| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043 |
- #define GGML_COMMON_IMPL_CPP
- #define GGML_COMMON_DECL_CPP
- #include "ggml-common.h"
- #include "ggml-backend-impl.h"
- #include "ggml-impl.h"
- #include "ggml-cpu.h"
- #include "ggml-cpu-impl.h"
- #include "simd-mappings.h"
- #include "traits.h"
- #include "arch-fallback.h"
- #include <cmath>
- #include <cstring>
- #include <cassert>
- #include <cstdio> // for GGML_ASSERT
- #include "repack.h"
- #if defined(__GNUC__)
- #pragma GCC diagnostic ignored "-Woverlength-strings"
- #endif
- #define UNUSED GGML_UNUSED
- static inline int nearest_int(float fval) {
- assert(fabsf(fval) <= 4194303.f);
- float val = fval + 12582912.f;
- int i; memcpy(&i, &val, sizeof(int));
- return (i & 0x007fffff) - 0x00400000;
- }
- // Functions to create the interleaved data layout formats
- // interleave 4 block_q4_0s in blocks of blck_size_interleave
- // returns an interleaved block_q4_0x4
- // in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks
- // first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave
- //
- // - in : an array of block_q4_0 pointers
- // - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of
- // blck_size_interleave bytes
- // - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes
- // from bias offset form to pure sign form (this saves subtract
- // operations durin unpacking)
- //
- extern "C" {
- void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
- assert(QK8_0 == 32);
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy;
- // scalar
- const int blck_size_interleave = 4;
- float srcv[4][QK8_0];
- float id[4];
- for (int i = 0; i < nb; i++) {
- for (int row_iter = 0; row_iter < 4; row_iter++) {
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
- amax = MAX(amax, fabsf(srcv[row_iter][j]));
- }
- const float d = amax / ((1 << 7) - 1);
- id[row_iter] = d ? 1.0f / d : 0.0f;
- y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
- }
- for (int j = 0; j < QK8_0 * 4; j++) {
- int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
- int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
- src_offset += (j % blck_size_interleave);
- float x0 = srcv[src_id][src_offset] * id[src_id];
- y[i].qs[j] = roundf(x0);
- }
- }
- }
- void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
- assert(QK8_0 == 32);
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy;
- // scalar
- const int blck_size_interleave = 8;
- float srcv[4][QK8_0];
- float id[4];
- for (int i = 0; i < nb; i++) {
- for (int row_iter = 0; row_iter < 4; row_iter++) {
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
- amax = MAX(amax, fabsf(srcv[row_iter][j]));
- }
- const float d = amax / ((1 << 7) - 1);
- id[row_iter] = d ? 1.0f / d : 0.0f;
- y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
- }
- for (int j = 0; j < QK8_0 * 4; j++) {
- int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
- int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
- src_offset += (j % blck_size_interleave);
- float x0 = srcv[src_id][src_offset] * id[src_id];
- y[i].qs[j] = roundf(x0);
- }
- }
- }
- void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
- assert(QK_K == 256);
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
- block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy;
- // scalar
- const int blck_size_interleave = 8;
- float srcv[4][QK_K];
- float iscale[4];
- for (int i = 0; i < nb; i++) {
- for (int row_iter = 0; row_iter < 4; row_iter++) {
- float amax = 0.0f; // absolute max
- float max = 0;
- for (int j = 0; j < QK_K; j++) {
- srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
- // Update the maximum value of the corresponding super block
- if(amax < fabsf(srcv[row_iter][j])) {
- amax = fabsf(srcv[row_iter][j]);
- max = srcv[row_iter][j];
- }
- }
- iscale[row_iter] = amax ? -127.f/max : 0;
- y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
- }
- for (int j = 0; j < QK_K / 4; j++) {
- y[i].bsums[j] = 0;
- }
- // Quants values are interleaved in sequence of eight bytes from corresponding super blocks
- // Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
- // i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
- for (int j = 0; j < QK_K * 4; j++) {
- int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
- int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
- src_offset += (j % blck_size_interleave);
- int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
- float x0 = srcv[src_id][src_offset] * iscale[src_id];
- y[i].qs[j] = nearest_int(x0);
- y[i].bsums[index] += y[i].qs[j];
- }
- }
- }
- } // extern "C"
- template <int64_t INTER_SIZE, ggml_type PARAM_TYPE>
- void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row);
- template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
- assert(nrow == 4);
- UNUSED(nrow);
- ggml_quantize_mat_q8_0_4x4(x, vy, n_per_row);
- }
- template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
- assert(nrow == 4);
- UNUSED(nrow);
- ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
- }
- template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
- assert(nrow == 4);
- UNUSED(nrow);
- ggml_quantize_mat_q8_K_4x8(x, vy, n_per_row);
- }
- extern "C" {
- void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 4;
- const int blocklen = 4;
- assert(nr == 1);
- assert(n % qk == 0);
- assert(nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[4];
- int sumi;
- const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
- sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
- }
- sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
- }
- }
- void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 4;
- const int blocklen = 8;
- assert (n % qk == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[4];
- int sumi;
- const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
- sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
- }
- sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
- }
- }
- void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- assert (n % qk == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[8];
- int sumi;
- const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
- sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
- }
- sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
- }
- }
