clip.cpp 124 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "ggml.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-alloc.h"
  9. #include "ggml-backend.h"
  10. #include "gguf.h"
  11. //#ifdef GGML_USE_CUDA
  12. //#include "ggml-cuda.h"
  13. //#endif
  14. //
  15. //#ifdef GGML_USE_SYCL
  16. //#include "ggml-sycl.h"
  17. //#endif
  18. //
  19. //#ifdef GGML_USE_METAL
  20. //#include "ggml-metal.h"
  21. //#endif
  22. //
  23. //#ifdef GGML_USE_CANN
  24. //#include "ggml-cann.h"
  25. //#endif
  26. //
  27. //#ifdef GGML_USE_VULKAN
  28. //#include "ggml-vulkan.h"
  29. //#endif
  30. #define STB_IMAGE_IMPLEMENTATION
  31. #include "stb_image.h"
  32. #include <cassert>
  33. #include <cmath>
  34. #include <cstdlib>
  35. #include <cstring>
  36. #include <fstream>
  37. #include <map>
  38. #include <regex>
  39. #include <stdexcept>
  40. #include <vector>
  41. #include <sstream>
  42. #include <cinttypes>
  43. #include <limits>
  44. #if defined(LLAVA_LOG_OFF)
  45. # define LOG_INF(...)
  46. # define LOG_WRN(...)
  47. # define LOG_ERR(...)
  48. # define LOG_DBG(...)
  49. #else // defined(LLAVA_LOG_OFF)
  50. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  51. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  52. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  53. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  54. #endif // defined(LLAVA_LOG_OFF)
  55. //#define CLIP_DEBUG_FUNCTIONS
  56. // RGB uint8 image
  57. struct clip_image_u8 {
  58. int nx;
  59. int ny;
  60. std::vector<uint8_t> buf;
  61. };
  62. // RGB float32 image (NHWC)
  63. // Memory layout: RGBRGBRGB...
  64. struct clip_image_f32 {
  65. int nx;
  66. int ny;
  67. std::vector<float> buf;
  68. };
  69. static std::string format(const char * fmt, ...) {
  70. va_list ap;
  71. va_list ap2;
  72. va_start(ap, fmt);
  73. va_copy(ap2, ap);
  74. int size = vsnprintf(NULL, 0, fmt, ap);
  75. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  76. std::vector<char> buf(size + 1);
  77. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  78. GGML_ASSERT(size2 == size);
  79. va_end(ap2);
  80. va_end(ap);
  81. return std::string(buf.data(), buf.size());
  82. }
  83. //
  84. // key constants
  85. //
  86. #define KEY_FTYPE "general.file_type"
  87. #define KEY_NAME "general.name"
  88. #define KEY_DESCRIPTION "general.description"
  89. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  90. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  91. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  92. #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
  93. #define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
  94. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  95. #define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
  96. #define KEY_USE_GELU "clip.use_gelu"
  97. #define KEY_USE_SILU "clip.use_silu"
  98. #define KEY_N_EMBD "clip.%s.embedding_length"
  99. #define KEY_N_FF "clip.%s.feed_forward_length"
  100. #define KEY_N_BLOCK "clip.%s.block_count"
  101. #define KEY_N_HEAD "clip.%s.attention.head_count"
  102. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  103. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  104. #define KEY_TOKENS "tokenizer.ggml.tokens"
  105. #define KEY_N_POSITIONS "clip.text.context_length"
  106. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  107. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  108. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  109. #define KEY_IMAGE_STD "clip.vision.image_std"
  110. #define KEY_PROJ_TYPE "clip.projector_type"
  111. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  112. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  113. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  114. //
  115. // tensor name constants
  116. //
  117. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  118. #define TN_POS_EMBD "%s.position_embd.weight"
  119. #define TN_CLASS_EMBD "v.class_embd"
  120. #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
  121. #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
  122. #define TN_PATCH_BIAS "v.patch_embd.bias"
  123. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  124. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  125. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  126. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  127. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  128. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  129. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  130. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  131. #define TN_LN_PRE "%s.pre_ln.%s"
  132. #define TN_LN_POST "%s.post_ln.%s"
  133. #define TN_TEXT_PROJ "text_projection.weight"
  134. #define TN_VIS_PROJ "visual_projection.weight"
  135. #define TN_LLAVA_PROJ "mm.%d.%s"
  136. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  137. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  138. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  139. #define TN_IMAGE_NEWLINE "model.image_newline"
  140. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  141. #define TN_MINICPMV_QUERY "resampler.query"
  142. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  143. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  144. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  145. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  146. #define TN_GLM_ADAPER_CONV "adapter.conv.%s"
  147. #define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
  148. #define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
  149. #define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
  150. #define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
  151. #define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
  152. #define TN_GLM_BOI_W "adapter.boi"
  153. #define TN_GLM_EOI_W "adapter.eoi"
  154. enum projector_type {
  155. PROJECTOR_TYPE_MLP,
  156. PROJECTOR_TYPE_MLP_NORM,
  157. PROJECTOR_TYPE_LDP,
  158. PROJECTOR_TYPE_LDPV2,
  159. PROJECTOR_TYPE_RESAMPLER,
  160. PROJECTOR_TYPE_GLM_EDGE,
  161. PROJECTOR_TYPE_MERGER,
  162. PROJECTOR_TYPE_UNKNOWN,
  163. };
  164. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  165. { PROJECTOR_TYPE_MLP, "mlp" },
  166. { PROJECTOR_TYPE_LDP, "ldp" },
  167. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  168. { PROJECTOR_TYPE_RESAMPLER, "resampler"},
  169. { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
  170. { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
  171. };
  172. //
  173. // utilities to get data from a gguf file
  174. //
  175. static int get_key_idx(const gguf_context * ctx, const char * key) {
  176. int i = gguf_find_key(ctx, key);
  177. if (i == -1) {
  178. LOG_ERR("key %s not found in file\n", key);
  179. throw std::runtime_error(format("Missing required key: %s", key));
  180. }
  181. return i;
  182. }
  183. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  184. const int i = get_key_idx(ctx, key.c_str());
  185. return gguf_get_val_u32(ctx, i);
  186. }
  187. static float get_f32(const gguf_context * ctx, const std::string & key) {
  188. const int i = get_key_idx(ctx, key.c_str());
  189. return gguf_get_val_f32(ctx, i);
  190. }
  191. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  192. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  193. if (!cur) {
  194. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  195. }
  196. return cur;
  197. }
  198. static std::string get_ftype(int ftype) {
  199. return ggml_type_name(static_cast<ggml_type>(ftype));
  200. }
  201. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  202. switch (type) {
  203. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  204. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  205. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  206. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  207. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  208. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  209. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  210. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  211. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  212. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  213. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  214. default: return format("unknown type %d", type);
  215. }
  216. }
  217. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  218. if (search.empty()) {
  219. return;
  220. }
  221. std::string builder;
  222. builder.reserve(s.length());
  223. size_t pos = 0;
  224. size_t last_pos = 0;
  225. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  226. builder.append(s, last_pos, pos - last_pos);
  227. builder.append(replace);
  228. last_pos = pos + search.length();
  229. }
  230. builder.append(s, last_pos, std::string::npos);
  231. s = std::move(builder);
  232. }
  233. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  234. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  235. switch (type) {
  236. case GGUF_TYPE_STRING:
  237. return gguf_get_val_str(ctx_gguf, i);
  238. case GGUF_TYPE_ARRAY:
  239. {
  240. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  241. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  242. const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
  243. std::stringstream ss;
  244. ss << "[";
  245. for (int j = 0; j < arr_n; j++) {
  246. if (arr_type == GGUF_TYPE_STRING) {
  247. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  248. // escape quotes
  249. replace_all(val, "\\", "\\\\");
  250. replace_all(val, "\"", "\\\"");
  251. ss << '"' << val << '"';
  252. } else if (arr_type == GGUF_TYPE_ARRAY) {
  253. ss << "???";
  254. } else {
  255. ss << gguf_data_to_str(arr_type, data, j);
  256. }
  257. if (j < arr_n - 1) {
  258. ss << ", ";
  259. }
  260. }
  261. ss << "]";
  262. return ss.str();
  263. }
  264. default:
  265. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  266. }
  267. }
  268. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  269. size_t tensor_size = ggml_nbytes(tensor);
  270. LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  271. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  272. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  273. }
  274. static projector_type clip_projector_type_from_string(const std::string & name) {
  275. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  276. if (kv.second == name) {
  277. return kv.first;
  278. }
  279. }
  280. return PROJECTOR_TYPE_UNKNOWN;
  281. }
  282. #ifdef CLIP_DEBUG_FUNCTIONS
  283. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  284. std::ofstream file(filename, std::ios::binary);
  285. if (!file.is_open()) {
  286. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  287. return;
  288. }
  289. // PPM header: P6 format, width, height, and max color value
  290. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  291. // Write pixel data
  292. for (size_t i = 0; i < img.buf.size(); i += 3) {
  293. // PPM expects binary data in RGB format, which matches our image buffer
  294. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  295. }
  296. file.close();
  297. }
  298. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  299. std::ofstream file(filename, std::ios::binary);
  300. if (!file.is_open()) {
  301. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  302. return;
  303. }
  304. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  305. int bytesPerPixel = 3;
  306. int widthInBytes = img.nx * bytesPerPixel;
  307. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  308. int stride = widthInBytes + paddingAmount;
  309. // Bitmap file header
  310. unsigned char fileHeader[14] = {
  311. 'B','M', // Signature
  312. 0,0,0,0, // Image file size in bytes
  313. 0,0,0,0, // Reserved
  314. 54,0,0,0 // Start of pixel array
  315. };
  316. // Total file size
  317. fileSize = 54 + (stride * img.ny);
  318. fileHeader[2] = (unsigned char)(fileSize);
  319. fileHeader[3] = (unsigned char)(fileSize >> 8);
  320. fileHeader[4] = (unsigned char)(fileSize >> 16);
  321. fileHeader[5] = (unsigned char)(fileSize >> 24);
  322. // Bitmap information header (BITMAPINFOHEADER)
  323. unsigned char infoHeader[40] = {
  324. 40,0,0,0, // Size of this header (40 bytes)
  325. 0,0,0,0, // Image width
  326. 0,0,0,0, // Image height
  327. 1,0, // Number of color planes
  328. 24,0, // Bits per pixel
  329. 0,0,0,0, // No compression
  330. 0,0,0,0, // Image size (can be 0 for no compression)
  331. 0,0,0,0, // X pixels per meter (not specified)
  332. 0,0,0,0, // Y pixels per meter (not specified)
  333. 0,0,0,0, // Total colors (color table not used)
  334. 0,0,0,0 // Important colors (all are important)
  335. };
  336. // Width and height in the information header
  337. infoHeader[4] = (unsigned char)(img.nx);
  338. infoHeader[5] = (unsigned char)(img.nx >> 8);
  339. infoHeader[6] = (unsigned char)(img.nx >> 16);
  340. infoHeader[7] = (unsigned char)(img.nx >> 24);
  341. infoHeader[8] = (unsigned char)(img.ny);
  342. infoHeader[9] = (unsigned char)(img.ny >> 8);
  343. infoHeader[10] = (unsigned char)(img.ny >> 16);
  344. infoHeader[11] = (unsigned char)(img.ny >> 24);
  345. // Write file headers
  346. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  347. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  348. // Pixel data
  349. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  350. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  351. for (int x = 0; x < img.nx; ++x) {
  352. // Each pixel
  353. size_t pixelIndex = (y * img.nx + x) * 3;
  354. unsigned char pixel[3] = {
  355. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  356. img.buf[pixelIndex + 1],
