convert_hf_to_gguf.py 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. fname_out: Path
  38. is_big_endian: bool
  39. endianess: gguf.GGUFEndian
  40. use_temp_file: bool
  41. lazy: bool
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. gguf_writer: gguf.GGUFWriter
  49. model_name: str | None
  50. metadata_override: Path | None
  51. dir_model_card: Path
  52. # subclasses should define this!
  53. model_arch: gguf.MODEL_ARCH
  54. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  55. use_temp_file: bool = False, eager: bool = False,
  56. metadata_override: Path | None = None, model_name: str | None = None,
  57. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  58. if type(self) is Model:
  59. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  60. self.dir_model = dir_model
  61. self.ftype = ftype
  62. self.fname_out = fname_out
  63. self.is_big_endian = is_big_endian
  64. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  65. self.use_temp_file = use_temp_file
  66. self.lazy = not eager
  67. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  68. self.is_safetensors = len(self.part_names) > 0
  69. if not self.is_safetensors:
  70. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  71. self.hparams = Model.load_hparams(self.dir_model)
  72. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  73. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  74. self.tensor_names = None
  75. self.metadata_override = metadata_override
  76. self.model_name = model_name
  77. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  78. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  79. if self.ftype == gguf.LlamaFileType.GUESSED:
  80. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  81. _, first_tensor = next(self.get_tensors())
  82. if first_tensor.dtype == torch.float16:
  83. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  84. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  85. else:
  86. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  88. # Configure GGUF Writer
  89. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  90. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  91. @classmethod
  92. def __init_subclass__(cls):
  93. # can't use an abstract property, because overriding it without type errors
  94. # would require using decorated functions instead of simply defining the property
  95. if "model_arch" not in cls.__dict__:
  96. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  97. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  98. key = next((k for k in keys if k in self.hparams), None)
  99. if key is not None:
  100. return self.hparams[key]
  101. if optional:
  102. return None
  103. raise KeyError(f"could not find any of: {keys}")
  104. def set_vocab(self):
  105. self._set_vocab_gpt2()
  106. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  107. tensor_names_from_parts: set[str] = set()
  108. if len(self.part_names) > 1:
  109. self.tensor_names = set()
  110. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  111. index_name += ".index.json"
  112. logger.info(f"gguf: loading model weight map from '{index_name}'")
  113. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  114. index: dict[str, Any] = json.load(f)
  115. weight_map = index.get("weight_map")
  116. if weight_map is None or not isinstance(weight_map, dict):
  117. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  118. self.tensor_names.update(weight_map.keys())
  119. else:
  120. self.tensor_names = tensor_names_from_parts
  121. for part_name in self.part_names:
  122. logger.info(f"gguf: loading model part '{part_name}'")
  123. ctx: ContextManager[Any]
  124. if self.is_safetensors:
  125. from safetensors import safe_open
  126. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  127. else:
  128. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  129. with ctx as model_part:
  130. tensor_names_from_parts.update(model_part.keys())
  131. for name in model_part.keys():
  132. if self.is_safetensors:
  133. if self.lazy:
  134. data = model_part.get_slice(name)
  135. data = LazyTorchTensor.from_safetensors_slice(data)
  136. else:
  137. data = model_part.get_tensor(name)
  138. else:
  139. data = model_part[name]
  140. if self.lazy:
  141. data = LazyTorchTensor.from_eager(data)
  142. yield name, data
  143. # only verify tensor name presence; it doesn't matter if they are not in the right files
  144. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  145. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  146. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  147. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  148. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  149. name: str = gguf.TENSOR_NAMES[key]
  150. if "{bid}" in name:
  151. assert bid is not None
  152. name = name.format(bid=bid)
  153. return name + suffix
  154. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  155. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  156. return False
  157. key_name: str = gguf.TENSOR_NAMES[key]
  158. if "{bid}" in key_name:
  159. if bid is None:
  160. return False
  161. key_name = key_name.format(bid=bid)
  162. else:
  163. if bid is not None:
  164. return False
  165. return name == (key_name + suffix)
  166. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  167. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  168. if new_name is None:
  169. raise ValueError(f"Can not map tensor {name!r}")
  170. return new_name
  171. def set_gguf_parameters(self):
  172. self.gguf_writer.add_block_count(self.block_count)
  173. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  174. self.gguf_writer.add_context_length(n_ctx)
  175. logger.info(f"gguf: context length = {n_ctx}")
  176. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  177. self.gguf_writer.add_embedding_length(n_embd)
  178. logger.info(f"gguf: embedding length = {n_embd}")
  179. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  180. self.gguf_writer.add_feed_forward_length(n_ff)
  181. logger.info(f"gguf: feed forward length = {n_ff}")
  182. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  183. self.gguf_writer.add_head_count(n_head)
  184. logger.info(f"gguf: head count = {n_head}")
  185. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  186. self.gguf_writer.add_head_count_kv(n_head_kv)
  187. logger.info(f"gguf: key-value head count = {n_head_kv}")
  188. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  189. self.gguf_writer.add_rope_freq_base(rope_theta)
  190. logger.info(f"gguf: rope theta = {rope_theta}")
  191. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  192. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  193. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  194. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  195. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  196. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  197. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  198. self.gguf_writer.add_expert_count(n_experts)
  199. logger.info(f"gguf: expert count = {n_experts}")
  200. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  201. self.gguf_writer.add_expert_used_count(n_experts_used)
  202. logger.info(f"gguf: experts used count = {n_experts_used}")
  203. if (head_dim := self.hparams.get("head_dim")) is not None:
  204. self.gguf_writer.add_key_length(head_dim)
  205. self.gguf_writer.add_value_length(head_dim)
  206. self.gguf_writer.add_file_type(self.ftype)
  207. logger.info(f"gguf: file type = {self.ftype}")
  208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  209. del bid # unused
  210. return [(self.map_tensor_name(name), data_torch)]
  211. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  212. del name, new_name, bid, n_dims # unused
  213. return False
  214. def prepare_tensors(self):
  215. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  216. for name, data_torch in self.get_tensors():
  217. # we don't need these
  218. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  219. continue
  220. old_dtype = data_torch.dtype
  221. # convert any unsupported data types to float32
  222. if data_torch.dtype not in (torch.float16, torch.float32):
  223. data_torch = data_torch.to(torch.float32)
  224. # use the first number-like part of the tensor name as the block id
  225. bid = None
  226. for part in name.split("."):
  227. if part.isdecimal():
  228. bid = int(part)
  229. break
  230. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  231. data: np.ndarray # type hint
  232. n_dims = len(data.shape)
  233. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  234. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  235. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  236. data_qtype = gguf.GGMLQuantizationType.F32
  237. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  238. # Some tensor types are always in float32
  239. if data_qtype is False and (
  240. any(
  241. self.match_model_tensor_name(new_name, key, bid)
  242. for key in (
  243. gguf.MODEL_TENSOR.FFN_GATE_INP,
  244. gguf.MODEL_TENSOR.POS_EMBD,
  245. gguf.MODEL_TENSOR.TOKEN_TYPES,
  246. )
  247. )
  248. or not name.endswith(".weight")
  249. ):
  250. data_qtype = gguf.GGMLQuantizationType.F32
  251. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  252. if isinstance(data_qtype, bool):
  253. if self.ftype == gguf.LlamaFileType.ALL_F32:
  254. data_qtype = gguf.GGMLQuantizationType.F32
  255. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  256. data_qtype = gguf.GGMLQuantizationType.F16
  257. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  258. data_qtype = gguf.GGMLQuantizationType.BF16
  259. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  260. data_qtype = gguf.GGMLQuantizationType.Q8_0
  261. else:
  262. raise ValueError(f"Unknown file type: {self.ftype.name}")
  263. try:
  264. data = gguf.quants.quantize(data, data_qtype)
  265. except gguf.QuantError as e:
  266. logger.warning("%s, %s", e, "falling back to F16")
  267. data_qtype = gguf.GGMLQuantizationType.F16
  268. data = gguf.quants.quantize(data, data_qtype)
  269. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  270. # reverse shape to make it similar to the internal ggml dimension order
  271. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  272. # n_dims is implicit in the shape
  273. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  274. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  275. def set_type(self):
  276. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  277. def prepare_metadata(self, vocab_only: bool):
  278. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  279. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  280. # Fallback to model directory name if metadata name is still missing
  281. if self.metadata.name is None:
  282. self.metadata.name = self.dir_model.name
  283. # Generate parameter weight class (useful for leader boards) if not yet determined
  284. if self.metadata.size_label is None and total_params > 0:
  285. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  286. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  287. output_type: str = self.ftype.name.partition("_")[2]
  288. # Filename Output
  289. if self.fname_out.is_dir():
  290. # Generate default filename based on model specification and available metadata
  291. if not vocab_only:
  292. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  293. else:
  294. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  295. # Use the default filename
  296. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  297. else:
  298. # Output path is a custom defined templated filename
  299. # Note: `not is_dir()` is used because `.is_file()` will not detect
  300. # file template strings as it doesn't actually exist as a file
  301. # Process templated file name with the output ftype, useful with the "auto" ftype
  302. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  303. self.set_type()
  304. logger.info("Set meta model")
  305. self.metadata.set_gguf_meta_model(self.gguf_writer)
  306. logger.info("Set model parameters")
  307. self.set_gguf_parameters()
  308. logger.info("Set model tokenizer")
  309. self.set_vocab()
  310. logger.info("Set model quantization version")
  311. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  312. def write(self):
  313. self.prepare_tensors()
  314. self.prepare_metadata(vocab_only=False)
  315. self.gguf_writer.write_header_to_file(path=self.fname_out)
  316. self.gguf_writer.write_kv_data_to_file()
  317. self.gguf_writer.write_tensors_to_file(progress=True)
  318. self.gguf_writer.close()
  319. def write_vocab(self):
  320. if len(self.gguf_writer.tensors) != 1:
  321. raise ValueError('Splitting the vocabulary is not supported')
  322. self.prepare_metadata(vocab_only=True)
  323. self.gguf_writer.write_header_to_file(path=self.fname_out)
  324. self.gguf_writer.write_kv_data_to_file()
  325. self.gguf_writer.close()
  326. @staticmethod
  327. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  328. part_names: list[str] = []
  329. for filename in os.listdir(dir_model):
  330. if filename.startswith(prefix) and filename.endswith(suffix):
  331. part_names.append(filename)
  332. part_names.sort()
  333. return part_names
  334. @staticmethod
  335. def load_hparams(dir_model: Path):
  336. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  337. return json.load(f)
  338. @classmethod
  339. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  340. assert names
  341. def func(modelcls: AnyModel) -> AnyModel:
  342. for name in names:
  343. cls._model_classes[name] = modelcls
  344. return modelcls
  345. return func
  346. @classmethod
  347. def from_model_architecture(cls, arch: str) -> type[Model]:
  348. try:
  349. return cls._model_classes[arch]
  350. except KeyError:
  351. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  352. def does_token_look_special(self, token: str | bytes) -> bool:
  353. if isinstance(token, (bytes, bytearray)):
  354. token_text = token.decode(encoding="utf-8")
  355. elif isinstance(token, memoryview):
  356. token_text = token.tobytes().decode(encoding="utf-8")
  357. else:
  358. token_text = token
  359. # Some models mark some added tokens which ought to be control tokens as not special.
  360. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  361. seems_special = token_text in (
  362. "<pad>", # deepseek-coder
  363. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  364. )
  365. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  366. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  367. # TODO: should these be marked as UNUSED instead? (maybe not)
  368. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  369. return seems_special
  370. # used for GPT-2 BPE and WordPiece vocabs
  371. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  372. tokens: list[str] = []
  373. toktypes: list[int] = []
  374. from transformers import AutoTokenizer
  375. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  376. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  377. assert max(tokenizer.vocab.values()) < vocab_size
  378. tokpre = self.get_vocab_base_pre(tokenizer)
  379. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  380. added_vocab = tokenizer.get_added_vocab()
  381. for i in range(vocab_size):
  382. if i not in reverse_vocab:
  383. tokens.append(f"[PAD{i}]")
  384. toktypes.append(gguf.TokenType.UNUSED)
  385. else:
  386. token: str = reverse_vocab[i]
  387. if token in added_vocab:
  388. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  389. toktypes.append(gguf.TokenType.CONTROL)
  390. else:
  391. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  392. toktypes.append(gguf.TokenType.USER_DEFINED)
  393. else:
  394. toktypes.append(gguf.TokenType.NORMAL)
  395. tokens.append(token)
  396. return tokens, toktypes, tokpre
  397. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  398. # do not modify it manually!
  399. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  400. # Marker: Start get_vocab_base_pre
  401. def get_vocab_base_pre(self, tokenizer) -> str:
  402. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  403. # is specific for the BPE pre-tokenizer used by the model
  404. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  405. # use in llama.cpp to implement the same pre-tokenizer
  406. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  407. chktok = tokenizer.encode(chktxt)
  408. chkhsh = sha256(str(chktok).encode()).hexdigest()
  409. logger.debug(f"chktok: {chktok}")
  410. logger.debug(f"chkhsh: {chkhsh}")
  411. res = None
  412. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  413. # or pull the latest version of the model from Huggingface
  414. # don't edit the hashes manually!