- void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK_K;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- static const uint32_t kmask1 = 0x3f3f3f3f;
- static const uint32_t kmask2 = 0x0f0f0f0f;
- static const uint32_t kmask3 = 0x03030303;
- assert (n % qk == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[8];
- float sum_minf[8];
- uint32_t utmp[32];
- int sumi1;
- int sumi2;
- int sumi;
- const block_q8_K * a_ptr = (const block_q8_K *) vy;
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) {
- sumf[j] = 0.0;
- sum_minf[j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int sb = 0; sb < 8; sb++) {
- memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
- utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
- const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
- utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
- utmp[sb * 4 + 2] = uaux_0;
- utmp[sb * 4 + 0] &= kmask1;
- }
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
- uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi1 = 0;
- sumi2 = 0;
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
- sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]);
- sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]);
- sumi1 = sumi1 * scales_0[j];
- sumi2 = sumi2 * scales_1[j];
- sumi += sumi1 + sumi2;
- }
- sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
- }
- }
- for (int sb = 0; sb < 8; sb++) {
- uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
- for (int j = 0; j < ncols_interleaved; j++) {
- sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) {
- s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
- }
- }
- }
- void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK_K;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- assert (n % qk == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[8];
- float sum_minf[8];
- int sumi1,sumi2,sumi3,sumi4;
- int sumi;
- const block_q8_K * a_ptr = (const block_q8_K *)vy;
- for(int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) {
- sumf[j] = 0.0;
- sum_minf[j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (4 * blocklen)); k++) {
- const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ;
- const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16;
- const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32;
- const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48;
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi1 = 0;
- sumi2 = 0;
- sumi3 = 0;
- sumi4 = 0;
- sumi = 0;
- int offset = ((k / 2) % 2) + j * 2;
- for (int i = 0; i < blocklen; ++i){
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3);
- const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3);
- const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3);
- const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3);
- sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i]);
- sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 32]);
- sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 64]);
- sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 96]);
- sumi1 = sumi1 * (scales_0[offset] & 0xF);
- sumi2 = sumi2 * (scales_1[offset] & 0xF);
- sumi3 = sumi3 * (scales_2[offset] & 0xF);
- sumi4 = sumi4 * (scales_3[offset] & 0xF);
- sumi += sumi1 + sumi2 + sumi3 + sumi4;
- }
- sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
- }
- }
- for(int sb = 0; sb < 8; sb++) {
- const uint8_t *mins = b_ptr[l].scales + sb * 16;
- for(int j = 0; j < ncols_interleaved; j++){
- sum_minf[j] += ((mins[j * 2] >> 4) * a_ptr[l].bsums[sb * 2] + (mins[(j * 2)+ 1] >> 4) * a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) {
- s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
- }
- }
- }
- void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 4;
- const int blocklen = 4;
- assert(nr == 1);
- assert(n % qk == 0);
- assert(nc % ncols_interleaved == 0);
- UNUSED(bs);
- UNUSED(nr);
- float sumf[4];
- int sumi;
- const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
- const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
- sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
- }
- sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
- }
- }
- void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- assert(nr == 1);
- assert(n % qk == 0);
- assert(nc % ncols_interleaved == 0);
- UNUSED(bs);
- UNUSED(nr);
- float sumf[8];
- int sumi;
- const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb);
- for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
- const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
- sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
- }
- sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
- }
- }
- }
- for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
- }
- }
- void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 4;
- const int blocklen = 4;
- assert (n % qk == 0);
- assert (nr % 4 == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- {
- float sumf[4][4];
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
- sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
- (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
- }
- sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++)
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
- }
- }
- }
- }
- }
- void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 4;
- const int blocklen = 8;
- assert (n % qk == 0);
- assert (nr % 4 == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[4][4];
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
- sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
- (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
- }
- sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++)
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
- }
- }
- }
- }
- void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- assert (n % qk == 0);
- assert (nr % 4 == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[4][8];
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
- sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
- (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
- }
- sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++)
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
- }
- }
- }
- }