  357. img.buf[pixelIndex]
  358. };
  359. file.write(reinterpret_cast<char*>(pixel), 3);
  360. }
  361. // Write padding for the row
  362. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  363. }
  364. file.close();
  365. }
  366. // debug function to convert f32 to u8
  367. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  368. dst.nx = src.nx;
  369. dst.ny = src.ny;
  370. dst.buf.resize(3 * src.nx * src.ny);
  371. for (size_t i = 0; i < src.buf.size(); ++i) {
  372. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  373. }
  374. }
  375. #endif
  376. //
  377. // clip layers
  378. //
  379. struct clip_hparams {
  380. int32_t image_size;
  381. int32_t patch_size;
  382. int32_t hidden_size;
  383. int32_t n_intermediate;
  384. int32_t projection_dim;
  385. int32_t n_head;
  386. int32_t n_layer;
  387. float eps;
  388. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  389. int32_t image_grid_pinpoints[32];
  390. int32_t image_crop_resolution;
  391. };
  392. struct clip_layer {
  393. // attention
  394. struct ggml_tensor * k_w;
  395. struct ggml_tensor * k_b;
  396. struct ggml_tensor * q_w;
  397. struct ggml_tensor * q_b;
  398. struct ggml_tensor * v_w;
  399. struct ggml_tensor * v_b;
  400. struct ggml_tensor * o_w;
  401. struct ggml_tensor * o_b;
  402. // layernorm 1
  403. struct ggml_tensor * ln_1_w;
  404. struct ggml_tensor * ln_1_b;
  405. // ff
  406. struct ggml_tensor * ff_i_w;
  407. struct ggml_tensor * ff_i_b;
  408. struct ggml_tensor * ff_o_w;
  409. struct ggml_tensor * ff_o_b;
  410. // layernorm 2
  411. struct ggml_tensor * ln_2_w;
  412. struct ggml_tensor * ln_2_b;
  413. };
  414. struct clip_vision_model {
  415. struct clip_hparams hparams;
  416. // embeddings
  417. struct ggml_tensor * class_embedding;
  418. struct ggml_tensor * patch_embeddings_0;
  419. struct ggml_tensor * patch_embeddings_1; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  420. struct ggml_tensor * patch_bias;
  421. struct ggml_tensor * position_embeddings;
  422. struct ggml_tensor * pre_ln_w;
  423. struct ggml_tensor * pre_ln_b;
  424. std::vector<clip_layer> layers;
  425. struct ggml_tensor * post_ln_w;
  426. struct ggml_tensor * post_ln_b;
  427. struct ggml_tensor * projection;
  428. // LLaVA projection
  429. struct ggml_tensor * mm_0_w = NULL;
  430. struct ggml_tensor * mm_0_b = NULL;
  431. struct ggml_tensor * mm_2_w = NULL;
  432. struct ggml_tensor * mm_2_b = NULL;
  433. struct ggml_tensor * image_newline = NULL;
  434. // Yi type models with mlp+normalization projection
  435. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  436. struct ggml_tensor * mm_1_b = NULL;
  437. struct ggml_tensor * mm_3_w = NULL;
  438. struct ggml_tensor * mm_3_b = NULL;
  439. struct ggml_tensor * mm_4_w = NULL;
  440. struct ggml_tensor * mm_4_b = NULL;
  441. //GLMV-Edge projection
  442. struct ggml_tensor * mm_model_adapter_conv_w;
  443. struct ggml_tensor * mm_model_adapter_conv_b;
  444. struct ggml_tensor * boi_w;
  445. struct ggml_tensor * eoi_w;
  446. // MobileVLM projection
  447. struct ggml_tensor * mm_model_mlp_1_w;
  448. struct ggml_tensor * mm_model_mlp_1_b;
  449. struct ggml_tensor * mm_model_mlp_3_w;
  450. struct ggml_tensor * mm_model_mlp_3_b;
  451. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  452. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  453. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  454. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  455. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  456. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  457. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  458. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  459. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  460. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  461. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  462. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  463. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  464. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  465. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  466. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  467. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  468. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  469. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  470. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  471. // MobileVLM_V2 projection
  472. struct ggml_tensor * mm_model_mlp_0_w;
  473. struct ggml_tensor * mm_model_mlp_0_b;
  474. struct ggml_tensor * mm_model_mlp_2_w;
  475. struct ggml_tensor * mm_model_mlp_2_b;
  476. struct ggml_tensor * mm_model_peg_0_w;
  477. struct ggml_tensor * mm_model_peg_0_b;
  478. // MINICPMV projection
  479. struct ggml_tensor * mm_model_pos_embed_k;
  480. struct ggml_tensor * mm_model_query;
  481. struct ggml_tensor * mm_model_proj;
  482. struct ggml_tensor * mm_model_kv_proj;
  483. struct ggml_tensor * mm_model_attn_q_w;
  484. struct ggml_tensor * mm_model_attn_q_b;
  485. struct ggml_tensor * mm_model_attn_k_w;
  486. struct ggml_tensor * mm_model_attn_k_b;
  487. struct ggml_tensor * mm_model_attn_v_w;
  488. struct ggml_tensor * mm_model_attn_v_b;
  489. struct ggml_tensor * mm_model_attn_o_w;
  490. struct ggml_tensor * mm_model_attn_o_b;
  491. struct ggml_tensor * mm_model_ln_q_w;
  492. struct ggml_tensor * mm_model_ln_q_b;
  493. struct ggml_tensor * mm_model_ln_kv_w;
  494. struct ggml_tensor * mm_model_ln_kv_b;
  495. struct ggml_tensor * mm_model_ln_post_w;
  496. struct ggml_tensor * mm_model_ln_post_b;
  497. };
  498. struct clip_ctx {
  499. bool has_text_encoder = false;
  500. bool has_vision_encoder = false;
  501. bool has_llava_projector = false;
  502. bool has_minicpmv_projector = false;
  503. bool has_glm_projector = false;
  504. bool has_qwen2vl_merger = false;
  505. int minicpmv_version = 2;
  506. struct clip_vision_model vision_model;
  507. projector_type proj_type = PROJECTOR_TYPE_MLP;
  508. float image_mean[3];
  509. float image_std[3];
  510. bool use_gelu = false;
  511. bool use_silu = false;
  512. int32_t ftype = 1;
  513. bool has_class_embedding = true;
  514. bool has_pre_norm = true;
  515. bool has_post_norm = false;
  516. bool has_patch_bias = false;
  517. struct gguf_context * ctx_gguf;
  518. struct ggml_context * ctx_data;
  519. std::vector<uint8_t> buf_compute_meta;
  520. // memory buffers to evaluate the model
  521. ggml_backend_buffer_t params_buffer = NULL;
  522. ggml_backend_t backend = NULL;
  523. ggml_gallocr_t compute_alloc = NULL;
  524. struct clip_image_size * load_image_size;
  525. };
  526. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
  527. if (!ctx->has_vision_encoder) {
  528. LOG_ERR("This gguf file seems to have no vision encoder\n");
  529. return nullptr;
  530. }
  531. const auto & model = ctx->vision_model;
  532. const auto & hparams = model.hparams;
  533. const int image_size = hparams.image_size;
  534. int image_size_width = image_size;
  535. int image_size_height = image_size;
  536. if (ctx->has_minicpmv_projector) {
  537. if (load_image_size == nullptr) {
  538. load_image_size = clip_image_size_init();
  539. }
  540. LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
  541. image_size_width = load_image_size->width;
  542. image_size_height = load_image_size->height;
  543. if (is_inf) {
  544. image_size_width = imgs->data->nx;
  545. image_size_height = imgs->data->ny;
  546. }
  547. }
  548. else if (ctx->has_qwen2vl_merger) {
  549. // use the image's native resolution when image is avaible
  550. if (is_inf) {
  551. // if (imgs->data->nx && imgs->data->ny) {
  552. image_size_width = imgs->data->nx;
  553. image_size_height = imgs->data->ny;
  554. }
  555. }
  556. const int patch_size = hparams.patch_size;
  557. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  558. const int patches_w = image_size_width / patch_size;
  559. const int patches_h = image_size_height / patch_size;
  560. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  561. const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
  562. const int hidden_size = hparams.hidden_size;
  563. const int n_head = hparams.n_head;
  564. const int d_head = hidden_size / n_head;
  565. int n_layer = hparams.n_layer;
  566. const float eps = hparams.eps;
  567. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  568. const int batch_size = imgs->size;
  569. if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
  570. GGML_ASSERT(batch_size == 1);
  571. }
  572. struct ggml_init_params params = {
  573. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  574. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  575. /*.no_alloc =*/ true,
  576. };
  577. struct ggml_context * ctx0 = ggml_init(params);
  578. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  579. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  580. ggml_set_name(inp_raw, "inp_raw");
  581. ggml_set_input(inp_raw);
  582. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  583. if (ctx->has_qwen2vl_merger) {
  584. GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
  585. GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
  586. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  587. inp = ggml_add(ctx0, inp, inp_1);
  588. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  589. inp = ggml_reshape_4d(
  590. ctx0, inp,
  591. hidden_size * 2, patches_w / 2, patches_h, batch_size);
  592. inp = ggml_reshape_4d(
  593. ctx0, inp,
  594. hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
  595. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  596. inp = ggml_reshape_3d(
  597. ctx0, inp,
  598. hidden_size, patches_w * patches_h, batch_size);
  599. }
  600. else {
  601. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  602. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  603. }
  604. if (ctx->has_patch_bias) {
  605. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  606. inp = ggml_add(ctx0, inp, model.patch_bias);
  607. }
  608. struct ggml_tensor * embeddings = inp;
  609. struct ggml_tensor * pos_embed = nullptr;
  610. if (ctx->has_llava_projector) {
  611. // concat class_embeddings and patch_embeddings
  612. if (ctx->has_class_embedding) {
  613. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  614. ggml_set_name(embeddings, "embeddings");
  615. ggml_set_input(embeddings);
  616. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  617. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  618. embeddings = ggml_acc(ctx0, embeddings, inp,
  619. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  620. }
  621. }
  622. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  623. ggml_set_name(positions, "positions");
  624. ggml_set_input(positions);
  625. if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
  626. embeddings =
  627. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  628. }
  629. if (ctx->has_minicpmv_projector) {
  630. int pos_w = image_size_width/patch_size;
  631. int pos_h = image_size_height/patch_size;
  632. if (ctx->minicpmv_version == 2) {
  633. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  634. }
  635. else if (ctx->minicpmv_version == 3) {
  636. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  637. }
  638. else if (ctx->minicpmv_version == 4) {
  639. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  640. }
  641. ggml_set_name(pos_embed, "pos_embed");
  642. ggml_set_input(pos_embed);
  643. }
  644. // pre-layernorm
  645. if (ctx->has_pre_norm) {
  646. embeddings = ggml_norm(ctx0, embeddings, eps);
  647. ggml_set_name(embeddings, "pre_ln");
  648. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  649. }
  650. // loop over layers
  651. if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
  652. n_layer += 1;
  653. }
  654. for (int il = 0; il < n_layer - 1; il++) {
  655. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  656. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  657. // layernorm1
  658. {
  659. cur = ggml_norm(ctx0, cur, eps);
  660. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  661. model.layers[il].ln_1_b);
  662. }
  663. // self-attention
  664. {
  665. struct ggml_tensor * Q =
  666. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  667. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  668. if (ctx->has_qwen2vl_merger) {
  669. Q = ggml_rope_multi(
  670. ctx0, Q, positions, nullptr,
  671. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  672. }
  673. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  674. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  675. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  676. struct ggml_tensor * K =
  677. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  678. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  679. if (ctx->has_qwen2vl_merger) {
  680. K = ggml_rope_multi(
  681. ctx0, K, positions, nullptr,
  682. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  683. }
  684. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  685. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  686. struct ggml_tensor * V =
  687. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  688. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  689. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  690. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  691. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  692. KQ = ggml_soft_max_inplace(ctx0, KQ);
  693. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  694. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  695. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  696. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  697. }