  415. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  416. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  417. res = "llama-bpe"
  418. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  419. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  420. res = "deepseek-llm"
  421. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  422. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  423. res = "deepseek-coder"
  424. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  425. # ref: https://huggingface.co/tiiuae/falcon-7b
  426. res = "falcon"
  427. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  428. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  429. res = "bert-bge"
  430. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  431. # ref: https://huggingface.co/mosaicml/mpt-7b
  432. res = "mpt"
  433. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  434. # ref: https://huggingface.co/bigcode/starcoder2-3b
  435. res = "starcoder"
  436. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  437. # ref: https://huggingface.co/openai-community/gpt2
  438. res = "gpt-2"
  439. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  440. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  441. res = "stablelm2"
  442. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  443. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  444. res = "refact"
  445. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  446. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  447. res = "command-r"
  448. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  449. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  450. res = "qwen2"
  451. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  452. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  453. res = "olmo"
  454. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  455. # ref: https://huggingface.co/databricks/dbrx-base
  456. res = "dbrx"
  457. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  458. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  459. res = "jina-v2-en"
  460. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  461. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  462. res = "jina-v2-es"
  463. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  464. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  465. res = "jina-v2-de"
  466. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  467. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  468. res = "smaug-bpe"
  469. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  470. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  471. res = "poro-chat"
  472. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  473. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  474. res = "jina-v2-code"
  475. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  476. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  477. res = "chatglm-bpe"
  478. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  479. # ref: https://huggingface.co/LumiOpen/Viking-7B
  480. res = "viking"
  481. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  482. # ref: https://huggingface.co/core42/jais-13b
  483. res = "jais"
  484. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  485. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  486. res = "codeshell"
  487. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  488. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  489. res = "tekken"
  490. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  491. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  492. res = "smollm"
  493. if res is None:
  494. logger.warning("\n")
  495. logger.warning("**************************************************************************************")
  496. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  497. logger.warning("** There are 2 possible reasons for this:")
  498. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  499. logger.warning("** - the pre-tokenization config has changed upstream")
  500. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  501. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  502. logger.warning("**")
  503. logger.warning(f"** chkhsh: {chkhsh}")
  504. logger.warning("**************************************************************************************")
  505. logger.warning("\n")
  506. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  507. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  508. logger.debug(f"chkhsh: {chkhsh}")
  509. return res
  510. # Marker: End get_vocab_base_pre
  511. def _set_vocab_gpt2(self) -> None:
  512. tokens, toktypes, tokpre = self.get_vocab_base()
  513. self.gguf_writer.add_tokenizer_model("gpt2")
  514. self.gguf_writer.add_tokenizer_pre(tokpre)
  515. self.gguf_writer.add_token_list(tokens)
  516. self.gguf_writer.add_token_types(toktypes)
  517. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  518. special_vocab.add_to_gguf(self.gguf_writer)
  519. def _set_vocab_qwen(self):
  520. dir_model = self.dir_model
  521. hparams = self.hparams
  522. tokens: list[str] = []
  523. toktypes: list[int] = []
  524. from transformers import AutoTokenizer
  525. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  526. vocab_size = hparams["vocab_size"]
  527. assert max(tokenizer.get_vocab().values()) < vocab_size
  528. tokpre = self.get_vocab_base_pre(tokenizer)
  529. merges = []
  530. vocab = {}
  531. mergeable_ranks = tokenizer.mergeable_ranks
  532. for token, rank in mergeable_ranks.items():
  533. vocab[QwenModel.token_bytes_to_string(token)] = rank
  534. if len(token) == 1:
  535. continue
  536. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  537. assert len(merged) == 2
  538. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  539. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  540. added_vocab = tokenizer.special_tokens
  541. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  542. for i in range(vocab_size):
  543. if i not in reverse_vocab:
  544. tokens.append(f"[PAD{i}]")
  545. toktypes.append(gguf.TokenType.UNUSED)
  546. elif reverse_vocab[i] in added_vocab:
  547. tokens.append(reverse_vocab[i])
  548. toktypes.append(gguf.TokenType.CONTROL)
  549. else:
  550. tokens.append(reverse_vocab[i])
  551. toktypes.append(gguf.TokenType.NORMAL)
  552. self.gguf_writer.add_tokenizer_model("gpt2")
  553. self.gguf_writer.add_tokenizer_pre(tokpre)
  554. self.gguf_writer.add_token_list(tokens)
  555. self.gguf_writer.add_token_types(toktypes)
  556. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  557. special_vocab.merges = merges
  558. # only add special tokens when they were not already loaded from config.json
  559. if len(special_vocab.special_token_ids) == 0:
  560. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  561. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  562. # this one is usually not in config.json anyway
  563. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  564. special_vocab.add_to_gguf(self.gguf_writer)
  565. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  566. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  567. self.gguf_writer.add_tokenizer_model("llama")
  568. self.gguf_writer.add_tokenizer_pre("default")
  569. self.gguf_writer.add_token_list(tokens)
  570. self.gguf_writer.add_token_scores(scores)
  571. self.gguf_writer.add_token_types(toktypes)
  572. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  573. special_vocab.add_to_gguf(self.gguf_writer)
  574. def _create_vocab_sentencepiece(self):
  575. from sentencepiece import SentencePieceProcessor
  576. tokenizer_path = self.dir_model / 'tokenizer.model'
  577. if not tokenizer_path.is_file():
  578. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  579. tokenizer = SentencePieceProcessor()
  580. tokenizer.LoadFromFile(str(tokenizer_path))
  581. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  582. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  583. scores: list[float] = [-10000.0] * vocab_size
  584. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  585. for token_id in range(tokenizer.vocab_size()):
  586. piece = tokenizer.IdToPiece(token_id)
  587. text = piece.encode("utf-8")
  588. score = tokenizer.GetScore(token_id)
  589. toktype = SentencePieceTokenTypes.NORMAL
  590. if tokenizer.IsUnknown(token_id):
  591. toktype = SentencePieceTokenTypes.UNKNOWN
  592. elif tokenizer.IsControl(token_id):
  593. toktype = SentencePieceTokenTypes.CONTROL
  594. elif tokenizer.IsUnused(token_id):
  595. toktype = SentencePieceTokenTypes.UNUSED
  596. elif tokenizer.IsByte(token_id):
  597. toktype = SentencePieceTokenTypes.BYTE
  598. tokens[token_id] = text
  599. scores[token_id] = score
  600. toktypes[token_id] = toktype
  601. added_tokens_file = self.dir_model / 'added_tokens.json'
  602. if added_tokens_file.is_file():
  603. with open(added_tokens_file, "r", encoding="utf-8") as f:
  604. added_tokens_json = json.load(f)
  605. for key in added_tokens_json:
  606. token_id = added_tokens_json[key]
  607. if token_id >= vocab_size:
  608. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  609. continue
  610. tokens[token_id] = key.encode("utf-8")
  611. scores[token_id] = -1000.0
  612. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  613. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  614. if tokenizer_config_file.is_file():
  615. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  616. tokenizer_config_json = json.load(f)
  617. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  618. for token_id, token_data in added_tokens_decoder.items():
  619. token_id = int(token_id)
  620. token: str = token_data["content"]
  621. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  622. if tokens[token_id] != token.encode("utf-8"):
  623. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  624. if token_data.get("special") or self.does_token_look_special(token):
  625. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  626. else:
  627. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  628. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  629. scores[token_id] = -1000.0
  630. tokens[token_id] = token.encode("utf-8")
  631. if vocab_size > len(tokens):
  632. pad_count = vocab_size - len(tokens)
  633. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  634. for i in range(1, pad_count + 1):
  635. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  636. scores.append(-1000.0)
  637. toktypes.append(SentencePieceTokenTypes.UNUSED)
  638. return tokens, scores, toktypes
  639. def _set_vocab_llama_hf(self):
  640. vocab = gguf.LlamaHfVocab(self.dir_model)
  641. tokens = []
  642. scores = []
  643. toktypes = []
  644. for text, score, toktype in vocab.all_tokens():
  645. tokens.append(text)
  646. scores.append(score)
  647. toktypes.append(toktype)
  648. assert len(tokens) == vocab.vocab_size
  649. self.gguf_writer.add_tokenizer_model("llama")
  650. self.gguf_writer.add_tokenizer_pre("default")
  651. self.gguf_writer.add_token_list(tokens)
  652. self.gguf_writer.add_token_scores(scores)
  653. self.gguf_writer.add_token_types(toktypes)
  654. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  655. special_vocab.add_to_gguf(self.gguf_writer)
  656. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  657. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  658. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  659. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  660. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  661. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  662. assert field # tokenizer model
  663. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  664. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  665. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  666. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  667. assert field # token list
  668. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  669. if model_name == "llama-spm":
  670. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  671. assert field # token scores
  672. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  673. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  674. assert field # token types
  675. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  676. if model_name != "llama-spm":
  677. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  678. assert field # token merges
  679. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  680. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  681. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  682. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  683. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  684. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  685. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  686. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  687. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  688. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  689. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  690. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  691. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  692. @Model.register("GPTNeoXForCausalLM")
  693. class GPTNeoXModel(Model):
  694. model_arch = gguf.MODEL_ARCH.GPTNEOX
  695. def set_gguf_parameters(self):
  696. block_count = self.hparams["num_hidden_layers"]
  697. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  698. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  699. self.gguf_writer.add_block_count(block_count)
  700. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  701. self.gguf_writer.add_rope_dimension_count(
  702. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  703. )
  704. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  705. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  706. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  708. del bid # unused
  709. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  710. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  711. tensors: list[tuple[str, Tensor]] = []
  712. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  713. # Map bloom-style qkv_linear to gpt-style qkv_linear
  714. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  715. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  716. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  717. data_torch = torch.cat(
  718. (
  719. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  720. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  721. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  722. ),
  723. dim=0,
  724. )
  725. logger.info("re-format attention.linear_qkv.weight")
  726. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  727. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  728. data_torch = torch.cat(
  729. (
  730. qkv_bias[:, 0, :].reshape((n_embed,)),
  731. qkv_bias[:, 1, :].reshape((n_embed,)),
  732. qkv_bias[:, 2, :].reshape((n_embed,)),
  733. ),
  734. dim=0,
  735. )
  736. logger.info("re-format attention.linear_qkv.bias")
  737. tensors.append((self.map_tensor_name(name), data_torch))
  738. return tensors
  739. @Model.register("BloomForCausalLM")
  740. class BloomModel(Model):
  741. model_arch = gguf.MODEL_ARCH.BLOOM
  742. def set_gguf_parameters(self):
  743. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  744. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  745. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  746. self.gguf_writer.add_embedding_length(n_embed)
  747. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  748. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  749. self.gguf_writer.add_head_count(n_head)
  750. self.gguf_writer.add_head_count_kv(n_head)
  751. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  752. self.gguf_writer.add_file_type(self.ftype)
  753. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  754. del bid # unused
  755. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  756. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  757. name = re.sub(r'transformer\.', '', name)
  758. tensors: list[tuple[str, Tensor]] = []
  759. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  760. # Map bloom-style qkv_linear to gpt-style qkv_linear
  761. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  762. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  763. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  764. data_torch = torch.cat(
  765. (
  766. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  767. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  768. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  769. ),
  770. dim=0,
  771. )
  772. logger.info("re-format attention.linear_qkv.weight")
  773. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  774. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  775. data_torch = torch.cat(
  776. (
  777. qkv_bias[:, 0, :].reshape((n_embed,)),
  778. qkv_bias[:, 1, :].reshape((n_embed,)),
  779. qkv_bias[:, 2, :].reshape((n_embed,)),
  780. ),
  781. dim=0,
  782. )
  783. logger.info("re-format attention.linear_qkv.bias")
  784. tensors.append((self.map_tensor_name(name), data_torch))
  785. if name == "word_embeddings.weight":
  786. assert self.tensor_names is not None
  787. # TODO: tie them at runtime, don't duplicate in the model file
  788. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  789. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  790. return tensors
  791. @Model.register("MPTForCausalLM")
  792. class MPTModel(Model):
  793. model_arch = gguf.MODEL_ARCH.MPT
  794. def set_vocab(self):
  795. try:
  796. self._set_vocab_gpt2()
  797. except Exception:
  798. # Fallback for SEA-LION model
  799. self._set_vocab_sentencepiece()
  800. self.gguf_writer.add_add_bos_token(False)
  801. self.gguf_writer.add_pad_token_id(3)
  802. self.gguf_writer.add_eos_token_id(1)
  803. self.gguf_writer.add_unk_token_id(0)
  804. def set_gguf_parameters(self):
  805. block_count = self.hparams["n_layers"]
  806. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  807. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  808. self.gguf_writer.add_block_count(block_count)
  809. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  810. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  811. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  812. self.gguf_writer.add_head_count_kv(kv_n_heads)
  813. self.gguf_writer.add_layer_norm_eps(1e-5)
  814. if self.hparams["attn_config"]["clip_qkv"] is not None:
  815. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  816. if self.hparams["attn_config"]["alibi"]:
  817. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  818. else:
  819. self.gguf_writer.add_max_alibi_bias(0.0)
  820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  821. del bid # unused
  822. if "scales" in name:
  823. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  824. new_name = new_name.replace("scales", "act.scales")
  825. else:
  826. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  827. return [(new_name, data_torch)]
  828. @Model.register("OrionForCausalLM")
  829. class OrionModel(Model):
  830. model_arch = gguf.MODEL_ARCH.ORION
  831. def set_vocab(self):
  832. self._set_vocab_sentencepiece()
  833. def set_gguf_parameters(self):
  834. block_count = self.hparams["num_hidden_layers"]
  835. head_count = self.hparams["num_attention_heads"]
  836. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  837. ctx_length = 0
  838. if "max_sequence_length" in self.hparams:
  839. ctx_length = self.hparams["max_sequence_length"]
  840. elif "max_position_embeddings" in self.hparams:
  841. ctx_length = self.hparams["max_position_embeddings"]
  842. elif "model_max_length" in self.hparams:
  843. ctx_length = self.hparams["model_max_length"]
  844. else:
  845. raise ValueError("gguf: can not find ctx length parameter.")
  846. self.gguf_writer.add_file_type(self.ftype)
  847. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  848. self.gguf_writer.add_context_length(ctx_length)
  849. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  850. self.gguf_writer.add_block_count(block_count)
  851. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  852. self.gguf_writer.add_head_count(head_count)
  853. self.gguf_writer.add_head_count_kv(head_count_kv)
  854. # note: config provides rms norm but it is actually layer norm
  855. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  856. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  857. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  858. class BaichuanModel(Model):
  859. model_arch = gguf.MODEL_ARCH.BAICHUAN
  860. def set_vocab(self):
  861. self._set_vocab_sentencepiece()
  862. def set_gguf_parameters(self):
  863. block_count = self.hparams["num_hidden_layers"]
  864. head_count = self.hparams["num_attention_heads"]
  865. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  866. ctx_length = 0
  867. if "max_sequence_length" in self.hparams:
  868. ctx_length = self.hparams["max_sequence_length"]
  869. elif "max_position_embeddings" in self.hparams:
  870. ctx_length = self.hparams["max_position_embeddings"]
  871. elif "model_max_length" in self.hparams:
  872. ctx_length = self.hparams["model_max_length"]
  873. else:
  874. raise ValueError("gguf: can not find ctx length parameter.")
