constants.py 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. TYPE = "general.type"
  17. ARCHITECTURE = "general.architecture"
  18. QUANTIZATION_VERSION = "general.quantization_version"
  19. ALIGNMENT = "general.alignment"
  20. FILE_TYPE = "general.file_type"
  21. # Authorship Metadata
  22. NAME = "general.name"
  23. AUTHOR = "general.author"
  24. VERSION = "general.version"
  25. ORGANIZATION = "general.organization"
  26. FINETUNE = "general.finetune"
  27. BASENAME = "general.basename"
  28. DESCRIPTION = "general.description"
  29. QUANTIZED_BY = "general.quantized_by"
  30. SIZE_LABEL = "general.size_label"
  31. # Licensing details
  32. LICENSE = "general.license"
  33. LICENSE_NAME = "general.license.name"
  34. LICENSE_LINK = "general.license.link"
  35. # Typically represents the converted GGUF repo (Unless native)
  36. URL = "general.url" # Model Website/Paper
  37. DOI = "general.doi"
  38. UUID = "general.uuid"
  39. REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
  40. # Model Source during conversion
  41. SOURCE_URL = "general.source.url" # Model Website/Paper
  42. SOURCE_DOI = "general.source.doi"
  43. SOURCE_UUID = "general.source.uuid"
  44. SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
  45. # Base Model Source. There can be more than one source if it's a merged
  46. # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
  47. # tracing linage of models as it is finetuned or merged over time.
  48. BASE_MODEL_COUNT = "general.base_model.count"
  49. BASE_MODEL_NAME = "general.base_model.{id}.name"
  50. BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
  51. BASE_MODEL_VERSION = "general.base_model.{id}.version"
  52. BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
  53. BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
  54. BASE_MODEL_DOI = "general.base_model.{id}.doi"
  55. BASE_MODEL_UUID = "general.base_model.{id}.uuid"
  56. BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
  57. # Array based KV stores
  58. TAGS = "general.tags"
  59. LANGUAGES = "general.languages"
  60. DATASETS = "general.datasets"
  61. class LLM:
  62. VOCAB_SIZE = "{arch}.vocab_size"
  63. CONTEXT_LENGTH = "{arch}.context_length"
  64. EMBEDDING_LENGTH = "{arch}.embedding_length"
  65. BLOCK_COUNT = "{arch}.block_count"
  66. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  67. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  68. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  69. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  70. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  71. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  72. EXPERT_COUNT = "{arch}.expert_count"
  73. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  74. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  75. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  76. POOLING_TYPE = "{arch}.pooling_type"
  77. LOGIT_SCALE = "{arch}.logit_scale"
  78. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  79. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  80. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  81. class Attention:
  82. HEAD_COUNT = "{arch}.attention.head_count"
  83. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  84. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  85. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  86. KEY_LENGTH = "{arch}.attention.key_length"
  87. VALUE_LENGTH = "{arch}.attention.value_length"
  88. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  89. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  90. CAUSAL = "{arch}.attention.causal"
  91. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  92. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  93. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  94. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  95. class Rope:
  96. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  97. FREQ_BASE = "{arch}.rope.freq_base"
  98. SCALING_TYPE = "{arch}.rope.scaling.type"
  99. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  100. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  101. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  102. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  103. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  104. class Split:
  105. LLM_KV_SPLIT_NO = "split.no"
  106. LLM_KV_SPLIT_COUNT = "split.count"
  107. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  108. class SSM:
  109. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  110. INNER_SIZE = "{arch}.ssm.inner_size"
  111. STATE_SIZE = "{arch}.ssm.state_size"
  112. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  113. class Tokenizer:
  114. MODEL = "tokenizer.ggml.model"
  115. PRE = "tokenizer.ggml.pre"
  116. LIST = "tokenizer.ggml.tokens"
  117. TOKEN_TYPE = "tokenizer.ggml.token_type"
  118. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  119. SCORES = "tokenizer.ggml.scores"
  120. MERGES = "tokenizer.ggml.merges"
  121. BOS_ID = "tokenizer.ggml.bos_token_id"
  122. EOS_ID = "tokenizer.ggml.eos_token_id"
  123. UNK_ID = "tokenizer.ggml.unknown_token_id"
  124. SEP_ID = "tokenizer.ggml.seperator_token_id"
  125. PAD_ID = "tokenizer.ggml.padding_token_id"
  126. CLS_ID = "tokenizer.ggml.cls_token_id"
  127. MASK_ID = "tokenizer.ggml.mask_token_id"
  128. ADD_BOS = "tokenizer.ggml.add_bos_token"
  129. ADD_EOS = "tokenizer.ggml.add_eos_token"