- void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK_K;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- static const uint32_t kmask1 = 0x3f3f3f3f;
- static const uint32_t kmask2 = 0x0f0f0f0f;
- static const uint32_t kmask3 = 0x03030303;
- assert (n % qk == 0);
- assert (nr % 4 == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[4][8];
- float sum_minf[4][8];
- uint32_t utmp[32];
- int sumi1;
- int sumi2;
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumf[m][j] = 0.0;
- sum_minf[m][j] = 0.0;
- }
- }
- for (int l = 0; l < nb; l++) {
- for (int sb = 0; sb < 8; sb++) {
- memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
- utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
- const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
- utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
- utmp[sb * 4 + 2] = uaux_0;
- utmp[sb * 4 + 0] &= kmask1;
- }
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
- uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi1 = 0;
- sumi2 = 0;
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
- const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
- sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]);
- sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
- sumi1 = sumi1 * scales_0[j];
- sumi2 = sumi2 * scales_1[j];
- sumi += sumi1 + sumi2;
- }
- sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
- }
- }
- }
- for (int sb = 0; sb < 8; sb++) {
- uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
- for(int m = 0; m < 4; m++) {
- const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
- for(int j = 0; j < ncols_interleaved; j++) {
- sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
- }
- }
- }
- }
- }
- void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK_K;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- assert (n % qk == 0);
- assert (nr % 4 == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- float sumf[4][8];
- float sum_minf[4][8];
- int sumi1, sumi2, sumi3, sumi4;
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumf[m][j] = 0.0;
- sum_minf[m][j] = 0.0;
- }
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (4 * blocklen)); k++) {
- const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ;
- const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16;
- const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32;
- const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48;
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi1 = 0;
- sumi2 = 0;
- sumi3 = 0;
- sumi4 = 0;
- sumi = 0;
- int offset = ((k / 2) % 2) + j * 2;
- for (int i = 0; i < blocklen; ++i){
- const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3);
- const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3);
- const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3);
- const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3);
- sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i]);
- sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
- sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 256]);
- sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 384]);
- sumi1 = sumi1 * (scales_0[offset] & 0xF);
- sumi2 = sumi2 * (scales_1[offset] & 0xF);
- sumi3 = sumi3 * (scales_2[offset] & 0xF);
- sumi4 = sumi4 * (scales_3[offset] & 0xF);
- sumi += sumi1 + sumi2 + sumi3 + sumi4;
- }
- sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
- }
- }
- }
- for(int sb = 0; sb < 8; sb++) {
- const uint8_t *mins = b_ptr[l].scales + sb * 16;
- for(int m = 0; m < 4; m++) {
- const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
- for(int j = 0; j < ncols_interleaved; j++) {
- int mins_prod = ((mins[j * 2] >> 4) * bsums[0] + (mins[(j * 2)+ 1] >> 4) * bsums[1]);
- sum_minf[m][j] += (mins_prod) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
- }
- }
- }
- }
- }
- void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 4;
- const int blocklen = 4;
- assert (n % qk == 0);
- assert (nr % 4 == 0);
- assert (nc % ncols_interleaved == 0);
- UNUSED(s);
- UNUSED(bs);
- UNUSED(vx);
- UNUSED(vy);
- UNUSED(nr);
- UNUSED(nc);
- UNUSED(nb);
- UNUSED(ncols_interleaved);
- UNUSED(blocklen);
- {
- float sumf[4][4];
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
- const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
- sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
- (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
- }
- sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++)
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
- }
- }
- }
- }
- }
- void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
- const int qk = QK8_0;
- const int nb = n / qk;
- const int ncols_interleaved = 8;
- const int blocklen = 8;
- assert(n % qk == 0);
- assert(nr % 4 == 0);
- assert(nc % ncols_interleaved == 0);
- float sumf[4][8];
- int sumi;
- for (int y = 0; y < nr / 4; y++) {
- const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
- for (int x = 0; x < nc / ncols_interleaved; x++) {
- const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb);
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
- }
- for (int l = 0; l < nb; l++) {
- for (int k = 0; k < (qk / (2 * blocklen)); k++) {
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++) {
- sumi = 0;
- for (int i = 0; i < blocklen; ++i) {
- const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
- const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
- sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
- (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
- }
- sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
- }
- }
- }
- }
- for (int m = 0; m < 4; m++) {
- for (int j = 0; j < ncols_interleaved; j++)
- s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
- }
- }
- }
- }
- } // extern "C"
- static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
- block_q4_0x4 out;
- for (int i = 0; i < 4; i++) {
- out.d[i] = in[i].d;
- }
- const int end = QK4_0 * 2 / blck_size_interleave;
- if (blck_size_interleave == 8) {
- const uint64_t xor_mask = 0x8888888888888888ULL;
- for (int i = 0; i < end; ++i) {
- int src_id = i % 4;
- int src_offset = (i / 4) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- uint64_t elems;
- // Using memcpy to avoid unaligned memory accesses
- memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
- elems ^= xor_mask;
- memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
- }
- } else if (blck_size_interleave == 4) {
- const uint32_t xor_mask = 0x88888888;
- for (int i = 0; i < end; ++i) {
- int src_id = i % 4;
- int src_offset = (i / 4) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- uint32_t elems;
- memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t));
- elems ^= xor_mask;
- memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t));
- }
- } else {
- GGML_ASSERT(false);
- }
- return out;
- }
- // interleave 8 block_q4_0s in blocks of blck_size_interleave
- // returns an interleaved block_q4_0x8
- // in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
- // first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
- static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) {
- block_q4_0x8 out;
- for (int i = 0; i < 8; i++) {
- out.d[i] = in[i].d;
- }
- const int end = QK4_0 * 4 / blck_size_interleave;
- const uint64_t xor_mask = 0x8888888888888888ULL;
- for (int i = 0; i < end; ++i) {
- int src_id = i % 8;
- int src_offset = (i / 8) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- uint64_t elems;
- memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
- elems ^= xor_mask;
- memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
- }
- return out;
- }
- static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_interleave) {
- block_q4_Kx8 out;
- //Delta(scale) and dmin values of the eight Q4_K structures are copied onto the output interleaved structure
- for (int i = 0; i < 8; i++) {
- out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d;
- }
- for (int i = 0; i < 8; i++) {
- out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin;
- }
- const int end = QK_K * 4 / blck_size_interleave;
- // Interleave Q4_K quants by taking 8 bytes at a time
- for (int i = 0; i < end; ++i) {
- int src_id = i % 8;
- int src_offset = (i / 8) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- uint64_t elems;
- memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
- memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
- }
- // The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K
- // Currently the Q4_K structure has 8 scales and 8 mins packed in 12 bytes ( 6 bits for each value)
- // The output Q4_Kx8 structure has 96 bytes
- // Every 12 byte is packed such that it contains scales and mins for corresponding sub blocks from Q4_K structure
- // For eg - First 12 bytes contains 8 scales and 8 mins - each of first sub block from different Q4_K structures
- uint8_t s[8], m[8];
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 8; j++) {
- s[j] = in[j].scales[i] & 63;
- m[j] = in[j].scales[i + 4] & 63;
- }
- out.scales[i * 12] = (s[0] & 63) + ((s[4] & 48) << 2);
- out.scales[i * 12 + 1] = (s[1] & 63) + ((s[5] & 48) << 2);
- out.scales[i * 12 + 2] = (s[2] & 63) + ((s[6] & 48) << 2);
- out.scales[i * 12 + 3] = (s[3] & 63) + ((s[7] & 48) << 2);
- out.scales[i * 12 + 4] = (m[0] & 63) + ((m[4] & 48) << 2);
- out.scales[i * 12 + 5] = (m[1] & 63) + ((m[5] & 48) << 2);
- out.scales[i * 12 + 6] = (m[2] & 63) + ((m[6] & 48) << 2);
- out.scales[i * 12 + 7] = (m[3] & 63) + ((m[7] & 48) << 2);
- out.scales[i * 12 + 8] = (s[4] & 15) + ((m[4] & 15) << 4);
- out.scales[i * 12 + 9] = (s[5] & 15) + ((m[5] & 15) << 4);
- out.scales[i * 12 + 10] = (s[6] & 15) + ((m[6] & 15) << 4);
- out.scales[i * 12 + 11] = (s[7] & 15) + ((m[7] & 15) << 4);
- }
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 8; j++) {
- s[j] = ((in[j].scales[i] & 192) >> 2) | (in[j].scales[i+8] & 15);
- m[j] = ((in[j].scales[i + 4] & 192) >> 2) | ((in[j].scales[i+8] & 240) >> 4);
- }
- out.scales[i * 12 + 48] = (s[0] & 63) + ((s[4] & 48) << 2);
- out.scales[i * 12 + 49] = (s[1] & 63) + ((s[5] & 48) << 2);
- out.scales[i * 12 + 50] = (s[2] & 63) + ((s[6] & 48) << 2);
- out.scales[i * 12 + 51] = (s[3] & 63) + ((s[7] & 48) << 2);
- out.scales[i * 12 + 52] = (m[0] & 63) + ((m[4] & 48) << 2);
- out.scales[i * 12 + 53] = (m[1] & 63) + ((m[5] & 48) << 2);
- out.scales[i * 12 + 54] = (m[2] & 63) + ((m[6] & 48) << 2);
- out.scales[i * 12 + 55] = (m[3] & 63) + ((m[7] & 48) << 2);
- out.scales[i * 12 + 56] = (s[4] & 15) + ((m[4] & 15) << 4);
- out.scales[i * 12 + 57] = (s[5] & 15) + ((m[5] & 15) << 4);
- out.scales[i * 12 + 58] = (s[6] & 15) + ((m[6] & 15) << 4);
- out.scales[i * 12 + 59] = (s[7] & 15) + ((m[7] & 15) << 4);
- }
- return out;
- }
- static block_q2_Kx8 make_block_q2_Kx8(block_q2_K * in, unsigned int blck_size_interleave) {
- block_q2_Kx8 out;
- // Delta(scale) and dmin values of the eight Q2_K structures are copied onto the output interleaved structure
- for (int i = 0; i < 8; i++) {
- out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d;
- }
- for (int i = 0; i < 8; i++) {
- out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin;
- }
- const int end = QK_K * 2 / blck_size_interleave;
- // Interleave Q2_K quants by taking 8 bytes at a time
- for (int i = 0; i < end; ++i) {
- int src_id = i % 8;
- int src_offset = (i / 8) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- uint64_t elems;
- memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
- memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
- }
- // The below logic is designed so as to unpack and rearrange scales and mins values in Q2_K
- // Currently the Q2_K structure has 16 scales and 16 mins packed in 16 bytes ( 4 bits for each value)
- // The output Q2_Kx8 structure has 128 bytes for storing scales and mins
- // Every 16 byte is packed such that it contains scales and mins for corresponding sub blocks from Q2_K structure
- // For eg - First 16 bytes contains 16 scales and 16 mins - each of first and second sub blocks from different Q2_K structures
- for(int i = 0; i < 128; i++){
- // Index for selecting which q2k super block
- int src1 = (i % 16) / 2;
- // Index for selecting scale
- int src2 = ((i / 16) * 2) + (i % 2);
- out.scales[i] = in[src1].scales[src2];
- }
- return out;
- }
- static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
- GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
- GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
- constexpr int nrows_interleaved = 4;
- block_q4_0x4 * dst = (block_q4_0x4 *)t->data;
- const block_q4_0 * src = (const block_q4_0 *)data;
- block_q4_0 dst_tmp[4];
- int nrow = ggml_nrows(t);
