| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- #!/usr/bin/env python3
- import argparse
- import os
- import importlib
- from pathlib import Path
- from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
- import torch
- import numpy as np
- unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
- parser = argparse.ArgumentParser(description='Process model with specified path')
- parser.add_argument('--model-path', '-m', help='Path to the model')
- args = parser.parse_args()
- model_path = os.environ.get('MODEL_PATH', args.model_path)
- if model_path is None:
- parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
- config = AutoConfig.from_pretrained(model_path)
- print("Model type: ", config.model_type)
- print("Vocab size: ", config.vocab_size)
- print("Hidden size: ", config.hidden_size)
- print("Number of layers: ", config.num_hidden_layers)
- print("BOS token id: ", config.bos_token_id)
- print("EOS token id: ", config.eos_token_id)
- print("Loading model and tokenizer using AutoTokenizer:", model_path)
- tokenizer = AutoTokenizer.from_pretrained(model_path)
- config = AutoConfig.from_pretrained(model_path)
- if unreleased_model_name:
- model_name_lower = unreleased_model_name.lower()
- unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
- class_name = f"{unreleased_model_name}ForCausalLM"
- print(f"Importing unreleased model module: {unreleased_module_path}")
- try:
- model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
- model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
- except (ImportError, AttributeError) as e:
- print(f"Failed to import or load model: {e}")
- exit(1)
- else:
- model = AutoModelForCausalLM.from_pretrained(model_path)
- model_name = os.path.basename(model_path)
- # Printing the Model class to allow for easier debugging. This can be useful
- # when working with models that have not been publicly released yet and this
- # migth require that the concrete class is imported and used directly instead
- # of using AutoModelForCausalLM.
- print(f"Model class: {model.__class__.__name__}")
- prompt = "Hello, my name is"
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids
- print(f"Input tokens: {input_ids}")
- print(f"Input text: {repr(prompt)}")
- print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
- with torch.no_grad():
- outputs = model(input_ids)
- logits = outputs.logits
- # Extract logits for the last token (next token prediction)
- last_logits = logits[0, -1, :].cpu().numpy()
- print(f"Logits shape: {logits.shape}")
- print(f"Last token logits shape: {last_logits.shape}")
- print(f"Vocab size: {len(last_logits)}")
- data_dir = Path("data")
- data_dir.mkdir(exist_ok=True)
- bin_filename = data_dir / f"pytorch-{model_name}.bin"
- txt_filename = data_dir / f"pytorch-{model_name}.txt"
- # Save to file for comparison
- last_logits.astype(np.float32).tofile(bin_filename)
- # Also save as text file for easy inspection
- with open(txt_filename, "w") as f:
- for i, logit in enumerate(last_logits):
- f.write(f"{i}: {logit:.6f}\n")
- # Print some sample logits for quick verification
- print(f"First 10 logits: {last_logits[:10]}")
- print(f"Last 10 logits: {last_logits[-10:]}")
- # Show top 5 predicted tokens
- top_indices = np.argsort(last_logits)[-5:][::-1]
- print("Top 5 predictions:")
- for idx in top_indices:
- token = tokenizer.decode([idx])
- print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
- print(f"Saved bin logits to: {bin_filename}")
- print(f"Saved txt logist to: {txt_filename}")
|