llama-bench.cpp 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUDA
  108. int count = ggml_backend_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case CSV: return "csv";
  137. case JSON: return "json";
  138. case MARKDOWN: return "md";
  139. case SQL: return "sql";
  140. default: GGML_ASSERT(!"invalid output format");
  141. }
  142. }
  143. static const char * split_mode_str(llama_split_mode mode) {
  144. switch (mode) {
  145. case LLAMA_SPLIT_MODE_NONE: return "none";
  146. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  147. case LLAMA_SPLIT_MODE_ROW: return "row";
  148. default: GGML_ASSERT(!"invalid split mode");
  149. }
  150. }
  151. struct cmd_params {
  152. std::vector<std::string> model;
  153. std::vector<int> n_prompt;
  154. std::vector<int> n_gen;
  155. std::vector<int> n_batch;
  156. std::vector<int> n_ubatch;
  157. std::vector<ggml_type> type_k;
  158. std::vector<ggml_type> type_v;
  159. std::vector<int> n_threads;
  160. std::vector<int> n_gpu_layers;
  161. std::vector<llama_split_mode> split_mode;
  162. std::vector<int> main_gpu;
  163. std::vector<bool> no_kv_offload;
  164. std::vector<std::vector<float>> tensor_split;
  165. std::vector<bool> use_mmap;
  166. std::vector<bool> embeddings;
  167. int reps;
  168. bool verbose;
  169. output_formats output_format;
  170. };
  171. static const cmd_params cmd_params_defaults = {
  172. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  173. /* n_prompt */ {512},
  174. /* n_gen */ {128},
  175. /* n_batch */ {2048},
  176. /* n_ubatch */ {512},
  177. /* type_k */ {GGML_TYPE_F16},
  178. /* type_v */ {GGML_TYPE_F16},
  179. /* n_threads */ {get_num_physical_cores()},
  180. /* n_gpu_layers */ {99},
  181. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  182. /* main_gpu */ {0},
  183. /* no_kv_offload */ {false},
  184. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  185. /* use_mmap */ {true},
  186. /* embeddings */ {false},
  187. /* reps */ 5,
  188. /* verbose */ false,
  189. /* output_format */ MARKDOWN
  190. };
  191. static void print_usage(int /* argc */, char ** argv) {
  192. printf("usage: %s [options]\n", argv[0]);
  193. printf("\n");
  194. printf("options:\n");
  195. printf(" -h, --help\n");
  196. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  197. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  198. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  199. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  200. printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  201. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  202. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  203. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  204. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  205. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  206. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  207. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  208. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  209. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  210. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  211. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  212. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  213. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  214. printf("\n");
  215. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  216. }
  217. static ggml_type ggml_type_from_name(const std::string & s) {
  218. if (s == "f16") {
  219. return GGML_TYPE_F16;
  220. }
  221. if (s == "q8_0") {
  222. return GGML_TYPE_Q8_0;
  223. }
  224. if (s == "q4_0") {
  225. return GGML_TYPE_Q4_0;
  226. }
  227. if (s == "q4_1") {
  228. return GGML_TYPE_Q4_1;
  229. }
  230. if (s == "q5_0") {
  231. return GGML_TYPE_Q5_0;
  232. }
  233. if (s == "q5_1") {
  234. return GGML_TYPE_Q5_1;
  235. }
  236. if (s == "iq4_nl") {
  237. return GGML_TYPE_IQ4_NL;
  238. }
  239. return GGML_TYPE_COUNT;
  240. }
  241. static cmd_params parse_cmd_params(int argc, char ** argv) {
  242. cmd_params params;
  243. std::string arg;
  244. bool invalid_param = false;
  245. const std::string arg_prefix = "--";
  246. const char split_delim = ',';
  247. params.verbose = cmd_params_defaults.verbose;
  248. params.output_format = cmd_params_defaults.output_format;
  249. params.reps = cmd_params_defaults.reps;
  250. for (int i = 1; i < argc; i++) {
  251. arg = argv[i];
  252. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  253. std::replace(arg.begin(), arg.end(), '_', '-');
  254. }
  255. if (arg == "-h" || arg == "--help") {
  256. print_usage(argc, argv);
  257. exit(0);
  258. } else if (arg == "-m" || arg == "--model") {
  259. if (++i >= argc) {
  260. invalid_param = true;
  261. break;
  262. }
  263. auto p = split<std::string>(argv[i], split_delim);
  264. params.model.insert(params.model.end(), p.begin(), p.end());
  265. } else if (arg == "-p" || arg == "--n-prompt") {
  266. if (++i >= argc) {
  267. invalid_param = true;
  268. break;
  269. }
  270. auto p = split<int>(argv[i], split_delim);
  271. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  272. } else if (arg == "-n" || arg == "--n-gen") {
  273. if (++i >= argc) {
  274. invalid_param = true;
  275. break;
  276. }
  277. auto p = split<int>(argv[i], split_delim);
  278. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  279. } else if (arg == "-b" || arg == "--batch-size") {
  280. if (++i >= argc) {
  281. invalid_param = true;
  282. break;
  283. }
  284. auto p = split<int>(argv[i], split_delim);
  285. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  286. } else if (arg == "-ub" || arg == "--ubatch-size") {
  287. if (++i >= argc) {
  288. invalid_param = true;
  289. break;
  290. }
  291. auto p = split<int>(argv[i], split_delim);
  292. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  293. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  294. if (++i >= argc) {
  295. invalid_param = true;
  296. break;
  297. }
  298. auto p = split<std::string>(argv[i], split_delim);
  299. std::vector<ggml_type> types;
  300. for (const auto & t : p) {
  301. ggml_type gt = ggml_type_from_name(t);
  302. if (gt == GGML_TYPE_COUNT) {
  303. invalid_param = true;
  304. break;
  305. }
  306. types.push_back(gt);
  307. }
  308. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  309. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  310. if (++i >= argc) {
  311. invalid_param = true;
  312. break;
  313. }
  314. auto p = split<std::string>(argv[i], split_delim);
  315. std::vector<ggml_type> types;
  316. for (const auto & t : p) {
  317. ggml_type gt = ggml_type_from_name(t);
  318. if (gt == GGML_TYPE_COUNT) {
  319. invalid_param = true;
  320. break;
  321. }
  322. types.push_back(gt);
  323. }
  324. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  325. } else if (arg == "-t" || arg == "--threads") {
  326. if (++i >= argc) {
  327. invalid_param = true;
  328. break;
  329. }
  330. auto p = split<int>(argv[i], split_delim);
  331. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  332. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  333. if (++i >= argc) {
  334. invalid_param = true;
  335. break;
  336. }
  337. auto p = split<int>(argv[i], split_delim);
  338. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  339. } else if (arg == "-sm" || arg == "--split-mode") {
  340. if (++i >= argc) {
  341. invalid_param = true;
  342. break;
  343. }
  344. auto p = split<std::string>(argv[i], split_delim);
  345. std::vector<llama_split_mode> modes;
  346. for (const auto & m : p) {
  347. llama_split_mode mode;
  348. if (m == "none") {
  349. mode = LLAMA_SPLIT_MODE_NONE;
  350. } else if (m == "layer") {
  351. mode = LLAMA_SPLIT_MODE_LAYER;
  352. } else if (m == "row") {
  353. mode = LLAMA_SPLIT_MODE_ROW;
  354. } else {
  355. invalid_param = true;
  356. break;
  357. }
  358. modes.push_back(mode);
  359. }
  360. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  361. } else if (arg == "-mg" || arg == "--main-gpu") {
  362. if (++i >= argc) {
  363. invalid_param = true;
  364. break;
  365. }
  366. params.main_gpu = split<int>(argv[i], split_delim);
  367. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. auto p = split<bool>(argv[i], split_delim);
  373. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  374. } else if (arg == "-mmp" || arg == "--mmap") {
  375. if (++i >= argc) {
  376. invalid_param = true;
  377. break;
  378. }
  379. auto p = split<bool>(argv[i], split_delim);
  380. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  381. } else if (arg == "-embd" || arg == "--embeddings") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. break;
  385. }
  386. auto p = split<bool>(argv[i], split_delim);
  387. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  388. } else if (arg == "-ts" || arg == "--tensor-split") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. for (auto ts : split<std::string>(argv[i], split_delim)) {
  394. // split string by ; and /
  395. const std::regex regex{R"([;/]+)"};
  396. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  397. std::vector<std::string> split_arg{it, {}};
  398. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  399. std::vector<float> tensor_split(llama_max_devices());
  400. for (size_t i = 0; i < llama_max_devices(); ++i) {
  401. if (i < split_arg.size()) {
  402. tensor_split[i] = std::stof(split_arg[i]);
  403. } else {
  404. tensor_split[i] = 0.0f;
  405. }
  406. }
  407. params.tensor_split.push_back(tensor_split);
  408. }
  409. } else if (arg == "-r" || arg == "--repetitions") {
  410. if (++i >= argc) {
  411. invalid_param = true;
  412. break;
  413. }
  414. params.reps = std::stoi(argv[i]);
  415. } else if (arg == "-o" || arg == "--output") {
  416. if (++i >= argc) {
  417. invalid_param = true;
  418. break;
  419. }
  420. if (argv[i] == std::string("csv")) {
  421. params.output_format = CSV;
  422. } else if (argv[i] == std::string("json")) {
  423. params.output_format = JSON;
  424. } else if (argv[i] == std::string("md")) {
  425. params.output_format = MARKDOWN;
  426. } else if (argv[i] == std::string("sql")) {
  427. params.output_format = SQL;
  428. } else {
  429. invalid_param = true;
  430. break;
  431. }
  432. } else if (arg == "-v" || arg == "--verbose") {
  433. params.verbose = true;
  434. } else {
  435. invalid_param = true;
  436. break;
  437. }
  438. }
  439. if (invalid_param) {
  440. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  441. print_usage(argc, argv);
  442. exit(1);
  443. }
  444. // set defaults
  445. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  446. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  447. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  448. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  449. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  450. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  451. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  452. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  453. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  454. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  455. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  456. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  457. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  458. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  459. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  460. return params;
  461. }
  462. struct cmd_params_instance {
  463. std::string model;
  464. int n_prompt;
  465. int n_gen;
  466. int n_batch;
  467. int n_ubatch;
  468. ggml_type type_k;
  469. ggml_type type_v;
  470. int n_threads;
  471. int n_gpu_layers;
  472. llama_split_mode split_mode;
  473. int main_gpu;
  474. bool no_kv_offload;
  475. std::vector<float> tensor_split;
  476. bool use_mmap;
  477. bool embeddings;
  478. llama_model_params to_llama_mparams() const {
  479. llama_model_params mparams = llama_model_default_params();
  480. mparams.n_gpu_layers = n_gpu_layers;
  481. mparams.split_mode = split_mode;
  482. mparams.main_gpu = main_gpu;
  483. mparams.tensor_split = tensor_split.data();
  484. mparams.use_mmap = use_mmap;
  485. return mparams;
  486. }
  487. bool equal_mparams(const cmd_params_instance & other) const {
  488. return model == other.model &&
  489. n_gpu_layers == other.n_gpu_layers &&
  490. split_mode == other.split_mode &&
  491. main_gpu == other.main_gpu &&
  492. use_mmap == other.use_mmap &&
  493. tensor_split == other.tensor_split;
  494. }
  495. llama_context_params to_llama_cparams() const {
  496. llama_context_params cparams = llama_context_default_params();
  497. cparams.n_ctx = n_prompt + n_gen;
  498. cparams.n_batch = n_batch;
  499. cparams.n_ubatch = n_ubatch;
  500. cparams.type_k = type_k;
  501. cparams.type_v = type_v;
  502. cparams.offload_kqv = !no_kv_offload;
  503. cparams.embeddings = embeddings;
  504. return cparams;
  505. }
  506. };
  507. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  508. std::vector<cmd_params_instance> instances;
  509. // this ordering minimizes the number of times that each model needs to be reloaded
  510. for (const auto & m : params.model)
  511. for (const auto & nl : params.n_gpu_layers)
  512. for (const auto & sm : params.split_mode)
  513. for (const auto & mg : params.main_gpu)
  514. for (const auto & ts : params.tensor_split)
  515. for (const auto & mmp : params.use_mmap)
  516. for (const auto & embd : params.embeddings)
  517. for (const auto & nb : params.n_batch)
  518. for (const auto & nub : params.n_ubatch)
  519. for (const auto & tk : params.type_k)
  520. for (const auto & tv : params.type_v)
  521. for (const auto & nkvo : params.no_kv_offload)
  522. for (const auto & nt : params.n_threads) {
  523. for (const auto & n_prompt : params.n_prompt) {
  524. if (n_prompt == 0) {
  525. continue;
  526. }
  527. cmd_params_instance instance = {
  528. /* .model = */ m,
  529. /* .n_prompt = */ n_prompt,
  530. /* .n_gen = */ 0,
  531. /* .n_batch = */ nb,
  532. /* .n_ubatch = */ nub,
  533. /* .type_k = */ tk,
  534. /* .type_v = */ tv,
  535. /* .n_threads = */ nt,
  536. /* .n_gpu_layers = */ nl,
  537. /* .split_mode = */ sm,
  538. /* .main_gpu = */ mg,
  539. /* .no_kv_offload= */ nkvo,
  540. /* .tensor_split = */ ts,
  541. /* .use_mmap = */ mmp,
  542. /* .embeddings = */ embd,
  543. };
  544. instances.push_back(instance);
  545. }
  546. for (const auto & n_gen : params.n_gen) {
  547. if (n_gen == 0) {
  548. continue;
  549. }
  550. cmd_params_instance instance = {
  551. /* .model = */ m,
  552. /* .n_prompt = */ 0,
  553. /* .n_gen = */ n_gen,
  554. /* .n_batch = */ nb,
  555. /* .n_ubatch = */ nub,
  556. /* .type_k = */ tk,
  557. /* .type_v = */ tv,
  558. /* .n_threads = */ nt,
  559. /* .n_gpu_layers = */ nl,
  560. /* .split_mode = */ sm,
  561. /* .main_gpu = */ mg,
  562. /* .no_kv_offload= */ nkvo,
  563. /* .tensor_split = */ ts,
  564. /* .use_mmap = */ mmp,
  565. /* .embeddings = */ embd,
  566. };
  567. instances.push_back(instance);
  568. }
  569. }
  570. return instances;
  571. }
  572. struct test {
  573. static const std::string build_commit;
  574. static const int build_number;
  575. static const bool cuda;
  576. static const bool opencl;
  577. static const bool vulkan;
  578. static const bool kompute;
  579. static const bool metal;
  580. static const bool sycl;
  581. static const bool gpu_blas;
  582. static const bool blas;
  583. static const std::string cpu_info;
  584. static const std::string gpu_info;
  585. std::string model_filename;
  586. std::string model_type;
  587. uint64_t model_size;
  588. uint64_t model_n_params;
  589. int n_batch;
  590. int n_ubatch;
  591. int n_threads;
  592. ggml_type type_k;
  593. ggml_type type_v;
  594. int n_gpu_layers;
  595. llama_split_mode split_mode;
  596. int main_gpu;
  597. bool no_kv_offload;
  598. std::vector<float> tensor_split;
  599. bool use_mmap;
  600. bool embeddings;
  601. int n_prompt;
  602. int n_gen;
  603. std::string test_time;
  604. std::vector<uint64_t> samples_ns;
  605. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  606. model_filename = inst.model;
  607. char buf[128];
  608. llama_model_desc(lmodel, buf, sizeof(buf));
  609. model_type = buf;
  610. model_size = llama_model_size(lmodel);
  611. model_n_params = llama_model_n_params(lmodel);
  612. n_batch = inst.n_batch;
  613. n_ubatch = inst.n_ubatch;
  614. n_threads = inst.n_threads;
  615. type_k = inst.type_k;
  616. type_v = inst.type_v;
  617. n_gpu_layers = inst.n_gpu_layers;
  618. split_mode = inst.split_mode;
  619. main_gpu = inst.main_gpu;
  620. no_kv_offload = inst.no_kv_offload;
  621. tensor_split = inst.tensor_split;
  622. use_mmap = inst.use_mmap;
  623. embeddings = inst.embeddings;
  624. n_prompt = inst.n_prompt;
  625. n_gen = inst.n_gen;
  626. // RFC 3339 date-time format
  627. time_t t = time(NULL);
  628. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  629. test_time = buf;
  630. (void) ctx;
  631. }
  632. uint64_t avg_ns() const {
  633. return ::avg(samples_ns);
  634. }
  635. uint64_t stdev_ns() const {
  636. return ::stdev(samples_ns);
  637. }
  638. std::vector<double> get_ts() const {
  639. int n_tokens = n_prompt + n_gen;
  640. std::vector<double> ts;
  641. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  642. return ts;
  643. }
  644. double avg_ts() const {
  645. return ::avg(get_ts());
  646. }
  647. double stdev_ts() const {
  648. return ::stdev(get_ts());
  649. }
  650. static std::string get_backend() {
  651. if (cuda) {
  652. return GGML_CUDA_NAME;
  653. }
  654. if (opencl) {
  655. return "OpenCL";
  656. }
  657. if (vulkan) {
  658. return "Vulkan";
  659. }
  660. if (kompute) {
  661. return "Kompute";
  662. }
  663. if (metal) {
  664. return "Metal";
  665. }
  666. if (sycl) {
  667. return GGML_SYCL_NAME;
  668. }
  669. if (gpu_blas) {
  670. return "GPU BLAS";
  671. }
  672. if (blas) {
  673. return "BLAS";
  674. }
  675. return "CPU";
  676. }
  677. static const std::vector<std::string> & get_fields() {
  678. static const std::vector<std::string> fields = {
  679. "build_commit", "build_number",
  680. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  681. "cpu_info", "gpu_info",
  682. "model_filename", "model_type", "model_size", "model_n_params",
  683. "n_batch", "n_ubatch",
  684. "n_threads", "type_k", "type_v",
  685. "n_gpu_layers", "split_mode",
  686. "main_gpu", "no_kv_offload",
  687. "tensor_split", "use_mmap", "embeddings",
  688. "n_prompt", "n_gen", "test_time",
  689. "avg_ns", "stddev_ns",
  690. "avg_ts", "stddev_ts"
  691. };
  692. return fields;
  693. }
  694. enum field_type {STRING, BOOL, INT, FLOAT};
  695. static field_type get_field_type(const std::string & field) {
  696. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  697. field == "n_threads" ||
  698. field == "model_size" || field == "model_n_params" ||
  699. field == "n_gpu_layers" || field == "main_gpu" ||
  700. field == "n_prompt" || field == "n_gen" ||
  701. field == "avg_ns" || field == "stddev_ns") {
  702. return INT;
  703. }
  704. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  705. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  706. field == "use_mmap" || field == "embeddings") {
  707. return BOOL;
  708. }
  709. if (field == "avg_ts" || field == "stddev_ts") {
  710. return FLOAT;
  711. }
  712. return STRING;
  713. }
  714. std::vector<std::string> get_values() const {
  715. std::string tensor_split_str;
  716. int max_nonzero = 0;
  717. for (size_t i = 0; i < llama_max_devices(); i++) {
  718. if (tensor_split[i] > 0) {
  719. max_nonzero = i;
  720. }
  721. }
  722. for (int i = 0; i <= max_nonzero; i++) {
  723. char buf[32];
  724. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  725. tensor_split_str += buf;
  726. if (i < max_nonzero) {
  727. tensor_split_str += "/";
  728. }
  729. }
  730. std::vector<std::string> values = {
  731. build_commit, std::to_string(build_number),
  732. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  733. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  734. cpu_info, gpu_info,
  735. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  736. std::to_string(n_batch), std::to_string(n_ubatch),
  737. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  738. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  739. std::to_string(main_gpu), std::to_string(no_kv_offload),
  740. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  741. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  742. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  743. std::to_string(avg_ts()), std::to_string(stdev_ts())
  744. };
  745. return values;
  746. }
  747. std::map<std::string, std::string> get_map() const {
  748. std::map<std::string, std::string> map;
  749. auto fields = get_fields();
  750. auto values = get_values();
  751. std::transform(fields.begin(), fields.end(), values.begin(),
  752. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  753. return map;
  754. }
  755. };
  756. const std::string test::build_commit = LLAMA_COMMIT;
  757. const int test::build_number = LLAMA_BUILD_NUMBER;
  758. const bool test::cuda = !!ggml_cpu_has_cuda();
  759. const bool test::opencl = !!ggml_cpu_has_clblast();
  760. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  761. const bool test::kompute = !!ggml_cpu_has_kompute();
  762. const bool test::metal = !!ggml_cpu_has_metal();
  763. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  764. const bool test::blas = !!ggml_cpu_has_blas();
  765. const bool test::sycl = !!ggml_cpu_has_sycl();
  766. const std::string test::cpu_info = get_cpu_info();
  767. const std::string test::gpu_info = get_gpu_info();
  768. struct printer {
  769. virtual ~printer() {}
  770. FILE * fout;
  771. virtual void print_header(const cmd_params & params) { (void) params; }
  772. virtual void print_test(const test & t) = 0;
  773. virtual void print_footer() { }
  774. };
  775. struct csv_printer : public printer {
  776. static std::string escape_csv(const std::string & field) {
  777. std::string escaped = "\"";
  778. for (auto c : field) {
  779. if (c == '"') {
  780. escaped += "\"";
  781. }
  782. escaped += c;
  783. }
  784. escaped += "\"";
  785. return escaped;
  786. }
  787. void print_header(const cmd_params & params) override {
  788. std::vector<std::string> fields = test::get_fields();
  789. fprintf(fout, "%s\n", join(fields, ",").c_str());
  790. (void) params;
  791. }
  792. void print_test(const test & t) override {
  793. std::vector<std::string> values = t.get_values();
  794. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  795. fprintf(fout, "%s\n", join(values, ",").c_str());
  796. }
  797. };
  798. struct json_printer : public printer {
  799. bool first = true;
  800. static std::string escape_json(const std::string & value) {
  801. std::string escaped;
  802. for (auto c : value) {
  803. if (c == '"') {
  804. escaped += "\\\"";
  805. } else if (c == '\\') {
  806. escaped += "\\\\";
  807. } else if (c <= 0x1f) {
  808. char buf[8];
  809. snprintf(buf, sizeof(buf), "\\u%04x", c);
  810. escaped += buf;
  811. } else {
  812. escaped += c;
  813. }
  814. }
  815. return escaped;
  816. }
  817. static std::string format_value(const std::string & field, const std::string & value) {
  818. switch (test::get_field_type(field)) {
  819. case test::STRING:
  820. return "\"" + escape_json(value) + "\"";
  821. case test::BOOL:
  822. return value == "0" ? "false" : "true";
  823. default:
  824. return value;
  825. }
  826. }
  827. void print_header(const cmd_params & params) override {
  828. fprintf(fout, "[\n");
  829. (void) params;
  830. }
  831. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  832. assert(fields.size() == values.size());
  833. for (size_t i = 0; i < fields.size(); i++) {
  834. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  835. }
  836. }
  837. void print_test(const test & t) override {
  838. if (first) {
  839. first = false;
  840. } else {
  841. fprintf(fout, ",\n");
  842. }
  843. fprintf(fout, " {\n");
  844. print_fields(test::get_fields(), t.get_values());
  845. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  846. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  847. fprintf(fout, " }");
  848. fflush(fout);
  849. }
  850. void print_footer() override {
  851. fprintf(fout, "\n]\n");
  852. }
  853. };
  854. struct markdown_printer : public printer {
  855. std::vector<std::string> fields;
  856. static int get_field_width(const std::string & field) {
  857. if (field == "model") {
  858. return -30;
  859. }
  860. if (field == "t/s") {
  861. return 16;
  862. }
  863. if (field == "size" || field == "params") {
  864. return 10;
  865. }
  866. if (field == "n_gpu_layers") {
  867. return 3;
  868. }
  869. int width = std::max((int)field.length(), 10);
  870. if (test::get_field_type(field) == test::STRING) {
  871. return -width;
  872. }
  873. return width;
  874. }
  875. static std::string get_field_display_name(const std::string & field) {
  876. if (field == "n_gpu_layers") {
  877. return "ngl";
  878. }
  879. if (field == "split_mode") {
  880. return "sm";
  881. }
  882. if (field == "n_threads") {
  883. return "threads";
  884. }
  885. if (field == "no_kv_offload") {
  886. return "nkvo";
  887. }
  888. if (field == "use_mmap") {
  889. return "mmap";
  890. }
  891. if (field == "embeddings") {
  892. return "embd";
  893. }
  894. if (field == "tensor_split") {
  895. return "ts";
  896. }
  897. return field;
  898. }
  899. void print_header(const cmd_params & params) override {
  900. // select fields to print
  901. fields.emplace_back("model");
  902. fields.emplace_back("size");
  903. fields.emplace_back("params");
  904. fields.emplace_back("backend");
  905. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  906. if (!is_cpu_backend) {
  907. fields.emplace_back("n_gpu_layers");
  908. }
  909. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  910. fields.emplace_back("n_threads");
  911. }
  912. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  913. fields.emplace_back("n_batch");
  914. }
  915. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  916. fields.emplace_back("n_ubatch");
  917. }
  918. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  919. fields.emplace_back("type_k");
  920. }
  921. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  922. fields.emplace_back("type_v");
  923. }
  924. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  925. fields.emplace_back("main_gpu");
  926. }
  927. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  928. fields.emplace_back("split_mode");
  929. }
  930. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  931. fields.emplace_back("no_kv_offload");
  932. }
  933. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  934. fields.emplace_back("tensor_split");
  935. }
  936. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  937. fields.emplace_back("use_mmap");
  938. }
  939. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  940. fields.emplace_back("embeddings");
  941. }
  942. fields.emplace_back("test");
  943. fields.emplace_back("t/s");
  944. fprintf(fout, "|");
  945. for (const auto & field : fields) {
  946. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  947. }
  948. fprintf(fout, "\n");
  949. fprintf(fout, "|");
  950. for (const auto & field : fields) {
  951. int width = get_field_width(field);
  952. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  953. }
  954. fprintf(fout, "\n");
  955. }
  956. void print_test(const test & t) override {
  957. std::map<std::string, std::string> vmap = t.get_map();
  958. fprintf(fout, "|");
  959. for (const auto & field : fields) {
  960. std::string value;
  961. char buf[128];
  962. if (field == "model") {
  963. value = t.model_type;
  964. } else if (field == "size") {
  965. if (t.model_size < 1024*1024*1024) {
  966. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  967. } else {
  968. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  969. }
  970. value = buf;
  971. } else if (field == "params") {
  972. if (t.model_n_params < 1000*1000*1000) {
  973. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  974. } else {
  975. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  976. }
  977. value = buf;
  978. } else if (field == "backend") {
  979. value = test::get_backend();
  980. } else if (field == "test") {
  981. if (t.n_prompt > 0 && t.n_gen == 0) {
  982. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  983. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  984. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  985. } else {
  986. assert(false);
  987. exit(1);
  988. }
  989. value = buf;
  990. } else if (field == "t/s") {
  991. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  992. value = buf;
  993. } else if (vmap.find(field) != vmap.end()) {
  994. value = vmap.at(field);
  995. } else {
  996. assert(false);
  997. exit(1);
  998. }
  999. int width = get_field_width(field);
  1000. if (field == "t/s") {
  1001. // HACK: the utf-8 character is 2 bytes
  1002. width += 1;
  1003. }
  1004. fprintf(fout, " %*s |", width, value.c_str());
  1005. }
  1006. fprintf(fout, "\n");
  1007. }
  1008. void print_footer() override {
  1009. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1010. }
  1011. };
  1012. struct sql_printer : public printer {
  1013. static std::string get_sql_field_type(const std::string & field) {
  1014. switch (test::get_field_type(field)) {
  1015. case test::STRING:
  1016. return "TEXT";
  1017. case test::BOOL:
  1018. case test::INT:
  1019. return "INTEGER";
  1020. case test::FLOAT:
  1021. return "REAL";
  1022. default:
  1023. assert(false);
  1024. exit(1);
  1025. }
  1026. }
  1027. void print_header(const cmd_params & params) override {
  1028. std::vector<std::string> fields = test::get_fields();
  1029. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1030. for (size_t i = 0; i < fields.size(); i++) {
  1031. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1032. }
  1033. fprintf(fout, ");\n");
  1034. fprintf(fout, "\n");
  1035. (void) params;
  1036. }
  1037. void print_test(const test & t) override {
  1038. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1039. fprintf(fout, "VALUES (");
  1040. std::vector<std::string> values = t.get_values();
  1041. for (size_t i = 0; i < values.size(); i++) {
  1042. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1043. }
  1044. fprintf(fout, ");\n");
  1045. }
  1046. };
  1047. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1048. llama_set_n_threads(ctx, n_threads, n_threads);
  1049. const llama_model * model = llama_get_model(ctx);
  1050. const int32_t n_vocab = llama_n_vocab(model);
  1051. std::vector<llama_token> tokens(n_batch);
  1052. int n_processed = 0;
  1053. while (n_processed < n_prompt) {
  1054. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1055. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1056. for (int i = 1; i < n_tokens; i++) {
  1057. tokens[i] = std::rand() % n_vocab;
  1058. }
  1059. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1060. n_processed += n_tokens;
  1061. }
  1062. llama_synchronize(ctx);
  1063. }
  1064. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1065. llama_set_n_threads(ctx, n_threads, n_threads);
  1066. const llama_model * model = llama_get_model(ctx);
  1067. const int32_t n_vocab = llama_n_vocab(model);
  1068. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1069. for (int i = 0; i < n_gen; i++) {
  1070. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1071. llama_synchronize(ctx);
  1072. token = std::rand() % n_vocab;
  1073. }
  1074. }
  1075. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1076. (void) level;
  1077. (void) text;
  1078. (void) user_data;
  1079. }
  1080. int main(int argc, char ** argv) {
  1081. // try to set locale for unicode characters in markdown
  1082. setlocale(LC_CTYPE, ".UTF-8");
  1083. #if !defined(NDEBUG)
  1084. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1085. #endif
  1086. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1087. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1088. #endif
  1089. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1090. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1091. #endif
  1092. cmd_params params = parse_cmd_params(argc, argv);
  1093. // initialize llama.cpp
  1094. if (!params.verbose) {
  1095. llama_log_set(llama_null_log_callback, NULL);
  1096. }
  1097. llama_backend_init();
  1098. // initialize printer
  1099. std::unique_ptr<printer> p;
  1100. switch (params.output_format) {
  1101. case CSV:
  1102. p.reset(new csv_printer());
  1103. break;
  1104. case JSON:
  1105. p.reset(new json_printer());
  1106. break;
  1107. case MARKDOWN:
  1108. p.reset(new markdown_printer());
  1109. break;
  1110. case SQL:
  1111. p.reset(new sql_printer());
  1112. break;
  1113. default:
  1114. assert(false);
  1115. exit(1);
  1116. }
  1117. p->fout = stdout;
  1118. p->print_header(params);
  1119. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1120. llama_model * lmodel = nullptr;
  1121. const cmd_params_instance * prev_inst = nullptr;
  1122. for (const auto & inst : params_instances) {
  1123. // keep the same model between tests when possible
  1124. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1125. if (lmodel) {
  1126. llama_free_model(lmodel);
  1127. }
  1128. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1129. if (lmodel == NULL) {
  1130. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1131. return 1;
  1132. }
  1133. prev_inst = &inst;
  1134. }
  1135. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1136. if (ctx == NULL) {
  1137. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1138. llama_free_model(lmodel);
  1139. return 1;
  1140. }
  1141. test t(inst, lmodel, ctx);
  1142. llama_kv_cache_clear(ctx);
  1143. // warmup run
  1144. if (t.n_prompt > 0) {
  1145. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1146. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1147. }
  1148. if (t.n_gen > 0) {
  1149. test_gen(ctx, 1, 0, t.n_threads);
  1150. }
  1151. for (int i = 0; i < params.reps; i++) {
  1152. llama_kv_cache_clear(ctx);
  1153. uint64_t t_start = get_time_ns();
  1154. if (t.n_prompt > 0) {
  1155. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1156. }
  1157. if (t.n_gen > 0) {
  1158. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1159. }
  1160. uint64_t t_ns = get_time_ns() - t_start;
  1161. t.samples_ns.push_back(t_ns);
  1162. }
  1163. p->print_test(t);
  1164. llama_print_timings(ctx);
  1165. llama_free(ctx);
  1166. }
  1167. llama_free_model(lmodel);
  1168. p->print_footer();
  1169. llama_backend_free();
  1170. return 0;
  1171. }