  698. // attention output
  699. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  700. // re-add the layer input, e.g., residual
  701. cur = ggml_add(ctx0, cur, embeddings);
  702. embeddings = cur; // embeddings = residual, cur = hidden_states
  703. // layernorm2
  704. {
  705. cur = ggml_norm(ctx0, cur, eps);
  706. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  707. }
  708. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  709. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  710. if (ctx->use_gelu) {
  711. cur = ggml_gelu_inplace(ctx0, cur);
  712. } else if (ctx->use_silu) {
  713. cur = ggml_silu_inplace(ctx0, cur);
  714. } else {
  715. cur = ggml_gelu_quick_inplace(ctx0, cur);
  716. }
  717. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  718. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  719. // residual 2
  720. cur = ggml_add(ctx0, embeddings, cur);
  721. embeddings = cur;
  722. }
  723. // post-layernorm
  724. if (ctx->has_post_norm) {
  725. embeddings = ggml_norm(ctx0, embeddings, eps);
  726. ggml_set_name(embeddings, "post_ln");
  727. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  728. }
  729. // llava projector
  730. if (ctx->has_llava_projector) {
  731. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  732. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  733. ggml_set_name(patches, "patches");
  734. ggml_set_input(patches);
  735. // shape [1, 576, 1024]
  736. // ne is whcn, ne = [1024, 576, 1, 1]
  737. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  738. // print_tensor_info(embeddings, "embeddings");
  739. // llava projector
  740. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  741. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  742. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  743. embeddings = ggml_gelu(ctx0, embeddings);
  744. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  745. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  746. }
  747. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  748. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  749. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  750. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  751. // First LayerNorm
  752. embeddings = ggml_norm(ctx0, embeddings, eps);
  753. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  754. model.mm_1_b);
  755. // GELU activation
  756. embeddings = ggml_gelu(ctx0, embeddings);
  757. // Second linear layer
  758. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  759. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  760. // Second LayerNorm
  761. embeddings = ggml_norm(ctx0, embeddings, eps);
  762. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  763. model.mm_4_b);
  764. }
  765. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  766. // MobileVLM projector
  767. int n_patch = 24;
  768. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  769. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  770. mlp_1 = ggml_gelu(ctx0, mlp_1);
  771. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  772. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  773. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  774. // block 1
  775. struct ggml_tensor * block_1 = nullptr;
  776. {
  777. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  778. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  779. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  780. // stride = 1, padding = 1, bias is nullptr
  781. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  782. // layer norm
  783. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  784. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  785. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  786. block_1 = ggml_norm(ctx0, block_1, eps);
  787. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  788. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  789. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  790. // hardswish
  791. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  792. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  793. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  794. // pointwise conv
  795. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  796. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  797. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  798. block_1 = ggml_relu(ctx0, block_1);
  799. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  800. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  801. block_1 = ggml_hardsigmoid(ctx0, block_1);
  802. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  803. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  804. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  805. int w = block_1->ne[0], h = block_1->ne[1];
  806. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  807. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  808. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  809. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  810. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  811. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  812. block_1 = ggml_norm(ctx0, block_1, eps);
  813. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  814. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  815. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  816. // residual
  817. block_1 = ggml_add(ctx0, mlp_3, block_1);
  818. }
  819. // block_2
  820. {
  821. // stride = 2
  822. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  823. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  824. // layer norm
  825. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  826. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  827. block_1 = ggml_norm(ctx0, block_1, eps);
  828. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  829. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  830. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  831. // hardswish
  832. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  833. // not sure the parameters is right for globalAvgPooling
  834. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  835. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  836. // pointwise conv
  837. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  838. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  839. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  840. block_1 = ggml_relu(ctx0, block_1);
  841. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  842. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  843. block_1 = ggml_hardsigmoid(ctx0, block_1);
  844. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  845. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  846. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  847. int w = block_1->ne[0], h = block_1->ne[1];
  848. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  849. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  850. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  851. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  852. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  853. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  854. block_1 = ggml_norm(ctx0, block_1, eps);
  855. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  856. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  857. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  858. }
  859. embeddings = block_1;
  860. }
  861. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  862. {
  863. int n_patch = 24;
  864. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  865. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  866. mlp_0 = ggml_gelu(ctx0, mlp_0);
  867. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  868. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  869. // mlp_2 ne = [2048, 576, 1, 1]
  870. // // AVG Pool Layer 2*2, strides = 2
  871. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  872. // mlp_2 ne = [576, 2048, 1, 1]
  873. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  874. // mlp_2 ne [24, 24, 2048, 1]
  875. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  876. // weight ne = [3, 3, 2048, 1]
  877. struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  878. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  879. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  880. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  881. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  882. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  883. embeddings = peg_0;
  884. }
  885. else {
  886. GGML_ABORT("fatal error");
  887. }
  888. }
  889. // minicpmv projector
  890. else if (ctx->has_minicpmv_projector)
  891. {
  892. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  893. struct ggml_tensor * q = model.mm_model_query;
  894. { // layernorm
  895. q = ggml_norm(ctx0, q, eps);
  896. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  897. }
  898. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  899. { // layernorm
  900. v = ggml_norm(ctx0, v, eps);
  901. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  902. }
  903. struct ggml_tensor * k;
  904. { // position
  905. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  906. k = ggml_add(ctx0, v, pos_embed);
  907. }
  908. { // attention
  909. int hidden_size = 4096;
  910. const int d_head = 128;
  911. int n_head = hidden_size/d_head;
  912. int num_query = 96;
  913. if (ctx->minicpmv_version == 2) {
  914. hidden_size = 4096;
  915. n_head = hidden_size/d_head;
  916. num_query = 96;
  917. }
  918. else if (ctx->minicpmv_version == 3) {
  919. hidden_size = 3584;
  920. n_head = hidden_size/d_head;
  921. num_query = 64;
  922. }
  923. else if (ctx->minicpmv_version == 4) {
  924. hidden_size = 3584;
  925. n_head = hidden_size/d_head;
  926. num_query = 64;
  927. }
  928. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  929. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  930. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  931. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  932. // permute
  933. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  934. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  935. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  936. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  937. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  938. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  939. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  940. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  941. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  942. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  943. KQ = ggml_soft_max_inplace(ctx0, KQ);
  944. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  945. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  946. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  947. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  948. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  949. }
  950. { // layernorm
  951. embeddings = ggml_norm(ctx0, embeddings, eps);
  952. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  953. }
  954. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  955. }
  956. else {
  957. GGML_ASSERT(false);
  958. }
  959. }
  960. // glm projector
  961. else if (ctx->has_glm_projector) {
  962. if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  963. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  964. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  965. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  966. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  967. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  968. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  969. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  970. //GLU
  971. {
  972. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  973. embeddings = ggml_norm(ctx0, embeddings, eps);
  974. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  975. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  976. struct ggml_tensor * x = embeddings;
  977. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  978. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  979. embeddings = ggml_silu_inplace(ctx0, embeddings);
  980. embeddings = ggml_mul(ctx0, embeddings,x);
  981. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  982. }
  983. } else {
  984. GGML_ABORT("fatel error");
  985. }
  986. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  987. embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
  988. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  989. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  990. // GELU activation
  991. embeddings = ggml_gelu(ctx0, embeddings);
  992. // Second linear layer
  993. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  994. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  995. }
  996. // build the graph
  997. ggml_build_forward_expand(gf, embeddings);
  998. ggml_free(ctx0);
  999. return gf;
  1000. }
  1001. // read and create ggml_context containing the tensors and their data
  1002. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  1003. struct ggml_context * meta = NULL;
  1004. struct gguf_init_params params = {
  1005. /*.no_alloc = */ true,
  1006. /*.ctx = */ &meta,
  1007. };
  1008. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  1009. if (!ctx) {
  1010. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1011. }
  1012. if (verbosity >= 1) {
  1013. const int n_tensors = gguf_get_n_tensors(ctx);