  875. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  876. self.gguf_writer.add_context_length(ctx_length)
  877. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  878. self.gguf_writer.add_block_count(block_count)
  879. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  880. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  881. self.gguf_writer.add_head_count(head_count)
  882. self.gguf_writer.add_head_count_kv(head_count_kv)
  883. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  884. self.gguf_writer.add_file_type(self.ftype)
  885. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  886. if self.hparams["rope_scaling"].get("type") == "linear":
  887. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  888. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  890. head_count = self.hparams["num_attention_heads"]
  891. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  892. tensors: list[tuple[str, Tensor]] = []
  893. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  894. logger.info(f"Unpacking and permuting layer {bid}")
  895. tensors = [
  896. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  897. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  898. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  899. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  900. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  901. self._reverse_hf_part(data_torch, 2)),
  902. ]
  903. else:
  904. tensors = [(self.map_tensor_name(name), data_torch)]
  905. return tensors
  906. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  907. if n_kv_head is not None and n_head != n_kv_head:
  908. n_head //= n_kv_head
  909. return (
  910. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  911. .swapaxes(1, 2)
  912. .reshape(weights.shape)
  913. )
  914. def _reverse_hf_permute_part(
  915. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  916. ) -> Tensor:
  917. r = weights.shape[0] // 3
  918. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  919. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  920. r = weights.shape[0] // 3
  921. return weights[r * n_part:r * n_part + r, ...]
  922. @Model.register("XverseForCausalLM")
  923. class XverseModel(Model):
  924. model_arch = gguf.MODEL_ARCH.XVERSE
  925. def set_vocab(self):
  926. assert (self.dir_model / "tokenizer.json").is_file()
  927. dir_model = self.dir_model
  928. hparams = self.hparams
  929. tokens: list[bytes] = []
  930. toktypes: list[int] = []
  931. from transformers import AutoTokenizer
  932. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  933. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  934. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  935. # because vocab_size is the count of items, and indexes start at 0.
  936. max_vocab_index = max(tokenizer.get_vocab().values())
  937. if max_vocab_index >= vocab_size:
  938. raise ValueError("Vocabulary size exceeds expected maximum size.")
  939. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  940. added_vocab = tokenizer.get_added_vocab()
  941. for token_id in range(vocab_size):
  942. token_text = reverse_vocab[token_id].encode('utf-8')
  943. # replace "\x00" to string with length > 0
  944. if token_text == b"\x00":
  945. toktype = gguf.TokenType.BYTE # special
  946. token_text = f"<{token_text}>".encode('utf-8')
  947. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  948. toktype = gguf.TokenType.BYTE # special
  949. elif reverse_vocab[token_id] in added_vocab:
  950. if tokenizer.added_tokens_decoder[token_id].special:
  951. toktype = gguf.TokenType.CONTROL
  952. else:
  953. toktype = gguf.TokenType.USER_DEFINED
  954. else:
  955. toktype = gguf.TokenType.NORMAL
  956. tokens.append(token_text)
  957. toktypes.append(toktype)
  958. self.gguf_writer.add_tokenizer_model("llama")
  959. self.gguf_writer.add_tokenizer_pre("default")
  960. self.gguf_writer.add_token_list(tokens)
  961. self.gguf_writer.add_token_types(toktypes)
  962. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  963. special_vocab.add_to_gguf(self.gguf_writer)
  964. def set_gguf_parameters(self):
  965. block_count = self.hparams["num_hidden_layers"]
  966. head_count = self.hparams["num_attention_heads"]
  967. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  968. ctx_length = 0
  969. if "max_sequence_length" in self.hparams:
  970. ctx_length = self.hparams["max_sequence_length"]
  971. elif "max_position_embeddings" in self.hparams:
  972. ctx_length = self.hparams["max_position_embeddings"]
  973. elif "model_max_length" in self.hparams:
  974. ctx_length = self.hparams["model_max_length"]
  975. else:
  976. raise ValueError("gguf: can not find ctx length parameter.")
  977. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  978. self.gguf_writer.add_context_length(ctx_length)
  979. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  980. self.gguf_writer.add_block_count(block_count)
  981. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  982. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  983. self.gguf_writer.add_head_count(head_count)
  984. self.gguf_writer.add_head_count_kv(head_count_kv)
  985. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  986. self.gguf_writer.add_file_type(self.ftype)
  987. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  988. if self.hparams["rope_scaling"].get("type") == "linear":
  989. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  990. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  991. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  992. del bid # unused
  993. head_count = self.hparams["num_attention_heads"]
  994. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  995. # HF models permute some of the tensors, so we need to undo that
  996. if name.endswith("q_proj.weight"):
  997. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  998. if name.endswith("k_proj.weight"):
  999. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1000. return [(self.map_tensor_name(name), data_torch)]
  1001. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1002. if n_kv_head is not None and n_head != n_kv_head:
  1003. n_head //= n_kv_head
  1004. return (
  1005. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1006. .swapaxes(1, 2)
  1007. .reshape(weights.shape)
  1008. )
  1009. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1010. class FalconModel(Model):
  1011. model_arch = gguf.MODEL_ARCH.FALCON
  1012. def set_gguf_parameters(self):
  1013. block_count = self.hparams.get("num_hidden_layers")
  1014. if block_count is None:
  1015. block_count = self.hparams["n_layer"] # old name
  1016. n_head = self.hparams.get("num_attention_heads")
  1017. if n_head is None:
  1018. n_head = self.hparams["n_head"] # old name
  1019. n_head_kv = self.hparams.get("num_kv_heads")
  1020. if n_head_kv is None:
  1021. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1022. self.gguf_writer.add_context_length(2048) # not in config.json
  1023. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1024. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1025. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1026. self.gguf_writer.add_block_count(block_count)
  1027. self.gguf_writer.add_head_count(n_head)
  1028. self.gguf_writer.add_head_count_kv(n_head_kv)
  1029. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1030. self.gguf_writer.add_file_type(self.ftype)
  1031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1032. del bid # unused
  1033. # QKV tensor transform
  1034. # The original query_key_value tensor contains n_head_kv "kv groups",
  1035. # each consisting of n_head/n_head_kv query weights followed by one key
  1036. # and one value weight (shared by all query heads in the kv group).
  1037. # This layout makes it a big pain to work with in GGML.
  1038. # So we rearrange them here,, so that we have n_head query weights
  1039. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1040. # in contiguous fashion.
  1041. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1042. if "query_key_value" in name:
  1043. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1044. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1045. head_dim = self.hparams["hidden_size"] // n_head
  1046. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1047. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1048. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1049. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1050. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1051. return [(self.map_tensor_name(name), data_torch)]
  1052. @Model.register("GPTBigCodeForCausalLM")
  1053. class StarCoderModel(Model):
  1054. model_arch = gguf.MODEL_ARCH.STARCODER
  1055. def set_gguf_parameters(self):
  1056. block_count = self.hparams["n_layer"]
  1057. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1058. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1059. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1060. self.gguf_writer.add_block_count(block_count)
  1061. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1062. self.gguf_writer.add_head_count_kv(1)
  1063. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1064. self.gguf_writer.add_file_type(self.ftype)
  1065. @Model.register("GPTRefactForCausalLM")
  1066. class RefactModel(Model):
  1067. model_arch = gguf.MODEL_ARCH.REFACT
  1068. def set_vocab(self):
  1069. super().set_vocab()
  1070. # TODO: how to determine special FIM tokens automatically?
  1071. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1072. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1073. special_vocab._set_special_token("prefix", 1)
  1074. special_vocab._set_special_token("suffix", 3)
  1075. special_vocab._set_special_token("middle", 2)
  1076. special_vocab.chat_template = None # do not add it twice
  1077. special_vocab.add_to_gguf(self.gguf_writer)
  1078. def set_gguf_parameters(self):
  1079. hidden_dim = self.hparams["n_embd"]
  1080. inner_dim = 4 * hidden_dim
  1081. hidden_dim = int(2 * inner_dim / 3)
  1082. multiple_of = 256
  1083. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1084. block_count = self.hparams["n_layer"]
  1085. # refact uses Alibi. So this is from config.json which might be used by training.
  1086. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1087. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1088. self.gguf_writer.add_feed_forward_length(ff_dim)
  1089. self.gguf_writer.add_block_count(block_count)
  1090. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1091. self.gguf_writer.add_head_count_kv(1)
  1092. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1093. self.gguf_writer.add_file_type(self.ftype)
  1094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1095. hidden_dim = self.hparams["n_embd"]
  1096. inner_dim = 4 * hidden_dim
  1097. hidden_dim = int(2 * inner_dim / 3)
  1098. multiple_of = 256
  1099. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1100. n_head = self.hparams["n_head"]
  1101. n_head_kv = 1
  1102. head_dim = self.hparams["n_embd"] // n_head
  1103. tensors: list[tuple[str, Tensor]] = []
  1104. if bid is not None:
  1105. if name == f"transformer.h.{bid}.attn.kv.weight":
  1106. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1107. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1108. elif name == f"transformer.h.{bid}.attn.q.weight":
  1109. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1110. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1111. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1112. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1113. if len(tensors) == 0:
  1114. tensors.append((self.map_tensor_name(name), data_torch))
  1115. return tensors
  1116. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1117. class StableLMModel(Model):
  1118. model_arch = gguf.MODEL_ARCH.STABLELM
  1119. def set_vocab(self):
  1120. if (self.dir_model / "tokenizer.json").is_file():
  1121. self._set_vocab_gpt2()
  1122. else:
  1123. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1124. self._set_vocab_qwen()
  1125. def set_gguf_parameters(self):
  1126. hparams = self.hparams
  1127. block_count = hparams["num_hidden_layers"]
  1128. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1129. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1130. self.gguf_writer.add_block_count(block_count)
  1131. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1132. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1133. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1134. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1135. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1136. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1137. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1138. self.gguf_writer.add_file_type(self.ftype)
  1139. _q_norms: list[dict[str, Tensor]] | None = None
  1140. _k_norms: list[dict[str, Tensor]] | None = None
  1141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1142. n_head = self.hparams["num_attention_heads"]
  1143. n_kv_head = self.hparams["num_key_value_heads"]
  1144. if name.find("q_layernorm.norms") != -1:
  1145. assert bid is not None
  1146. if self._q_norms is None:
  1147. self._q_norms = [{} for _ in range(self.block_count)]
  1148. self._q_norms[bid][name] = data_torch
  1149. if len(self._q_norms[bid]) >= n_head:
  1150. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1151. else:
  1152. return []
  1153. if name.find("k_layernorm.norms") != -1:
  1154. assert bid is not None
  1155. if self._k_norms is None:
  1156. self._k_norms = [{} for _ in range(self.block_count)]
  1157. self._k_norms[bid][name] = data_torch
  1158. if len(self._k_norms[bid]) >= n_kv_head:
  1159. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1160. else:
  1161. return []
  1162. return [(self.map_tensor_name(name), data_torch)]
  1163. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1164. datas: list[Tensor] = []
  1165. # extract the norms in order
  1166. for xid in range(n_head):
  1167. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1168. datas.append(norms[ename])
  1169. del norms[ename]
  1170. data_torch = torch.stack(datas, dim=0)
  1171. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1172. new_name = self.map_tensor_name(merged_name)
  1173. return [(new_name, data_torch)]
  1174. def prepare_tensors(self):
  1175. super().prepare_tensors()
  1176. if self._q_norms is not None or self._k_norms is not None:
  1177. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1178. norms = (
  1179. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1180. ) + (
  1181. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1182. )
  1183. if len(norms) > 0:
  1184. raise ValueError(f"Unprocessed norms: {norms}")
  1185. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1186. class LlamaModel(Model):
  1187. model_arch = gguf.MODEL_ARCH.LLAMA
  1188. def set_vocab(self):
  1189. try:
  1190. self._set_vocab_sentencepiece()
  1191. except FileNotFoundError:
  1192. try:
  1193. self._set_vocab_llama_hf()
  1194. except (FileNotFoundError, TypeError):
  1195. # Llama 3
  1196. self._set_vocab_gpt2()
  1197. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1198. if self.hparams.get("vocab_size", 32000) == 32016:
  1199. special_vocab = gguf.SpecialVocab(
  1200. self.dir_model, load_merges=False,
  1201. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1202. )
  1203. special_vocab._set_special_token("prefix", 32007)
  1204. special_vocab._set_special_token("suffix", 32008)
  1205. special_vocab._set_special_token("middle", 32009)
  1206. special_vocab._set_special_token("eot", 32010)
  1207. special_vocab.add_to_gguf(self.gguf_writer)
  1208. def set_gguf_parameters(self):
  1209. super().set_gguf_parameters()
  1210. hparams = self.hparams
  1211. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1212. if "head_dim" in hparams:
  1213. rope_dim = hparams["head_dim"]
  1214. else:
  1215. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1216. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1217. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1218. if self.hparams["rope_scaling"].get("type") == "linear":
  1219. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1220. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1221. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1222. if tokenizer_config_file.is_file():