  130. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  131. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  132. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  133. HF_JSON = "tokenizer.huggingface.json"
  134. RWKV = "tokenizer.rwkv.world"
  135. CHAT_TEMPLATE = "tokenizer.chat_template"
  136. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  137. CHAT_TEMPLATES = "tokenizer.chat_templates"
  138. # FIM/Infill special tokens constants
  139. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  140. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  141. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  142. EOT_ID = "tokenizer.ggml.eot_token_id"
  143. EOM_ID = "tokenizer.ggml.eom_token_id"
  144. class Adapter:
  145. TYPE = "adapter.type"
  146. LORA_ALPHA = "adapter.lora.alpha"
  147. #
  148. # recommended mapping of model tensor names for storage in gguf
  149. #
  150. class GGUFType:
  151. MODEL = "model"
  152. ADAPTER = "adapter"
  153. class MODEL_ARCH(IntEnum):
  154. LLAMA = auto()
  155. FALCON = auto()
  156. BAICHUAN = auto()
  157. GROK = auto()
  158. GPT2 = auto()
  159. GPTJ = auto()
  160. GPTNEOX = auto()
  161. MPT = auto()
  162. STARCODER = auto()
  163. REFACT = auto()
  164. BERT = auto()
  165. NOMIC_BERT = auto()
  166. JINA_BERT_V2 = auto()
  167. BLOOM = auto()
  168. STABLELM = auto()
  169. QWEN = auto()
  170. QWEN2 = auto()
  171. QWEN2MOE = auto()
  172. PHI2 = auto()
  173. PHI3 = auto()
  174. PLAMO = auto()
  175. CODESHELL = auto()
  176. ORION = auto()
  177. INTERNLM2 = auto()
  178. MINICPM = auto()
  179. GEMMA = auto()
  180. GEMMA2 = auto()
  181. STARCODER2 = auto()
  182. MAMBA = auto()
  183. XVERSE = auto()
  184. COMMAND_R = auto()
  185. DBRX = auto()
  186. OLMO = auto()
  187. OPENELM = auto()
  188. ARCTIC = auto()
  189. DEEPSEEK2 = auto()
  190. CHATGLM = auto()
  191. BITNET = auto()
  192. T5 = auto()
  193. JAIS = auto()
  194. class MODEL_TENSOR(IntEnum):
  195. TOKEN_EMBD = auto()
  196. TOKEN_EMBD_NORM = auto()
  197. TOKEN_TYPES = auto()
  198. POS_EMBD = auto()
  199. OUTPUT = auto()
  200. OUTPUT_NORM = auto()
  201. ROPE_FREQS = auto()
  202. ROPE_FACTORS_LONG = auto()
  203. ROPE_FACTORS_SHORT = auto()
  204. ATTN_Q = auto()
  205. ATTN_K = auto()
  206. ATTN_V = auto()
  207. ATTN_QKV = auto()
  208. ATTN_OUT = auto()
  209. ATTN_NORM = auto()
  210. ATTN_NORM_2 = auto()
  211. ATTN_OUT_NORM = auto()
  212. ATTN_POST_NORM = auto()
  213. ATTN_ROT_EMBD = auto()
  214. FFN_GATE_INP = auto()
  215. FFN_GATE_INP_SHEXP = auto()
  216. FFN_NORM = auto()
  217. FFN_PRE_NORM = auto()
  218. FFN_POST_NORM = auto()
  219. FFN_GATE = auto()
  220. FFN_DOWN = auto()
  221. FFN_UP = auto()
  222. FFN_ACT = auto()
  223. FFN_NORM_EXP = auto()
  224. FFN_GATE_EXP = auto()
  225. FFN_DOWN_EXP = auto()
  226. FFN_UP_EXP = auto()
  227. FFN_GATE_SHEXP = auto()
  228. FFN_DOWN_SHEXP = auto()
  229. FFN_UP_SHEXP = auto()
  230. ATTN_Q_NORM = auto()
  231. ATTN_K_NORM = auto()
  232. LAYER_OUT_NORM = auto()
  233. SSM_IN = auto()
  234. SSM_CONV1D = auto()
  235. SSM_X = auto()
  236. SSM_DT = auto()
  237. SSM_A = auto()
  238. SSM_D = auto()
  239. SSM_OUT = auto()
  240. ATTN_Q_A = auto()
  241. ATTN_Q_B = auto()
  242. ATTN_KV_A_MQA = auto()
  243. ATTN_KV_B = auto()
  244. ATTN_Q_A_NORM = auto()
  245. ATTN_KV_A_NORM = auto()
  246. FFN_SUB_NORM = auto()
  247. ATTN_SUB_NORM = auto()
  248. DEC_ATTN_NORM = auto()
  249. DEC_ATTN_Q = auto()
  250. DEC_ATTN_K = auto()
  251. DEC_ATTN_V = auto()
  252. DEC_ATTN_OUT = auto()
  253. DEC_ATTN_REL_B = auto()
  254. DEC_CROSS_ATTN_NORM = auto()
  255. DEC_CROSS_ATTN_Q = auto()
  256. DEC_CROSS_ATTN_K = auto()
  257. DEC_CROSS_ATTN_V = auto()
  258. DEC_CROSS_ATTN_OUT = auto()
  259. DEC_CROSS_ATTN_REL_B = auto()
  260. DEC_FFN_NORM = auto()
  261. DEC_FFN_GATE = auto()
  262. DEC_FFN_DOWN = auto()
  263. DEC_FFN_UP = auto()
  264. DEC_OUTPUT_NORM = auto()
  265. ENC_ATTN_NORM = auto()
  266. ENC_ATTN_Q = auto()
  267. ENC_ATTN_K = auto()
  268. ENC_ATTN_V = auto()
  269. ENC_ATTN_OUT = auto()
  270. ENC_ATTN_REL_B = auto()
  271. ENC_FFN_NORM = auto()
  272. ENC_FFN_GATE = auto()
  273. ENC_FFN_DOWN = auto()
  274. ENC_FFN_UP = auto()
  275. ENC_OUTPUT_NORM = auto()
  276. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  277. MODEL_ARCH.LLAMA: "llama",
  278. MODEL_ARCH.FALCON: "falcon",
  279. MODEL_ARCH.BAICHUAN: "baichuan",
  280. MODEL_ARCH.GROK: "grok",
  281. MODEL_ARCH.GPT2: "gpt2",
  282. MODEL_ARCH.GPTJ: "gptj",
  283. MODEL_ARCH.GPTNEOX: "gptneox",
  284. MODEL_ARCH.MPT: "mpt",
  285. MODEL_ARCH.STARCODER: "starcoder",
  286. MODEL_ARCH.REFACT: "refact",
  287. MODEL_ARCH.BERT: "bert",
  288. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  289. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  290. MODEL_ARCH.BLOOM: "bloom",
  291. MODEL_ARCH.STABLELM: "stablelm",
  292. MODEL_ARCH.QWEN: "qwen",
  293. MODEL_ARCH.QWEN2: "qwen2",
  294. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  295. MODEL_ARCH.PHI2: "phi2",
  296. MODEL_ARCH.PHI3: "phi3",
  297. MODEL_ARCH.PLAMO: "plamo",
  298. MODEL_ARCH.CODESHELL: "codeshell",
  299. MODEL_ARCH.ORION: "orion",
  300. MODEL_ARCH.INTERNLM2: "internlm2",
  301. MODEL_ARCH.MINICPM: "minicpm",
  302. MODEL_ARCH.GEMMA: "gemma",
  303. MODEL_ARCH.GEMMA2: "gemma2",
  304. MODEL_ARCH.STARCODER2: "starcoder2",
  305. MODEL_ARCH.MAMBA: "mamba",
  306. MODEL_ARCH.XVERSE: "xverse",
  307. MODEL_ARCH.COMMAND_R: "command-r",
  308. MODEL_ARCH.DBRX: "dbrx",
  309. MODEL_ARCH.OLMO: "olmo",
  310. MODEL_ARCH.OPENELM: "openelm",
  311. MODEL_ARCH.ARCTIC: "arctic",
