arg.cpp 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157
  1. #include "gguf.h" // for reading GGUF splits
  2. #include "arg.h"
  3. #include "log.h"
  4. #include "sampling.h"
  5. #include "chat.h"
  6. // fix problem with std::min and std::max
  7. #if defined(_WIN32)
  8. #define WIN32_LEAN_AND_MEAN
  9. #ifndef NOMINMAX
  10. # define NOMINMAX
  11. #endif
  12. #include <windows.h>
  13. #endif
  14. #include <algorithm>
  15. #include <climits>
  16. #include <cstdarg>
  17. #include <fstream>
  18. #include <regex>
  19. #include <set>
  20. #include <string>
  21. #include <thread>
  22. #include <vector>
  23. //#define LLAMA_USE_CURL
  24. #if defined(LLAMA_USE_CURL)
  25. #include <curl/curl.h>
  26. #include <curl/easy.h>
  27. #include <future>
  28. #endif
  29. #include "json-schema-to-grammar.h"
  30. using json = nlohmann::ordered_json;
  31. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  32. this->examples = std::move(examples);
  33. return *this;
  34. }
  35. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  36. this->excludes = std::move(excludes);
  37. return *this;
  38. }
  39. common_arg & common_arg::set_env(const char * env) {
  40. help = help + "\n(env: " + env + ")";
  41. this->env = env;
  42. return *this;
  43. }
  44. common_arg & common_arg::set_sparam() {
  45. is_sparam = true;
  46. return *this;
  47. }
  48. bool common_arg::in_example(enum llama_example ex) {
  49. return examples.find(ex) != examples.end();
  50. }
  51. bool common_arg::is_exclude(enum llama_example ex) {
  52. return excludes.find(ex) != excludes.end();
  53. }
  54. bool common_arg::get_value_from_env(std::string & output) {
  55. if (env == nullptr) return false;
  56. char * value = std::getenv(env);
  57. if (value) {
  58. output = value;
  59. return true;
  60. }
  61. return false;
  62. }
  63. bool common_arg::has_value_from_env() {
  64. return env != nullptr && std::getenv(env);
  65. }
  66. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  67. std::vector<std::string> result;
  68. std::istringstream iss(input);
  69. std::string line;
  70. auto add_line = [&](const std::string& l) {
  71. if (l.length() <= max_char_per_line) {
  72. result.push_back(l);
  73. } else {
  74. std::istringstream line_stream(l);
  75. std::string word, current_line;
  76. while (line_stream >> word) {
  77. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  78. if (!current_line.empty()) result.push_back(current_line);
  79. current_line = word;
  80. } else {
  81. current_line += (!current_line.empty() ? " " : "") + word;
  82. }
  83. }
  84. if (!current_line.empty()) result.push_back(current_line);
  85. }
  86. };
  87. while (std::getline(iss, line)) {
  88. add_line(line);
  89. }
  90. return result;
  91. }
  92. std::string common_arg::to_string() {
  93. // params for printing to console
  94. const static int n_leading_spaces = 40;
  95. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  96. std::string leading_spaces(n_leading_spaces, ' ');
  97. std::ostringstream ss;
  98. for (const auto arg : args) {
  99. if (arg == args.front()) {
  100. if (args.size() == 1) {
  101. ss << arg;
  102. } else {
  103. // first arg is usually abbreviation, we need padding to make it more beautiful
  104. auto tmp = std::string(arg) + ", ";
  105. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  106. ss << tmp << spaces;
  107. }
  108. } else {
  109. ss << arg << (arg != args.back() ? ", " : "");
  110. }
  111. }
  112. if (value_hint) ss << " " << value_hint;
  113. if (value_hint_2) ss << " " << value_hint_2;
  114. if (ss.tellp() > n_leading_spaces - 3) {
  115. // current line is too long, add new line
  116. ss << "\n" << leading_spaces;
  117. } else {
  118. // padding between arg and help, same line
  119. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  120. }
  121. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  122. for (const auto & line : help_lines) {
  123. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  124. }
  125. return ss.str();
  126. }
  127. //
  128. // downloader
  129. //
  130. struct common_hf_file_res {
  131. std::string repo; // repo name with ":tag" removed
  132. std::string ggufFile;
  133. std::string mmprojFile;
  134. };
  135. #ifdef LLAMA_USE_CURL
  136. #ifdef __linux__
  137. #include <linux/limits.h>
  138. #elif defined(_WIN32)
  139. # if !defined(PATH_MAX)
  140. # define PATH_MAX MAX_PATH
  141. # endif
  142. #else
  143. #include <sys/syslimits.h>
  144. #endif
  145. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  146. //
  147. // CURL utils
  148. //
  149. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  150. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  151. struct curl_slist_ptr {
  152. struct curl_slist * ptr = nullptr;
  153. ~curl_slist_ptr() {
  154. if (ptr) {
  155. curl_slist_free_all(ptr);
  156. }
  157. }
  158. };
  159. #define CURL_MAX_RETRY 3
  160. #define CURL_RETRY_DELAY_SECONDS 2
  161. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
  162. int remaining_attempts = max_attempts;
  163. while (remaining_attempts > 0) {
  164. LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  165. CURLcode res = curl_easy_perform(curl);
  166. if (res == CURLE_OK) {
  167. return true;
  168. }
  169. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  170. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  171. remaining_attempts--;
  172. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  173. }
  174. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  175. return false;
  176. }
  177. // download one single file from remote URL to local path
  178. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
  179. // Initialize libcurl
  180. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  181. curl_slist_ptr http_headers;
  182. if (!curl) {
  183. LOG_ERR("%s: error initializing libcurl\n", __func__);
  184. return false;
  185. }
  186. bool force_download = false;
  187. // Set the URL, allow to follow http redirection
  188. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  189. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  190. // Check if hf-token or bearer-token was specified
  191. if (!bearer_token.empty()) {
  192. std::string auth_header = "Authorization: Bearer " + bearer_token;
  193. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  194. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  195. }
  196. #if defined(_WIN32)
  197. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  198. // operating system. Currently implemented under MS-Windows.
  199. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  200. #endif
  201. // Check if the file already exists locally
  202. auto file_exists = std::filesystem::exists(path);
  203. // If the file exists, check its JSON metadata companion file.
  204. std::string metadata_path = path + ".json";
  205. nlohmann::json metadata;
  206. std::string etag;
  207. std::string last_modified;
  208. if (file_exists) {
  209. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  210. std::ifstream metadata_in(metadata_path);
  211. if (metadata_in.good()) {
  212. try {
  213. metadata_in >> metadata;
  214. LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  215. if (metadata.contains("url") && metadata.at("url").is_string()) {
  216. auto previous_url = metadata.at("url").get<std::string>();
  217. if (previous_url != url) {
  218. LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  219. return false;
  220. }
  221. }
  222. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  223. etag = metadata.at("etag");
  224. }
  225. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  226. last_modified = metadata.at("lastModified");
  227. }
  228. } catch (const nlohmann::json::exception & e) {
  229. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  230. return false;
  231. }
  232. }
  233. } else {
  234. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  235. }
  236. // Send a HEAD request to retrieve the etag and last-modified headers
  237. struct common_load_model_from_url_headers {
  238. std::string etag;
  239. std::string last_modified;
  240. };
  241. common_load_model_from_url_headers headers;
  242. {
  243. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  244. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  245. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  246. static std::regex header_regex("([^:]+): (.*)\r\n");
  247. static std::regex etag_regex("ETag", std::regex_constants::icase);
  248. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  249. std::string header(buffer, n_items);
  250. std::smatch match;
  251. if (std::regex_match(header, match, header_regex)) {
  252. const std::string & key = match[1];
  253. const std::string & value = match[2];
  254. if (std::regex_match(key, match, etag_regex)) {
  255. headers->etag = value;
  256. } else if (std::regex_match(key, match, last_modified_regex)) {
  257. headers->last_modified = value;
  258. }
  259. }
  260. return n_items;
  261. };
  262. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  263. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  264. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  265. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  266. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  267. if (!was_perform_successful) {
  268. return false;
  269. }
  270. long http_code = 0;
  271. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  272. if (http_code != 200) {
  273. // HEAD not supported, we don't know if the file has changed
  274. // force trigger downloading
  275. force_download = true;
  276. LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  277. }
  278. }
  279. bool should_download = !file_exists || force_download;
  280. if (!should_download) {
  281. if (!etag.empty() && etag != headers.etag) {
  282. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  283. should_download = true;
  284. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  285. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  286. should_download = true;
  287. }
  288. }
  289. if (should_download) {
  290. std::string path_temporary = path + ".downloadInProgress";
  291. if (file_exists) {
  292. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  293. if (remove(path.c_str()) != 0) {
  294. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  295. return false;
  296. }
  297. }
  298. // Set the output file
  299. struct FILE_deleter {
  300. void operator()(FILE * f) const {
  301. fclose(f);
  302. }
  303. };
  304. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  305. if (!outfile) {
  306. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  307. return false;
  308. }
  309. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  310. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  311. return fwrite(data, size, nmemb, (FILE *)fd);
  312. };
  313. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  314. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  315. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  316. // display download progress
  317. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  318. // helper function to hide password in URL
  319. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  320. std::size_t protocol_pos = url.find("://");
  321. if (protocol_pos == std::string::npos) {
  322. return url; // Malformed URL
  323. }
  324. std::size_t at_pos = url.find('@', protocol_pos + 3);
  325. if (at_pos == std::string::npos) {
  326. return url; // No password in URL
  327. }
  328. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  329. };
  330. // start the download
  331. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  332. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  333. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  334. if (!was_perform_successful) {
  335. return false;
  336. }
  337. long http_code = 0;
  338. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  339. if (http_code < 200 || http_code >= 400) {
  340. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  341. return false;
  342. }
  343. // Causes file to be closed explicitly here before we rename it.
  344. outfile.reset();
  345. // Write the updated JSON metadata file.
