(tokens)
  826. self.gguf_writer.add_token_types(toktypes)
  827. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  828. special_vocab.merges = merges
  829. # only add special tokens when they were not already loaded from config.json
  830. if len(special_vocab.special_token_ids) == 0:
  831. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  832. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  833. # this one is usually not in config.json anyway
  834. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  835. special_vocab.add_to_gguf(self.gguf_writer)
  836. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  837. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  838. self.gguf_writer.add_tokenizer_model("llama")
  839. self.gguf_writer.add_tokenizer_pre("default")
  840. self.gguf_writer.add_token_list(tokens)
  841. self.gguf_writer.add_token_scores(scores)
  842. self.gguf_writer.add_token_types(toktypes)
  843. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  844. special_vocab.add_to_gguf(self.gguf_writer)
  845. def _create_vocab_sentencepiece(self):
  846. from sentencepiece import SentencePieceProcessor
  847. tokenizer_path = self.dir_model / 'tokenizer.model'
  848. if not tokenizer_path.is_file():
  849. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  850. tokenizer = SentencePieceProcessor()
  851. tokenizer.LoadFromFile(str(tokenizer_path))
  852. vocab_size = self.find_hparam([
  853. "vocab_size_per_layer_input", # gemma3n
  854. "vocab_size",
  855. ], optional=True) or tokenizer.vocab_size()
  856. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  857. scores: list[float] = [-10000.0] * vocab_size
  858. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  859. for token_id in range(tokenizer.vocab_size()):
  860. if token_id >= vocab_size:
  861. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  862. break
  863. piece = tokenizer.IdToPiece(token_id)
  864. text = piece.encode("utf-8")
  865. score = tokenizer.GetScore(token_id)
  866. toktype = SentencePieceTokenTypes.NORMAL
  867. if tokenizer.IsUnknown(token_id):
  868. toktype = SentencePieceTokenTypes.UNKNOWN
  869. elif tokenizer.IsControl(token_id):
  870. toktype = SentencePieceTokenTypes.CONTROL
  871. elif tokenizer.IsUnused(token_id):
  872. toktype = SentencePieceTokenTypes.UNUSED
  873. elif tokenizer.IsByte(token_id):
  874. toktype = SentencePieceTokenTypes.BYTE
  875. tokens[token_id] = text
  876. scores[token_id] = score
  877. toktypes[token_id] = toktype
  878. added_tokens_file = self.dir_model / 'added_tokens.json'
  879. if added_tokens_file.is_file():
  880. with open(added_tokens_file, "r", encoding="utf-8") as f:
  881. added_tokens_json = json.load(f)
  882. for key in added_tokens_json:
  883. token_id = added_tokens_json[key]
  884. if token_id >= vocab_size:
  885. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  886. continue
  887. tokens[token_id] = key.encode("utf-8")
  888. scores[token_id] = -1000.0
  889. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  890. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  891. if tokenizer_config_file.is_file():
  892. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  893. tokenizer_config_json = json.load(f)
  894. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  895. for token_id, token_data in added_tokens_decoder.items():
  896. token_id = int(token_id)
  897. token: str = token_data["content"]
  898. if token_id >= vocab_size:
  899. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  900. continue
  901. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  902. if tokens[token_id] != token.encode("utf-8"):
  903. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  904. if token_data.get("special") or self.does_token_look_special(token):
  905. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  906. else:
  907. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  908. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  909. scores[token_id] = -1000.0
  910. tokens[token_id] = token.encode("utf-8")
  911. if vocab_size > len(tokens):
  912. pad_count = vocab_size - len(tokens)
  913. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  914. for i in range(1, pad_count + 1):
  915. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  916. scores.append(-1000.0)
  917. toktypes.append(SentencePieceTokenTypes.UNUSED)
  918. return tokens, scores, toktypes
  919. def _set_vocab_llama_hf(self):
  920. vocab = gguf.LlamaHfVocab(self.dir_model)
  921. tokens = []
  922. scores = []
  923. toktypes = []
  924. for text, score, toktype in vocab.all_tokens():
  925. tokens.append(text)
  926. scores.append(score)
  927. toktypes.append(toktype)
  928. assert len(tokens) == vocab.vocab_size
  929. self.gguf_writer.add_tokenizer_model("llama")
  930. self.gguf_writer.add_tokenizer_pre("default")
  931. self.gguf_writer.add_token_list(tokens)
  932. self.gguf_writer.add_token_scores(scores)
  933. self.gguf_writer.add_token_types(toktypes)
  934. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  935. special_vocab.add_to_gguf(self.gguf_writer)
  936. def _set_vocab_rwkv_world(self):
  937. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  938. vocab_size = self.hparams.get("vocab_size", 65536)
  939. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  940. toktypes: list[int] = [gguf.TokenType.CONTROL]
  941. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  942. lines = f.readlines()
  943. for line in lines:
  944. parts = line.split(' ')
  945. assert len(parts) >= 3
  946. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  947. token = token.encode("utf-8") if isinstance(token, str) else token
  948. assert isinstance(token, bytes)
  949. assert len(token) == token_len
  950. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  951. tokens.append(token_text.encode("utf-8"))
  952. toktypes.append(gguf.TokenType.NORMAL)
  953. remainder = vocab_size - len(tokens)
  954. assert remainder >= 0
  955. for i in range(len(tokens), vocab_size):
  956. tokens.append(f"[PAD{i}]".encode("utf-8"))
  957. toktypes.append(gguf.TokenType.UNUSED)
  958. self.gguf_writer.add_tokenizer_model("rwkv")
  959. self.gguf_writer.add_token_list(tokens)
  960. self.gguf_writer.add_token_types(toktypes)
  961. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  962. if special_vocab.chat_template is None:
  963. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  964. if template_path.is_file():
  965. with open(template_path, "r", encoding="utf-8") as f:
  966. template = f.read()
  967. else:
  968. template = "rwkv-world"
  969. special_vocab.chat_template = template
  970. # hack: Add '\n\n' as the EOT token to make it chat normally
  971. special_vocab._set_special_token("eot", 261)
  972. # hack: Override these as they have already been set (incorrectly)
  973. special_vocab.special_token_ids["bos"] = 0
  974. special_vocab.special_token_ids["eos"] = 0
  975. special_vocab.add_to_gguf(self.gguf_writer)
  976. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  977. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  978. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  979. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  980. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  981. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  982. assert field # tokenizer model
  983. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  984. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  985. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  986. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  987. assert field # token list
  988. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  989. if model_name == "llama-spm":
  990. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  991. assert field # token scores
  992. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  993. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  994. assert field # token types
  995. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  996. if model_name != "llama-spm":
  997. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  998. assert field # token merges
  999. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1000. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1001. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1002. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1003. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1004. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1005. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1006. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1007. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1008. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1009. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1010. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1011. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1012. def _try_set_pooling_type(self) -> None:
  1013. # get pooling path
  1014. pooling_path = None
  1015. module_path = self.dir_model / "modules.json"
  1016. if module_path.is_file():
  1017. with open(module_path, encoding="utf-8") as f:
  1018. modules = json.load(f)
  1019. for mod in modules:
  1020. if mod["type"] == "sentence_transformers.models.Pooling":
  1021. pooling_path = mod["path"]
  1022. break
  1023. # get pooling type
  1024. if pooling_path is not None:
  1025. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1026. pooling = json.load(f)
  1027. if pooling["pooling_mode_mean_tokens"]:
  1028. pooling_type = gguf.PoolingType.MEAN
  1029. elif pooling["pooling_mode_cls_token"]:
  1030. pooling_type = gguf.PoolingType.CLS
  1031. elif pooling["pooling_mode_lasttoken"]:
  1032. pooling_type = gguf.PoolingType.LAST
  1033. else:
  1034. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1035. self.gguf_writer.add_pooling_type(pooling_type)
  1036. def _set_vocab_interns1(self):
  1037. tokens: list[str] = []
  1038. toktypes: list[int] = []
  1039. from transformers import AutoTokenizer
  1040. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1041. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1042. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1043. assert max(vocab.values()) < vocab_size
  1044. tokpre = self.get_vocab_base_pre(tokenizer)
  1045. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1046. added_vocab = tokenizer.get_added_vocab()
  1047. added_tokens_decoder = tokenizer.added_tokens_decoder
  1048. for i in range(vocab_size):
  1049. if i not in reverse_vocab:
  1050. tokens.append(f"[PAD{i}]")
  1051. toktypes.append(gguf.TokenType.UNUSED)
  1052. else:
  1053. token: str = reverse_vocab[i]
  1054. if token in added_vocab:
  1055. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1056. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1057. if not added_tokens_decoder[i].normalized:
  1058. previous_token = token
  1059. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1060. if previous_token != token:
  1061. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1062. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1063. toktypes.append(gguf.TokenType.CONTROL)
  1064. else:
  1065. toktypes.append(gguf.TokenType.USER_DEFINED)
  1066. else:
  1067. toktypes.append(gguf.TokenType.NORMAL)
  1068. tokens.append(token)
  1069. self.gguf_writer.add_tokenizer_model("gpt2")
  1070. self.gguf_writer.add_tokenizer_pre(tokpre)
  1071. self.gguf_writer.add_token_list(tokens)
  1072. self.gguf_writer.add_token_types(toktypes)
  1073. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1074. special_vocab._set_special_token("bos", 151643)
  1075. special_vocab.add_to_gguf(self.gguf_writer)
  1076. class MmprojModel(ModelBase):
  1077. model_type = ModelType.MMPROJ
  1078. model_arch = gguf.MODEL_ARCH.MMPROJ
  1079. preprocessor_config: dict[str, Any]
  1080. global_config: dict[str, Any]
  1081. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1082. has_vision_encoder: bool = True # by default
  1083. has_audio_encoder: bool = False
  1084. # for models having multiple encoders, we need to separate their hparams
  1085. hparams_vision: dict[str, Any] | None = None
  1086. hparams_audio: dict[str, Any] | None = None
  1087. def __init__(self, *args, **kwargs):
  1088. super().__init__(*args, **kwargs)
  1089. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1090. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1091. # get n_embd of the text model
  1092. if not self.is_mistral_format:
  1093. if "text_config" not in self.hparams:
  1094. self.hparams["text_config"] = {}
  1095. if "audio_config" not in self.hparams:
  1096. self.hparams["audio_config"] = {}
  1097. text_config = {**self.hparams, **self.hparams["text_config"]}
  1098. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1099. else:
  1100. text_config = {
  1101. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1102. }
  1103. self.n_embd_text = text_config.get("hidden_dim", 0)
  1104. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1105. # move vision config to the top level, while preserving the original hparams in global_config
  1106. import copy
  1107. self.global_config = copy.deepcopy(self.hparams)
  1108. self.hparams_vision = self.get_vision_config()
  1109. self.hparams_audio = self.get_audio_config()
  1110. if self.hparams_vision is None and self.hparams_audio is None:
  1111. raise ValueError("vision_config / audio_config not found in hparams")
  1112. # for compat with vision-only models
  1113. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1114. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1115. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1116. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1117. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1118. # load preprocessor config
  1119. if not self.is_mistral_format:
  1120. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1121. self.preprocessor_config = json.load(f)
  1122. def get_vision_config(self) -> dict[str, Any] | None:
  1123. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1124. return self.global_config.get(config_name)
  1125. def get_audio_config(self) -> dict[str, Any] | None:
  1126. return self.global_config.get("audio_config")
  1127. def set_type(self):
  1128. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1129. def set_gguf_parameters(self):
  1130. self.gguf_writer.add_file_type(self.ftype)
  1131. if self.has_vision_encoder:
  1132. self.gguf_writer.add_clip_has_vision_encoder(True)
  1133. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1134. # vision config
  1135. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1136. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1137. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1138. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1139. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1140. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1141. # preprocessor config
  1142. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1143. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1144. self.gguf_writer.add_vision_image_mean(image_mean)
  1145. self.gguf_writer.add_vision_image_std(image_std)
  1146. if self.has_audio_encoder:
  1147. self.gguf_writer.add_clip_has_audio_encoder(True)
  1148. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1149. # audio config
  1150. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1151. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1152. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1153. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1154. if not self.has_vision_encoder and not self.has_audio_encoder:
  1155. raise ValueError("MmprojModel must have either vision or audio encoder")
  1156. def write_vocab(self):
  1157. raise ValueError("MmprojModel does not support vocab writing")
  1158. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1159. assert self.hparams_vision is not None
  1160. return self._find_param(self.hparams_vision, keys, optional)
  1161. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1162. assert self.hparams_audio is not None
  1163. return self._find_param(self.hparams_audio, keys, optional)
  1164. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1165. key = next((k for k in keys if k in obj), None)
  1166. if key is not None:
  1167. return obj[key]
  1168. if optional:
  1169. return None
  1170. raise KeyError(f"could not find any of: {keys}")
  1171. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1172. del bid, name, n_dims # unused
  1173. if ".patch_embd.weight" in new_name:
  1174. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1175. return False
  1176. @ModelBase.register("GPTNeoXForCausalLM")
  1177. class GPTNeoXModel(TextModel):
  1178. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1179. def set_gguf_parameters(self):
  1180. block_count = self.hparams["num_hidden_layers"]
  1181. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1182. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1183. self.gguf_writer.add_block_count(block_count)
  1184. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1185. self.gguf_writer.add_rope_dimension_count(
  1186. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1187. )
  1188. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1189. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1190. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1192. del bid # unused
  1193. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1194. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1195. tensors: list[tuple[str, Tensor]] = []
  1196. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1197. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1198. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1199. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1200. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1201. data_torch = torch.cat(
  1202. (
  1203. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1204. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1205. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1206. ),
  1207. dim=0,
  1208. )
  1209. logger.info("re-format attention.linear_qkv.weight")
  1210. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1211. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1212. data_torch = torch.cat(
  1213. (
  1214. qkv_bias[:, 0, :].reshape((n_embed,)),
  1215. qkv_bias[:, 1, :].reshape((n_embed,)),
  1216. qkv_bias[:, 2, :].reshape((n_embed,)),
  1217. ),
  1218. dim=0,
  1219. )
  1220. logger.info("re-format attention.linear_qkv.bias")
  1221. tensors.append((self.map_tensor_name(name), data_torch))
  1222. return tensors
  1223. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1224. class BloomModel(TextModel):
  1225. model_arch = gguf.MODEL_ARCH.BLOOM
  1226. def set_gguf_parameters(self):
  1227. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1228. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1229. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1230. self.gguf_writer.add_embedding_length(n_embed)
  1231. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1232. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1233. self.gguf_writer.add_head_count(n_head)
  1234. self.gguf_writer.add_head_count_kv(n_head)
  1235. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1236. self.gguf_writer.add_file_type(self.ftype)
  1237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1238. del bid # unused
  1239. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1240. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1241. name = re.sub(r'transformer\.', '', name)
  1242. tensors: list[tuple[str, Tensor]] = []
  1243. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1244. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1245. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1246. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1247. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1248. data_torch = torch.cat(
  1249. (
  1250. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1251. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1252. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1253. ),
  1254. dim=0,
  1255. )
  1256. logger.info("re-format attention.linear_qkv.weight")
  1257. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1258. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1259. data_torch = torch.cat(
  1260. (
  1261. qkv_bias[:, 0, :].reshape((n_embed,)),
  1262. qkv_bias[:, 1, :].reshape((n_embed,)),
  1263. qkv_bias[:, 2, :].reshape((n_embed,)),
  1264. ),
  1265. dim=0,
  1266. )
  1267. logger.info("re-format attention.linear_qkv.bias")
  1268. tensors.append((self.map_tensor_name(name), data_torch))
  1269. return tensors
  1270. @ModelBase.register("MPTForCausalLM")
  1271. class MPTModel(TextModel):
  1272. model_arch = gguf.MODEL_ARCH.MPT
  1273. def set_vocab(self):
  1274. try:
  1275. self._set_vocab_gpt2()
  1276. except Exception:
  1277. # Fallback for SEA-LION model
  1278. self._set_vocab_sentencepiece()
  1279. self.gguf_writer.add_add_bos_token(False)
  1280. self.gguf_writer.add_pad_token_id(3)
  1281. self.gguf_writer.add_eos_token_id(1)
  1282. self.gguf_writer.add_unk_token_id(0)
  1283. def set_gguf_parameters(self):
  1284. block_count = self.hparams["n_layers"]
  1285. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1286. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1287. self.gguf_writer.add_block_count(block_count)
  1288. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1289. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1290. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1291. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1292. self.gguf_writer.add_layer_norm_eps(1e-5)
  1293. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1294. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1295. if self.hparams["attn_config"]["alibi"]:
  1296. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1297. else:
  1298. self.gguf_writer.add_max_alibi_bias(0.0)
  1299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1300. del bid # unused
  1301. if "scales" in name:
  1302. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1303. new_name = new_name.replace("scales", "act.scales")
  1304. else:
  1305. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1306. return [(new_name, data_torch)]
  1307. @ModelBase.register("OrionForCausalLM")
  1308. class OrionModel(TextModel):
  1309. model_arch = gguf.MODEL_ARCH.ORION
  1310. def set_vocab(self):
  1311. self._set_vocab_sentencepiece()
  1312. def set_gguf_parameters(self):
  1313. block_count = self.hparams["num_hidden_layers"]
  1314. head_count = self.hparams["num_attention_heads"]
  1315. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1316. ctx_length = 0
  1317. if "max_sequence_length" in self.hparams:
  1318. ctx_length = self.hparams["max_sequence_length"]
  1319. elif "max_position_embeddings" in self.hparams:
  1320. ctx_length = self.hparams["max_position_embeddings"]
  1321. elif "model_max_length" in self.hparams:
  1322. ctx_length = self.hparams["model_max_length"]
  1323. else:
  1324. raise ValueError("gguf: can not find ctx length parameter.")
  1325. self.gguf_writer.add_file_type(self.ftype)
  1326. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1327. self.gguf_writer.add_context_length(ctx_length)
  1328. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1329. self.gguf_writer.add_block_count(block_count)
  1330. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1331. self.gguf_writer.add_head_count(head_count)
  1332. self.gguf_writer.add_head_count_kv(head_count_kv)
  1333. # note: config provides rms norm but it is actually layer norm
  1334. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1335. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1336. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1337. class BaichuanModel(TextModel):
  1338. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1339. def set_vocab(self):
  1340. self._set_vocab_sentencepiece()
  1341. def set_gguf_parameters(self):
  1342. block_count = self.hparams["num_hidden_layers"]
  1343. head_count = self.hparams["num_attention_heads"]
  1344. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1345. ctx_length = 0
  1346. if "max_sequence_length" in self.hparams:
  1347. ctx_length = self.hparams["max_sequence_length"]
  1348. elif "max_position_embeddings" in self.hparams:
  1349. ctx_length = self.hparams["max_position_embeddings"]
  1350. elif "model_max_length" in self.hparams:
  1351. ctx_length = self.hparams["model_max_length"]
  1352. else:
  1353. raise ValueError("gguf: can not find ctx length parameter.")
  1354. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1355. self.gguf_writer.add_context_length(ctx_length)
  1356. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1357. self.gguf_writer.add_block_count(block_count)
  1358. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1359. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1360. self.gguf_writer.add_head_count(head_count)
  1361. self.gguf_writer.add_head_count_kv(head_count_kv)
  1362. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1363. self.gguf_writer.add_file_type(self.ftype)
  1364. rope_scaling = self.hparams.get("rope_scaling") or {}
  1365. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1366. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1367. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1369. head_count = self.hparams["num_attention_heads"]
  1370. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1371. tensors: list[tuple[str, Tensor]] = []
  1372. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1373. logger.info(f"Unpacking and permuting layer {bid}")
  1374. tensors = [
  1375. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1376. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1377. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1378. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1379. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1380. self._reverse_hf_part(data_torch, 2)),
  1381. ]
  1382. else:
  1383. tensors = [(self.map_tensor_name(name), data_torch)]
  1384. return tensors
  1385. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1386. if n_kv_head is not None and n_head != n_kv_head:
  1387. n_head //= n_kv_head
  1388. return (
  1389. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1390. .swapaxes(1, 2)
  1391. .reshape(weights.shape)
  1392. )
  1393. def _reverse_hf_permute_part(
  1394. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1395. ) -> Tensor:
  1396. r = weights.shape[0] // 3
  1397. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1398. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1399. r = weights.shape[0] // 3
  1400. return weights[r * n_part:r * n_part + r, ...]
  1401. @ModelBase.register("XverseForCausalLM")
  1402. class XverseModel(TextModel):
  1403. model_arch = gguf.MODEL_ARCH.XVERSE
  1404. def set_vocab(self):
  1405. assert (self.dir_model / "tokenizer.json").is_file()
  1406. dir_model = self.dir_model
  1407. hparams = self.hparams
  1408. tokens: list[bytes] = []
  1409. toktypes: list[int] = []
  1410. from transformers import AutoTokenizer
  1411. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1412. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1413. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1414. # because vocab_size is the count of items, and indexes start at 0.
  1415. max_vocab_index = max(tokenizer.get_vocab().values())
  1416. if max_vocab_index >= vocab_size:
  1417. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1418. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1419. added_vocab = tokenizer.get_added_vocab()
  1420. for token_id in range(vocab_size):
  1421. token_text = reverse_vocab[token_id].encode('utf-8')
  1422. # replace "\x00" to string with length > 0
  1423. if token_text == b"\x00":
  1424. toktype = gguf.TokenType.BYTE # special
  1425. token_text = f"<{token_text}>".encode('utf-8')
  1426. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1427. toktype = gguf.TokenType.BYTE # special
  1428. elif reverse_vocab[token_id] in added_vocab:
  1429. if tokenizer.added_tokens_decoder[token_id].special:
  1430. toktype = gguf.TokenType.CONTROL
  1431. else:
  1432. toktype = gguf.TokenType.USER_DEFINED
  1433. else:
  1434. toktype = gguf.TokenType.NORMAL
  1435. tokens.append(token_text)
  1436. toktypes.append(toktype)
  1437. self.gguf_writer.add_tokenizer_model("llama")
  1438. self.gguf_writer.add_tokenizer_pre("default")
  1439. self.gguf_writer.add_token_list(tokens)
  1440. self.gguf_writer.add_token_types(toktypes)
  1441. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1442. special_vocab.add_to_gguf(self.gguf_writer)
  1443. def set_gguf_parameters(self):
  1444. block_count = self.hparams["num_hidden_layers"]
  1445. head_count = self.hparams["num_attention_heads"]
  1446. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1447. ctx_length = 0
  1448. if "max_sequence_length" in self.hparams:
  1449. ctx_length = self.hparams["max_sequence_length"]
  1450. elif "max_position_embeddings" in self.hparams:
  1451. ctx_length = self.hparams["max_position_embeddings"]
  1452. elif "model_max_length" in self.hparams:
  1453. ctx_length = self.hparams["model_max_length"]
  1454. else:
  1455. raise ValueError("gguf: can not find ctx length parameter.")
  1456. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1457. self.gguf_writer.add_context_length(ctx_length)
  1458. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1459. self.gguf_writer.add_block_count(block_count)
  1460. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1461. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1462. self.gguf_writer.add_head_count(head_count)
  1463. self.gguf_writer.add_head_count_kv(head_count_kv)
  1464. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1465. self.gguf_writer.add_file_type(self.ftype)
  1466. rope_scaling = self.hparams.get("rope_scaling") or {}
  1467. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1468. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1469. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1470. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1471. del bid # unused
  1472. head_count = self.hparams["num_attention_heads"]
  1473. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1474. # HF models permute some of the tensors, so we need to undo that
  1475. if name.endswith("q_proj.weight"):
  1476. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1477. if name.endswith("k_proj.weight"):
  1478. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1479. return [(self.map_tensor_name(name), data_torch)]
  1480. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1481. if n_kv_head is not None and n_head != n_kv_head:
  1482. n_head //= n_kv_head
  1483. return (
  1484. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1485. .swapaxes(1, 2)
  1486. .reshape(weights.shape)
  1487. )
  1488. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1489. class FalconModel(TextModel):
  1490. model_arch = gguf.MODEL_ARCH.FALCON
  1491. def set_gguf_parameters(self):
  1492. block_count = self.hparams.get("num_hidden_layers")
  1493. if block_count is None:
  1494. block_count = self.hparams["n_layer"] # old name
  1495. n_head = self.hparams.get("num_attention_heads")
  1496. if n_head is None:
  1497. n_head = self.hparams["n_head"] # old name
  1498. n_head_kv = self.hparams.get("num_kv_heads")
  1499. if n_head_kv is None:
  1500. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1501. self.gguf_writer.add_context_length(2048) # not in config.json
  1502. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1503. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1504. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1505. self.gguf_writer.add_block_count(block_count)
  1506. self.gguf_writer.add_head_count(n_head)
  1507. self.gguf_writer.add_head_count_kv(n_head_kv)
  1508. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1509. self.gguf_writer.add_file_type(self.ftype)
  1510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1511. del bid # unused
  1512. # QKV tensor transform
  1513. # The original query_key_value tensor contains n_head_kv "kv groups",
  1514. # each consisting of n_head/n_head_kv query weights followed by one key
  1515. # and one value weight (shared by all query heads in the kv group).
  1516. # This layout makes it a big pain to work with in GGML.
  1517. # So we rearrange them here,, so that we have n_head query weights
  1518. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1519. # in contiguous fashion.
  1520. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1521. if "query_key_value" in name:
  1522. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1523. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1524. head_dim = self.hparams["hidden_size"] // n_head
  1525. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1526. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1527. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1528. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1529. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1530. return [(self.map_tensor_name(name), data_torch)]
  1531. @ModelBase.register("GPTBigCodeForCausalLM")
  1532. class StarCoderModel(TextModel):
  1533. model_arch = gguf.MODEL_ARCH.STARCODER
  1534. def set_gguf_parameters(self):
  1535. block_count = self.hparams["n_layer"]
  1536. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1537. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1538. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1539. self.gguf_writer.add_block_count(block_count)
  1540. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1541. self.gguf_writer.add_head_count_kv(1)
  1542. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1543. self.gguf_writer.add_file_type(self.ftype)
  1544. @ModelBase.register("GPTRefactForCausalLM")
  1545. class RefactModel(TextModel):
  1546. model_arch = gguf.MODEL_ARCH.REFACT
  1547. def set_vocab(self):
  1548. super().set_vocab()
  1549. # TODO: how to determine special FIM tokens automatically?
  1550. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1551. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1552. special_vocab._set_special_token("prefix", 1)
  1553. special_vocab._set_special_token("suffix", 3)
  1554. special_vocab._set_special_token("middle", 2)
  1555. special_vocab.chat_template = None # do not add it twice
  1556. special_vocab.add_to_gguf(self.gguf_writer)
  1557. def set_gguf_parameters(self):
  1558. hidden_dim = self.hparams["n_embd"]
  1559. inner_dim = 4 * hidden_dim
  1560. hidden_dim = int(2 * inner_dim / 3)
  1561. multiple_of = 256
  1562. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1563. block_count = self.hparams["n_layer"]
  1564. # refact uses Alibi. So this is from config.json which might be used by training.
