| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- #!/usr/bin/env python3
- import argparse
- import os
- import numpy as np
- import importlib
- from pathlib import Path
- from transformers import AutoTokenizer, AutoConfig, AutoModel
- import torch
- unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
- parser = argparse.ArgumentParser(description='Process model with specified path')
- parser.add_argument('--model-path', '-m', help='Path to the model')
- args = parser.parse_args()
- model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
- if model_path is None:
- parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
- tokenizer = AutoTokenizer.from_pretrained(model_path)
- if unreleased_model_name:
- model_name_lower = unreleased_model_name.lower()
- unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
- class_name = f"{unreleased_model_name}Model"
- print(f"Importing unreleased model module: {unreleased_module_path}")
- try:
- model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
- model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
- except (ImportError, AttributeError) as e:
- print(f"Failed to import or load model: {e}")
- exit(1)
- else:
- model = AutoModel.from_pretrained(model_path)
- print(f"Model class: {type(model)}")
- #print(f"Model file: {type(model).__module__}")
- config = AutoConfig.from_pretrained(model_path)
- model_name = os.path.basename(model_path)
- texts = [ "Hello world today" ]
- encoded = tokenizer(
- texts,
- padding=True,
- truncation=True,
- return_tensors="pt"
- )
- tokens = encoded['input_ids'][0]
- token_strings = tokenizer.convert_ids_to_tokens(tokens)
- for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
- print(f"{token_id:6d} -> '{token_str}'")
- with torch.no_grad():
- outputs = model(**encoded)
- hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
- # Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
- all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
- print(f"Hidden states shape: {hidden_states.shape}")
- print(f"All embeddings shape: {all_embeddings.shape}")
- print(f"Embedding dimension: {all_embeddings.shape[1]}")
- # Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
- n_embd = all_embeddings.shape[1]
- n_embd_count = all_embeddings.shape[0]
- print() # Empty line to match C++ output
- for j in range(n_embd_count):
- embedding = all_embeddings[j]
- print(f"embedding {j}: ", end="")
- # Print first 3 values
- for i in range(min(3, n_embd)):
- print(f"{embedding[i]:9.6f} ", end="")
- print(" ... ", end="")
- # Print last 3 values
- for i in range(n_embd - 3, n_embd):
- print(f"{embedding[i]:9.6f} ", end="")
- print() # New line
- print() # Final empty line to match C++ output
- data_dir = Path("data")
- data_dir.mkdir(exist_ok=True)
- bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
- txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
- # Save all embeddings flattened (matching what embedding.cpp would save if it did)
- flattened_embeddings = all_embeddings.flatten()
- flattened_embeddings.astype(np.float32).tofile(bin_filename)
- with open(txt_filename, "w") as f:
- f.write(f"# Model class: {model_name}\n")
- f.write(f"# Tokens: {token_strings}\n")
- f.write(f"# Shape: {all_embeddings.shape}\n")
- f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
- for j in range(n_embd_count):
- f.write(f"# Token {j} ({token_strings[j]}):\n")
- for i, value in enumerate(all_embeddings[j]):
- f.write(f"{j}_{i}: {value:.6f}\n")
- f.write("\n")
- print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
- print("")
- print(f"Saved bin embeddings to: {bin_filename}")
- print(f"Saved txt embeddings to: {txt_filename}")
|