- int nblocks = t->ne[0] / QK4_0;
- GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
- if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
- return -1;
- }
- for (int b = 0; b < nrow; b += nrows_interleaved) {
- for (int64_t x = 0; x < nblocks; x++) {
- for (int i = 0; i < nrows_interleaved; i++) {
- dst_tmp[i] = src[x + i * nblocks];
- }
- *dst++ = make_block_q4_0x4(dst_tmp, interleave_block);
- }
- src += nrows_interleaved * nblocks;
- }
- return 0;
- GGML_UNUSED(data_size);
- }
- static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
- GGML_ASSERT(t->type == GGML_TYPE_Q4_K);
- GGML_ASSERT(interleave_block == 8);
- constexpr int nrows_interleaved = 8;
- block_q4_Kx8 * dst = (block_q4_Kx8*)t->data;
- const block_q4_K * src = (const block_q4_K*) data;
- block_q4_K dst_tmp[8];
- int nrow = ggml_nrows(t);
- int nblocks = t->ne[0] / QK_K;
- GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_K));
- if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
- return -1;
- }
- for (int b = 0; b < nrow; b += nrows_interleaved) {
- for (int64_t x = 0; x < nblocks; x++) {
- for (int i = 0; i < nrows_interleaved; i++ ) {
- dst_tmp[i] = src[x + i * nblocks];
- }
- *dst++ = make_block_q4_Kx8(dst_tmp, interleave_block);
- }
- src += nrows_interleaved * nblocks;
- }
- return 0;
- GGML_UNUSED(data_size);
- }
- static int repack_q2_K_to_q2_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
- GGML_ASSERT(t->type == GGML_TYPE_Q2_K);
- GGML_ASSERT(interleave_block == 8);
- constexpr int nrows_interleaved = 8;
- block_q2_Kx8 * dst = (block_q2_Kx8*)t->data;
- const block_q2_K * src = (const block_q2_K*) data;
- block_q2_K dst_tmp[8];
- int nrow = ggml_nrows(t);
- int nblocks = t->ne[0] / QK_K;
- GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q2_K));
- if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
- return -1;
- }
- for (int b = 0; b < nrow; b += nrows_interleaved) {
- for (int64_t x = 0; x < nblocks; x++) {
- for (int i = 0; i < nrows_interleaved; i++ ) {
- dst_tmp[i] = src[x + i * nblocks];
- }
- *dst++ = make_block_q2_Kx8(dst_tmp, interleave_block);
- }
- src += nrows_interleaved * nblocks;
- }
- return 0;
- GGML_UNUSED(data_size);
- }
- static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
- GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
- GGML_ASSERT(interleave_block == 8);
- constexpr int nrows_interleaved = 8;
- block_q4_0x8 * dst = (block_q4_0x8*)t->data;
- const block_q4_0 * src = (const block_q4_0*) data;
- block_q4_0 dst_tmp[8];
- int nrow = ggml_nrows(t);
- int nblocks = t->ne[0] / QK4_0;
- GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
- if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
- return -1;
- }
- for (int b = 0; b < nrow; b += nrows_interleaved) {
- for (int64_t x = 0; x < nblocks; x++) {
- for (int i = 0; i < nrows_interleaved; i++ ) {
- dst_tmp[i] = src[x + i * nblocks];
- }
- *dst++ = make_block_q4_0x8(dst_tmp, interleave_block);
- }
- src += nrows_interleaved * nblocks;
- }
- return 0;
- GGML_UNUSED(data_size);
- }
- static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) {
- block_iq4_nlx4 out;
- for (int i = 0; i < 4; i++) {
- out.d[i] = in[i].d;
- }
- const int end = QK4_NL * 2 / blck_size_interleave;
- // TODO: this branch seems wrong
- //if (blck_size_interleave == 8) {
- // for (int i = 0; i < end; ++i) {
- // int src_id = i % 4;
- // int src_offset = (i / 4) * blck_size_interleave;
- // int dst_offset = i * blck_size_interleave;
- // // Using memcpy to avoid unaligned memory accesses
- // memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
- // }
- //} else
- if (blck_size_interleave == 4) {
- for (int i = 0; i < end; ++i) {
- int src_id = i % 4;
- int src_offset = (i / 4) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t));
- }
- } else {
- GGML_ASSERT(false);
- }
- return out;
- }
- static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
- GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
- GGML_ASSERT(interleave_block == 4);
- const block_iq4_nl * src = (const block_iq4_nl *)data;
- block_iq4_nlx4 * dst = ( block_iq4_nlx4 *)t->data;
- block_iq4_nl dst_tmp[4];
- int nrow = ggml_nrows(t);
- int nrows_interleaved = 4;
- int nblocks = t->ne[0] / QK4_NL;
- GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
- if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
- return -1;
- }
- for (int b = 0; b < nrow; b += nrows_interleaved) {
- for (int64_t x = 0; x < nblocks; x++) {
- for (int i = 0; i < nrows_interleaved; i++) {
- dst_tmp[i] = src[x + i * nblocks];
- }
- *dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block);
- }
- src += nrows_interleaved * nblocks;
- }
- return 0;
- GGML_UNUSED(data_size);
- }
- static block_iq4_nlx8 make_block_iq4_nlx8(block_iq4_nl * in, unsigned int blck_size_interleave) {
- block_iq4_nlx8 out;
- for (int i = 0; i < 8; i++) {
- out.d[i] = in[i].d;
- }
- const int end = QK4_NL * 4 / blck_size_interleave;
- if (blck_size_interleave == 8) {
- for (int i = 0; i < end; ++i) {
- int src_id = i % 8;
- int src_offset = (i / 8) * blck_size_interleave;
- int dst_offset = i * blck_size_interleave;
- memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
- }
- } else {
- GGML_ASSERT(false);
- }
- return out;
- }
- static int repack_iq4_nl_to_iq4_nl_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
- GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
- GGML_ASSERT(interleave_block == 8);
- const block_iq4_nl * src = (const block_iq4_nl *)data;
- block_iq4_nlx8 * dst = ( block_iq4_nlx8 *)t->data;
- block_iq4_nl dst_tmp[8];
- int nrow = ggml_nrows(t);
- int nrows_interleaved = 8;
- int nblocks = t->ne[0] / QK4_NL;
- GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
- if (t->ne[1] % nrows_interleaved != 0) {
- return -1;
- }
- for (int b = 0; b < nrow; b += nrows_interleaved) {
- for (int64_t x = 0; x < nblocks; x++) {
- for (int i = 0; i < nrows_interleaved; i++) {
- dst_tmp[i] = src[x + i * nblocks];
- }
- *dst++ = make_block_iq4_nlx8(dst_tmp, interleave_block);
- }
- src += nrows_interleaved * nblocks;
- }
- return 0;
- GGML_UNUSED(data_size);
- }
- namespace ggml::cpu::repack {
- // repack
- template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
- int repack(struct ggml_tensor *, const void *, size_t);
- // TODO: generalise.