  312. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  313. MODEL_ARCH.CHATGLM: "chatglm",
  314. MODEL_ARCH.BITNET: "bitnet",
  315. MODEL_ARCH.T5: "t5",
  316. MODEL_ARCH.JAIS: "jais",
  317. }
  318. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  319. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  320. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  321. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  322. MODEL_TENSOR.POS_EMBD: "position_embd",
  323. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  324. MODEL_TENSOR.OUTPUT: "output",
  325. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  326. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  327. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  328. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  329. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  330. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  331. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  332. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  333. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  334. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  335. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  336. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  337. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  338. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  339. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  340. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  341. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  342. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  343. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  344. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  345. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  346. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  347. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  348. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  349. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  350. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  351. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  352. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  353. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  354. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  355. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  356. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  357. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  358. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  359. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  360. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  361. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  362. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  363. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  364. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  365. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  366. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  367. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  368. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  369. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  370. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  371. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  372. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  373. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  374. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  375. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  376. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  377. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  378. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  379. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  380. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  381. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  382. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  383. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  384. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  385. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  386. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  387. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  388. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  389. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  390. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  391. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  392. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  393. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  394. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  395. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  396. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  397. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  398. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  399. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  400. }
  401. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  402. MODEL_ARCH.LLAMA: [
  403. MODEL_TENSOR.TOKEN_EMBD,
  404. MODEL_TENSOR.OUTPUT_NORM,
  405. MODEL_TENSOR.OUTPUT,
  406. MODEL_TENSOR.ROPE_FREQS,
  407. MODEL_TENSOR.ATTN_NORM,
  408. MODEL_TENSOR.ATTN_Q,
  409. MODEL_TENSOR.ATTN_K,
  410. MODEL_TENSOR.ATTN_V,
  411. MODEL_TENSOR.ATTN_OUT,
  412. MODEL_TENSOR.ATTN_ROT_EMBD,
  413. MODEL_TENSOR.FFN_GATE_INP,
  414. MODEL_TENSOR.FFN_NORM,
  415. MODEL_TENSOR.FFN_GATE,
  416. MODEL_TENSOR.FFN_DOWN,
  417. MODEL_TENSOR.FFN_UP,
  418. MODEL_TENSOR.FFN_GATE_EXP,
  419. MODEL_TENSOR.FFN_DOWN_EXP,