  1565. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1566. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1567. self.gguf_writer.add_feed_forward_length(ff_dim)
  1568. self.gguf_writer.add_block_count(block_count)
  1569. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1570. self.gguf_writer.add_head_count_kv(1)
  1571. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1572. self.gguf_writer.add_file_type(self.ftype)
  1573. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1574. hidden_dim = self.hparams["n_embd"]
  1575. inner_dim = 4 * hidden_dim
  1576. hidden_dim = int(2 * inner_dim / 3)
  1577. multiple_of = 256
  1578. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1579. n_head = self.hparams["n_head"]
  1580. n_head_kv = 1
  1581. head_dim = self.hparams["n_embd"] // n_head
  1582. tensors: list[tuple[str, Tensor]] = []
  1583. if bid is not None:
  1584. if name == f"transformer.h.{bid}.attn.kv.weight":
  1585. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1586. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1587. elif name == f"transformer.h.{bid}.attn.q.weight":
  1588. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1589. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1590. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1591. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1592. if len(tensors) == 0:
  1593. tensors.append((self.map_tensor_name(name), data_torch))
  1594. return tensors
  1595. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1596. class StableLMModel(TextModel):
  1597. model_arch = gguf.MODEL_ARCH.STABLELM
  1598. def set_vocab(self):
  1599. if (self.dir_model / "tokenizer.json").is_file():
  1600. self._set_vocab_gpt2()
  1601. else:
  1602. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1603. self._set_vocab_qwen()
  1604. def set_gguf_parameters(self):
  1605. hparams = self.hparams
  1606. block_count = hparams["num_hidden_layers"]
  1607. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1608. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1609. self.gguf_writer.add_block_count(block_count)
  1610. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1611. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1612. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1613. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1614. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1615. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1616. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1617. self.gguf_writer.add_file_type(self.ftype)
  1618. _q_norms: list[dict[str, Tensor]] | None = None
  1619. _k_norms: list[dict[str, Tensor]] | None = None
  1620. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1621. n_head = self.hparams["num_attention_heads"]
  1622. n_kv_head = self.hparams["num_key_value_heads"]
  1623. if name.find("q_layernorm.norms") != -1:
  1624. assert bid is not None
  1625. if self._q_norms is None:
  1626. self._q_norms = [{} for _ in range(self.block_count)]
  1627. self._q_norms[bid][name] = data_torch
  1628. if len(self._q_norms[bid]) >= n_head:
  1629. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1630. else:
  1631. return []
  1632. if name.find("k_layernorm.norms") != -1:
  1633. assert bid is not None
  1634. if self._k_norms is None:
  1635. self._k_norms = [{} for _ in range(self.block_count)]
  1636. self._k_norms[bid][name] = data_torch
  1637. if len(self._k_norms[bid]) >= n_kv_head:
  1638. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1639. else:
  1640. return []
  1641. return [(self.map_tensor_name(name), data_torch)]
  1642. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1643. datas: list[Tensor] = []
  1644. # extract the norms in order
  1645. for xid in range(n_head):
  1646. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1647. datas.append(norms[ename])
  1648. del norms[ename]
  1649. data_torch = torch.stack(datas, dim=0)
  1650. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1651. new_name = self.map_tensor_name(merged_name)
  1652. return [(new_name, data_torch)]
  1653. def prepare_tensors(self):
  1654. super().prepare_tensors()
  1655. if self._q_norms is not None or self._k_norms is not None:
  1656. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1657. norms = (
  1658. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1659. ) + (
  1660. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1661. )
  1662. if len(norms) > 0:
  1663. raise ValueError(f"Unprocessed norms: {norms}")
  1664. @ModelBase.register(
  1665. "LLaMAForCausalLM",
  1666. "LlamaForCausalLM",
  1667. "MistralForCausalLM",
  1668. "MixtralForCausalLM",
  1669. "VLlama3ForCausalLM",
  1670. "LlavaForConditionalGeneration",
  1671. "VoxtralForConditionalGeneration",
  1672. "LlamaModel")
  1673. class LlamaModel(TextModel):
  1674. model_arch = gguf.MODEL_ARCH.LLAMA
  1675. undo_permute = True
  1676. def __init__(self, *args, **kwargs):
  1677. super().__init__(*args, **kwargs)
  1678. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1679. if self.hf_arch == "VLlama3ForCausalLM":
  1680. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1681. def _set_vocab_mistral(self):
  1682. vocab = MistralVocab(self.dir_model)
  1683. logger.info(
  1684. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1685. )
  1686. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1687. tokens = []
  1688. scores = []
  1689. toktypes = []
  1690. for text, score, toktype in vocab.all_tokens():
  1691. tokens.append(text)
  1692. scores.append(score)
  1693. toktypes.append(toktype)
  1694. assert len(tokens) == vocab.vocab_size, (
  1695. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1696. )
  1697. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1698. self.gguf_writer.add_tokenizer_pre("tekken")
  1699. self.gguf_writer.add_token_merges(
  1700. vocab.extract_vocab_merges_from_model()
  1701. )
  1702. logger.info(
  1703. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1704. )
  1705. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1706. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1707. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1708. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1709. self.gguf_writer.add_token_list(tokens)
  1710. self.gguf_writer.add_token_scores(scores)
  1711. self.gguf_writer.add_token_types(toktypes)
  1712. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1713. self.gguf_writer.add_add_bos_token(True)
  1714. self.gguf_writer.add_add_eos_token(False)
  1715. template_dir = Path(__file__).parent / "models/templates/"
  1716. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1717. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1718. if self.is_mistral_format:
  1719. logger.info(
  1720. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1721. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1722. )
  1723. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1724. self.gguf_writer.add_chat_template(template)
  1725. else:
  1726. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1727. def set_vocab(self):
  1728. if self.is_mistral_format:
  1729. return self._set_vocab_mistral()
  1730. path_tekken_json = self.dir_model / "tekken.json"
  1731. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1732. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1733. self._set_vocab_mistral()
  1734. try:
  1735. self._set_vocab_sentencepiece()
  1736. except FileNotFoundError:
  1737. try:
  1738. self._set_vocab_llama_hf()
  1739. except (FileNotFoundError, TypeError):
  1740. # Llama 3
  1741. self._set_vocab_gpt2()
  1742. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1743. if self.hparams.get("vocab_size", 32000) == 32016:
  1744. special_vocab = gguf.SpecialVocab(
  1745. self.dir_model, load_merges=False,
  1746. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1747. )
  1748. special_vocab._set_special_token("prefix", 32007)
  1749. special_vocab._set_special_token("suffix", 32008)
  1750. special_vocab._set_special_token("middle", 32009)
  1751. special_vocab._set_special_token("eot", 32010)
  1752. special_vocab.add_to_gguf(self.gguf_writer)
  1753. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1754. if tokenizer_config_file.is_file():
  1755. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1756. tokenizer_config_json = json.load(f)
  1757. if "add_prefix_space" in tokenizer_config_json:
  1758. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1759. # Apply to granite small models only
  1760. if self.hparams.get("vocab_size", 32000) == 49152:
  1761. self.gguf_writer.add_add_bos_token(False)
  1762. def set_gguf_parameters(self):
  1763. super().set_gguf_parameters()
  1764. hparams = self.hparams
  1765. if not self.is_mistral_format:
  1766. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1767. if (rope_dim := hparams.get("head_dim")) is None:
  1768. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1769. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1770. rope_scaling = self.hparams.get("rope_scaling") or {}
  1771. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1772. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1773. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1774. @staticmethod
  1775. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1776. if n_head_kv is not None and n_head != n_head_kv:
  1777. n_head = n_head_kv
  1778. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1779. .swapaxes(1, 2)
  1780. .reshape(weights.shape))
  1781. _experts: list[dict[str, Tensor]] | None = None
  1782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1783. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1784. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1785. vision_prefixes = [
  1786. "vision_encoder.",
  1787. "vision_language_adapter.",
  1788. "patch_merger.",
  1789. "pre_mm_projector_norm",
  1790. ]
  1791. is_multimodal_tensor = "vision_tower" in name \
  1792. or "vision_model" in name \
  1793. or "audio_tower" in name \
  1794. or "model.connector" in name \
  1795. or "multi_modal_projector" in name \
  1796. or any(
  1797. name.startswith(prefix)
  1798. for prefix in vision_prefixes
  1799. )
  1800. if is_multimodal_tensor:
  1801. return [] # skip vision tensors
  1802. elif self.hf_arch == "LlamaModel":
  1803. name = "model." + name
  1804. elif name.startswith("model.text_model"):
  1805. name = name.replace("text_model.", "") # for SmolVLM
  1806. elif name.startswith("language_model."):
  1807. name = name.replace("language_model.", "") # for the rest
  1808. if self.undo_permute:
  1809. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1810. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1811. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1812. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1813. # process the experts separately
  1814. if name.find("block_sparse_moe.experts") != -1:
  1815. n_experts = self.hparams["num_local_experts"]
  1816. assert bid is not None
  1817. if self._experts is None:
  1818. self._experts = [{} for _ in range(self.block_count)]
  1819. self._experts[bid][name] = data_torch
  1820. if len(self._experts[bid]) >= n_experts * 3:
  1821. tensors: list[tuple[str, Tensor]] = []
  1822. # merge the experts into a single 3d tensor
  1823. for wid in ["w1", "w2", "w3"]:
  1824. datas: list[Tensor] = []
  1825. for xid in range(n_experts):
  1826. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1827. datas.append(self._experts[bid][ename])
  1828. del self._experts[bid][ename]
  1829. data_torch = torch.stack(datas, dim=0)
  1830. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1831. new_name = self.map_tensor_name(merged_name)
  1832. tensors.append((new_name, data_torch))
  1833. return tensors
  1834. else:
  1835. return []
  1836. return [(self.map_tensor_name(name), data_torch)]
  1837. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1838. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1839. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1840. base = self.hparams.get("rope_theta", 10000.0)
  1841. if (dim := self.hparams.get("head_dim")) is None:
  1842. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1843. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1844. factor = rope_scaling.get("factor", 8.0)
  1845. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1846. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1847. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1848. low_freq_wavelen = old_context_len / low_freq_factor
  1849. high_freq_wavelen = old_context_len / high_freq_factor
  1850. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1851. rope_factors = []
  1852. for freq in freqs:
  1853. wavelen = 2 * math.pi / freq
  1854. if wavelen < high_freq_wavelen:
  1855. rope_factors.append(1)
  1856. elif wavelen > low_freq_wavelen:
  1857. rope_factors.append(factor)
  1858. else:
  1859. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1860. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1861. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1862. def prepare_tensors(self):
  1863. super().prepare_tensors()
  1864. if self._experts is not None:
  1865. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1866. experts = [k for d in self._experts for k in d.keys()]
  1867. if len(experts) > 0:
  1868. raise ValueError(f"Unprocessed experts: {experts}")
  1869. @ModelBase.register("ArceeForCausalLM")
  1870. class ArceeModel(LlamaModel):
  1871. model_arch = gguf.MODEL_ARCH.ARCEE
  1872. def set_gguf_parameters(self):
  1873. super().set_gguf_parameters()
  1874. self._try_set_pooling_type()
  1875. rope_scaling = self.hparams.get("rope_scaling") or {}
  1876. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1877. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1878. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1879. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1880. @ModelBase.register(
  1881. "LlavaForConditionalGeneration", # pixtral
  1882. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1883. )
  1884. class LlavaVisionModel(MmprojModel):
  1885. img_break_tok_id = -1
  1886. def __init__(self, *args, **kwargs):
  1887. super().__init__(*args, **kwargs)
  1888. if self.hparams.get("model_type") == "pixtral":
  1889. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1890. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1891. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1892. elif self.is_mistral_format:
  1893. # hparams is already vision config here so norm_eps is only defined in global_config.
  1894. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1895. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1896. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1897. else:
  1898. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1899. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1900. def get_token_id(self, token: str) -> int:
  1901. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1902. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1903. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1904. for id_, token_data in added_tokens_decoder.items():
  1905. if token_data["content"] == token:
  1906. return int(id_)
  1907. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1908. def set_gguf_parameters(self):
  1909. super().set_gguf_parameters()
  1910. hparams = self.hparams
  1911. if hparams.get("model_type") == "pixtral":
  1912. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1913. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1914. # hidden_act
  1915. if hparams["hidden_act"] == "silu":
  1916. self.gguf_writer.add_vision_use_silu(True)
  1917. elif hparams["hidden_act"] == "gelu":
  1918. self.gguf_writer.add_vision_use_gelu(True)
  1919. else:
  1920. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1921. # spatial_merge_size
  1922. if "spatial_merge_size" in self.global_config:
  1923. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1925. del bid # unused
  1926. n_head = (
  1927. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1928. )
  1929. n_kv_head = n_head
  1930. valid_prefixes = (
  1931. "multi_modal_projector.",
  1932. "vision_tower.",
  1933. "vision_encoder.",
  1934. "vision_language_adapter.",
  1935. "patch_merger.",
  1936. "pre_mm_projector_norm",
  1937. )
  1938. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1939. # process vision tensors
  1940. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1941. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1942. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1943. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1944. return [(self.map_tensor_name(name), data_torch)]
  1945. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1946. if self.img_break_tok_id > 0 and embed_key in name:
  1947. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1948. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1949. img_break_embd = data_torch[self.img_break_tok_id]
  1950. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1951. return [(self.map_tensor_name(name), img_break_embd)]
  1952. return [] # skip other tensors
  1953. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1954. class SmolVLMModel(MmprojModel):
  1955. def __init__(self, *args, **kwargs):
  1956. super().__init__(*args, **kwargs)
  1957. if self.hparams["model_type"] == "smolvlm_vision":
  1958. # fix for SmolVLM2, missing some keys in config.json
  1959. # default values are taken from transformers code
  1960. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1961. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1962. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1963. def set_gguf_parameters(self):
  1964. super().set_gguf_parameters()
  1965. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1966. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1967. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1968. self.gguf_writer.add_vision_use_gelu(True)
  1969. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1970. if ".embeddings." in name:
  1971. return gguf.GGMLQuantizationType.F32
  1972. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1974. del bid # unused
  1975. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1976. if is_vision_tensor:
  1977. return [(self.map_tensor_name(name), data_torch)]
  1978. return [] # skip other tensors
  1979. @ModelBase.register("Llama4ForConditionalGeneration")
  1980. class Llama4Model(LlamaModel):
  1981. model_arch = gguf.MODEL_ARCH.LLAMA4
  1982. undo_permute = False
  1983. def __init__(self, *args, **kwargs):
  1984. super().__init__(*args, **kwargs)
  1985. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1986. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1987. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1988. def set_vocab(self):
  1989. self._set_vocab_gpt2()
  1990. def set_gguf_parameters(self):
  1991. super().set_gguf_parameters()
  1992. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1993. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1995. if name.startswith("language_model."):
  1996. name = name.replace("language_model.", "")
  1997. # split the gate_up into gate and up
  1998. if "gate_up_proj" in name:
  1999. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2000. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2001. dim_half = data_torch.shape[-1] // 2
  2002. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2003. return [
  2004. (self.map_tensor_name(name_gate), gate_proj_weight),
  2005. (self.map_tensor_name(name_up), up_proj_weight)
  2006. ]
  2007. if name.endswith("down_proj"):
  2008. name += ".weight"
  2009. data_torch = data_torch.transpose(-1, -2)
  2010. if "multi_modal_projector" in name or "vision_model" in name:
  2011. return []
  2012. return super().modify_tensors(data_torch, name, bid)
  2013. @ModelBase.register("Llama4ForConditionalGeneration")
  2014. class Llama4VisionModel(MmprojModel):
  2015. def set_gguf_parameters(self):
  2016. super().set_gguf_parameters()
  2017. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2018. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2019. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2020. assert self.hparams["hidden_act"] == "gelu"
  2021. self.gguf_writer.add_vision_use_gelu(True)
  2022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2023. del bid # unused
  2024. if "multi_modal_projector" in name or "vision_model" in name:
  2025. # process vision tensors
  2026. if "positional_embedding_vlm" in name and ".weight" not in name:
  2027. name += ".weight"
  2028. if "multi_modal_projector.linear_1" in name:
  2029. # despite the name with number postfix, this is a single fully connected layer
  2030. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2031. return [(self.map_tensor_name(name), data_torch)]
  2032. return []
  2033. @ModelBase.register("Mistral3ForConditionalGeneration")
  2034. class Mistral3Model(LlamaModel):
  2035. model_arch = gguf.MODEL_ARCH.LLAMA
  2036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2037. name = name.replace("language_model.", "")
  2038. if "multi_modal_projector" in name or "vision_tower" in name:
  2039. return []
  2040. return super().modify_tensors(data_torch, name, bid)
  2041. @ModelBase.register("DeciLMForCausalLM")
  2042. class DeciModel(TextModel):
  2043. model_arch = gguf.MODEL_ARCH.DECI
  2044. @staticmethod
  2045. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2046. # DeciLM-specific code
  2047. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2048. return DeciModel._find_multiple(intermediate_size, 256)
  2049. @staticmethod
  2050. def _find_multiple(n: int, k: int) -> int:
  2051. # DeciLM-specific code
  2052. if n % k == 0:
  2053. return n
  2054. return n + k - (n % k)
  2055. def __init__(self, *args, **kwargs):
  2056. super().__init__(*args, **kwargs)
  2057. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2058. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2059. assert self.block_count == len(_block_configs)
  2060. self._num_kv_heads = list()
  2061. self._num_heads = list()
  2062. _ffn_multipliers = list()
  2063. # ***linear attention layer***
  2064. # if n_heads_in_group is None and replace_with_linear is True
  2065. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2066. # ***attention-free layer***
  2067. # if n_heads_in_group is None and replace_with_linear is False
  2068. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2069. # ***normal attention-layer***
  2070. # if n_heads_in_group is not None, then
  2071. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2072. # _num_heads[il] is num_attention_head
  2073. # ***dummy layer*** for nemotron 253B
  2074. # if n_heads_in_group is None and ffn_mult is None
  2075. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2076. for il in range(len(_block_configs)):
  2077. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2078. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2079. self._num_kv_heads.append(0)
  2080. self._num_heads.append(self.hparams["num_attention_heads"])
  2081. else:
  2082. self._num_kv_heads.append(0)
  2083. self._num_heads.append(0)
  2084. else:
  2085. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2086. self._num_heads.append(self.hparams["num_attention_heads"])
  2087. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2088. _ffn_multipliers.append(0.0)
  2089. else:
  2090. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2091. assert self.block_count == len(self._num_kv_heads)
  2092. assert self.block_count == len(self._num_heads)
  2093. assert self.block_count == len(_ffn_multipliers)
  2094. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2095. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2096. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2097. self._ffn_dims: list[int] = [
  2098. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2099. for multiplier in _ffn_multipliers
  2100. ]
  2101. def set_vocab(self):
  2102. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2103. # eos_token from '|eot_id|' to '|end_of_text|'
  2104. if self.hparams.get("vocab_size", 128256) == 128256:
  2105. tokens, toktypes, tokpre = self.get_vocab_base()
  2106. self.gguf_writer.add_tokenizer_model("gpt2")
  2107. self.gguf_writer.add_tokenizer_pre(tokpre)
  2108. self.gguf_writer.add_token_list(tokens)
  2109. self.gguf_writer.add_token_types(toktypes)
  2110. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2111. special_vocab.add_to_gguf(self.gguf_writer)
  2112. else:
  2113. # DeciLM-7B
  2114. self._set_vocab_llama_hf()
  2115. def set_gguf_parameters(self):
  2116. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2117. assert self.block_count == len(self._num_kv_heads)
  2118. assert self.block_count == len(self._num_heads)
  2119. assert self.block_count == len(self._ffn_dims)
  2120. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2121. self.gguf_writer.add_rope_freq_base(rope_theta)
  2122. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2123. self.gguf_writer.add_head_count(self._num_heads)
  2124. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2125. self.gguf_writer.add_block_count(self.block_count)
  2126. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2127. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2128. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2129. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2130. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2131. self.gguf_writer.add_file_type(self.ftype)
  2132. else: # DeciLM-7B
  2133. super().set_gguf_parameters()
  2134. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2135. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2136. assert self.block_count == len(self._num_kv_heads)
  2137. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2138. hparams = self.hparams
  2139. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2140. if (rope_dim := hparams.get("head_dim")) is None:
  2141. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2142. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2143. rope_scaling = self.hparams.get("rope_scaling") or {}
  2144. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2145. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2146. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2147. @staticmethod
  2148. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2149. if n_head_kv is not None and n_head != n_head_kv:
  2150. n_head = n_head_kv
  2151. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2152. .swapaxes(1, 2)
  2153. .reshape(weights.shape))
  2154. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2155. n_head = self.hparams["num_attention_heads"]
  2156. if bid is not None:
  2157. if "num_key_value_heads_per_layer" in self.hparams:
  2158. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2159. elif "block_configs" in self.hparams:
  2160. n_kv_head = self._num_kv_heads[bid]
  2161. n_head = self._num_heads[bid]
  2162. else:
  2163. n_kv_head = self.hparams.get("num_key_value_heads")
  2164. else:
  2165. n_kv_head = self.hparams.get("num_key_value_heads")
  2166. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2167. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2168. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2169. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2170. return [(self.map_tensor_name(name), data_torch)]
  2171. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2172. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2173. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2174. base = self.hparams.get("rope_theta", 10000.0)
  2175. if (dim := self.hparams.get("head_dim")) is None:
  2176. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2177. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2178. factor = rope_scaling.get("factor", 8.0)
  2179. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2180. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2181. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2182. low_freq_wavelen = old_context_len / low_freq_factor
  2183. high_freq_wavelen = old_context_len / high_freq_factor
  2184. assert low_freq_wavelen != high_freq_wavelen
  2185. rope_factors = []
  2186. for freq in freqs:
  2187. wavelen = 2 * math.pi / freq
  2188. if wavelen < high_freq_wavelen:
  2189. rope_factors.append(1)
  2190. elif wavelen > low_freq_wavelen:
  2191. rope_factors.append(factor)
  2192. else:
  2193. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2194. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2195. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2196. def prepare_tensors(self):
  2197. super().prepare_tensors()
  2198. @ModelBase.register("BitnetForCausalLM")
  2199. class BitnetModel(TextModel):
  2200. model_arch = gguf.MODEL_ARCH.BITNET
  2201. def set_vocab(self):
  2202. self._set_vocab_sentencepiece()
  2203. def set_gguf_parameters(self):
  2204. super().set_gguf_parameters()
  2205. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2206. self.gguf_writer.add_rope_scaling_factor(1.0)
  2207. def weight_quant(self, weight: Tensor) -> Tensor:
  2208. dtype = weight.dtype
  2209. weight = weight.float()
  2210. scale = weight.abs().mean().clamp(min=1e-5)
  2211. iscale = 1 / scale
  2212. # TODO: multiply by the scale directly instead of inverting it twice
  2213. # (this is also unnecessarily doubly inverted upstream)
  2214. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2215. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2216. return result.type(dtype)
  2217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2218. new_name = self.map_tensor_name(name)
  2219. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2220. gguf.MODEL_TENSOR.ATTN_Q,
  2221. gguf.MODEL_TENSOR.ATTN_K,
  2222. gguf.MODEL_TENSOR.ATTN_V,
  2223. gguf.MODEL_TENSOR.ATTN_OUT,
  2224. gguf.MODEL_TENSOR.FFN_UP,
  2225. gguf.MODEL_TENSOR.FFN_DOWN,
  2226. gguf.MODEL_TENSOR.FFN_GATE,
  2227. ]):
  2228. # transform weight into 1/0/-1 (in fp32)
  2229. data_torch = self.weight_quant(data_torch)
  2230. yield (new_name, data_torch)
  2231. @ModelBase.register("GrokForCausalLM")
  2232. class GrokModel(TextModel):
  2233. model_arch = gguf.MODEL_ARCH.GROK
  2234. def set_vocab(self):
  2235. self._set_vocab_sentencepiece()
  2236. def __init__(self, *args, **kwargs):
  2237. super().__init__(*args, **kwargs)
  2238. def set_gguf_parameters(self):
  2239. super().set_gguf_parameters()
  2240. _experts: list[dict[str, Tensor]] | None = None
  2241. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2242. # process the experts separately
  2243. if name.find(".moe.") != -1:
  2244. n_experts = self.hparams["num_local_experts"]
  2245. assert bid is not None
  2246. if self._experts is None:
  2247. self._experts = [{} for _ in range(self.block_count)]
  2248. self._experts[bid][name] = data_torch
  2249. if len(self._experts[bid]) >= n_experts * 3:
  2250. tensors: list[tuple[str, Tensor]] = []
  2251. # merge the experts into a single 3d tensor
  2252. for wid in ["linear", "linear_1", "linear_v"]:
  2253. datas: list[Tensor] = []
  2254. for xid in range(n_experts):
  2255. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2256. datas.append(self._experts[bid][ename])
  2257. del self._experts[bid][ename]
  2258. data_torch = torch.stack(datas, dim=0)
  2259. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2260. new_name = self.map_tensor_name(merged_name)
  2261. tensors.append((new_name, data_torch))
  2262. return tensors
  2263. else:
  2264. return []
  2265. return [(self.map_tensor_name(name), data_torch)]
  2266. @ModelBase.register("DbrxForCausalLM")
  2267. class DbrxModel(TextModel):
  2268. model_arch = gguf.MODEL_ARCH.DBRX
  2269. def set_gguf_parameters(self):
  2270. ffn_config = self.hparams["ffn_config"]
  2271. attn_config = self.hparams["attn_config"]
  2272. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2273. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2274. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2275. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2276. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2277. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2278. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2279. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2280. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2281. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2282. self.gguf_writer.add_layer_norm_eps(1e-5)
  2283. self.gguf_writer.add_file_type(self.ftype)
  2284. logger.info(f"gguf: file type = {self.ftype}")
  2285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2286. del bid # unused
  2287. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2288. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2289. n_embd = self.hparams["d_model"]
  2290. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2291. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2292. # But llama.cpp moe graph works differently
  2293. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2294. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2295. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2296. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2297. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2298. experts = False
  2299. for exp_tensor_name in exp_tensor_names.keys():
  2300. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2301. experts = True
  2302. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2303. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2304. data_torch = data_torch.permute(*permute_tensor)
  2305. break
  2306. # map tensor names
  2307. # In MoE models the ffn tensors are typically most of the model weights,
  2308. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2309. # Every other model has the weight names ending in .weight,
  2310. # let's assume that is the convention which is not the case for dbrx:
  2311. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2312. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2313. return [(new_name, data_torch)]
  2314. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2315. del name, new_name, bid # unused
  2316. return n_dims > 1
  2317. @ModelBase.register("MiniCPMForCausalLM")
  2318. class MiniCPMModel(TextModel):
  2319. model_arch = gguf.MODEL_ARCH.MINICPM
  2320. def set_gguf_parameters(self):
  2321. super().set_gguf_parameters()
  2322. embedding_scale = float(self.hparams["scale_emb"])
  2323. self.gguf_writer.add_embedding_scale(embedding_scale)
  2324. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2325. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2326. self.gguf_writer.add_residual_scale(residual_scale)
  2327. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2328. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2329. self.gguf_writer.add_logit_scale(logit_scale)
  2330. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2331. rope_scaling = self.hparams.get("rope_scaling") or {}
  2332. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2333. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2334. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2335. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2336. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2337. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2338. if rope_scaling is not None:
  2339. long_factors = rope_scaling.get('long_factor', None)
  2340. short_factors = rope_scaling.get('short_factor', None)
  2341. if long_factors is None or short_factors is None:
  2342. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2343. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2344. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2345. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2346. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2347. def set_vocab(self):
  2348. self._set_vocab_sentencepiece()
  2349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2350. del bid # unused
  2351. n_head = self.hparams["num_attention_heads"]
  2352. n_kv_head = self.hparams.get("num_key_value_heads")
  2353. # HF models permute some of the tensors, so we need to undo that
  2354. if name.endswith(("q_proj.weight")):
  2355. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2356. if name.endswith(("k_proj.weight")):
  2357. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2358. return [(self.map_tensor_name(name), data_torch)]
  2359. @ModelBase.register("MiniCPM3ForCausalLM")
  2360. class MiniCPM3Model(TextModel):
  2361. model_arch = gguf.MODEL_ARCH.MINICPM3
  2362. def set_gguf_parameters(self):
  2363. hparams = self.hparams
  2364. self.gguf_writer.add_file_type(self.ftype)
  2365. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2366. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2367. self.gguf_writer.add_block_count(self.block_count)
  2368. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2369. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2370. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2371. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2372. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2373. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2374. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2375. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2376. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2377. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2378. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2379. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2380. if rope_scaling is not None:
  2381. rope_dims = self.hparams["qk_rope_head_dim"]
  2382. long_factors = rope_scaling.get('long_factor', None)
  2383. short_factors = rope_scaling.get('short_factor', None)
  2384. if long_factors is None or short_factors is None:
  2385. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2386. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2387. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2388. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2389. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2390. def set_vocab(self):
  2391. self._set_vocab_sentencepiece()
  2392. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2393. if n_kv_head is not None and n_head != n_kv_head:
  2394. n_head //= n_kv_head
  2395. return (
  2396. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2397. .swapaxes(1, 2)
  2398. .reshape(weights.shape)
  2399. )
  2400. @ModelBase.register("QWenLMHeadModel")
  2401. class QwenModel(TextModel):
  2402. model_arch = gguf.MODEL_ARCH.QWEN
  2403. @staticmethod
  2404. def token_bytes_to_string(b):
  2405. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2406. byte_encoder = bytes_to_unicode()
  2407. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2408. @staticmethod
  2409. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2410. parts = [bytes([b]) for b in token]
  2411. while True:
  2412. min_idx = None
  2413. min_rank = None
  2414. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2415. rank = mergeable_ranks.get(pair[0] + pair[1])
  2416. if rank is not None and (min_rank is None or rank < min_rank):
  2417. min_idx = i
  2418. min_rank = rank
  2419. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2420. break
  2421. assert min_idx is not None
  2422. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2423. return parts
  2424. def set_vocab(self):
  2425. self._set_vocab_qwen()
  2426. def set_gguf_parameters(self):
  2427. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2428. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2429. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2430. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2431. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2432. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2433. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2434. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2435. self.gguf_writer.add_file_type(self.ftype)
  2436. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2437. class Qwen2Model(TextModel):
  2438. model_arch = gguf.MODEL_ARCH.QWEN2
  2439. def set_vocab(self):
  2440. try:
  2441. self._set_vocab_sentencepiece()
  2442. except FileNotFoundError:
  2443. self._set_vocab_gpt2()
  2444. def set_gguf_parameters(self):
  2445. super().set_gguf_parameters()
  2446. self._try_set_pooling_type()
  2447. rope_scaling = self.hparams.get("rope_scaling") or {}
  2448. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2449. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2450. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2451. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2453. if self.hf_arch == "Qwen2Model":
  2454. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2455. if "language_model." in name:
  2456. name = name.replace("language_model.", "") # for InternVL
  2457. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2458. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2459. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2460. # skip vision and audio tensors
  2461. return []
  2462. yield from super().modify_tensors(data_torch, name, bid)
  2463. @ModelBase.register("DreamModel")
  2464. class DreamModel(TextModel):
  2465. model_arch = gguf.MODEL_ARCH.DREAM
  2466. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2467. tokens: list[str] = []
  2468. toktypes: list[int] = []
  2469. from transformers import AutoTokenizer
  2470. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2471. vocab_dict = tokenizer.get_vocab()
  2472. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2473. assert max(vocab_dict.values()) < vocab_size
  2474. tokpre = self.get_vocab_base_pre(tokenizer)
  2475. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2476. added_vocab = tokenizer.get_added_vocab()
  2477. for i in range(vocab_size):
  2478. if i not in reverse_vocab:
  2479. tokens.append(f"[PAD{i}]")
  2480. toktypes.append(gguf.TokenType.UNUSED)
  2481. elif reverse_vocab[i] in added_vocab:
  2482. tokens.append(reverse_vocab[i])
  2483. # Check if it's a special token - treat special tokens as CONTROL tokens
  2484. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2485. if tokenizer.added_tokens_decoder[i].special:
  2486. toktypes.append(gguf.TokenType.CONTROL)
  2487. else:
  2488. toktypes.append(gguf.TokenType.USER_DEFINED)
  2489. else:
  2490. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2491. toktypes.append(gguf.TokenType.CONTROL)
  2492. else:
  2493. tokens.append(reverse_vocab[i])
  2494. toktypes.append(gguf.TokenType.NORMAL)
  2495. return tokens, toktypes, tokpre
  2496. def set_vocab(self):
  2497. try:
  2498. self._set_vocab_sentencepiece()
  2499. except FileNotFoundError:
  2500. self._set_vocab_gpt2()
  2501. def set_gguf_parameters(self):
  2502. super().set_gguf_parameters()
  2503. self._try_set_pooling_type()
  2504. # Dream models use non-causal attention for diffusion
  2505. self.gguf_writer.add_causal_attention(False)
  2506. # Handle RoPE scaling similar to Qwen2
  2507. rope_scaling = self.hparams.get("rope_scaling") or {}
  2508. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2509. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2510. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2511. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2512. # Add Dream-specific parameters
  2513. mask_token_id = self.hparams.get("mask_token_id")
  2514. if mask_token_id is not None:
  2515. self.gguf_writer.add_mask_token_id(mask_token_id)
  2516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2517. # Dream model tensors should be mapped directly since it's the base model
  2518. yield from super().modify_tensors(data_torch, name, bid)
  2519. @ModelBase.register("LLaDAModelLM")
  2520. class LLaDAModel(TextModel):
  2521. model_arch = gguf.MODEL_ARCH.LLADA
  2522. undo_permute = True
  2523. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2524. tokens: list[str] = []
  2525. toktypes: list[int] = []
  2526. from transformers import AutoTokenizer
  2527. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2528. vocab_dict = tokenizer.get_vocab()
  2529. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2530. assert max(vocab_dict.values()) < vocab_size
  2531. tokpre = self.get_vocab_base_pre(tokenizer)
  2532. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2533. added_vocab = tokenizer.get_added_vocab()
  2534. for i in range(vocab_size):
  2535. if i not in reverse_vocab:
  2536. tokens.append(f"[PAD{i}]")
  2537. toktypes.append(gguf.TokenType.UNUSED)
  2538. elif reverse_vocab[i] in added_vocab:
  2539. tokens.append(reverse_vocab[i])
  2540. # Check if it's a special token - treat special tokens as CONTROL tokens
  2541. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2542. if tokenizer.added_tokens_decoder[i].special:
  2543. toktypes.append(gguf.TokenType.CONTROL)
  2544. else:
  2545. toktypes.append(gguf.TokenType.USER_DEFINED)
  2546. else:
  2547. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2548. toktypes.append(gguf.TokenType.CONTROL)
  2549. else:
  2550. tokens.append(reverse_vocab[i])
  2551. toktypes.append(gguf.TokenType.NORMAL)
  2552. return tokens, toktypes, tokpre
  2553. def set_vocab(self):
  2554. self._set_vocab_gpt2()
  2555. # LLaDA specific parameters
  2556. self.gguf_writer.add_add_bos_token(True)
  2557. def set_gguf_parameters(self):
  2558. super().set_gguf_parameters()
  2559. self._try_set_pooling_type()
  2560. # Add parameters similar to LlamaModel
  2561. hparams = self.hparams
  2562. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2563. if (rope_dim := hparams.get("head_dim")) is None:
  2564. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2565. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2566. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2567. # Set context length for LLaDA
  2568. context_length = self.hparams.get("max_sequence_length", 4096)
  2569. self.gguf_writer.add_context_length(context_length)
  2570. # Set embedding length (dimension size)
  2571. embedding_length = self.hparams.get("d_model", 4096)
  2572. self.gguf_writer.add_embedding_length(embedding_length)
  2573. # Set feed forward length (MLP hidden size)
  2574. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2575. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2576. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2577. self.gguf_writer.add_causal_attention(False)
  2578. # LLaDA models don't shift their logits
  2579. self.gguf_writer.add_diffusion_shift_logits(False)
  2580. @staticmethod
  2581. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2582. if n_head_kv is not None and n_head != n_head_kv:
  2583. n_head = n_head_kv
  2584. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2585. .swapaxes(1, 2)
  2586. .reshape(weights.shape))
  2587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2588. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2589. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2590. if self.undo_permute:
  2591. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2592. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2593. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2594. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2595. # LLaDA model tensors should be mapped directly since it's the base model
  2596. yield from super().modify_tensors(data_torch, name, bid)
  2597. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2598. class Ernie4_5Model(TextModel):
  2599. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2600. def set_vocab(self):
  2601. self._set_vocab_sentencepiece()
  2602. def set_gguf_parameters(self):
  2603. super().set_gguf_parameters()
  2604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2605. num_heads = self.hparams["num_attention_heads"]
  2606. num_kv_heads = self.hparams["num_key_value_heads"]
  2607. if (head_dim := self.hparams.get("head_dim")) is None:
  2608. head_dim = self.hparams["hidden_size"] // num_heads
  2609. if "ernie." in name:
  2610. name = name.replace("ernie.", "model.")