  1223. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1224. tokenizer_config_json = json.load(f)
  1225. if "add_prefix_space" in tokenizer_config_json:
  1226. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1227. # Apply to granite small models only
  1228. if self.hparams.get("vocab_size", 32000) == 49152:
  1229. self.gguf_writer.add_add_bos_token(False)
  1230. @staticmethod
  1231. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1232. if n_head_kv is not None and n_head != n_head_kv:
  1233. n_head = n_head_kv
  1234. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1235. .swapaxes(1, 2)
  1236. .reshape(weights.shape))
  1237. _experts: list[dict[str, Tensor]] | None = None
  1238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1239. n_head = self.hparams["num_attention_heads"]
  1240. n_kv_head = self.hparams.get("num_key_value_heads")
  1241. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1242. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1243. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1244. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1245. # process the experts separately
  1246. if name.find("block_sparse_moe.experts") != -1:
  1247. n_experts = self.hparams["num_local_experts"]
  1248. assert bid is not None
  1249. if self._experts is None:
  1250. self._experts = [{} for _ in range(self.block_count)]
  1251. self._experts[bid][name] = data_torch
  1252. if len(self._experts[bid]) >= n_experts * 3:
  1253. tensors: list[tuple[str, Tensor]] = []
  1254. # merge the experts into a single 3d tensor
  1255. for wid in ["w1", "w2", "w3"]:
  1256. datas: list[Tensor] = []
  1257. for xid in range(n_experts):
  1258. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1259. datas.append(self._experts[bid][ename])
  1260. del self._experts[bid][ename]
  1261. data_torch = torch.stack(datas, dim=0)
  1262. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1263. new_name = self.map_tensor_name(merged_name)
  1264. tensors.append((new_name, data_torch))
  1265. return tensors
  1266. else:
  1267. return []
  1268. return [(self.map_tensor_name(name), data_torch)]
  1269. def prepare_tensors(self):
  1270. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1271. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1272. base = self.hparams.get("rope_theta", 10000.0)
  1273. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1274. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1275. factor = rope_scaling.get("factor", 8.0)
  1276. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1277. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1278. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1279. low_freq_wavelen = old_context_len / low_freq_factor
  1280. high_freq_wavelen = old_context_len / high_freq_factor
  1281. assert low_freq_wavelen != high_freq_wavelen
  1282. rope_factors = []
  1283. for freq in freqs:
  1284. wavelen = 2 * math.pi / freq
  1285. if wavelen < high_freq_wavelen:
  1286. rope_factors.append(1)
  1287. elif wavelen > low_freq_wavelen:
  1288. rope_factors.append(factor)
  1289. else:
  1290. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1291. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1292. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1293. super().prepare_tensors()
  1294. if self._experts is not None:
  1295. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1296. experts = [k for d in self._experts for k in d.keys()]
  1297. if len(experts) > 0:
  1298. raise ValueError(f"Unprocessed experts: {experts}")
  1299. @Model.register("BitnetForCausalLM")
  1300. class BitnetModel(Model):
  1301. model_arch = gguf.MODEL_ARCH.BITNET
  1302. def set_vocab(self):
  1303. self._set_vocab_sentencepiece()
  1304. def set_gguf_parameters(self):
  1305. super().set_gguf_parameters()
  1306. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1307. self.gguf_writer.add_rope_scaling_factor(1.0)
  1308. def weight_quant(self, weight):
  1309. dtype = weight.dtype
  1310. weight = weight.float()
  1311. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1312. weight = (weight * s).round().clamp(-1, 1) / s
  1313. scale = weight.abs().max().unsqueeze(0)
  1314. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1315. weight = torch.sign(weight).type(dtype)
  1316. return weight.type(dtype), scale.type(torch.float32)
  1317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1318. new_name = self.map_tensor_name(name)
  1319. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1320. gguf.MODEL_TENSOR.ATTN_Q,
  1321. gguf.MODEL_TENSOR.ATTN_K,
  1322. gguf.MODEL_TENSOR.ATTN_V,
  1323. gguf.MODEL_TENSOR.ATTN_OUT,
  1324. gguf.MODEL_TENSOR.FFN_UP,
  1325. gguf.MODEL_TENSOR.FFN_DOWN,
  1326. gguf.MODEL_TENSOR.FFN_GATE,
  1327. ]):
  1328. # transform weight into 1/0/-1 (in fp32)
  1329. weight_torch, scale_torch = self.weight_quant(data_torch)
  1330. yield (new_name, weight_torch)
  1331. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1332. else:
  1333. yield (new_name, data_torch)
  1334. @Model.register("GrokForCausalLM")
  1335. class GrokModel(Model):
  1336. model_arch = gguf.MODEL_ARCH.GROK
  1337. def set_vocab(self):
  1338. self._set_vocab_sentencepiece()
  1339. def __init__(self, *args, **kwargs):
  1340. super().__init__(*args, **kwargs)
  1341. def set_gguf_parameters(self):
  1342. super().set_gguf_parameters()
  1343. _experts: list[dict[str, Tensor]] | None = None
  1344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1345. # process the experts separately
  1346. if name.find(".moe.") != -1:
  1347. n_experts = self.hparams["num_local_experts"]
  1348. assert bid is not None
  1349. if self._experts is None:
  1350. self._experts = [{} for _ in range(self.block_count)]
  1351. self._experts[bid][name] = data_torch
  1352. if len(self._experts[bid]) >= n_experts * 3:
  1353. tensors: list[tuple[str, Tensor]] = []
  1354. # merge the experts into a single 3d tensor
  1355. for wid in ["linear", "linear_1", "linear_v"]:
  1356. datas: list[Tensor] = []
  1357. for xid in range(n_experts):
  1358. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1359. datas.append(self._experts[bid][ename])
  1360. del self._experts[bid][ename]
  1361. data_torch = torch.stack(datas, dim=0)
  1362. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1363. new_name = self.map_tensor_name(merged_name)
  1364. tensors.append((new_name, data_torch))
  1365. return tensors
  1366. else:
  1367. return []
  1368. return [(self.map_tensor_name(name), data_torch)]
  1369. @Model.register("DbrxForCausalLM")
  1370. class DbrxModel(Model):
  1371. model_arch = gguf.MODEL_ARCH.DBRX
  1372. def set_gguf_parameters(self):
  1373. ffn_config = self.hparams["ffn_config"]
  1374. attn_config = self.hparams["attn_config"]
  1375. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1376. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1377. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1378. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1379. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1380. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1381. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1382. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1383. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1384. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1385. self.gguf_writer.add_layer_norm_eps(1e-5)
  1386. self.gguf_writer.add_file_type(self.ftype)
  1387. logger.info(f"gguf: file type = {self.ftype}")
  1388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1389. del bid # unused
  1390. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1391. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1392. n_embd = self.hparams["d_model"]
  1393. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1394. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1395. # But llama.cpp moe graph works differently
  1396. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1397. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1398. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1399. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1400. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1401. experts = False
  1402. for exp_tensor_name in exp_tensor_names.keys():
  1403. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1404. experts = True
  1405. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1406. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1407. data_torch = data_torch.permute(*permute_tensor)
  1408. break
  1409. # map tensor names
  1410. # In MoE models the ffn tensors are typically most of the model weights,
  1411. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1412. # Every other model has the weight names ending in .weight,
  1413. # let's assume that is the convention which is not the case for dbrx:
  1414. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1415. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1416. return [(new_name, data_torch)]
  1417. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1418. del name, new_name, bid # unused
  1419. return n_dims > 1
  1420. @Model.register("MiniCPMForCausalLM")
  1421. class MiniCPMModel(Model):
  1422. model_arch = gguf.MODEL_ARCH.MINICPM
  1423. def set_gguf_parameters(self):
  1424. block_count = self.hparams["num_hidden_layers"]
  1425. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1426. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1427. self.gguf_writer.add_block_count(block_count)
  1428. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1429. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1430. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1431. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1432. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1433. self.gguf_writer.add_file_type(self.ftype)
  1434. def set_vocab(self):
  1435. self._set_vocab_llama_hf()
  1436. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1437. if n_kv_head is not None and n_head != n_kv_head:
  1438. n_head //= n_kv_head
  1439. return (
  1440. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1441. .swapaxes(1, 2)
  1442. .reshape(weights.shape)
  1443. )
  1444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1445. del bid # unused
  1446. n_head = self.hparams["num_attention_heads"]
  1447. n_kv_head = self.hparams.get("num_key_value_heads")
  1448. # HF models permute some of the tensors, so we need to undo that
  1449. if name.endswith(("q_proj.weight")):
  1450. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1451. if name.endswith(("k_proj.weight")):
  1452. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1453. return [(self.map_tensor_name(name), data_torch)]
  1454. @Model.register("QWenLMHeadModel")
  1455. class QwenModel(Model):
  1456. model_arch = gguf.MODEL_ARCH.QWEN
  1457. @staticmethod
  1458. def token_bytes_to_string(b):
  1459. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1460. byte_encoder = bytes_to_unicode()
  1461. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1462. @staticmethod
  1463. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1464. parts = [bytes([b]) for b in token]
  1465. while True:
  1466. min_idx = None
  1467. min_rank = None
  1468. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1469. rank = mergeable_ranks.get(pair[0] + pair[1])
  1470. if rank is not None and (min_rank is None or rank < min_rank):
  1471. min_idx = i
  1472. min_rank = rank
  1473. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1474. break
  1475. assert min_idx is not None
  1476. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1477. return parts
  1478. def set_vocab(self):
  1479. self._set_vocab_qwen()
  1480. def set_gguf_parameters(self):
  1481. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1482. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1483. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1484. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1485. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1486. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1487. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1488. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1489. self.gguf_writer.add_file_type(self.ftype)
  1490. @Model.register("Qwen2ForCausalLM")
  1491. class Qwen2Model(Model):
  1492. model_arch = gguf.MODEL_ARCH.QWEN2
  1493. def set_vocab(self):
  1494. try:
  1495. self._set_vocab_sentencepiece()
  1496. except FileNotFoundError:
  1497. self._set_vocab_gpt2()
  1498. @Model.register("Qwen2MoeForCausalLM")
  1499. class Qwen2MoeModel(Model):
  1500. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1501. def set_gguf_parameters(self):
  1502. super().set_gguf_parameters()
  1503. if (n_experts := self.hparams.get("num_experts")) is not None:
  1504. self.gguf_writer.add_expert_count(n_experts)
  1505. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1506. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1507. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1508. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1509. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1510. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1511. _experts: list[dict[str, Tensor]] | None = None
  1512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1513. # process the experts separately
  1514. if name.find("experts") != -1:
  1515. n_experts = self.hparams["num_experts"]
  1516. assert bid is not None
  1517. if self._experts is None:
  1518. self._experts = [{} for _ in range(self.block_count)]
  1519. self._experts[bid][name] = data_torch
  1520. if len(self._experts[bid]) >= n_experts * 3:
  1521. tensors: list[tuple[str, Tensor]] = []
  1522. # merge the experts into a single 3d tensor
  1523. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1524. datas: list[Tensor] = []
  1525. for xid in range(n_experts):
  1526. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1527. datas.append(self._experts[bid][ename])
  1528. del self._experts[bid][ename]
  1529. data_torch = torch.stack(datas, dim=0)
  1530. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1531. new_name = self.map_tensor_name(merged_name)
  1532. tensors.append((new_name, data_torch))
  1533. return tensors
  1534. else:
  1535. return []
  1536. return [(self.map_tensor_name(name), data_torch)]
  1537. def prepare_tensors(self):
  1538. super().prepare_tensors()
  1539. if self._experts is not None:
  1540. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1541. experts = [k for d in self._experts for k in d.keys()]
  1542. if len(experts) > 0:
  1543. raise ValueError(f"Unprocessed experts: {experts}")
  1544. @Model.register("GPT2LMHeadModel")
  1545. class GPT2Model(Model):
  1546. model_arch = gguf.MODEL_ARCH.GPT2
  1547. def set_gguf_parameters(self):
  1548. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1549. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1550. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1551. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1552. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1553. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1554. self.gguf_writer.add_file_type(self.ftype)
  1555. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1556. del bid # unused
  1557. tensors: list[tuple[str, Tensor]] = []
  1558. # we don't need these
  1559. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1560. return tensors
  1561. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1562. data_torch = data_torch.transpose(1, 0)
  1563. new_name = self.map_tensor_name(name)
  1564. tensors.append((new_name, data_torch))
  1565. # note: GPT2 output is tied to (same as) wte in original model
  1566. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1567. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1568. return tensors
  1569. @Model.register("PhiForCausalLM")
  1570. class Phi2Model(Model):
  1571. model_arch = gguf.MODEL_ARCH.PHI2
  1572. def set_gguf_parameters(self):
  1573. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1574. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1575. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1576. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1577. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1578. self.gguf_writer.add_embedding_length(n_embd)