  1014. const int n_kv = gguf_get_n_kv(ctx);
  1015. const int ftype = get_u32(ctx, KEY_FTYPE);
  1016. const std::string ftype_str = get_ftype(ftype);
  1017. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  1018. const std::string description = gguf_get_val_str(ctx, idx_desc);
  1019. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  1020. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  1021. const std::string name = gguf_get_val_str(ctx, idx_name);
  1022. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1023. }
  1024. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1025. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  1026. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  1027. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1028. LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
  1029. LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
  1030. LOG_INF("\n");
  1031. }
  1032. const int n_tensors = gguf_get_n_tensors(ctx);
  1033. // kv
  1034. const int n_kv = gguf_get_n_kv(ctx);
  1035. LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  1036. __func__, n_kv, n_tensors, fname);
  1037. {
  1038. std::map<enum ggml_type, uint32_t> n_type;
  1039. for (int i = 0; i < n_tensors; i++) {
  1040. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1041. n_type[type]++;
  1042. }
  1043. LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  1044. for (int i = 0; i < n_kv; i++) {
  1045. const char * name = gguf_get_key(ctx, i);
  1046. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  1047. const std::string type_name =
  1048. type == GGUF_TYPE_ARRAY
  1049. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  1050. : gguf_type_name(type);
  1051. std::string value = gguf_kv_to_str(ctx, i);
  1052. const size_t MAX_VALUE_LEN = 40;
  1053. if (value.size() > MAX_VALUE_LEN) {
  1054. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  1055. }
  1056. replace_all(value, "\n", "\\n");
  1057. LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  1058. }
  1059. // print type counts
  1060. for (auto & kv : n_type) {
  1061. if (kv.second == 0) {
  1062. continue;
  1063. }
  1064. LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1065. }
  1066. }
  1067. // data
  1068. size_t model_size = 0;
  1069. {
  1070. for (int i = 0; i < n_tensors; ++i) {
  1071. const char * name = gguf_get_tensor_name(ctx, i);
  1072. const size_t offset = gguf_get_tensor_offset(ctx, i);
  1073. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1074. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  1075. size_t tensor_size = ggml_nbytes(cur);
  1076. model_size += tensor_size;
  1077. if (verbosity >= 3) {
  1078. LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1079. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1080. }
  1081. }
  1082. }
  1083. clip_ctx * new_clip = new clip_ctx{};
  1084. // update projector type
  1085. {
  1086. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  1087. if (idx != -1) {
  1088. const std::string proj_type = gguf_get_val_str(ctx, idx);
  1089. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  1090. } else {
  1091. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  1092. }
  1093. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  1094. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  1095. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  1096. }
  1097. }
  1098. }
  1099. //#ifdef GGML_USE_CUDA
  1100. // new_clip->backend = ggml_backend_cuda_init(0);
  1101. // LOG_INF("%s: CLIP using CUDA backend\n", __func__);
  1102. //#endif
  1103. //
  1104. //#ifdef GGML_USE_METAL
  1105. // new_clip->backend = ggml_backend_metal_init();
  1106. // LOG_INF("%s: CLIP using Metal backend\n", __func__);
  1107. //#endif
  1108. //
  1109. //#ifdef GGML_USE_CANN
  1110. // new_clip->backend = ggml_backend_cann_init(0);
  1111. // LOG_INF("%s: CLIP using CANN backend\n", __func__);
  1112. //#endif
  1113. //
  1114. //#ifdef GGML_USE_VULKAN
  1115. // new_clip->backend = ggml_backend_vk_init(0);
  1116. // LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
  1117. //#endif
  1118. //
  1119. //#ifdef GGML_USE_SYCL
  1120. // new_clip->backend = ggml_backend_sycl_init(0);
  1121. // LOG_INF("%s: CLIP using SYCL backend\n", __func__);
  1122. //#endif
  1123. if (!new_clip->backend) {
  1124. new_clip->backend = ggml_backend_cpu_init();
  1125. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  1126. }
  1127. // model size and capabilities
  1128. {
  1129. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  1130. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  1131. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  1132. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  1133. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  1134. if (idx != -1) {
  1135. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  1136. }
  1137. idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
  1138. if (idx != -1) {
  1139. new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
  1140. }
  1141. idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
  1142. if (idx != -1) {
  1143. new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
  1144. }
  1145. idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
  1146. if (idx != -1) {
  1147. new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
  1148. }
  1149. idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
  1150. if (idx != -1) {
  1151. new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
  1152. }
  1153. // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  1154. GGML_ASSERT(new_clip->has_vision_encoder);
  1155. GGML_ASSERT(!new_clip->has_text_encoder);
  1156. idx = get_key_idx(ctx, KEY_USE_GELU);
  1157. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  1158. try {
  1159. idx = get_key_idx(ctx, KEY_USE_SILU);
  1160. new_clip->use_silu = gguf_get_val_bool(ctx, idx);
  1161. } catch (std::runtime_error & /*e*/) {
  1162. new_clip->use_silu = false;
  1163. }
  1164. if (verbosity >= 1) {
  1165. LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  1166. LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  1167. LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  1168. LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
  1169. LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
  1170. LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  1171. LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  1172. }
  1173. }
  1174. LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  1175. // load tensors
  1176. {
  1177. std::vector<uint8_t> read_buf;
  1178. struct ggml_init_params params = {
  1179. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  1180. /*.mem_buffer =*/ NULL,
  1181. /*.no_alloc =*/ true,
  1182. };
  1183. new_clip->ctx_data = ggml_init(params);
  1184. if (!new_clip->ctx_data) {
  1185. LOG_ERR("%s: ggml_init() failed\n", __func__);
  1186. clip_free(new_clip);
  1187. gguf_free(ctx);
  1188. return nullptr;
  1189. }
  1190. auto fin = std::ifstream(fname, std::ios::binary);
  1191. if (!fin) {
  1192. LOG_ERR("cannot open model file for loading tensors\n");
  1193. clip_free(new_clip);
  1194. gguf_free(ctx);
  1195. return nullptr;
  1196. }
  1197. // add tensors to context
  1198. for (int i = 0; i < n_tensors; ++i) {
  1199. const char * name = gguf_get_tensor_name(ctx, i);
  1200. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  1201. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  1202. ggml_set_name(cur, name);
  1203. }
  1204. // alloc memory and offload data
  1205. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  1206. for (int i = 0; i < n_tensors; ++i) {
  1207. const char * name = gguf_get_tensor_name(ctx, i);
  1208. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  1209. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  1210. fin.seekg(offset, std::ios::beg);
  1211. if (!fin) {
  1212. LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
  1213. clip_free(new_clip);
  1214. gguf_free(ctx);
  1215. return nullptr;
  1216. }
  1217. int num_bytes = ggml_nbytes(cur);
  1218. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  1219. // for the CPU and Metal backend, we can read directly into the tensor
  1220. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1221. } else {
  1222. // read into a temporary buffer first, then copy to device memory
  1223. read_buf.resize(num_bytes);
  1224. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1225. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1226. }
  1227. }
  1228. fin.close();
  1229. }
  1230. // vision model
  1231. if (new_clip->has_vision_encoder) {
  1232. // load vision model
  1233. auto & vision_model = new_clip->vision_model;
  1234. auto & hparams = vision_model.hparams;
  1235. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  1236. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  1237. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  1238. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  1239. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  1240. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  1241. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  1242. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  1243. try {
  1244. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  1245. int n = gguf_get_arr_n(ctx, idx);
  1246. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1247. for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
  1248. hparams.image_grid_pinpoints[i] = pinpoints[i];
  1249. }
  1250. if (n < 32)
  1251. hparams.image_grid_pinpoints[n] = 0;
  1252. } catch (std::runtime_error & /*e*/) {
  1253. hparams.image_grid_pinpoints[0]=0;
  1254. }
  1255. try {
  1256. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  1257. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  1258. } catch (std::runtime_error & /*e*/) {
  1259. strcpy(hparams.mm_patch_merge_type, "flat");
  1260. }
  1261. try {
  1262. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  1263. } catch(const std::exception& /*e*/) {
  1264. hparams.image_crop_resolution = hparams.image_size;
  1265. }
  1266. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  1267. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  1268. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  1269. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  1270. for (int i = 0; i < 3; ++i) {
  1271. new_clip->image_mean[i] = mean_data[i];
  1272. new_clip->image_std[i] = std_data[i];
  1273. }
  1274. if (verbosity >= 2) {
  1275. LOG_INF("\n%s: vision model hparams\n", __func__);
  1276. LOG_INF("image_size %d\n", hparams.image_size);
  1277. LOG_INF("patch_size %d\n", hparams.patch_size);
  1278. LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
  1279. LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
  1280. LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
  1281. LOG_INF("v_n_head %d\n", hparams.n_head);
  1282. LOG_INF("v_n_layer %d\n", hparams.n_layer);
  1283. LOG_INF("v_eps %f\n", hparams.eps);
  1284. LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  1285. LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  1286. LOG_INF("v_image_grid_pinpoints: ");
  1287. for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
  1288. LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
  1289. }
  1290. LOG_INF("\n");
  1291. LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  1292. }
  1293. try {
  1294. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  1295. new_clip->has_class_embedding = true;
  1296. } catch (const std::exception& /*e*/) {
  1297. new_clip->has_class_embedding = false;
  1298. }
  1299. try {
  1300. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  1301. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  1302. new_clip->has_pre_norm = true;
  1303. } catch (std::exception & /*e*/) {
  1304. new_clip->has_pre_norm = false;
  1305. }
  1306. try {
  1307. vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
  1308. vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
  1309. new_clip->has_post_norm = true;
  1310. } catch (std::exception & /*e*/) {
  1311. new_clip->has_post_norm = false;
  1312. }
  1313. try {
  1314. vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
  1315. new_clip->has_patch_bias = true;
  1316. } catch (std::exception & /*e*/) {
  1317. new_clip->has_patch_bias = false;
  1318. }
  1319. try {
  1320. vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  1321. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  1322. } catch(const std::exception& /*e*/) {
  1323. LOG_ERR("%s: failed to load vision model tensors\n", __func__);
  1324. }
  1325. try {
  1326. vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
  1327. } catch(const std::exception& /*e*/) {
  1328. new_clip->has_qwen2vl_merger = false;
  1329. }
  1330. // LLaVA projection
  1331. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1332. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1333. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1334. try {
  1335. // Yi-type llava
  1336. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  1337. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  1338. } catch (std::runtime_error & /*e*/) { }
  1339. try {
  1340. // missing in Yi-type llava
  1341. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1342. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1343. } catch (std::runtime_error & /*e*/) { }
  1344. try {
  1345. // Yi-type llava
  1346. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  1347. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  1348. } catch (std::runtime_error & /*e*/) { }