  2611. # split the qkv weights
  2612. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2613. if "qkv_proj" in name:
  2614. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2615. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2616. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2617. total_q_dim = num_heads * head_dim
  2618. total_k_dim = num_kv_heads * head_dim
  2619. total_v_dim = num_kv_heads * head_dim
  2620. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2621. return [
  2622. (self.map_tensor_name(name_q), q_proj_weight),
  2623. (self.map_tensor_name(name_k), k_proj_weight),
  2624. (self.map_tensor_name(name_v), v_proj_weight)
  2625. ]
  2626. # split the up_gate_proj into gate and up
  2627. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2628. if "up_gate_proj" in name:
  2629. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2630. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2631. dim_half = data_torch.shape[0] // 2
  2632. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2633. return [
  2634. (self.map_tensor_name(name_gate), gate_proj_weight),
  2635. (self.map_tensor_name(name_up), up_proj_weight)
  2636. ]
  2637. return [(self.map_tensor_name(name), data_torch)]
  2638. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2639. class Ernie4_5MoeModel(Ernie4_5Model):
  2640. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2641. _experts: list[dict[str, Tensor]] | None = None
  2642. def __init__(self, *args, **kwargs):
  2643. super().__init__(*args, **kwargs)
  2644. self._experts = [{} for _ in range(self.block_count)]
  2645. def set_gguf_parameters(self):
  2646. super().set_gguf_parameters()
  2647. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2648. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2649. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2650. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2651. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2652. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2653. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2654. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2655. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2656. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2657. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2658. # Modify correction bias name as in DeepseekV2
  2659. if name.endswith("e_score_correction_bias"):
  2660. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2661. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2662. match = re.match(r"model.mtp_block.(\d+)", name)
  2663. if match:
  2664. return []
  2665. # skip all other MTP tensors for now
  2666. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2667. if match:
  2668. return []
  2669. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2670. if match:
  2671. return []
  2672. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2673. if match:
  2674. return []
  2675. # process the experts separately
  2676. if name.find("mlp.experts") != -1:
  2677. n_experts = self.hparams["moe_num_experts"]
  2678. assert bid is not None
  2679. if self._experts is None:
  2680. self._experts = [{} for _ in range(self.block_count)]
  2681. self._experts[bid][name] = data_torch
  2682. if len(self._experts[bid]) >= n_experts * 3:
  2683. tensors: list[tuple[str, Tensor]] = []
  2684. # merge the experts into a single 3d tensor
  2685. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2686. datas: list[Tensor] = []
  2687. for xid in range(n_experts):
  2688. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2689. datas.append(self._experts[bid][ename_to_retrieve])
  2690. del self._experts[bid][ename_to_retrieve]
  2691. data_torch = torch.stack(datas, dim=0)
  2692. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2693. new_name = self.map_tensor_name(merged_name)
  2694. tensors.append((new_name, data_torch))
  2695. return tensors
  2696. else:
  2697. return []
  2698. return [(self.map_tensor_name(name), data_torch)]
  2699. def prepare_tensors(self):
  2700. super().prepare_tensors()
  2701. if self._experts is not None:
  2702. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2703. experts = [k for d in self._experts for k in d.keys()]
  2704. if len(experts) > 0:
  2705. raise ValueError(f"Unprocessed experts: {experts}")
  2706. @ModelBase.register(
  2707. "Qwen2VLModel",
  2708. "Qwen2VLForConditionalGeneration",
  2709. "Qwen2_5_VLForConditionalGeneration",
  2710. "Qwen2_5OmniModel",
  2711. )
  2712. class Qwen2VLModel(TextModel):
  2713. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2714. def set_gguf_parameters(self):
  2715. super().set_gguf_parameters()
  2716. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2717. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2718. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2719. def set_vocab(self):
  2720. try:
  2721. self._set_vocab_sentencepiece()
  2722. except FileNotFoundError:
  2723. self._set_vocab_gpt2()
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. del bid # unused
  2726. if name.startswith("thinker."):
  2727. name = name.replace("thinker.", "")
  2728. if name.startswith("visual") or name.startswith("audio") or \
  2729. name.startswith("talker") or name.startswith("token2wav"):
  2730. # skip multimodal tensors
  2731. return []
  2732. return [(self.map_tensor_name(name), data_torch)]
  2733. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2734. class Qwen2VLVisionModel(MmprojModel):
  2735. def __init__(self, *args, **kwargs):
  2736. super().__init__(*args, **kwargs)
  2737. assert self.hparams_vision is not None
  2738. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2739. # rename config.json values
  2740. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2741. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2742. if "embed_dim" in self.hparams_vision: # qwen2vl
  2743. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2744. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2745. def set_gguf_parameters(self):
  2746. super().set_gguf_parameters()
  2747. assert self.hparams_vision is not None
  2748. hparams = self.hparams_vision
  2749. model_type = self.global_config['model_type']
  2750. if model_type == 'qwen2_vl':
  2751. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2752. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2753. if model_type == 'qwen2_5_omni':
  2754. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2755. else:
  2756. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2757. self.gguf_writer.add_vision_use_silu(True)
  2758. # find n_wa_pattern (window attention pattern)
  2759. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2760. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2761. n_wa_pattern = fullatt_block_indexes[0] + 1
  2762. # validate n_wa_pattern
  2763. for i in range(1, len(fullatt_block_indexes)):
  2764. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2765. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2766. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2767. else:
  2768. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2769. # default values below are taken from HF tranformers code
  2770. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2771. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2772. if ".position_embd." in new_name:
  2773. return gguf.GGMLQuantizationType.F32
  2774. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2776. del bid # unused
  2777. if name.startswith("visual."):
  2778. # process visual tensors
  2779. # split QKV tensors if needed
  2780. if ".qkv." in name:
  2781. if data_torch.ndim == 2: # weight
  2782. c3, _ = data_torch.shape
  2783. else: # bias
  2784. c3 = data_torch.shape[0]
  2785. assert c3 % 3 == 0
  2786. c = c3 // 3
  2787. wq = data_torch[:c]
  2788. wk = data_torch[c: c * 2]
  2789. wv = data_torch[c * 2:]
  2790. return [
  2791. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2792. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2793. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2794. ]
  2795. elif 'patch_embed.proj.weight' in name:
  2796. # split Conv3D into Conv2Ds
  2797. c1, c2, kt, kh, kw = data_torch.shape
  2798. del c1, c2, kh, kw # unused
  2799. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2800. return [
  2801. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2802. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2803. ]
  2804. else:
  2805. return [(self.map_tensor_name(name), data_torch)]
  2806. return [] # skip other tensors
  2807. @ModelBase.register("Qwen2_5OmniModel")
  2808. class Qwen25OmniModel(Qwen2VLVisionModel):
  2809. has_vision_encoder = True
  2810. has_audio_encoder = True
  2811. def __init__(self, *args, **kwargs):
  2812. super().__init__(*args, **kwargs)
  2813. assert self.hparams_audio is not None
  2814. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2815. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2816. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2817. def set_gguf_parameters(self):
  2818. super().set_gguf_parameters()
  2819. assert self.hparams_audio is not None
  2820. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2821. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2822. def get_vision_config(self) -> dict[str, Any] | None:
  2823. return self.global_config["thinker_config"].get("vision_config")
  2824. def get_audio_config(self) -> dict[str, Any] | None:
  2825. return self.global_config["thinker_config"].get("audio_config")
  2826. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2827. # SinusoidsPositionEmbedding
  2828. assert self.hparams_audio is not None
  2829. max_timescale = 10000
  2830. length = 1500
  2831. channels = self.hparams_audio["hidden_size"]
  2832. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2833. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2834. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2835. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2836. yield ("audio_tower.embed_positions.weight", pos_embd)
  2837. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2838. if ".conv" in name and ".weight" in name:
  2839. return gguf.GGMLQuantizationType.F16
  2840. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2841. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2842. if name.startswith("thinker."):
  2843. name = name.replace("thinker.", "")
  2844. if name.startswith("audio_tower"):
  2845. # process audio tensors
  2846. if "conv1.bias" in name or "conv2.bias" in name:
  2847. # transpose conv1 and conv2 bias
  2848. data_torch = data_torch.unsqueeze(-1)
  2849. if "audio_bos_eos_token" in name:
  2850. # this tensor is left unused in transformers code
  2851. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2852. return []
  2853. return [(self.map_tensor_name(name), data_torch)]
  2854. return super().modify_tensors(data_torch, name, bid)
  2855. @ModelBase.register("InternVisionModel")
  2856. class InternVisionModel(MmprojModel):
  2857. def set_gguf_parameters(self):
  2858. assert self.hparams_vision is not None
  2859. if isinstance(self.hparams_vision['image_size'], list):
  2860. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2861. if isinstance(self.hparams_vision['patch_size'], list):
  2862. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2863. super().set_gguf_parameters()
  2864. hparams = self.hparams
  2865. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2866. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2867. # hidden_act
  2868. if hparams["hidden_act"] == "silu":
  2869. self.gguf_writer.add_vision_use_silu(True)
  2870. elif hparams["hidden_act"] == "gelu":
  2871. self.gguf_writer.add_vision_use_gelu(True)
  2872. else:
  2873. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2874. # downsample_ratio
  2875. downsample_ratio = self.global_config.get("downsample_ratio")
  2876. assert downsample_ratio is not None
  2877. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2878. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2879. if ".position_embd." in new_name:
  2880. return gguf.GGMLQuantizationType.F32
  2881. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2882. def _mapping_interns1_name(self, name):
  2883. names_map = {
  2884. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2885. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2886. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2887. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2888. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2889. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2890. }
  2891. if name in names_map:
  2892. name = names_map[name]
  2893. return name
  2894. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2895. del bid # unused
  2896. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2897. # deal with intern-s1 special case
  2898. name = self._mapping_interns1_name(name)
  2899. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2900. # process visual tensors
  2901. # correct name
  2902. if name.startswith("vision_model"):
  2903. name = "vision_tower." + name
  2904. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2905. name += ".weight"
  2906. # split QKV tensors if needed
  2907. if ".qkv." in name:
  2908. if data_torch.ndim == 2: # weight
  2909. c3, _ = data_torch.shape
  2910. else: # bias
  2911. c3 = data_torch.shape[0]
  2912. assert c3 % 3 == 0
  2913. c = c3 // 3
  2914. wq = data_torch[:c]
  2915. wk = data_torch[c: c * 2]
  2916. wv = data_torch[c * 2:]
  2917. return [
  2918. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2919. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2920. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2921. ]
  2922. return [(self.map_tensor_name(name), data_torch)]
  2923. return [] # skip other tensors
  2924. @ModelBase.register("WavTokenizerDec")
  2925. class WavTokenizerDecModel(TextModel):
  2926. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2928. del bid # unused
  2929. if \
  2930. name.endswith("codebook.cluster_size") or \
  2931. name.endswith("codebook.embed_avg") or \
  2932. name.endswith("codebook.inited"):
  2933. logger.debug(f"Skipping {name!r}")
  2934. return []
  2935. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2936. return [(self.map_tensor_name(name), data_torch)]
  2937. def set_vocab(self):
  2938. self._set_vocab_none()
  2939. def set_gguf_parameters(self):
  2940. super().set_gguf_parameters()
  2941. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2942. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2943. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2944. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2945. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2946. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2947. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2948. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2949. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2950. self.gguf_writer.add_causal_attention(False)
  2951. @ModelBase.register("Qwen2MoeForCausalLM")
  2952. class Qwen2MoeModel(TextModel):
  2953. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2954. def set_gguf_parameters(self):
  2955. super().set_gguf_parameters()
  2956. if (n_experts := self.hparams.get("num_experts")) is not None:
  2957. self.gguf_writer.add_expert_count(n_experts)
  2958. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2959. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2960. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2961. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2962. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2963. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2964. # YaRN is not enabled by default
  2965. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2966. rope_scaling = self.hparams.get("rope_scaling") or {}
  2967. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2968. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2969. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2970. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2971. _experts: list[dict[str, Tensor]] | None = None
  2972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2973. # process the experts separately
  2974. name = name.replace("language_model.", "") # InternVL
  2975. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2976. # skip visual tensors
  2977. return []
  2978. if name.find("experts") != -1:
  2979. n_experts = self.hparams["num_experts"]
  2980. assert bid is not None
  2981. if self._experts is None:
  2982. self._experts = [{} for _ in range(self.block_count)]
  2983. self._experts[bid][name] = data_torch
  2984. if len(self._experts[bid]) >= n_experts * 3:
  2985. tensors: list[tuple[str, Tensor]] = []
  2986. # merge the experts into a single 3d tensor
  2987. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2988. datas: list[Tensor] = []
  2989. for xid in range(n_experts):
  2990. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2991. datas.append(self._experts[bid][ename])
  2992. del self._experts[bid][ename]
  2993. data_torch = torch.stack(datas, dim=0)
  2994. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2995. new_name = self.map_tensor_name(merged_name)
  2996. tensors.append((new_name, data_torch))
  2997. return tensors
  2998. else:
  2999. return []
  3000. return [(self.map_tensor_name(name), data_torch)]
  3001. def prepare_tensors(self):
  3002. super().prepare_tensors()
  3003. if self._experts is not None:
  3004. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3005. experts = [k for d in self._experts for k in d.keys()]
  3006. if len(experts) > 0:
  3007. raise ValueError(f"Unprocessed experts: {experts}")
  3008. @ModelBase.register("Qwen3ForCausalLM")
  3009. class Qwen3Model(Qwen2Model):
  3010. model_arch = gguf.MODEL_ARCH.QWEN3
  3011. def __init__(self, *args, **kwargs):
  3012. super().__init__(*args, **kwargs)
  3013. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3014. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3015. def set_vocab(self):
  3016. # deal with intern-s1-mini
  3017. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3018. self._set_vocab_interns1()
  3019. return
  3020. super().set_vocab()
  3021. @ModelBase.register("Qwen3MoeForCausalLM")
  3022. class Qwen3MoeModel(Qwen2MoeModel):
  3023. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3024. def __init__(self, *args, **kwargs):
  3025. super().__init__(*args, **kwargs)
  3026. hparams = ModelBase.load_hparams(self.dir_model, False)
  3027. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3028. def set_vocab(self):
  3029. # deal with intern-s1
  3030. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3031. self._set_vocab_interns1()
  3032. return
  3033. super().set_vocab()
  3034. @ModelBase.register("GPT2LMHeadModel")
  3035. class GPT2Model(TextModel):
  3036. model_arch = gguf.MODEL_ARCH.GPT2
  3037. def set_gguf_parameters(self):
  3038. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3039. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3040. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3041. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3042. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3043. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3044. self.gguf_writer.add_file_type(self.ftype)
  3045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3046. del bid # unused
  3047. tensors: list[tuple[str, Tensor]] = []
  3048. # we don't need these
  3049. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3050. return tensors
  3051. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3052. data_torch = data_torch.transpose(1, 0)
  3053. new_name = self.map_tensor_name(name)
  3054. tensors.append((new_name, data_torch))
  3055. return tensors
  3056. @ModelBase.register("PhiForCausalLM")
  3057. class Phi2Model(TextModel):
  3058. model_arch = gguf.MODEL_ARCH.PHI2
  3059. def set_gguf_parameters(self):
  3060. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3061. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3062. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3063. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3064. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3065. self.gguf_writer.add_embedding_length(n_embd)
  3066. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3067. self.gguf_writer.add_block_count(block_count)
  3068. self.gguf_writer.add_head_count(n_head)
  3069. self.gguf_writer.add_head_count_kv(n_head)
  3070. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3071. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3072. self.gguf_writer.add_file_type(self.ftype)
  3073. self.gguf_writer.add_add_bos_token(False)
  3074. @ModelBase.register("Phi3ForCausalLM")
  3075. class Phi3MiniModel(TextModel):
  3076. model_arch = gguf.MODEL_ARCH.PHI3
  3077. def set_vocab(self):
  3078. # Phi-4 model uses GPT2Tokenizer
  3079. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3080. if tokenizer_config_file.is_file():
  3081. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3082. tokenizer_config_json = json.load(f)
  3083. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3084. if tokenizer_class == 'GPT2Tokenizer':
  3085. return self._set_vocab_gpt2()
  3086. from sentencepiece import SentencePieceProcessor
  3087. tokenizer_path = self.dir_model / 'tokenizer.model'
  3088. if not tokenizer_path.is_file():
  3089. raise ValueError(f'Error: Missing {tokenizer_path}')
  3090. tokenizer = SentencePieceProcessor()
  3091. tokenizer.LoadFromFile(str(tokenizer_path))
  3092. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3093. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3094. scores: list[float] = [-10000.0] * vocab_size
  3095. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3096. for token_id in range(tokenizer.vocab_size()):
  3097. piece = tokenizer.IdToPiece(token_id)
  3098. text = piece.encode("utf-8")
  3099. score = tokenizer.GetScore(token_id)
  3100. toktype = SentencePieceTokenTypes.NORMAL
  3101. if tokenizer.IsUnknown(token_id):
  3102. toktype = SentencePieceTokenTypes.UNKNOWN
  3103. elif tokenizer.IsControl(token_id):
  3104. toktype = SentencePieceTokenTypes.CONTROL
  3105. elif tokenizer.IsUnused(token_id):
  3106. toktype = SentencePieceTokenTypes.UNUSED
  3107. elif tokenizer.IsByte(token_id):
  3108. toktype = SentencePieceTokenTypes.BYTE
  3109. tokens[token_id] = text
  3110. scores[token_id] = score
  3111. toktypes[token_id] = toktype
  3112. added_tokens_file = self.dir_model / 'added_tokens.json'
  3113. if added_tokens_file.is_file():
  3114. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3115. added_tokens_json = json.load(f)
  3116. for key in added_tokens_json:
  3117. token_id = added_tokens_json[key]
  3118. if token_id >= vocab_size:
  3119. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3120. continue
  3121. tokens[token_id] = key.encode("utf-8")
  3122. scores[token_id] = -1000.0
  3123. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3124. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3125. if tokenizer_config_file.is_file():
  3126. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3127. tokenizer_config_json = json.load(f)
  3128. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3129. for token_id, foken_data in added_tokens_decoder.items():
  3130. token_id = int(token_id)
  3131. token = foken_data["content"].encode("utf-8")
  3132. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3133. if tokens[token_id] != token:
  3134. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3135. tokens[token_id] = token
  3136. scores[token_id] = -1000.0
  3137. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3138. if foken_data.get("special"):
  3139. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3140. tokenizer_file = self.dir_model / 'tokenizer.json'
  3141. if tokenizer_file.is_file():
  3142. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3143. tokenizer_json = json.load(f)
  3144. added_tokens = tokenizer_json.get("added_tokens", [])
  3145. for foken_data in added_tokens:
  3146. token_id = int(foken_data["id"])
  3147. token = foken_data["content"].encode("utf-8")
  3148. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3149. if tokens[token_id] != token:
  3150. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3151. tokens[token_id] = token
  3152. scores[token_id] = -1000.0
  3153. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3154. if foken_data.get("special"):
  3155. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3156. self.gguf_writer.add_tokenizer_model("llama")
  3157. self.gguf_writer.add_tokenizer_pre("default")
  3158. self.gguf_writer.add_token_list(tokens)
  3159. self.gguf_writer.add_token_scores(scores)
  3160. self.gguf_writer.add_token_types(toktypes)
  3161. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3162. special_vocab.add_to_gguf(self.gguf_writer)
  3163. def set_gguf_parameters(self):
  3164. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3165. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3166. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3167. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3168. rms_eps = self.find_hparam(["rms_norm_eps"])
  3169. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3170. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3171. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3172. rope_dims = int(rot_pct * n_embd) // n_head
  3173. self.gguf_writer.add_context_length(max_pos_embds)
  3174. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3175. self.gguf_writer.add_embedding_length(n_embd)
  3176. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3177. self.gguf_writer.add_block_count(block_count)
  3178. self.gguf_writer.add_head_count(n_head)
  3179. self.gguf_writer.add_head_count_kv(n_head_kv)
  3180. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3181. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3182. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3183. self.gguf_writer.add_file_type(self.ftype)
  3184. sliding_window = self.hparams.get("sliding_window")
  3185. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3186. if sliding_window is None:
  3187. sliding_window = 0
  3188. self.gguf_writer.add_sliding_window(sliding_window)
  3189. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3190. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3191. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3192. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3193. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3194. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3195. rope_dims = int(rot_pct * n_embd) // n_head
  3196. # write rope scaling for long context (128k) model
  3197. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3198. if rope_scaling is None:
  3199. return
  3200. scale = max_pos_embds / orig_max_pos_embds
  3201. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3202. if len(rope_scaling_type) == 0:
  3203. raise KeyError('Missing the required key rope_scaling.type')
  3204. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3205. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3206. elif rope_scaling_type == 'yarn':
  3207. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3208. else:
  3209. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3210. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3211. long_factors = rope_scaling.get('long_factor', None)
  3212. short_factors = rope_scaling.get('short_factor', None)
  3213. if long_factors is None or short_factors is None:
  3214. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3215. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3216. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3217. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3218. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3219. @ModelBase.register("PhiMoEForCausalLM")
  3220. class PhiMoeModel(Phi3MiniModel):
  3221. model_arch = gguf.MODEL_ARCH.PHIMOE
  3222. _experts: list[dict[str, Tensor]] | None = None
  3223. def set_gguf_parameters(self):
  3224. super().set_gguf_parameters()
  3225. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3226. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3228. # process the experts separately
  3229. if name.find("block_sparse_moe.experts") != -1:
  3230. n_experts = self.hparams["num_local_experts"]
  3231. assert bid is not None
  3232. if self._experts is None:
  3233. self._experts = [{} for _ in range(self.block_count)]
  3234. self._experts[bid][name] = data_torch
  3235. if len(self._experts[bid]) >= n_experts * 3:
  3236. tensors: list[tuple[str, Tensor]] = []
  3237. # merge the experts into a single 3d tensor
  3238. for w_name in ["w1", "w2", "w3"]:
  3239. datas: list[Tensor] = []
  3240. for xid in range(n_experts):
  3241. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3242. datas.append(self._experts[bid][ename])
  3243. del self._experts[bid][ename]
  3244. data_torch = torch.stack(datas, dim=0)
  3245. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3246. new_name = self.map_tensor_name(merged_name)
  3247. tensors.append((new_name, data_torch))
  3248. return tensors
  3249. else:
  3250. return []
  3251. return [(self.map_tensor_name(name), data_torch)]
  3252. def prepare_tensors(self):
  3253. super().prepare_tensors()
  3254. if self._experts is not None:
  3255. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3256. experts = [k for d in self._experts for k in d.keys()]
  3257. if len(experts) > 0:
  3258. raise ValueError(f"Unprocessed experts: {experts}")
  3259. @ModelBase.register("PlamoForCausalLM")
  3260. class PlamoModel(TextModel):
  3261. model_arch = gguf.MODEL_ARCH.PLAMO
  3262. def set_vocab(self):
  3263. self._set_vocab_sentencepiece()
  3264. def set_gguf_parameters(self):
  3265. hparams = self.hparams
  3266. block_count = hparams["num_hidden_layers"]
  3267. self.gguf_writer.add_context_length(4096) # not in config.json
  3268. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3269. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3270. self.gguf_writer.add_block_count(block_count)
  3271. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3272. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3273. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3274. self.gguf_writer.add_file_type(self.ftype)
  3275. def shuffle_attn_q_weight(self, data_torch):
  3276. assert data_torch.size() == (5120, 5120)
  3277. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3278. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3279. data_torch = torch.reshape(data_torch, (5120, 5120))
  3280. return data_torch
  3281. def shuffle_attn_output_weight(self, data_torch):
  3282. assert data_torch.size() == (5120, 5120)
  3283. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3284. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3285. data_torch = torch.reshape(data_torch, (5120, 5120))
  3286. return data_torch
  3287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3288. del bid # unused
  3289. new_name = self.map_tensor_name(name)
  3290. # shuffle for broadcasting of gqa in ggml_mul_mat
  3291. if new_name.endswith("attn_q.weight"):
  3292. data_torch = self.shuffle_attn_q_weight(data_torch)
  3293. elif new_name.endswith("attn_output.weight"):
  3294. data_torch = self.shuffle_attn_output_weight(data_torch)
  3295. return [(new_name, data_torch)]
  3296. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3297. class Plamo2Model(TextModel):
  3298. model_arch = gguf.MODEL_ARCH.PLAMO2
  3299. def set_vocab(self):
  3300. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3301. # We need to handle this specially
  3302. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3303. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3304. if not tokenizer_jsonl_path.is_file():
  3305. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3306. # Load tokenizer config
  3307. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3308. tokenizer_config = json.load(f)
  3309. # Load tokens from JSONL file (actually a list format)
  3310. tokens = []
  3311. scores = []
  3312. toktypes = []
  3313. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3314. for line_num, line in enumerate(f):
  3315. if line.strip():
  3316. token_data = json.loads(line)
  3317. # Format: [token, score, type, ?, ?, ?, ?]