  420. MODEL_TENSOR.FFN_UP_EXP,
  421. ],
  422. MODEL_ARCH.GROK: [
  423. MODEL_TENSOR.TOKEN_EMBD,
  424. MODEL_TENSOR.OUTPUT_NORM,
  425. MODEL_TENSOR.OUTPUT,
  426. MODEL_TENSOR.ROPE_FREQS,
  427. MODEL_TENSOR.ATTN_NORM,
  428. MODEL_TENSOR.ATTN_Q,
  429. MODEL_TENSOR.ATTN_K,
  430. MODEL_TENSOR.ATTN_V,
  431. MODEL_TENSOR.ATTN_OUT,
  432. MODEL_TENSOR.ATTN_ROT_EMBD,
  433. MODEL_TENSOR.ATTN_OUT_NORM,
  434. MODEL_TENSOR.FFN_GATE_INP,
  435. MODEL_TENSOR.FFN_NORM,
  436. MODEL_TENSOR.FFN_GATE,
  437. MODEL_TENSOR.FFN_DOWN,
  438. MODEL_TENSOR.FFN_UP,
  439. MODEL_TENSOR.FFN_GATE_EXP,
  440. MODEL_TENSOR.FFN_DOWN_EXP,
  441. MODEL_TENSOR.FFN_UP_EXP,
  442. MODEL_TENSOR.LAYER_OUT_NORM,
  443. ],
  444. MODEL_ARCH.GPTNEOX: [
  445. MODEL_TENSOR.TOKEN_EMBD,
  446. MODEL_TENSOR.OUTPUT_NORM,
  447. MODEL_TENSOR.OUTPUT,
  448. MODEL_TENSOR.ATTN_NORM,
  449. MODEL_TENSOR.ATTN_QKV,
  450. MODEL_TENSOR.ATTN_OUT,
  451. MODEL_TENSOR.FFN_NORM,
  452. MODEL_TENSOR.FFN_DOWN,
  453. MODEL_TENSOR.FFN_UP,
  454. ],
  455. MODEL_ARCH.FALCON: [
  456. MODEL_TENSOR.TOKEN_EMBD,
  457. MODEL_TENSOR.OUTPUT_NORM,
  458. MODEL_TENSOR.OUTPUT,
  459. MODEL_TENSOR.ATTN_NORM,
  460. MODEL_TENSOR.ATTN_NORM_2,
  461. MODEL_TENSOR.ATTN_QKV,
  462. MODEL_TENSOR.ATTN_OUT,
  463. MODEL_TENSOR.FFN_DOWN,
  464. MODEL_TENSOR.FFN_UP,
  465. ],
  466. MODEL_ARCH.BAICHUAN: [
  467. MODEL_TENSOR.TOKEN_EMBD,
  468. MODEL_TENSOR.OUTPUT_NORM,
  469. MODEL_TENSOR.OUTPUT,
  470. MODEL_TENSOR.ROPE_FREQS,
  471. MODEL_TENSOR.ATTN_NORM,
  472. MODEL_TENSOR.ATTN_Q,
  473. MODEL_TENSOR.ATTN_K,
  474. MODEL_TENSOR.ATTN_V,
  475. MODEL_TENSOR.ATTN_OUT,
  476. MODEL_TENSOR.ATTN_ROT_EMBD,
  477. MODEL_TENSOR.FFN_NORM,
  478. MODEL_TENSOR.FFN_GATE,
  479. MODEL_TENSOR.FFN_DOWN,
  480. MODEL_TENSOR.FFN_UP,
  481. ],
  482. MODEL_ARCH.STARCODER: [
  483. MODEL_TENSOR.TOKEN_EMBD,
  484. MODEL_TENSOR.POS_EMBD,
  485. MODEL_TENSOR.OUTPUT_NORM,
  486. MODEL_TENSOR.OUTPUT,
  487. MODEL_TENSOR.ATTN_NORM,
  488. MODEL_TENSOR.ATTN_QKV,
  489. MODEL_TENSOR.ATTN_OUT,
  490. MODEL_TENSOR.FFN_NORM,
  491. MODEL_TENSOR.FFN_DOWN,
  492. MODEL_TENSOR.FFN_UP,
  493. ],
  494. MODEL_ARCH.BERT: [
  495. MODEL_TENSOR.TOKEN_EMBD,
  496. MODEL_TENSOR.TOKEN_EMBD_NORM,
  497. MODEL_TENSOR.TOKEN_TYPES,
  498. MODEL_TENSOR.POS_EMBD,
  499. MODEL_TENSOR.OUTPUT_NORM,
  500. MODEL_TENSOR.ATTN_OUT_NORM,
  501. MODEL_TENSOR.ATTN_Q,
  502. MODEL_TENSOR.ATTN_K,
  503. MODEL_TENSOR.ATTN_V,
  504. MODEL_TENSOR.ATTN_OUT,
  505. MODEL_TENSOR.FFN_DOWN,
  506. MODEL_TENSOR.FFN_UP,
  507. MODEL_TENSOR.LAYER_OUT_NORM,
  508. ],
  509. MODEL_ARCH.NOMIC_BERT: [
  510. MODEL_TENSOR.TOKEN_EMBD,
  511. MODEL_TENSOR.TOKEN_EMBD_NORM,
  512. MODEL_TENSOR.TOKEN_TYPES,
  513. MODEL_TENSOR.POS_EMBD,
  514. MODEL_TENSOR.OUTPUT_NORM,
  515. MODEL_TENSOR.ATTN_OUT_NORM,
  516. MODEL_TENSOR.ATTN_QKV,
  517. MODEL_TENSOR.ATTN_OUT,
  518. MODEL_TENSOR.FFN_GATE,
  519. MODEL_TENSOR.FFN_DOWN,
  520. MODEL_TENSOR.FFN_UP,
  521. MODEL_TENSOR.LAYER_OUT_NORM,
  522. ],
  523. MODEL_ARCH.JINA_BERT_V2: [
  524. MODEL_TENSOR.TOKEN_EMBD,
  525. MODEL_TENSOR.TOKEN_EMBD_NORM,
  526. MODEL_TENSOR.TOKEN_TYPES,
  527. MODEL_TENSOR.ATTN_NORM_2,
  528. MODEL_TENSOR.ATTN_OUT_NORM,
  529. MODEL_TENSOR.ATTN_Q,
  530. MODEL_TENSOR.ATTN_Q_NORM,
  531. MODEL_TENSOR.ATTN_K,
  532. MODEL_TENSOR.ATTN_K_NORM,
  533. MODEL_TENSOR.ATTN_V,
  534. MODEL_TENSOR.ATTN_OUT,
  535. MODEL_TENSOR.FFN_UP,
  536. MODEL_TENSOR.FFN_GATE,
  537. MODEL_TENSOR.FFN_DOWN,
  538. MODEL_TENSOR.LAYER_OUT_NORM,
  539. ],
  540. MODEL_ARCH.MPT: [
  541. MODEL_TENSOR.TOKEN_EMBD,
  542. MODEL_TENSOR.OUTPUT_NORM,
  543. MODEL_TENSOR.OUTPUT,
  544. MODEL_TENSOR.ATTN_NORM,
  545. MODEL_TENSOR.ATTN_QKV,
  546. MODEL_TENSOR.ATTN_OUT,
  547. MODEL_TENSOR.FFN_NORM,
  548. MODEL_TENSOR.FFN_DOWN,
  549. MODEL_TENSOR.FFN_UP,
  550. MODEL_TENSOR.FFN_ACT,
  551. MODEL_TENSOR.ATTN_Q_NORM,
  552. MODEL_TENSOR.ATTN_K_NORM,
  553. MODEL_TENSOR.POS_EMBD,
  554. ],
  555. MODEL_ARCH.GPTJ: [
  556. MODEL_TENSOR.TOKEN_EMBD,
  557. MODEL_TENSOR.OUTPUT_NORM,
  558. MODEL_TENSOR.OUTPUT,
  559. MODEL_TENSOR.ATTN_NORM,
  560. MODEL_TENSOR.ATTN_Q,
  561. MODEL_TENSOR.ATTN_K,
  562. MODEL_TENSOR.ATTN_V,
  563. MODEL_TENSOR.ATTN_OUT,
  564. MODEL_TENSOR.FFN_DOWN,
  565. MODEL_TENSOR.FFN_UP,
  566. ],
  567. MODEL_ARCH.REFACT: [
  568. MODEL_TENSOR.TOKEN_EMBD,
  569. MODEL_TENSOR.OUTPUT_NORM,
  570. MODEL_TENSOR.OUTPUT,
  571. MODEL_TENSOR.ATTN_NORM,
  572. MODEL_TENSOR.ATTN_Q,
  573. MODEL_TENSOR.ATTN_K,
  574. MODEL_TENSOR.ATTN_V,
  575. MODEL_TENSOR.ATTN_OUT,
  576. MODEL_TENSOR.FFN_NORM,
  577. MODEL_TENSOR.FFN_GATE,
  578. MODEL_TENSOR.FFN_DOWN,
  579. MODEL_TENSOR.FFN_UP,
  580. ],
  581. MODEL_ARCH.BLOOM: [
  582. MODEL_TENSOR.TOKEN_EMBD,
  583. MODEL_TENSOR.TOKEN_EMBD_NORM,
  584. MODEL_TENSOR.OUTPUT_NORM,
  585. MODEL_TENSOR.OUTPUT,
  586. MODEL_TENSOR.ATTN_NORM,
  587. MODEL_TENSOR.ATTN_QKV,
  588. MODEL_TENSOR.ATTN_OUT,
  589. MODEL_TENSOR.FFN_NORM,
  590. MODEL_TENSOR.FFN_DOWN,
  591. MODEL_TENSOR.FFN_UP,
  592. ],
  593. MODEL_ARCH.STABLELM: [
  594. MODEL_TENSOR.TOKEN_EMBD,
  595. MODEL_TENSOR.OUTPUT_NORM,
  596. MODEL_TENSOR.OUTPUT,
  597. MODEL_TENSOR.ROPE_FREQS,
  598. MODEL_TENSOR.ATTN_NORM,
  599. MODEL_TENSOR.ATTN_Q,
  600. MODEL_TENSOR.ATTN_K,
  601. MODEL_TENSOR.ATTN_V,
  602. MODEL_TENSOR.ATTN_OUT,
  603. MODEL_TENSOR.FFN_NORM,
  604. MODEL_TENSOR.FFN_GATE,
  605. MODEL_TENSOR.FFN_DOWN,
  606. MODEL_TENSOR.FFN_UP,
  607. MODEL_TENSOR.ATTN_Q_NORM,
  608. MODEL_TENSOR.ATTN_K_NORM,
  609. ],
  610. MODEL_ARCH.QWEN: [
  611. MODEL_TENSOR.TOKEN_EMBD,