  346. metadata.update({
  347. {"url", url},
  348. {"etag", headers.etag},
  349. {"lastModified", headers.last_modified}
  350. });
  351. std::ofstream(metadata_path) << metadata.dump(4);
  352. LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  353. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  354. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  355. return false;
  356. }
  357. }
  358. return true;
  359. }
  360. // download multiple files from remote URLs to local paths
  361. // the input is a vector of pairs <url, path>
  362. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
  363. // Prepare download in parallel
  364. std::vector<std::future<bool>> futures_download;
  365. for (auto const & item : urls) {
  366. futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
  367. return common_download_file_single(it.first, it.second, bearer_token);
  368. }, item));
  369. }
  370. // Wait for all downloads to complete
  371. for (auto & f : futures_download) {
  372. if (!f.get()) {
  373. return false;
  374. }
  375. }
  376. return true;
  377. }
  378. static bool common_download_model(
  379. const common_params_model & model,
  380. const std::string & bearer_token) {
  381. // Basic validation of the model.url
  382. if (model.url.empty()) {
  383. LOG_ERR("%s: invalid model url\n", __func__);
  384. return false;
  385. }
  386. if (!common_download_file_single(model.url, model.path, bearer_token)) {
  387. return false;
  388. }
  389. // check for additional GGUFs split to download
  390. int n_split = 0;
  391. {
  392. struct gguf_init_params gguf_params = {
  393. /*.no_alloc = */ true,
  394. /*.ctx = */ NULL,
  395. };
  396. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  397. if (!ctx_gguf) {
  398. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  399. return false;
  400. }
  401. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  402. if (key_n_split >= 0) {
  403. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  404. }
  405. gguf_free(ctx_gguf);
  406. }
  407. if (n_split > 1) {
  408. char split_prefix[PATH_MAX] = {0};
  409. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  410. // Verify the first split file format
  411. // and extract split URL and PATH prefixes
  412. {
  413. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  414. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  415. return false;
  416. }
  417. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  418. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  419. return false;
  420. }
  421. }
  422. std::vector<std::pair<std::string, std::string>> urls;
  423. for (int idx = 1; idx < n_split; idx++) {
  424. char split_path[PATH_MAX] = {0};
  425. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  426. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  427. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  428. if (std::string(split_path) == model.path) {
  429. continue; // skip the already downloaded file
  430. }
  431. urls.push_back({split_url, split_path});
  432. }
  433. // Download in parallel
  434. common_download_file_multiple(urls, bearer_token);
  435. }
  436. return true;
  437. }
  438. /**
  439. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  440. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  441. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  442. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  443. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  444. *
  445. * Return pair of <repo, file> (with "repo" already having tag removed)
  446. *
  447. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  448. */
  449. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
  450. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  451. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  452. std::string hf_repo = parts[0];
  453. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  454. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  455. }
  456. // fetch model info from Hugging Face Hub API
  457. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  458. curl_slist_ptr http_headers;
  459. std::string res_str;
  460. std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
  461. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  462. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  463. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  464. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  465. static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
  466. return size * nmemb;
  467. };
  468. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  469. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
  470. #if defined(_WIN32)
  471. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  472. #endif
  473. if (!bearer_token.empty()) {
  474. std::string auth_header = "Authorization: Bearer " + bearer_token;
  475. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  476. }
  477. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  478. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  479. http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
  480. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  481. CURLcode res = curl_easy_perform(curl.get());
  482. if (res != CURLE_OK) {
  483. throw std::runtime_error("error: cannot make GET request to HF API");
  484. }
  485. long res_code;
  486. std::string ggufFile = "";
  487. std::string mmprojFile = "";
  488. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  489. if (res_code == 200) {
  490. // extract ggufFile.rfilename in json, using regex
  491. {
  492. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  493. std::smatch match;
  494. if (std::regex_search(res_str, match, pattern)) {
  495. ggufFile = match[1].str();
  496. }
  497. }
  498. // extract mmprojFile.rfilename in json, using regex
  499. {
  500. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  501. std::smatch match;
  502. if (std::regex_search(res_str, match, pattern)) {
  503. mmprojFile = match[1].str();
  504. }
  505. }
  506. } else if (res_code == 401) {
  507. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  508. } else {
  509. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  510. }
  511. // check response
  512. if (ggufFile.empty()) {
  513. throw std::runtime_error("error: model does not have ggufFile");
  514. }
  515. return { hf_repo, ggufFile, mmprojFile };
  516. }
  517. #else
  518. static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
  519. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  520. return false;
  521. }
  522. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
  523. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  524. return false;
  525. }
  526. static bool common_download_model(
  527. const common_params_model &,
  528. const std::string &) {
  529. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  530. return false;
  531. }
  532. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
  533. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  534. return {};
  535. }
  536. #endif // LLAMA_USE_CURL
  537. //
  538. // utils
  539. //
  540. static void common_params_handle_model(
  541. struct common_params_model & model,
  542. const std::string & bearer_token,
  543. const std::string & model_path_default,
  544. bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
  545. // handle pre-fill default model path and url based on hf_repo and hf_file
  546. {
  547. if (!model.hf_repo.empty()) {
  548. // short-hand to avoid specifying --hf-file -> default it to --model
  549. if (model.hf_file.empty()) {
  550. if (model.path.empty()) {
  551. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
  552. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  553. exit(1); // built without CURL, error message already printed
  554. }
  555. model.hf_repo = auto_detected.repo;
  556. model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
  557. } else {
  558. model.hf_file = model.path;
  559. }
  560. }
  561. // TODO: allow custom host
  562. model.url = "https://huggingface.co/" + model.hf_repo + "/resolve/main/" + model.hf_file;
  563. // make sure model path is present (for caching purposes)
  564. if (model.path.empty()) {
  565. // this is to avoid different repo having same file name, or same file name in different subdirs
  566. std::string filename = model.hf_repo + "_" + model.hf_file;
  567. // to make sure we don't have any slashes in the filename
  568. string_replace_all(filename, "/", "_");
  569. model.path = fs_get_cache_file(filename);
  570. }
  571. } else if (!model.url.empty()) {
  572. if (model.path.empty()) {
  573. auto f = string_split<std::string>(model.url, '#').front();
  574. f = string_split<std::string>(f, '?').front();
  575. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  576. }
  577. } else if (model.path.empty()) {
  578. model.path = model_path_default;
  579. }
  580. }
  581. // then, download it if needed
  582. if (!model.url.empty()) {
  583. bool ok = common_download_model(model, bearer_token);
  584. if (!ok) {
  585. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  586. exit(1);
  587. }
  588. }
  589. }
  590. const std::vector<ggml_type> kv_cache_types = {
  591. GGML_TYPE_F32,
  592. GGML_TYPE_F16,
  593. GGML_TYPE_BF16,
  594. GGML_TYPE_Q8_0,
  595. GGML_TYPE_Q4_0,
  596. GGML_TYPE_Q4_1,
  597. GGML_TYPE_IQ4_NL,
  598. GGML_TYPE_Q5_0,
  599. GGML_TYPE_Q5_1,
  600. };
  601. static ggml_type kv_cache_type_from_str(const std::string & s) {
  602. for (const auto & type : kv_cache_types) {
  603. if (ggml_type_name(type) == s) {
  604. return type;
  605. }
  606. }
  607. throw std::runtime_error("Unsupported cache type: " + s);
  608. }
  609. static std::string get_all_kv_cache_types() {
  610. std::ostringstream msg;
  611. for (const auto & type : kv_cache_types) {
  612. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  613. }
  614. return msg.str();
  615. }
  616. //
  617. // CLI argument parsing functions
  618. //
  619. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  620. std::string arg;
  621. const std::string arg_prefix = "--";
  622. common_params & params = ctx_arg.params;
  623. std::unordered_map<std::string, common_arg *> arg_to_options;
  624. for (auto & opt : ctx_arg.options) {
  625. for (const auto & arg : opt.args) {
  626. arg_to_options[arg] = &opt;
  627. }
  628. }
  629. // handle environment variables
  630. for (auto & opt : ctx_arg.options) {
  631. std::string value;
  632. if (opt.get_value_from_env(value)) {
  633. try {
  634. if (opt.handler_void && (value == "1" || value == "true")) {
  635. opt.handler_void(params);
  636. }
  637. if (opt.handler_int) {
  638. opt.handler_int(params, std::stoi(value));
  639. }
  640. if (opt.handler_string) {
  641. opt.handler_string(params, value);
  642. continue;
  643. }
  644. } catch (std::exception & e) {
  645. throw std::invalid_argument(string_format(
  646. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  647. }
  648. }
  649. }
  650. // handle command line arguments
  651. auto check_arg = [&](int i) {
  652. if (i+1 >= argc) {
  653. throw std::invalid_argument("expected value for argument");
  654. }
  655. };
  656. for (int i = 1; i < argc; i++) {
  657. const std::string arg_prefix = "--";
  658. std::string arg = argv[i];
  659. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  660. std::replace(arg.begin(), arg.end(), '_', '-');
  661. }
  662. if (arg_to_options.find(arg) == arg_to_options.end()) {
  663. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  664. }
  665. auto opt = *arg_to_options[arg];
  666. if (opt.has_value_from_env()) {
  667. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  668. }
  669. try {
  670. if (opt.handler_void) {
  671. opt.handler_void(params);
  672. continue;
  673. }
  674. // arg with single value
  675. check_arg(i);
  676. std::string val = argv[++i];
  677. if (opt.handler_int) {
  678. opt.handler_int(params, std::stoi(val));
  679. continue;
  680. }
  681. if (opt.handler_string) {
  682. opt.handler_string(params, val);
  683. continue;
  684. }
  685. // arg with 2 values
  686. check_arg(i);
  687. std::string val2 = argv[++i];
  688. if (opt.handler_str_str) {
  689. opt.handler_str_str(params, val, val2);
  690. continue;
  691. }
  692. } catch (std::exception & e) {
  693. throw std::invalid_argument(string_format(
  694. "error while handling argument \"%s\": %s\n\n"
  695. "usage:\n%s\n\nto show complete usage, run with -h",
  696. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  697. }
  698. }
  699. postprocess_cpu_params(params.cpuparams, nullptr);
  700. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  701. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  702. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  703. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  704. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  705. }
  706. common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
  707. common_params_handle_model(params.speculative.model, params.hf_token, "");
  708. common_params_handle_model(params.vocoder.model, params.hf_token, "");
  709. // allow --mmproj to be set from -hf
  710. // assuming that mmproj is always in the same repo as text model
  711. if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
  712. params.mmproj.hf_repo = params.model.hf_repo;
  713. }
  714. common_params_handle_model(params.mmproj, params.hf_token, "", true);
  715. if (params.escape) {
  716. string_process_escapes(params.prompt);
  717. string_process_escapes(params.input_prefix);
  718. string_process_escapes(params.input_suffix);
  719. for (auto & antiprompt : params.antiprompt) {
  720. string_process_escapes(antiprompt);
  721. }
  722. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  723. string_process_escapes(seq_breaker);
  724. }
  725. }
  726. if (!params.kv_overrides.empty()) {
  727. params.kv_overrides.emplace_back();
  728. params.kv_overrides.back().key[0] = 0;
  729. }
  730. if (params.reranking && params.embedding) {
  731. throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
  732. }
  733. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  734. throw std::runtime_error(string_format(
  735. "error: the supplied chat template is not supported: %s%s\n",
  736. params.chat_template.c_str(),
  737. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  738. ));
  739. }
  740. return true;
  741. }
  742. static void common_params_print_usage(common_params_context & ctx_arg) {
  743. auto print_options = [](std::vector<common_arg *> & options) {
  744. for (common_arg * opt : options) {
  745. printf("%s", opt->to_string().c_str());