- template <> int repack<block_q4_0, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_q4_0_to_q4_0_4_bl(t, 4, data, data_size);
- }
- template <> int repack<block_q4_0, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_q4_0_to_q4_0_4_bl(t, 8, data, data_size);
- }
- template <> int repack<block_q4_0, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_q4_0_to_q4_0_8_bl(t, 8, data, data_size);
- }
- template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
- }
- template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size);
- }
- template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size);
- }
- // TODO: needs to be revisited
- //template <> int repack<block_iq4_nl, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
- // return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size);
- //}
- template <> int repack<block_iq4_nl, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
- return repack_iq4_nl_to_iq4_nl_8_bl(t, 8, data, data_size);
- }
- // gemv
- template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
- void gemv(int, float *, size_t, const void *, const void *, int, int);
- template <> void gemv<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemv<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemv<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemv<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemv_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- // gemm
- template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
- void gemm(int, float *, size_t, const void *, const void *, int, int);
- template <> void gemm<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemm<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- template <> void gemm<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
- ggml_gemm_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
- }
- class tensor_traits_base : public ggml::cpu::tensor_traits {
- public:
- virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0;
- };
- template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> class tensor_traits : public tensor_traits_base {
- bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
- // not realy a GGML_TYPE_Q8_0 but same size.
- switch (op->op) {
- case GGML_OP_MUL_MAT:
- {
- size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
- return true;
- }
- case GGML_OP_MUL_MAT_ID:
- {
- size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
- size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
- const int64_t ne02 = op->src[0]->ne[2]; // n_as, n_expert
- const int64_t ne12 = op->src[1]->ne[2]; // n_tokens
- const size_t sizeof_mmid_row_mapping = sizeof(int64_t);
- size += sizeof_mmid_row_mapping*ne02*(ne12 + 1);
- return true;
- }
- default:
- // GGML_ABORT("fatal error");
- break;
- }
- return false;
- }
- bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
- switch (op->op) {
- case GGML_OP_MUL_MAT:
- forward_mul_mat(params, op);
- return true;
- case GGML_OP_MUL_MAT_ID:
- forward_mul_mat_id(params, op);
- return true;
- default:
- // GGML_ABORT("fatal error");
- break;
- }
- return false;
- }
- void forward_mul_mat_one_chunk(ggml_compute_params * params, ggml_tensor * op, int64_t src0_start, int64_t src0_end) {
- const ggml_tensor * src0 = op->src[0];
- const ggml_tensor * src1 = op->src[1];
- ggml_tensor * dst = op;
- GGML_TENSOR_BINARY_OP_LOCALS
- const void * src1_wdata = params->wdata;
- const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10);
- // If there are more than three rows in src1, use gemm; otherwise, use gemv.