  3318. token = token_data[0].encode("utf-8")
  3319. score = float(token_data[1])
  3320. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3321. tokens.append(token)
  3322. scores.append(score)
  3323. # Map token type strings to GGUF token types
  3324. if token_type_str == "UNKNOWN":
  3325. toktypes.append(gguf.TokenType.UNKNOWN)
  3326. elif token_type_str == "CONTROL":
  3327. toktypes.append(gguf.TokenType.CONTROL)
  3328. elif token_type_str == "BYTE":
  3329. toktypes.append(gguf.TokenType.BYTE)
  3330. else:
  3331. # Check for PLaMo-2 special tokens
  3332. token_str = token_data[0]
  3333. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3334. toktypes.append(gguf.TokenType.CONTROL)
  3335. else:
  3336. toktypes.append(gguf.TokenType.NORMAL)
  3337. vocab_size = self.hparams["vocab_size"]
  3338. if vocab_size > len(tokens):
  3339. pad_count = vocab_size - len(tokens)
  3340. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3341. for i in range(1, pad_count + 1):
  3342. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3343. scores.append(-1000.0)
  3344. toktypes.append(gguf.TokenType.UNUSED)
  3345. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3346. self.gguf_writer.add_tokenizer_model("plamo2")
  3347. self.gguf_writer.add_tokenizer_pre("default")
  3348. self.gguf_writer.add_token_list(tokens)
  3349. self.gguf_writer.add_token_scores(scores)
  3350. self.gguf_writer.add_token_types(toktypes)
  3351. # Add special tokens from config
  3352. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3353. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3354. self.gguf_writer.add_bos_token_id(token_id)
  3355. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3356. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3357. self.gguf_writer.add_eos_token_id(token_id)
  3358. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3359. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3360. self.gguf_writer.add_pad_token_id(token_id)
  3361. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3362. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3363. self.gguf_writer.add_sep_token_id(token_id)
  3364. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3365. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3366. self.gguf_writer.add_unk_token_id(token_id)
  3367. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3368. self.gguf_writer.add_eot_token_id(4)
  3369. self.gguf_writer.add_add_space_prefix(False)
  3370. def set_gguf_parameters(self):
  3371. hparams = self.hparams
  3372. block_count = hparams["num_hidden_layers"]
  3373. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3374. # Which layers are Mamba layers
  3375. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3376. # This logic matches modeling_plamo.py's is_mamba function
  3377. mamba_step = hparams.get("mamba_step", 2)
  3378. mamba_enabled = hparams.get("mamba_enabled", True)
  3379. mamba_layers = []
  3380. if mamba_enabled:
  3381. for i in range(block_count):
  3382. if block_count <= (mamba_step // 2):
  3383. # use attention in last layer
  3384. is_mamba = (i != block_count - 1)
  3385. else:
  3386. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3387. if is_mamba:
  3388. mamba_layers.append(0)
  3389. else:
  3390. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3391. if mamba_layers:
  3392. self.gguf_writer.add_head_count_kv(mamba_layers)
  3393. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3394. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3395. self.gguf_writer.add_block_count(block_count)
  3396. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3397. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3398. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3399. # Mamba parameters
  3400. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3401. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3402. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3403. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3404. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3405. self.gguf_writer.add_ssm_group_count(0)
  3406. # MLP feed forward parameters (for attention layers)
  3407. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3408. self.gguf_writer.add_file_type(self.ftype)
  3409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3410. del bid # unused
  3411. if name.endswith(".A_log"):
  3412. data_torch = -torch.exp(data_torch)
  3413. elif name.endswith(".dt_bias"):
  3414. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3415. elif name.endswith(".dt_norm_weight"):
  3416. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3417. elif name.endswith(".B_norm_weight"):
  3418. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3419. elif name.endswith(".C_norm_weight"):
  3420. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3421. elif name.endswith(".k_weight"):
  3422. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3423. elif name.endswith(".q_weight"):
  3424. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3425. elif name.endswith(".conv1d.weight"):
  3426. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3427. assert data_torch.ndim == 2
  3428. elif name.endswith(".pre_mixer_norm.weight"):
  3429. data_torch += 1.0
  3430. elif name.endswith(".post_mixer_norm.weight"):
  3431. data_torch += 1.0 / 5
  3432. elif name.endswith(".pre_mlp_norm.weight"):
  3433. data_torch += 1.0
  3434. elif name.endswith(".post_mlp_norm.weight"):
  3435. data_torch += 1.0 / (5**1.5)
  3436. elif name.endswith(".norm.weight"):
  3437. data_torch += 1.0
  3438. new_name = self.map_tensor_name(name)
  3439. return [(new_name, data_torch)]
  3440. @ModelBase.register("CodeShellForCausalLM")
  3441. class CodeShellModel(TextModel):
  3442. model_arch = gguf.MODEL_ARCH.CODESHELL
  3443. def set_gguf_parameters(self):
  3444. block_count = self.hparams["n_layer"]
  3445. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3446. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3447. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3448. self.gguf_writer.add_block_count(block_count)
  3449. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3450. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3451. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3452. self.gguf_writer.add_file_type(self.ftype)
  3453. self.gguf_writer.add_rope_freq_base(10000.0)
  3454. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3455. self.gguf_writer.add_rope_scaling_factor(1.0)
  3456. _has_tok_embd = False
  3457. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3458. del bid # unused
  3459. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3460. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3461. new_name = self.map_tensor_name(name)
  3462. # assuming token_embd.weight is seen before output.weight
  3463. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3464. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3465. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3466. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3467. self.tensor_names.remove("transformer.wte.weight")
  3468. elif new_name == tok_embd_name:
  3469. self._has_tok_embd = True
  3470. return [(new_name, data_torch)]
  3471. @ModelBase.register("InternLM2ForCausalLM")
  3472. class InternLM2Model(TextModel):
  3473. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3474. def set_vocab(self):
  3475. # (TODO): Is there a better way?
  3476. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3477. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3478. # recognized as an empty string in C++.
  3479. from sentencepiece import SentencePieceProcessor
  3480. from sentencepiece import sentencepiece_model_pb2 as model
  3481. tokenizer_path = self.dir_model / 'tokenizer.model'
  3482. tokens: list[bytes] = []
  3483. scores: list[float] = []
  3484. toktypes: list[int] = []
  3485. if not tokenizer_path.is_file():
  3486. logger.error(f'Error: Missing {tokenizer_path}')
  3487. sys.exit(1)
  3488. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3489. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3490. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3491. tokenizer = SentencePieceProcessor()
  3492. tokenizer.LoadFromFile(str(tokenizer_path))
  3493. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3494. for token_id in range(vocab_size):
  3495. piece = tokenizer.IdToPiece(token_id)
  3496. text = piece.encode("utf-8")
  3497. score = tokenizer.GetScore(token_id)
  3498. if text == b"\x00":
  3499. # (TODO): fixme
  3500. # Hack here and replace the \x00 characters.
  3501. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3502. text = "🐉".encode("utf-8")
  3503. toktype = SentencePieceTokenTypes.NORMAL
  3504. if tokenizer.IsUnknown(token_id):
  3505. toktype = SentencePieceTokenTypes.UNKNOWN
  3506. elif tokenizer.IsControl(token_id):
  3507. toktype = SentencePieceTokenTypes.CONTROL
  3508. elif tokenizer.IsUnused(token_id):
  3509. toktype = SentencePieceTokenTypes.UNUSED
  3510. elif tokenizer.IsByte(token_id):
  3511. toktype = SentencePieceTokenTypes.BYTE
  3512. # take care of ununsed raw token
  3513. if piece.startswith('[UNUSED'):
  3514. toktype = SentencePieceTokenTypes.UNUSED
  3515. tokens.append(text)
  3516. scores.append(score)
  3517. toktypes.append(toktype)
  3518. added_tokens_file = self.dir_model / 'added_tokens.json'
  3519. if added_tokens_file.is_file():
  3520. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3521. added_tokens_json = json.load(f)
  3522. for key in added_tokens_json:
  3523. tokens.append(key.encode("utf-8"))
  3524. scores.append(-1000.0)
  3525. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3526. chat_eos_token = '<|im_end|>'
  3527. chat_eos_token_id = None
  3528. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3529. if tokenizer_config_file.is_file():
  3530. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3531. tokenizer_config_json = json.load(f)
  3532. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3533. for token_id, foken_data in added_tokens_decoder.items():
  3534. token_id = int(token_id)
  3535. token = foken_data["content"]
  3536. if token == chat_eos_token:
  3537. chat_eos_token_id = token_id
  3538. token = token.encode("utf-8")
  3539. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3540. if tokens[token_id] != token:
  3541. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3542. tokens[token_id] = token
  3543. scores[token_id] = -1000.0
  3544. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3545. if foken_data.get("special"):
  3546. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3547. tokenizer_file = self.dir_model / 'tokenizer.json'
  3548. if tokenizer_file.is_file():
  3549. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3550. tokenizer_json = json.load(f)
  3551. added_tokens = tokenizer_json.get("added_tokens", [])
  3552. for foken_data in added_tokens:
  3553. token_id = int(foken_data["id"])
  3554. token = foken_data["content"]
  3555. if token == chat_eos_token:
  3556. chat_eos_token_id = token_id
  3557. token = token.encode("utf-8")
  3558. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3559. if tokens[token_id] != token:
  3560. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3561. tokens[token_id] = token
  3562. scores[token_id] = -1000.0
  3563. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3564. if foken_data.get("special"):
  3565. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3566. self.gguf_writer.add_tokenizer_model("llama")
  3567. self.gguf_writer.add_tokenizer_pre("default")
  3568. self.gguf_writer.add_token_list(tokens)
  3569. self.gguf_writer.add_token_scores(scores)
  3570. self.gguf_writer.add_token_types(toktypes)
  3571. self.gguf_writer.add_add_space_prefix(add_prefix)
  3572. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3573. old_eos = special_vocab.special_token_ids["eos"]
  3574. if chat_eos_token_id is not None:
  3575. # For the chat model, we replace the eos with '<|im_end|>'.
  3576. # TODO: this is a hack, should be fixed
  3577. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3578. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3579. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3580. " in chat mode so that the conversation can end normally.")
  3581. special_vocab.add_to_gguf(self.gguf_writer)
  3582. def set_gguf_parameters(self):
  3583. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3584. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3585. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3586. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3587. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3588. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3589. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3590. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3591. self.gguf_writer.add_file_type(self.ftype)
  3592. rope_scaling = self.hparams.get("rope_scaling") or {}
  3593. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3594. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3595. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3597. num_heads = self.hparams["num_attention_heads"]
  3598. num_kv_heads = self.hparams["num_key_value_heads"]
  3599. n_embd = self.hparams["hidden_size"]
  3600. q_per_kv = num_heads // num_kv_heads
  3601. head_dim = n_embd // num_heads
  3602. num_groups = num_heads // q_per_kv
  3603. name = name.replace("language_model.", "") # InternVL
  3604. if name.startswith("mlp") or name.startswith("vision_model"):
  3605. # skip visual tensors
  3606. return []
  3607. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3608. qkv = data_torch
  3609. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3610. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3611. # The model weights of q and k equire additional reshape.
  3612. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3613. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3614. v = v.reshape((-1, v.shape[-1]))
  3615. return [
  3616. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3617. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3618. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3619. ]
  3620. else:
  3621. return [(self.map_tensor_name(name), data_torch)]
  3622. @ModelBase.register("InternLM3ForCausalLM")
  3623. class InternLM3Model(TextModel):
  3624. model_arch = gguf.MODEL_ARCH.LLAMA
  3625. def set_vocab(self):
  3626. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3627. self.gguf_writer.add_tokenizer_model("llama")
  3628. self.gguf_writer.add_tokenizer_pre("default")
  3629. self.gguf_writer.add_token_list(tokens)
  3630. self.gguf_writer.add_token_scores(scores)
  3631. self.gguf_writer.add_token_types(toktypes)
  3632. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3633. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3634. if tokenizer_config_file.is_file():
  3635. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3636. tokenizer_config_json = json.load(f)
  3637. if "add_prefix_space" in tokenizer_config_json:
  3638. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3639. if "added_tokens_decoder" in tokenizer_config_json:
  3640. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3641. if token_data.get("special"):
  3642. token_id = int(token_id)
  3643. token = token_data["content"]
  3644. special_vocab._set_special_token(token, token_id)
  3645. # update eos token
  3646. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3647. special_vocab.special_token_ids["eos"] = token_id
  3648. special_vocab.add_to_gguf(self.gguf_writer)
  3649. def set_gguf_parameters(self):
  3650. super().set_gguf_parameters()
  3651. hparams = self.hparams
  3652. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3653. if (rope_dim := hparams.get("head_dim")) is None:
  3654. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3655. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3656. rope_scaling = self.hparams.get("rope_scaling") or {}
  3657. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3658. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3659. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3661. n_head = self.hparams["num_attention_heads"]
  3662. n_kv_head = self.hparams.get("num_key_value_heads")
  3663. name = name.replace("language_model.", "") # InternVL
  3664. if name.startswith("mlp") or name.startswith("vision_model"):
  3665. # skip visual tensors
  3666. return []
  3667. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3668. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3669. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3670. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3671. return [(self.map_tensor_name(name), data_torch)]
  3672. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3673. class BertModel(TextModel):
  3674. model_arch = gguf.MODEL_ARCH.BERT
  3675. def __init__(self, *args, **kwargs):
  3676. super().__init__(*args, **kwargs)
  3677. self.vocab_size = None
  3678. if cls_out_labels := self.hparams.get("id2label"):
  3679. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3680. # Remove dummy labels added by AutoConfig
  3681. cls_out_labels = None
  3682. self.cls_out_labels = cls_out_labels
  3683. def set_gguf_parameters(self):
  3684. super().set_gguf_parameters()
  3685. self.gguf_writer.add_causal_attention(False)
  3686. self._try_set_pooling_type()
  3687. if self.cls_out_labels:
  3688. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3689. def set_vocab(self):
  3690. tokens, toktypes, tokpre = self.get_vocab_base()
  3691. self.vocab_size = len(tokens)
  3692. # we need this to validate the size of the token_type embeddings
  3693. # though currently we are passing all zeros to the token_type embeddings
  3694. # "Sequence A" or "Sequence B"
  3695. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3696. # convert to phantom space vocab
  3697. def phantom(tok):
  3698. if tok.startswith("[") and tok.endswith("]"):
  3699. return tok
  3700. if tok.startswith("##"):
  3701. return tok[2:]
  3702. return "\u2581" + tok
  3703. tokens = list(map(phantom, tokens))
  3704. # add vocab to gguf
  3705. self.gguf_writer.add_tokenizer_model("bert")
  3706. self.gguf_writer.add_tokenizer_pre(tokpre)
  3707. self.gguf_writer.add_token_list(tokens)
  3708. self.gguf_writer.add_token_types(toktypes)
  3709. # handle special tokens
  3710. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3711. special_vocab.add_to_gguf(self.gguf_writer)
  3712. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3713. del bid # unused
  3714. if name.startswith("bert."):
  3715. name = name[5:]
  3716. if name.endswith(".gamma"):
  3717. name = name[:-6] + ".weight"
  3718. if name.endswith(".beta"):
  3719. name = name[:-5] + ".bias"
  3720. # we are only using BERT for embeddings so we don't need the pooling layer
  3721. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3722. return [] # we don't need these
  3723. if name.startswith("cls.predictions"):
  3724. return []
  3725. if name.startswith("cls.seq_relationship"):
  3726. return []
  3727. if self.cls_out_labels:
  3728. # For BertForSequenceClassification (direct projection layer)
  3729. if name == "classifier.weight":
  3730. name = "classifier.out_proj.weight"
  3731. if name == "classifier.bias":
  3732. name = "classifier.out_proj.bias"
  3733. return [(self.map_tensor_name(name), data_torch)]
  3734. def _xlmroberta_tokenizer_init(self) -> None:
  3735. # we need the pad_token_id to know how to chop down position_embd matrix
  3736. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3737. self._position_offset = 1 + pad_token_id
  3738. if "max_position_embeddings" in self.hparams:
  3739. self.hparams["max_position_embeddings"] -= self._position_offset
  3740. else:
  3741. self._position_offset = None
  3742. def _xlmroberta_set_vocab(self) -> None:
  3743. # to avoid TypeError: Descriptors cannot be created directly
  3744. # exception when importing sentencepiece_model_pb2
  3745. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3746. from sentencepiece import SentencePieceProcessor
  3747. from sentencepiece import sentencepiece_model_pb2 as model
  3748. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3749. tokenizer_json = {}
  3750. tokenizer_config_json = {}
  3751. if not tokenizer_path.is_file():
  3752. tokenizer_path = self.dir_model / 'tokenizer.json'
  3753. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3754. if not tokenizer_path.is_file():
  3755. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3756. from base64 import b64decode
  3757. from transformers import AutoTokenizer
  3758. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3759. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3760. tokenizer_json = json.load(fp)
  3761. if tokenizer_config_path.is_file():
  3762. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3763. tokenizer_config_json = json.load(fp)
  3764. add_prefix = tokenizer.add_prefix_space
  3765. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3766. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3767. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3768. else:
  3769. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3770. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3771. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3772. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3773. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3774. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3775. tokenizer = SentencePieceProcessor()
  3776. tokenizer.LoadFromFile(str(tokenizer_path))
  3777. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3778. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3779. scores: list[float] = [-10000.0] * vocab_size
  3780. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3781. if isinstance(tokenizer, SentencePieceProcessor):
  3782. for token_id in range(tokenizer.vocab_size()):
  3783. piece = tokenizer.IdToPiece(token_id)
  3784. text = piece.encode("utf-8")
  3785. score = tokenizer.GetScore(token_id)
  3786. toktype = SentencePieceTokenTypes.NORMAL
  3787. if tokenizer.IsUnknown(token_id):
  3788. toktype = SentencePieceTokenTypes.UNKNOWN
  3789. elif tokenizer.IsControl(token_id):
  3790. toktype = SentencePieceTokenTypes.CONTROL
  3791. elif tokenizer.IsUnused(token_id):
  3792. toktype = SentencePieceTokenTypes.UNUSED
  3793. elif tokenizer.IsByte(token_id):
  3794. toktype = SentencePieceTokenTypes.BYTE
  3795. tokens[token_id] = text
  3796. scores[token_id] = score
  3797. toktypes[token_id] = toktype
  3798. else:
  3799. added_vocab = tokenizer.get_added_vocab()
  3800. unk_token = tokenizer_config_json.get("unk_token")
  3801. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3802. for token_id in range(tokenizer.vocab_size):
  3803. piece = tokenizer._convert_id_to_token(token_id)
  3804. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3805. text = piece.encode("utf-8")
  3806. score = tokenizer_json["model"]["vocab"][token_id][1]
  3807. toktype = SentencePieceTokenTypes.NORMAL
  3808. if token_id == unk_token_id:
  3809. toktype = SentencePieceTokenTypes.UNKNOWN
  3810. elif token_id in tokenizer.all_special_ids:
  3811. toktype = SentencePieceTokenTypes.CONTROL
  3812. elif token_id in added_vocab.values():
  3813. toktype = SentencePieceTokenTypes.USER_DEFINED
  3814. # No reliable way to detect this, but jina doesn't have any
  3815. # elif tokenizer.IsByte(token_id):
  3816. # toktype = SentencePieceTokenTypes.BYTE
  3817. tokens[token_id] = text
  3818. scores[token_id] = score
  3819. toktypes[token_id] = toktype
  3820. if isinstance(tokenizer, SentencePieceProcessor):
  3821. # realign tokens (see HF tokenizer code)
  3822. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3823. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3824. toktypes = [
  3825. SentencePieceTokenTypes.CONTROL,
  3826. SentencePieceTokenTypes.CONTROL,
  3827. SentencePieceTokenTypes.CONTROL,
  3828. SentencePieceTokenTypes.UNKNOWN,
  3829. ] + toktypes[3:-1]
  3830. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3831. # Add mask token missing from sentencepiece.bpe.model
  3832. tokens[250001] = b'<mask>'
  3833. scores[250001] = 0.0
  3834. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3835. self.gguf_writer.add_tokenizer_model("t5")
  3836. self.gguf_writer.add_tokenizer_pre("default")
  3837. self.gguf_writer.add_token_list(tokens)
  3838. self.gguf_writer.add_token_scores(scores)
  3839. self.gguf_writer.add_token_types(toktypes)
  3840. self.gguf_writer.add_add_space_prefix(add_prefix)
  3841. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3842. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3843. if precompiled_charsmap:
  3844. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3845. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3846. special_vocab.add_to_gguf(self.gguf_writer)
  3847. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3848. class DistilBertModel(BertModel):
  3849. model_arch = gguf.MODEL_ARCH.BERT
  3850. def set_gguf_parameters(self):
  3851. self.gguf_writer.add_layer_norm_eps(1e-12)
  3852. logger.info("gguf: layer norm epsilon = 1e-12")
  3853. super().set_gguf_parameters()
  3854. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3855. if name.startswith("distilbert."):
  3856. name = name[11:]
  3857. # These layers act as MLM head, so we don't need them
  3858. if name.startswith("vocab_"):
  3859. return []
  3860. return super().modify_tensors(data_torch, name, bid)
  3861. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3862. class RobertaModel(BertModel):
  3863. model_arch = gguf.MODEL_ARCH.BERT
  3864. def __init__(self, *args, **kwargs):
  3865. super().__init__(*args, **kwargs)
  3866. # we need the pad_token_id to know how to chop down position_embd matrix
  3867. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3868. self._position_offset = 1 + pad_token_id
  3869. if "max_position_embeddings" in self.hparams:
  3870. self.hparams["max_position_embeddings"] -= self._position_offset
  3871. else:
  3872. self._position_offset = None
  3873. def set_vocab(self):
  3874. """Support BPE tokenizers for roberta models"""
  3875. bpe_tok_path = self.dir_model / "tokenizer.json"
  3876. if bpe_tok_path.exists():
  3877. self._set_vocab_gpt2()
  3878. # we need this to validate the size of the token_type embeddings
  3879. # though currently we are passing all zeros to the token_type embeddings
  3880. # "Sequence A" or "Sequence B"
  3881. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3882. else:
  3883. return super().set_vocab()
  3884. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3885. # if name starts with "roberta.", remove the prefix
  3886. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3887. if name.startswith("roberta."):
  3888. name = name[8:]
  3889. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3890. if name == "embeddings.position_embeddings.weight":
  3891. if self._position_offset is not None:
  3892. data_torch = data_torch[self._position_offset:,:]
  3893. return super().modify_tensors(data_torch, name, bid)
  3894. @ModelBase.register("NomicBertModel")
  3895. class NomicBertModel(BertModel):
  3896. model_arch = gguf.MODEL_ARCH.BERT
  3897. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3898. hparams = kwargs.pop("hparams", None)
  3899. if hparams is None:
  3900. hparams = ModelBase.load_hparams(dir_model, False)
  3901. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3902. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3903. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3904. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3905. if self._tokenizer_is_xlmroberta:
  3906. self._xlmroberta_tokenizer_init()
  3907. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3908. if npos == 8192 and mtp == 2048:
  3909. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3910. elif npos == 2048 and mtp == 2048:
  3911. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3912. else:
  3913. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3914. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3915. # this doesn't do anything in the HF version
  3916. assert self.hparams["causal"] is False
  3917. # no bias tensors unless MoE
  3918. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3919. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3920. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3921. # norm at end of layer
  3922. assert self.hparams["prenorm"] is False
  3923. # standard RoPE
  3924. assert self.hparams["rotary_emb_fraction"] == 1.0
  3925. assert self.hparams["rotary_emb_interleaved"] is False
  3926. assert self.hparams["rotary_emb_scale_base"] is None
  3927. def set_vocab(self) -> None:
  3928. if self._tokenizer_is_xlmroberta:
  3929. return self._xlmroberta_set_vocab()
  3930. return super().set_vocab()
  3931. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3932. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3933. if "mlp.experts.bias" in name:
  3934. return [] # Explicitly return an empty list.
  3935. if "mlp.experts.mlp.w1" in name:
  3936. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3937. name += ".weight"
  3938. if "mlp.experts.mlp.w2" in name:
  3939. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3940. data_torch = data_torch.transpose(1, 2)
  3941. name += ".weight"
  3942. return [(self.map_tensor_name(name), data_torch)]
  3943. def set_gguf_parameters(self):
  3944. super().set_gguf_parameters()
  3945. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3946. if self.is_moe:
  3947. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3948. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3949. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3950. def _is_tokenizer_xlmroberta(self) -> bool:
  3951. with open(self.dir_model / "tokenizer.json") as f:
  3952. tokenizer_json = json.load(f)
  3953. toktyp = tokenizer_json["model"]["type"]
  3954. if toktyp == "Unigram":
  3955. return True
  3956. if toktyp == "WordPiece":
  3957. return False
  3958. raise ValueError(f"unknown tokenizer: {toktyp}")
  3959. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3960. class NeoBert(BertModel):
  3961. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3962. def set_gguf_parameters(self):
  3963. super().set_gguf_parameters()
  3964. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3965. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3966. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3967. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3968. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3969. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3970. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3971. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3972. def modify_tensors(self, data_torch, name, bid):
  3973. if name.startswith("decoder."):
  3974. return []
  3975. if name.startswith("model."):
  3976. name = name[6:]
  3977. return super().modify_tensors(data_torch, name, bid)
  3978. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3979. class XLMRobertaModel(BertModel):
  3980. model_arch = gguf.MODEL_ARCH.BERT
  3981. _lora_files = {}
  3982. _lora_names = []
  3983. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3984. hparams = kwargs.pop("hparams", None)
  3985. if hparams is None:
  3986. hparams = ModelBase.load_hparams(dir_model, False)
  3987. if lora_names := hparams.get("lora_adaptations"):
  3988. self._lora_names = lora_names
  3989. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  3990. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3991. self._xlmroberta_tokenizer_init()
  3992. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3993. if self._lora_names:
  3994. for name in self._lora_names:
  3995. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  3996. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  3997. return super().generate_extra_tensors()
  3998. def set_type(self):
  3999. for lora_writer in self._lora_files.values():
  4000. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4001. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4002. super().set_type()
  4003. def set_vocab(self):
  4004. self._xlmroberta_set_vocab()
  4005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4006. # if name starts with "roberta.", remove the prefix
  4007. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4008. if name.startswith("roberta."):
  4009. name = name[8:]
  4010. # jina-embeddings-v3
  4011. if ".parametrizations." in name:
  4012. name = name.replace(".parametrizations.", ".")
  4013. if name.endswith(".original"):
  4014. name = name[:-9]
  4015. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4016. if name == "embeddings.position_embeddings.weight":
  4017. if self._position_offset is not None:
  4018. data_torch = data_torch[self._position_offset:,:]
  4019. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4020. if name.startswith("pooler.dense"):
  4021. return []
  4022. num_loras = data_torch.size(0)
  4023. assert num_loras == len(self._lora_names)
  4024. # Split out each LoRA in their own GGUF
  4025. for i, lora_writer in enumerate(self._lora_files.values()):
  4026. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4027. data = data_torch[i, :, :]
  4028. # Transpose/flip token_embd/types into correct shape
  4029. if new_name == "token_embd.weight.lora_b":
  4030. data = data.T
  4031. elif new_name.startswith("token_types.weight."):
  4032. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4033. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4034. return []
  4035. return super().modify_tensors(data_torch, name, bid)
  4036. def set_gguf_parameters(self):
  4037. super().set_gguf_parameters()
  4038. # jina-embeddings-v3
  4039. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4040. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4041. lora_alpha = self.hparams.get("lora_alpha")
  4042. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4043. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4044. for lora_name, lora_writer in self._lora_files.items():
  4045. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4046. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4047. if lora_prompt_prefixes:
  4048. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4049. def write(self):
  4050. super().write()
  4051. for lora_writer in self._lora_files.values():
  4052. lora_writer.write_header_to_file()
  4053. lora_writer.write_kv_data_to_file()
  4054. lora_writer.write_tensors_to_file(progress=True)
  4055. lora_writer.close()
  4056. @ModelBase.register("GemmaForCausalLM")
  4057. class GemmaModel(TextModel):
  4058. model_arch = gguf.MODEL_ARCH.GEMMA
  4059. def set_vocab(self):
  4060. self._set_vocab_sentencepiece()
  4061. # TODO: these special tokens should be exported only for the CodeGemma family
  4062. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4063. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4064. special_vocab._set_special_token("prefix", 67)
  4065. special_vocab._set_special_token("suffix", 69)
  4066. special_vocab._set_special_token("middle", 68)
  4067. special_vocab._set_special_token("fsep", 70)
  4068. special_vocab._set_special_token("eot", 107)
  4069. special_vocab.chat_template = None # do not add it twice
  4070. special_vocab.add_to_gguf(self.gguf_writer)
  4071. self.gguf_writer.add_add_space_prefix(False)
  4072. def set_gguf_parameters(self):
  4073. hparams = self.hparams
  4074. block_count = hparams["num_hidden_layers"]
  4075. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4076. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4077. self.gguf_writer.add_block_count(block_count)
  4078. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4079. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4080. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4081. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4082. self.gguf_writer.add_key_length(hparams["head_dim"])
  4083. self.gguf_writer.add_value_length(hparams["head_dim"])
  4084. self.gguf_writer.add_file_type(self.ftype)
  4085. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4086. del bid # unused
  4087. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4088. # To prevent errors, skip loading lm_head.weight.
  4089. if name == "lm_head.weight":
  4090. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4091. return []
  4092. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4093. if name.endswith("norm.weight"):
  4094. data_torch = data_torch + 1
  4095. return [(self.map_tensor_name(name), data_torch)]
  4096. @ModelBase.register("Gemma2ForCausalLM")
  4097. class Gemma2Model(TextModel):
  4098. model_arch = gguf.MODEL_ARCH.GEMMA2
  4099. def set_vocab(self):
  4100. self._set_vocab_sentencepiece()
  4101. self.gguf_writer.add_add_space_prefix(False)
  4102. def set_gguf_parameters(self):
  4103. hparams = self.hparams
  4104. block_count = hparams["num_hidden_layers"]
  4105. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4106. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4107. self.gguf_writer.add_block_count(block_count)
  4108. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4109. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4110. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4111. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4112. self.gguf_writer.add_key_length(hparams["head_dim"])
  4113. self.gguf_writer.add_value_length(hparams["head_dim"])
  4114. self.gguf_writer.add_file_type(self.ftype)
  4115. self.gguf_writer.add_attn_logit_softcapping(
  4116. self.hparams["attn_logit_softcapping"]
  4117. )
  4118. self.gguf_writer.add_final_logit_softcapping(
  4119. self.hparams["final_logit_softcapping"]
  4120. )
  4121. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4122. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4123. del bid # unused
  4124. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4125. # To prevent errors, skip loading lm_head.weight.
  4126. if name == "lm_head.weight":
  4127. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4128. return []
  4129. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4130. if name.endswith("norm.weight"):
  4131. data_torch = data_torch + 1
  4132. return [(self.map_tensor_name(name), data_torch)]
  4133. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4134. class Gemma3Model(TextModel):
  4135. model_arch = gguf.MODEL_ARCH.GEMMA3
  4136. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4137. def set_vocab(self):
  4138. self._set_vocab_sentencepiece()
  4139. self.gguf_writer.add_add_space_prefix(False)
  4140. def set_gguf_parameters(self):
  4141. hparams = self.hparams
  4142. block_count = hparams["num_hidden_layers"]
  4143. # some default values are not specified in the hparams
  4144. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4145. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4146. self.gguf_writer.add_block_count(block_count)
  4147. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4148. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4149. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4150. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4151. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4152. self.gguf_writer.add_file_type(self.ftype)
  4153. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4154. # attn_logit_softcapping is removed in Gemma3
  4155. assert hparams.get("attn_logit_softcapping") is None
  4156. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4157. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4158. if hparams.get("rope_scaling") is not None:
  4159. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4160. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4161. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4162. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4163. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4164. del bid # unused
  4165. if "language_model." in name:
  4166. name = name.replace("language_model.", "")
  4167. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4168. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4169. return [] # skip vision tensors
  4170. # remove OOV (out-of-vocabulary) rows in token_embd
  4171. if "embed_tokens.weight" in name:
  4172. vocab = self._create_vocab_sentencepiece()
  4173. tokens = vocab[0]
  4174. data_torch = data_torch[:len(tokens)]
  4175. # ref code in Gemma3RMSNorm
  4176. # output = output * (1.0 + self.weight.float())
  4177. # note: this is not the case on gemma3n
  4178. if name.endswith("norm.weight"):
  4179. data_torch = data_torch + self.norm_shift
  4180. return [(self.map_tensor_name(name), data_torch)]
  4181. @ModelBase.register("Gemma3TextModel")
  4182. class EmbeddingGemma(Gemma3Model):
  4183. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4184. def set_gguf_parameters(self):
  4185. super().set_gguf_parameters()
  4186. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4187. # constructor. We want to use the value from the original model's config.json.
  4188. # ref: https://github.com/huggingface/transformers/pull/40700
  4189. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4190. config = json.load(f)
  4191. orig_sliding_window = config.get("sliding_window")
  4192. if orig_sliding_window is None:
  4193. raise ValueError("sliding_window not found in model config - this is required for the model")
  4194. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4195. f"instead of {self.hparams['sliding_window']}")
  4196. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4197. self._try_set_pooling_type()
  4198. @ModelBase.register("Gemma3ForConditionalGeneration")
  4199. class Gemma3VisionModel(MmprojModel):
  4200. def set_gguf_parameters(self):
  4201. super().set_gguf_parameters()
  4202. hparams = self.hparams
  4203. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4204. # default values below are taken from HF tranformers code
  4205. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4206. self.gguf_writer.add_vision_use_gelu(True)
  4207. # calculate proj_scale_factor (used by tinygemma3 test model)
  4208. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4209. n_per_side = int(image_seq_length ** 0.5)
  4210. image_size = self.hparams["image_size"]
  4211. patch_size = self.hparams["patch_size"]
  4212. proj_scale_factor = (image_size // patch_size) // n_per_side
  4213. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4214. # we only need to write this if it's not the default value
  4215. # in this case, we are converting a test model
  4216. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4217. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4218. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4219. if "input_projection" in name:
  4220. return gguf.GGMLQuantizationType.F16
  4221. if ".embeddings." in name:
  4222. return gguf.GGMLQuantizationType.F32
  4223. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4225. del bid # unused
  4226. if "vision_model.head." in name:
  4227. return [] # skip redundant tensors for tinygemma3
  4228. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4229. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4230. # process vision tensors
  4231. name = name.replace("_weight", ".weight")
  4232. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4233. # the other norm values are part of SigLIP model, and they are already correct
  4234. # ref code: Gemma3RMSNorm
  4235. if "soft_emb_norm.weight" in name:
  4236. logger.info(f"Correcting norm value for '{name}'")
  4237. data_torch = data_torch + 1
  4238. return [(self.map_tensor_name(name), data_torch)]
  4239. return [] # skip other tensors
  4240. @ModelBase.register("Gemma3nForConditionalGeneration")
  4241. class Gemma3NModel(Gemma3Model):
  4242. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4243. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4244. _altup_proj: list[Tensor] = []
  4245. _altup_unembd: list[Tensor] = []
  4246. def __init__(self, *args, **kwargs):
  4247. super().__init__(*args, **kwargs)
  4248. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4249. self._altup_proj = [
  4250. torch.Tensor(), # to be replaced
  4251. torch.Tensor(), # to be replaced
  4252. torch.Tensor(), # to be replaced
  4253. ]
  4254. self._altup_unembd = [
  4255. torch.Tensor(), # to be replaced
  4256. torch.Tensor(), # to be replaced
  4257. torch.Tensor(), # to be replaced
  4258. ]
  4259. def set_vocab(self):
  4260. super().set_vocab()
  4261. def set_gguf_parameters(self):
  4262. super().set_gguf_parameters()
  4263. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4264. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4265. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4266. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4267. activation_sparsity_scale = []
  4268. for s in self.hparams["activation_sparsity_pattern"]:
  4269. normal_dist = torch.distributions.normal.Normal(0, 1)
  4270. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4271. activation_sparsity_scale.append(std_multiplier.item())
  4272. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4273. sliding_window_pattern = []
  4274. for t in self.hparams["layer_types"]:
  4275. sliding_window_pattern.append(t == "sliding_attention")
  4276. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4277. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4278. has_all = all(m.numel() > 0 for m in matrices)
  4279. if not has_all:
  4280. return None
  4281. else:
  4282. return torch.stack(matrices, dim=0)
  4283. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4284. if name.endswith("_scale"):
  4285. name = name + ".weight"
  4286. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4287. if "language_model." not in name:
  4288. return [] # skip non-language model tensors
  4289. if "altup_unembed_projections" in name:
  4290. data_torch = data_torch.to(device="cpu")
  4291. if ".0." in name:
  4292. self._altup_unembd[0] = data_torch
  4293. elif ".1." in name:
  4294. self._altup_unembd[1] = data_torch
  4295. elif ".2." in name:
  4296. self._altup_unembd[2] = data_torch
  4297. else:
  4298. raise ValueError(f"Unknown name: {name}")
  4299. out = self._stack_matrices(self._altup_unembd)
  4300. if out is not None:
  4301. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4302. else:
  4303. return []
  4304. if "altup_projections" in name:
  4305. data_torch = data_torch.to(device="cpu")
  4306. if ".0." in name:
  4307. self._altup_proj[0] = data_torch
  4308. elif ".1." in name:
  4309. self._altup_proj[1] = data_torch
  4310. elif ".2." in name:
  4311. self._altup_proj[2] = data_torch
  4312. else:
  4313. raise ValueError(f"Unknown name: {name}")
  4314. out = self._stack_matrices(self._altup_proj)
  4315. if out is not None:
  4316. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4317. else:
  4318. return []
  4319. return super().modify_tensors(data_torch, name, bid)
  4320. @ModelBase.register("Starcoder2ForCausalLM")
  4321. class StarCoder2Model(TextModel):
  4322. model_arch = gguf.MODEL_ARCH.STARCODER2
  4323. @ModelBase.register("Rwkv6ForCausalLM")
  4324. class Rwkv6Model(TextModel):
  4325. model_arch = gguf.MODEL_ARCH.RWKV6
  4326. def set_vocab(self):
  4327. self._set_vocab_rwkv_world()
  4328. def set_gguf_parameters(self):
  4329. block_count = self.hparams["num_hidden_layers"]
  4330. head_size = self.hparams["head_size"]
  4331. hidden_size = self.hparams["hidden_size"]
  4332. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4333. rescale_every_n_layers = self.hparams["rescale_every"]
  4334. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4335. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4336. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4337. # RWKV isn't context limited
  4338. self.gguf_writer.add_context_length(1048576)
  4339. self.gguf_writer.add_embedding_length(hidden_size)
  4340. self.gguf_writer.add_block_count(block_count)
  4341. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4342. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4343. self.gguf_writer.add_wkv_head_size(head_size)
  4344. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4345. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4346. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4347. self.gguf_writer.add_file_type(self.ftype)
  4348. # required by llama.cpp, unused
  4349. self.gguf_writer.add_head_count(0)
  4350. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4351. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4352. new_name = self.map_tensor_name(name)
  4353. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4354. new_name += ".weight"
  4355. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4356. data_torch = data_torch.transpose(0, 1)
  4357. if new_name.endswith("time_mix_w2.weight"):
  4358. data_torch = data_torch.permute(0, 2, 1)
  4359. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4360. data_torch = data_torch.squeeze()
  4361. try:
  4362. rescale_every_n_layers = self.hparams["rescale_every"]
  4363. if rescale_every_n_layers > 0:
  4364. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4365. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4366. except KeyError:
  4367. pass
  4368. # concat time_mix_lerp weights to reduce some cpu overhead
  4369. # also reduces the number of tensors in the model
  4370. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4371. try:
  4372. self.lerp_weights[bid][new_name] = data_torch
  4373. except KeyError:
  4374. self.lerp_weights[bid] = {new_name: data_torch}
  4375. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4376. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4377. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4378. yield (new_name, data)
  4379. return
  4380. yield (new_name, data_torch)
  4381. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4382. class RWKV6Qwen2Model(Rwkv6Model):
  4383. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4384. def set_vocab(self):
  4385. try:
  4386. self._set_vocab_sentencepiece()
  4387. except FileNotFoundError:
  4388. self._set_vocab_gpt2()
  4389. def set_gguf_parameters(self):
  4390. block_count = self.hparams["num_hidden_layers"]
  4391. num_attention_heads = self.hparams["num_attention_heads"]
  4392. num_key_value_heads = self.hparams["num_key_value_heads"]
  4393. hidden_size = self.hparams["hidden_size"]
  4394. head_size = hidden_size // num_attention_heads
  4395. rms_norm_eps = self.hparams["rms_norm_eps"]
  4396. intermediate_size = self.hparams["intermediate_size"]
  4397. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4398. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4399. # RWKV isn't context limited
  4400. self.gguf_writer.add_context_length(1048576)
  4401. self.gguf_writer.add_embedding_length(hidden_size)
  4402. self.gguf_writer.add_block_count(block_count)
  4403. self.gguf_writer.add_wkv_head_size(head_size)
  4404. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4405. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4406. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4407. self.gguf_writer.add_file_type(self.ftype)
  4408. # special parameters for time_mixing in RWKV6QWEN2
  4409. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4410. self.gguf_writer.add_token_shift_count(1)
  4411. # RWKV6QWEN2 use grouped key/value like GQA
  4412. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4413. # required by llama.cpp, unused
  4414. self.gguf_writer.add_head_count(0)
  4415. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4416. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4417. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4418. data = data.view(5, -1, data.shape[-1])
  4419. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4420. # permute them here to avoid code changes
  4421. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4422. if "w2" in new_name:
  4423. data = data.view(5, -1, data.shape[-1])
  4424. yield (new_name, data)
  4425. continue
  4426. yield (new_name, data)
  4427. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4428. class Rwkv7Model(TextModel):
  4429. model_arch = gguf.MODEL_ARCH.RWKV7
  4430. def set_vocab(self):
  4431. self._set_vocab_rwkv_world()
  4432. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4433. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4434. def set_gguf_parameters(self):
  4435. block_count = self.hparams["num_hidden_layers"]
  4436. try:
  4437. head_size = self.hparams["head_size"]
  4438. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4439. except KeyError:
  4440. head_size = self.hparams["head_dim"]
  4441. layer_norm_eps = self.hparams["norm_eps"]
  4442. hidden_size = self.hparams["hidden_size"]
  4443. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4444. # ICLR: In-Context-Learning-Rate
  4445. try:
  4446. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4447. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4448. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4449. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4450. except KeyError:
  4451. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4452. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4453. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4454. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4455. # RWKV isn't context limited
  4456. self.gguf_writer.add_context_length(1048576)
  4457. self.gguf_writer.add_embedding_length(hidden_size)
  4458. self.gguf_writer.add_block_count(block_count)
  4459. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4460. self.gguf_writer.add_wkv_head_size(head_size)
  4461. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4462. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4463. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4464. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4465. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4466. self.gguf_writer.add_file_type(self.ftype)
  4467. # required by llama.cpp, unused
  4468. self.gguf_writer.add_head_count(0)
  4469. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4470. lora_needs_transpose: bool = True
  4471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4472. # unify tensor names here to make life easier
  4473. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4474. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4475. name = name.replace("time_mixer.", "")
  4476. # lora layer names in fla-hub's impl
  4477. if "_lora.lora" in name:
  4478. self.lora_needs_transpose = False
  4479. name = name.replace("_lora.lora.0.weight", "1.weight")
  4480. name = name.replace("_lora.lora.2.weight", "2.weight")
  4481. name = name.replace("_lora.lora.2.bias", "0.weight")
  4482. name = name.replace("feed_forward_norm", "ln2")
  4483. name = name.replace("g_norm", "ln_x")
  4484. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4485. # some models have dummy v0/v1/v2 on first layer while others don't
  4486. # ignore them all since they are not used
  4487. return
  4488. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4489. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4490. if bid is not None and "attention.x_" in name:
  4491. if "attention.x_x" in name:
  4492. # already concatenated
  4493. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4494. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4495. yield (new_name, data)
  4496. else:
  4497. try:
  4498. self.lerp_weights[bid][name] = data_torch
  4499. except KeyError:
  4500. self.lerp_weights[bid] = {name: data_torch}
  4501. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4502. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4503. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4504. yield (new_name, data)
  4505. return
  4506. else:
  4507. data_torch = data_torch.squeeze()
  4508. new_name = self.map_tensor_name(name)
  4509. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4510. new_name += ".weight"
  4511. if self.lora_needs_transpose and any(
  4512. new_name.endswith(t) for t in [
  4513. "time_mix_w1.weight", "time_mix_w2.weight",
  4514. "time_mix_a1.weight", "time_mix_a2.weight",
  4515. "time_mix_v1.weight", "time_mix_v2.weight",
  4516. "time_mix_g1.weight", "time_mix_g2.weight",
  4517. ]
  4518. ):
  4519. data_torch = data_torch.transpose(0, 1)
  4520. if 'r_k' in new_name:
  4521. data_torch = data_torch.flatten()
  4522. if bid == 0 and "time_mix_a" in new_name:
  4523. # dummy v0/v1/v2 on first layer
  4524. # easist way to make llama happy
  4525. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4526. yield (new_name, data_torch)
  4527. @ModelBase.register("RwkvHybridForCausalLM")
  4528. class ARwkv7Model(Rwkv7Model):
  4529. model_arch = gguf.MODEL_ARCH.ARWKV7
  4530. def set_vocab(self):
  4531. try:
  4532. self._set_vocab_sentencepiece()
  4533. except FileNotFoundError:
  4534. self._set_vocab_gpt2()
  4535. def set_gguf_parameters(self):
  4536. block_count = self.hparams["num_hidden_layers"]
  4537. hidden_size = self.hparams["hidden_size"]
  4538. head_size = self.hparams["head_size"]
  4539. rms_norm_eps = self.hparams["rms_norm_eps"]
  4540. intermediate_size = self.hparams["intermediate_size"]
  4541. wkv_has_gate = self.hparams["wkv_has_gate"]
  4542. assert self.hparams["wkv_version"] == 7
  4543. # ICLR: In-Context-Learning-Rate
  4544. lora_rank_decay = 64
  4545. lora_rank_iclr = 64
  4546. lora_rank_value_residual_mix = 32
  4547. lora_rank_gate = 128 if wkv_has_gate else 0
  4548. # RWKV isn't context limited
  4549. self.gguf_writer.add_context_length(1048576)
  4550. self.gguf_writer.add_embedding_length(hidden_size)
  4551. self.gguf_writer.add_block_count(block_count)
  4552. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4553. self.gguf_writer.add_wkv_head_size(head_size)
  4554. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4555. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4556. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4557. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4558. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4559. self.gguf_writer.add_file_type(self.ftype)
  4560. self.gguf_writer.add_token_shift_count(1)
  4561. # required by llama.cpp, unused
  4562. self.gguf_writer.add_head_count(0)
  4563. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4564. class MambaModel(TextModel):
  4565. model_arch = gguf.MODEL_ARCH.MAMBA
  4566. def __init__(self, dir_model: Path, *args, **kwargs):
  4567. # Avoid using AutoConfig for hparams
  4568. hparams = kwargs.pop("hparams", None)
  4569. if hparams is None:
  4570. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4571. hparams = json.load(f)
  4572. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4573. def set_vocab(self):
  4574. vocab_size = self.hparams["vocab_size"]
  4575. # Round vocab size to next multiple of 8
  4576. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4577. # pad using ceiling division
  4578. # ref: https://stackoverflow.com/a/17511341/22827863
  4579. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4580. self.hparams["vocab_size"] = vocab_size
  4581. if (self.dir_model / "tokenizer.json").is_file():
  4582. self._set_vocab_gpt2()
  4583. elif (self.dir_model / "tokenizer.model").is_file():
  4584. self._set_vocab_sentencepiece()
  4585. else:
  4586. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4587. self._set_vocab_builtin("gpt-neox", vocab_size)
  4588. def set_gguf_parameters(self):
  4589. d_model = self.find_hparam(["hidden_size", "d_model"])
  4590. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4591. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4592. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4593. # ceiling division
  4594. # ref: https://stackoverflow.com/a/17511341/22827863
  4595. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4596. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4597. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4598. use_dt_b_c_norm = False
  4599. # For falconmamba we do apply RMS norm on B / DT and C layers
  4600. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4601. use_dt_b_c_norm = True
  4602. # Fail early for models which don't have a block expansion factor of 2
  4603. assert d_inner == 2 * d_model
  4604. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4605. self.gguf_writer.add_embedding_length(d_model)
  4606. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4607. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4608. self.gguf_writer.add_block_count(self.block_count)
  4609. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4610. self.gguf_writer.add_ssm_inner_size(d_inner)
  4611. self.gguf_writer.add_ssm_state_size(d_state)
  4612. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4613. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4614. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4615. self.gguf_writer.add_file_type(self.ftype)
  4616. _tok_embd = None
  4617. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4618. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4619. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4620. new_name = self.map_tensor_name(name)
  4621. if name.endswith(".A_log"):
  4622. logger.debug("A_log --> A ==> " + new_name)
  4623. data_torch = -torch.exp(data_torch)
  4624. # [4 1 8192 1] -> [4 8192 1 1]
  4625. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4626. data_torch = data_torch.squeeze()
  4627. # assuming token_embd.weight is seen before output.weight
  4628. if self._tok_embd is not None and new_name == output_name:
  4629. if torch.equal(self._tok_embd, data_torch):
  4630. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4631. return []
  4632. elif new_name == tok_embd_name:
  4633. self._tok_embd = data_torch
  4634. return [(new_name, data_torch)]
  4635. @ModelBase.register("Mamba2ForCausalLM")
  4636. class Mamba2Model(TextModel):
  4637. model_arch = gguf.MODEL_ARCH.MAMBA2
  4638. def __init__(self, dir_model: Path, *args, **kwargs):
  4639. # Avoid using AutoConfig for hparams
  4640. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4641. hparams = kwargs.pop("hparams", None)
  4642. if hparams is None:
  4643. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4644. hparams = json.load(f)
  4645. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4646. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4647. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4648. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4649. def set_vocab(self):
  4650. vocab_size = self.hparams["vocab_size"]
  4651. # Round vocab size to next multiple of 16
  4652. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4653. # pad using ceiling division
  4654. # ref: https://stackoverflow.com/a/17511341/22827863
  4655. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4656. self.hparams["vocab_size"] = vocab_size
  4657. if (self.dir_model / "tokenizer.model").is_file():
  4658. self._set_vocab_sentencepiece()
  4659. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4660. # mamba-codestral
  4661. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4662. elif (self.dir_model / "tokenizer.json").is_file():
  4663. self._set_vocab_gpt2()
  4664. else:
  4665. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4666. self._set_vocab_builtin("gpt-neox", vocab_size)
  4667. def set_gguf_parameters(self):
  4668. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4669. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4670. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4671. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4672. # Fail early for models which don't have a block expansion factor of 2
  4673. # TODO: does this really matter?
  4674. # skip the assertion for FalconH1 Model
  4675. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4676. assert self.d_inner == 2 * self.d_model
  4677. assert self.d_inner % head_dim == 0
  4678. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4679. self.gguf_writer.add_embedding_length(self.d_model)
  4680. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4681. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4682. self.gguf_writer.add_block_count(self.block_count)
  4683. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4684. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4685. self.gguf_writer.add_ssm_state_size(d_state)
  4686. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4687. self.gguf_writer.add_ssm_group_count(self.n_group)
  4688. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4689. self.gguf_writer.add_file_type(self.ftype)
  4690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4691. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4692. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4693. name = name.removeprefix("model.")
  4694. if name.endswith(".dt_bias"):
  4695. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4696. new_name = self.map_tensor_name(name)
  4697. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4698. data_torch = data_torch.squeeze()
  4699. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4700. gguf.MODEL_TENSOR.SSM_A,
  4701. gguf.MODEL_TENSOR.SSM_D,
  4702. ]):
  4703. # unsqueeze A to use similar shape semantics as Mamba-1
  4704. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4705. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4706. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4707. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4708. if name.endswith(".A_log"):
  4709. logger.debug("A_log --> A ==> " + new_name)
  4710. data_torch = -torch.exp(data_torch)
  4711. yield (new_name, data_torch)
  4712. @ModelBase.register("JambaForCausalLM")
  4713. class JambaModel(TextModel):
  4714. model_arch = gguf.MODEL_ARCH.JAMBA
  4715. def get_vocab_base_pre(self, tokenizer) -> str:
  4716. del tokenizer # unused
  4717. return "gpt-2"
  4718. def set_vocab(self):
  4719. if (self.dir_model / "tokenizer.model").is_file():
  4720. # Using Jamba's tokenizer.json causes errors on model load
  4721. # (something about "byte not found in vocab"),
  4722. # but there's a working tokenizer.model
  4723. self._set_vocab_sentencepiece()
  4724. else:
  4725. # Some Jamba models only have a tokenizer.json, which works.
  4726. self._set_vocab_gpt2()
  4727. def set_gguf_parameters(self):
  4728. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4729. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4730. d_inner = self.hparams["mamba_expand"] * d_model
  4731. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4732. # ceiling division
  4733. # ref: https://stackoverflow.com/a/17511341/22827863
  4734. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4735. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4736. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4737. n_kv_head = self.hparams["num_key_value_heads"]
  4738. attn_offset = self.hparams["attn_layer_offset"]
  4739. attn_period = self.hparams["attn_layer_period"]
  4740. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4741. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4742. ]
  4743. self.gguf_writer.add_block_count(self.block_count)
  4744. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4745. self.gguf_writer.add_embedding_length(d_model)
  4746. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4747. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4748. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4749. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4750. self.gguf_writer.add_ssm_inner_size(d_inner)
  4751. self.gguf_writer.add_ssm_state_size(d_state)
  4752. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4753. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4754. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4755. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4756. self.gguf_writer.add_file_type(self.ftype)
  4757. _experts: list[dict[str, Tensor]] | None = None
  4758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4759. # Mini-Jamba
  4760. name = name.replace(".moe.", ".feed_forward.")
  4761. if bid is not None:
  4762. moe_offset = self.hparams["expert_layer_offset"]
  4763. moe_period = self.hparams["expert_layer_period"]
  4764. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4765. name = name.replace(".experts.0.", ".")
  4766. # process the experts separately
  4767. if ".feed_forward.experts." in name:
  4768. n_experts = self.hparams["num_experts"]
  4769. assert bid is not None
  4770. if self._experts is None:
  4771. self._experts = [{} for _ in range(self.block_count)]
  4772. self._experts[bid][name] = data_torch
  4773. if len(self._experts[bid]) >= n_experts * 3:
  4774. # merge the experts into a single 3d tensor
  4775. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4776. datas: list[Tensor] = []
  4777. for xid in range(n_experts):
  4778. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4779. datas.append(self._experts[bid][ename])
  4780. del self._experts[bid][ename]
  4781. data_torch = torch.stack(datas, dim=0)
  4782. # using the same merged name as qwen2moe
  4783. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4784. new_name = self.map_tensor_name(merged_name)
  4785. yield new_name, data_torch
  4786. return
  4787. new_name = self.map_tensor_name(name)
  4788. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4789. data_torch = data_torch.squeeze()
  4790. if name.endswith(".A_log"):
  4791. logger.debug("A_log --> A ==> " + new_name)
  4792. data_torch = -torch.exp(data_torch)
  4793. yield (new_name, data_torch)
  4794. def prepare_tensors(self):
  4795. super().prepare_tensors()
  4796. if self._experts is not None:
  4797. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4798. experts = [k for d in self._experts for k in d.keys()]
  4799. if len(experts) > 0:
  4800. raise ValueError(f"Unprocessed experts: {experts}")
  4801. @ModelBase.register("CohereForCausalLM")
  4802. class CommandR2Model(TextModel):
  4803. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4804. def __init__(self, *args, **kwargs):
  4805. super().__init__(*args, **kwargs)
  4806. # max_position_embeddings = 8192 in config.json but model was actually
  4807. # trained on 128k context length
  4808. # aya-23 models don't have model_max_length specified
  4809. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4810. def set_gguf_parameters(self):
  4811. super().set_gguf_parameters()
  4812. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4813. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4814. @ModelBase.register("Cohere2ForCausalLM")
  4815. class Cohere2Model(TextModel):
  4816. model_arch = gguf.MODEL_ARCH.COHERE2
  4817. def set_gguf_parameters(self):
  4818. super().set_gguf_parameters()
  4819. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4820. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4821. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4822. rotary_pct = self.hparams["rotary_pct"]
  4823. hidden_size = self.hparams["hidden_size"]
  4824. num_attention_heads = self.hparams["num_attention_heads"]
  4825. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4826. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4827. @ModelBase.register("OlmoForCausalLM")
  4828. @ModelBase.register("OLMoForCausalLM")
  4829. class OlmoModel(TextModel):
  4830. model_arch = gguf.MODEL_ARCH.OLMO
  4831. def set_gguf_parameters(self):
  4832. super().set_gguf_parameters()
  4833. self.gguf_writer.add_layer_norm_eps(1e-5)
  4834. clip_qkv = self.hparams.get("clip_qkv")
  4835. if clip_qkv is not None:
  4836. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4837. # Same as super class, but permuting q_proj, k_proj
  4838. # Copied from: LlamaModel
  4839. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4840. del bid # unused
  4841. n_head = self.hparams["num_attention_heads"]
  4842. n_kv_head = self.hparams.get("num_key_value_heads")
  4843. if name.endswith("q_proj.weight"):
  4844. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4845. if name.endswith("k_proj.weight"):
  4846. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4847. return [(self.map_tensor_name(name), data_torch)]
  4848. @ModelBase.register("SeedOssForCausalLM")
  4849. class SeedOssModel(TextModel):
  4850. model_arch = gguf.MODEL_ARCH.SEED_OSS
  4851. @ModelBase.register("Olmo2ForCausalLM")
  4852. class Olmo2Model(TextModel):
  4853. model_arch = gguf.MODEL_ARCH.OLMO2
  4854. @ModelBase.register("OlmoeForCausalLM")
  4855. class OlmoeModel(TextModel):
  4856. model_arch = gguf.MODEL_ARCH.OLMOE
  4857. def set_gguf_parameters(self):
  4858. super().set_gguf_parameters()
  4859. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4860. if (n_experts := self.hparams.get("num_experts")) is not None:
  4861. self.gguf_writer.add_expert_count(n_experts)
  4862. _experts: list[dict[str, Tensor]] | None = None
  4863. # Copied from: Qwen2MoeModel
  4864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4865. # process the experts separately
  4866. if name.find("experts") != -1:
  4867. n_experts = self.hparams["num_experts"]
  4868. assert bid is not None
  4869. if self._experts is None:
  4870. self._experts = [{} for _ in range(self.block_count)]
  4871. self._experts[bid][name] = data_torch
  4872. if len(self._experts[bid]) >= n_experts * 3:
  4873. tensors: list[tuple[str, Tensor]] = []
  4874. # merge the experts into a single 3d tensor
  4875. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4876. datas: list[Tensor] = []
  4877. for xid in range(n_experts):
  4878. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4879. datas.append(self._experts[bid][ename])
  4880. del self._experts[bid][ename]
  4881. data_torch = torch.stack(datas, dim=0)
  4882. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4883. new_name = self.map_tensor_name(merged_name)
  4884. tensors.append((new_name, data_torch))
  4885. return tensors
  4886. else:
  4887. return []
  4888. return [(self.map_tensor_name(name), data_torch)]
  4889. # Copied from: Qwen2MoeModel
  4890. def prepare_tensors(self):
  4891. super().prepare_tensors()
  4892. if self._experts is not None:
  4893. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4894. experts = [k for d in self._experts for k in d.keys()]
  4895. if len(experts) > 0:
  4896. raise ValueError(f"Unprocessed experts: {experts}")
  4897. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4898. class JinaBertV2Model(BertModel):
  4899. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4900. def set_vocab(self):
  4901. tokenizer_class = 'BertTokenizer'
  4902. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4903. tokenizer_class = json.load(f)['tokenizer_class']
  4904. if tokenizer_class == 'BertTokenizer':
  4905. super().set_vocab()
  4906. elif tokenizer_class == 'RobertaTokenizer':
  4907. self._set_vocab_gpt2()
  4908. self.gguf_writer.add_token_type_count(2)
  4909. else:
  4910. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4911. @ModelBase.register("OpenELMForCausalLM")
  4912. class OpenELMModel(TextModel):
  4913. model_arch = gguf.MODEL_ARCH.OPENELM
  4914. @staticmethod
  4915. def _make_divisible(v: float | int, divisor: int) -> int:
  4916. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4917. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4918. # Make sure that round down does not go down by more than 10%.
  4919. if new_v < 0.9 * v:
  4920. new_v += divisor
  4921. return new_v
  4922. def __init__(self, *args, **kwargs):
  4923. super().__init__(*args, **kwargs)
  4924. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4925. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4926. self._n_embd: int = self.hparams["model_dim"]
  4927. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4928. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4929. self._ffn_dims: list[int] = [
  4930. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4931. for multiplier in ffn_multipliers
  4932. ]
  4933. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4934. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4935. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4936. def set_vocab(self):
  4937. try:
  4938. self._set_vocab_sentencepiece()
  4939. except FileNotFoundError:
  4940. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4941. def set_gguf_parameters(self):
  4942. n_embd = self._n_embd
  4943. head_dim = self.hparams["head_dim"]
  4944. rot_pct = 1.0
  4945. assert self.block_count == len(self._num_kv_heads)
  4946. assert self.block_count == len(self._num_query_heads)
  4947. assert self.block_count == len(self._ffn_dims)
  4948. self.gguf_writer.add_block_count(self.block_count)
  4949. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4950. self.gguf_writer.add_embedding_length(n_embd)
  4951. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4952. self.gguf_writer.add_head_count(self._num_query_heads)
  4953. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4954. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4955. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4956. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4957. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4958. self.gguf_writer.add_key_length(head_dim)
  4959. self.gguf_writer.add_value_length(head_dim)
  4960. self.gguf_writer.add_file_type(self.ftype)
  4961. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4962. if "n_layers" in keys:
  4963. return self.hparams["num_transformer_layers"]
  4964. return super().find_hparam(keys, optional)
  4965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4966. # split ff
  4967. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4968. ff_dim = self._ffn_dims[bid]
  4969. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4970. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4971. return
  4972. yield (self.map_tensor_name(name), data_torch)
  4973. @ModelBase.register("ArcticForCausalLM")
  4974. class ArcticModel(TextModel):
  4975. model_arch = gguf.MODEL_ARCH.ARCTIC
  4976. def set_vocab(self):
  4977. # The reason for using a custom implementation here is that the
  4978. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4979. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4980. from sentencepiece import SentencePieceProcessor
  4981. tokenizer_path = self.dir_model / 'tokenizer.model'
  4982. if not tokenizer_path.is_file():
  4983. logger.error(f'Error: Missing {tokenizer_path}')
  4984. sys.exit(1)
  4985. # Read the whole vocabulary from the tokenizer.model file
  4986. tokenizer = SentencePieceProcessor()
  4987. tokenizer.LoadFromFile(str(tokenizer_path))
  4988. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4989. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4990. scores: list[float] = [-10000.0] * vocab_size
  4991. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4992. for token_id in range(tokenizer.vocab_size()):
  4993. piece = tokenizer.IdToPiece(token_id)
  4994. text = piece.encode("utf-8")
  4995. score = tokenizer.GetScore(token_id)
  4996. toktype = SentencePieceTokenTypes.NORMAL
  4997. if tokenizer.IsUnknown(token_id):
  4998. toktype = SentencePieceTokenTypes.UNKNOWN
  4999. elif tokenizer.IsControl(token_id):
  5000. toktype = SentencePieceTokenTypes.CONTROL
  5001. elif tokenizer.IsUnused(token_id):
  5002. toktype = SentencePieceTokenTypes.UNUSED
  5003. elif tokenizer.IsByte(token_id):
  5004. toktype = SentencePieceTokenTypes.BYTE
  5005. tokens[token_id] = text
  5006. scores[token_id] = score
  5007. toktypes[token_id] = toktype
  5008. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5009. # of information about added/redefined tokens and modify them accordingly.
  5010. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5011. if tokenizer_config_file.is_file():
  5012. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5013. tokenizer_config_json = json.load(f)
  5014. if "added_tokens_decoder" in tokenizer_config_json:
  5015. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5016. for token_id, token_json in added_tokens_decoder.items():
  5017. token_id = int(token_id)
  5018. if token_id >= vocab_size:
  5019. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5020. continue
  5021. token_content = token_json["content"]
  5022. token_type = SentencePieceTokenTypes.USER_DEFINED
  5023. token_score = -10000.0
  5024. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5025. # Set the score to 0.0 as in the original tokenizer.model
  5026. if ("special" in token_json) and token_json["special"]:
  5027. if token_content == tokenizer_config_json["unk_token"]:
  5028. token_type = SentencePieceTokenTypes.UNKNOWN
  5029. else:
  5030. token_type = SentencePieceTokenTypes.CONTROL
  5031. token_score = 0.0
  5032. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5033. tokens[token_id] = token_content.encode("utf-8")
  5034. toktypes[token_id] = token_type
  5035. scores[token_id] = token_score
  5036. self.gguf_writer.add_tokenizer_model("llama")
  5037. self.gguf_writer.add_tokenizer_pre("default")
  5038. self.gguf_writer.add_token_list(tokens)
  5039. self.gguf_writer.add_token_scores(scores)
  5040. self.gguf_writer.add_token_types(toktypes)
  5041. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5042. special_vocab.add_to_gguf(self.gguf_writer)
  5043. def set_gguf_parameters(self):
  5044. super().set_gguf_parameters()
  5045. hparams = self.hparams
  5046. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5047. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5048. _experts: list[dict[str, Tensor]] | None = None
  5049. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5050. n_head = self.hparams["num_attention_heads"]
  5051. n_kv_head = self.hparams.get("num_key_value_heads")
  5052. if name.endswith("q_proj.weight"):
  5053. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5054. if name.endswith("k_proj.weight"):
  5055. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5056. # process the experts separately
  5057. if name.find("block_sparse_moe.experts") != -1:
  5058. n_experts = self.hparams["num_local_experts"]
  5059. assert bid is not None
  5060. if self._experts is None:
  5061. self._experts = [{} for _ in range(self.block_count)]
  5062. self._experts[bid][name] = data_torch
  5063. if len(self._experts[bid]) >= n_experts * 3:
  5064. tensors: list[tuple[str, Tensor]] = []
  5065. # merge the experts into a single 3d tensor
  5066. for wid in ["w1", "w2", "w3"]:
  5067. datas: list[Tensor] = []
  5068. for xid in range(n_experts):
  5069. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5070. datas.append(self._experts[bid][ename])
  5071. del self._experts[bid][ename]
  5072. data_torch = torch.stack(datas, dim=0)
  5073. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5074. new_name = self.map_tensor_name(merged_name)
  5075. tensors.append((new_name, data_torch))
  5076. return tensors
  5077. else:
  5078. return []
  5079. return [(self.map_tensor_name(name), data_torch)]
  5080. def prepare_tensors(self):
  5081. super().prepare_tensors()
  5082. if self._experts is not None:
  5083. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5084. experts = [k for d in self._experts for k in d.keys()]
  5085. if len(experts) > 0:
  5086. raise ValueError(f"Unprocessed experts: {experts}")
  5087. @ModelBase.register("DeepseekForCausalLM")
  5088. class DeepseekModel(TextModel):
  5089. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5090. def set_vocab(self):
  5091. try:
  5092. self._set_vocab_sentencepiece()
  5093. except FileNotFoundError:
  5094. self._set_vocab_gpt2()
  5095. def set_gguf_parameters(self):
  5096. super().set_gguf_parameters()
  5097. hparams = self.hparams
  5098. if (rope_dim := hparams.get("head_dim")) is None:
  5099. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5100. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5101. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5102. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5103. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5104. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5105. self.gguf_writer.add_expert_weights_scale(1.0)
  5106. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5107. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5108. _experts: list[dict[str, Tensor]] | None = None
  5109. @staticmethod
  5110. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5111. if n_head_kv is not None and n_head != n_head_kv:
  5112. n_head = n_head_kv
  5113. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5114. .swapaxes(1, 2)
  5115. .reshape(weights.shape))
  5116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5117. n_head = self.hparams["num_attention_heads"]
  5118. n_kv_head = self.hparams.get("num_key_value_heads")
  5119. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5120. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5121. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5122. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5123. # process the experts separately
  5124. if name.find("mlp.experts") != -1:
  5125. n_experts = self.hparams["n_routed_experts"]
  5126. assert bid is not None
  5127. if self._experts is None:
  5128. self._experts = [{} for _ in range(self.block_count)]
  5129. self._experts[bid][name] = data_torch
  5130. if len(self._experts[bid]) >= n_experts * 3:
  5131. tensors: list[tuple[str, Tensor]] = []
  5132. # merge the experts into a single 3d tensor
  5133. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5134. datas: list[Tensor] = []
  5135. for xid in range(n_experts):
  5136. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5137. datas.append(self._experts[bid][ename])
  5138. del self._experts[bid][ename]
  5139. data_torch = torch.stack(datas, dim=0)
  5140. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5141. new_name = self.map_tensor_name(merged_name)
  5142. tensors.append((new_name, data_torch))
  5143. return tensors
  5144. else:
  5145. return []
  5146. return [(self.map_tensor_name(name), data_torch)]
  5147. def prepare_tensors(self):
  5148. super().prepare_tensors()
  5149. if self._experts is not None:
  5150. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5151. experts = [k for d in self._experts for k in d.keys()]
  5152. if len(experts) > 0:
  5153. raise ValueError(f"Unprocessed experts: {experts}")
  5154. @ModelBase.register(
  5155. "DeepseekV2ForCausalLM",
  5156. "DeepseekV3ForCausalLM",
  5157. "KimiVLForConditionalGeneration",
  5158. )
  5159. class DeepseekV2Model(TextModel):
  5160. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5161. def set_vocab(self):
  5162. try:
  5163. self._set_vocab_gpt2()
  5164. return
  5165. except Exception:
  5166. pass
  5167. from transformers import AutoTokenizer
  5168. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5169. tokpre = self.get_vocab_base_pre(tokenizer)
  5170. if tokpre == "kimi-k2":
  5171. # Build merges list using the approach similar to HunYuanMoE
  5172. merges = []
  5173. vocab = {}
  5174. mergeable_ranks = tokenizer.model._mergeable_ranks
  5175. for token, rank in mergeable_ranks.items():
  5176. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5177. if len(token) == 1:
  5178. continue
  5179. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5180. if len(merged) == 2:
  5181. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5182. # Build token list
  5183. vocab_size = self.hparams["vocab_size"]
  5184. special_tokens = tokenizer.special_tokens
  5185. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5186. tokens: list[str] = []
  5187. toktypes: list[int] = []
  5188. for i in range(vocab_size):
  5189. if i not in reverse_vocab:
  5190. tokens.append(f"[PAD{i}]")
  5191. toktypes.append(gguf.TokenType.UNUSED)
  5192. else:
  5193. token = reverse_vocab[i]
  5194. tokens.append(token)
  5195. if i in special_tokens.values():
  5196. toktypes.append(gguf.TokenType.CONTROL)
  5197. else:
  5198. toktypes.append(gguf.TokenType.NORMAL)
  5199. self.gguf_writer.add_tokenizer_model("gpt2")
  5200. self.gguf_writer.add_tokenizer_pre(tokpre)
  5201. self.gguf_writer.add_token_list(tokens)
  5202. self.gguf_writer.add_token_types(toktypes)
  5203. self.gguf_writer.add_token_merges(merges)
  5204. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5205. special_vocab.add_to_gguf(self.gguf_writer)
  5206. else:
  5207. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5208. def set_gguf_parameters(self):
  5209. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5210. self.hparams["num_key_value_heads"] = 1
  5211. super().set_gguf_parameters()
  5212. hparams = self.hparams
  5213. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5214. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5215. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5216. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5217. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5218. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5219. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5220. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5221. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5222. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5223. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5224. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5225. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5226. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5227. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5228. if hparams["scoring_func"] == "sigmoid":
  5229. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5230. elif hparams["scoring_func"] == "softmax":
  5231. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5232. else:
  5233. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5234. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5235. rope_scaling = self.hparams.get("rope_scaling") or {}
  5236. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5237. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5238. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5239. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5240. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5241. _experts: list[dict[str, Tensor]] | None = None
  5242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5243. # skip vision tensors and remove "language_model." for Kimi-VL
  5244. if "vision_tower" in name or "multi_modal_projector" in name:
  5245. return []
  5246. if name.startswith("language_model."):
  5247. name = name.replace("language_model.", "")
  5248. # rename e_score_correction_bias tensors
  5249. if name.endswith("e_score_correction_bias"):
  5250. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5251. # skip Multi-Token Prediction (MTP) layers
  5252. block_count = self.hparams["num_hidden_layers"]
  5253. match = re.match(r"model.layers.(\d+)", name)
  5254. if match and int(match.group(1)) >= block_count:
  5255. return []
  5256. # process the experts separately
  5257. if name.find("mlp.experts") != -1:
  5258. n_experts = self.hparams["n_routed_experts"]
  5259. assert bid is not None
  5260. if self._experts is None:
  5261. self._experts = [{} for _ in range(self.block_count)]
  5262. self._experts[bid][name] = data_torch
  5263. if len(self._experts[bid]) >= n_experts * 3:
  5264. tensors: list[tuple[str, Tensor]] = []
  5265. # merge the experts into a single 3d tensor
  5266. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5267. datas: list[Tensor] = []
  5268. for xid in range(n_experts):
  5269. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5270. datas.append(self._experts[bid][ename])
  5271. del self._experts[bid][ename]
  5272. data_torch = torch.stack(datas, dim=0)
  5273. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5274. new_name = self.map_tensor_name(merged_name)
  5275. tensors.append((new_name, data_torch))
  5276. return tensors
  5277. else:
  5278. return []
  5279. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5280. if name.endswith("kv_b_proj.weight"):
  5281. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5282. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5283. n_head_kv = self.hparams["num_key_value_heads"]
  5284. v_head_dim = self.hparams["v_head_dim"]
  5285. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5286. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5287. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5288. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5289. k_b = k_b.transpose(1, 2)
  5290. return [
  5291. (self.map_tensor_name(name_kb), k_b),
  5292. (self.map_tensor_name(name_vb), v_b)
  5293. ]
  5294. return [(self.map_tensor_name(name), data_torch)]
  5295. def prepare_tensors(self):
  5296. super().prepare_tensors()
  5297. if self._experts is not None:
  5298. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5299. experts = [k for d in self._experts for k in d.keys()]
  5300. if len(experts) > 0:
  5301. raise ValueError(f"Unprocessed experts: {experts}")
  5302. @ModelBase.register("Dots1ForCausalLM")
  5303. class Dots1Model(Qwen2MoeModel):
  5304. model_arch = gguf.MODEL_ARCH.DOTS1
  5305. def __init__(self, *args, **kwargs):
  5306. super().__init__(*args, **kwargs)
  5307. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5308. def set_gguf_parameters(self):
  5309. super().set_gguf_parameters()
  5310. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5311. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5312. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5313. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5314. if self.hparams["scoring_func"] == "noaux_tc":
  5315. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5316. else:
  5317. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5318. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5319. if name.endswith("e_score_correction_bias"):
  5320. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5321. if "shared_experts" in name:
  5322. return [(self.map_tensor_name(name), data_torch)]
  5323. return super().modify_tensors(data_torch, name, bid)
  5324. @ModelBase.register("PLMForCausalLM")
  5325. class PLMModel(TextModel):
  5326. model_arch = gguf.MODEL_ARCH.PLM
  5327. def set_vocab(self):
  5328. self._set_vocab_gpt2()
  5329. def set_gguf_parameters(self):
  5330. super().set_gguf_parameters()
  5331. hparams = self.hparams
  5332. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5333. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5334. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5335. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5336. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5338. return [(self.map_tensor_name(name), data_torch)]
  5339. def prepare_tensors(self):
  5340. super().prepare_tensors()
  5341. @ModelBase.register("T5WithLMHeadModel")
  5342. @ModelBase.register("T5ForConditionalGeneration")
  5343. @ModelBase.register("MT5ForConditionalGeneration")
  5344. @ModelBase.register("UMT5ForConditionalGeneration")
  5345. class T5Model(TextModel):
  5346. model_arch = gguf.MODEL_ARCH.T5
  5347. def __init__(self, *args, **kwargs):
  5348. super().__init__(*args, **kwargs)
  5349. self.shared_token_embeddings_found = False
  5350. def set_vocab(self):
  5351. # to avoid TypeError: Descriptors cannot be created directly
  5352. # exception when importing sentencepiece_model_pb2
  5353. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5354. from sentencepiece import SentencePieceProcessor
  5355. from sentencepiece import sentencepiece_model_pb2 as model
  5356. tokenizer_path = self.dir_model / 'tokenizer.model'
  5357. # many older models use spiece.model tokenizer model filename
  5358. if not tokenizer_path.is_file():
  5359. tokenizer_path = self.dir_model / 'spiece.model'
  5360. if not tokenizer_path.is_file():
  5361. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5362. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5363. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5364. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5365. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5366. # assure the tokenizer model file name is correct
  5367. assert tokenizer_path.name == 'tokenizer.model'
  5368. return self._set_vocab_sentencepiece()
  5369. else:
  5370. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5371. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5372. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5373. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5374. tokenizer = SentencePieceProcessor()
  5375. tokenizer.LoadFromFile(str(tokenizer_path))
  5376. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5377. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5378. scores: list[float] = [-10000.0] * vocab_size
  5379. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5380. for token_id in range(tokenizer.vocab_size()):
  5381. piece = tokenizer.IdToPiece(token_id)
  5382. text = piece.encode("utf-8")
  5383. score = tokenizer.GetScore(token_id)
  5384. toktype = SentencePieceTokenTypes.NORMAL
  5385. if tokenizer.IsUnknown(token_id):
  5386. toktype = SentencePieceTokenTypes.UNKNOWN
  5387. elif tokenizer.IsControl(token_id):
  5388. toktype = SentencePieceTokenTypes.CONTROL
  5389. elif tokenizer.IsUnused(token_id):
  5390. toktype = SentencePieceTokenTypes.UNUSED
  5391. elif tokenizer.IsByte(token_id):
  5392. toktype = SentencePieceTokenTypes.BYTE
  5393. tokens[token_id] = text
  5394. scores[token_id] = score
  5395. toktypes[token_id] = toktype
  5396. added_tokens_file = self.dir_model / 'added_tokens.json'
  5397. if added_tokens_file.is_file():
  5398. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5399. added_tokens_json = json.load(f)
  5400. for key in added_tokens_json:
  5401. token_id = added_tokens_json[key]
  5402. if token_id >= vocab_size:
  5403. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5404. continue
  5405. tokens[token_id] = key.encode("utf-8")
  5406. scores[token_id] = -1000.0
  5407. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5408. if vocab_size > len(tokens):
  5409. pad_count = vocab_size - len(tokens)
  5410. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5411. for i in range(1, pad_count + 1):
  5412. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5413. scores.append(-1000.0)
  5414. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5415. self.gguf_writer.add_tokenizer_model("t5")
  5416. self.gguf_writer.add_tokenizer_pre("default")
  5417. self.gguf_writer.add_token_list(tokens)
  5418. self.gguf_writer.add_token_scores(scores)
  5419. self.gguf_writer.add_token_types(toktypes)
  5420. self.gguf_writer.add_add_space_prefix(add_prefix)
  5421. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5422. if precompiled_charsmap:
  5423. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5424. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5425. special_vocab.add_to_gguf(self.gguf_writer)
  5426. def set_gguf_parameters(self):
  5427. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5428. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5429. n_ctx = 512
  5430. self.gguf_writer.add_context_length(n_ctx)
  5431. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5432. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5433. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5434. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5435. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5436. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5437. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5438. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5439. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5440. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5441. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5442. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5443. self.gguf_writer.add_file_type(self.ftype)
  5444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5445. del bid # unused
  5446. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5447. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5448. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5449. # and decoder and ignore the remaining ones.
  5450. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5451. if not self.shared_token_embeddings_found:
  5452. name = "shared.weight"
  5453. self.shared_token_embeddings_found = True
  5454. else:
  5455. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5456. return []
  5457. return [(self.map_tensor_name(name), data_torch)]
  5458. @ModelBase.register("T5EncoderModel")
  5459. class T5EncoderModel(TextModel):
  5460. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5461. def __init__(self, *args, **kwargs):
  5462. super().__init__(*args, **kwargs)
  5463. self.shared_token_embeddings_found = False
  5464. def set_vocab(self):
  5465. # to avoid TypeError: Descriptors cannot be created directly
  5466. # exception when importing sentencepiece_model_pb2
  5467. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5468. from sentencepiece import SentencePieceProcessor
  5469. from sentencepiece import sentencepiece_model_pb2 as model
  5470. tokenizer_path = self.dir_model / 'tokenizer.model'
  5471. # many older models use spiece.model tokenizer model filename
  5472. if not tokenizer_path.is_file():
  5473. tokenizer_path = self.dir_model / 'spiece.model'
  5474. if not tokenizer_path.is_file():
  5475. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5476. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5477. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5478. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5479. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5480. # assure the tokenizer model file name is correct
  5481. assert tokenizer_path.name == 'tokenizer.model'
  5482. return self._set_vocab_sentencepiece()
  5483. else:
  5484. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5485. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5486. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5487. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5488. tokenizer = SentencePieceProcessor()
  5489. tokenizer.LoadFromFile(str(tokenizer_path))
  5490. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5491. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5492. scores: list[float] = [-10000.0] * vocab_size
  5493. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5494. for token_id in range(tokenizer.vocab_size()):
  5495. piece = tokenizer.IdToPiece(token_id)
  5496. text = piece.encode("utf-8")
  5497. score = tokenizer.GetScore(token_id)
  5498. toktype = SentencePieceTokenTypes.NORMAL
  5499. if tokenizer.IsUnknown(token_id):
  5500. toktype = SentencePieceTokenTypes.UNKNOWN
  5501. elif tokenizer.IsControl(token_id):
  5502. toktype = SentencePieceTokenTypes.CONTROL
  5503. elif tokenizer.IsUnused(token_id):
  5504. toktype = SentencePieceTokenTypes.UNUSED
  5505. elif tokenizer.IsByte(token_id):
  5506. toktype = SentencePieceTokenTypes.BYTE
  5507. tokens[token_id] = text
  5508. scores[token_id] = score
  5509. toktypes[token_id] = toktype
  5510. added_tokens_file = self.dir_model / 'added_tokens.json'
  5511. if added_tokens_file.is_file():
  5512. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5513. added_tokens_json = json.load(f)
  5514. for key in added_tokens_json:
  5515. token_id = added_tokens_json[key]
  5516. if token_id >= vocab_size:
  5517. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5518. continue
  5519. tokens[token_id] = key.encode("utf-8")
  5520. scores[token_id] = -1000.0
  5521. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5522. if vocab_size > len(tokens):
  5523. pad_count = vocab_size - len(tokens)
  5524. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5525. for i in range(1, pad_count + 1):
  5526. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5527. scores.append(-1000.0)
  5528. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5529. self.gguf_writer.add_tokenizer_model("t5")
  5530. self.gguf_writer.add_tokenizer_pre("default")
  5531. self.gguf_writer.add_token_list(tokens)
  5532. self.gguf_writer.add_token_scores(scores)
  5533. self.gguf_writer.add_token_types(toktypes)
  5534. self.gguf_writer.add_add_space_prefix(add_prefix)
  5535. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5536. if precompiled_charsmap:
  5537. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5538. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5539. special_vocab.add_to_gguf(self.gguf_writer)
  5540. def set_gguf_parameters(self):
  5541. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5542. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5543. n_ctx = 512
  5544. self.gguf_writer.add_context_length(n_ctx)
  5545. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5546. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5547. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5548. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5549. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5550. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5551. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5552. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5553. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5554. self.gguf_writer.add_file_type(self.ftype)
  5555. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5556. del bid # unused
  5557. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5558. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5559. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5560. # and decoder and ignore the remaining ones.
  5561. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5562. if not self.shared_token_embeddings_found:
  5563. name = "shared.weight"
  5564. self.shared_token_embeddings_found = True
  5565. else:
  5566. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5567. return []
  5568. return [(self.map_tensor_name(name), data_torch)]
  5569. @ModelBase.register("JAISLMHeadModel")
  5570. class JaisModel(TextModel):
  5571. model_arch = gguf.MODEL_ARCH.JAIS
  5572. def __init__(self, *args, **kwargs):
  5573. super().__init__(*args, **kwargs)
  5574. # SwigLU activation
  5575. assert self.hparams["activation_function"] == "swiglu"
  5576. # ALiBi position embedding
  5577. assert self.hparams["position_embedding_type"] == "alibi"
  5578. # Embeddings scale
  5579. self.embeddings_scale = 1.0
  5580. if 'mup_embeddings_scale' in self.hparams:
  5581. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5582. elif 'embeddings_scale' in self.hparams:
  5583. self.embeddings_scale = self.hparams['embeddings_scale']
  5584. else:
  5585. assert False
  5586. self.width_scale = 1.0
  5587. if 'mup_output_alpha' in self.hparams:
  5588. assert 'mup_width_scale' in self.hparams
  5589. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5590. elif 'width_scale' in self.hparams:
  5591. self.width_scale = self.hparams['width_scale']
  5592. else:
  5593. assert False
  5594. self.max_alibi_bias = 8.0
  5595. def set_vocab(self):
  5596. self._set_vocab_gpt2()
  5597. def set_gguf_parameters(self):
  5598. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5599. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5600. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5601. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5602. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5603. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5604. self.gguf_writer.add_file_type(self.ftype)
  5605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5606. del bid # unused
  5607. tensors: list[tuple[str, Tensor]] = []
  5608. # we don't need these
  5609. if name.endswith((".attn.bias")):
  5610. return tensors
  5611. if name.endswith(("relative_pe.slopes")):
  5612. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5613. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5614. # but Jais's PyTorch model simply precalculates the slope values and places them
  5615. # in relative_pes.slopes
  5616. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5617. first_val = float(data_torch[0].item())
  5618. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5619. return tensors
  5620. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5621. data_torch = data_torch.transpose(1, 0)
  5622. new_name = self.map_tensor_name(name)
  5623. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5624. tensors.append((new_name, data_torch * self.embeddings_scale))
  5625. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5626. tensors.append((new_name, data_torch * self.width_scale))
  5627. else:
  5628. tensors.append((new_name, data_torch))
  5629. return tensors
  5630. def prepare_tensors(self):
  5631. super().prepare_tensors()
  5632. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5633. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5634. class Glm4Model(TextModel):
  5635. model_arch = gguf.MODEL_ARCH.GLM4
  5636. def set_vocab(self):
  5637. from transformers import AutoTokenizer
  5638. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5639. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5640. tokens, toktypes, tokpre = self.get_vocab_base()
  5641. self.gguf_writer.add_tokenizer_model("gpt2")
  5642. self.gguf_writer.add_tokenizer_pre(tokpre)
  5643. self.gguf_writer.add_token_list(tokens)
  5644. self.gguf_writer.add_token_types(toktypes)
  5645. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5646. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5647. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5648. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5649. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5650. special_vocab.add_to_gguf(self.gguf_writer)
  5651. def set_gguf_parameters(self):
  5652. super().set_gguf_parameters()
  5653. if (rope_dim := self.hparams.get("head_dim")) is None:
  5654. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5655. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5656. rope_scaling = self.hparams.get("rope_scaling") or {}
  5657. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5658. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5659. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5660. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5662. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5663. return []
  5664. elif name.startswith("model.language_model."):
  5665. name = name.replace("language_model.", "") # for Glm4v
  5666. return super().modify_tensors(data_torch, name, bid)
  5667. @ModelBase.register("Glm4MoeForCausalLM")
  5668. class Glm4MoeModel(TextModel):
  5669. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5670. def __init__(self, *args, **kwargs):
  5671. super().__init__(*args, **kwargs)
  5672. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5673. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5674. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5675. def set_vocab(self):
  5676. from transformers import AutoTokenizer
  5677. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5678. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5679. tokens, toktypes, tokpre = self.get_vocab_base()
  5680. self.gguf_writer.add_tokenizer_model("gpt2")
  5681. self.gguf_writer.add_tokenizer_pre(tokpre)
  5682. self.gguf_writer.add_token_list(tokens)
  5683. self.gguf_writer.add_token_types(toktypes)
  5684. # Special tokens
  5685. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5686. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5687. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5688. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5689. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5690. # Patch broken chat template
  5691. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5692. special_vocab.chat_template = special_vocab.chat_template.replace(
  5693. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5694. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5695. special_vocab.add_to_gguf(self.gguf_writer)
  5696. def set_gguf_parameters(self):
  5697. super().set_gguf_parameters()
  5698. if (rope_dim := self.hparams.get("head_dim")) is None:
  5699. rope_dim = (
  5700. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5701. )
  5702. self.gguf_writer.add_rope_dimension_count(
  5703. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5704. )
  5705. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5706. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5707. self.gguf_writer.add_expert_count(n_routed_experts)
  5708. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5709. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5710. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5711. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5712. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5713. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5714. # Expert gating function (sigmoid for GLM4_MOE)
  5715. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5716. # Routed scaling factor
  5717. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5718. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5719. # Normalise topk probabilities
  5720. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5721. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5722. # NextN/MTP prediction layers
  5723. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5724. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5725. _experts: list[dict[str, Tensor]] | None = None
  5726. def modify_tensors(
  5727. self, data_torch: Tensor, name: str, bid: int | None
  5728. ) -> Iterable[tuple[str, Tensor]]:
  5729. if name.startswith("model.visual."): # ignore visual part
  5730. return []
  5731. elif name.startswith("model.language_model."):
  5732. name = name.replace("language_model.", "") # for multimodal variants
  5733. # Handle main token embedding (but not layer-specific NextN embeddings)
  5734. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5735. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5736. # Handle routed experts
  5737. if name.find("mlp.experts") != -1:
  5738. n_experts = self.hparams["n_routed_experts"]
  5739. assert bid is not None
  5740. if self._experts is None:
  5741. self._experts = [{} for _ in range(self.block_count)]
  5742. self._experts[bid][name] = data_torch
  5743. if len(self._experts[bid]) >= n_experts * 3:
  5744. tensors: list[tuple[str, Tensor]] = []
  5745. # merge the experts into a single 3d tensor
  5746. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5747. datas: list[Tensor] = []
  5748. for xid in range(n_experts):
  5749. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5750. datas.append(self._experts[bid][ename])
  5751. del self._experts[bid][ename]
  5752. data_torch = torch.stack(datas, dim=0)
  5753. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5754. new_name = self.map_tensor_name(merged_name)
  5755. tensors.append((new_name, data_torch))
  5756. return tensors
  5757. else:
  5758. return []
  5759. if name.endswith("e_score_correction_bias"):
  5760. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5761. new_name = self.map_tensor_name(name)
  5762. return [(new_name, data_torch)]
  5763. def prepare_tensors(self):
  5764. super().prepare_tensors()
  5765. if self._experts is not None:
  5766. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5767. experts = [k for d in self._experts for k in d.keys()]
  5768. if len(experts) > 0:
  5769. raise ValueError(f"Unprocessed experts: {experts}")
  5770. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5771. class ChatGLMModel(TextModel):
  5772. model_arch = gguf.MODEL_ARCH.CHATGLM
  5773. def set_vocab_chatglm3(self):
  5774. dir_model = self.dir_model
  5775. hparams = self.hparams
  5776. tokens: list[bytes] = []
  5777. toktypes: list[int] = []
  5778. scores: list[float] = []
  5779. from transformers import AutoTokenizer
  5780. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5781. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5782. assert max(tokenizer.get_vocab().values()) < vocab_size
  5783. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5784. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5785. for token_id in range(vocab_size):
  5786. piece = tokenizer._convert_id_to_token(token_id)
  5787. if token_id == 0:
  5788. piece = "<unk>"
  5789. elif token_id == 1:
  5790. piece = "<bos>"
  5791. elif token_id == 2:
  5792. piece = "<eos>"
  5793. text = piece.encode("utf-8")
  5794. score = 0.0
  5795. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5796. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5797. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5798. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5799. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5800. if piece in special_tokens:
  5801. toktype = SentencePieceTokenTypes.CONTROL
  5802. elif len(piece) == 0:
  5803. text = f"[PAD{token_id}]".encode("utf-8")
  5804. toktype = SentencePieceTokenTypes.UNUSED
  5805. else:
  5806. toktype = SentencePieceTokenTypes.USER_DEFINED
  5807. tokens.append(text)
  5808. scores.append(score)
  5809. toktypes.append(toktype)
  5810. continue
  5811. toktype = SentencePieceTokenTypes.NORMAL
  5812. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5813. toktype = SentencePieceTokenTypes.UNKNOWN
  5814. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5815. toktype = SentencePieceTokenTypes.CONTROL
  5816. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5817. toktype = SentencePieceTokenTypes.UNUSED
  5818. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5819. toktype = SentencePieceTokenTypes.BYTE
  5820. tokens.append(text)
  5821. scores.append(score)
  5822. toktypes.append(toktype)
  5823. self.gguf_writer.add_tokenizer_model("llama")
  5824. # glm3 needs prefix and suffix formatted as:
  5825. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5826. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5827. self.gguf_writer.add_token_list(tokens)
  5828. self.gguf_writer.add_token_scores(scores)
  5829. self.gguf_writer.add_token_types(toktypes)
  5830. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5831. special_vocab.add_to_gguf(self.gguf_writer)
  5832. @staticmethod
  5833. def token_bytes_to_string(b):
  5834. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5835. byte_encoder = bytes_to_unicode()
  5836. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5837. @staticmethod
  5838. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5839. parts = [bytes([b]) for b in token]
  5840. while True:
  5841. min_idx = None
  5842. min_rank = None
  5843. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5844. rank = mergeable_ranks.get(pair[0] + pair[1])
  5845. if rank is not None and (min_rank is None or rank < min_rank):
  5846. min_idx = i
  5847. min_rank = rank
  5848. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5849. break
  5850. assert min_idx is not None
  5851. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5852. return parts
  5853. def set_vocab(self):
  5854. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5855. self.set_vocab_chatglm3()
  5856. return
  5857. dir_model = self.dir_model
  5858. hparams = self.hparams
  5859. tokens: list[str] = []
  5860. toktypes: list[int] = []
  5861. from transformers import AutoTokenizer
  5862. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5863. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5864. assert max(tokenizer.get_vocab().values()) < vocab_size
  5865. tokens, toktypes, tokpre = self.get_vocab_base()
  5866. self.gguf_writer.add_tokenizer_model("gpt2")
  5867. self.gguf_writer.add_tokenizer_pre(tokpre)
  5868. self.gguf_writer.add_token_list(tokens)
  5869. self.gguf_writer.add_token_types(toktypes)
  5870. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5871. # only add special tokens when they were not already loaded from config.json
  5872. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5873. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5874. # this one is usually not in config.json anyway
  5875. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5876. special_vocab.add_to_gguf(self.gguf_writer)
  5877. def set_gguf_parameters(self):
  5878. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5879. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5880. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5881. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5882. self.gguf_writer.add_embedding_length(n_embed)
  5883. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5884. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5885. self.gguf_writer.add_head_count(n_head)
  5886. self.gguf_writer.add_head_count_kv(n_head_kv)
  5887. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5888. self.gguf_writer.add_file_type(self.ftype)
  5889. if "attention_dim" in self.hparams:
  5890. rope_dim = self.hparams["attention_dim"]
  5891. else:
  5892. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5893. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5894. self.gguf_writer.add_add_bos_token(False)
  5895. rope_freq = 10000
  5896. if "rope_ratio" in self.hparams:
  5897. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5898. self.gguf_writer.add_rope_freq_base(rope_freq)
  5899. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5900. del bid # unused
  5901. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5902. return []
  5903. name = name.removeprefix("transformer.")
  5904. return [(self.map_tensor_name(name), data_torch)]
  5905. @ModelBase.register("NemotronForCausalLM")
  5906. class NemotronModel(TextModel):
  5907. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5908. def set_vocab(self):
  5909. self._set_vocab_sentencepiece()
  5910. self.gguf_writer.add_pad_token_id(0)
  5911. self.gguf_writer.add_unk_token_id(1)
  5912. def set_gguf_parameters(self):
  5913. super().set_gguf_parameters()
  5914. hparams = self.hparams
  5915. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5916. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5917. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5918. # * Partial RoPE
  5919. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5920. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5921. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5922. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5923. # * RopeScaling for Nemotron
  5924. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5925. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5926. else:
  5927. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5928. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5929. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5930. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5931. # model.layers.{l}.input_layernorm.weight
  5932. # model.layers.{l}.post_attention_layernorm.weight
  5933. # model.norm.weight
  5934. if name.endswith("norm.weight"):
  5935. data_torch = data_torch + 1
  5936. return [(self.map_tensor_name(name), data_torch)]
  5937. @ModelBase.register("ExaoneForCausalLM")
  5938. class ExaoneModel(TextModel):
  5939. model_arch = gguf.MODEL_ARCH.EXAONE
  5940. def set_gguf_parameters(self):
  5941. hparams = self.hparams
  5942. assert (hparams["activation_function"] == "silu")
  5943. max_position_embeddings = hparams["max_position_embeddings"]
  5944. embed_dim = hparams["hidden_size"]
  5945. num_heads = hparams["num_attention_heads"]
  5946. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5947. layer_norm_eps = hparams["layer_norm_epsilon"]
  5948. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5949. num_layers = hparams["num_layers"]
  5950. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5951. # attention_dropout_rate = hparams["attention_dropout"]
  5952. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5953. # embed_dropout_rate = hparams["embed_dropout"]
  5954. self.gguf_writer.add_embedding_length(embed_dim)
  5955. self.gguf_writer.add_head_count(num_heads)
  5956. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5957. self.gguf_writer.add_context_length(max_position_embeddings)
  5958. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5959. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5960. self.gguf_writer.add_block_count(num_layers)
  5961. self.gguf_writer.add_file_type(self.ftype)
  5962. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5963. self.gguf_writer.add_rope_freq_base(rope_theta)
  5964. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5965. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5966. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5967. rope_scaling = self.hparams.get("rope_scaling") or {}
  5968. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5969. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5970. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5971. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5972. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5973. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5974. base = self.hparams.get("rope_theta", 10000.0)
  5975. if (dim := self.hparams.get("head_dim")) is None:
  5976. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5977. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5978. factor = rope_scaling.get("factor", 8.0)
  5979. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5980. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5981. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5982. low_freq_wavelen = old_context_len / low_freq_factor
  5983. high_freq_wavelen = old_context_len / high_freq_factor
  5984. assert low_freq_wavelen != high_freq_wavelen
  5985. rope_factors = []
  5986. for freq in freqs:
  5987. wavelen = 2 * math.pi / freq
  5988. if wavelen < high_freq_wavelen:
  5989. rope_factors.append(1)
  5990. elif wavelen > low_freq_wavelen:
  5991. rope_factors.append(factor)
  5992. else:
  5993. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5994. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5995. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5996. @ModelBase.register("Exaone4ForCausalLM")
  5997. class Exaone4Model(TextModel):
  5998. model_arch = gguf.MODEL_ARCH.EXAONE4
  5999. def set_vocab(self):
  6000. tokens, toktypes, tokpre = self.get_vocab_base()
  6001. self.gguf_writer.add_tokenizer_model("gpt2")
  6002. self.gguf_writer.add_tokenizer_pre(tokpre)
  6003. self.gguf_writer.add_token_list(tokens)
  6004. self.gguf_writer.add_token_types(toktypes)
  6005. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6006. special_vocab.add_to_gguf(self.gguf_writer)
  6007. def set_gguf_parameters(self):
  6008. super().set_gguf_parameters()
  6009. hparams = self.hparams
  6010. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6011. if hparams.get("sliding_window") is not None:
  6012. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6013. if "layer_types" in hparams:
  6014. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6015. elif "sliding_window_pattern" in hparams:
  6016. sliding_window_pattern = []
  6017. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6018. for i in range(hparams["num_hidden_layers"]):
  6019. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6020. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6021. for i in range(hparams["num_hidden_layers"]):
  6022. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6023. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6024. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6025. rope_scaling = self.hparams.get("rope_scaling") or {}
  6026. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6028. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6029. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6030. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6031. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6032. base = self.hparams.get("rope_theta", 10_000.0)
  6033. if (dim := self.hparams.get("head_dim")) is None:
  6034. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6035. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6036. factor = rope_scaling.get("factor", 16.0)
  6037. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6038. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6039. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6040. low_freq_wavelen = old_context_len / low_freq_factor
  6041. high_freq_wavelen = old_context_len / high_freq_factor
  6042. rope_factors = []
  6043. for freq in freqs:
  6044. wavelen = 2 * math.pi / freq
  6045. if wavelen < high_freq_wavelen:
  6046. rope_factors.append(1)
  6047. elif wavelen > low_freq_wavelen:
  6048. rope_factors.append(factor)
  6049. else:
  6050. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6051. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6052. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6053. @ModelBase.register("GraniteForCausalLM")
  6054. class GraniteModel(LlamaModel):
  6055. """Conversion for IBM's GraniteForCausalLM"""
  6056. model_arch = gguf.MODEL_ARCH.GRANITE
  6057. def set_gguf_parameters(self):
  6058. """Granite uses standard llama parameters with the following differences:
  6059. - No head_dim support
  6060. - New multiplier params:
  6061. - attention_scale
  6062. - embedding_scale
  6063. - residual_scale
  6064. - logits_scaling
  6065. """
  6066. if head_dim := self.hparams.pop("head_dim", None):
  6067. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6068. super().set_gguf_parameters()
  6069. # NOTE: Convert _multiplier params to _scale params for naming
  6070. # consistency
  6071. if attention_scale := self.hparams.get("attention_multiplier"):
  6072. self.gguf_writer.add_attention_scale(attention_scale)
  6073. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6074. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6075. self.gguf_writer.add_embedding_scale(embedding_scale)
  6076. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6077. if residual_scale := self.hparams.get("residual_multiplier"):
  6078. self.gguf_writer.add_residual_scale(residual_scale)
  6079. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6080. if logits_scale := self.hparams.get("logits_scaling"):
  6081. self.gguf_writer.add_logit_scale(logits_scale)
  6082. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6083. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6084. class GraniteMoeModel(GraniteModel):
  6085. """Conversion for IBM's GraniteMoeForCausalLM"""
  6086. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6087. def set_gguf_parameters(self):
  6088. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6089. - shared_intermediate_size
  6090. """
  6091. super().set_gguf_parameters()
  6092. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6093. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6094. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6095. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6096. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6097. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6098. the hidden size that is then split during forward. To keep compatibility
  6099. with existing mixtral support, we pull them apart here.
  6100. """
  6101. if name.endswith("block_sparse_moe.input_linear.weight"):
  6102. ffn_dim = self.hparams["intermediate_size"]
  6103. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6104. gate, up = data_torch.split(ffn_dim, dim=-2)
  6105. return [
  6106. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6107. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6108. ]
  6109. has_experts = bool(self.hparams.get('num_local_experts'))
  6110. if name.endswith("shared_mlp.input_linear.weight"):
  6111. ffn_dim = self.hparams["shared_intermediate_size"]
  6112. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6113. gate, up = data_torch.split(ffn_dim, dim=-2)
  6114. if has_experts:
  6115. return [
  6116. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6117. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6118. ]
  6119. return [
  6120. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6121. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6122. ]
  6123. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6124. return [
  6125. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6126. ]
  6127. return super().modify_tensors(data_torch, name, bid)
  6128. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6129. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6130. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6131. layers and optionally uses MoE w/ a shared expert"""
  6132. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6133. undo_permute = True
  6134. def __init__(self, *args, **kwargs):
  6135. # Hybrid mamba models use a prefix for the mamba-specific params.
  6136. # TODO: Extend this if the prefix(es) need to be configurable
  6137. self.hparam_prefixes = ["mamba"]
  6138. super().__init__(*args, **kwargs)
  6139. # Lists of which layers use ssm vs attention
  6140. self._attn_layers = self.get_attn_layers()
  6141. self._ssm_layers = [
  6142. i for i in range(self.block_count)
  6143. if i not in self._attn_layers
  6144. ]
  6145. # n_group and d_inner are used during reshape_tensors for mamba2
  6146. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6147. # disambiguate with top-level head_dim
  6148. # NOTE 2: If needed for future models, this can be isolated in a method
  6149. # to separate the prefix setting and teh keys used
  6150. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6151. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6152. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6153. def get_attn_layers(self):
  6154. # Explicit list of layer type names
  6155. if layer_types := self.hparams.get("layer_types"):
  6156. return [
  6157. i for i, typ in enumerate(layer_types)
  6158. if typ == "attention"
  6159. ]
  6160. # Layer types indicated by index or period
  6161. attn_layers = self.hparams.get("attn_layer_indices", [])
  6162. if not attn_layers:
  6163. attn_period = self.hparams.get("attn_layer_period")
  6164. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6165. attn_offset = self.hparams.get("attn_layer_offset")
  6166. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6167. attn_layers = [
  6168. i for i in range(self.block_count)
  6169. if i % attn_period == attn_offset
  6170. ]
  6171. return attn_layers
  6172. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6173. prefixed = []
  6174. for pfx in self.hparam_prefixes:
  6175. prefixed.extend(
  6176. "_".join([pfx, k])
  6177. for k in keys
  6178. )
  6179. keys = list(keys) + prefixed
  6180. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6181. def modify_tensors(
  6182. self, data_torch: Tensor, name: str, bid: int | None
  6183. ) -> Iterable[tuple[str, Tensor]]:
  6184. if (
  6185. name.endswith("block_sparse_moe.input_linear.weight")
  6186. or "shared_mlp" in name
  6187. ):
  6188. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6189. # Determine whether this is a mamba layer or an attention layer
  6190. if bid in self._ssm_layers:
  6191. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6192. elif bid in self._attn_layers:
  6193. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6194. return [(self.map_tensor_name(name), data_torch)]
  6195. def set_gguf_parameters(self):
  6196. """This method merges params from both parents and some that are
  6197. specific to this model. The result is some duplication of how the params
  6198. get set. The following warnings are expected during conversion:
  6199. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6200. WARNING:Duplicated key name 'granitehybrid.context_length'
  6201. """
  6202. GraniteMoeModel.set_gguf_parameters(self)
  6203. ## Mamba mixer params ##
  6204. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6205. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6206. self.gguf_writer.add_ssm_group_count(self.n_group)
  6207. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6208. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6209. # in llama.cpp
  6210. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6211. ## Attention params ##
  6212. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6213. head_count_kv_vec = [
  6214. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6215. ]
  6216. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6217. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6218. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6219. ## If Bamba, use rope, otherwise don't
  6220. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  6221. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6222. if not use_rope:
  6223. self.gguf_writer.add_context_length(2**20)
  6224. ## Validation ##
  6225. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6226. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6227. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6228. def set_vocab(self):
  6229. self.hparams["pad_vocab_size_multiple"] = 8
  6230. Mamba2Model.set_vocab(self)
  6231. @ModelBase.register("NemotronHForCausalLM")
  6232. class NemotronHModel(GraniteHybridModel):
  6233. """Hybrid mamba2/attention model from NVIDIA"""
  6234. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6235. def __init__(self, *args, **kwargs):
  6236. super().__init__(*args, **kwargs)
  6237. # Save the top-level head_dim for later
  6238. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6239. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6240. # Don't use expand to calculate d_inner
  6241. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6242. # Update the ssm / attn / mlp layers
  6243. # M: Mamba2, *: Attention, -: MLP
  6244. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6245. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6246. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6247. def get_attn_layers(self):
  6248. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6249. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6250. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6251. def set_gguf_parameters(self):
  6252. super().set_gguf_parameters()
  6253. self.gguf_writer.add_key_length(self.head_dim)
  6254. self.gguf_writer.add_value_length(self.head_dim)
  6255. # Set feed_forward_length
  6256. # NOTE: This will trigger an override warning. This is preferrable to
  6257. # duplicating all the parent logic
  6258. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6259. self.gguf_writer.add_feed_forward_length([
  6260. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6261. ])
  6262. def set_vocab(self):
  6263. super().set_vocab()
  6264. # The tokenizer _does_ add a BOS token (via post_processor type
  6265. # TemplateProcessing) but does not set add_bos_token to true in the
  6266. # config, so we need to explicitly override it here.