  1349. try {
  1350. // Yi-type llava
  1351. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  1352. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  1353. } catch (std::runtime_error & /*e*/) { }
  1354. try {
  1355. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  1356. // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
  1357. } catch (std::runtime_error & /*e*/) { }
  1358. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1359. // MobileVLM projection
  1360. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1361. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1362. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1363. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1364. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1365. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1366. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1367. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1368. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1369. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1370. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1371. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1372. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1373. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1374. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1375. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1376. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1377. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1378. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1379. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1380. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1381. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1382. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1383. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1384. }
  1385. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1386. {
  1387. // MobilVLM_V2 projection
  1388. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1389. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1390. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1391. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1392. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1393. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1394. }
  1395. else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1396. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1397. vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
  1398. vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
  1399. vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
  1400. vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
  1401. vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
  1402. vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
  1403. vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
  1404. vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
  1405. vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
  1406. vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
  1407. vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
  1408. vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
  1409. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
  1410. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
  1411. vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
  1412. vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
  1413. vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
  1414. vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
  1415. }
  1416. else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  1417. vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
  1418. vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
  1419. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
  1420. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
  1421. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
  1422. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
  1423. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
  1424. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
  1425. vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
  1426. vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
  1427. }
  1428. else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
  1429. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1430. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1431. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1432. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1433. }
  1434. else {
  1435. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1436. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1437. }
  1438. vision_model.layers.resize(hparams.n_layer);
  1439. for (int il = 0; il < hparams.n_layer; ++il) {
  1440. auto & layer = vision_model.layers[il];
  1441. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1442. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1443. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1444. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1445. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1446. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1447. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1448. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1449. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1450. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1451. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1452. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1453. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1454. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1455. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1456. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1457. }
  1458. }
  1459. ggml_free(meta);
  1460. new_clip->ctx_gguf = ctx;
  1461. // measure mem requirement and allocate
  1462. {
  1463. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1464. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1465. clip_image_f32_batch batch;
  1466. batch.size = 1;
  1467. batch.data = nullptr;
  1468. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
  1469. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1470. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1471. LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1472. }
  1473. return new_clip;
  1474. }
  1475. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1476. ctx_clip->load_image_size = load_image_size;
  1477. }
  1478. struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
  1479. return ctx_clip->load_image_size;
  1480. }
  1481. struct clip_image_size * clip_image_size_init() {
  1482. struct clip_image_size * load_image_size = new struct clip_image_size();
  1483. load_image_size->width = 448;
  1484. load_image_size->height = 448;
  1485. return load_image_size;
  1486. }
  1487. struct clip_image_u8 * clip_image_u8_init() {
  1488. return new clip_image_u8();
  1489. }
  1490. struct clip_image_f32 * clip_image_f32_init() {
  1491. return new clip_image_f32();
  1492. }
  1493. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1494. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1495. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1496. if (batch->size > 0) {
  1497. delete[] batch->data;
  1498. batch->size = 0;
  1499. }
  1500. }
  1501. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1502. if (batch->size > 0) {
  1503. delete[] batch->data;
  1504. batch->size = 0;
  1505. }
  1506. }
  1507. static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
  1508. img->nx = nx;
  1509. img->ny = ny;
  1510. img->buf.resize(3 * nx * ny);
  1511. memcpy(img->buf.data(), data, img->buf.size());
  1512. }
  1513. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1514. int nx, ny, nc;
  1515. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1516. if (!data) {
  1517. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  1518. return false;
  1519. }
  1520. build_clip_img_from_data(data, nx, ny, img);
  1521. stbi_image_free(data);
  1522. return true;
  1523. }
  1524. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1525. int nx, ny, nc;
  1526. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1527. if (!data) {
  1528. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  1529. return false;
  1530. }
  1531. build_clip_img_from_data(data, nx, ny, img);
  1532. stbi_image_free(data);
  1533. return true;
  1534. }
  1535. // Linear interpolation between two points
  1536. inline float clip_lerp(float s, float e, float t) {
  1537. return s + (e - s) * t;
  1538. }
  1539. // Bilinear resize function
  1540. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1541. dst.nx = target_width;
  1542. dst.ny = target_height;
  1543. dst.buf.resize(3 * target_width * target_height);
  1544. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1545. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1546. for (int y = 0; y < target_height; y++) {
  1547. for (int x = 0; x < target_width; x++) {
  1548. float px = x_ratio * x;
  1549. float py = y_ratio * y;
  1550. int x_floor = static_cast<int>(px);
  1551. int y_floor = static_cast<int>(py);
  1552. float x_lerp = px - x_floor;
  1553. float y_lerp = py - y_floor;
  1554. for (int c = 0; c < 3; c++) {
  1555. float top = clip_lerp(
  1556. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1557. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1558. x_lerp
  1559. );
  1560. float bottom = clip_lerp(
  1561. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1562. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1563. x_lerp
  1564. );
  1565. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1566. }
  1567. }
  1568. }
  1569. }
  1570. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1571. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1572. dst->nx = src->nx;
  1573. dst->ny = src->ny;
  1574. dst->buf.resize(src->buf.size());
  1575. for (size_t i = 0; i < src->buf.size(); ++i) {
  1576. int c = i % 3; // rgb
  1577. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1578. }
  1579. }
  1580. inline int clip(int x, int lower, int upper) {
  1581. return std::max(lower, std::min(x, upper));
  1582. }
  1583. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1584. const int nx = img.nx;
  1585. const int ny = img.ny;
  1586. dst.nx = target_width;
  1587. dst.ny = target_height;
  1588. dst.buf.resize(3 * target_width * target_height);
  1589. float Cc;
  1590. float C[5];
  1591. float d0, d2, d3, a0, a1, a2, a3;
  1592. int i, j, k, jj;
  1593. int x, y;
  1594. float dx, dy;
  1595. float tx, ty;
  1596. tx = (float)nx / (float)target_width;
  1597. ty = (float)ny / (float)target_height;
  1598. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1599. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1600. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1601. for (i = 0; i < target_height; i++) {
  1602. for (j = 0; j < target_width; j++) {
  1603. x = (int)(tx * j);
  1604. y = (int)(ty * i);
  1605. dx = tx * j - x;
  1606. dy = ty * i - y;
  1607. for (k = 0; k < 3; k++) {
  1608. for (jj = 0; jj <= 3; jj++) {
  1609. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1610. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1611. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1612. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1613. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1614. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1615. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1616. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1617. d0 = C[0] - C[1];
  1618. d2 = C[2] - C[1];
  1619. d3 = C[3] - C[1];
  1620. a0 = C[1];
  1621. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1622. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1623. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1624. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1625. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1626. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1627. }
  1628. }
  1629. }
  1630. }
  1631. return true;
  1632. }
  1633. // llava-1.6 type of resize_and_pad (black)
  1634. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1635. int target_width = target_resolution.first;
  1636. int target_height = target_resolution.second;
  1637. float scale_w = static_cast<float>(target_width) / image.nx;
  1638. float scale_h = static_cast<float>(target_height) / image.ny;
  1639. int new_width, new_height;
  1640. if (scale_w < scale_h) {
  1641. new_width = target_width;
  1642. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1643. } else {
  1644. new_height = target_height;
  1645. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1646. }
  1647. clip_image_u8 resized_image;
  1648. // bilinear_resize(image, resized_image, new_width, new_height);
  1649. bicubic_resize(image, resized_image, new_width, new_height);
  1650. clip_image_u8 padded_image;
  1651. padded_image.nx = target_width;
  1652. padded_image.ny = target_height;
  1653. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1654. // Calculate padding offsets
  1655. int pad_x = (target_width - new_width) / 2;
  1656. int pad_y = (target_height - new_height) / 2;
  1657. // Copy the resized image into the center of the padded buffer
  1658. for (int y = 0; y < new_height; ++y) {
  1659. for (int x = 0; x < new_width; ++x) {
  1660. for (int c = 0; c < 3; ++c) {
  1661. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1662. }
  1663. }
  1664. }
  1665. image_output = std::move(padded_image);
  1666. }
  1667. /**
  1668. * Selects the best resolution from a list of possible resolutions based on the original size.
  1669. *
  1670. * @param original_size The original size of the image in the format (width, height).
  1671. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1672. * @return The best fit resolution in the format (width, height).
  1673. */
  1674. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1675. int original_width = original_size.first;
  1676. int original_height = original_size.second;
  1677. std::pair<int, int> best_fit;
  1678. int max_effective_resolution = 0;
  1679. int min_wasted_resolution = std::numeric_limits<int>::max();
  1680. for (const auto& resolution : possible_resolutions) {
  1681. int width = resolution.first;
  1682. int height = resolution.second;
  1683. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1684. int downscaled_width = static_cast<int>(original_width * scale);
  1685. int downscaled_height = static_cast<int>(original_height * scale);
  1686. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1687. int wasted_resolution = (width * height) - effective_resolution;
  1688. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1689. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1690. max_effective_resolution = effective_resolution;
  1691. min_wasted_resolution = wasted_resolution;
  1692. best_fit = resolution;
  1693. }
  1694. }
  1695. return best_fit;
  1696. }
  1697. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1698. std::vector<clip_image_u8*> patches;
  1699. int width = image.nx;
  1700. int height = image.ny;
  1701. for (int i = 0; i < height; i += patch_size) {
  1702. for (int j = 0; j < width; j += patch_size) {
  1703. clip_image_u8 *patch = clip_image_u8_init();
  1704. patch->nx = std::min(patch_size, width - j);
  1705. patch->ny = std::min(patch_size, height - i);
  1706. patch->buf.resize(3 * patch->nx * patch->ny);
  1707. for (int y = 0; y < patch->ny; ++y) {
  1708. for (int x = 0; x < patch->nx; ++x) {
  1709. for (int c = 0; c < 3; ++c) {
  1710. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1711. }
  1712. }
  1713. }
  1714. patches.push_back(patch);
  1715. }
  1716. }
  1717. return patches;
  1718. }
  1719. static int ensure_divide(int length, int patch_size) {
  1720. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1721. }
  1722. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1723. int width = original_size.first;
  1724. int height = original_size.second;
  1725. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1726. float r = static_cast<float>(width) / height;
  1727. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1728. width = static_cast<int>(height * r);
  1729. }
  1730. int best_width = ensure_divide(width, patch_size);
  1731. int best_height = ensure_divide(height, patch_size);
  1732. return std::make_pair(best_width, best_height);
  1733. }
  1734. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1735. int width, height;
  1736. std::tie(width, height) = original_size;
  1737. int grid_x, grid_y;
  1738. std::tie(grid_x, grid_y) = grid;
  1739. int refine_width = ensure_divide(width, grid_x);
  1740. int refine_height = ensure_divide(height, grid_y);
  1741. int grid_width = refine_width / grid_x;
  1742. int grid_height = refine_height / grid_y;
  1743. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1744. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1745. int best_grid_width, best_grid_height;
  1746. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1747. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1748. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1749. return refine_size;
  1750. }
  1751. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1752. std::vector<int> candidate_split_grids_nums;
  1753. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1754. if (i == 1 || i > max_slice_nums) {
  1755. continue;
  1756. }
  1757. candidate_split_grids_nums.push_back(i);
  1758. }
  1759. std::vector<std::pair<int, int>> candidate_grids;
  1760. for (int split_grids_nums : candidate_split_grids_nums) {
  1761. int m = 1;
  1762. while (m <= split_grids_nums) {
  1763. if (split_grids_nums % m == 0) {
  1764. candidate_grids.emplace_back(m, split_grids_nums / m);
  1765. }
  1766. ++m;
  1767. }
  1768. }
  1769. std::pair<int, int> best_grid{1, 1};
  1770. float min_error = std::numeric_limits<float>::infinity();
  1771. for (const auto& grid : candidate_grids) {
  1772. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1773. if (error < min_error) {
  1774. best_grid = grid;
  1775. min_error = error;
  1776. }
  1777. }
  1778. return best_grid;
  1779. }
  1780. // inspired from LLaVA-UHD:
  1781. // -> https://arxiv.org/pdf/2403.11703
  1782. // -> https://github.com/thunlp/LLaVA-UHD
  1783. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1784. static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1785. const std::pair<int, int> original_size={img->nx,img->ny};
  1786. const int original_width = img->nx;
  1787. const int original_height = img->ny;
  1788. const float log_ratio = log(1.0*original_width/original_height);
  1789. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1790. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1791. std::vector<std::vector<clip_image_u8 *>> images;
  1792. LOG_INF("%s: multiple %d\n", __func__, multiple);
  1793. images.push_back(std::vector<clip_image_u8 *>());
  1794. if (multiple <= 1) {
  1795. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1796. clip_image_u8 * source_image = clip_image_u8_init();
  1797. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1798. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1799. images[images.size()-1].push_back(source_image);
  1800. }
  1801. else if (multiple > 1) {
  1802. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1803. clip_image_u8 * source_image = clip_image_u8_init();
  1804. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1805. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1806. LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1807. images[images.size()-1].push_back(source_image);
  1808. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1809. LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1810. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1811. clip_image_u8 * refine_image = clip_image_u8_init();
  1812. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1813. LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1814. // split_to_patches
  1815. int width = refine_image->nx;
  1816. int height = refine_image->ny;
  1817. int grid_x = int(width / best_grid.first);
  1818. int grid_y = int(height / best_grid.second);
  1819. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1820. images.push_back(std::vector<clip_image_u8 *>());
  1821. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1822. clip_image_u8 * patch = clip_image_u8_init();
  1823. patch->nx = grid_x;
  1824. patch->ny = grid_y;
  1825. patch->buf.resize(3 * patch->nx * patch->ny);
  1826. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1827. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1828. const int i = 3 * (y * refine_image->nx + x);
  1829. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1830. patch->buf[j] = refine_image->buf[i];
  1831. patch->buf[j+1] = refine_image->buf[i+1];
  1832. patch->buf[j+2] = refine_image->buf[i+2];
  1833. }
  1834. }
  1835. images[images.size()-1].push_back(patch);
  1836. }
  1837. }
  1838. clip_image_u8_free(refine_image);
  1839. }
  1840. return images;
  1841. }
  1842. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1843. const int max_slice_nums=9;
  1844. const int scale_resolution=448;
  1845. const int original_width = ctx_clip->load_image_size->width;
  1846. const int original_height = ctx_clip->load_image_size->height;
  1847. const float log_ratio = log(1.0*original_width/original_height);
  1848. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1849. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1850. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1851. return best_grid.first;
  1852. }
  1853. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1854. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1855. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1856. if(clip_is_minicpmv(ctx)){
  1857. int max_slice_nums = 9;
  1858. std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
  1859. res_imgs->size = 0;
  1860. for (size_t i = 0; i < imgs.size(); ++i){
  1861. res_imgs->size += imgs[i].size();
  1862. }
  1863. res_imgs->data = new clip_image_f32[res_imgs->size];
  1864. int idx = 0;
  1865. for (size_t i = 0; i < imgs.size(); ++i) {
  1866. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1867. LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1868. clip_image_f32 * res = clip_image_f32_init();
  1869. normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
  1870. res_imgs->data[idx++] = *res;
  1871. clip_image_f32_free(res);
  1872. }
  1873. }
  1874. for (size_t i = 0; i < imgs.size(); ++i) {
  1875. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1876. if (imgs[i][j] != nullptr) {
  1877. clip_image_u8_free(imgs[i][j]);
  1878. }
  1879. }
  1880. }
  1881. return true;
  1882. }
  1883. else if (ctx->has_qwen2vl_merger) {
  1884. clip_image_u8 * resized = clip_image_u8_init();
  1885. auto patch_size = clip_patch_size(ctx) * 2;
  1886. int nx = ceil((float)img->nx / patch_size) * patch_size;
  1887. int ny = ceil((float)img->ny / patch_size) * patch_size;
  1888. bicubic_resize(*img, *resized, nx, ny);
  1889. res_imgs->data = new clip_image_f32[1];
  1890. // clip_image_f32 * res = clip_image_f32_init();
  1891. normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
  1892. // res_imgs->data[0] = *res;
  1893. res_imgs->size = 1;
  1894. // clip_image_f32_free(res);
  1895. clip_image_u8_free(resized);
  1896. return true;
  1897. }
  1898. if (ctx->has_glm_projector) {
  1899. res_imgs->size = 1;
  1900. res_imgs->data = new clip_image_f32[res_imgs->size];
  1901. clip_image_u8 resized_image;
  1902. int32_t sz=ctx->vision_model.hparams.image_size;
  1903. bicubic_resize(*img, resized_image,sz,sz);
  1904. clip_image_f32 * res = clip_image_f32_init();
  1905. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  1906. normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
  1907. res_imgs->data[0] = *res;
  1908. clip_image_f32_free(res);
  1909. return true;
  1910. }
  1911. bool pad_to_square = true;
  1912. if (!ctx->has_vision_encoder) {
  1913. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1914. return false;
  1915. }
  1916. auto & params = ctx->vision_model.hparams;
  1917. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1918. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1919. pad_to_square = false;
  1920. }
  1921. // free the previous res_imgs if any set
  1922. if (res_imgs->size > 0) {
  1923. clip_image_f32_batch_free(res_imgs);
  1924. }
  1925. res_imgs->data = nullptr;
  1926. res_imgs->size = 0;
  1927. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1928. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1929. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1930. if (pad_to_square && img->nx != img->ny) {
  1931. int longer_side = std::max(img->nx, img->ny);
  1932. temp->nx = longer_side;
  1933. temp->ny = longer_side;
  1934. temp->buf.resize(3 * longer_side * longer_side);
  1935. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1936. // fill with background color