- if (ne11 > 3) {
- gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
- (float *) ((char *) dst->data) + src0_start, ne01,
- (const char *) src0->data + src0_start * nb01,
- (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
- }
- for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) {
- gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
- (float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
- (const char *) src0->data + src0_start * nb01,
- (const char *) src1_wdata + (src1_col_stride * iter), 1,
- src0_end - src0_start);
- }
- }
- void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) {
- const ggml_tensor * src0 = op->src[0];
- const ggml_tensor * src1 = op->src[1];
- ggml_tensor * dst = op;
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_n_dims(op->src[0]) == 2);
- // GGML_ASSERT(ggml_n_dims(op->src[1]) == 2);
- char * wdata = static_cast<char *>(params->wdata);
- const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
- assert(params->wsize >= nbw1 * ne11);
- const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
- int64_t i11_processed = 0;
- for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
- ggml_quantize_mat_t<INTER_SIZE, PARAM_TYPE>((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10);
- }
- i11_processed = ne11 - ne11 % 4;
- for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
- from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10);
- }
- // disable for NUMA
- const bool disable_chunking = ggml_is_numa();
- // 4x chunks per thread
- int64_t nr = ggml_nrows(op->src[0]);
- int nth_scaled = nth * 4;
- int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
- int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
- // Ensure minimum chunk size to avoid alignment issues with high thread counts
- // Minimum chunk size should be at least NB_COLS to prevent overlapping chunks after alignment
- const int64_t min_chunk_size = NB_COLS;
- if (nchunk > 0 && (nr / nchunk) < min_chunk_size && nr >= min_chunk_size) {
- nchunk = (nr + min_chunk_size - 1) / min_chunk_size;
- }
- if (nth == 1 || nchunk < nth || disable_chunking) {
- nchunk = nth;
- }
- // Ensure nchunk doesn't exceed the number of rows divided by minimum chunk size
- // This prevents creating too many tiny chunks that could overlap after alignment
- const int64_t max_nchunk = (nr + min_chunk_size - 1) / min_chunk_size;
- if (nchunk > max_nchunk) {
- nchunk = max_nchunk;
- }
- if (ith == 0) {
- // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
- ggml_threadpool_chunk_set(params->threadpool, nth);
- }
- ggml_barrier(params->threadpool);
- // The first chunk comes from our thread_id, the rest will get auto-assigned.
- int current_chunk = ith;
- while (current_chunk < nchunk) {
- int64_t src0_start = (current_chunk * ne01) / nchunk;
- int64_t src0_end = ((current_chunk + 1) * ne01) / nchunk;
- // Align boundaries to NB_COLS - round up to ensure all data is included
- // The chunk size limiting above ensures chunks are large enough to prevent overlaps
- src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start;
- src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
- if (src0_end > ne01) {
- src0_end = ne01;
- }
- if (src0_start >= src0_end) {
- break;
- }
- forward_mul_mat_one_chunk(params, dst, src0_start, src0_end);
- current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
- }
- }
- void forward_mul_mat_id(ggml_compute_params * params, ggml_tensor * op) {
- const ggml_tensor * src0 = op->src[0];
- const ggml_tensor * src1 = op->src[1];
- const ggml_tensor * ids = op->src[2];
- ggml_tensor * dst = op;
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(src0->type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne03 == 1);
- GGML_ASSERT(ne13 == 1);
- GGML_ASSERT(ne3 == 1);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // row groups
- const int n_ids = ids->ne[0]; // n_expert_used
- const int n_as = ne02; // n_expert
- const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
- const size_t nbw2 = nbw1*ne11;
- const size_t nbw3 = nbw2*ne12;
- struct mmid_row_mapping {
- int32_t i1;
- int32_t i2;
- };
- GGML_ASSERT(params->wsize >=
- (GGML_PAD(nbw3, sizeof(int64_t)) +
- n_as*(ne12 + 1)*sizeof(mmid_row_mapping))
- );
- auto * wdata = (char *)params->wdata;
- auto * wdata_src1_end = (char *)wdata + GGML_PAD(nbw3, sizeof(int64_t));
- // total of [n_as][ne12 + 1] elemets of type mmid_row_mapping (2*int32_t = int64_t)
- auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
- struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12]
- // src1: float32 => param type
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
- from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11),
- (void *) (wdata + i12 * nbw2 + i11 * nbw1),
- ne10);
- }
- }
- #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id) * ne12 + (i1)]
- if (ith == 0) {
- // initialize matrix_row_counts
- memset(matrix_row_counts, 0, n_as * sizeof(int64_t));
- // group rows by src0 matrix
- for (int32_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
- for (int32_t id = 0; id < n_ids; ++id) {
- const int32_t i02 =
- *(const int32_t *) ((const char *) ids->data + iid1 * ids->nb[1] + id * ids->nb[0]);
- GGML_ASSERT(i02 >= 0 && i02 < n_as);
- MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = { id, iid1 };
- matrix_row_counts[i02] += 1;
- }
- }
- }
- ggml_barrier(params->threadpool);
- // compute each matrix multiplication in sequence
- for (int cur_a = 0; cur_a < n_as; ++cur_a) {
- const int64_t cne1 = matrix_row_counts[cur_a];
- if (cne1 == 0) {
- continue;
- }
- const auto * src0_cur = (const char *) src0->data + cur_a*nb02;
- //const int64_t nr0 = ne01; // src0 rows
- const int64_t nr1 = cne1; // src1 rows
- int64_t src0_cur_start = (ith * ne01) / nth;
- int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
- // Align boundaries to NB_COLS - round up to ensure all data is included
- src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start;
- src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end;