  1579. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1580. self.gguf_writer.add_block_count(block_count)
  1581. self.gguf_writer.add_head_count(n_head)
  1582. self.gguf_writer.add_head_count_kv(n_head)
  1583. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1584. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1585. self.gguf_writer.add_file_type(self.ftype)
  1586. self.gguf_writer.add_add_bos_token(False)
  1587. @Model.register("Phi3ForCausalLM")
  1588. class Phi3MiniModel(Model):
  1589. model_arch = gguf.MODEL_ARCH.PHI3
  1590. def set_vocab(self):
  1591. from sentencepiece import SentencePieceProcessor
  1592. tokenizer_path = self.dir_model / 'tokenizer.model'
  1593. if not tokenizer_path.is_file():
  1594. raise ValueError(f'Error: Missing {tokenizer_path}')
  1595. tokenizer = SentencePieceProcessor()
  1596. tokenizer.LoadFromFile(str(tokenizer_path))
  1597. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1598. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1599. scores: list[float] = [-10000.0] * vocab_size
  1600. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1601. for token_id in range(tokenizer.vocab_size()):
  1602. piece = tokenizer.IdToPiece(token_id)
  1603. text = piece.encode("utf-8")
  1604. score = tokenizer.GetScore(token_id)
  1605. toktype = SentencePieceTokenTypes.NORMAL
  1606. if tokenizer.IsUnknown(token_id):
  1607. toktype = SentencePieceTokenTypes.UNKNOWN
  1608. elif tokenizer.IsControl(token_id):
  1609. toktype = SentencePieceTokenTypes.CONTROL
  1610. elif tokenizer.IsUnused(token_id):
  1611. toktype = SentencePieceTokenTypes.UNUSED
  1612. elif tokenizer.IsByte(token_id):
  1613. toktype = SentencePieceTokenTypes.BYTE
  1614. tokens[token_id] = text
  1615. scores[token_id] = score
  1616. toktypes[token_id] = toktype
  1617. added_tokens_file = self.dir_model / 'added_tokens.json'
  1618. if added_tokens_file.is_file():
  1619. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1620. added_tokens_json = json.load(f)
  1621. for key in added_tokens_json:
  1622. token_id = added_tokens_json[key]
  1623. if token_id >= vocab_size:
  1624. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1625. continue
  1626. tokens[token_id] = key.encode("utf-8")
  1627. scores[token_id] = -1000.0
  1628. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1629. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1630. if tokenizer_config_file.is_file():
  1631. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1632. tokenizer_config_json = json.load(f)
  1633. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1634. for token_id, foken_data in added_tokens_decoder.items():
  1635. token_id = int(token_id)
  1636. token = foken_data["content"].encode("utf-8")
  1637. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1638. if tokens[token_id] != token:
  1639. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1640. tokens[token_id] = token
  1641. scores[token_id] = -1000.0
  1642. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1643. if foken_data.get("special"):
  1644. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1645. tokenizer_file = self.dir_model / 'tokenizer.json'
  1646. if tokenizer_file.is_file():
  1647. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1648. tokenizer_json = json.load(f)
  1649. added_tokens = tokenizer_json.get("added_tokens", [])
  1650. for foken_data in added_tokens:
  1651. token_id = int(foken_data["id"])
  1652. token = foken_data["content"].encode("utf-8")
  1653. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1654. if tokens[token_id] != token:
  1655. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1656. tokens[token_id] = token
  1657. scores[token_id] = -1000.0
  1658. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1659. if foken_data.get("special"):
  1660. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1661. self.gguf_writer.add_tokenizer_model("llama")
  1662. self.gguf_writer.add_tokenizer_pre("default")
  1663. self.gguf_writer.add_token_list(tokens)
  1664. self.gguf_writer.add_token_scores(scores)
  1665. self.gguf_writer.add_token_types(toktypes)
  1666. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1667. special_vocab.add_to_gguf(self.gguf_writer)
  1668. def set_gguf_parameters(self):
  1669. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1670. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1671. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1672. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1673. rms_eps = self.find_hparam(["rms_norm_eps"])
  1674. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1675. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1676. rope_dims = n_embd // n_head
  1677. self.gguf_writer.add_context_length(max_pos_embds)
  1678. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1679. self.gguf_writer.add_embedding_length(n_embd)
  1680. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1681. self.gguf_writer.add_block_count(block_count)
  1682. self.gguf_writer.add_head_count(n_head)
  1683. self.gguf_writer.add_head_count_kv(n_head_kv)
  1684. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1685. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1686. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1687. self.gguf_writer.add_file_type(self.ftype)
  1688. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1689. # write rope scaling for long context (128k) model
  1690. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1691. if rope_scaling is None:
  1692. return
  1693. scale = max_pos_embds / orig_max_pos_embds
  1694. rope_scaling_type = rope_scaling.get('type', '').lower()
  1695. if len(rope_scaling_type) == 0:
  1696. raise KeyError('Missing the required key rope_scaling.type')
  1697. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1698. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1699. elif rope_scaling_type == 'yarn':
  1700. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1701. else:
  1702. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1703. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1704. long_factors = rope_scaling.get('long_factor', None)
  1705. short_factors = rope_scaling.get('short_factor', None)
  1706. if long_factors is None or short_factors is None:
  1707. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1708. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1709. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1710. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1711. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1712. @Model.register("PlamoForCausalLM")
  1713. class PlamoModel(Model):
  1714. model_arch = gguf.MODEL_ARCH.PLAMO
  1715. def set_vocab(self):
  1716. self._set_vocab_sentencepiece()
  1717. def set_gguf_parameters(self):
  1718. hparams = self.hparams
  1719. block_count = hparams["num_hidden_layers"]
  1720. self.gguf_writer.add_context_length(4096) # not in config.json
  1721. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1722. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1723. self.gguf_writer.add_block_count(block_count)
  1724. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1725. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1726. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1727. self.gguf_writer.add_file_type(self.ftype)
  1728. def shuffle_attn_q_weight(self, data_torch):
  1729. assert data_torch.size() == (5120, 5120)
  1730. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1731. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1732. data_torch = torch.reshape(data_torch, (5120, 5120))
  1733. return data_torch
  1734. def shuffle_attn_output_weight(self, data_torch):
  1735. assert data_torch.size() == (5120, 5120)
  1736. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1737. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1738. data_torch = torch.reshape(data_torch, (5120, 5120))
  1739. return data_torch
  1740. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1741. del bid # unused
  1742. new_name = self.map_tensor_name(name)
  1743. # shuffle for broadcasting of gqa in ggml_mul_mat
  1744. if new_name.endswith("attn_q.weight"):
  1745. data_torch = self.shuffle_attn_q_weight(data_torch)
  1746. elif new_name.endswith("attn_output.weight"):
  1747. data_torch = self.shuffle_attn_output_weight(data_torch)
  1748. return [(new_name, data_torch)]
  1749. @Model.register("CodeShellForCausalLM")
  1750. class CodeShellModel(Model):
  1751. model_arch = gguf.MODEL_ARCH.CODESHELL
  1752. def set_gguf_parameters(self):
  1753. block_count = self.hparams["n_layer"]
  1754. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1755. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1756. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1757. self.gguf_writer.add_block_count(block_count)
  1758. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1759. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1760. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1761. self.gguf_writer.add_file_type(self.ftype)
  1762. self.gguf_writer.add_rope_freq_base(10000.0)
  1763. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1764. self.gguf_writer.add_rope_scaling_factor(1.0)
  1765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1766. del bid # unused
  1767. new_name = self.map_tensor_name(name)
  1768. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1769. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1770. assert self.tensor_names is not None
  1771. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1772. # copy tok_embd.weight to output.weight
  1773. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1774. return tensors
  1775. @Model.register("InternLM2ForCausalLM")
  1776. class InternLM2Model(Model):
  1777. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1778. def set_vocab(self):
  1779. # (TODO): Is there a better way?
  1780. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1781. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1782. # recognized as an empty string in C++.
  1783. from sentencepiece import SentencePieceProcessor
  1784. from sentencepiece import sentencepiece_model_pb2 as model
  1785. tokenizer_path = self.dir_model / 'tokenizer.model'
  1786. tokens: list[bytes] = []
  1787. scores: list[float] = []
  1788. toktypes: list[int] = []
  1789. if not tokenizer_path.is_file():
  1790. logger.error(f'Error: Missing {tokenizer_path}')
  1791. sys.exit(1)
  1792. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1793. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1794. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1795. tokenizer = SentencePieceProcessor()
  1796. tokenizer.LoadFromFile(str(tokenizer_path))
  1797. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1798. for token_id in range(vocab_size):
  1799. piece = tokenizer.IdToPiece(token_id)
  1800. text = piece.encode("utf-8")
  1801. score = tokenizer.GetScore(token_id)
  1802. if text == b"\x00":
  1803. # (TODO): fixme
  1804. # Hack here and replace the \x00 characters.
  1805. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1806. text = "🐉".encode("utf-8")
  1807. toktype = SentencePieceTokenTypes.NORMAL
  1808. if tokenizer.IsUnknown(token_id):
  1809. toktype = SentencePieceTokenTypes.UNKNOWN
  1810. elif tokenizer.IsControl(token_id):
  1811. toktype = SentencePieceTokenTypes.CONTROL
  1812. elif tokenizer.IsUnused(token_id):
  1813. toktype = SentencePieceTokenTypes.UNUSED
  1814. elif tokenizer.IsByte(token_id):
  1815. toktype = SentencePieceTokenTypes.BYTE
  1816. # take care of ununsed raw token
  1817. if piece.startswith('[UNUSED'):
  1818. toktype = SentencePieceTokenTypes.UNUSED
  1819. tokens.append(text)
  1820. scores.append(score)
  1821. toktypes.append(toktype)
  1822. added_tokens_file = self.dir_model / 'added_tokens.json'
  1823. if added_tokens_file.is_file():
  1824. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1825. added_tokens_json = json.load(f)
  1826. for key in added_tokens_json:
  1827. tokens.append(key.encode("utf-8"))
  1828. scores.append(-1000.0)
  1829. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1830. chat_eos_token = '<|im_end|>'
  1831. chat_eos_token_id = None
  1832. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1833. if tokenizer_config_file.is_file():
  1834. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1835. tokenizer_config_json = json.load(f)
  1836. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1837. for token_id, foken_data in added_tokens_decoder.items():
  1838. token_id = int(token_id)
  1839. token = foken_data["content"]
  1840. if token == chat_eos_token:
  1841. chat_eos_token_id = token_id
  1842. token = token.encode("utf-8")
  1843. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1844. if tokens[token_id] != token:
  1845. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1846. tokens[token_id] = token
  1847. scores[token_id] = -1000.0
  1848. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1849. if foken_data.get("special"):
  1850. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1851. tokenizer_file = self.dir_model / 'tokenizer.json'
  1852. if tokenizer_file.is_file():
  1853. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1854. tokenizer_json = json.load(f)
  1855. added_tokens = tokenizer_json.get("added_tokens", [])
  1856. for foken_data in added_tokens:
  1857. token_id = int(foken_data["id"])
  1858. token = foken_data["content"]
  1859. if token == chat_eos_token:
  1860. chat_eos_token_id = token_id
  1861. token = token.encode("utf-8")
  1862. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1863. if tokens[token_id] != token:
  1864. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1865. tokens[token_id] = token
  1866. scores[token_id] = -1000.0
  1867. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1868. if foken_data.get("special"):
  1869. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1870. self.gguf_writer.add_tokenizer_model("llama")
  1871. self.gguf_writer.add_tokenizer_pre("default")
  1872. self.gguf_writer.add_token_list(tokens)
  1873. self.gguf_writer.add_token_scores(scores)
  1874. self.gguf_writer.add_token_types(toktypes)
  1875. self.gguf_writer.add_add_space_prefix(add_prefix)
  1876. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1877. old_eos = special_vocab.special_token_ids["eos"]
  1878. if chat_eos_token_id is not None:
  1879. # For the chat model, we replace the eos with '<|im_end|>'.
  1880. # TODO: this is a hack, should be fixed
  1881. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1882. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1883. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1884. " in chat mode so that the conversation can end normally.")
  1885. special_vocab.add_to_gguf(self.gguf_writer)
  1886. def set_gguf_parameters(self):
  1887. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1888. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1889. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1890. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1891. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1892. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1893. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1894. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1895. self.gguf_writer.add_file_type(self.ftype)
  1896. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1897. if self.hparams["rope_scaling"].get("type") == "linear":
  1898. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1899. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1900. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1901. num_heads = self.hparams["num_attention_heads"]
  1902. num_kv_heads = self.hparams["num_key_value_heads"]
  1903. n_embd = self.hparams["hidden_size"]
  1904. q_per_kv = num_heads // num_kv_heads
  1905. head_dim = n_embd // num_heads
  1906. num_groups = num_heads // q_per_kv
  1907. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1908. qkv = data_torch
  1909. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1910. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1911. # The model weights of q and k equire additional reshape.