  1937. for (size_t i = 0; i < temp->buf.size(); i++) {
  1938. temp->buf[i] = bc[i % 3];
  1939. }
  1940. // copy from the input image
  1941. for (int y = 0; y < img->ny; y++) {
  1942. for (int x = 0; x < img->nx; x++) {
  1943. const int i = 3 * (y * img->nx + x);
  1944. const int j = 3 * (y * temp->nx + x);
  1945. temp->buf[j] = img->buf[i];
  1946. temp->buf[j+1] = img->buf[i+1];
  1947. temp->buf[j+2] = img->buf[i+2];
  1948. }
  1949. }
  1950. } else {
  1951. if (params.image_grid_pinpoints[0] != 0) {
  1952. // "spatial_unpad" with "anyres" processing for llava-1.6
  1953. std::vector<std::pair<int, int>> possible_resolutions;
  1954. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  1955. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1956. }
  1957. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1958. // clip_image_save_to_bmp(*img, "input.bmp");
  1959. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1960. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1961. // visually verify normalized image:
  1962. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1963. // {
  1964. // clip_image_u8 * temp2 = clip_image_u8_init();
  1965. // clip_image_convert_f32_to_u8(*res, *temp2);
  1966. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1967. // clip_image_u8_free(temp2);
  1968. // }
  1969. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1970. clip_image_u8 *image_original_resize = clip_image_u8_init();
  1971. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1972. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1973. patches.insert(patches.begin(), image_original_resize);
  1974. // clip_image_f32_batch_init(patches.size());
  1975. res_imgs->size = patches.size();
  1976. res_imgs->data = new clip_image_f32[res_imgs->size];
  1977. int num=0;
  1978. for (auto& patch : patches) {
  1979. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  1980. num++;
  1981. }
  1982. for (size_t i = 0; i < patches.size(); i++) {
  1983. // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  1984. clip_image_u8_free(patches[i]);
  1985. }
  1986. clip_image_u8_free(temp);
  1987. return true;
  1988. } else {
  1989. temp->nx = img->nx;
  1990. temp->ny = img->ny;
  1991. temp->buf.resize(img->buf.size());
  1992. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1993. }
  1994. }
  1995. const int nx = temp->nx;
  1996. const int ny = temp->ny;
  1997. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1998. const int nx2 = ctx->vision_model.hparams.image_size;
  1999. const int ny2 = ctx->vision_model.hparams.image_size;
  2000. clip_image_f32 * res = clip_image_f32_init();
  2001. res->nx = nx2;
  2002. res->ny = ny2;
  2003. res->buf.resize(3 * nx2 * ny2);
  2004. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  2005. const int nx3 = int(nx / scale + 0.5f);
  2006. const int ny3 = int(ny / scale + 0.5f);
  2007. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  2008. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  2009. for (int y = 0; y < ny3; y++) {
  2010. for (int x = 0; x < nx3; x++) {
  2011. for (int c = 0; c < 3; c++) {
  2012. // linear interpolation
  2013. const float sx = (x + 0.5f) * scale - 0.5f;
  2014. const float sy = (y + 0.5f) * scale - 0.5f;
  2015. const int x0 = std::max(0, (int)std::floor(sx));
  2016. const int y0 = std::max(0, (int)std::floor(sy));
  2017. const int x1 = std::min(x0 + 1, nx - 1);
  2018. const int y1 = std::min(y0 + 1, ny - 1);
  2019. const float dx = sx - x0;
  2020. const float dy = sy - y0;
  2021. const int j00 = 3 * (y0 * nx + x0) + c;
  2022. const int j01 = 3 * (y0 * nx + x1) + c;
  2023. const int j10 = 3 * (y1 * nx + x0) + c;
  2024. const int j11 = 3 * (y1 * nx + x1) + c;
  2025. const float v00 = temp->buf[j00];
  2026. const float v01 = temp->buf[j01];
  2027. const float v10 = temp->buf[j10];
  2028. const float v11 = temp->buf[j11];
  2029. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  2030. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  2031. const float v = v0 * (1.0f - dy) + v1 * dy;
  2032. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  2033. const int i = 3 * (y * nx3 + x) + c;
  2034. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  2035. }
  2036. }
  2037. }
  2038. clip_image_u8_free(temp);
  2039. // {
  2040. // clip_image_u8 * temp2 = clip_image_u8_init();
  2041. // clip_image_convert_f32_to_u8(*res, *temp2);
  2042. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  2043. // clip_image_u8_free(temp2);
  2044. // }
  2045. // res_imgs.push_back(res);
  2046. res_imgs->size = 1;
  2047. res_imgs->data = new clip_image_f32[res_imgs->size];
  2048. res_imgs->data[0] = *res;
  2049. clip_image_f32_free(res);
  2050. return true;
  2051. }
  2052. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2053. return ctx->vision_model.image_newline;
  2054. }
  2055. void clip_free(clip_ctx * ctx) {
  2056. ggml_free(ctx->ctx_data);
  2057. gguf_free(ctx->ctx_gguf);
  2058. ggml_backend_buffer_free(ctx->params_buffer);
  2059. ggml_backend_free(ctx->backend);
  2060. ggml_gallocr_free(ctx->compute_alloc);
  2061. delete ctx;
  2062. }
  2063. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2064. int extra_tokens = ctx->has_glm_projector ? 2 : 0;
  2065. return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2066. }
  2067. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
  2068. clip_image_f32 img;
  2069. img.nx = img_w;
  2070. img.ny = img_h;
  2071. return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2072. }
  2073. int32_t clip_image_size(const struct clip_ctx * ctx) {
  2074. return ctx->vision_model.hparams.image_size;
  2075. }
  2076. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  2077. return ctx->vision_model.hparams.patch_size;
  2078. }
  2079. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  2080. return ctx->vision_model.hparams.hidden_size;
  2081. }
  2082. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2083. return ctx->vision_model.hparams.mm_patch_merge_type;
  2084. }
  2085. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  2086. return ctx->vision_model.hparams.image_grid_pinpoints;
  2087. }
  2088. int clip_n_patches(const struct clip_ctx * ctx) {
  2089. clip_image_f32 img;
  2090. img.nx = ctx->vision_model.hparams.image_size;
  2091. img.ny = ctx->vision_model.hparams.image_size;
  2092. return clip_n_patches_by_img(ctx, &img);
  2093. }
  2094. int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2095. const auto & params = ctx->vision_model.hparams;
  2096. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2097. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  2098. n_patches /= 4;
  2099. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2100. if (ctx->minicpmv_version == 2) {
  2101. n_patches = 96;
  2102. }
  2103. else if (ctx->minicpmv_version == 3) {
  2104. n_patches = 64;
  2105. }
  2106. else if (ctx->minicpmv_version == 4) {
  2107. n_patches = 64;
  2108. }
  2109. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2110. int patch_size = params.patch_size * 2;
  2111. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  2112. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  2113. n_patches = x_patch * y_patch;
  2114. }
  2115. return n_patches;
  2116. }
  2117. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  2118. assert(embed_dim % 2 == 0);
  2119. int H = pos.size();
  2120. int W = pos[0].size();
  2121. std::vector<float> omega(embed_dim / 2);
  2122. for (int i = 0; i < embed_dim / 2; ++i) {
  2123. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2124. }
  2125. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2126. for (int h = 0; h < H; ++h) {
  2127. for (int w = 0; w < W; ++w) {
  2128. for (int d = 0; d < embed_dim / 2; ++d) {
  2129. float out_value = pos[h][w] * omega[d];
  2130. emb[h][w][d] = sin(out_value);
  2131. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2132. }
  2133. }
  2134. }
  2135. return emb;
  2136. }
  2137. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  2138. assert(embed_dim % 2 == 0);
  2139. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  2140. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  2141. int H = emb_h.size();
  2142. int W = emb_h[0].size();
  2143. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2144. for (int h = 0; h < H; ++h) {
  2145. for (int w = 0; w < W; ++w) {
  2146. for (int d = 0; d < embed_dim / 2; ++d) {
  2147. emb[h][w][d] = emb_h[h][w][d];
  2148. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  2149. }
  2150. }
  2151. }
  2152. return emb;
  2153. }
  2154. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  2155. int grid_h_size = image_size.first;
  2156. int grid_w_size = image_size.second;
  2157. std::vector<float> grid_h(grid_h_size);
  2158. std::vector<float> grid_w(grid_w_size);
  2159. for (int i = 0; i < grid_h_size; ++i) {
  2160. grid_h[i] = static_cast<float>(i);
  2161. }
  2162. for (int i = 0; i < grid_w_size; ++i) {
  2163. grid_w[i] = static_cast<float>(i);
  2164. }
  2165. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  2166. for (int h = 0; h < grid_h_size; ++h) {
  2167. for (int w = 0; w < grid_w_size; ++w) {
  2168. grid[h][w] = grid_w[w];
  2169. }
  2170. }
  2171. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  2172. for (int h = 0; h < grid_h_size; ++h) {
  2173. for (int w = 0; w < grid_w_size; ++w) {
  2174. grid_2d[0][h][w] = grid_h[h];
  2175. grid_2d[1][h][w] = grid_w[w];
  2176. }
  2177. }
  2178. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2179. int H = image_size.first;
  2180. int W = image_size.second;
  2181. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2182. for (int h = 0; h < H; ++h) {
  2183. for (int w = 0; w < W; ++w) {
  2184. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2185. }
  2186. }
  2187. return pos_embed_2d;
  2188. }
  2189. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2190. if (!ctx->has_vision_encoder) {
  2191. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2192. return false;
  2193. }
  2194. clip_image_f32_batch imgs{};
  2195. imgs.size = 1;
  2196. imgs.data = img;
  2197. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2198. }
  2199. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  2200. if (!ctx->has_vision_encoder) {
  2201. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2202. return false;
  2203. }
  2204. int batch_size = imgs->size;
  2205. if (ctx->has_llava_projector) {
  2206. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  2207. }
  2208. if (ctx->has_minicpmv_projector) {
  2209. GGML_ASSERT(batch_size == 1);
  2210. }
  2211. if (ctx->has_glm_projector) {
  2212. GGML_ASSERT(batch_size == 1);
  2213. ggml_tensor * boi = ctx->vision_model.boi_w;
  2214. ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
  2215. vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
  2216. }
  2217. // build the inference graph
  2218. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  2219. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  2220. // set inputs
  2221. const auto & model = ctx->vision_model;
  2222. const auto & hparams = model.hparams;
  2223. const int image_size = hparams.image_size;
  2224. int image_size_width = image_size;
  2225. int image_size_height = image_size;
  2226. if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
  2227. image_size_width = imgs->data[0].nx;
  2228. image_size_height = imgs->data[0].ny;