  612. MODEL_TENSOR.OUTPUT_NORM,
  613. MODEL_TENSOR.OUTPUT,
  614. MODEL_TENSOR.ROPE_FREQS,
  615. MODEL_TENSOR.ATTN_NORM,
  616. MODEL_TENSOR.ATTN_QKV,
  617. MODEL_TENSOR.ATTN_OUT,
  618. MODEL_TENSOR.ATTN_ROT_EMBD,
  619. MODEL_TENSOR.FFN_NORM,
  620. MODEL_TENSOR.FFN_GATE,
  621. MODEL_TENSOR.FFN_DOWN,
  622. MODEL_TENSOR.FFN_UP,
  623. ],
  624. MODEL_ARCH.QWEN2: [
  625. MODEL_TENSOR.TOKEN_EMBD,
  626. MODEL_TENSOR.OUTPUT_NORM,
  627. MODEL_TENSOR.OUTPUT,
  628. MODEL_TENSOR.ATTN_NORM,
  629. MODEL_TENSOR.ATTN_Q,
  630. MODEL_TENSOR.ATTN_K,
  631. MODEL_TENSOR.ATTN_V,
  632. MODEL_TENSOR.ATTN_OUT,
  633. MODEL_TENSOR.FFN_NORM,
  634. MODEL_TENSOR.FFN_GATE,
  635. MODEL_TENSOR.FFN_DOWN,
  636. MODEL_TENSOR.FFN_UP,
  637. ],
  638. MODEL_ARCH.QWEN2MOE: [
  639. MODEL_TENSOR.TOKEN_EMBD,
  640. MODEL_TENSOR.OUTPUT_NORM,
  641. MODEL_TENSOR.OUTPUT,
  642. MODEL_TENSOR.ATTN_NORM,
  643. MODEL_TENSOR.ATTN_Q,
  644. MODEL_TENSOR.ATTN_K,
  645. MODEL_TENSOR.ATTN_V,
  646. MODEL_TENSOR.ATTN_OUT,
  647. MODEL_TENSOR.FFN_NORM,
  648. MODEL_TENSOR.FFN_GATE_INP,
  649. MODEL_TENSOR.FFN_GATE_EXP,
  650. MODEL_TENSOR.FFN_DOWN_EXP,
  651. MODEL_TENSOR.FFN_UP_EXP,
  652. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  653. MODEL_TENSOR.FFN_GATE_SHEXP,
  654. MODEL_TENSOR.FFN_DOWN_SHEXP,
  655. MODEL_TENSOR.FFN_UP_SHEXP,
  656. ],
  657. MODEL_ARCH.PLAMO: [
  658. MODEL_TENSOR.TOKEN_EMBD,
  659. MODEL_TENSOR.OUTPUT_NORM,
  660. MODEL_TENSOR.OUTPUT,
  661. MODEL_TENSOR.ROPE_FREQS,
  662. MODEL_TENSOR.ATTN_NORM,
  663. MODEL_TENSOR.ATTN_Q,
  664. MODEL_TENSOR.ATTN_K,
  665. MODEL_TENSOR.ATTN_V,
  666. MODEL_TENSOR.ATTN_OUT,
  667. MODEL_TENSOR.ATTN_ROT_EMBD,
  668. MODEL_TENSOR.FFN_GATE,
  669. MODEL_TENSOR.FFN_DOWN,
  670. MODEL_TENSOR.FFN_UP,
  671. ],
  672. MODEL_ARCH.GPT2: [
  673. MODEL_TENSOR.TOKEN_EMBD,
  674. MODEL_TENSOR.POS_EMBD,
  675. MODEL_TENSOR.OUTPUT_NORM,
  676. MODEL_TENSOR.OUTPUT,
  677. MODEL_TENSOR.ATTN_NORM,
  678. MODEL_TENSOR.ATTN_QKV,
  679. MODEL_TENSOR.ATTN_OUT,
  680. MODEL_TENSOR.FFN_NORM,
  681. MODEL_TENSOR.FFN_DOWN,
  682. MODEL_TENSOR.FFN_UP,
  683. ],
  684. MODEL_ARCH.PHI2: [
  685. MODEL_TENSOR.TOKEN_EMBD,
  686. MODEL_TENSOR.OUTPUT_NORM,
  687. MODEL_TENSOR.OUTPUT,
  688. MODEL_TENSOR.ATTN_NORM,
  689. MODEL_TENSOR.ATTN_QKV,
  690. MODEL_TENSOR.ATTN_Q,
  691. MODEL_TENSOR.ATTN_K,
  692. MODEL_TENSOR.ATTN_V,
  693. MODEL_TENSOR.ATTN_OUT,
  694. MODEL_TENSOR.FFN_NORM,
  695. MODEL_TENSOR.FFN_DOWN,
  696. MODEL_TENSOR.FFN_UP,
  697. ],
  698. MODEL_ARCH.PHI3: [
  699. MODEL_TENSOR.TOKEN_EMBD,
  700. MODEL_TENSOR.OUTPUT_NORM,
  701. MODEL_TENSOR.OUTPUT,
  702. MODEL_TENSOR.ATTN_NORM,
  703. MODEL_TENSOR.ATTN_QKV,
  704. MODEL_TENSOR.ATTN_Q,
  705. MODEL_TENSOR.ATTN_K,
  706. MODEL_TENSOR.ATTN_V,
  707. MODEL_TENSOR.ATTN_OUT,
  708. MODEL_TENSOR.FFN_NORM,
  709. MODEL_TENSOR.FFN_DOWN,
  710. MODEL_TENSOR.FFN_UP,
  711. ],
  712. MODEL_ARCH.CODESHELL: [
  713. MODEL_TENSOR.TOKEN_EMBD,
  714. MODEL_TENSOR.POS_EMBD,
  715. MODEL_TENSOR.OUTPUT_NORM,
  716. MODEL_TENSOR.OUTPUT,
  717. MODEL_TENSOR.ATTN_NORM,
  718. MODEL_TENSOR.ATTN_QKV,
  719. MODEL_TENSOR.ATTN_OUT,
  720. MODEL_TENSOR.ATTN_ROT_EMBD,
  721. MODEL_TENSOR.FFN_NORM,
  722. MODEL_TENSOR.FFN_DOWN,
  723. MODEL_TENSOR.FFN_UP,
  724. ],
  725. MODEL_ARCH.ORION: [
  726. MODEL_TENSOR.TOKEN_EMBD,
  727. MODEL_TENSOR.OUTPUT_NORM,
  728. MODEL_TENSOR.OUTPUT,
  729. MODEL_TENSOR.ROPE_FREQS,
  730. MODEL_TENSOR.ATTN_NORM,
  731. MODEL_TENSOR.ATTN_Q,
  732. MODEL_TENSOR.ATTN_K,
  733. MODEL_TENSOR.ATTN_V,
  734. MODEL_TENSOR.ATTN_OUT,
  735. MODEL_TENSOR.ATTN_ROT_EMBD,
  736. MODEL_TENSOR.FFN_NORM,
  737. MODEL_TENSOR.FFN_GATE,
  738. MODEL_TENSOR.FFN_DOWN,
  739. MODEL_TENSOR.FFN_UP,
  740. ],
  741. MODEL_ARCH.INTERNLM2: [
  742. MODEL_TENSOR.TOKEN_EMBD,
  743. MODEL_TENSOR.OUTPUT_NORM,
  744. MODEL_TENSOR.OUTPUT,
  745. MODEL_TENSOR.ATTN_NORM,
  746. MODEL_TENSOR.ATTN_Q,
  747. MODEL_TENSOR.ATTN_K,
  748. MODEL_TENSOR.ATTN_V,
  749. MODEL_TENSOR.ATTN_OUT,
  750. MODEL_TENSOR.ATTN_ROT_EMBD,
  751. MODEL_TENSOR.FFN_NORM,
  752. MODEL_TENSOR.FFN_GATE,
  753. MODEL_TENSOR.FFN_DOWN,
  754. MODEL_TENSOR.FFN_UP,
  755. ],
  756. MODEL_ARCH.MINICPM: [
  757. MODEL_TENSOR.TOKEN_EMBD,
  758. MODEL_TENSOR.OUTPUT,
  759. MODEL_TENSOR.OUTPUT_NORM,
  760. MODEL_TENSOR.ROPE_FREQS,
  761. MODEL_TENSOR.ATTN_NORM,
  762. MODEL_TENSOR.ATTN_Q,
  763. MODEL_TENSOR.ATTN_K,
  764. MODEL_TENSOR.ATTN_V,
  765. MODEL_TENSOR.ATTN_OUT,
  766. MODEL_TENSOR.ATTN_ROT_EMBD,
  767. MODEL_TENSOR.FFN_GATE_INP,
  768. MODEL_TENSOR.FFN_NORM,
  769. MODEL_TENSOR.FFN_GATE,
  770. MODEL_TENSOR.FFN_DOWN,
  771. MODEL_TENSOR.FFN_UP,
  772. MODEL_TENSOR.FFN_GATE_EXP,
  773. MODEL_TENSOR.FFN_DOWN_EXP,
  774. MODEL_TENSOR.FFN_UP_EXP,
  775. ],
  776. MODEL_ARCH.GEMMA: [
  777. MODEL_TENSOR.TOKEN_EMBD,
  778. MODEL_TENSOR.OUTPUT_NORM,
  779. MODEL_TENSOR.ATTN_NORM,
  780. MODEL_TENSOR.ATTN_Q,
  781. MODEL_TENSOR.ATTN_K,
  782. MODEL_TENSOR.ATTN_V,
  783. MODEL_TENSOR.ATTN_OUT,
  784. MODEL_TENSOR.FFN_GATE,
  785. MODEL_TENSOR.FFN_DOWN,
  786. MODEL_TENSOR.FFN_UP,
  787. MODEL_TENSOR.FFN_NORM,
  788. ],
  789. MODEL_ARCH.GEMMA2: [
  790. MODEL_TENSOR.TOKEN_EMBD,
  791. MODEL_TENSOR.OUTPUT_NORM,
  792. MODEL_TENSOR.ATTN_Q,
  793. MODEL_TENSOR.ATTN_K,
  794. MODEL_TENSOR.ATTN_V,
  795. MODEL_TENSOR.ATTN_OUT,
  796. MODEL_TENSOR.FFN_GATE,
  797. MODEL_TENSOR.FFN_DOWN,
  798. MODEL_TENSOR.FFN_UP,
  799. MODEL_TENSOR.ATTN_NORM,
  800. MODEL_TENSOR.ATTN_POST_NORM,
  801. MODEL_TENSOR.FFN_PRE_NORM,
  802. MODEL_TENSOR.FFN_POST_NORM,
  803. ],
  804. MODEL_ARCH.STARCODER2: [