  1912. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1913. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1914. v = v.reshape((-1, v.shape[-1]))
  1915. return [
  1916. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1917. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1918. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1919. ]
  1920. else:
  1921. return [(self.map_tensor_name(name), data_torch)]
  1922. @Model.register("BertModel", "CamembertModel")
  1923. class BertModel(Model):
  1924. model_arch = gguf.MODEL_ARCH.BERT
  1925. def __init__(self, *args, **kwargs):
  1926. super().__init__(*args, **kwargs)
  1927. self.vocab_size = None
  1928. def set_gguf_parameters(self):
  1929. super().set_gguf_parameters()
  1930. self.gguf_writer.add_causal_attention(False)
  1931. # get pooling path
  1932. pooling_path = None
  1933. module_path = self.dir_model / "modules.json"
  1934. if module_path.is_file():
  1935. with open(module_path, encoding="utf-8") as f:
  1936. modules = json.load(f)
  1937. for mod in modules:
  1938. if mod["type"] == "sentence_transformers.models.Pooling":
  1939. pooling_path = mod["path"]
  1940. break
  1941. # get pooling type
  1942. if pooling_path is not None:
  1943. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1944. pooling = json.load(f)
  1945. if pooling["pooling_mode_mean_tokens"]:
  1946. pooling_type = gguf.PoolingType.MEAN
  1947. elif pooling["pooling_mode_cls_token"]:
  1948. pooling_type = gguf.PoolingType.CLS
  1949. else:
  1950. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1951. self.gguf_writer.add_pooling_type(pooling_type)
  1952. def set_vocab(self):
  1953. tokens, toktypes, tokpre = self.get_vocab_base()
  1954. self.vocab_size = len(tokens)
  1955. # we need this to validate the size of the token_type embeddings
  1956. # though currently we are passing all zeros to the token_type embeddings
  1957. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1958. # convert to phantom space vocab
  1959. def phantom(tok):
  1960. if tok.startswith("[") and tok.endswith("]"):
  1961. return tok
  1962. if tok.startswith("##"):
  1963. return tok[2:]
  1964. return "\u2581" + tok
  1965. tokens = list(map(phantom, tokens))
  1966. # add vocab to gguf
  1967. self.gguf_writer.add_tokenizer_model("bert")
  1968. self.gguf_writer.add_tokenizer_pre(tokpre)
  1969. self.gguf_writer.add_token_list(tokens)
  1970. self.gguf_writer.add_token_types(toktypes)
  1971. # handle special tokens
  1972. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1973. special_vocab.add_to_gguf(self.gguf_writer)
  1974. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1975. del bid # unused
  1976. # we are only using BERT for embeddings so we don't need the pooling layer
  1977. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1978. return [] # we don't need these
  1979. return [(self.map_tensor_name(name), data_torch)]
  1980. @Model.register("NomicBertModel")
  1981. class NomicBertModel(BertModel):
  1982. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1983. def __init__(self, *args, **kwargs):
  1984. super().__init__(*args, **kwargs)
  1985. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1986. self.hparams["n_ctx"] = 2048
  1987. # SwigLU activation
  1988. assert self.hparams["activation_function"] == "swiglu"
  1989. # this doesn't do anything in the HF version
  1990. assert self.hparams["causal"] is False
  1991. # no bias tensors
  1992. assert self.hparams["qkv_proj_bias"] is False
  1993. assert self.hparams["mlp_fc1_bias"] is False
  1994. assert self.hparams["mlp_fc2_bias"] is False
  1995. # norm at end of layer
  1996. assert self.hparams["prenorm"] is False
  1997. # standard RoPE
  1998. assert self.hparams["rotary_emb_fraction"] == 1.0
  1999. assert self.hparams["rotary_emb_interleaved"] is False
  2000. assert self.hparams["rotary_emb_scale_base"] is None
  2001. def set_gguf_parameters(self):
  2002. super().set_gguf_parameters()
  2003. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2004. @Model.register("XLMRobertaModel")
  2005. class XLMRobertaModel(BertModel):
  2006. model_arch = gguf.MODEL_ARCH.BERT
  2007. def __init__(self, *args, **kwargs):
  2008. super().__init__(*args, **kwargs)
  2009. # we need the pad_token_id to know how to chop down position_embd matrix
  2010. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2011. self._position_offset = 1 + pad_token_id
  2012. if "max_position_embeddings" in self.hparams:
  2013. self.hparams["max_position_embeddings"] -= self._position_offset
  2014. else:
  2015. self._position_offset = None
  2016. def set_vocab(self):
  2017. # to avoid TypeError: Descriptors cannot be created directly
  2018. # exception when importing sentencepiece_model_pb2
  2019. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2020. from sentencepiece import SentencePieceProcessor
  2021. from sentencepiece import sentencepiece_model_pb2 as model
  2022. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2023. if not tokenizer_path.is_file():
  2024. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2025. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2026. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2027. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2028. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2029. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2030. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2031. tokenizer = SentencePieceProcessor()
  2032. tokenizer.LoadFromFile(str(tokenizer_path))
  2033. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2034. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2035. scores: list[float] = [-10000.0] * vocab_size
  2036. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2037. for token_id in range(tokenizer.vocab_size()):
  2038. piece = tokenizer.IdToPiece(token_id)
  2039. text = piece.encode("utf-8")
  2040. score = tokenizer.GetScore(token_id)
  2041. toktype = SentencePieceTokenTypes.NORMAL
  2042. if tokenizer.IsUnknown(token_id):
  2043. toktype = SentencePieceTokenTypes.UNKNOWN
  2044. elif tokenizer.IsControl(token_id):
  2045. toktype = SentencePieceTokenTypes.CONTROL
  2046. elif tokenizer.IsUnused(token_id):
  2047. toktype = SentencePieceTokenTypes.UNUSED
  2048. elif tokenizer.IsByte(token_id):
  2049. toktype = SentencePieceTokenTypes.BYTE
  2050. tokens[token_id] = text
  2051. scores[token_id] = score
  2052. toktypes[token_id] = toktype
  2053. if vocab_size > len(tokens):
  2054. pad_count = vocab_size - len(tokens)
  2055. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2056. for i in range(1, pad_count + 1):
  2057. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2058. scores.append(-1000.0)
  2059. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2060. # realign tokens (see HF tokenizer code)
  2061. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2062. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2063. toktypes = [
  2064. SentencePieceTokenTypes.CONTROL,
  2065. SentencePieceTokenTypes.CONTROL,
  2066. SentencePieceTokenTypes.CONTROL,
  2067. SentencePieceTokenTypes.UNKNOWN,
  2068. ] + toktypes[3:-1]
  2069. self.gguf_writer.add_tokenizer_model("t5")
  2070. self.gguf_writer.add_tokenizer_pre("default")
  2071. self.gguf_writer.add_token_list(tokens)
  2072. self.gguf_writer.add_token_scores(scores)
  2073. self.gguf_writer.add_token_types(toktypes)
  2074. self.gguf_writer.add_add_space_prefix(add_prefix)
  2075. self.gguf_writer.add_token_type_count(1)
  2076. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2077. if precompiled_charsmap:
  2078. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2079. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2080. special_vocab.add_to_gguf(self.gguf_writer)
  2081. self.gguf_writer.add_add_bos_token(True)
  2082. self.gguf_writer.add_add_eos_token(True)
  2083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2084. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2085. if name == "embeddings.position_embeddings.weight":
  2086. if self._position_offset is not None:
  2087. data_torch = data_torch[self._position_offset:,:]
  2088. return super().modify_tensors(data_torch, name, bid)
  2089. @Model.register("GemmaForCausalLM")
  2090. class GemmaModel(Model):
  2091. model_arch = gguf.MODEL_ARCH.GEMMA
  2092. def set_vocab(self):
  2093. self._set_vocab_sentencepiece()
  2094. # TODO: these special tokens should be exported only for the CodeGemma family
  2095. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2096. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2097. special_vocab._set_special_token("prefix", 67)
  2098. special_vocab._set_special_token("suffix", 69)
  2099. special_vocab._set_special_token("middle", 68)
  2100. special_vocab._set_special_token("fsep", 70)
  2101. special_vocab._set_special_token("eot", 107)
  2102. special_vocab.chat_template = None # do not add it twice
  2103. special_vocab.add_to_gguf(self.gguf_writer)
  2104. self.gguf_writer.add_add_space_prefix(False)
  2105. def set_gguf_parameters(self):
  2106. hparams = self.hparams
  2107. block_count = hparams["num_hidden_layers"]
  2108. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2109. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2110. self.gguf_writer.add_block_count(block_count)
  2111. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2112. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2113. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2114. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2115. self.gguf_writer.add_key_length(hparams["head_dim"])
  2116. self.gguf_writer.add_value_length(hparams["head_dim"])
  2117. self.gguf_writer.add_file_type(self.ftype)
  2118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2119. del bid # unused
  2120. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2121. # To prevent errors, skip loading lm_head.weight.
  2122. if name == "lm_head.weight":
  2123. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2124. return []
  2125. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2126. if name.endswith("norm.weight"):
  2127. data_torch = data_torch + 1
  2128. return [(self.map_tensor_name(name), data_torch)]
  2129. @Model.register("Gemma2ForCausalLM")
  2130. class Gemma2Model(Model):
  2131. model_arch = gguf.MODEL_ARCH.GEMMA2
  2132. def set_vocab(self):
  2133. self._set_vocab_sentencepiece()
  2134. self.gguf_writer.add_add_space_prefix(False)
  2135. def set_gguf_parameters(self):
  2136. hparams = self.hparams
  2137. block_count = hparams["num_hidden_layers"]
  2138. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2139. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2140. self.gguf_writer.add_block_count(block_count)
  2141. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2142. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2143. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2144. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2145. self.gguf_writer.add_key_length(hparams["head_dim"])
  2146. self.gguf_writer.add_value_length(hparams["head_dim"])
  2147. self.gguf_writer.add_file_type(self.ftype)
  2148. self.gguf_writer.add_attn_logit_softcapping(
  2149. self.hparams["attn_logit_softcapping"]
  2150. )
  2151. self.gguf_writer.add_final_logit_softcapping(
  2152. self.hparams["final_logit_softcapping"]
  2153. )
  2154. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2156. del bid # unused
  2157. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2158. # To prevent errors, skip loading lm_head.weight.
  2159. if name == "lm_head.weight":
  2160. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2161. return []
  2162. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2163. if name.endswith("norm.weight"):
  2164. data_torch = data_torch + 1
  2165. return [(self.map_tensor_name(name), data_torch)]
  2166. @Model.register("Starcoder2ForCausalLM")
  2167. class StarCoder2Model(Model):
  2168. model_arch = gguf.MODEL_ARCH.STARCODER2
  2169. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2170. class MambaModel(Model):
  2171. model_arch = gguf.MODEL_ARCH.MAMBA
  2172. def set_vocab(self):
  2173. vocab_size = self.hparams["vocab_size"]
  2174. # Round vocab size to next multiple of 8
  2175. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2176. # pad using ceiling division
  2177. # ref: https://stackoverflow.com/a/17511341/22827863
  2178. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2179. self.hparams["vocab_size"] = vocab_size
  2180. if (self.dir_model / "tokenizer.json").is_file():
  2181. self._set_vocab_gpt2()
  2182. elif (self.dir_model / "tokenizer.model").is_file():
  2183. self._set_vocab_sentencepiece()
  2184. else:
  2185. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2186. self._set_vocab_builtin("gpt-neox", vocab_size)
  2187. def set_gguf_parameters(self):
  2188. d_model = self.find_hparam(["hidden_size", "d_model"])
  2189. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2190. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2191. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2192. # ceiling division
  2193. # ref: https://stackoverflow.com/a/17511341/22827863
  2194. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2195. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2196. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2197. # Fail early for models which don't have a block expansion factor of 2
  2198. assert d_inner == 2 * d_model
  2199. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2200. self.gguf_writer.add_embedding_length(d_model)
  2201. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2202. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2203. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2204. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2205. self.gguf_writer.add_ssm_inner_size(d_inner)
  2206. self.gguf_writer.add_ssm_state_size(d_state)
  2207. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2208. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2209. self.gguf_writer.add_file_type(self.ftype)
  2210. _tok_embd = None
  2211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2212. del bid # unused
  2213. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2214. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2215. new_name = self.map_tensor_name(name)
  2216. if name.endswith(".A_log"):
  2217. logger.debug("A_log --> A ==> " + new_name)
  2218. data_torch = -torch.exp(data_torch)
  2219. # assuming token_embd.weight is seen before output.weight
  2220. if self._tok_embd is not None and new_name == output_name:
  2221. if torch.equal(self._tok_embd, data_torch):
  2222. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2223. return []
  2224. elif new_name == tok_embd_name:
  2225. self._tok_embd = data_torch
  2226. return [(new_name, data_torch)]
  2227. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2228. if bid is not None and new_name in (
  2229. self.format_tensor_name(
  2230. n, bid, ".weight" if name.endswith(".weight") else ""
  2231. )
  2232. for n in [
  2233. gguf.MODEL_TENSOR.SSM_CONV1D,
  2234. gguf.MODEL_TENSOR.SSM_X,
  2235. gguf.MODEL_TENSOR.SSM_DT,
  2236. gguf.MODEL_TENSOR.SSM_A,
  2237. gguf.MODEL_TENSOR.SSM_D,
  2238. ]
  2239. ):
  2240. return gguf.GGMLQuantizationType.F32
  2241. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2242. @Model.register("CohereForCausalLM")
  2243. class CommandR2Model(Model):
  2244. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2245. def __init__(self, *args, **kwargs):
  2246. super().__init__(*args, **kwargs)
  2247. # max_position_embeddings = 8192 in config.json but model was actually
  2248. # trained on 128k context length
  2249. # aya-23 models don't have model_max_length specified
  2250. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2251. def set_gguf_parameters(self):
  2252. super().set_gguf_parameters()
  2253. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2254. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2255. @Model.register("OlmoForCausalLM")
  2256. @Model.register("OLMoForCausalLM")
  2257. class OlmoModel(Model):
  2258. model_arch = gguf.MODEL_ARCH.OLMO
  2259. def set_gguf_parameters(self):
  2260. super().set_gguf_parameters()
  2261. self.gguf_writer.add_layer_norm_eps(1e-5)
  2262. clip_qkv = self.hparams.get("clip_qkv")
  2263. if clip_qkv is not None:
  2264. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2265. # Same as super class, but permuting q_proj, k_proj
  2266. # Copied from: LlamaModel
  2267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2268. del bid # unused
  2269. n_head = self.hparams["num_attention_heads"]
  2270. n_kv_head = self.hparams.get("num_key_value_heads")
  2271. if name.endswith("q_proj.weight"):
  2272. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2273. if name.endswith("k_proj.weight"):
  2274. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2275. return [(self.map_tensor_name(name), data_torch)]
  2276. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2277. class JinaBertV2Model(BertModel):
  2278. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2279. def __init__(self, *args, **kwargs):
  2280. super().__init__(*args, **kwargs)
  2281. self.intermediate_size = self.hparams["intermediate_size"]
  2282. def get_tensors(self):
  2283. for name, data in super().get_tensors():
  2284. if 'gated_layer' in name:
  2285. d1 = data[:self.intermediate_size, :]
  2286. name1 = name.replace('gated_layers', 'gated_layers_w')
  2287. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2288. d2 = data[self.intermediate_size:, :]
  2289. name2 = name.replace('gated_layers', 'gated_layers_v')
  2290. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2291. yield name1, d1
  2292. yield name2, d2
  2293. continue
  2294. yield name, data
  2295. def set_vocab(self):
  2296. tokenizer_class = 'BertTokenizer'
  2297. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2298. tokenizer_class = json.load(f)['tokenizer_class']
  2299. if tokenizer_class == 'BertTokenizer':
  2300. super().set_vocab()
  2301. elif tokenizer_class == 'RobertaTokenizer':
  2302. self._set_vocab_gpt2()
  2303. self.gguf_writer.add_token_type_count(2)
  2304. else:
  2305. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2306. self.gguf_writer.add_add_bos_token(True)
  2307. self.gguf_writer.add_add_eos_token(True)
  2308. @Model.register("OpenELMForCausalLM")
  2309. class OpenELMModel(Model):
  2310. model_arch = gguf.MODEL_ARCH.OPENELM
  2311. @staticmethod
  2312. def _make_divisible(v: float | int, divisor: int) -> int:
  2313. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2314. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2315. # Make sure that round down does not go down by more than 10%.