  2229. }
  2230. const int patch_size = hparams.patch_size;
  2231. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2232. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  2233. if(ctx->load_image_size==nullptr){
  2234. ctx->load_image_size= clip_image_size_init();
  2235. }
  2236. const int pos_w = ctx->load_image_size->width/patch_size;
  2237. const int pos_h = ctx->load_image_size->height/patch_size;
  2238. {
  2239. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2240. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2241. for (size_t i = 0; i < imgs->size; i++) {
  2242. const int nx = imgs->data[i].nx;
  2243. const int ny = imgs->data[i].ny;
  2244. if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
  2245. GGML_ASSERT(nx == image_size && ny == image_size);
  2246. }
  2247. const int n = nx * ny;
  2248. for (int b = 0; b < batch_size; b++) {
  2249. for (int k = 0; k < 3; k++) {
  2250. for (int y = 0; y < ny; y++) {
  2251. for (int x = 0; x < nx; x++) {
  2252. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  2253. }
  2254. }
  2255. }
  2256. }
  2257. }
  2258. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2259. free(data);
  2260. }
  2261. if (ctx->has_minicpmv_projector) {
  2262. {
  2263. // inspired from siglip:
  2264. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2265. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2266. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2267. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2268. int bucket_coords_h[1024];
  2269. int bucket_coords_w[1024];
  2270. for (int i = 0; i < pos_h; i++){
  2271. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2272. }
  2273. for (int i = 0; i < pos_w; i++){
  2274. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2275. }
  2276. for (int i = 0, id = 0; i < pos_h; i++){
  2277. for (int j = 0; j < pos_w; j++){
  2278. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2279. }
  2280. }
  2281. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2282. free(positions_data);
  2283. }
  2284. {
  2285. // inspired from resampler of Qwen-VL:
  2286. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2287. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2288. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2289. int embed_dim = 4096;
  2290. if (ctx->minicpmv_version == 2) {
  2291. embed_dim = 4096;
  2292. }
  2293. else if (ctx->minicpmv_version == 3) {
  2294. embed_dim = 3584;
  2295. }
  2296. else if (ctx->minicpmv_version == 4) {
  2297. embed_dim = 3584;
  2298. }
  2299. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2300. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2301. for(int i=0;i < pos_w * pos_h; ++i){
  2302. for(int j=0; j < embed_dim; ++j){
  2303. pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
  2304. }
  2305. }
  2306. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2307. free(pos_embed_data);
  2308. }
  2309. }
  2310. else{
  2311. {
  2312. if (ctx->has_class_embedding) {
  2313. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2314. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2315. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2316. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2317. free(zero_mem);
  2318. }
  2319. }
  2320. if (ctx->has_qwen2vl_merger) {
  2321. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2322. const int pw = image_size_width / patch_size;
  2323. const int ph = image_size_height / patch_size;
  2324. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2325. int ptr = 0;
  2326. for (int y = 0; y < ph; y+=2)
  2327. {
  2328. for (int x = 0; x < pw; x+=2)
  2329. {
  2330. for (int dy = 0; dy < 2; dy++) {
  2331. for (int dx = 0; dx < 2; dx++) {
  2332. positions_data[ptr] = y + dy;
  2333. positions_data[num_patches + ptr] = x + dx;
  2334. positions_data[num_patches * 2 + ptr] = y + dy;
  2335. positions_data[num_patches * 3 + ptr] = x + dx;
  2336. ptr++;
  2337. }
  2338. }
  2339. }
  2340. }
  2341. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2342. free(positions_data);
  2343. }
  2344. else {
  2345. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2346. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2347. for (int i = 0; i < num_positions; i++) {
  2348. positions_data[i] = i;
  2349. }
  2350. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2351. free(positions_data);
  2352. if (!ctx->has_glm_projector) {
  2353. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2354. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2355. for (int i = 0; i < num_patches; i++) {
  2356. patches_data[i] = i + 1;
  2357. }
  2358. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2359. free(patches_data);
  2360. }
  2361. }
  2362. }
  2363. if (ggml_backend_is_cpu(ctx->backend)) {
  2364. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  2365. }
  2366. ggml_backend_graph_compute(ctx->backend, gf);
  2367. // the last node is the embedding tensor
  2368. struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2369. // copy the embeddings to the location passed by the user
  2370. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2371. if (ctx->has_glm_projector) {
  2372. //eoi
  2373. ggml_tensor * eoi = ctx->vision_model.eoi_w;
  2374. int offset = ggml_nelements(embeddings);
  2375. ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
  2376. }
  2377. return true;
  2378. }
  2379. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2380. assert(itype < GGML_TYPE_COUNT);
  2381. ggml_type type = static_cast<ggml_type>(itype);
  2382. auto * ctx_clip = clip_model_load(fname_inp, 2);
  2383. const auto & ctx_src = ctx_clip->ctx_gguf;
  2384. const auto & ctx_data = ctx_clip->ctx_data;
  2385. auto * ctx_out = gguf_init_empty();
  2386. gguf_set_kv(ctx_out, ctx_src);
  2387. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2388. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2389. auto fout = std::ofstream(fname_out, std::ios::binary);
  2390. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2391. for (int i = 0; i < n_tensors; ++i) {
  2392. const char * name = gguf_get_tensor_name(ctx_src, i);
  2393. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2394. gguf_add_tensor(ctx_out, cur);
  2395. }
  2396. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2397. for (size_t i = 0; i < meta_size; ++i) {
  2398. fout.put(0);
  2399. }
  2400. // regexes of tensor names to be quantized
  2401. const std::vector<std::string> k_names = {
  2402. ".*weight",
  2403. };
  2404. std::vector<uint8_t> work(512);
  2405. std::vector<float> conv_buf(512);
  2406. size_t total_size_org = 0;
  2407. size_t total_size_new = 0;
  2408. for (int i = 0; i < n_tensors; ++i) {
  2409. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2410. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2411. enum ggml_type new_type;
  2412. void * new_data;
  2413. size_t new_size;
  2414. bool quantize = false;
  2415. for (const auto & s : k_names) {
  2416. if (std::regex_match(name, std::regex(s))) {
  2417. quantize = true;
  2418. break;
  2419. }
  2420. }
  2421. // quantize only 2D tensors and bigger than block size
  2422. quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
  2423. if (quantize) {
  2424. new_type = type;
  2425. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2426. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2427. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2428. }
  2429. const size_t n_elms = ggml_nelements(cur);
  2430. float * f32_data;
  2431. switch (cur->type) {
  2432. case GGML_TYPE_F32:
  2433. f32_data = (float *)cur->data;
  2434. break;
  2435. case GGML_TYPE_F16:
  2436. if (conv_buf.size() < n_elms) {
  2437. conv_buf.resize(n_elms);
  2438. }
  2439. for (size_t j = 0; j < n_elms; ++j) {
  2440. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2441. }
  2442. f32_data = (float *)conv_buf.data();
  2443. break;
  2444. default:
  2445. LOG_ERR("Please use an input file in f32 or f16\n");
  2446. gguf_free(ctx_out);
  2447. return false;
  2448. }
  2449. if (work.size() < n_elms * 4) {
  2450. work.resize(n_elms * 4);
  2451. }
  2452. new_data = work.data();
  2453. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2454. } else {
  2455. new_type = cur->type;
  2456. new_data = cur->data;
  2457. new_size = ggml_nbytes(cur);
  2458. }
  2459. const size_t orig_size = ggml_nbytes(cur);
  2460. total_size_org += orig_size;
  2461. total_size_new += new_size;
  2462. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2463. GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
  2464. gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
  2465. fout.write((const char *)new_data, new_size);
  2466. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2467. for (size_t j = 0; j < pad; ++j) {
  2468. fout.put(0);
  2469. }
  2470. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2471. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2472. }
  2473. // go back to beginning of file and write the updated metadata
  2474. fout.seekp(0, std::ios::beg);
  2475. std::vector<uint8_t> meta(meta_size);
  2476. gguf_get_meta_data(ctx_out, meta.data());
  2477. fout.write((const char *)meta.data(), meta_size);
  2478. fout.close();
  2479. clip_free(ctx_clip);
  2480. gguf_free(ctx_out);
  2481. {
  2482. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2483. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2484. }
  2485. return true;
  2486. }
  2487. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2488. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2489. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2490. }
  2491. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2492. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2493. }
  2494. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2495. return ctx->vision_model.mm_2_b->ne[0];
  2496. }
  2497. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2498. return ctx->vision_model.mm_3_b->ne[0];
  2499. }
  2500. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2501. if (ctx->minicpmv_version == 2) {
  2502. return 4096;
  2503. }
  2504. else if (ctx->minicpmv_version == 3) {
  2505. return 3584;
  2506. }
  2507. else if (ctx->minicpmv_version == 4) {
  2508. return 3584;
  2509. }
  2510. }
  2511. if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
  2512. return ctx->vision_model.mm_model_mlp_3_w->ne[1];
  2513. }
  2514. if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2515. return ctx->vision_model.mm_1_b->ne[0];
  2516. }
  2517. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2518. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2519. }
  2520. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2521. if (ctx->has_minicpmv_projector) {
  2522. return ctx->minicpmv_version;
  2523. }
  2524. return 0;
  2525. }
  2526. bool clip_is_glm(const struct clip_ctx * ctx) {
  2527. return ctx->has_glm_projector;
  2528. }
  2529. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  2530. return ctx->has_qwen2vl_merger;
  2531. }
  2532. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  2533. clip_image_f32 clip_img;
  2534. clip_img.buf.resize(h * w * 3);
  2535. for (int i = 0; i < h*w*3; i++)
  2536. {
  2537. clip_img.buf[i] = img[i];
  2538. }
  2539. clip_img.nx = w;
  2540. clip_img.ny = h;
  2541. clip_image_encode(ctx, n_threads, &clip_img, vec);
  2542. return true;
  2543. }