- if (src0_cur_end > ne01) {
- src0_cur_end = ne01;
- }
- if (src0_cur_start >= src0_cur_end) {
- return;
- }
- for (int ir1 = 0; ir1 < nr1; ir1++) {
- struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
- const int id = row_mapping.i1; // selected expert index
- const int64_t i11 = id % ne11;
- const int64_t i12 = row_mapping.i2; // row index in src1
- const int64_t i1 = id; // selected expert index
- const int64_t i2 = i12; // row
- const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2);
- gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
- (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
- src0_cur + src0_cur_start * nb01,
- src1_col, 1, src0_cur_end - src0_cur_start);
- }
- }
- #undef MMID_MATRIX_ROW
- }
- int repack(struct ggml_tensor * t, const void * data, size_t data_size) override {
- GGML_LOG_DEBUG("%s: repack tensor %s with %s_%dx%d\n", __func__, t->name, ggml_type_name(t->type),
- (int) NB_COLS, (int) INTER_SIZE);
- return ggml::cpu::repack::repack<BLOC_TYPE, INTER_SIZE, NB_COLS>(t, data, data_size);
- }
- };
- } // namespace ggml::cpu::repack
- static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) {
- // instance for Q4
- static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
- static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
- static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
- static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
- // instance for Q2
- static const ggml::cpu::repack::tensor_traits<block_q2_K, 8, 8, GGML_TYPE_Q8_K> q2_K_8x8_q8_K;
- // instance for IQ4
- static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
- static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0> iq4_nl_8x8_q8_0;
- if (cur->type == GGML_TYPE_Q4_0) {
- if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
- if (cur->ne[1] % 8 == 0) {
- return &q4_0_8x8_q8_0;
- }
- }
- if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
- if (cur->ne[1] % 4 == 0) {
- return &q4_0_4x8_q8_0;
- }
- }
- if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
- if (cur->ne[1] % 4 == 0) {
- return &q4_0_4x4_q8_0;
- }
- }
- } else if (cur->type == GGML_TYPE_Q4_K) {
- if (ggml_cpu_has_avx2()) {
- if (cur->ne[1] % 8 == 0) {
- return &q4_K_8x8_q8_K;
- }
- }
- } else if (cur->type == GGML_TYPE_Q2_K) {
- if (ggml_cpu_has_avx512()) {
- if (cur->ne[1] % 8 == 0) {
- return &q2_K_8x8_q8_K;
- }
- }
- } else if (cur->type == GGML_TYPE_IQ4_NL) {
- if (ggml_cpu_has_avx2()) {
- if (cur->ne[1] % 8 == 0) {
- return &iq4_nl_8x8_q8_0;
- }
- }
- if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
- if (cur->ne[1] % 4 == 0) {
- return &iq4_nl_4x4_q8_0;
- }
- }
- }
- return nullptr;
- }
- static enum ggml_status ggml_backend_cpu_repack_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_repack_get_optimal_repack_type(tensor));
- GGML_UNUSED(buffer);
- return GGML_STATUS_SUCCESS;
- }
- static void ggml_backend_cpu_repack_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
- const void * data, size_t offset, size_t size) {
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- auto tensor_traits = (ggml::cpu::repack::tensor_traits_base *) tensor->extra;
- auto OK = tensor_traits->repack(tensor, data, size);
- GGML_ASSERT(OK == 0);
- GGML_UNUSED(buffer);
- }
- static const char * ggml_backend_cpu_repack_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
- return "CPU_REPACK";
- GGML_UNUSED(buft);
- }
- static ggml_backend_buffer_t ggml_backend_cpu_repack_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- if (buffer == nullptr) {
- return nullptr;
- }
- buffer->buft = buft;
- buffer->iface.init_tensor = ggml_backend_cpu_repack_buffer_init_tensor;
- buffer->iface.set_tensor = ggml_backend_cpu_repack_buffer_set_tensor;
- buffer->iface.get_tensor = nullptr;
- buffer->iface.cpy_tensor = nullptr;
- return buffer;
- }
- static size_t ggml_backend_cpu_repack_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return TENSOR_ALIGNMENT;
- GGML_UNUSED(buft);
- }
- namespace ggml::cpu::repack {
- class extra_buffer_type : ggml::cpu::extra_buffer_type {
- bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
- if ( op->op == GGML_OP_MUL_MAT &&
- op->src[0]->buffer &&
- (ggml_n_dims(op->src[0]) == 2) &&
- op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() &&
- ggml_repack_get_optimal_repack_type(op->src[0])
- ) {
- if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
- return false;
- }
- if (op->src[1]->type == GGML_TYPE_F32) {
- return true;
- }
- //if (op->src[1]->type == GGML_TYPE_Q8_0) {
- // return true;
- //}
- // may be possible if Q8_0 packed...
- } else if (op->op == GGML_OP_MUL_MAT_ID
- && op->src[0]->buffer
- && (ggml_n_dims(op->src[0]) == 3)
- && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()
- && ggml_repack_get_optimal_repack_type(op->src[0])
- ) {
- if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
- return false;
- }
- if (op->src[1]->type == GGML_TYPE_F32) {
- return true;
- }
- //if (op->src[1]->type == GGML_TYPE_Q8_0) {
- // return true;
- //}
- }
- return false;
- }
- ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
- if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_MUL_MAT_ID) {
- if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()) {
- return (ggml::cpu::tensor_traits *) op->src[0]->extra;
- }
- }
- return nullptr;
- }
- };
- } // namespace ggml::cpu::repack
- ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void) {
- static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_repack = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cpu_repack_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_cpu_repack_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_repack_buffer_type_get_alignment,
- /* .get_max_size = */ nullptr, // defaults to SIZE_MAX
- /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
- /* .is_host = */ nullptr,
- },
- /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
- /* .context = */ new ggml::cpu::repack::extra_buffer_type(),
- };
- return &ggml_backend_cpu_buffer_type_repack;
- }
|