  2316. if new_v < 0.9 * v:
  2317. new_v += divisor
  2318. return new_v
  2319. def __init__(self, *args, **kwargs):
  2320. super().__init__(*args, **kwargs)
  2321. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2322. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2323. self._n_embd: int = self.hparams["model_dim"]
  2324. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2325. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2326. self._ffn_dims: list[int] = [
  2327. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2328. for multiplier in ffn_multipliers
  2329. ]
  2330. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2331. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2332. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2333. def set_vocab(self):
  2334. try:
  2335. self._set_vocab_sentencepiece()
  2336. except FileNotFoundError:
  2337. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2338. def set_gguf_parameters(self):
  2339. n_embd = self._n_embd
  2340. head_dim = self.hparams["head_dim"]
  2341. rot_pct = 1.0
  2342. assert self.block_count == len(self._num_kv_heads)
  2343. assert self.block_count == len(self._num_query_heads)
  2344. assert self.block_count == len(self._ffn_dims)
  2345. self.gguf_writer.add_block_count(self.block_count)
  2346. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2347. self.gguf_writer.add_embedding_length(n_embd)
  2348. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2349. self.gguf_writer.add_head_count(self._num_query_heads)
  2350. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2351. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2352. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2353. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2354. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2355. self.gguf_writer.add_key_length(head_dim)
  2356. self.gguf_writer.add_value_length(head_dim)
  2357. self.gguf_writer.add_file_type(self.ftype)
  2358. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2359. if "n_layers" in keys:
  2360. return self.hparams["num_transformer_layers"]
  2361. return super().find_hparam(keys, optional)
  2362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2363. # split ff
  2364. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2365. ff_dim = self._ffn_dims[bid]
  2366. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2367. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2368. return
  2369. yield (self.map_tensor_name(name), data_torch)
  2370. @Model.register("ArcticForCausalLM")
  2371. class ArcticModel(Model):
  2372. model_arch = gguf.MODEL_ARCH.ARCTIC
  2373. def set_vocab(self):
  2374. # The reason for using a custom implementation here is that the
  2375. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2376. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2377. from sentencepiece import SentencePieceProcessor
  2378. tokenizer_path = self.dir_model / 'tokenizer.model'
  2379. if not tokenizer_path.is_file():
  2380. logger.error(f'Error: Missing {tokenizer_path}')
  2381. sys.exit(1)
  2382. # Read the whole vocabulary from the tokenizer.model file
  2383. tokenizer = SentencePieceProcessor()
  2384. tokenizer.LoadFromFile(str(tokenizer_path))
  2385. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2386. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2387. scores: list[float] = [-10000.0] * vocab_size
  2388. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2389. for token_id in range(tokenizer.vocab_size()):
  2390. piece = tokenizer.IdToPiece(token_id)
  2391. text = piece.encode("utf-8")
  2392. score = tokenizer.GetScore(token_id)
  2393. toktype = SentencePieceTokenTypes.NORMAL
  2394. if tokenizer.IsUnknown(token_id):
  2395. toktype = SentencePieceTokenTypes.UNKNOWN
  2396. elif tokenizer.IsControl(token_id):
  2397. toktype = SentencePieceTokenTypes.CONTROL
  2398. elif tokenizer.IsUnused(token_id):
  2399. toktype = SentencePieceTokenTypes.UNUSED
  2400. elif tokenizer.IsByte(token_id):
  2401. toktype = SentencePieceTokenTypes.BYTE
  2402. tokens[token_id] = text
  2403. scores[token_id] = score
  2404. toktypes[token_id] = toktype
  2405. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2406. # of information about added/redefined tokens and modify them accordingly.
  2407. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2408. if tokenizer_config_file.is_file():
  2409. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2410. tokenizer_config_json = json.load(f)
  2411. if "added_tokens_decoder" in tokenizer_config_json:
  2412. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2413. for token_id, token_json in added_tokens_decoder.items():
  2414. token_id = int(token_id)
  2415. if token_id >= vocab_size:
  2416. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2417. continue
  2418. token_content = token_json["content"]
  2419. token_type = SentencePieceTokenTypes.USER_DEFINED
  2420. token_score = -10000.0
  2421. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2422. # Set the score to 0.0 as in the original tokenizer.model
  2423. if ("special" in token_json) and token_json["special"]:
  2424. if token_content == tokenizer_config_json["unk_token"]:
  2425. token_type = SentencePieceTokenTypes.UNKNOWN
  2426. else:
  2427. token_type = SentencePieceTokenTypes.CONTROL
  2428. token_score = 0.0
  2429. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2430. tokens[token_id] = token_content.encode("utf-8")
  2431. toktypes[token_id] = token_type
  2432. scores[token_id] = token_score
  2433. self.gguf_writer.add_tokenizer_model("llama")
  2434. self.gguf_writer.add_tokenizer_pre("default")
  2435. self.gguf_writer.add_token_list(tokens)
  2436. self.gguf_writer.add_token_scores(scores)
  2437. self.gguf_writer.add_token_types(toktypes)
  2438. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2439. special_vocab.add_to_gguf(self.gguf_writer)
  2440. def set_gguf_parameters(self):
  2441. super().set_gguf_parameters()
  2442. hparams = self.hparams
  2443. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2444. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2445. _experts: list[dict[str, Tensor]] | None = None
  2446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2447. n_head = self.hparams["num_attention_heads"]
  2448. n_kv_head = self.hparams.get("num_key_value_heads")
  2449. if name.endswith("q_proj.weight"):
  2450. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2451. if name.endswith("k_proj.weight"):
  2452. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2453. # process the experts separately
  2454. if name.find("block_sparse_moe.experts") != -1:
  2455. n_experts = self.hparams["num_local_experts"]
  2456. assert bid is not None
  2457. if self._experts is None:
  2458. self._experts = [{} for _ in range(self.block_count)]
  2459. self._experts[bid][name] = data_torch
  2460. if len(self._experts[bid]) >= n_experts * 3:
  2461. tensors: list[tuple[str, Tensor]] = []
  2462. # merge the experts into a single 3d tensor
  2463. for wid in ["w1", "w2", "w3"]:
  2464. datas: list[Tensor] = []
  2465. for xid in range(n_experts):
  2466. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2467. datas.append(self._experts[bid][ename])
  2468. del self._experts[bid][ename]
  2469. data_torch = torch.stack(datas, dim=0)
  2470. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2471. new_name = self.map_tensor_name(merged_name)
  2472. tensors.append((new_name, data_torch))
  2473. return tensors
  2474. else:
  2475. return []
  2476. return [(self.map_tensor_name(name), data_torch)]
  2477. def prepare_tensors(self):
  2478. super().prepare_tensors()
  2479. if self._experts is not None:
  2480. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2481. experts = [k for d in self._experts for k in d.keys()]
  2482. if len(experts) > 0:
  2483. raise ValueError(f"Unprocessed experts: {experts}")
  2484. @Model.register("DeepseekV2ForCausalLM")
  2485. class DeepseekV2Model(Model):
  2486. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2487. def set_vocab(self):
  2488. self._set_vocab_gpt2()
  2489. def set_gguf_parameters(self):
  2490. super().set_gguf_parameters()
  2491. hparams = self.hparams
  2492. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2493. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2494. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2495. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2496. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2497. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2498. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2499. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2500. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2501. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2502. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2503. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2504. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2505. if self.hparams["rope_scaling"].get("type") == "yarn":
  2506. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2507. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2508. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2509. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2510. _experts: list[dict[str, Tensor]] | None = None
  2511. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2512. # process the experts separately
  2513. if name.find("mlp.experts") != -1:
  2514. n_experts = self.hparams["n_routed_experts"]
  2515. assert bid is not None
  2516. if self._experts is None:
  2517. self._experts = [{} for _ in range(self.block_count)]
  2518. self._experts[bid][name] = data_torch
  2519. if len(self._experts[bid]) >= n_experts * 3:
  2520. tensors: list[tuple[str, Tensor]] = []
  2521. # merge the experts into a single 3d tensor
  2522. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2523. datas: list[Tensor] = []
  2524. for xid in range(n_experts):
  2525. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2526. datas.append(self._experts[bid][ename])
  2527. del self._experts[bid][ename]
  2528. data_torch = torch.stack(datas, dim=0)
  2529. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2530. new_name = self.map_tensor_name(merged_name)
  2531. tensors.append((new_name, data_torch))
  2532. return tensors
  2533. else:
  2534. return []
  2535. return [(self.map_tensor_name(name), data_torch)]
  2536. def prepare_tensors(self):
  2537. super().prepare_tensors()
  2538. if self._experts is not None:
  2539. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2540. experts = [k for d in self._experts for k in d.keys()]
  2541. if len(experts) > 0:
  2542. raise ValueError(f"Unprocessed experts: {experts}")
  2543. @Model.register("T5WithLMHeadModel")
  2544. @Model.register("T5ForConditionalGeneration")
  2545. @Model.register("MT5ForConditionalGeneration")
  2546. @Model.register("UMT5ForConditionalGeneration")
  2547. class T5Model(Model):
  2548. model_arch = gguf.MODEL_ARCH.T5
  2549. def __init__(self, *args, **kwargs):
  2550. super().__init__(*args, **kwargs)
  2551. self.shared_token_embeddings_found = False
  2552. def set_vocab(self):
  2553. # to avoid TypeError: Descriptors cannot be created directly
  2554. # exception when importing sentencepiece_model_pb2
  2555. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2556. from sentencepiece import SentencePieceProcessor
  2557. from sentencepiece import sentencepiece_model_pb2 as model
  2558. tokenizer_path = self.dir_model / 'tokenizer.model'
  2559. # many older models use spiece.model tokenizer model filename
  2560. if not tokenizer_path.is_file():
  2561. tokenizer_path = self.dir_model / 'spiece.model'
  2562. if not tokenizer_path.is_file():
  2563. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2564. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2565. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2566. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2567. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2568. # assure the tokenizer model file name is correct
  2569. assert tokenizer_path.name == 'tokenizer.model'
  2570. return self._set_vocab_sentencepiece()
  2571. else:
  2572. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2573. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2574. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2575. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2576. tokenizer = SentencePieceProcessor()
  2577. tokenizer.LoadFromFile(str(tokenizer_path))
  2578. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2579. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2580. scores: list[float] = [-10000.0] * vocab_size
  2581. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2582. for token_id in range(tokenizer.vocab_size()):
  2583. piece = tokenizer.IdToPiece(token_id)
  2584. text = piece.encode("utf-8")
  2585. score = tokenizer.GetScore(token_id)
  2586. toktype = SentencePieceTokenTypes.NORMAL
  2587. if tokenizer.IsUnknown(token_id):
  2588. toktype = SentencePieceTokenTypes.UNKNOWN
  2589. elif tokenizer.IsControl(token_id):
  2590. toktype = SentencePieceTokenTypes.CONTROL
  2591. elif tokenizer.IsUnused(token_id):
  2592. toktype = SentencePieceTokenTypes.UNUSED
  2593. elif tokenizer.IsByte(token_id):
  2594. toktype = SentencePieceTokenTypes.BYTE
  2595. tokens[token_id] = text
  2596. scores[token_id] = score
  2597. toktypes[token_id] = toktype
  2598. added_tokens_file = self.dir_model / 'added_tokens.json'
  2599. if added_tokens_file.is_file():
  2600. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2601. added_tokens_json = json.load(f)
  2602. for key in added_tokens_json:
  2603. token_id = added_tokens_json[key]
  2604. if token_id >= vocab_size:
  2605. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2606. continue
  2607. tokens[token_id] = key.encode("utf-8")
  2608. scores[token_id] = -1000.0
  2609. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2610. if vocab_size > len(tokens):
  2611. pad_count = vocab_size - len(tokens)
  2612. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2613. for i in range(1, pad_count + 1):
  2614. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2615. scores.append(-1000.0)
  2616. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2617. self.gguf_writer.add_tokenizer_model("t5")
  2618. self.gguf_writer.add_tokenizer_pre("default")
  2619. self.gguf_writer.add_token_list(tokens)
  2620. self.gguf_writer.add_token_scores(scores)
  2621. self.gguf_writer.add_token_types(toktypes)
  2622. self.gguf_writer.add_add_space_prefix(add_prefix)
  2623. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2624. if precompiled_charsmap:
  2625. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2626. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2627. special_vocab.add_to_gguf(self.gguf_writer)
  2628. self.gguf_writer.add_add_bos_token(False)
  2629. self.gguf_writer.add_add_eos_token(True)
  2630. def set_gguf_parameters(self):
  2631. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2632. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2633. n_ctx = 512
  2634. self.gguf_writer.add_context_length(n_ctx)
  2635. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2636. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2637. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2638. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2639. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2640. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2641. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2642. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2643. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2644. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2645. self.gguf_writer.add_file_type(self.ftype)
  2646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2647. del bid # unused
  2648. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2649. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2650. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2651. # and decoder and ignore the remaining ones.
  2652. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2653. if not self.shared_token_embeddings_found:
  2654. name = "shared.weight"
  2655. self.shared_token_embeddings_found = True
  2656. else:
  2657. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2658. return []
  2659. return [(self.map_tensor_name(name), data_torch)]
  2660. @Model.register("JAISLMHeadModel")
  2661. class JaisModel(Model):
  2662. model_arch = gguf.MODEL_ARCH.JAIS
  2663. def __init__(self, *args, **kwargs):
  2664. super().__init__(*args, **kwargs)
  2665. # SwigLU activation
  2666. assert self.hparams["activation_function"] == "swiglu"
  2667. # ALiBi position embedding
  2668. assert self.hparams["position_embedding_type"] == "alibi"
  2669. # Embeddings scale
  2670. self.embeddings_scale = 1.0
  2671. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2672. self.output_is_wte = False
  2673. if 'mup_embeddings_scale' in self.hparams:
  2674. self.output_is_wte = True # Hack (?)