  746. }
  747. };
  748. std::vector<common_arg *> common_options;
  749. std::vector<common_arg *> sparam_options;
  750. std::vector<common_arg *> specific_options;
  751. for (auto & opt : ctx_arg.options) {
  752. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  753. if (opt.is_sparam) {
  754. sparam_options.push_back(&opt);
  755. } else if (opt.in_example(ctx_arg.ex)) {
  756. specific_options.push_back(&opt);
  757. } else {
  758. common_options.push_back(&opt);
  759. }
  760. }
  761. printf("----- common params -----\n\n");
  762. print_options(common_options);
  763. printf("\n\n----- sampling params -----\n\n");
  764. print_options(sparam_options);
  765. // TODO: maybe convert enum llama_example to string
  766. printf("\n\n----- example-specific params -----\n\n");
  767. print_options(specific_options);
  768. }
  769. static void common_params_print_completion(common_params_context & ctx_arg) {
  770. std::vector<common_arg *> common_options;
  771. std::vector<common_arg *> sparam_options;
  772. std::vector<common_arg *> specific_options;
  773. for (auto & opt : ctx_arg.options) {
  774. if (opt.is_sparam) {
  775. sparam_options.push_back(&opt);
  776. } else if (opt.in_example(ctx_arg.ex)) {
  777. specific_options.push_back(&opt);
  778. } else {
  779. common_options.push_back(&opt);
  780. }
  781. }
  782. printf("_llama_completions() {\n");
  783. printf(" local cur prev opts\n");
  784. printf(" COMPREPLY=()\n");
  785. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  786. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  787. printf(" opts=\"");
  788. auto print_options = [](const std::vector<common_arg *> & options) {
  789. for (const common_arg * opt : options) {
  790. for (const char * arg : opt->args) {
  791. printf("%s ", arg);
  792. }
  793. }
  794. };
  795. print_options(common_options);
  796. print_options(sparam_options);
  797. print_options(specific_options);
  798. printf("\"\n\n");
  799. printf(" case \"$prev\" in\n");
  800. printf(" --model)\n");
  801. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  802. printf(" return 0\n");
  803. printf(" ;;\n");
  804. printf(" --grammar-file)\n");
  805. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  806. printf(" return 0\n");
  807. printf(" ;;\n");
  808. printf(" --chat-template-file)\n");
  809. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  810. printf(" return 0\n");
  811. printf(" ;;\n");
  812. printf(" *)\n");
  813. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  814. printf(" return 0\n");
  815. printf(" ;;\n");
  816. printf(" esac\n");
  817. printf("}\n\n");
  818. std::set<std::string> executables = {
  819. "llama-batched",
  820. "llama-batched-bench",
  821. "llama-bench",
  822. "llama-cli",
  823. "llama-convert-llama2c-to-ggml",
  824. "llama-cvector-generator",
  825. "llama-embedding",
  826. "llama-eval-callback",
  827. "llama-export-lora",
  828. "llama-gbnf-validator",
  829. "llama-gen-docs",
  830. "llama-gguf",
  831. "llama-gguf-hash",
  832. "llama-gguf-split",
  833. "llama-gritlm",
  834. "llama-imatrix",
  835. "llama-infill",
  836. "llama-llava-cli",
  837. "llama-llava-clip-quantize-cli",
  838. "llama-lookahead",
  839. "llama-lookup",
  840. "llama-lookup-create",
  841. "llama-lookup-merge",
  842. "llama-lookup-stats",
  843. "llama-minicpmv-cli",
  844. "llama-parallel",
  845. "llama-passkey",
  846. "llama-perplexity",
  847. "llama-q8dot",
  848. "llama-quantize",
  849. "llama-quantize-stats",
  850. "llama-qwen2vl-cli",
  851. "llama-retrieval",
  852. "llama-run",
  853. "llama-save-load-state",
  854. "llama-server",
  855. "llama-simple",
  856. "llama-simple-chat",
  857. "llama-speculative",
  858. "llama-speculative-simple",
  859. "llama-tokenize",
  860. "llama-tts",
  861. "llama-vdot"
  862. };
  863. for (const auto& exe : executables) {
  864. printf("complete -F _llama_completions %s\n", exe.c_str());
  865. }
  866. }
  867. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  868. std::vector<ggml_backend_dev_t> devices;
  869. auto dev_names = string_split<std::string>(value, ',');
  870. if (dev_names.empty()) {
  871. throw std::invalid_argument("no devices specified");
  872. }
  873. if (dev_names.size() == 1 && dev_names[0] == "none") {
  874. devices.push_back(nullptr);
  875. } else {
  876. for (const auto & device : dev_names) {
  877. auto * dev = ggml_backend_dev_by_name(device.c_str());
  878. if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
  879. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  880. }
  881. devices.push_back(dev);
  882. }
  883. devices.push_back(nullptr);
  884. }
  885. return devices;
  886. }
  887. static void add_rpc_devices(std::string servers) {
  888. auto rpc_servers = string_split<std::string>(servers, ',');
  889. if (rpc_servers.empty()) {
  890. throw std::invalid_argument("no RPC servers specified");
  891. }
  892. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  893. if (!rpc_reg) {
  894. throw std::invalid_argument("failed to find RPC backend");
  895. }
  896. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  897. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  898. if (!ggml_backend_rpc_add_device_fn) {
  899. throw std::invalid_argument("failed to find RPC device add function");
  900. }
  901. for (const auto & server : rpc_servers) {
  902. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  903. if (dev) {
  904. ggml_backend_device_register(dev);
  905. } else {
  906. throw std::invalid_argument("failed to register RPC device");
  907. }
  908. }
  909. }
  910. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  911. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  912. const common_params params_org = ctx_arg.params; // the example can modify the default params
  913. try {
  914. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  915. ctx_arg.params = params_org;
  916. return false;
  917. }
  918. if (ctx_arg.params.usage) {
  919. common_params_print_usage(ctx_arg);
  920. if (ctx_arg.print_usage) {
  921. ctx_arg.print_usage(argc, argv);
  922. }
  923. exit(0);
  924. }
  925. if (ctx_arg.params.completion) {
  926. common_params_print_completion(ctx_arg);
  927. exit(0);
  928. }
  929. } catch (const std::invalid_argument & ex) {
  930. fprintf(stderr, "%s\n", ex.what());
  931. ctx_arg.params = params_org;
  932. return false;
  933. }
  934. return true;
  935. }
  936. static std::string list_builtin_chat_templates() {
  937. std::vector<const char *> supported_tmpl;
  938. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  939. supported_tmpl.resize(res);
  940. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  941. std::ostringstream msg;
  942. for (auto & tmpl : supported_tmpl) {
  943. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  944. }
  945. return msg.str();
  946. }
  947. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  948. // load dynamic backends
  949. ggml_backend_load_all();
  950. common_params_context ctx_arg(params);
  951. ctx_arg.print_usage = print_usage;
  952. ctx_arg.ex = ex;
  953. std::string sampler_type_chars;
  954. std::string sampler_type_names;
  955. for (const auto & sampler : params.sampling.samplers) {
  956. sampler_type_chars += common_sampler_type_to_chr(sampler);
  957. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  958. }
  959. sampler_type_names.pop_back();
  960. /**
  961. * filter options by example
  962. * rules:
  963. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  964. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  965. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  966. */
  967. auto add_opt = [&](common_arg arg) {
  968. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  969. ctx_arg.options.push_back(std::move(arg));
  970. }
  971. };
  972. add_opt(common_arg(
  973. {"-h", "--help", "--usage"},
  974. "print usage and exit",
  975. [](common_params & params) {
  976. params.usage = true;
  977. }
  978. ));
  979. add_opt(common_arg(
  980. {"--version"},
  981. "show version and build info",
  982. [](common_params &) {
  983. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  984. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  985. exit(0);
  986. }
  987. ));
  988. add_opt(common_arg(
  989. {"--completion-bash"},
  990. "print source-able bash completion script for llama.cpp",
  991. [](common_params & params) {
  992. params.completion = true;
  993. }
  994. ));
  995. add_opt(common_arg(
  996. {"--verbose-prompt"},
  997. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  998. [](common_params & params) {
  999. params.verbose_prompt = true;
  1000. }
  1001. ));
  1002. add_opt(common_arg(
  1003. {"--no-display-prompt"},
  1004. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1005. [](common_params & params) {
  1006. params.display_prompt = false;
  1007. }
  1008. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1009. add_opt(common_arg(
  1010. {"-co", "--color"},
  1011. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1012. [](common_params & params) {
  1013. params.use_color = true;
  1014. }
  1015. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1016. add_opt(common_arg(
  1017. {"-t", "--threads"}, "N",
  1018. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1019. [](common_params & params, int value) {
  1020. params.cpuparams.n_threads = value;
  1021. if (params.cpuparams.n_threads <= 0) {
  1022. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1023. }
  1024. }
  1025. ).set_env("LLAMA_ARG_THREADS"));
  1026. add_opt(common_arg(
  1027. {"-tb", "--threads-batch"}, "N",
  1028. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1029. [](common_params & params, int value) {
  1030. params.cpuparams_batch.n_threads = value;
  1031. if (params.cpuparams_batch.n_threads <= 0) {
  1032. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1033. }
  1034. }
  1035. ));
  1036. add_opt(common_arg(
  1037. {"-C", "--cpu-mask"}, "M",
  1038. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1039. [](common_params & params, const std::string & mask) {
  1040. params.cpuparams.mask_valid = true;
  1041. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1042. throw std::invalid_argument("invalid cpumask");
  1043. }
  1044. }
  1045. ));
  1046. add_opt(common_arg(
  1047. {"-Cr", "--cpu-range"}, "lo-hi",
  1048. "range of CPUs for affinity. Complements --cpu-mask",
  1049. [](common_params & params, const std::string & range) {
  1050. params.cpuparams.mask_valid = true;
  1051. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1052. throw std::invalid_argument("invalid range");
  1053. }
  1054. }
  1055. ));
  1056. add_opt(common_arg(
  1057. {"--cpu-strict"}, "<0|1>",
  1058. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1059. [](common_params & params, const std::string & value) {
  1060. params.cpuparams.strict_cpu = std::stoul(value);
  1061. }
  1062. ));
  1063. add_opt(common_arg(
  1064. {"--prio"}, "N",
  1065. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
  1066. [](common_params & params, int prio) {
  1067. if (prio < 0 || prio > 3) {
  1068. throw std::invalid_argument("invalid value");
  1069. }
  1070. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1071. }
  1072. ));
  1073. add_opt(common_arg(
  1074. {"--poll"}, "<0...100>",
  1075. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1076. [](common_params & params, const std::string & value) {
  1077. params.cpuparams.poll = std::stoul(value);
  1078. }
  1079. ));
  1080. add_opt(common_arg(
  1081. {"-Cb", "--cpu-mask-batch"}, "M",
  1082. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1083. [](common_params & params, const std::string & mask) {
  1084. params.cpuparams_batch.mask_valid = true;
  1085. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1086. throw std::invalid_argument("invalid cpumask");
  1087. }
  1088. }
  1089. ));
  1090. add_opt(common_arg(
  1091. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1092. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1093. [](common_params & params, const std::string & range) {
  1094. params.cpuparams_batch.mask_valid = true;
  1095. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1096. throw std::invalid_argument("invalid range");
  1097. }
  1098. }
  1099. ));
  1100. add_opt(common_arg(
  1101. {"--cpu-strict-batch"}, "<0|1>",
  1102. "use strict CPU placement (default: same as --cpu-strict)",
  1103. [](common_params & params, int value) {
  1104. params.cpuparams_batch.strict_cpu = value;
  1105. }
  1106. ));
  1107. add_opt(common_arg(
  1108. {"--prio-batch"}, "N",
  1109. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1110. [](common_params & params, int prio) {
  1111. if (prio < 0 || prio > 3) {
  1112. throw std::invalid_argument("invalid value");
  1113. }
  1114. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1115. }
  1116. ));
  1117. add_opt(common_arg(
  1118. {"--poll-batch"}, "<0|1>",
  1119. "use polling to wait for work (default: same as --poll)",
  1120. [](common_params & params, int value) {
  1121. params.cpuparams_batch.poll = value;
  1122. }
  1123. ));
  1124. add_opt(common_arg(
  1125. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1126. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1127. [](common_params & params, const std::string & value) {
  1128. params.lookup_cache_static = value;
  1129. }
  1130. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1131. add_opt(common_arg(
  1132. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1133. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1134. [](common_params & params, const std::string & value) {
  1135. params.lookup_cache_dynamic = value;
  1136. }
  1137. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1138. add_opt(common_arg(
  1139. {"-c", "--ctx-size"}, "N",
  1140. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1141. [](common_params & params, int value) {
  1142. params.n_ctx = value;
  1143. }
  1144. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1145. add_opt(common_arg(
  1146. {"-n", "--predict", "--n-predict"}, "N",
  1147. string_format(
  1148. ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
  1149. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1150. : "number of tokens to predict (default: %d, -1 = infinity)",
  1151. params.n_predict),
  1152. [](common_params & params, int value) {
  1153. params.n_predict = value;
  1154. }
  1155. ).set_env("LLAMA_ARG_N_PREDICT"));
  1156. add_opt(common_arg(
  1157. {"-b", "--batch-size"}, "N",
  1158. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1159. [](common_params & params, int value) {
  1160. params.n_batch = value;
  1161. }