  805. MODEL_TENSOR.TOKEN_EMBD,
  806. MODEL_TENSOR.OUTPUT_NORM,
  807. MODEL_TENSOR.OUTPUT,
  808. MODEL_TENSOR.ROPE_FREQS,
  809. MODEL_TENSOR.ATTN_NORM,
  810. MODEL_TENSOR.ATTN_Q,
  811. MODEL_TENSOR.ATTN_K,
  812. MODEL_TENSOR.ATTN_V,
  813. MODEL_TENSOR.ATTN_OUT,
  814. MODEL_TENSOR.ATTN_ROT_EMBD,
  815. MODEL_TENSOR.FFN_NORM,
  816. MODEL_TENSOR.FFN_DOWN,
  817. MODEL_TENSOR.FFN_UP,
  818. ],
  819. MODEL_ARCH.MAMBA: [
  820. MODEL_TENSOR.TOKEN_EMBD,
  821. MODEL_TENSOR.OUTPUT_NORM,
  822. MODEL_TENSOR.OUTPUT,
  823. MODEL_TENSOR.ATTN_NORM,
  824. MODEL_TENSOR.SSM_IN,
  825. MODEL_TENSOR.SSM_CONV1D,
  826. MODEL_TENSOR.SSM_X,
  827. MODEL_TENSOR.SSM_DT,
  828. MODEL_TENSOR.SSM_A,
  829. MODEL_TENSOR.SSM_D,
  830. MODEL_TENSOR.SSM_OUT,
  831. ],
  832. MODEL_ARCH.XVERSE: [
  833. MODEL_TENSOR.TOKEN_EMBD,
  834. MODEL_TENSOR.OUTPUT_NORM,
  835. MODEL_TENSOR.OUTPUT,
  836. MODEL_TENSOR.ROPE_FREQS,
  837. MODEL_TENSOR.ATTN_NORM,
  838. MODEL_TENSOR.ATTN_Q,
  839. MODEL_TENSOR.ATTN_K,
  840. MODEL_TENSOR.ATTN_V,
  841. MODEL_TENSOR.ATTN_OUT,
  842. MODEL_TENSOR.ATTN_ROT_EMBD,
  843. MODEL_TENSOR.FFN_NORM,
  844. MODEL_TENSOR.FFN_GATE,
  845. MODEL_TENSOR.FFN_DOWN,
  846. MODEL_TENSOR.FFN_UP,
  847. ],
  848. MODEL_ARCH.COMMAND_R: [
  849. MODEL_TENSOR.TOKEN_EMBD,
  850. MODEL_TENSOR.OUTPUT_NORM,
  851. MODEL_TENSOR.ATTN_NORM,
  852. MODEL_TENSOR.ATTN_Q,
  853. MODEL_TENSOR.ATTN_K,
  854. MODEL_TENSOR.ATTN_V,
  855. MODEL_TENSOR.ATTN_OUT,
  856. MODEL_TENSOR.FFN_GATE,
  857. MODEL_TENSOR.FFN_DOWN,
  858. MODEL_TENSOR.FFN_UP,
  859. MODEL_TENSOR.ATTN_K_NORM,
  860. MODEL_TENSOR.ATTN_Q_NORM,
  861. ],
  862. MODEL_ARCH.DBRX: [
  863. MODEL_TENSOR.TOKEN_EMBD,
  864. MODEL_TENSOR.OUTPUT_NORM,
  865. MODEL_TENSOR.OUTPUT,
  866. MODEL_TENSOR.ATTN_NORM,
  867. MODEL_TENSOR.ATTN_QKV,
  868. MODEL_TENSOR.ATTN_OUT,
  869. MODEL_TENSOR.ATTN_OUT_NORM,
  870. MODEL_TENSOR.FFN_GATE_INP,
  871. MODEL_TENSOR.FFN_GATE_EXP,
  872. MODEL_TENSOR.FFN_DOWN_EXP,
  873. MODEL_TENSOR.FFN_UP_EXP,
  874. ],
  875. MODEL_ARCH.OLMO: [
  876. MODEL_TENSOR.TOKEN_EMBD,
  877. MODEL_TENSOR.OUTPUT,
  878. MODEL_TENSOR.ATTN_Q,
  879. MODEL_TENSOR.ATTN_K,
  880. MODEL_TENSOR.ATTN_V,
  881. MODEL_TENSOR.ATTN_OUT,
  882. MODEL_TENSOR.FFN_GATE,
  883. MODEL_TENSOR.FFN_DOWN,
  884. MODEL_TENSOR.FFN_UP,
  885. ],
  886. MODEL_ARCH.OPENELM: [
  887. MODEL_TENSOR.TOKEN_EMBD,
  888. MODEL_TENSOR.OUTPUT_NORM,
  889. MODEL_TENSOR.ATTN_NORM,
  890. MODEL_TENSOR.ATTN_QKV,
  891. MODEL_TENSOR.ATTN_Q_NORM,
  892. MODEL_TENSOR.ATTN_K_NORM,
  893. MODEL_TENSOR.ATTN_OUT,
  894. MODEL_TENSOR.FFN_NORM,
  895. MODEL_TENSOR.FFN_GATE,
  896. MODEL_TENSOR.FFN_DOWN,
  897. MODEL_TENSOR.FFN_UP,
  898. ],
  899. MODEL_ARCH.ARCTIC: [
  900. MODEL_TENSOR.TOKEN_EMBD,
  901. MODEL_TENSOR.OUTPUT_NORM,
  902. MODEL_TENSOR.OUTPUT,
  903. MODEL_TENSOR.ROPE_FREQS,
  904. MODEL_TENSOR.ATTN_NORM,
  905. MODEL_TENSOR.ATTN_Q,
  906. MODEL_TENSOR.ATTN_K,
  907. MODEL_TENSOR.ATTN_V,
  908. MODEL_TENSOR.ATTN_OUT,
  909. MODEL_TENSOR.ATTN_ROT_EMBD,
  910. MODEL_TENSOR.FFN_GATE_INP,
  911. MODEL_TENSOR.FFN_NORM,
  912. MODEL_TENSOR.FFN_GATE,
  913. MODEL_TENSOR.FFN_DOWN,
  914. MODEL_TENSOR.FFN_UP,
  915. MODEL_TENSOR.FFN_NORM_EXP,
  916. MODEL_TENSOR.FFN_GATE_EXP,
  917. MODEL_TENSOR.FFN_DOWN_EXP,
  918. MODEL_TENSOR.FFN_UP_EXP,
  919. ],
  920. MODEL_ARCH.DEEPSEEK2: [
  921. MODEL_TENSOR.TOKEN_EMBD,
  922. MODEL_TENSOR.OUTPUT_NORM,
  923. MODEL_TENSOR.OUTPUT,
  924. MODEL_TENSOR.ROPE_FREQS,
  925. MODEL_TENSOR.ATTN_NORM,
  926. MODEL_TENSOR.ATTN_Q,
  927. MODEL_TENSOR.ATTN_Q_A,
  928. MODEL_TENSOR.ATTN_Q_B,
  929. MODEL_TENSOR.ATTN_KV_A_MQA,
  930. MODEL_TENSOR.ATTN_KV_B,
  931. MODEL_TENSOR.ATTN_Q_A_NORM,
  932. MODEL_TENSOR.ATTN_KV_A_NORM,
  933. MODEL_TENSOR.ATTN_OUT,
  934. MODEL_TENSOR.ATTN_ROT_EMBD,
  935. MODEL_TENSOR.FFN_GATE_INP,
  936. MODEL_TENSOR.FFN_NORM,
  937. MODEL_TENSOR.FFN_GATE,
  938. MODEL_TENSOR.FFN_DOWN,
  939. MODEL_TENSOR.FFN_UP,
  940. MODEL_TENSOR.FFN_GATE_EXP,
  941. MODEL_TENSOR.FFN_DOWN_EXP,
  942. MODEL_TENSOR.FFN_UP_EXP,
  943. MODEL_TENSOR.FFN_GATE_SHEXP,
  944. MODEL_TENSOR.FFN_DOWN_SHEXP,
  945. MODEL_TENSOR.FFN_UP_SHEXP,
  946. ],
  947. MODEL_ARCH.CHATGLM : [
  948. MODEL_TENSOR.TOKEN_EMBD,
  949. MODEL_TENSOR.ROPE_FREQS,
  950. MODEL_TENSOR.OUTPUT_NORM,
  951. MODEL_TENSOR.OUTPUT,
  952. MODEL_TENSOR.ATTN_NORM,
  953. MODEL_TENSOR.ATTN_QKV,
  954. MODEL_TENSOR.ATTN_OUT,
  955. MODEL_TENSOR.FFN_NORM,
  956. MODEL_TENSOR.FFN_DOWN,
  957. MODEL_TENSOR.FFN_UP,
  958. ],
  959. MODEL_ARCH.BITNET: [
  960. MODEL_TENSOR.ATTN_Q,
  961. MODEL_TENSOR.ATTN_K,
  962. MODEL_TENSOR.ATTN_V,
  963. MODEL_TENSOR.TOKEN_EMBD,
  964. MODEL_TENSOR.OUTPUT_NORM,
  965. MODEL_TENSOR.ATTN_NORM,
  966. MODEL_TENSOR.ATTN_OUT,
  967. MODEL_TENSOR.FFN_NORM,
  968. MODEL_TENSOR.FFN_GATE,
  969. MODEL_TENSOR.FFN_DOWN,
  970. MODEL_TENSOR.FFN_UP,
  971. MODEL_TENSOR.ATTN_SUB_NORM,
  972. MODEL_TENSOR.FFN_SUB_NORM,
  973. ],
  974. MODEL_ARCH.T5: [
  975. MODEL_TENSOR.TOKEN_EMBD,
  976. MODEL_TENSOR.OUTPUT,
  977. MODEL_TENSOR.DEC_ATTN_NORM,
  978. MODEL_TENSOR.DEC_ATTN_Q,
  979. MODEL_TENSOR.DEC_ATTN_K,
  980. MODEL_TENSOR.DEC_ATTN_V,
  981. MODEL_TENSOR.DEC_ATTN_OUT,
  982. MODEL_TENSOR.DEC_ATTN_REL_B,
  983. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  984. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  985. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  986. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  987. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  988. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  989. MODEL_TENSOR.DEC_FFN_NORM,