  6267. self.gguf_writer.add_add_bos_token(True)
  6268. @ModelBase.register("BailingMoeForCausalLM")
  6269. class BailingMoeModel(TextModel):
  6270. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6271. def set_vocab(self):
  6272. self._set_vocab_gpt2()
  6273. def set_gguf_parameters(self):
  6274. super().set_gguf_parameters()
  6275. hparams = self.hparams
  6276. if (rope_dim := hparams.get("head_dim")) is None:
  6277. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6278. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6279. rope_scaling = self.hparams.get("rope_scaling") or {}
  6280. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6281. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6282. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6283. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6284. else:
  6285. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6286. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6287. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6288. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6289. self.gguf_writer.add_expert_weights_scale(1.0)
  6290. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6291. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6292. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6293. _experts: list[dict[str, Tensor]] | None = None
  6294. @staticmethod
  6295. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6296. if n_head_kv is not None and n_head != n_head_kv:
  6297. n_head = n_head_kv
  6298. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6299. .swapaxes(1, 2)
  6300. .reshape(weights.shape))
  6301. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6302. n_head = self.hparams["num_attention_heads"]
  6303. n_kv_head = self.hparams.get("num_key_value_heads")
  6304. n_embd = self.hparams["hidden_size"]
  6305. if (head_dim := self.hparams.get("head_dim")) is None:
  6306. head_dim = n_embd // n_head
  6307. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6308. if name.endswith("attention.dense.weight"):
  6309. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6310. elif name.endswith("query_key_value.weight"):
  6311. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6312. return [
  6313. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6314. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6315. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6316. ]
  6317. elif name.find("mlp.experts") != -1:
  6318. n_experts = self.hparams["num_experts"]
  6319. assert bid is not None
  6320. tensors: list[tuple[str, Tensor]] = []
  6321. if self._experts is None:
  6322. self._experts = [{} for _ in range(self.block_count)]
  6323. self._experts[bid][name] = data_torch
  6324. if len(self._experts[bid]) >= n_experts * 3:
  6325. # merge the experts into a single 3d tensor
  6326. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6327. datas: list[Tensor] = []
  6328. for xid in range(n_experts):
  6329. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6330. datas.append(self._experts[bid][ename])
  6331. del self._experts[bid][ename]
  6332. data_torch = torch.stack(datas, dim=0)
  6333. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6334. new_name = self.map_tensor_name(merged_name)
  6335. tensors.append((new_name, data_torch))
  6336. return tensors
  6337. new_name = self.map_tensor_name(name)
  6338. if new_name == output_name and self.hparams.get("norm_head"):
  6339. data_torch = data_torch.float()
  6340. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6341. return [(new_name, data_torch)]
  6342. def prepare_tensors(self):
  6343. super().prepare_tensors()
  6344. if self._experts is not None:
  6345. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6346. experts = [k for d in self._experts for k in d.keys()]
  6347. if len(experts) > 0:
  6348. raise ValueError(f"Unprocessed experts: {experts}")
  6349. @ModelBase.register("ChameleonForConditionalGeneration")
  6350. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6351. class ChameleonModel(TextModel):
  6352. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6353. def set_gguf_parameters(self):
  6354. super().set_gguf_parameters()
  6355. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6356. def set_vocab(self):
  6357. self._set_vocab_gpt2()
  6358. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6359. # ignore image tokenizer for now
  6360. # TODO: remove this once image support is implemented for Chameleon
  6361. if name.startswith("model.vqmodel"):
  6362. return []
  6363. n_head = self.hparams["num_attention_heads"]
  6364. n_kv_head = self.hparams.get("num_key_value_heads")
  6365. hidden_dim = self.hparams.get("hidden_size")
  6366. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6367. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6368. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6369. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6370. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6371. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6372. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6373. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6374. return [(self.map_tensor_name(name), data_torch)]
  6375. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6376. @staticmethod
  6377. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6378. head_dim = hidden_dim // n_heads
  6379. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6380. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6381. return data_torch
  6382. @ModelBase.register("UltravoxModel")
  6383. class UltravoxModel(TextModel):
  6384. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6385. def __init__(self, *args, **kwargs):
  6386. super().__init__(*args, **kwargs)
  6387. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6388. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6389. class WhisperEncoderModel(MmprojModel):
  6390. has_vision_encoder = False # no vision encoder
  6391. has_audio_encoder = True
  6392. def __init__(self, *args, **kwargs):
  6393. super().__init__(*args, **kwargs)
  6394. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6395. self.hparams["hidden_size"] = self.hparams["d_model"]
  6396. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6397. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6398. def set_gguf_parameters(self):
  6399. super().set_gguf_parameters()
  6400. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6401. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6402. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6403. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6404. if ".conv" in name and ".weight" in name:
  6405. return gguf.GGMLQuantizationType.F16
  6406. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6408. del bid # unused
  6409. if name.startswith("language_model."):
  6410. # skip language model tensors
  6411. return []
  6412. # prevent clash naming with vision tensors
  6413. if name.startswith("multi_modal_projector"):
  6414. name = "audio." + name
  6415. if "conv1.bias" in name or "conv2.bias" in name:
  6416. # transpose conv1 and conv2 bias
  6417. data_torch = data_torch.unsqueeze(-1)
  6418. return [(self.map_tensor_name(name), data_torch)]
  6419. @ModelBase.register("UltravoxModel")
  6420. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6421. has_vision_encoder = False # no vision encoder
  6422. has_audio_encoder = True
  6423. def set_gguf_parameters(self):
  6424. super().set_gguf_parameters()
  6425. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6426. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6427. @ModelBase.register("VoxtralForConditionalGeneration")
  6428. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6429. has_vision_encoder = False # no vision encoder
  6430. has_audio_encoder = True
  6431. def set_gguf_parameters(self):
  6432. super().set_gguf_parameters()
  6433. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6434. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6435. @ModelBase.register("FalconH1ForCausalLM")
  6436. class FalconH1Model(Mamba2Model):
  6437. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6438. def __init__(self, *args, **kwargs):
  6439. # Set the hparam prefixes for Falcon Mamba2
  6440. self.hparam_prefixes = ["mamba"]
  6441. # Initialize the base Mamba2Model
  6442. super().__init__(*args, **kwargs)
  6443. # Use Llama conversion for attention
  6444. self._transformer_model_class = LlamaModel
  6445. # n_group and d_inner are used during reshape_tensors for mamba2
  6446. self.n_group = self.find_hparam(["n_groups"])
  6447. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6448. self.d_head = self.find_hparam(["d_head"])
  6449. # Initialize any Falcon Mamba2 specific attributes
  6450. self.has_attention = True # Falcon Mamba2 has attention components
  6451. # Load Falcon-H1 multipliers from hyperparameters
  6452. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6453. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6454. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6455. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6456. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6457. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6458. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6459. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6460. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6461. prefixed = []
  6462. for pfx in self.hparam_prefixes:
  6463. prefixed.extend(
  6464. "_".join([pfx, k])
  6465. for k in keys
  6466. )
  6467. keys = list(keys) + prefixed
  6468. return super().find_hparam(keys, *args, **kwargs)
  6469. def set_vocab(self):
  6470. self._set_vocab_gpt2()
  6471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6472. tensors = list(super().modify_tensors(data_torch, name, bid))
  6473. tensor = tensors[0][1]
  6474. if "down_proj" in name:
  6475. tensor = tensor * self.mlp_multipliers[1]
  6476. elif "gate_proj" in name:
  6477. tensor = tensor * self.mlp_multipliers[0]
  6478. elif "k_proj" in name:
  6479. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6480. elif "q_proj" in name:
  6481. tensor = tensor * self.attention_in_multiplier
  6482. elif "v_proj" in name:
  6483. tensor = tensor * self.attention_in_multiplier
  6484. elif "o_proj" in name:
  6485. tensor = tensor * self.attention_out_multiplier
  6486. elif "out_proj" in name:
  6487. tensor = tensor * self.ssm_out_multiplier
  6488. elif "in_proj" in name:
  6489. tensor = tensor * self.ssm_in_multiplier
  6490. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6491. intermediate_size = self.hparams["mamba_d_ssm"]
  6492. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6493. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6494. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6495. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6496. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6497. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6498. elif "lm_head" in name:
  6499. tensor = tensor * self.hparams["lm_head_multiplier"]
  6500. elif "embed_tokens" in name:
  6501. tensor = tensor * self.hparams["embedding_multiplier"]
  6502. elif "mamba.norm" in name:
  6503. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6504. tensors = [(tensors[0][0], tensor)]
  6505. return tensors
  6506. def set_gguf_parameters(self):
  6507. super().set_gguf_parameters()
  6508. ## General Params ##
  6509. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6510. # Override some Mamba2 defaults
  6511. self.gguf_writer.add_block_count(self.block_count)
  6512. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6513. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6514. ## Attention params ##
  6515. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6516. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6517. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6518. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6519. ## Validation ##
  6520. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6521. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6522. # Add any other Falcon Mamba2 specific configuration
  6523. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6524. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6525. class HunYuanMoEModel(TextModel):
  6526. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6527. def set_vocab(self):
  6528. from transformers import AutoTokenizer
  6529. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6530. # 1. Get the pre-tokenizer identifier hash
  6531. tokpre = self.get_vocab_base_pre(tokenizer)
  6532. # 2. Reverse-engineer the merges list from mergeable_ranks
  6533. merges = []
  6534. vocab = {}
  6535. mergeable_ranks = tokenizer.mergeable_ranks
  6536. for token, rank in mergeable_ranks.items():
  6537. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6538. if len(token) == 1:
  6539. continue
  6540. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6541. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6542. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6543. # 3. Generate the tokens and toktypes lists
  6544. vocab_size = self.hparams["vocab_size"]
  6545. assert tokenizer.vocab_size == vocab_size
  6546. special_tokens = tokenizer.special_tokens
  6547. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6548. tokens: list[str] = []
  6549. toktypes: list[int] = []
  6550. for i in range(vocab_size):
  6551. if i not in reverse_vocab:
  6552. tokens.append(f"[PAD{i}]")
  6553. toktypes.append(gguf.TokenType.UNUSED)
  6554. else:
  6555. token = reverse_vocab[i]
  6556. tokens.append(token)
  6557. if i in special_tokens.values():
  6558. toktypes.append(gguf.TokenType.CONTROL)
  6559. else:
  6560. toktypes.append(gguf.TokenType.NORMAL)
  6561. # 4. Write all vocab-related fields to the GGUF writer
  6562. self.gguf_writer.add_tokenizer_model("gpt2")
  6563. self.gguf_writer.add_tokenizer_pre(tokpre)
  6564. self.gguf_writer.add_token_list(tokens)
  6565. self.gguf_writer.add_token_types(toktypes)
  6566. self.gguf_writer.add_token_merges(merges)
  6567. # 5. Add special tokens and chat templates
  6568. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6569. special_vocab.add_to_gguf(self.gguf_writer)
  6570. # FIX for BOS token: Overwrite incorrect id read from config.json
  6571. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6572. def set_gguf_parameters(self):
  6573. super().set_gguf_parameters()
  6574. hparams = self.hparams
  6575. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6576. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6577. moe_intermediate_size = hparams["moe_intermediate_size"]
  6578. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6579. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6580. moe_topk = hparams["moe_topk"]
  6581. assert all(topk == moe_topk[0] for topk in moe_topk)
  6582. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6583. moe_shared_expert = hparams["num_shared_expert"]
  6584. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6585. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6586. # Rope
  6587. rope_scaling = hparams.get("rope_scaling", {})
  6588. if rope_scaling.get("type") == "dynamic":
  6589. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6590. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6591. alpha = rope_scaling.get("alpha", 1000)
  6592. base = hparams.get("rope_theta", 10000.0)
  6593. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6594. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6595. self.gguf_writer.add_rope_freq_base(scaled_base)
  6596. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6597. self.gguf_writer.add_rope_scaling_factor(1)
  6598. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6599. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6600. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6601. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6602. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6603. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6604. _experts: list[dict[str, Tensor]] | None = None
  6605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6606. if name == "lm_head.weight":
  6607. if self.hparams.get("tie_word_embeddings", False):
  6608. logger.info("Skipping tied output layer 'lm_head.weight'")
  6609. return []
  6610. if name.find("mlp.experts") != -1:
  6611. n_experts = self.hparams["num_experts"]
  6612. assert bid is not None
  6613. if self._experts is None:
  6614. self._experts = [{} for _ in range(self.block_count)]
  6615. self._experts[bid][name] = data_torch
  6616. if len(self._experts[bid]) >= n_experts * 3:
  6617. # merge the experts into a single 3d tensor
  6618. tensors: list[tuple[str, Tensor]] = []
  6619. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6620. datas: list[Tensor] = []
  6621. for xid in range(n_experts):
  6622. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6623. datas.append(self._experts[bid][ename])
  6624. del self._experts[bid][ename]
  6625. data_torch = torch.stack(datas, dim=0)
  6626. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6627. new_name = self.map_tensor_name(merged_name)
  6628. tensors.append((new_name, data_torch))
  6629. return tensors
  6630. else:
  6631. return []
  6632. return [(self.map_tensor_name(name), data_torch)]
  6633. def prepare_tensors(self):
  6634. super().prepare_tensors()
  6635. if self._experts is not None:
  6636. experts = [k for d in self._experts for k in d.keys()]
  6637. if len(experts) > 0:
  6638. raise ValueError(f"Unprocessed experts: {experts}")
  6639. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6640. class HunYuanModel(TextModel):
  6641. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6642. def set_vocab(self):
  6643. if (self.dir_model / "tokenizer.json").is_file():
  6644. self._set_vocab_gpt2()
  6645. else:
  6646. from transformers import AutoTokenizer
  6647. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6648. # 1. Get the pre-tokenizer identifier hash
  6649. tokpre = self.get_vocab_base_pre(tokenizer)
  6650. # 2. Reverse-engineer the merges list from mergeable_ranks
  6651. merges = []
  6652. vocab = {}
  6653. mergeable_ranks = tokenizer.mergeable_ranks
  6654. for token, rank in mergeable_ranks.items():
  6655. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6656. if len(token) == 1:
  6657. continue
  6658. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6659. if len(merged) == 2:
  6660. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6661. # 3. Generate the tokens and toktypes lists
  6662. vocab_size = self.hparams["vocab_size"]
  6663. assert tokenizer.vocab_size == vocab_size
  6664. special_tokens = tokenizer.special_tokens
  6665. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6666. tokens: list[str] = []
  6667. toktypes: list[int] = []
  6668. for i in range(vocab_size):
  6669. if i not in reverse_vocab:
  6670. tokens.append(f"[PAD{i}]")
  6671. toktypes.append(gguf.TokenType.UNUSED)
  6672. else:
  6673. token = reverse_vocab[i]
  6674. tokens.append(token)
  6675. if i in special_tokens.values():
  6676. toktypes.append(gguf.TokenType.CONTROL)
  6677. else:
  6678. toktypes.append(gguf.TokenType.NORMAL)
  6679. # 4. Write all vocab-related fields to the GGUF writer
  6680. self.gguf_writer.add_tokenizer_model("gpt2")
  6681. self.gguf_writer.add_tokenizer_pre(tokpre)
  6682. self.gguf_writer.add_token_list(tokens)
  6683. self.gguf_writer.add_token_types(toktypes)
  6684. self.gguf_writer.add_token_merges(merges)
  6685. # 5. Add special tokens and chat templates
  6686. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6687. special_vocab.add_to_gguf(self.gguf_writer)
  6688. # FIX for BOS token: Overwrite incorrect id read from config.json
  6689. if self.hparams['hidden_size'] == 4096:
  6690. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6691. def set_gguf_parameters(self):
  6692. super().set_gguf_parameters()
  6693. hparams = self.hparams
  6694. # Rope
  6695. rope_scaling = hparams.get("rope_scaling", {})
  6696. if rope_scaling.get("type") == "dynamic":
  6697. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6698. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6699. alpha = rope_scaling.get("alpha", 50)
  6700. base = hparams.get("rope_theta", 10000.0)
  6701. dim = hparams["head_dim"]
  6702. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6703. self.gguf_writer.add_rope_freq_base(scaled_base)
  6704. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6705. self.gguf_writer.add_rope_scaling_factor(1)
  6706. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6707. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6708. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6709. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6710. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6711. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6712. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6713. if name == "lm_head.weight":
  6714. if self.hparams.get("tie_word_embeddings", False):
  6715. logger.info("Skipping tied output layer 'lm_head.weight'")
  6716. return []
  6717. return [(self.map_tensor_name(name), data_torch)]
  6718. @ModelBase.register("SmolLM3ForCausalLM")
  6719. class SmolLM3Model(LlamaModel):
  6720. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6721. def set_vocab(self):
  6722. super().set_vocab()
  6723. # remove unsupported array slicing in chat template
  6724. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6725. from transformers import AutoTokenizer
  6726. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6727. if tokenizer.chat_template is not None:
  6728. chat_template = tokenizer.chat_template.replace("[:]", "")
  6729. self.gguf_writer.add_chat_template(chat_template)
  6730. @ModelBase.register("GptOssForCausalLM")
  6731. class GptOssModel(TextModel):
  6732. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6733. def transform_nibble_layout(self, tensor):
  6734. assert tensor.dtype == torch.uint8
  6735. assert tensor.shape[-1] == 16
  6736. # swap nibbles
  6737. t_lo = tensor & 0x0F
  6738. t_hi = tensor & 0xF0
  6739. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6740. tensor = t_swapped
  6741. # transform aaaa...bbbb... to abababab...
  6742. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6743. # get a_
  6744. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6745. blk_a1 = (blk_a << 4).view(-1, 1)
  6746. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6747. # get _b
  6748. blk_b0 = (blk_b >> 4).view(-1, 1)
  6749. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6750. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6751. # swap once more
  6752. out = blk_a | blk_b
  6753. out_h = out & 0xF0
  6754. out_l = out & 0x0F
  6755. out = (out_h >> 4) | (out_l << 4)
  6756. return out
  6757. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6758. assert blocks.dtype == torch.uint8
  6759. assert scales.dtype == torch.uint8
  6760. scales = scales.unsqueeze(-1)
  6761. assert len(blocks.shape) == 4
  6762. assert len(scales.shape) == 4
  6763. blocks = self.transform_nibble_layout(blocks)
  6764. new_data = torch.concat((scales, blocks), dim=-1)
  6765. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6766. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6767. # flatten last dim
  6768. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6769. new_data = new_data.numpy()
  6770. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6771. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6772. blocks0: Tensor = torch.zeros(1)
  6773. blocks1: Tensor = torch.zeros(1)
  6774. # we assume that tensors are loaded in the correct order
  6775. for name, data_torch in self.get_tensors():
  6776. if "mlp.experts.down_proj_blocks" in name:
  6777. blocks0 = data_torch
  6778. elif "mlp.experts.down_proj_scales" in name:
  6779. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6780. self.repack_mxfp4(new_name, blocks0, data_torch)
  6781. elif "mlp.experts.gate_up_proj_blocks" in name:
  6782. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6783. elif "mlp.experts.gate_up_proj_scales" in name:
  6784. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6785. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6786. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6787. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6788. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6789. return []
  6790. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6791. del bid # unused
  6792. if "sinks" in name:
  6793. name += ".weight"
  6794. # correct naming for down_proj
  6795. if "down_proj" in name:
  6796. if name.endswith("_bias"):
  6797. name = name.replace("down_proj_bias", "down_proj.bias")
  6798. elif "_blocks" not in name and "_scales" not in name:
  6799. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6800. name = name.replace("down_proj", "down_proj.weight")
  6801. data_torch = data_torch.transpose(-1, -2)
  6802. else:
  6803. # otherwise, it should already be repacked to ggml MXFP4 format
  6804. return []
  6805. # split the gate_up into gate and up
  6806. if "gate_up_proj" in name:
  6807. if name.endswith("_bias"):
  6808. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6809. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6810. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6811. return [
  6812. (self.map_tensor_name(name_gate), gate_proj_bias),
  6813. (self.map_tensor_name(name_up), up_proj_bias)
  6814. ]
  6815. elif "_blocks" not in name and "_scales" not in name:
  6816. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6817. name_up = name.replace("gate_up_proj", "up_proj.weight")
  6818. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  6819. data_torch = data_torch.transpose(-1, -2)
  6820. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6821. return [
  6822. (self.map_tensor_name(name_gate), gate_proj_weight),
  6823. (self.map_tensor_name(name_up), up_proj_weight)
  6824. ]
  6825. else:
  6826. # otherwise, it should already be repacked to ggml MXFP4 format
  6827. return []
  6828. return [(self.map_tensor_name(name), data_torch)]
  6829. def set_vocab(self):
  6830. self._set_vocab_gpt2()
  6831. def set_gguf_parameters(self):
  6832. super().set_gguf_parameters()
  6833. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6834. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6835. rope_scaling = self.hparams.get("rope_scaling") or {}
  6836. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6837. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6838. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6839. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6840. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6841. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  6842. class LFM2Model(TextModel):
  6843. model_arch = gguf.MODEL_ARCH.LFM2
  6844. def _add_feed_forward_length(self):
  6845. ff_dim = self.hparams["block_ff_dim"]
  6846. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6847. ff_dim = self.hparams["block_ff_dim"]
  6848. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6849. multiple_of = self.hparams["block_multiple_of"]
  6850. if auto_adjust_ff_dim:
  6851. ff_dim = int(2 * ff_dim / 3)
  6852. # custom dim factor multiplier
  6853. if ffn_dim_multiplier is not None:
  6854. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6855. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6856. self.gguf_writer.add_feed_forward_length(ff_dim)
  6857. def set_gguf_parameters(self):
  6858. # set num_key_value_heads only for attention layers
  6859. self.hparams["num_key_value_heads"] = [
  6860. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6861. for layer_type in self.hparams["layer_types"]
  6862. ]
  6863. super().set_gguf_parameters()
  6864. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6865. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6866. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6867. self._add_feed_forward_length()
  6868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6869. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6870. if is_vision_tensor:
  6871. # skip vision tensors
  6872. return []
  6873. name = name.replace("language_model.", "")
  6874. # conv op requires 2d tensor
  6875. if 'conv.conv' in name:
  6876. data_torch = data_torch.squeeze(1)
  6877. return [(self.map_tensor_name(name), data_torch)]
  6878. @ModelBase.register("Lfm2VlForConditionalGeneration")
  6879. class LFM2VLModel(MmprojModel):
  6880. def __init__(self, *args, **kwargs):
  6881. super().__init__(*args, **kwargs)
  6882. assert self.hparams_vision is not None
  6883. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  6884. self.hparams_vision["image_size"] = 256
  6885. def set_gguf_parameters(self):
  6886. super().set_gguf_parameters()
  6887. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  6888. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  6889. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  6890. self.gguf_writer.add_vision_use_gelu(True)
  6891. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  6892. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  6893. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  6894. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6895. del bid # unused
  6896. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6897. if is_vision_tensor:
  6898. # remove "model." prefix
  6899. name = name.replace("model.vision_tower.", "vision_tower.")
  6900. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  6901. if "patch_embedding.weight" in name:
  6902. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  6903. return [(self.map_tensor_name(name), data_torch)]
  6904. return [] # skip other tensors
  6905. @ModelBase.register("SmallThinkerForCausalLM")
  6906. class SmallThinkerModel(TextModel):
  6907. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6908. def set_gguf_parameters(self):
  6909. super().set_gguf_parameters()
  6910. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6911. self.gguf_writer.add_expert_count(n_experts)
  6912. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6913. self.gguf_writer.add_expert_used_count(n_experts_used)
  6914. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6915. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6916. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6917. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6918. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6919. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6920. else:
  6921. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6922. # YaRN is not enabled by default
  6923. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6924. rope_scaling = self.hparams.get("rope_scaling") or {}
  6925. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6926. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6927. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6928. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6929. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6930. if sliding_window_layout:
  6931. for i in sliding_window_layout:
  6932. if i != 0:
  6933. sliding_window = self.hparams.get("sliding_window_size")
  6934. if sliding_window:
  6935. self.gguf_writer.add_sliding_window(sliding_window)
  6936. break
  6937. _experts: list[dict[str, Tensor]] | None = None
  6938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6939. # process the experts separately
  6940. if name.find("experts") != -1:
  6941. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6942. assert bid is not None
  6943. if self._experts is None:
  6944. self._experts = [{} for _ in range(self.block_count)]
  6945. self._experts[bid][name] = data_torch
  6946. if len(self._experts[bid]) >= n_experts * 3:
  6947. tensors: list[tuple[str, Tensor]] = []
  6948. # merge the experts into a single 3d tensor
  6949. for w_name in ["down", "gate", "up"]:
  6950. datas: list[Tensor] = []
  6951. for xid in range(n_experts):
  6952. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6953. datas.append(self._experts[bid][ename])
  6954. del self._experts[bid][ename]
  6955. data_torch = torch.stack(datas, dim=0)
  6956. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6957. new_name = self.map_tensor_name(merged_name)
  6958. tensors.append((new_name, data_torch))
  6959. return tensors
  6960. else:
  6961. return []
  6962. return [(self.map_tensor_name(name), data_torch)]
  6963. def prepare_tensors(self):
  6964. super().prepare_tensors()
  6965. if self._experts is not None:
  6966. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6967. experts = [k for d in self._experts for k in d.keys()]
  6968. if len(experts) > 0:
  6969. raise ValueError(f"Unprocessed experts: {experts}")
  6970. class MistralModel(LlamaModel):
  6971. model_arch = gguf.MODEL_ARCH.LLAMA
  6972. model_name = "Mistral"
  6973. hf_arch = ""
  6974. is_mistral_format = True
  6975. undo_permute = False
  6976. @staticmethod
  6977. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  6978. assert TokenizerVersion is not None, "mistral_common is not installed"
  6979. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  6980. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  6981. )
  6982. if vocab.tokenizer.version == TokenizerVersion.v1:
  6983. return "mistral-v1"
  6984. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6985. return "mistral-v3"
  6986. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6987. return "mistral-v3-tekken"
  6988. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6989. return "mistral-v7"
  6990. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6991. return "mistral-v7-tekken"
  6992. elif vocab.tokenizer.version == TokenizerVersion.v11:
  6993. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  6994. elif vocab.tokenizer.version == TokenizerVersion.v13:
  6995. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  6996. else:
  6997. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  6998. if is_mistral_format:
  6999. err_message += (
  7000. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7001. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7002. )
  7003. raise ValueError(err_message)
  7004. template_path = templates_dir / template_file
  7005. if not template_path.exists():
  7006. raise FileNotFoundError(f"Template file not found: {template_path}")
  7007. with open(template_path, "r", encoding="utf-8") as f:
  7008. template = f.read()
  7009. return template
  7010. class PixtralModel(LlavaVisionModel):
  7011. model_name = "Pixtral"
  7012. hf_arch = ""
  7013. is_mistral_format = True
  7014. def set_gguf_parameters(self):
  7015. super().set_gguf_parameters()
  7016. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7017. self.gguf_writer.add_vision_attention_layernorm_eps(
  7018. self.find_hparam(["norm_eps"])
  7019. )
  7020. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7021. self.gguf_writer.add_vision_use_silu(True)
  7022. # spatial_merge_size
  7023. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7024. self.gguf_writer.add_vision_spatial_merge_size(
  7025. self.find_vparam(["spatial_merge_size"])
  7026. )
  7027. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7028. if name == "vision_language_adapter.w_in.weight":
  7029. return "mm.1.weight"
  7030. elif name == "vision_language_adapter.w_out.weight":
  7031. return "mm.2.weight"
  7032. return super().map_tensor_name(name, try_suffixes)
  7033. @ModelBase.register("KimiVLForConditionalGeneration")
  7034. class KimiVLModel(MmprojModel):
  7035. def __init__(self, *args, **kwargs):
  7036. super().__init__(*args, **kwargs)
  7037. assert self.hparams_vision is not None
  7038. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7039. def set_gguf_parameters(self):
  7040. super().set_gguf_parameters()
  7041. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7042. self.gguf_writer.add_vision_use_gelu(True)
  7043. self.gguf_writer.add_vision_projector_scale_factor(2)
  7044. # eps is the same as pytorch's default value
  7045. assert self.hparams_vision is not None
  7046. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7048. del bid # unused
  7049. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7050. if is_vision_tensor:
  7051. if "pos_emb.weight" in name:
  7052. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7053. elif "wqkv" in name:
  7054. split_dim = 0 if "weight" in name else -1
  7055. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7056. return [
  7057. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7058. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7059. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7060. ]
  7061. return [(self.map_tensor_name(name), data_torch)]
  7062. return [] # skip other tensors
  7063. ###### CONVERSION LOGIC ######
  7064. # tree of lazy tensors
  7065. class LazyTorchTensor(gguf.LazyBase):
  7066. _tensor_type = torch.Tensor
  7067. # to keep the type-checker happy
  7068. dtype: torch.dtype
  7069. shape: torch.Size
  7070. # only used when converting a torch.Tensor to a np.ndarray
  7071. _dtype_map: dict[torch.dtype, type] = {
  7072. torch.float16: np.float16,
  7073. torch.float32: np.float32,
  7074. torch.uint8: np.uint8,
  7075. }
  7076. # used for safetensors slices
  7077. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7078. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7079. _dtype_str_map: dict[str, torch.dtype] = {
  7080. "F64": torch.float64,
  7081. "F32": torch.float32,
  7082. "BF16": torch.bfloat16,
  7083. "F16": torch.float16,
  7084. # "U64": torch.uint64,
  7085. "I64": torch.int64,
  7086. # "U32": torch.uint32,
  7087. "I32": torch.int32,
  7088. # "U16": torch.uint16,
  7089. "I16": torch.int16,
  7090. "U8": torch.uint8,
  7091. "I8": torch.int8,
  7092. "BOOL": torch.bool,
  7093. "F8_E4M3": torch.float8_e4m3fn,
  7094. "F8_E5M2": torch.float8_e5m2,
  7095. }
  7096. def numpy(self) -> gguf.LazyNumpyTensor:
  7097. dtype = self._dtype_map[self.dtype]
  7098. return gguf.LazyNumpyTensor(
  7099. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7100. args=(self,),
  7101. func=(lambda s: s.numpy())
  7102. )
  7103. @classmethod
  7104. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7105. return torch.empty(size=shape, dtype=dtype, device="meta")
  7106. @classmethod
  7107. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7108. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7109. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7110. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  7111. return cast(torch.Tensor, lazy)
  7112. @classmethod
  7113. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7114. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7115. shape = remote_tensor.shape
  7116. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7117. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7118. return cast(torch.Tensor, lazy)
  7119. @classmethod
  7120. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7121. del types # unused
  7122. if kwargs is None:
  7123. kwargs = {}
  7124. if func is torch.Tensor.numpy:
  7125. return args[0].numpy()
  7126. return cls._wrap_fn(func)(*args, **kwargs)
  7127. def parse_args() -> argparse.Namespace:
  7128. parser = argparse.ArgumentParser(
  7129. description="Convert a huggingface model to a GGML compatible file")
  7130. parser.add_argument(
  7131. "--vocab-only", action="store_true",
  7132. help="extract only the vocab",
  7133. )
  7134. parser.add_argument(
  7135. "--outfile", type=Path,
  7136. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7137. )
  7138. parser.add_argument(
  7139. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7140. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7141. )
  7142. parser.add_argument(
  7143. "--bigendian", action="store_true",
  7144. help="model is executed on big endian machine",
  7145. )
  7146. parser.add_argument(
  7147. "model", type=str,
  7148. help="directory containing model file or huggingface repository ID (if --remote)",
  7149. nargs="?",
  7150. )
  7151. parser.add_argument(
  7152. "--use-temp-file", action="store_true",
  7153. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7154. )
  7155. parser.add_argument(
  7156. "--no-lazy", action="store_true",
  7157. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7158. )
  7159. parser.add_argument(
  7160. "--model-name", type=str, default=None,
  7161. help="name of the model",
  7162. )
  7163. parser.add_argument(
  7164. "--verbose", action="store_true",
  7165. help="increase output verbosity",
  7166. )
  7167. parser.add_argument(
  7168. "--split-max-tensors", type=int, default=0,
  7169. help="max tensors in each split",
  7170. )
  7171. parser.add_argument(
  7172. "--split-max-size", type=str, default="0",
  7173. help="max size per split N(M|G)",
  7174. )
  7175. parser.add_argument(
  7176. "--dry-run", action="store_true",
  7177. help="only print out a split plan and exit, without writing any new files",
  7178. )
  7179. parser.add_argument(
  7180. "--no-tensor-first-split", action="store_true",
  7181. help="do not add tensors to the first split (disabled by default)"
  7182. )
  7183. parser.add_argument(
  7184. "--metadata", type=Path,
  7185. help="Specify the path for an authorship metadata override file"
  7186. )
  7187. parser.add_argument(
  7188. "--print-supported-models", action="store_true",
  7189. help="Print the supported models"
  7190. )
  7191. parser.add_argument(
  7192. "--remote", action="store_true",
  7193. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7194. )
  7195. parser.add_argument(
  7196. "--mmproj", action="store_true",
  7197. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7198. )
  7199. parser.add_argument(
  7200. "--mistral-format", action="store_true",
  7201. help="Whether the model is stored following the Mistral format.",
  7202. )
  7203. parser.add_argument(
  7204. "--disable-mistral-community-chat-template", action="store_true",
  7205. help=(
  7206. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7207. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7208. )
  7209. )
  7210. args = parser.parse_args()
  7211. if not args.print_supported_models and args.model is None:
  7212. parser.error("the following arguments are required: model")
  7213. return args
  7214. def split_str_to_n_bytes(split_str: str) -> int:
  7215. if split_str.endswith("K"):
  7216. n = int(split_str[:-1]) * 1000
  7217. elif split_str.endswith("M"):
  7218. n = int(split_str[:-1]) * 1000 * 1000
  7219. elif split_str.endswith("G"):
  7220. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7221. elif split_str.isnumeric():
  7222. n = int(split_str)
  7223. else:
  7224. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7225. if n < 0:
  7226. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7227. return n
  7228. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7229. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7230. # maybe we should fallback to text model's arch in that case, since not many models have both
  7231. text_config = hparams.get("text_config", {})
  7232. vision_config = hparams.get("vision_config", {})
  7233. arch = None
  7234. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7235. arch = arches[0]
  7236. elif "ssm_cfg" in hparams:
  7237. # For non-hf Mamba and Mamba2 models
  7238. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7239. # if "architectures" is found in the sub-config, use that instead
  7240. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7241. arch = text_config["architectures"][0]
  7242. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7243. arch = vision_config["architectures"][0]
  7244. if arch is None:
  7245. raise ValueError("Failed to detect model architecture")
  7246. return arch
  7247. def main() -> None:
  7248. args = parse_args()
  7249. if args.print_supported_models:
  7250. logger.error("Supported models:")
  7251. ModelBase.print_registered_models()
  7252. sys.exit(0)
  7253. if args.verbose:
  7254. logging.basicConfig(level=logging.DEBUG)
  7255. else:
  7256. logging.basicConfig(level=logging.INFO)
  7257. if args.remote:
  7258. hf_repo_id = args.model
  7259. from huggingface_hub import snapshot_download
  7260. local_dir = snapshot_download(
  7261. repo_id=hf_repo_id,
  7262. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7263. dir_model = Path(local_dir)
  7264. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7265. else:
  7266. hf_repo_id = None
  7267. dir_model = Path(args.model)
  7268. if not dir_model.is_dir():
  7269. logger.error(f'Error: {dir_model} is not a directory')
  7270. sys.exit(1)
  7271. ftype_map: dict[str, gguf.LlamaFileType] = {
  7272. "f32": gguf.LlamaFileType.ALL_F32,
  7273. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7274. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7275. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7276. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7277. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7278. "auto": gguf.LlamaFileType.GUESSED,
  7279. }
  7280. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7281. if args.use_temp_file and is_split:
  7282. logger.error("Error: Cannot use temp file when splitting")
  7283. sys.exit(1)
  7284. if args.outfile is not None:
  7285. fname_out = args.outfile
  7286. elif hf_repo_id:
  7287. # if remote, use the model ID as the output file name
  7288. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7289. else:
  7290. fname_out = dir_model
  7291. logger.info(f"Loading model: {dir_model.name}")
  7292. if args.mmproj:
  7293. if "mmproj" not in fname_out.name:
  7294. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7295. is_mistral_format = args.mistral_format
  7296. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7297. with torch.inference_mode():
  7298. output_type = ftype_map[args.outtype]
  7299. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7300. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7301. if not is_mistral_format:
  7302. model_architecture = get_model_architecture(hparams, model_type)
  7303. logger.info(f"Model architecture: {model_architecture}")
  7304. try:
  7305. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7306. except NotImplementedError:
  7307. logger.error(f"Model {model_architecture} is not supported")
  7308. sys.exit(1)
  7309. elif args.mmproj:
  7310. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7311. model_class = PixtralModel
  7312. else:
  7313. model_class = MistralModel
  7314. model_instance = model_class(dir_model, output_type, fname_out,
  7315. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7316. eager=args.no_lazy,
  7317. metadata_override=args.metadata, model_name=args.model_name,
  7318. split_max_tensors=args.split_max_tensors,
  7319. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7320. small_first_shard=args.no_tensor_first_split,
  7321. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
  7322. )
  7323. if args.vocab_only:
  7324. logger.info("Exporting model vocab...")
  7325. model_instance.write_vocab()
  7326. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7327. else:
  7328. logger.info("Exporting model...")
  7329. model_instance.write()
  7330. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7331. logger.info(f"Model successfully exported to {out_path}")
  7332. if __name__ == '__main__':
  7333. main()