  1162. ).set_env("LLAMA_ARG_BATCH"));
  1163. add_opt(common_arg(
  1164. {"-ub", "--ubatch-size"}, "N",
  1165. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1166. [](common_params & params, int value) {
  1167. params.n_ubatch = value;
  1168. }
  1169. ).set_env("LLAMA_ARG_UBATCH"));
  1170. add_opt(common_arg(
  1171. {"--keep"}, "N",
  1172. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1173. [](common_params & params, int value) {
  1174. params.n_keep = value;
  1175. }
  1176. ));
  1177. add_opt(common_arg(
  1178. {"--no-context-shift"},
  1179. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1180. [](common_params & params) {
  1181. params.ctx_shift = false;
  1182. }
  1183. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1184. add_opt(common_arg(
  1185. {"--chunks"}, "N",
  1186. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1187. [](common_params & params, int value) {
  1188. params.n_chunks = value;
  1189. }
  1190. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1191. add_opt(common_arg(
  1192. {"-fa", "--flash-attn"},
  1193. string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
  1194. [](common_params & params) {
  1195. params.flash_attn = true;
  1196. }
  1197. ).set_env("LLAMA_ARG_FLASH_ATTN"));
  1198. add_opt(common_arg(
  1199. {"-p", "--prompt"}, "PROMPT",
  1200. "prompt to start generation with; for system message, use -sys",
  1201. [](common_params & params, const std::string & value) {
  1202. params.prompt = value;
  1203. }
  1204. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1205. add_opt(common_arg(
  1206. {"-sys", "--system-prompt"}, "PROMPT",
  1207. "system prompt to use with model (if applicable, depending on chat template)",
  1208. [](common_params & params, const std::string & value) {
  1209. params.system_prompt = value;
  1210. }
  1211. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1212. add_opt(common_arg(
  1213. {"--no-perf"},
  1214. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1215. [](common_params & params) {
  1216. params.no_perf = true;
  1217. params.sampling.no_perf = true;
  1218. }
  1219. ).set_env("LLAMA_ARG_NO_PERF"));
  1220. add_opt(common_arg(
  1221. {"-f", "--file"}, "FNAME",
  1222. "a file containing the prompt (default: none)",
  1223. [](common_params & params, const std::string & value) {
  1224. std::ifstream file(value);
  1225. if (!file) {
  1226. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1227. }
  1228. // store the external file name in params
  1229. params.prompt_file = value;
  1230. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  1231. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1232. params.prompt.pop_back();
  1233. }
  1234. }
  1235. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1236. add_opt(common_arg(
  1237. {"-sysf", "--system-prompt-file"}, "FNAME",
  1238. "a file containing the system prompt (default: none)",
  1239. [](common_params & params, const std::string & value) {
  1240. std::ifstream file(value);
  1241. if (!file) {
  1242. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1243. }
  1244. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.system_prompt));
  1245. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1246. params.system_prompt.pop_back();
  1247. }
  1248. }
  1249. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1250. add_opt(common_arg(
  1251. {"--in-file"}, "FNAME",
  1252. "an input file (repeat to specify multiple files)",
  1253. [](common_params & params, const std::string & value) {
  1254. std::ifstream file(value);
  1255. if (!file) {
  1256. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1257. }
  1258. params.in_files.push_back(value);
  1259. }
  1260. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1261. add_opt(common_arg(
  1262. {"-bf", "--binary-file"}, "FNAME",
  1263. "binary file containing the prompt (default: none)",
  1264. [](common_params & params, const std::string & value) {
  1265. std::ifstream file(value, std::ios::binary);
  1266. if (!file) {
  1267. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1268. }
  1269. // store the external file name in params
  1270. params.prompt_file = value;
  1271. std::ostringstream ss;
  1272. ss << file.rdbuf();
  1273. params.prompt = ss.str();
  1274. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1275. }
  1276. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1277. add_opt(common_arg(
  1278. {"-e", "--escape"},
  1279. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1280. [](common_params & params) {
  1281. params.escape = true;
  1282. }
  1283. ));
  1284. add_opt(common_arg(
  1285. {"--no-escape"},
  1286. "do not process escape sequences",
  1287. [](common_params & params) {
  1288. params.escape = false;
  1289. }
  1290. ));
  1291. add_opt(common_arg(
  1292. {"-ptc", "--print-token-count"}, "N",
  1293. string_format("print token count every N tokens (default: %d)", params.n_print),
  1294. [](common_params & params, int value) {
  1295. params.n_print = value;
  1296. }
  1297. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1298. add_opt(common_arg(
  1299. {"--prompt-cache"}, "FNAME",
  1300. "file to cache prompt state for faster startup (default: none)",
  1301. [](common_params & params, const std::string & value) {
  1302. params.path_prompt_cache = value;
  1303. }
  1304. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1305. add_opt(common_arg(
  1306. {"--prompt-cache-all"},
  1307. "if specified, saves user input and generations to cache as well\n",
  1308. [](common_params & params) {
  1309. params.prompt_cache_all = true;
  1310. }
  1311. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1312. add_opt(common_arg(
  1313. {"--prompt-cache-ro"},
  1314. "if specified, uses the prompt cache but does not update it",
  1315. [](common_params & params) {
  1316. params.prompt_cache_ro = true;
  1317. }
  1318. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1319. add_opt(common_arg(
  1320. {"-r", "--reverse-prompt"}, "PROMPT",
  1321. "halt generation at PROMPT, return control in interactive mode\n",
  1322. [](common_params & params, const std::string & value) {
  1323. params.antiprompt.emplace_back(value);
  1324. }
  1325. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1326. add_opt(common_arg(
  1327. {"-sp", "--special"},
  1328. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1329. [](common_params & params) {
  1330. params.special = true;
  1331. }
  1332. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1333. add_opt(common_arg(
  1334. {"-cnv", "--conversation"},
  1335. "run in conversation mode:\n"
  1336. "- does not print special tokens and suffix/prefix\n"
  1337. "- interactive mode is also enabled\n"
  1338. "(default: auto enabled if chat template is available)",
  1339. [](common_params & params) {
  1340. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1341. }
  1342. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1343. add_opt(common_arg(
  1344. {"-no-cnv", "--no-conversation"},
  1345. "force disable conversation mode (default: false)",
  1346. [](common_params & params) {
  1347. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1348. }
  1349. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1350. add_opt(common_arg(
  1351. {"-st", "--single-turn"},
  1352. "run conversation for a single turn only, then exit when done\n"
  1353. "will not be interactive if first turn is predefined with --prompt\n"
  1354. "(default: false)",
  1355. [](common_params & params) {
  1356. params.single_turn = true;
  1357. }
  1358. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1359. add_opt(common_arg(
  1360. {"-i", "--interactive"},
  1361. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1362. [](common_params & params) {
  1363. params.interactive = true;
  1364. }
  1365. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1366. add_opt(common_arg(
  1367. {"-if", "--interactive-first"},
  1368. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1369. [](common_params & params) {
  1370. params.interactive_first = true;
  1371. }
  1372. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1373. add_opt(common_arg(
  1374. {"-mli", "--multiline-input"},
  1375. "allows you to write or paste multiple lines without ending each in '\\'",
  1376. [](common_params & params) {
  1377. params.multiline_input = true;
  1378. }
  1379. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1380. add_opt(common_arg(
  1381. {"--in-prefix-bos"},
  1382. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1383. [](common_params & params) {
  1384. params.input_prefix_bos = true;
  1385. params.enable_chat_template = false;
  1386. }
  1387. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1388. add_opt(common_arg(
  1389. {"--in-prefix"}, "STRING",
  1390. "string to prefix user inputs with (default: empty)",
  1391. [](common_params & params, const std::string & value) {
  1392. params.input_prefix = value;
  1393. params.enable_chat_template = false;
  1394. }
  1395. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1396. add_opt(common_arg(
  1397. {"--in-suffix"}, "STRING",
  1398. "string to suffix after user inputs with (default: empty)",
  1399. [](common_params & params, const std::string & value) {
  1400. params.input_suffix = value;
  1401. params.enable_chat_template = false;
  1402. }
  1403. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1404. add_opt(common_arg(
  1405. {"--no-warmup"},
  1406. "skip warming up the model with an empty run",
  1407. [](common_params & params) {
  1408. params.warmup = false;
  1409. }
  1410. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
  1411. add_opt(common_arg(
  1412. {"--spm-infill"},
  1413. string_format(
  1414. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1415. params.spm_infill ? "enabled" : "disabled"
  1416. ),
  1417. [](common_params & params) {
  1418. params.spm_infill = true;
  1419. }
  1420. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
  1421. add_opt(common_arg(
  1422. {"--samplers"}, "SAMPLERS",
  1423. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1424. [](common_params & params, const std::string & value) {
  1425. const auto sampler_names = string_split<std::string>(value, ';');
  1426. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1427. }
  1428. ).set_sparam());
  1429. add_opt(common_arg(
  1430. {"-s", "--seed"}, "SEED",
  1431. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1432. [](common_params & params, const std::string & value) {
  1433. params.sampling.seed = std::stoul(value);
  1434. }
  1435. ).set_sparam());
  1436. add_opt(common_arg(
  1437. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1438. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1439. [](common_params & params, const std::string & value) {
  1440. params.sampling.samplers = common_sampler_types_from_chars(value);
  1441. }
  1442. ).set_sparam());
  1443. add_opt(common_arg(
  1444. {"--ignore-eos"},
  1445. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1446. [](common_params & params) {
  1447. params.sampling.ignore_eos = true;
  1448. }
  1449. ).set_sparam());
  1450. add_opt(common_arg(
  1451. {"--temp"}, "N",
  1452. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1453. [](common_params & params, const std::string & value) {
  1454. params.sampling.temp = std::stof(value);
  1455. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1456. }
  1457. ).set_sparam());
  1458. add_opt(common_arg(
  1459. {"--top-k"}, "N",
  1460. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1461. [](common_params & params, int value) {
  1462. params.sampling.top_k = value;
  1463. }
  1464. ).set_sparam());
  1465. add_opt(common_arg(
  1466. {"--top-p"}, "N",
  1467. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1468. [](common_params & params, const std::string & value) {
  1469. params.sampling.top_p = std::stof(value);
  1470. }
  1471. ).set_sparam());
  1472. add_opt(common_arg(
  1473. {"--min-p"}, "N",
  1474. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1475. [](common_params & params, const std::string & value) {
  1476. params.sampling.min_p = std::stof(value);
  1477. }
  1478. ).set_sparam());
  1479. add_opt(common_arg(
  1480. {"--top-nsigma"}, "N",
  1481. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1482. [](common_params & params, const std::string & value) {
  1483. params.sampling.top_n_sigma = std::stof(value);
  1484. }
  1485. ).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
  1486. add_opt(common_arg(
  1487. {"--xtc-probability"}, "N",
  1488. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1489. [](common_params & params, const std::string & value) {
  1490. params.sampling.xtc_probability = std::stof(value);
  1491. }
  1492. ).set_sparam());
  1493. add_opt(common_arg(
  1494. {"--xtc-threshold"}, "N",
  1495. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1496. [](common_params & params, const std::string & value) {
  1497. params.sampling.xtc_threshold = std::stof(value);
  1498. }
  1499. ).set_sparam());
  1500. add_opt(common_arg(
  1501. {"--typical"}, "N",
  1502. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1503. [](common_params & params, const std::string & value) {
  1504. params.sampling.typ_p = std::stof(value);
  1505. }
  1506. ).set_sparam());
  1507. add_opt(common_arg(
  1508. {"--repeat-last-n"}, "N",
  1509. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1510. [](common_params & params, int value) {
  1511. if (value < -1) {
  1512. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1513. }
  1514. params.sampling.penalty_last_n = value;
  1515. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1516. }
  1517. ).set_sparam());
  1518. add_opt(common_arg(
  1519. {"--repeat-penalty"}, "N",
  1520. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1521. [](common_params & params, const std::string & value) {
  1522. params.sampling.penalty_repeat = std::stof(value);
  1523. }
  1524. ).set_sparam());
  1525. add_opt(common_arg(
  1526. {"--presence-penalty"}, "N",
  1527. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1528. [](common_params & params, const std::string & value) {
  1529. params.sampling.penalty_present = std::stof(value);
  1530. }
  1531. ).set_sparam());
  1532. add_opt(common_arg(
  1533. {"--frequency-penalty"}, "N",
  1534. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1535. [](common_params & params, const std::string & value) {
  1536. params.sampling.penalty_freq = std::stof(value);
  1537. }
  1538. ).set_sparam());
  1539. add_opt(common_arg(
  1540. {"--dry-multiplier"}, "N",
  1541. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1542. [](common_params & params, const std::string & value) {
  1543. params.sampling.dry_multiplier = std::stof(value);
  1544. }
  1545. ).set_sparam());
  1546. add_opt(common_arg(
  1547. {"--dry-base"}, "N",
  1548. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1549. [](common_params & params, const std::string & value) {
  1550. float potential_base = std::stof(value);
  1551. if (potential_base >= 1.0f)
  1552. {
  1553. params.sampling.dry_base = potential_base;
  1554. }
  1555. }
  1556. ).set_sparam());
  1557. add_opt(common_arg(
  1558. {"--dry-allowed-length"}, "N",
  1559. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1560. [](common_params & params, int value) {
  1561. params.sampling.dry_allowed_length = value;
  1562. }
  1563. ).set_sparam());
  1564. add_opt(common_arg(
  1565. {"--dry-penalty-last-n"}, "N",
  1566. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1567. [](common_params & params, int value) {
  1568. if (value < -1) {
  1569. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1570. }
  1571. params.sampling.dry_penalty_last_n = value;
  1572. }
  1573. ).set_sparam());
  1574. add_opt(common_arg(
  1575. {"--dry-sequence-breaker"}, "STRING",
  1576. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1577. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1578. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1579. params.sampling.dry_sequence_breakers.end(),
  1580. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1581. [](const std::string& a, const std::string& b) {
  1582. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1583. return a + ", '" + formatted_b + "'";
  1584. }).c_str()),
  1585. [](common_params & params, const std::string & value) {
  1586. static bool defaults_cleared = false;
  1587. if (!defaults_cleared) {
  1588. params.sampling.dry_sequence_breakers.clear();
  1589. defaults_cleared = true;
  1590. }
  1591. if (value == "none") {
  1592. params.sampling.dry_sequence_breakers.clear();
  1593. } else {
  1594. params.sampling.dry_sequence_breakers.emplace_back(value);
  1595. }
  1596. }
  1597. ).set_sparam());
  1598. add_opt(common_arg(
  1599. {"--dynatemp-range"}, "N",
  1600. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1601. [](common_params & params, const std::string & value) {
  1602. params.sampling.dynatemp_range = std::stof(value);
  1603. }
  1604. ).set_sparam());
  1605. add_opt(common_arg(
  1606. {"--dynatemp-exp"}, "N",
  1607. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1608. [](common_params & params, const std::string & value) {
  1609. params.sampling.dynatemp_exponent = std::stof(value);
  1610. }
  1611. ).set_sparam());
  1612. add_opt(common_arg(
  1613. {"--mirostat"}, "N",
  1614. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1615. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1616. [](common_params & params, int value) {
  1617. params.sampling.mirostat = value;
  1618. }
  1619. ).set_sparam());
  1620. add_opt(common_arg(
  1621. {"--mirostat-lr"}, "N",
  1622. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1623. [](common_params & params, const std::string & value) {
  1624. params.sampling.mirostat_eta = std::stof(value);
  1625. }
  1626. ).set_sparam());
  1627. add_opt(common_arg(
  1628. {"--mirostat-ent"}, "N",
  1629. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1630. [](common_params & params, const std::string & value) {
  1631. params.sampling.mirostat_tau = std::stof(value);
  1632. }
  1633. ).set_sparam());
  1634. add_opt(common_arg(
  1635. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1636. "modifies the likelihood of token appearing in the completion,\n"
  1637. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1638. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1639. [](common_params & params, const std::string & value) {
  1640. std::stringstream ss(value);
  1641. llama_token key;
  1642. char sign;
  1643. std::string value_str;
  1644. try {
  1645. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1646. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1647. params.sampling.logit_bias.push_back({key, bias});
  1648. } else {
  1649. throw std::invalid_argument("invalid input format");
  1650. }
  1651. } catch (const std::exception&) {
  1652. throw std::invalid_argument("invalid input format");
  1653. }
  1654. }
  1655. ).set_sparam());
  1656. add_opt(common_arg(
  1657. {"--grammar"}, "GRAMMAR",
  1658. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1659. [](common_params & params, const std::string & value) {
  1660. params.sampling.grammar = value;
  1661. }
  1662. ).set_sparam());
  1663. add_opt(common_arg(
  1664. {"--grammar-file"}, "FNAME",
  1665. "file to read grammar from",
  1666. [](common_params & params, const std::string & value) {
  1667. std::ifstream file(value);
  1668. if (!file) {
  1669. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1670. }
  1671. std::copy(
  1672. std::istreambuf_iterator<char>(file),
  1673. std::istreambuf_iterator<char>(),
  1674. std::back_inserter(params.sampling.grammar)
  1675. );
  1676. }
  1677. ).set_sparam());
  1678. add_opt(common_arg(
  1679. {"-j", "--json-schema"}, "SCHEMA",
  1680. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1681. [](common_params & params, const std::string & value) {
  1682. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1683. }
  1684. ).set_sparam());
  1685. add_opt(common_arg(
  1686. {"--pooling"}, "{none,mean,cls,last,rank}",
  1687. "pooling type for embeddings, use model default if unspecified",
  1688. [](common_params & params, const std::string & value) {
  1689. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1690. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1691. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1692. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1693. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1694. else { throw std::invalid_argument("invalid value"); }
  1695. }
  1696. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1697. add_opt(common_arg(
  1698. {"--attention"}, "{causal,non-causal}",
  1699. "attention type for embeddings, use model default if unspecified",
  1700. [](common_params & params, const std::string & value) {
  1701. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1702. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1703. else { throw std::invalid_argument("invalid value"); }
  1704. }
  1705. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1706. add_opt(common_arg(
  1707. {"--rope-scaling"}, "{none,linear,yarn}",
  1708. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1709. [](common_params & params, const std::string & value) {
  1710. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1711. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1712. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1713. else { throw std::invalid_argument("invalid value"); }
  1714. }
  1715. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1716. add_opt(common_arg(
  1717. {"--rope-scale"}, "N",
  1718. "RoPE context scaling factor, expands context by a factor of N",
  1719. [](common_params & params, const std::string & value) {
  1720. params.rope_freq_scale = 1.0f / std::stof(value);
  1721. }
  1722. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1723. add_opt(common_arg(
  1724. {"--rope-freq-base"}, "N",
  1725. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1726. [](common_params & params, const std::string & value) {
  1727. params.rope_freq_base = std::stof(value);
  1728. }
  1729. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1730. add_opt(common_arg(
  1731. {"--rope-freq-scale"}, "N",
  1732. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1733. [](common_params & params, const std::string & value) {
  1734. params.rope_freq_scale = std::stof(value);
  1735. }
  1736. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1737. add_opt(common_arg(
  1738. {"--yarn-orig-ctx"}, "N",
  1739. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1740. [](common_params & params, int value) {
  1741. params.yarn_orig_ctx = value;
  1742. }
  1743. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1744. add_opt(common_arg(
  1745. {"--yarn-ext-factor"}, "N",
  1746. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1747. [](common_params & params, const std::string & value) {
  1748. params.yarn_ext_factor = std::stof(value);
  1749. }
  1750. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1751. add_opt(common_arg(
  1752. {"--yarn-attn-factor"}, "N",
  1753. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1754. [](common_params & params, const std::string & value) {
  1755. params.yarn_attn_factor = std::stof(value);
  1756. }
  1757. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1758. add_opt(common_arg(
  1759. {"--yarn-beta-slow"}, "N",
  1760. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1761. [](common_params & params, const std::string & value) {
  1762. params.yarn_beta_slow = std::stof(value);
  1763. }
  1764. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1765. add_opt(common_arg(
  1766. {"--yarn-beta-fast"}, "N",
  1767. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1768. [](common_params & params, const std::string & value) {
  1769. params.yarn_beta_fast = std::stof(value);
  1770. }
  1771. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1772. add_opt(common_arg(
  1773. {"-gan", "--grp-attn-n"}, "N",
  1774. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1775. [](common_params & params, int value) {
  1776. params.grp_attn_n = value;
  1777. }
  1778. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  1779. add_opt(common_arg(
  1780. {"-gaw", "--grp-attn-w"}, "N",
  1781. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1782. [](common_params & params, int value) {
  1783. params.grp_attn_w = value;
  1784. }
  1785. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  1786. add_opt(common_arg(
  1787. {"-dkvc", "--dump-kv-cache"},
  1788. "verbose print of the KV cache",
  1789. [](common_params & params) {
  1790. params.dump_kv_cache = true;
  1791. }
  1792. ));
  1793. add_opt(common_arg(
  1794. {"-nkvo", "--no-kv-offload"},
  1795. "disable KV offload",
  1796. [](common_params & params) {
  1797. params.no_kv_offload = true;
  1798. }
  1799. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  1800. add_opt(common_arg(
  1801. {"-ctk", "--cache-type-k"}, "TYPE",
  1802. string_format(
  1803. "KV cache data type for K\n"
  1804. "allowed values: %s\n"
  1805. "(default: %s)",
  1806. get_all_kv_cache_types().c_str(),
  1807. ggml_type_name(params.cache_type_k)
  1808. ),
  1809. [](common_params & params, const std::string & value) {
  1810. params.cache_type_k = kv_cache_type_from_str(value);
  1811. }
  1812. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1813. add_opt(common_arg(
  1814. {"-ctv", "--cache-type-v"}, "TYPE",
  1815. string_format(
  1816. "KV cache data type for V\n"
  1817. "allowed values: %s\n"
  1818. "(default: %s)",
  1819. get_all_kv_cache_types().c_str(),
  1820. ggml_type_name(params.cache_type_v)
  1821. ),
  1822. [](common_params & params, const std::string & value) {
  1823. params.cache_type_v = kv_cache_type_from_str(value);
  1824. }
  1825. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1826. add_opt(common_arg(
  1827. {"--perplexity", "--all-logits"},
  1828. string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
  1829. [](common_params & params) {
  1830. params.logits_all = true;
  1831. }
  1832. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1833. add_opt(common_arg(
  1834. {"--hellaswag"},
  1835. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1836. [](common_params & params) {
  1837. params.hellaswag = true;
  1838. }
  1839. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1840. add_opt(common_arg(
  1841. {"--hellaswag-tasks"}, "N",
  1842. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1843. [](common_params & params, int value) {
  1844. params.hellaswag_tasks = value;
  1845. }
  1846. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1847. add_opt(common_arg(
  1848. {"--winogrande"},
  1849. "compute Winogrande score over random tasks from datafile supplied with -f",
  1850. [](common_params & params) {
  1851. params.winogrande = true;
  1852. }
  1853. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1854. add_opt(common_arg(
  1855. {"--winogrande-tasks"}, "N",
  1856. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1857. [](common_params & params, int value) {
  1858. params.winogrande_tasks = value;
  1859. }
  1860. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1861. add_opt(common_arg(
  1862. {"--multiple-choice"},
  1863. "compute multiple choice score over random tasks from datafile supplied with -f",
  1864. [](common_params & params) {
  1865. params.multiple_choice = true;
  1866. }
  1867. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1868. add_opt(common_arg(
  1869. {"--multiple-choice-tasks"}, "N",
  1870. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1871. [](common_params & params, int value) {
  1872. params.multiple_choice_tasks = value;
  1873. }
  1874. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1875. add_opt(common_arg(
  1876. {"--kl-divergence"},
  1877. "computes KL-divergence to logits provided via --kl-divergence-base",
  1878. [](common_params & params) {
  1879. params.kl_divergence = true;
  1880. }
  1881. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1882. add_opt(common_arg(
  1883. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1884. "set logits file",
  1885. [](common_params & params, const std::string & value) {
  1886. params.logits_file = value;
  1887. }
  1888. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1889. add_opt(common_arg(
  1890. {"--ppl-stride"}, "N",
  1891. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  1892. [](common_params & params, int value) {
  1893. params.ppl_stride = value;
  1894. }
  1895. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1896. add_opt(common_arg(
  1897. {"--ppl-output-type"}, "<0|1>",
  1898. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  1899. [](common_params & params, int value) {
  1900. params.ppl_output_type = value;
  1901. }
  1902. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1903. add_opt(common_arg(
  1904. {"-dt", "--defrag-thold"}, "N",
  1905. string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
  1906. [](common_params & params, const std::string & value) {
  1907. params.defrag_thold = std::stof(value);
  1908. }
  1909. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  1910. add_opt(common_arg(
  1911. {"-np", "--parallel"}, "N",
  1912. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  1913. [](common_params & params, int value) {
  1914. params.n_parallel = value;
  1915. }
  1916. ).set_env("LLAMA_ARG_N_PARALLEL"));
  1917. add_opt(common_arg(
  1918. {"-ns", "--sequences"}, "N",
  1919. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  1920. [](common_params & params, int value) {
  1921. params.n_sequences = value;
  1922. }
  1923. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  1924. add_opt(common_arg(
  1925. {"-cb", "--cont-batching"},
  1926. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  1927. [](common_params & params) {
  1928. params.cont_batching = true;
  1929. }
  1930. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  1931. add_opt(common_arg(
  1932. {"-nocb", "--no-cont-batching"},
  1933. "disable continuous batching",
  1934. [](common_params & params) {
  1935. params.cont_batching = false;
  1936. }
  1937. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  1938. add_opt(common_arg(
  1939. {"--mmproj"}, "FILE",
  1940. "path to a multimodal projector file for LLaVA. see examples/llava/README.md",
  1941. [](common_params & params, const std::string & value) {
  1942. params.mmproj.path = value;
  1943. }
  1944. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  1945. add_opt(common_arg(
  1946. {"--mmproj-url"}, "URL",
  1947. "URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
  1948. [](common_params & params, const std::string & value) {
  1949. params.mmproj.url = value;
  1950. }
  1951. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  1952. add_opt(common_arg(
  1953. {"--image"}, "FILE",
  1954. "path to an image file. use with multimodal models. Specify multiple times for batching",
  1955. [](common_params & params, const std::string & value) {
  1956. params.image.emplace_back(value);
  1957. }
  1958. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  1959. if (llama_supports_rpc()) {
  1960. add_opt(common_arg(
  1961. {"--rpc"}, "SERVERS",
  1962. "comma separated list of RPC servers",
  1963. [](common_params & params, const std::string & value) {
  1964. add_rpc_devices(value);
  1965. GGML_UNUSED(params);
  1966. }
  1967. ).set_env("LLAMA_ARG_RPC"));
  1968. }
  1969. add_opt(common_arg(
  1970. {"--mlock"},
  1971. "force system to keep model in RAM rather than swapping or compressing",
  1972. [](common_params & params) {
  1973. params.use_mlock = true;
  1974. }
  1975. ).set_env("LLAMA_ARG_MLOCK"));
  1976. add_opt(common_arg(
  1977. {"--no-mmap"},
  1978. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  1979. [](common_params & params) {
  1980. params.use_mmap = false;
  1981. }
  1982. ).set_env("LLAMA_ARG_NO_MMAP"));
  1983. add_opt(common_arg(
  1984. {"--numa"}, "TYPE",
  1985. "attempt optimizations that help on some NUMA systems\n"
  1986. "- distribute: spread execution evenly over all nodes\n"
  1987. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  1988. "- numactl: use the CPU map provided by numactl\n"
  1989. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  1990. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  1991. [](common_params & params, const std::string & value) {
  1992. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  1993. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  1994. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  1995. else { throw std::invalid_argument("invalid value"); }
  1996. }
  1997. ).set_env("LLAMA_ARG_NUMA"));
  1998. add_opt(common_arg(
  1999. {"-dev", "--device"}, "<dev1,dev2,..>",
  2000. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2001. "use --list-devices to see a list of available devices",
  2002. [](common_params & params, const std::string & value) {
  2003. params.devices = parse_device_list(value);
  2004. }
  2005. ).set_env("LLAMA_ARG_DEVICE"));
  2006. add_opt(common_arg(
  2007. {"--list-devices"},
  2008. "print list of available devices and exit",
  2009. [](common_params &) {
  2010. std::vector<ggml_backend_dev_t> rpc_devices;
  2011. std::vector<ggml_backend_dev_t> all_devices;
  2012. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2013. auto * dev = ggml_backend_dev_get(i);
  2014. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  2015. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  2016. if (ggml_backend_reg_name(reg) == std::string("RPC")) {
  2017. rpc_devices.push_back(dev);
  2018. } else {
  2019. all_devices.push_back(dev);
  2020. }
  2021. }
  2022. }
  2023. // insert RPC devices in front
  2024. all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
  2025. printf("Available devices:\n");
  2026. for (size_t i = 0; i < all_devices.size(); ++i) {
  2027. auto * dev = all_devices[i];
  2028. size_t free, total;
  2029. ggml_backend_dev_memory(dev, &free, &total);
  2030. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2031. }
  2032. exit(0);
  2033. }
  2034. ));
  2035. add_opt(common_arg(
  2036. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2037. "number of layers to store in VRAM",
  2038. [](common_params & params, int value) {
  2039. params.n_gpu_layers = value;
  2040. if (!llama_supports_gpu_offload()) {
  2041. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2042. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2043. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2044. }
  2045. }
  2046. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2047. add_opt(common_arg(
  2048. {"-sm", "--split-mode"}, "{none,layer,row}",
  2049. "how to split the model across multiple GPUs, one of:\n"
  2050. "- none: use one GPU only\n"
  2051. "- layer (default): split layers and KV across GPUs\n"
  2052. "- row: split rows across GPUs",
  2053. [](common_params & params, const std::string & value) {
  2054. std::string arg_next = value;
  2055. if (arg_next == "none") {
  2056. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2057. } else if (arg_next == "layer") {
  2058. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2059. } else if (arg_next == "row") {
  2060. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2061. } else {
  2062. throw std::invalid_argument("invalid value");
  2063. }
  2064. if (!llama_supports_gpu_offload()) {
  2065. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2066. }
  2067. }
  2068. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2069. add_opt(common_arg(
  2070. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2071. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2072. [](common_params & params, const std::string & value) {
  2073. std::string arg_next = value;
  2074. // split string by , and /
  2075. const std::regex regex{ R"([,/]+)" };
  2076. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2077. std::vector<std::string> split_arg{ it, {} };
  2078. if (split_arg.size() >= llama_max_devices()) {
  2079. throw std::invalid_argument(
  2080. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2081. );
  2082. }
  2083. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2084. if (i < split_arg.size()) {
  2085. params.tensor_split[i] = std::stof(split_arg[i]);
  2086. } else {
  2087. params.tensor_split[i] = 0.0f;
  2088. }
  2089. }
  2090. if (!llama_supports_gpu_offload()) {
  2091. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2092. }
  2093. }
  2094. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2095. add_opt(common_arg(
  2096. {"-mg", "--main-gpu"}, "INDEX",
  2097. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2098. [](common_params & params, int value) {
  2099. params.main_gpu = value;
  2100. if (!llama_supports_gpu_offload()) {
  2101. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2102. }
  2103. }
  2104. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2105. add_opt(common_arg(
  2106. {"--check-tensors"},
  2107. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2108. [](common_params & params) {
  2109. params.check_tensors = true;
  2110. }
  2111. ));
  2112. add_opt(common_arg(
  2113. {"--override-kv"}, "KEY=TYPE:VALUE",
  2114. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2115. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2116. [](common_params & params, const std::string & value) {
  2117. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2118. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2119. }
  2120. }
  2121. ));
  2122. add_opt(common_arg(
  2123. {"--lora"}, "FNAME",
  2124. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2125. [](common_params & params, const std::string & value) {
  2126. params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
  2127. }
  2128. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2129. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2130. add_opt(common_arg(
  2131. {"--lora-scaled"}, "FNAME", "SCALE",
  2132. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2133. [](common_params & params, const std::string & fname, const std::string & scale) {
  2134. params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
  2135. }
  2136. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2137. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2138. add_opt(common_arg(
  2139. {"--control-vector"}, "FNAME",
  2140. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2141. [](common_params & params, const std::string & value) {
  2142. params.control_vectors.push_back({ 1.0f, value, });
  2143. }
  2144. ));
  2145. add_opt(common_arg(
  2146. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2147. "add a control vector with user defined scaling SCALE\n"
  2148. "note: this argument can be repeated to add multiple scaled control vectors",
  2149. [](common_params & params, const std::string & fname, const std::string & scale) {
  2150. params.control_vectors.push_back({ std::stof(scale), fname });
  2151. }
  2152. ));
  2153. add_opt(common_arg(
  2154. {"--control-vector-layer-range"}, "START", "END",
  2155. "layer range to apply the control vector(s) to, start and end inclusive",
  2156. [](common_params & params, const std::string & start, const std::string & end) {
  2157. params.control_vector_layer_start = std::stoi(start);
  2158. params.control_vector_layer_end = std::stoi(end);
  2159. }
  2160. ));
  2161. add_opt(common_arg(
  2162. {"-a", "--alias"}, "STRING",
  2163. "set alias for model name (to be used by REST API)",
  2164. [](common_params & params, const std::string & value) {
  2165. params.model_alias = value;
  2166. }
  2167. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2168. add_opt(common_arg(
  2169. {"-m", "--model"}, "FNAME",
  2170. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2171. ? std::string("model path from which to load base model")
  2172. : string_format(
  2173. "model path (default: `models/$filename` with filename from `--hf-file` "
  2174. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2175. ),
  2176. [](common_params & params, const std::string & value) {
  2177. params.model.path = value;
  2178. }
  2179. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2180. add_opt(common_arg(
  2181. {"-mu", "--model-url"}, "MODEL_URL",
  2182. "model download url (default: unused)",
  2183. [](common_params & params, const std::string & value) {
  2184. params.model.url = value;
  2185. }
  2186. ).set_env("LLAMA_ARG_MODEL_URL"));
  2187. add_opt(common_arg(
  2188. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2189. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2190. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2191. "(default: unused)",
  2192. [](common_params & params, const std::string & value) {
  2193. params.model.hf_repo = value;
  2194. }
  2195. ).set_env("LLAMA_ARG_HF_REPO"));
  2196. add_opt(common_arg(
  2197. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2198. "Same as --hf-repo, but for the draft model (default: unused)",
  2199. [](common_params & params, const std::string & value) {
  2200. params.speculative.model.hf_repo = value;
  2201. }
  2202. ).set_env("LLAMA_ARG_HFD_REPO"));
  2203. add_opt(common_arg(
  2204. {"-hff", "--hf-file"}, "FILE",
  2205. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2206. [](common_params & params, const std::string & value) {
  2207. params.model.hf_file = value;
  2208. }
  2209. ).set_env("LLAMA_ARG_HF_FILE"));
  2210. add_opt(common_arg(
  2211. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2212. "Hugging Face model repository for the vocoder model (default: unused)",
  2213. [](common_params & params, const std::string & value) {
  2214. params.vocoder.model.hf_repo = value;
  2215. }
  2216. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2217. add_opt(common_arg(
  2218. {"-hffv", "--hf-file-v"}, "FILE",
  2219. "Hugging Face model file for the vocoder model (default: unused)",
  2220. [](common_params & params, const std::string & value) {
  2221. params.vocoder.model.hf_file = value;
  2222. }
  2223. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2224. add_opt(common_arg(
  2225. {"-hft", "--hf-token"}, "TOKEN",
  2226. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2227. [](common_params & params, const std::string & value) {
  2228. params.hf_token = value;
  2229. }
  2230. ).set_env("HF_TOKEN"));
  2231. add_opt(common_arg(
  2232. {"--context-file"}, "FNAME",
  2233. "file to load context from (repeat to specify multiple files)",
  2234. [](common_params & params, const std::string & value) {
  2235. std::ifstream file(value, std::ios::binary);
  2236. if (!file) {
  2237. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2238. }
  2239. params.context_files.push_back(value);
  2240. }
  2241. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2242. add_opt(common_arg(
  2243. {"--chunk-size"}, "N",
  2244. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2245. [](common_params & params, int value) {
  2246. params.chunk_size = value;
  2247. }
  2248. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2249. add_opt(common_arg(
  2250. {"--chunk-separator"}, "STRING",
  2251. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2252. [](common_params & params, const std::string & value) {
  2253. params.chunk_separator = value;
  2254. }
  2255. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2256. add_opt(common_arg(
  2257. {"--junk"}, "N",
  2258. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2259. [](common_params & params, int value) {
  2260. params.n_junk = value;
  2261. }
  2262. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2263. add_opt(common_arg(
  2264. {"--pos"}, "N",
  2265. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2266. [](common_params & params, int value) {
  2267. params.i_pos = value;
  2268. }
  2269. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2270. add_opt(common_arg(
  2271. {"-o", "--output", "--output-file"}, "FNAME",
  2272. string_format("output file (default: '%s')", params.out_file.c_str()),
  2273. [](common_params & params, const std::string & value) {
  2274. params.out_file = value;
  2275. }
  2276. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
  2277. add_opt(common_arg(
  2278. {"-ofreq", "--output-frequency"}, "N",
  2279. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2280. [](common_params & params, int value) {
  2281. params.n_out_freq = value;
  2282. }
  2283. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2284. add_opt(common_arg(
  2285. {"--save-frequency"}, "N",
  2286. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2287. [](common_params & params, int value) {
  2288. params.n_save_freq = value;
  2289. }
  2290. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2291. add_opt(common_arg(
  2292. {"--process-output"},
  2293. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2294. [](common_params & params) {
  2295. params.process_output = true;
  2296. }
  2297. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2298. add_opt(common_arg(
  2299. {"--no-ppl"},
  2300. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2301. [](common_params & params) {
  2302. params.compute_ppl = false;
  2303. }
  2304. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2305. add_opt(common_arg(
  2306. {"--chunk", "--from-chunk"}, "N",
  2307. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2308. [](common_params & params, int value) {
  2309. params.i_chunk = value;
  2310. }
  2311. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2312. add_opt(common_arg(
  2313. {"-pps"},
  2314. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2315. [](common_params & params) {
  2316. params.is_pp_shared = true;
  2317. }
  2318. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2319. add_opt(common_arg(
  2320. {"-npp"}, "n0,n1,...",
  2321. "number of prompt tokens",
  2322. [](common_params & params, const std::string & value) {
  2323. auto p = string_split<int>(value, ',');
  2324. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2325. }
  2326. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2327. add_opt(common_arg(
  2328. {"-ntg"}, "n0,n1,...",
  2329. "number of text generation tokens",
  2330. [](common_params & params, const std::string & value) {
  2331. auto p = string_split<int>(value, ',');
  2332. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2333. }
  2334. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2335. add_opt(common_arg(
  2336. {"-npl"}, "n0,n1,...",
  2337. "number of parallel prompts",
  2338. [](common_params & params, const std::string & value) {
  2339. auto p = string_split<int>(value, ',');
  2340. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2341. }
  2342. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2343. add_opt(common_arg(
  2344. {"--embd-normalize"}, "N",
  2345. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2346. [](common_params & params, int value) {
  2347. params.embd_normalize = value;
  2348. }
  2349. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2350. add_opt(common_arg(
  2351. {"--embd-output-format"}, "FORMAT",
  2352. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2353. [](common_params & params, const std::string & value) {
  2354. params.embd_out = value;
  2355. }
  2356. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2357. add_opt(common_arg(
  2358. {"--embd-separator"}, "STRING",
  2359. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2360. [](common_params & params, const std::string & value) {
  2361. params.embd_sep = value;
  2362. }
  2363. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2364. add_opt(common_arg(
  2365. {"--host"}, "HOST",
  2366. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2367. [](common_params & params, const std::string & value) {
  2368. params.hostname = value;
  2369. }
  2370. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2371. add_opt(common_arg(
  2372. {"--port"}, "PORT",
  2373. string_format("port to listen (default: %d)", params.port),
  2374. [](common_params & params, int value) {
  2375. params.port = value;
  2376. }
  2377. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2378. add_opt(common_arg(
  2379. {"--path"}, "PATH",
  2380. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2381. [](common_params & params, const std::string & value) {
  2382. params.public_path = value;
  2383. }
  2384. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2385. add_opt(common_arg(
  2386. {"--no-webui"},
  2387. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2388. [](common_params & params) {
  2389. params.webui = false;
  2390. }
  2391. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2392. add_opt(common_arg(
  2393. {"--embedding", "--embeddings"},
  2394. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2395. [](common_params & params) {
  2396. params.embedding = true;
  2397. }
  2398. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2399. add_opt(common_arg(
  2400. {"--reranking", "--rerank"},
  2401. string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
  2402. [](common_params & params) {
  2403. params.reranking = true;
  2404. }
  2405. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2406. add_opt(common_arg(
  2407. {"--api-key"}, "KEY",
  2408. "API key to use for authentication (default: none)",
  2409. [](common_params & params, const std::string & value) {
  2410. params.api_keys.push_back(value);
  2411. }
  2412. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2413. add_opt(common_arg(
  2414. {"--api-key-file"}, "FNAME",
  2415. "path to file containing API keys (default: none)",
  2416. [](common_params & params, const std::string & value) {
  2417. std::ifstream key_file(value);
  2418. if (!key_file) {
  2419. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2420. }
  2421. std::string key;
  2422. while (std::getline(key_file, key)) {
  2423. if (!key.empty()) {
  2424. params.api_keys.push_back(key);
  2425. }
  2426. }
  2427. key_file.close();
  2428. }
  2429. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2430. add_opt(common_arg(
  2431. {"--ssl-key-file"}, "FNAME",
  2432. "path to file a PEM-encoded SSL private key",
  2433. [](common_params & params, const std::string & value) {
  2434. params.ssl_file_key = value;
  2435. }
  2436. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2437. add_opt(common_arg(
  2438. {"--ssl-cert-file"}, "FNAME",
  2439. "path to file a PEM-encoded SSL certificate",
  2440. [](common_params & params, const std::string & value) {
  2441. params.ssl_file_cert = value;
  2442. }
  2443. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2444. add_opt(common_arg(
  2445. {"-to", "--timeout"}, "N",
  2446. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2447. [](common_params & params, int value) {
  2448. params.timeout_read = value;
  2449. params.timeout_write = value;
  2450. }
  2451. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2452. add_opt(common_arg(
  2453. {"--threads-http"}, "N",
  2454. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2455. [](common_params & params, int value) {
  2456. params.n_threads_http = value;
  2457. }
  2458. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2459. add_opt(common_arg(
  2460. {"--cache-reuse"}, "N",
  2461. string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
  2462. [](common_params & params, int value) {
  2463. params.n_cache_reuse = value;
  2464. }
  2465. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2466. add_opt(common_arg(
  2467. {"--metrics"},
  2468. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2469. [](common_params & params) {
  2470. params.endpoint_metrics = true;
  2471. }
  2472. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2473. add_opt(common_arg(
  2474. {"--slots"},
  2475. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2476. [](common_params & params) {
  2477. params.endpoint_slots = true;
  2478. }
  2479. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2480. add_opt(common_arg(
  2481. {"--props"},
  2482. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2483. [](common_params & params) {
  2484. params.endpoint_props = true;
  2485. }
  2486. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2487. add_opt(common_arg(
  2488. {"--no-slots"},
  2489. "disables slots monitoring endpoint",
  2490. [](common_params & params) {
  2491. params.endpoint_slots = false;
  2492. }
  2493. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2494. add_opt(common_arg(
  2495. {"--slot-save-path"}, "PATH",
  2496. "path to save slot kv cache (default: disabled)",
  2497. [](common_params & params, const std::string & value) {
  2498. params.slot_save_path = value;
  2499. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2500. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2501. params.slot_save_path += DIRECTORY_SEPARATOR;
  2502. }
  2503. }
  2504. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2505. add_opt(common_arg(
  2506. {"--jinja"},
  2507. "use jinja template for chat (default: disabled)",
  2508. [](common_params & params) {
  2509. params.use_jinja = true;
  2510. }
  2511. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2512. add_opt(common_arg(
  2513. {"--reasoning-format"}, "FORMAT",
  2514. "reasoning format (default: deepseek; allowed values: deepseek, none)\n"
  2515. "controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
  2516. "only supported for non-streamed responses",
  2517. [](common_params & params, const std::string & value) {
  2518. /**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
  2519. else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
  2520. else { std::invalid_argument("invalid value"); }
  2521. }
  2522. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2523. add_opt(common_arg(
  2524. {"--chat-template"}, "JINJA_TEMPLATE",
  2525. string_format(
  2526. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2527. "if suffix/prefix are specified, template will be disabled\n"
  2528. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2529. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2530. ),
  2531. [](common_params & params, const std::string & value) {
  2532. params.chat_template = value;
  2533. }
  2534. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2535. add_opt(common_arg(
  2536. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2537. string_format(
  2538. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2539. "if suffix/prefix are specified, template will be disabled\n"
  2540. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2541. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2542. ),
  2543. [](common_params & params, const std::string & value) {
  2544. std::ifstream file(value);
  2545. if (!file) {
  2546. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2547. }
  2548. std::copy(
  2549. std::istreambuf_iterator<char>(file),
  2550. std::istreambuf_iterator<char>(),
  2551. std::back_inserter(params.chat_template));
  2552. }
  2553. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2554. add_opt(common_arg(
  2555. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2556. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2557. [](common_params & params, const std::string & value) {
  2558. params.slot_prompt_similarity = std::stof(value);
  2559. }
  2560. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2561. add_opt(common_arg(
  2562. {"--lora-init-without-apply"},
  2563. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2564. [](common_params & params) {
  2565. params.lora_init_without_apply = true;
  2566. }
  2567. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2568. add_opt(common_arg(
  2569. {"--simple-io"},
  2570. "use basic IO for better compatibility in subprocesses and limited consoles",
  2571. [](common_params & params) {
  2572. params.simple_io = true;
  2573. }
  2574. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  2575. add_opt(common_arg(
  2576. {"--positive-file"}, "FNAME",
  2577. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2578. [](common_params & params, const std::string & value) {
  2579. params.cvector_positive_file = value;
  2580. }
  2581. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2582. add_opt(common_arg(
  2583. {"--negative-file"}, "FNAME",
  2584. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2585. [](common_params & params, const std::string & value) {
  2586. params.cvector_negative_file = value;
  2587. }
  2588. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2589. add_opt(common_arg(
  2590. {"--pca-batch"}, "N",
  2591. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2592. [](common_params & params, int value) {
  2593. params.n_pca_batch = value;
  2594. }
  2595. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2596. add_opt(common_arg(
  2597. {"--pca-iter"}, "N",
  2598. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2599. [](common_params & params, int value) {
  2600. params.n_pca_iterations = value;
  2601. }
  2602. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2603. add_opt(common_arg(
  2604. {"--method"}, "{pca, mean}",
  2605. "dimensionality reduction method to be used (default: pca)",
  2606. [](common_params & params, const std::string & value) {
  2607. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2608. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2609. else { throw std::invalid_argument("invalid value"); }
  2610. }
  2611. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2612. add_opt(common_arg(
  2613. {"--output-format"}, "{md,jsonl}",
  2614. "output format for batched-bench results (default: md)",
  2615. [](common_params & params, const std::string & value) {
  2616. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2617. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2618. else { std::invalid_argument("invalid value"); }
  2619. }
  2620. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2621. add_opt(common_arg(
  2622. {"--log-disable"},
  2623. "Log disable",
  2624. [](common_params &) {
  2625. common_log_pause(common_log_main());
  2626. }
  2627. ));
  2628. add_opt(common_arg(
  2629. {"--log-file"}, "FNAME",
  2630. "Log to file",
  2631. [](common_params &, const std::string & value) {
  2632. common_log_set_file(common_log_main(), value.c_str());
  2633. }
  2634. ));
  2635. add_opt(common_arg(
  2636. {"--log-colors"},
  2637. "Enable colored logging",
  2638. [](common_params &) {
  2639. common_log_set_colors(common_log_main(), true);
  2640. }
  2641. ).set_env("LLAMA_LOG_COLORS"));
  2642. add_opt(common_arg(
  2643. {"-v", "--verbose", "--log-verbose"},
  2644. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2645. [](common_params & params) {
  2646. params.verbosity = INT_MAX;
  2647. common_log_set_verbosity_thold(INT_MAX);
  2648. }
  2649. ));
  2650. add_opt(common_arg(
  2651. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2652. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  2653. [](common_params & params, int value) {
  2654. params.verbosity = value;
  2655. common_log_set_verbosity_thold(value);
  2656. }
  2657. ).set_env("LLAMA_LOG_VERBOSITY"));
  2658. add_opt(common_arg(
  2659. {"--log-prefix"},
  2660. "Enable prefix in log messages",
  2661. [](common_params &) {
  2662. common_log_set_prefix(common_log_main(), true);
  2663. }
  2664. ).set_env("LLAMA_LOG_PREFIX"));
  2665. add_opt(common_arg(
  2666. {"--log-timestamps"},
  2667. "Enable timestamps in log messages",
  2668. [](common_params &) {
  2669. common_log_set_timestamps(common_log_main(), true);
  2670. }
  2671. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2672. // speculative parameters
  2673. add_opt(common_arg(
  2674. {"-td", "--threads-draft"}, "N",
  2675. "number of threads to use during generation (default: same as --threads)",
  2676. [](common_params & params, int value) {
  2677. params.speculative.cpuparams.n_threads = value;
  2678. if (params.speculative.cpuparams.n_threads <= 0) {
  2679. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2680. }
  2681. }
  2682. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2683. add_opt(common_arg(
  2684. {"-tbd", "--threads-batch-draft"}, "N",
  2685. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2686. [](common_params & params, int value) {
  2687. params.speculative.cpuparams_batch.n_threads = value;
  2688. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2689. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2690. }
  2691. }
  2692. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2693. add_opt(common_arg(
  2694. {"-Cd", "--cpu-mask-draft"}, "M",
  2695. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2696. [](common_params & params, const std::string & mask) {
  2697. params.speculative.cpuparams.mask_valid = true;
  2698. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2699. throw std::invalid_argument("invalid cpumask");
  2700. }
  2701. }
  2702. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2703. add_opt(common_arg(
  2704. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2705. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2706. [](common_params & params, const std::string & range) {
  2707. params.speculative.cpuparams.mask_valid = true;
  2708. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2709. throw std::invalid_argument("invalid range");
  2710. }
  2711. }
  2712. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2713. add_opt(common_arg(
  2714. {"--cpu-strict-draft"}, "<0|1>",
  2715. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  2716. [](common_params & params, int value) {
  2717. params.speculative.cpuparams.strict_cpu = value;
  2718. }
  2719. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2720. add_opt(common_arg(
  2721. {"--prio-draft"}, "N",
  2722. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  2723. [](common_params & params, int prio) {
  2724. if (prio < 0 || prio > 3) {
  2725. throw std::invalid_argument("invalid value");
  2726. }
  2727. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  2728. }
  2729. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2730. add_opt(common_arg(
  2731. {"--poll-draft"}, "<0|1>",
  2732. "Use polling to wait for draft model work (default: same as --poll])",
  2733. [](common_params & params, int value) {
  2734. params.speculative.cpuparams.poll = value;
  2735. }
  2736. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2737. add_opt(common_arg(
  2738. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  2739. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2740. [](common_params & params, const std::string & mask) {
  2741. params.speculative.cpuparams_batch.mask_valid = true;
  2742. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  2743. throw std::invalid_argument("invalid cpumask");
  2744. }
  2745. }
  2746. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2747. add_opt(common_arg(
  2748. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  2749. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  2750. [](common_params & params, const std::string & range) {
  2751. params.speculative.cpuparams_batch.mask_valid = true;
  2752. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  2753. throw std::invalid_argument("invalid cpumask");
  2754. }
  2755. }
  2756. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2757. add_opt(common_arg(
  2758. {"--cpu-strict-batch-draft"}, "<0|1>",
  2759. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  2760. [](common_params & params, int value) {
  2761. params.speculative.cpuparams_batch.strict_cpu = value;
  2762. }
  2763. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2764. add_opt(common_arg(
  2765. {"--prio-batch-draft"}, "N",
  2766. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  2767. [](common_params & params, int prio) {
  2768. if (prio < 0 || prio > 3) {
  2769. throw std::invalid_argument("invalid value");
  2770. }
  2771. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  2772. }
  2773. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2774. add_opt(common_arg(
  2775. {"--poll-batch-draft"}, "<0|1>",
  2776. "Use polling to wait for draft model work (default: --poll-draft)",
  2777. [](common_params & params, int value) {
  2778. params.speculative.cpuparams_batch.poll = value;
  2779. }
  2780. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2781. add_opt(common_arg(
  2782. {"--draft-max", "--draft", "--draft-n"}, "N",
  2783. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  2784. [](common_params & params, int value) {
  2785. params.speculative.n_max = value;
  2786. }
  2787. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  2788. add_opt(common_arg(
  2789. {"--draft-min", "--draft-n-min"}, "N",
  2790. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  2791. [](common_params & params, int value) {
  2792. params.speculative.n_min = value;
  2793. }
  2794. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  2795. add_opt(common_arg(
  2796. {"--draft-p-split"}, "P",
  2797. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  2798. [](common_params & params, const std::string & value) {
  2799. params.speculative.p_split = std::stof(value);
  2800. }
  2801. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  2802. add_opt(common_arg(
  2803. {"--draft-p-min"}, "P",
  2804. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  2805. [](common_params & params, const std::string & value) {
  2806. params.speculative.p_min = std::stof(value);
  2807. }
  2808. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  2809. add_opt(common_arg(
  2810. {"-cd", "--ctx-size-draft"}, "N",
  2811. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  2812. [](common_params & params, int value) {
  2813. params.speculative.n_ctx = value;
  2814. }
  2815. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  2816. add_opt(common_arg(
  2817. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  2818. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  2819. "use --list-devices to see a list of available devices",
  2820. [](common_params & params, const std::string & value) {
  2821. params.speculative.devices = parse_device_list(value);
  2822. }
  2823. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2824. add_opt(common_arg(
  2825. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  2826. "number of layers to store in VRAM for the draft model",
  2827. [](common_params & params, int value) {
  2828. params.speculative.n_gpu_layers = value;
  2829. if (!llama_supports_gpu_offload()) {
  2830. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  2831. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2832. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2833. }
  2834. }
  2835. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  2836. add_opt(common_arg(
  2837. {"-md", "--model-draft"}, "FNAME",
  2838. "draft model for speculative decoding (default: unused)",
  2839. [](common_params & params, const std::string & value) {
  2840. params.speculative.model.path = value;
  2841. }
  2842. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  2843. add_opt(common_arg(
  2844. {"-mv", "--model-vocoder"}, "FNAME",
  2845. "vocoder model for audio generation (default: unused)",
  2846. [](common_params & params, const std::string & value) {
  2847. params.vocoder.model.path = value;
  2848. }
  2849. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  2850. add_opt(common_arg(
  2851. {"--tts-use-guide-tokens"},
  2852. "Use guide tokens to improve TTS word recall",
  2853. [](common_params & params) {
  2854. params.vocoder.use_guide_tokens = true;
  2855. }
  2856. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  2857. add_opt(common_arg(
  2858. {"--tts-speaker-file"}, "FNAME",
  2859. "speaker file path for audio generation",
  2860. [](common_params & params, const std::string & value) {
  2861. params.vocoder.speaker_file = value;
  2862. }
  2863. ).set_examples({LLAMA_EXAMPLE_TTS}));
  2864. // model-specific
  2865. add_opt(common_arg(
  2866. {"--tts-oute-default"},
  2867. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  2868. [](common_params & params) {
  2869. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  2870. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  2871. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  2872. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  2873. }
  2874. ).set_examples({LLAMA_EXAMPLE_TTS}));
  2875. add_opt(common_arg(
  2876. {"--embd-bge-small-en-default"},
  2877. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  2878. [](common_params & params) {
  2879. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  2880. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  2881. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  2882. params.embd_normalize = 2;
  2883. params.n_ctx = 512;
  2884. params.verbose_prompt = true;
  2885. params.embedding = true;
  2886. }
  2887. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  2888. add_opt(common_arg(
  2889. {"--embd-e5-small-en-default"},
  2890. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  2891. [](common_params & params) {
  2892. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  2893. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  2894. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  2895. params.embd_normalize = 2;
  2896. params.n_ctx = 512;
  2897. params.verbose_prompt = true;
  2898. params.embedding = true;
  2899. }
  2900. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  2901. add_opt(common_arg(
  2902. {"--embd-gte-small-default"},
  2903. string_format("use default gte-small model (note: can download weights from the internet)"),
  2904. [](common_params & params) {
  2905. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  2906. params.model.hf_file = "gte-small-q8_0.gguf";
  2907. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  2908. params.embd_normalize = 2;
  2909. params.n_ctx = 512;
  2910. params.verbose_prompt = true;
  2911. params.embedding = true;
  2912. }
  2913. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  2914. add_opt(common_arg(
  2915. {"--fim-qwen-1.5b-default"},
  2916. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  2917. [](common_params & params) {
  2918. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  2919. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  2920. params.port = 8012;
  2921. params.n_gpu_layers = 99;
  2922. params.flash_attn = true;
  2923. params.n_ubatch = 1024;
  2924. params.n_batch = 1024;
  2925. params.n_ctx = 0;
  2926. params.n_cache_reuse = 256;
  2927. }
  2928. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2929. add_opt(common_arg(
  2930. {"--fim-qwen-3b-default"},
  2931. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  2932. [](common_params & params) {
  2933. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  2934. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  2935. params.port = 8012;
  2936. params.n_gpu_layers = 99;
  2937. params.flash_attn = true;
  2938. params.n_ubatch = 1024;
  2939. params.n_batch = 1024;
  2940. params.n_ctx = 0;
  2941. params.n_cache_reuse = 256;
  2942. }
  2943. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2944. add_opt(common_arg(
  2945. {"--fim-qwen-7b-default"},
  2946. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  2947. [](common_params & params) {
  2948. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  2949. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  2950. params.port = 8012;
  2951. params.n_gpu_layers = 99;
  2952. params.flash_attn = true;
  2953. params.n_ubatch = 1024;
  2954. params.n_batch = 1024;
  2955. params.n_ctx = 0;
  2956. params.n_cache_reuse = 256;
  2957. }
  2958. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2959. add_opt(common_arg(
  2960. {"--fim-qwen-7b-spec"},
  2961. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  2962. [](common_params & params) {
  2963. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  2964. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  2965. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  2966. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  2967. params.speculative.n_gpu_layers = 99;
  2968. params.port = 8012;
  2969. params.n_gpu_layers = 99;
  2970. params.flash_attn = true;
  2971. params.n_ubatch = 1024;
  2972. params.n_batch = 1024;
  2973. params.n_ctx = 0;
  2974. params.n_cache_reuse = 256;
  2975. }
  2976. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2977. add_opt(common_arg(
  2978. {"--fim-qwen-14b-spec"},
  2979. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  2980. [](common_params & params) {
  2981. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  2982. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  2983. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  2984. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  2985. params.speculative.n_gpu_layers = 99;
  2986. params.port = 8012;
  2987. params.n_gpu_layers = 99;
  2988. params.flash_attn = true;
  2989. params.n_ubatch = 1024;
  2990. params.n_batch = 1024;
  2991. params.n_ctx = 0;
  2992. params.n_cache_reuse = 256;
  2993. }
  2994. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2995. return ctx_arg;
  2996. }