  2675. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2676. elif 'embeddings_scale' in self.hparams:
  2677. self.embeddings_scale = self.hparams['embeddings_scale']
  2678. else:
  2679. assert False
  2680. self.width_scale = 1.0
  2681. if 'mup_output_alpha' in self.hparams:
  2682. assert 'mup_width_scale' in self.hparams
  2683. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2684. elif 'width_scale' in self.hparams:
  2685. self.width_scale = self.hparams['width_scale']
  2686. else:
  2687. assert False
  2688. self.max_alibi_bias = 8.0
  2689. def set_vocab(self):
  2690. self._set_vocab_gpt2()
  2691. def set_gguf_parameters(self):
  2692. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2693. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2694. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2695. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2696. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2697. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2698. self.gguf_writer.add_file_type(self.ftype)
  2699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2700. del bid # unused
  2701. tensors: list[tuple[str, Tensor]] = []
  2702. # we don't need these
  2703. if name.endswith((".attn.bias")):
  2704. return tensors
  2705. if name.endswith(("relative_pe.slopes")):
  2706. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2707. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2708. # but Jais's PyTorch model simply precalculates the slope values and places them
  2709. # in relative_pes.slopes
  2710. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2711. first_val = float(data_torch[0].item())
  2712. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2713. return tensors
  2714. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2715. data_torch = data_torch.transpose(1, 0)
  2716. new_name = self.map_tensor_name(name)
  2717. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2718. tensors.append((new_name, data_torch * self.embeddings_scale))
  2719. if self.output_is_wte:
  2720. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2721. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2722. assert not self.output_is_wte
  2723. tensors.append((new_name, data_torch * self.width_scale))
  2724. else:
  2725. tensors.append((new_name, data_torch))
  2726. return tensors
  2727. def prepare_tensors(self):
  2728. super().prepare_tensors()
  2729. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2730. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2731. class ChatGLMModel(Model):
  2732. model_arch = gguf.MODEL_ARCH.CHATGLM
  2733. def set_vocab_chatglm3(self):
  2734. dir_model = self.dir_model
  2735. hparams = self.hparams
  2736. tokens: list[bytes] = []
  2737. toktypes: list[int] = []
  2738. scores: list[float] = []
  2739. from transformers import AutoTokenizer
  2740. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2741. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2742. assert max(tokenizer.get_vocab().values()) < vocab_size
  2743. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2744. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2745. for token_id in range(vocab_size):
  2746. piece = tokenizer._convert_id_to_token(token_id)
  2747. if token_id == 0:
  2748. piece = "<unk>"
  2749. elif token_id == 1:
  2750. piece = "<bos>"
  2751. elif token_id == 2:
  2752. piece = "<eos>"
  2753. text = piece.encode("utf-8")
  2754. score = 0.0
  2755. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2756. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2757. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2758. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2759. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2760. if piece in special_tokens:
  2761. toktype = SentencePieceTokenTypes.CONTROL
  2762. elif len(piece) == 0:
  2763. text = f"[PAD{token_id}]".encode("utf-8")
  2764. toktype = SentencePieceTokenTypes.UNUSED
  2765. else:
  2766. toktype = SentencePieceTokenTypes.USER_DEFINED
  2767. tokens.append(text)
  2768. scores.append(score)
  2769. toktypes.append(toktype)
  2770. continue
  2771. toktype = SentencePieceTokenTypes.NORMAL
  2772. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2773. toktype = SentencePieceTokenTypes.UNKNOWN
  2774. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2775. toktype = SentencePieceTokenTypes.CONTROL
  2776. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2777. toktype = SentencePieceTokenTypes.UNUSED
  2778. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2779. toktype = SentencePieceTokenTypes.BYTE
  2780. tokens.append(text)
  2781. scores.append(score)
  2782. toktypes.append(toktype)
  2783. self.gguf_writer.add_tokenizer_model("llama")
  2784. # glm3 needs prefix and suffix formatted as:
  2785. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2786. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2787. self.gguf_writer.add_token_list(tokens)
  2788. self.gguf_writer.add_token_scores(scores)
  2789. self.gguf_writer.add_token_types(toktypes)
  2790. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2791. special_vocab.add_to_gguf(self.gguf_writer)
  2792. @staticmethod
  2793. def token_bytes_to_string(b):
  2794. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2795. byte_encoder = bytes_to_unicode()
  2796. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2797. @staticmethod
  2798. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2799. parts = [bytes([b]) for b in token]
  2800. while True:
  2801. min_idx = None
  2802. min_rank = None
  2803. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2804. rank = mergeable_ranks.get(pair[0] + pair[1])
  2805. if rank is not None and (min_rank is None or rank < min_rank):
  2806. min_idx = i
  2807. min_rank = rank
  2808. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2809. break
  2810. assert min_idx is not None
  2811. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2812. return parts
  2813. def set_vocab(self):
  2814. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2815. self.set_vocab_chatglm3()
  2816. return
  2817. dir_model = self.dir_model
  2818. hparams = self.hparams
  2819. tokens: list[str] = []
  2820. toktypes: list[int] = []
  2821. from transformers import AutoTokenizer
  2822. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2823. vocab_size = hparams["padded_vocab_size"]
  2824. assert max(tokenizer.get_vocab().values()) < vocab_size
  2825. tokpre = self.get_vocab_base_pre(tokenizer)
  2826. merges = []
  2827. vocab = {}
  2828. mergeable_ranks = tokenizer.mergeable_ranks
  2829. for token, rank in mergeable_ranks.items():
  2830. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2831. if len(token) == 1:
  2832. continue
  2833. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2834. assert len(merged) >= 2 and len(merged) <= 7
  2835. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2836. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2837. added_vocab = tokenizer.get_added_vocab()
  2838. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2839. for i in range(vocab_size):
  2840. if i not in reverse_vocab:
  2841. tokens.append(f"[PAD{i}]")
  2842. toktypes.append(gguf.TokenType.UNUSED)
  2843. elif reverse_vocab[i] in added_vocab:
  2844. tokens.append(reverse_vocab[i])
  2845. if tokenizer.added_tokens_decoder[i].special:
  2846. toktypes.append(gguf.TokenType.CONTROL)
  2847. else:
  2848. toktypes.append(gguf.TokenType.USER_DEFINED)
  2849. else:
  2850. tokens.append(reverse_vocab[i])
  2851. toktypes.append(gguf.TokenType.NORMAL)
  2852. self.gguf_writer.add_tokenizer_model("gpt2")
  2853. self.gguf_writer.add_tokenizer_pre(tokpre)
  2854. self.gguf_writer.add_token_list(tokens)
  2855. self.gguf_writer.add_token_types(toktypes)
  2856. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2857. special_vocab.merges = merges
  2858. # only add special tokens when they were not already loaded from config.json
  2859. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2860. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2861. # this one is usually not in config.json anyway
  2862. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2863. special_vocab.add_to_gguf(self.gguf_writer)
  2864. def set_gguf_parameters(self):
  2865. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2866. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2867. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2868. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2869. self.gguf_writer.add_embedding_length(n_embed)
  2870. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2871. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2872. self.gguf_writer.add_head_count(n_head)
  2873. self.gguf_writer.add_head_count_kv(n_head_kv)
  2874. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2875. self.gguf_writer.add_file_type(self.ftype)
  2876. self.gguf_writer.add_rope_dimension_count(64)
  2877. self.gguf_writer.add_add_bos_token(False)
  2878. rope_freq = 10000
  2879. if "rope_ratio" in self.hparams:
  2880. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2881. self.gguf_writer.add_rope_freq_base(rope_freq)
  2882. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2883. del bid # unused
  2884. if name.endswith(".rotary_pos_emb.inv_freq"):
  2885. return []
  2886. name = name.removeprefix("transformer.")
  2887. return [(self.map_tensor_name(name), data_torch)]
  2888. ###### CONVERSION LOGIC ######
  2889. # tree of lazy tensors
  2890. class LazyTorchTensor(gguf.LazyBase):
  2891. _tensor_type = torch.Tensor
  2892. # to keep the type-checker happy
  2893. dtype: torch.dtype
  2894. shape: torch.Size
  2895. # only used when converting a torch.Tensor to a np.ndarray
  2896. _dtype_map: dict[torch.dtype, type] = {
  2897. torch.float16: np.float16,
  2898. torch.float32: np.float32,
  2899. }
  2900. # used for safetensors slices
  2901. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  2902. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  2903. _dtype_str_map: dict[str, torch.dtype] = {
  2904. "F64": torch.float64,
  2905. "F32": torch.float32,
  2906. "BF16": torch.bfloat16,
  2907. "F16": torch.float16,
  2908. # "U64": torch.uint64,
  2909. "I64": torch.int64,
  2910. # "U32": torch.uint32,
  2911. "I32": torch.int32,
  2912. # "U16": torch.uint16,
  2913. "I16": torch.int16,
  2914. "U8": torch.uint8,
  2915. "I8": torch.int8,
  2916. "BOOL": torch.bool,
  2917. "F8_E4M3": torch.float8_e4m3fn,
  2918. "F8_E5M2": torch.float8_e5m2,
  2919. }
  2920. def numpy(self) -> gguf.LazyNumpyTensor:
  2921. dtype = self._dtype_map[self.dtype]
  2922. return gguf.LazyNumpyTensor(
  2923. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2924. args=(self,),
  2925. func=(lambda s: s.numpy())
  2926. )
  2927. @classmethod
  2928. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  2929. return torch.empty(size=shape, dtype=dtype, device="meta")
  2930. @classmethod
  2931. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  2932. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  2933. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  2934. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  2935. return cast(torch.Tensor, lazy)
  2936. @classmethod
  2937. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2938. del types # unused
  2939. if kwargs is None:
  2940. kwargs = {}
  2941. if func is torch.Tensor.numpy:
  2942. return args[0].numpy()
  2943. return cls._wrap_fn(func)(*args, **kwargs)
  2944. def parse_args() -> argparse.Namespace:
  2945. parser = argparse.ArgumentParser(
  2946. description="Convert a huggingface model to a GGML compatible file")
  2947. parser.add_argument(
  2948. "--vocab-only", action="store_true",
  2949. help="extract only the vocab",
  2950. )
  2951. parser.add_argument(
  2952. "--outfile", type=Path,
  2953. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2954. )
  2955. parser.add_argument(
  2956. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2957. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2958. )
  2959. parser.add_argument(
  2960. "--bigendian", action="store_true",
  2961. help="model is executed on big endian machine",
  2962. )
  2963. parser.add_argument(
  2964. "model", type=Path,
  2965. help="directory containing model file",
  2966. )
  2967. parser.add_argument(
  2968. "--use-temp-file", action="store_true",
  2969. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2970. )
  2971. parser.add_argument(
  2972. "--no-lazy", action="store_true",
  2973. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2974. )
  2975. parser.add_argument(
  2976. "--model-name", type=str, default=None,
  2977. help="name of the model",
  2978. )
  2979. parser.add_argument(
  2980. "--verbose", action="store_true",
  2981. help="increase output verbosity",
  2982. )
  2983. parser.add_argument(
  2984. "--split-max-tensors", type=int, default=0,
  2985. help="max tensors in each split",
  2986. )
  2987. parser.add_argument(
  2988. "--split-max-size", type=str, default="0",
  2989. help="max size per split N(M|G)",
  2990. )
  2991. parser.add_argument(
  2992. "--dry-run", action="store_true",
  2993. help="only print out a split plan and exit, without writing any new files",
  2994. )
  2995. parser.add_argument(
  2996. "--no-tensor-first-split", action="store_true",
  2997. help="do not add tensors to the first split (disabled by default)"
  2998. )
  2999. parser.add_argument(
  3000. "--metadata", type=Path,
  3001. help="Specify the path for an authorship metadata override file"
  3002. )
  3003. return parser.parse_args()
  3004. def split_str_to_n_bytes(split_str: str) -> int:
  3005. if split_str.endswith("K"):
  3006. n = int(split_str[:-1]) * 1000
  3007. elif split_str.endswith("M"):
  3008. n = int(split_str[:-1]) * 1000 * 1000
  3009. elif split_str.endswith("G"):
  3010. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3011. elif split_str.isnumeric():
  3012. n = int(split_str)
  3013. else:
  3014. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3015. if n < 0:
  3016. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3017. return n
  3018. def main() -> None:
  3019. args = parse_args()
  3020. if args.verbose:
  3021. logging.basicConfig(level=logging.DEBUG)
  3022. else:
  3023. logging.basicConfig(level=logging.INFO)
  3024. dir_model = args.model
  3025. if not dir_model.is_dir():
  3026. logger.error(f'Error: {args.model} is not a directory')
  3027. sys.exit(1)
  3028. ftype_map: dict[str, gguf.LlamaFileType] = {
  3029. "f32": gguf.LlamaFileType.ALL_F32,
  3030. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3031. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3032. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3033. "auto": gguf.LlamaFileType.GUESSED,
  3034. }
  3035. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3036. if args.use_temp_file and is_split:
  3037. logger.error("Error: Cannot use temp file when splitting")
  3038. sys.exit(1)
  3039. if args.outfile is not None:
  3040. fname_out = args.outfile
  3041. else:
  3042. fname_out = dir_model
  3043. logger.info(f"Loading model: {dir_model.name}")
  3044. hparams = Model.load_hparams(dir_model)
  3045. with torch.inference_mode():
  3046. output_type = ftype_map[args.outtype]
  3047. model_architecture = hparams["architectures"][0]
  3048. try:
  3049. model_class = Model.from_model_architecture(model_architecture)
  3050. except NotImplementedError:
  3051. logger.error(f"Model {model_architecture} is not supported")
  3052. sys.exit(1)
  3053. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3054. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3055. eager=args.no_lazy,
  3056. metadata_override=args.metadata, model_name=args.model_name,
  3057. split_max_tensors=args.split_max_tensors,
  3058. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3059. small_first_shard=args.no_tensor_first_split)
  3060. if args.vocab_only:
  3061. logger.info("Exporting model vocab...")
  3062. model_instance.write_vocab()
  3063. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3064. else:
  3065. logger.info("Exporting model...")
  3066. model_instance.write()
  3067. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3068. logger.info(f"Model successfully exported to {out_path}")
  3069. if __name__ == '__main__':
  3070. main()