  990. MODEL_TENSOR.DEC_FFN_GATE,
  991. MODEL_TENSOR.DEC_FFN_DOWN,
  992. MODEL_TENSOR.DEC_FFN_UP,
  993. MODEL_TENSOR.DEC_OUTPUT_NORM,
  994. MODEL_TENSOR.ENC_ATTN_NORM,
  995. MODEL_TENSOR.ENC_ATTN_Q,
  996. MODEL_TENSOR.ENC_ATTN_K,
  997. MODEL_TENSOR.ENC_ATTN_V,
  998. MODEL_TENSOR.ENC_ATTN_OUT,
  999. MODEL_TENSOR.ENC_ATTN_REL_B,
  1000. MODEL_TENSOR.ENC_FFN_NORM,
  1001. MODEL_TENSOR.ENC_FFN_GATE,
  1002. MODEL_TENSOR.ENC_FFN_DOWN,
  1003. MODEL_TENSOR.ENC_FFN_UP,
  1004. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1005. ],
  1006. MODEL_ARCH.JAIS: [
  1007. MODEL_TENSOR.TOKEN_EMBD,
  1008. MODEL_TENSOR.OUTPUT_NORM,
  1009. MODEL_TENSOR.OUTPUT,
  1010. MODEL_TENSOR.ATTN_NORM,
  1011. MODEL_TENSOR.ATTN_QKV,
  1012. MODEL_TENSOR.ATTN_OUT,
  1013. MODEL_TENSOR.FFN_NORM,
  1014. MODEL_TENSOR.FFN_DOWN,
  1015. MODEL_TENSOR.FFN_GATE,
  1016. MODEL_TENSOR.FFN_UP,
  1017. ],
  1018. # TODO
  1019. }
  1020. # tensors that will not be serialized
  1021. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  1022. MODEL_ARCH.LLAMA: [
  1023. MODEL_TENSOR.ROPE_FREQS,
  1024. MODEL_TENSOR.ATTN_ROT_EMBD,
  1025. ],
  1026. MODEL_ARCH.BAICHUAN: [
  1027. MODEL_TENSOR.ROPE_FREQS,
  1028. MODEL_TENSOR.ATTN_ROT_EMBD,
  1029. ],
  1030. MODEL_ARCH.QWEN: [
  1031. MODEL_TENSOR.ROPE_FREQS,
  1032. MODEL_TENSOR.ATTN_ROT_EMBD,
  1033. ],
  1034. MODEL_ARCH.CODESHELL: [
  1035. MODEL_TENSOR.ROPE_FREQS,
  1036. MODEL_TENSOR.ATTN_ROT_EMBD,
  1037. ],
  1038. MODEL_ARCH.ORION: [
  1039. MODEL_TENSOR.ROPE_FREQS,
  1040. MODEL_TENSOR.ATTN_ROT_EMBD,
  1041. ],
  1042. MODEL_ARCH.STARCODER2: [
  1043. MODEL_TENSOR.ROPE_FREQS,
  1044. MODEL_TENSOR.ATTN_ROT_EMBD,
  1045. ],
  1046. MODEL_ARCH.XVERSE: [
  1047. MODEL_TENSOR.ROPE_FREQS,
  1048. MODEL_TENSOR.ATTN_ROT_EMBD,
  1049. ],
  1050. MODEL_ARCH.DEEPSEEK2: [
  1051. MODEL_TENSOR.ROPE_FREQS,
  1052. MODEL_TENSOR.ATTN_ROT_EMBD,
  1053. ],
  1054. MODEL_ARCH.CHATGLM: [
  1055. MODEL_TENSOR.ROPE_FREQS,
  1056. ],
  1057. }
  1058. #
  1059. # types
  1060. #
  1061. class TokenType(IntEnum):
  1062. NORMAL = 1
  1063. UNKNOWN = 2
  1064. CONTROL = 3
  1065. USER_DEFINED = 4
  1066. UNUSED = 5
  1067. BYTE = 6
  1068. class RopeScalingType(Enum):
  1069. NONE = 'none'
  1070. LINEAR = 'linear'
  1071. YARN = 'yarn'
  1072. class PoolingType(IntEnum):
  1073. NONE = 0
  1074. MEAN = 1
  1075. CLS = 2
  1076. class GGMLQuantizationType(IntEnum):
  1077. F32 = 0
  1078. F16 = 1
  1079. Q4_0 = 2
  1080. Q4_1 = 3
  1081. Q5_0 = 6
  1082. Q5_1 = 7
  1083. Q8_0 = 8
  1084. Q8_1 = 9
  1085. Q2_K = 10
  1086. Q3_K = 11
  1087. Q4_K = 12
  1088. Q5_K = 13
  1089. Q6_K = 14
  1090. Q8_K = 15
  1091. IQ2_XXS = 16
  1092. IQ2_XS = 17
  1093. IQ3_XXS = 18
  1094. IQ1_S = 19
  1095. IQ4_NL = 20
  1096. IQ3_S = 21
  1097. IQ2_S = 22
  1098. IQ4_XS = 23
  1099. I8 = 24
  1100. I16 = 25
  1101. I32 = 26
  1102. I64 = 27
  1103. F64 = 28
  1104. IQ1_M = 29
  1105. BF16 = 30
  1106. Q4_0_4_4 = 31
  1107. Q4_0_4_8 = 32
  1108. Q4_0_8_8 = 33
  1109. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1110. # from llama_ftype in llama.h
  1111. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1112. class LlamaFileType(IntEnum):
  1113. ALL_F32 = 0
  1114. MOSTLY_F16 = 1 # except 1d tensors
  1115. MOSTLY_Q4_0 = 2 # except 1d tensors
  1116. MOSTLY_Q4_1 = 3 # except 1d tensors
  1117. # MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1118. # MOSTLY_Q4_2 = 5 # support has been removed
  1119. # MOSTLY_Q4_3 = 6 # support has been removed
  1120. MOSTLY_Q8_0 = 7 # except 1d tensors
  1121. MOSTLY_Q5_0 = 8 # except 1d tensors
  1122. MOSTLY_Q5_1 = 9 # except 1d tensors
  1123. MOSTLY_Q2_K = 10 # except 1d tensors
  1124. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1125. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1126. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1127. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1128. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1129. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1130. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1131. MOSTLY_Q6_K = 18 # except 1d tensors
  1132. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1133. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1134. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1135. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1136. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1137. MOSTLY_IQ1_S = 24 # except 1d tensors
  1138. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1139. MOSTLY_IQ3_S = 26 # except 1d tensors
  1140. MOSTLY_IQ3_M = 27 # except 1d tensors
  1141. MOSTLY_IQ2_S = 28 # except 1d tensors
  1142. MOSTLY_IQ2_M = 29 # except 1d tensors
  1143. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1144. MOSTLY_IQ1_M = 31 # except 1d tensors
  1145. MOSTLY_BF16 = 32 # except 1d tensors
  1146. MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
  1147. MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
  1148. MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
  1149. GUESSED = 1024 # not specified in the model file
  1150. class GGUFEndian(IntEnum):
  1151. LITTLE = 0
  1152. BIG = 1
  1153. class GGUFValueType(IntEnum):
  1154. UINT8 = 0
  1155. INT8 = 1
  1156. UINT16 = 2
  1157. INT16 = 3
  1158. UINT32 = 4
  1159. INT32 = 5
  1160. FLOAT32 = 6
  1161. BOOL = 7
  1162. STRING = 8
  1163. ARRAY = 9
  1164. UINT64 = 10
  1165. INT64 = 11
  1166. FLOAT64 = 12
  1167. @staticmethod
  1168. def get_type(val: Any) -> GGUFValueType:
  1169. if isinstance(val, (str, bytes, bytearray)):
  1170. return GGUFValueType.STRING
  1171. elif isinstance(val, list):
  1172. return GGUFValueType.ARRAY
  1173. elif isinstance(val, float):
  1174. return GGUFValueType.FLOAT32
  1175. elif isinstance(val, bool):
  1176. return GGUFValueType.BOOL
  1177. elif isinstance(val, int):
  1178. return GGUFValueType.INT32
  1179. # TODO: need help with 64-bit types in Python
  1180. else:
  1181. raise ValueError(f"Unknown type: {type(val)}")
  1182. # Items here are (block size, type size)
  1183. QK_K = 256
  1184. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1185. GGMLQuantizationType.F32: (1, 4),
  1186. GGMLQuantizationType.F16: (1, 2),
  1187. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1188. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1189. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1190. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1191. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1192. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1193. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1194. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1195. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1196. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1197. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1198. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1199. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1200. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1201. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1202. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1203. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1204. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1205. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1206. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1207. GGMLQuantizationType.I8: (1, 1),
  1208. GGMLQuantizationType.I16: (1, 2),
  1209. GGMLQuantizationType.I32: (1, 4),
  1210. GGMLQuantizationType.I64: (1, 8),
  1211. GGMLQuantizationType.F64: (1, 8),
  1212. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1213. GGMLQuantizationType.BF16: (1, 2),
  1214. GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
  1215. GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
  1216. GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
  1217. }
  1218. # Aliases for backward compatibility.
  1219. # general
  1220. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1221. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1222. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1223. KEY_GENERAL_NAME = Keys.General.NAME
  1224. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1225. KEY_GENERAL_URL = Keys.General.URL
  1226. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1227. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1228. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1229. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1230. # LLM
  1231. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1232. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1233. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1234. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1235. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1236. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1237. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1238. # attention
  1239. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1240. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1241. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1242. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1243. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1244. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1245. # RoPE
  1246. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1247. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1248. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1249. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1250. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1251. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1252. # SSM
  1253. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1254. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1255. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1256. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1257. # tokenization
  1258. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1259. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1260. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1261. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1262. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1263. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1264. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1265. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1266. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1267. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1268. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1269. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1270. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1271. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1272. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1273. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1274. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1275. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1276. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
  1277. KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID