ggml.c 694 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #if defined(_MSC_VER)
  31. // disable "possible loss of data" to avoid hundreds of casts
  32. // we should just be careful :)
  33. #pragma warning(disable: 4244 4267)
  34. // disable POSIX deprecation warnings
  35. // these functions are never going away, anyway
  36. #pragma warning(disable: 4996)
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. typedef volatile LONG atomic_int;
  45. typedef atomic_int atomic_bool;
  46. static void atomic_store(atomic_int * ptr, LONG val) {
  47. InterlockedExchange(ptr, val);
  48. }
  49. static LONG atomic_load(atomic_int * ptr) {
  50. return InterlockedCompareExchange(ptr, 0, 0);
  51. }
  52. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  53. return InterlockedExchangeAdd(ptr, inc);
  54. }
  55. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  56. return atomic_fetch_add(ptr, -(dec));
  57. }
  58. typedef HANDLE pthread_t;
  59. typedef DWORD thread_ret_t;
  60. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  61. (void) unused;
  62. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  63. if (handle == NULL)
  64. {
  65. return EAGAIN;
  66. }
  67. *out = handle;
  68. return 0;
  69. }
  70. static int pthread_join(pthread_t thread, void * unused) {
  71. (void) unused;
  72. int ret = (int) WaitForSingleObject(thread, INFINITE);
  73. CloseHandle(thread);
  74. return ret;
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. #if defined(__APPLE__)
  92. #include <TargetConditionals.h>
  93. #endif
  94. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  95. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  96. #include <sys/wait.h>
  97. void ggml_print_backtrace(void) {
  98. /*
  99. #include <execinfo.h>
  100. #include <dlfcn.h>
  101. void * trace[100];
  102. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  103. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  104. */
  105. // backtrack_symbols does not show line numbers, use gdb instead
  106. char attach[32];
  107. snprintf(attach, sizeof(attach), "attach %d", getpid());
  108. int pid = fork();
  109. if (pid == 0) {
  110. execlp("gdb", "gdb", "--batch",
  111. "-ex", "set style enabled on",
  112. "-ex", attach,
  113. "-ex", "bt -frame-info source-and-location",
  114. "-ex", "detach",
  115. "-ex", "quit",
  116. (char *) NULL);
  117. } else {
  118. waitpid(pid, NULL, 0);
  119. }
  120. }
  121. #else
  122. void ggml_print_backtrace(void) {
  123. // platform not supported
  124. }
  125. #endif
  126. /*#define GGML_PERF*/
  127. #define GGML_DEBUG 0
  128. #define GGML_GELU_FP16
  129. #define GGML_GELU_QUICK_FP16
  130. #define GGML_SILU_FP16
  131. // #define GGML_CROSS_ENTROPY_EXP_FP16
  132. // #define GGML_FLASH_ATTN_EXP_FP16
  133. #define GGML_SOFT_MAX_UNROLL 4
  134. #define GGML_VEC_DOT_UNROLL 2
  135. #define GGML_VEC_MAD_UNROLL 32
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #ifdef GGML_USE_ACCELERATE
  159. // uncomment to use vDSP for soft max computation
  160. // note: not sure if it is actually faster
  161. //#define GGML_SOFT_MAX_ACCELERATE
  162. #endif
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. GGML_ASSERT(false);
  193. return NULL;
  194. }
  195. return aligned_memory;
  196. }
  197. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  198. #ifdef GGML_USE_CPU_HBM
  199. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  200. #else
  201. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  202. #endif
  203. #endif
  204. inline static void * ggml_malloc(size_t size) {
  205. if (size == 0) {
  206. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  207. return NULL;
  208. }
  209. void * result = malloc(size);
  210. if (result == NULL) {
  211. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  212. GGML_ASSERT(false);
  213. }
  214. return result;
  215. }
  216. // calloc
  217. inline static void * ggml_calloc(size_t num, size_t size) {
  218. if (num == 0 || size == 0) {
  219. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  220. return NULL;
  221. }
  222. void * result = calloc(num, size);
  223. if (result == NULL) {
  224. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  225. GGML_ASSERT(false);
  226. }
  227. return result;
  228. }
  229. #define GGML_MALLOC(size) ggml_malloc(size)
  230. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  231. #define GGML_FREE(ptr) free(ptr)
  232. #define UNUSED GGML_UNUSED
  233. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  234. #if defined(GGML_USE_ACCELERATE)
  235. #include <Accelerate/Accelerate.h>
  236. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  237. #include "ggml-opencl.h"
  238. #elif defined(GGML_USE_VULKAN)
  239. #include "ggml-vulkan.h"
  240. #endif
  241. #elif defined(GGML_USE_OPENBLAS)
  242. #if defined(GGML_BLAS_USE_MKL)
  243. #include <mkl.h>
  244. #else
  245. #include <cblas.h>
  246. #endif
  247. #elif defined(GGML_USE_CLBLAST)
  248. #include "ggml-opencl.h"
  249. #elif defined(GGML_USE_VULKAN)
  250. #include "ggml-vulkan.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  289. for (int i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  294. int i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ4_NL] = {
  718. .type_name = "iq4_nl",
  719. .blck_size = QK4_NL,
  720. .type_size = sizeof(block_iq4_nl),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  723. .from_float = quantize_row_iq4_nl,
  724. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  725. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  726. .vec_dot_type = GGML_TYPE_Q8_0,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_XS] = {
  730. .type_name = "iq4_xs",
  731. #if QK_K == 64
  732. .blck_size = QK4_NL,
  733. #else
  734. .blck_size = QK_K,
  735. #endif
  736. .type_size = sizeof(block_iq4_xs),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  739. .from_float = quantize_row_iq4_xs,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  741. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  742. #if QK_K == 64
  743. .vec_dot_type = GGML_TYPE_Q8_0,
  744. #else
  745. .vec_dot_type = GGML_TYPE_Q8_K,
  746. #endif
  747. .nrows = 1,
  748. },
  749. [GGML_TYPE_Q8_K] = {
  750. .type_name = "q8_K",
  751. .blck_size = QK_K,
  752. .type_size = sizeof(block_q8_K),
  753. .is_quantized = true,
  754. .from_float = quantize_row_q8_K,
  755. }
  756. };
  757. // For internal test use
  758. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  759. GGML_ASSERT(type < GGML_TYPE_COUNT);
  760. return type_traits[type];
  761. }
  762. //
  763. // simd mappings
  764. //
  765. #if defined(__ARM_NEON)
  766. #if !defined(__aarch64__)
  767. // 64-bit compatibility
  768. inline static float vaddvq_f32(float32x4_t v) {
  769. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  770. }
  771. #endif
  772. #endif
  773. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  774. // we then implement the fundamental computation operations below using only these macros
  775. // adding support for new architectures requires to define the corresponding SIMD macros
  776. //
  777. // GGML_F32_STEP / GGML_F16_STEP
  778. // number of elements to process in a single step
  779. //
  780. // GGML_F32_EPR / GGML_F16_EPR
  781. // number of elements to fit in a single register
  782. //
  783. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  784. #define GGML_SIMD
  785. // F32 NEON
  786. #define GGML_F32_STEP 16
  787. #define GGML_F32_EPR 4
  788. #define GGML_F32x4 float32x4_t
  789. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  790. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  791. #define GGML_F32x4_LOAD vld1q_f32
  792. #define GGML_F32x4_STORE vst1q_f32
  793. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  794. #define GGML_F32x4_ADD vaddq_f32
  795. #define GGML_F32x4_MUL vmulq_f32
  796. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  797. #define GGML_F32x4_REDUCE(res, x) \
  798. { \
  799. int offset = GGML_F32_ARR >> 1; \
  800. for (int i = 0; i < offset; ++i) { \
  801. x[i] = vaddq_f32(x[i], x[offset+i]); \
  802. } \
  803. offset >>= 1; \
  804. for (int i = 0; i < offset; ++i) { \
  805. x[i] = vaddq_f32(x[i], x[offset+i]); \
  806. } \
  807. offset >>= 1; \
  808. for (int i = 0; i < offset; ++i) { \
  809. x[i] = vaddq_f32(x[i], x[offset+i]); \
  810. } \
  811. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  812. }
  813. #define GGML_F32_VEC GGML_F32x4
  814. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  815. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  816. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  817. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  818. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  819. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  820. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  821. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  822. // F16 NEON
  823. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  824. #define GGML_F16_STEP 32
  825. #define GGML_F16_EPR 8
  826. #define GGML_F16x8 float16x8_t
  827. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  828. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  829. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  830. #define GGML_F16x8_STORE vst1q_f16
  831. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  832. #define GGML_F16x8_ADD vaddq_f16
  833. #define GGML_F16x8_MUL vmulq_f16
  834. #define GGML_F16x8_REDUCE(res, x) \
  835. do { \
  836. int offset = GGML_F16_ARR >> 1; \
  837. for (int i = 0; i < offset; ++i) { \
  838. x[i] = vaddq_f16(x[i], x[offset+i]); \
  839. } \
  840. offset >>= 1; \
  841. for (int i = 0; i < offset; ++i) { \
  842. x[i] = vaddq_f16(x[i], x[offset+i]); \
  843. } \
  844. offset >>= 1; \
  845. for (int i = 0; i < offset; ++i) { \
  846. x[i] = vaddq_f16(x[i], x[offset+i]); \
  847. } \
  848. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  849. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  850. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  851. } while (0)
  852. #define GGML_F16_VEC GGML_F16x8
  853. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  854. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  855. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  856. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  857. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  858. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  859. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  860. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  861. #else
  862. // if FP16 vector arithmetic is not supported, we use FP32 instead
  863. // and take advantage of the vcvt_ functions to convert to/from FP16
  864. #define GGML_F16_STEP 16
  865. #define GGML_F16_EPR 4
  866. #define GGML_F32Cx4 float32x4_t
  867. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  868. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  869. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  870. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  871. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  872. #define GGML_F32Cx4_ADD vaddq_f32
  873. #define GGML_F32Cx4_MUL vmulq_f32
  874. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  875. #define GGML_F16_VEC GGML_F32Cx4
  876. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  877. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  878. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  879. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  880. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  881. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  882. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  883. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  884. #endif
  885. #elif defined(__AVX512F__)
  886. #define GGML_SIMD
  887. // F32 AVX512
  888. #define GGML_F32_STEP 64
  889. #define GGML_F32_EPR 16
  890. #define GGML_F32x16 __m512
  891. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  892. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  893. #define GGML_F32x16_LOAD _mm512_loadu_ps
  894. #define GGML_F32x16_STORE _mm512_storeu_ps
  895. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  896. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  897. #define GGML_F32x16_ADD _mm512_add_ps
  898. #define GGML_F32x16_MUL _mm512_mul_ps
  899. #define GGML_F32x16_REDUCE(res, x) \
  900. do { \
  901. int offset = GGML_F32_ARR >> 1; \
  902. for (int i = 0; i < offset; ++i) { \
  903. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  904. } \
  905. offset >>= 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  912. } \
  913. res = _mm512_reduce_add_ps(x[0]); \
  914. } while (0)
  915. // TODO: is this optimal ?
  916. #define GGML_F32_VEC GGML_F32x16
  917. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  918. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  919. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  920. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  921. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  922. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  923. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  924. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  925. // F16 AVX512
  926. // F16 AVX
  927. #define GGML_F16_STEP 64
  928. #define GGML_F16_EPR 16
  929. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  930. #define GGML_F32Cx16 __m512
  931. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  932. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  933. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  934. // so F16C guard isn't required
  935. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  936. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  937. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  938. #define GGML_F32Cx16_ADD _mm512_add_ps
  939. #define GGML_F32Cx16_MUL _mm512_mul_ps
  940. #define GGML_F32Cx16_REDUCE(res, x) \
  941. do { \
  942. int offset = GGML_F32_ARR >> 1; \
  943. for (int i = 0; i < offset; ++i) { \
  944. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  945. } \
  946. offset >>= 1; \
  947. for (int i = 0; i < offset; ++i) { \
  948. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  949. } \
  950. offset >>= 1; \
  951. for (int i = 0; i < offset; ++i) { \
  952. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  953. } \
  954. res = _mm512_reduce_add_ps(x[0]); \
  955. } while (0)
  956. #define GGML_F16_VEC GGML_F32Cx16
  957. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  958. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  959. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  960. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  961. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  962. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  963. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  964. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  965. #elif defined(__AVX__)
  966. #define GGML_SIMD
  967. // F32 AVX
  968. #define GGML_F32_STEP 32
  969. #define GGML_F32_EPR 8
  970. #define GGML_F32x8 __m256
  971. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  972. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  973. #define GGML_F32x8_LOAD _mm256_loadu_ps
  974. #define GGML_F32x8_STORE _mm256_storeu_ps
  975. #if defined(__FMA__)
  976. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  977. #else
  978. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  979. #endif
  980. #define GGML_F32x8_ADD _mm256_add_ps
  981. #define GGML_F32x8_MUL _mm256_mul_ps
  982. #define GGML_F32x8_REDUCE(res, x) \
  983. do { \
  984. int offset = GGML_F32_ARR >> 1; \
  985. for (int i = 0; i < offset; ++i) { \
  986. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  987. } \
  988. offset >>= 1; \
  989. for (int i = 0; i < offset; ++i) { \
  990. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  991. } \
  992. offset >>= 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  995. } \
  996. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  997. _mm256_extractf128_ps(x[0], 1)); \
  998. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  999. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1000. } while (0)
  1001. // TODO: is this optimal ?
  1002. #define GGML_F32_VEC GGML_F32x8
  1003. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1004. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1005. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1006. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1007. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1008. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1009. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1010. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1011. // F16 AVX
  1012. #define GGML_F16_STEP 32
  1013. #define GGML_F16_EPR 8
  1014. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1015. #define GGML_F32Cx8 __m256
  1016. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1017. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1018. #if defined(__F16C__)
  1019. // the _mm256_cvt intrinsics require F16C
  1020. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1021. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1022. #else
  1023. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1024. float tmp[8];
  1025. for (int i = 0; i < 8; i++) {
  1026. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1027. }
  1028. return _mm256_loadu_ps(tmp);
  1029. }
  1030. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1031. float arr[8];
  1032. _mm256_storeu_ps(arr, y);
  1033. for (int i = 0; i < 8; i++)
  1034. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1035. }
  1036. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1037. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1038. #endif
  1039. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1040. #define GGML_F32Cx8_ADD _mm256_add_ps
  1041. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1042. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1043. #define GGML_F16_VEC GGML_F32Cx8
  1044. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1045. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1046. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1047. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1048. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1049. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1050. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1051. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1052. #elif defined(__POWER9_VECTOR__)
  1053. #define GGML_SIMD
  1054. // F32 POWER9
  1055. #define GGML_F32_STEP 32
  1056. #define GGML_F32_EPR 4
  1057. #define GGML_F32x4 vector float
  1058. #define GGML_F32x4_ZERO 0.0f
  1059. #define GGML_F32x4_SET1 vec_splats
  1060. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1061. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1062. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1063. #define GGML_F32x4_ADD vec_add
  1064. #define GGML_F32x4_MUL vec_mul
  1065. #define GGML_F32x4_REDUCE(res, x) \
  1066. { \
  1067. int offset = GGML_F32_ARR >> 1; \
  1068. for (int i = 0; i < offset; ++i) { \
  1069. x[i] = vec_add(x[i], x[offset+i]); \
  1070. } \
  1071. offset >>= 1; \
  1072. for (int i = 0; i < offset; ++i) { \
  1073. x[i] = vec_add(x[i], x[offset+i]); \
  1074. } \
  1075. offset >>= 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = vec_add(x[i], x[offset+i]); \
  1078. } \
  1079. res = vec_extract(x[0], 0) + \
  1080. vec_extract(x[0], 1) + \
  1081. vec_extract(x[0], 2) + \
  1082. vec_extract(x[0], 3); \
  1083. }
  1084. #define GGML_F32_VEC GGML_F32x4
  1085. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1086. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1087. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1088. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1089. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1090. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1091. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1092. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1093. // F16 POWER9
  1094. #define GGML_F16_STEP GGML_F32_STEP
  1095. #define GGML_F16_EPR GGML_F32_EPR
  1096. #define GGML_F16_VEC GGML_F32x4
  1097. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1098. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1099. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1100. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1101. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1102. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1103. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1104. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1105. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1106. #define GGML_F16_VEC_STORE(p, r, i) \
  1107. if (i & 0x1) \
  1108. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1109. r[i - GGML_ENDIAN_BYTE(0)]), \
  1110. 0, p - GGML_F16_EPR)
  1111. #elif defined(__wasm_simd128__)
  1112. #define GGML_SIMD
  1113. // F32 WASM
  1114. #define GGML_F32_STEP 16
  1115. #define GGML_F32_EPR 4
  1116. #define GGML_F32x4 v128_t
  1117. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1118. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1119. #define GGML_F32x4_LOAD wasm_v128_load
  1120. #define GGML_F32x4_STORE wasm_v128_store
  1121. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1122. #define GGML_F32x4_ADD wasm_f32x4_add
  1123. #define GGML_F32x4_MUL wasm_f32x4_mul
  1124. #define GGML_F32x4_REDUCE(res, x) \
  1125. { \
  1126. int offset = GGML_F32_ARR >> 1; \
  1127. for (int i = 0; i < offset; ++i) { \
  1128. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1129. } \
  1130. offset >>= 1; \
  1131. for (int i = 0; i < offset; ++i) { \
  1132. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1133. } \
  1134. offset >>= 1; \
  1135. for (int i = 0; i < offset; ++i) { \
  1136. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1137. } \
  1138. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1139. wasm_f32x4_extract_lane(x[0], 1) + \
  1140. wasm_f32x4_extract_lane(x[0], 2) + \
  1141. wasm_f32x4_extract_lane(x[0], 3); \
  1142. }
  1143. #define GGML_F32_VEC GGML_F32x4
  1144. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1145. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1146. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1147. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1148. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1149. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1150. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1151. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1152. // F16 WASM
  1153. #define GGML_F16_STEP 16
  1154. #define GGML_F16_EPR 4
  1155. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1156. float tmp[4];
  1157. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1158. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1159. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1160. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1161. return wasm_v128_load(tmp);
  1162. }
  1163. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1164. float tmp[4];
  1165. wasm_v128_store(tmp, x);
  1166. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1167. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1168. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1169. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1170. }
  1171. #define GGML_F16x4 v128_t
  1172. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1173. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1174. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1175. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1176. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1177. #define GGML_F16x4_ADD wasm_f32x4_add
  1178. #define GGML_F16x4_MUL wasm_f32x4_mul
  1179. #define GGML_F16x4_REDUCE(res, x) \
  1180. { \
  1181. int offset = GGML_F16_ARR >> 1; \
  1182. for (int i = 0; i < offset; ++i) { \
  1183. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1184. } \
  1185. offset >>= 1; \
  1186. for (int i = 0; i < offset; ++i) { \
  1187. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1188. } \
  1189. offset >>= 1; \
  1190. for (int i = 0; i < offset; ++i) { \
  1191. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1192. } \
  1193. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1194. wasm_f32x4_extract_lane(x[0], 1) + \
  1195. wasm_f32x4_extract_lane(x[0], 2) + \
  1196. wasm_f32x4_extract_lane(x[0], 3); \
  1197. }
  1198. #define GGML_F16_VEC GGML_F16x4
  1199. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1200. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1201. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1202. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1203. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1204. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1205. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1206. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1207. #elif defined(__SSE3__)
  1208. #define GGML_SIMD
  1209. // F32 SSE
  1210. #define GGML_F32_STEP 32
  1211. #define GGML_F32_EPR 4
  1212. #define GGML_F32x4 __m128
  1213. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1214. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1215. #define GGML_F32x4_LOAD _mm_loadu_ps
  1216. #define GGML_F32x4_STORE _mm_storeu_ps
  1217. #if defined(__FMA__)
  1218. // TODO: Does this work?
  1219. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1220. #else
  1221. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1222. #endif
  1223. #define GGML_F32x4_ADD _mm_add_ps
  1224. #define GGML_F32x4_MUL _mm_mul_ps
  1225. #define GGML_F32x4_REDUCE(res, x) \
  1226. { \
  1227. int offset = GGML_F32_ARR >> 1; \
  1228. for (int i = 0; i < offset; ++i) { \
  1229. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1230. } \
  1231. offset >>= 1; \
  1232. for (int i = 0; i < offset; ++i) { \
  1233. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1234. } \
  1235. offset >>= 1; \
  1236. for (int i = 0; i < offset; ++i) { \
  1237. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1238. } \
  1239. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1240. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1241. }
  1242. // TODO: is this optimal ?
  1243. #define GGML_F32_VEC GGML_F32x4
  1244. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1245. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1246. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1247. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1248. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1249. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1250. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1251. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1252. // F16 SSE
  1253. #define GGML_F16_STEP 32
  1254. #define GGML_F16_EPR 4
  1255. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1256. float tmp[4];
  1257. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1258. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1259. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1260. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1261. return _mm_loadu_ps(tmp);
  1262. }
  1263. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1264. float arr[4];
  1265. _mm_storeu_ps(arr, y);
  1266. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1267. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1268. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1269. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1270. }
  1271. #define GGML_F32Cx4 __m128
  1272. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1273. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1274. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1275. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1276. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1277. #define GGML_F32Cx4_ADD _mm_add_ps
  1278. #define GGML_F32Cx4_MUL _mm_mul_ps
  1279. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1280. #define GGML_F16_VEC GGML_F32Cx4
  1281. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1282. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1283. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1284. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1285. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1286. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1287. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1288. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1289. #endif
  1290. // GGML_F32_ARR / GGML_F16_ARR
  1291. // number of registers to use per step
  1292. #ifdef GGML_SIMD
  1293. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1294. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1295. #endif
  1296. //
  1297. // fundamental operations
  1298. //
  1299. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1300. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1301. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1302. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1303. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1304. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1305. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1306. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1307. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1308. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1309. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1310. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1311. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1312. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1313. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1314. assert(nrc == 1);
  1315. UNUSED(nrc);
  1316. UNUSED(bx);
  1317. UNUSED(by);
  1318. UNUSED(bs);
  1319. #ifdef GGML_SIMD
  1320. float sumf = 0.0f;
  1321. const int np = (n & ~(GGML_F32_STEP - 1));
  1322. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1323. GGML_F32_VEC ax[GGML_F32_ARR];
  1324. GGML_F32_VEC ay[GGML_F32_ARR];
  1325. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1326. for (int j = 0; j < GGML_F32_ARR; j++) {
  1327. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1328. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1329. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1330. }
  1331. }
  1332. // reduce sum0..sum3 to sum0
  1333. GGML_F32_VEC_REDUCE(sumf, sum);
  1334. // leftovers
  1335. for (int i = np; i < n; ++i) {
  1336. sumf += x[i]*y[i];
  1337. }
  1338. #else
  1339. // scalar
  1340. ggml_float sumf = 0.0;
  1341. for (int i = 0; i < n; ++i) {
  1342. sumf += (ggml_float)(x[i]*y[i]);
  1343. }
  1344. #endif
  1345. *s = sumf;
  1346. }
  1347. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1348. assert(nrc == 1);
  1349. UNUSED(nrc);
  1350. UNUSED(bx);
  1351. UNUSED(by);
  1352. UNUSED(bs);
  1353. ggml_float sumf = 0.0;
  1354. #if defined(GGML_SIMD)
  1355. const int np = (n & ~(GGML_F16_STEP - 1));
  1356. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1357. GGML_F16_VEC ax[GGML_F16_ARR];
  1358. GGML_F16_VEC ay[GGML_F16_ARR];
  1359. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1360. for (int j = 0; j < GGML_F16_ARR; j++) {
  1361. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1362. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1363. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1364. }
  1365. }
  1366. // reduce sum0..sum3 to sum0
  1367. GGML_F16_VEC_REDUCE(sumf, sum);
  1368. // leftovers
  1369. for (int i = np; i < n; ++i) {
  1370. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1371. }
  1372. #else
  1373. for (int i = 0; i < n; ++i) {
  1374. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1375. }
  1376. #endif
  1377. *s = sumf;
  1378. }
  1379. // compute GGML_VEC_DOT_UNROLL dot products at once
  1380. // xs - x row stride in bytes
  1381. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1382. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1383. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1384. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1385. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1386. }
  1387. #if defined(GGML_SIMD)
  1388. const int np = (n & ~(GGML_F16_STEP - 1));
  1389. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1390. GGML_F16_VEC ax[GGML_F16_ARR];
  1391. GGML_F16_VEC ay[GGML_F16_ARR];
  1392. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1393. for (int j = 0; j < GGML_F16_ARR; j++) {
  1394. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1395. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1396. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1397. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1398. }
  1399. }
  1400. }
  1401. // reduce sum0..sum3 to sum0
  1402. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1403. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1404. }
  1405. // leftovers
  1406. for (int i = np; i < n; ++i) {
  1407. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1408. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1409. }
  1410. }
  1411. #else
  1412. for (int i = 0; i < n; ++i) {
  1413. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1414. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1415. }
  1416. }
  1417. #endif
  1418. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1419. s[i] = sumf[i];
  1420. }
  1421. }
  1422. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1423. #if defined(GGML_SIMD)
  1424. const int np = (n & ~(GGML_F32_STEP - 1));
  1425. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1426. GGML_F32_VEC ax[GGML_F32_ARR];
  1427. GGML_F32_VEC ay[GGML_F32_ARR];
  1428. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1429. for (int j = 0; j < GGML_F32_ARR; j++) {
  1430. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1431. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1432. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1433. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1434. }
  1435. }
  1436. // leftovers
  1437. for (int i = np; i < n; ++i) {
  1438. y[i] += x[i]*v;
  1439. }
  1440. #else
  1441. // scalar
  1442. for (int i = 0; i < n; ++i) {
  1443. y[i] += x[i]*v;
  1444. }
  1445. #endif
  1446. }
  1447. // xs and vs are byte strides of x and v
  1448. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1449. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1450. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1451. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1452. x[i] = (const float *) ((const char *) xv + i*xs);
  1453. v[i] = (const float *) ((const char *) vv + i*vs);
  1454. }
  1455. #if defined(GGML_SIMD)
  1456. const int np = (n & ~(GGML_F32_STEP - 1));
  1457. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1458. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1459. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1460. }
  1461. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1462. GGML_F32_VEC ay[GGML_F32_ARR];
  1463. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1464. for (int j = 0; j < GGML_F32_ARR; j++) {
  1465. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1466. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1467. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1468. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1469. }
  1470. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1471. }
  1472. }
  1473. // leftovers
  1474. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1475. for (int i = np; i < n; ++i) {
  1476. y[i] += x[k][i]*v[k][0];
  1477. }
  1478. }
  1479. #else
  1480. // scalar
  1481. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1482. for (int i = 0; i < n; ++i) {
  1483. y[i] += x[k][i]*v[k][0];
  1484. }
  1485. }
  1486. #endif
  1487. }
  1488. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1489. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1490. #if defined(GGML_USE_ACCELERATE)
  1491. vDSP_vsmul(y, 1, &v, y, 1, n);
  1492. #elif defined(GGML_SIMD)
  1493. const int np = (n & ~(GGML_F32_STEP - 1));
  1494. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1495. GGML_F32_VEC ay[GGML_F32_ARR];
  1496. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1497. for (int j = 0; j < GGML_F32_ARR; j++) {
  1498. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1499. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1500. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1501. }
  1502. }
  1503. // leftovers
  1504. for (int i = np; i < n; ++i) {
  1505. y[i] *= v;
  1506. }
  1507. #else
  1508. // scalar
  1509. for (int i = 0; i < n; ++i) {
  1510. y[i] *= v;
  1511. }
  1512. #endif
  1513. }
  1514. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1515. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1516. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1517. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1518. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1519. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1520. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1521. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1522. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1523. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1524. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1525. // TODO: optimize performance
  1526. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1527. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1528. static const float GELU_COEF_A = 0.044715f;
  1529. static const float GELU_QUICK_COEF = -1.702f;
  1530. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1531. inline static float ggml_gelu_f32(float x) {
  1532. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1533. }
  1534. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1535. const uint16_t * i16 = (const uint16_t *) x;
  1536. for (int i = 0; i < n; ++i) {
  1537. y[i] = ggml_table_gelu_f16[i16[i]];
  1538. }
  1539. }
  1540. #ifdef GGML_GELU_FP16
  1541. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1542. uint16_t t;
  1543. for (int i = 0; i < n; ++i) {
  1544. if (x[i] <= -10.0f) {
  1545. y[i] = 0.0f;
  1546. } else if (x[i] >= 10.0f) {
  1547. y[i] = x[i];
  1548. } else {
  1549. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1550. memcpy(&t, &fp16, sizeof(uint16_t));
  1551. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1552. }
  1553. }
  1554. }
  1555. #else
  1556. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1557. for (int i = 0; i < n; ++i) {
  1558. y[i] = ggml_gelu_f32(x[i]);
  1559. }
  1560. }
  1561. #endif
  1562. inline static float ggml_gelu_quick_f32(float x) {
  1563. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1564. }
  1565. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1566. // const uint16_t * i16 = (const uint16_t *) x;
  1567. // for (int i = 0; i < n; ++i) {
  1568. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1569. // }
  1570. //}
  1571. #ifdef GGML_GELU_QUICK_FP16
  1572. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1573. uint16_t t;
  1574. for (int i = 0; i < n; ++i) {
  1575. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1576. memcpy(&t, &fp16, sizeof(uint16_t));
  1577. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1578. }
  1579. }
  1580. #else
  1581. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1582. for (int i = 0; i < n; ++i) {
  1583. y[i] = ggml_gelu_quick_f32(x[i]);
  1584. }
  1585. }
  1586. #endif
  1587. // Sigmoid Linear Unit (SiLU) function
  1588. inline static float ggml_silu_f32(float x) {
  1589. return x/(1.0f + expf(-x));
  1590. }
  1591. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1592. // const uint16_t * i16 = (const uint16_t *) x;
  1593. // for (int i = 0; i < n; ++i) {
  1594. // y[i] = ggml_table_silu_f16[i16[i]];
  1595. // }
  1596. //}
  1597. #ifdef GGML_SILU_FP16
  1598. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1599. uint16_t t;
  1600. for (int i = 0; i < n; ++i) {
  1601. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1602. memcpy(&t, &fp16, sizeof(uint16_t));
  1603. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1604. }
  1605. }
  1606. #else
  1607. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1608. for (int i = 0; i < n; ++i) {
  1609. y[i] = ggml_silu_f32(x[i]);
  1610. }
  1611. }
  1612. #endif
  1613. inline static float ggml_silu_backward_f32(float x, float dy) {
  1614. const float s = 1.0f/(1.0f + expf(-x));
  1615. return dy*s*(1.0f + x*(1.0f - s));
  1616. }
  1617. #ifdef GGML_SILU_FP16
  1618. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1619. for (int i = 0; i < n; ++i) {
  1620. // we did not use x[i] to compute forward silu but its f16 equivalent
  1621. // take derivative at f16 of x[i]:
  1622. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1623. float usedx = GGML_FP16_TO_FP32(fp16);
  1624. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1625. }
  1626. }
  1627. #else
  1628. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1629. for (int i = 0; i < n; ++i) {
  1630. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1631. }
  1632. }
  1633. #endif
  1634. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1635. #ifndef GGML_USE_ACCELERATE
  1636. ggml_float sum = 0.0;
  1637. for (int i = 0; i < n; ++i) {
  1638. sum += (ggml_float)x[i];
  1639. }
  1640. *s = sum;
  1641. #else
  1642. vDSP_sve(x, 1, s, n);
  1643. #endif
  1644. }
  1645. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1646. ggml_float sum = 0.0;
  1647. for (int i = 0; i < n; ++i) {
  1648. sum += (ggml_float)x[i];
  1649. }
  1650. *s = sum;
  1651. }
  1652. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1653. float sum = 0.0f;
  1654. for (int i = 0; i < n; ++i) {
  1655. sum += GGML_FP16_TO_FP32(x[i]);
  1656. }
  1657. *s = sum;
  1658. }
  1659. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1660. #ifndef GGML_USE_ACCELERATE
  1661. float max = -INFINITY;
  1662. for (int i = 0; i < n; ++i) {
  1663. max = MAX(max, x[i]);
  1664. }
  1665. *s = max;
  1666. #else
  1667. vDSP_maxv(x, 1, s, n);
  1668. #endif
  1669. }
  1670. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1671. ggml_vec_norm_f32(n, s, x);
  1672. *s = 1.f/(*s);
  1673. }
  1674. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1675. float max = -INFINITY;
  1676. int idx = 0;
  1677. for (int i = 0; i < n; ++i) {
  1678. max = MAX(max, x[i]);
  1679. if (max == x[i]) { idx = i; }
  1680. }
  1681. *s = idx;
  1682. }
  1683. //
  1684. // data types
  1685. //
  1686. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1687. "NONE",
  1688. "DUP",
  1689. "ADD",
  1690. "ADD1",
  1691. "ACC",
  1692. "SUB",
  1693. "MUL",
  1694. "DIV",
  1695. "SQR",
  1696. "SQRT",
  1697. "LOG",
  1698. "SUM",
  1699. "SUM_ROWS",
  1700. "MEAN",
  1701. "ARGMAX",
  1702. "REPEAT",
  1703. "REPEAT_BACK",
  1704. "CONCAT",
  1705. "SILU_BACK",
  1706. "NORM",
  1707. "RMS_NORM",
  1708. "RMS_NORM_BACK",
  1709. "GROUP_NORM",
  1710. "MUL_MAT",
  1711. "MUL_MAT_ID",
  1712. "OUT_PROD",
  1713. "SCALE",
  1714. "SET",
  1715. "CPY",
  1716. "CONT",
  1717. "RESHAPE",
  1718. "VIEW",
  1719. "PERMUTE",
  1720. "TRANSPOSE",
  1721. "GET_ROWS",
  1722. "GET_ROWS_BACK",
  1723. "DIAG",
  1724. "DIAG_MASK_INF",
  1725. "DIAG_MASK_ZERO",
  1726. "SOFT_MAX",
  1727. "SOFT_MAX_BACK",
  1728. "ROPE",
  1729. "ROPE_BACK",
  1730. "ALIBI",
  1731. "CLAMP",
  1732. "CONV_TRANSPOSE_1D",
  1733. "IM2COL",
  1734. "CONV_TRANSPOSE_2D",
  1735. "POOL_1D",
  1736. "POOL_2D",
  1737. "UPSCALE",
  1738. "PAD",
  1739. "ARANGE",
  1740. "TIMESTEP_EMBEDDING",
  1741. "ARGSORT",
  1742. "LEAKY_RELU",
  1743. "FLASH_ATTN",
  1744. "FLASH_FF",
  1745. "FLASH_ATTN_BACK",
  1746. "SSM_CONV",
  1747. "SSM_SCAN",
  1748. "WIN_PART",
  1749. "WIN_UNPART",
  1750. "GET_REL_POS",
  1751. "ADD_REL_POS",
  1752. "UNARY",
  1753. "MAP_UNARY",
  1754. "MAP_BINARY",
  1755. "MAP_CUSTOM1_F32",
  1756. "MAP_CUSTOM2_F32",
  1757. "MAP_CUSTOM3_F32",
  1758. "MAP_CUSTOM1",
  1759. "MAP_CUSTOM2",
  1760. "MAP_CUSTOM3",
  1761. "CROSS_ENTROPY_LOSS",
  1762. "CROSS_ENTROPY_LOSS_BACK",
  1763. };
  1764. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1765. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1766. "none",
  1767. "x",
  1768. "x+y",
  1769. "x+y",
  1770. "view(x,nb,offset)+=y->x",
  1771. "x-y",
  1772. "x*y",
  1773. "x/y",
  1774. "x^2",
  1775. "√x",
  1776. "log(x)",
  1777. "Σx",
  1778. "Σx_k",
  1779. "Σx/n",
  1780. "argmax(x)",
  1781. "repeat(x)",
  1782. "repeat_back(x)",
  1783. "concat(x, y)",
  1784. "silu_back(x)",
  1785. "norm(x)",
  1786. "rms_norm(x)",
  1787. "rms_norm_back(x)",
  1788. "group_norm(x)",
  1789. "X*Y",
  1790. "X[i]*Y",
  1791. "X*Y",
  1792. "x*v",
  1793. "y-\\>view(x)",
  1794. "x-\\>y",
  1795. "cont(x)",
  1796. "reshape(x)",
  1797. "view(x)",
  1798. "permute(x)",
  1799. "transpose(x)",
  1800. "get_rows(x)",
  1801. "get_rows_back(x)",
  1802. "diag(x)",
  1803. "diag_mask_inf(x)",
  1804. "diag_mask_zero(x)",
  1805. "soft_max(x)",
  1806. "soft_max_back(x)",
  1807. "rope(x)",
  1808. "rope_back(x)",
  1809. "alibi(x)",
  1810. "clamp(x)",
  1811. "conv_transpose_1d(x)",
  1812. "im2col(x)",
  1813. "conv_transpose_2d(x)",
  1814. "pool_1d(x)",
  1815. "pool_2d(x)",
  1816. "upscale(x)",
  1817. "pad(x)",
  1818. "arange(start, stop, step)",
  1819. "timestep_embedding(timesteps, dim, max_period)",
  1820. "argsort(x)",
  1821. "leaky_relu(x)",
  1822. "flash_attn(x)",
  1823. "flash_ff(x)",
  1824. "flash_attn_back(x)",
  1825. "ssm_conv(x)",
  1826. "ssm_scan(x)",
  1827. "win_part(x)",
  1828. "win_unpart(x)",
  1829. "get_rel_pos(x)",
  1830. "add_rel_pos(x)",
  1831. "unary(x)",
  1832. "f(x)",
  1833. "f(x,y)",
  1834. "custom_f32(x)",
  1835. "custom_f32(x,y)",
  1836. "custom_f32(x,y,z)",
  1837. "custom(x)",
  1838. "custom(x,y)",
  1839. "custom(x,y,z)",
  1840. "cross_entropy_loss(x,y)",
  1841. "cross_entropy_loss_back(x,y)",
  1842. };
  1843. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1844. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1845. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1846. "ABS",
  1847. "SGN",
  1848. "NEG",
  1849. "STEP",
  1850. "TANH",
  1851. "ELU",
  1852. "RELU",
  1853. "GELU",
  1854. "GELU_QUICK",
  1855. "SILU",
  1856. "HARDSWISH",
  1857. "HARDSIGMOID",
  1858. };
  1859. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1860. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1861. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1862. // WARN:
  1863. // Mis-configuration can lead to problem that's hard to reason about:
  1864. // * At best it crash or talks nosense.
  1865. // * At worst it talks slightly difference but hard to perceive.
  1866. //
  1867. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1868. // Take care about compile options (e.g., GGML_USE_xxx).
  1869. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1870. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1871. static void ggml_setup_op_has_task_pass(void) {
  1872. { // INIT
  1873. bool * p = GGML_OP_HAS_INIT;
  1874. p[GGML_OP_ACC ] = true;
  1875. p[GGML_OP_MUL_MAT ] = true;
  1876. p[GGML_OP_MUL_MAT_ID ] = true;
  1877. p[GGML_OP_OUT_PROD ] = true;
  1878. p[GGML_OP_SET ] = true;
  1879. p[GGML_OP_GET_ROWS_BACK ] = true;
  1880. p[GGML_OP_DIAG_MASK_INF ] = true;
  1881. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1882. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1883. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1884. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1885. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1886. p[GGML_OP_ADD_REL_POS ] = true;
  1887. }
  1888. { // FINALIZE
  1889. bool * p = GGML_OP_HAS_FINALIZE;
  1890. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1891. }
  1892. }
  1893. //
  1894. // ggml context
  1895. //
  1896. struct ggml_context {
  1897. size_t mem_size;
  1898. void * mem_buffer;
  1899. bool mem_buffer_owned;
  1900. bool no_alloc;
  1901. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1902. int n_objects;
  1903. struct ggml_object * objects_begin;
  1904. struct ggml_object * objects_end;
  1905. struct ggml_scratch scratch;
  1906. struct ggml_scratch scratch_save;
  1907. };
  1908. struct ggml_context_container {
  1909. bool used;
  1910. struct ggml_context context;
  1911. };
  1912. //
  1913. // NUMA support
  1914. //
  1915. #define GGML_NUMA_MAX_NODES 8
  1916. #define GGML_NUMA_MAX_CPUS 512
  1917. struct ggml_numa_node {
  1918. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1919. uint32_t n_cpus;
  1920. };
  1921. struct ggml_numa_nodes {
  1922. enum ggml_numa_strategy numa_strategy;
  1923. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1924. uint32_t n_nodes;
  1925. uint32_t total_cpus; // hardware threads on system
  1926. uint32_t current_node; // node on which main process is execting
  1927. #if defined(__gnu_linux__)
  1928. cpu_set_t cpuset; // cpuset from numactl
  1929. #else
  1930. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1931. #endif
  1932. };
  1933. //
  1934. // ggml state
  1935. //
  1936. struct ggml_state {
  1937. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1938. struct ggml_numa_nodes numa;
  1939. };
  1940. // global state
  1941. static struct ggml_state g_state;
  1942. static atomic_int g_state_barrier = 0;
  1943. // barrier via spin lock
  1944. inline static void ggml_critical_section_start(void) {
  1945. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1946. while (processing > 0) {
  1947. // wait for other threads to finish
  1948. atomic_fetch_sub(&g_state_barrier, 1);
  1949. sched_yield(); // TODO: reconsider this
  1950. processing = atomic_fetch_add(&g_state_barrier, 1);
  1951. }
  1952. }
  1953. // TODO: make this somehow automatically executed
  1954. // some sort of "sentry" mechanism
  1955. inline static void ggml_critical_section_end(void) {
  1956. atomic_fetch_sub(&g_state_barrier, 1);
  1957. }
  1958. #if defined(__gnu_linux__)
  1959. static cpu_set_t ggml_get_numa_affinity(void) {
  1960. cpu_set_t cpuset;
  1961. pthread_t thread;
  1962. thread = pthread_self();
  1963. CPU_ZERO(&cpuset);
  1964. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1965. return cpuset;
  1966. }
  1967. #else
  1968. static uint32_t ggml_get_numa_affinity(void) {
  1969. return 0; // no NUMA support
  1970. }
  1971. #endif
  1972. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1973. if (g_state.numa.n_nodes > 0) {
  1974. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1975. return;
  1976. }
  1977. #if defined(__gnu_linux__)
  1978. struct stat st;
  1979. char path[256];
  1980. int rv;
  1981. // set numa scheme
  1982. g_state.numa.numa_strategy = numa_flag;
  1983. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1984. g_state.numa.cpuset = ggml_get_numa_affinity();
  1985. // enumerate nodes
  1986. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1987. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1988. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1989. if (stat(path, &st) != 0) { break; }
  1990. ++g_state.numa.n_nodes;
  1991. }
  1992. // enumerate CPUs
  1993. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1994. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1995. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1996. if (stat(path, &st) != 0) { break; }
  1997. ++g_state.numa.total_cpus;
  1998. }
  1999. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2000. // figure out which node we're on
  2001. uint current_cpu;
  2002. int getcpu_ret = 0;
  2003. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2004. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2005. #else
  2006. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2007. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2008. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2009. # endif
  2010. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2011. #endif
  2012. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2013. g_state.numa.n_nodes = 0;
  2014. return;
  2015. }
  2016. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2017. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2018. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2019. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2020. node->n_cpus = 0;
  2021. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2022. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2023. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2024. if (stat(path, &st) == 0) {
  2025. node->cpus[node->n_cpus++] = c;
  2026. GGML_PRINT_DEBUG(" %u", c);
  2027. }
  2028. }
  2029. GGML_PRINT_DEBUG("\n");
  2030. }
  2031. if (ggml_is_numa()) {
  2032. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2033. if (fptr != NULL) {
  2034. char buf[42];
  2035. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2036. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2037. }
  2038. fclose(fptr);
  2039. }
  2040. }
  2041. #else
  2042. GGML_UNUSED(numa_flag);
  2043. // TODO
  2044. #endif
  2045. }
  2046. bool ggml_is_numa(void) {
  2047. return g_state.numa.n_nodes > 1;
  2048. }
  2049. ////////////////////////////////////////////////////////////////////////////////
  2050. void ggml_print_object(const struct ggml_object * obj) {
  2051. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2052. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2053. }
  2054. void ggml_print_objects(const struct ggml_context * ctx) {
  2055. struct ggml_object * obj = ctx->objects_begin;
  2056. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2057. while (obj != NULL) {
  2058. ggml_print_object(obj);
  2059. obj = obj->next;
  2060. }
  2061. GGML_PRINT("%s: --- end ---\n", __func__);
  2062. }
  2063. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2064. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2065. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2066. }
  2067. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2068. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2069. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2070. }
  2071. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2072. size_t nbytes;
  2073. size_t blck_size = ggml_blck_size(tensor->type);
  2074. if (blck_size == 1) {
  2075. nbytes = ggml_type_size(tensor->type);
  2076. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2077. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2078. }
  2079. }
  2080. else {
  2081. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2082. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2083. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2084. }
  2085. }
  2086. return nbytes;
  2087. }
  2088. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2089. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2090. }
  2091. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2092. return type_traits[type].blck_size;
  2093. }
  2094. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2095. return type_traits[type].type_size;
  2096. }
  2097. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2098. assert(ne % ggml_blck_size(type) == 0);
  2099. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2100. }
  2101. double ggml_type_sizef(enum ggml_type type) {
  2102. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2103. }
  2104. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2105. return type_traits[type].type_name;
  2106. }
  2107. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2108. return type_traits[type].is_quantized;
  2109. }
  2110. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2111. return GGML_OP_NAME[op];
  2112. }
  2113. const char * ggml_op_symbol(enum ggml_op op) {
  2114. return GGML_OP_SYMBOL[op];
  2115. }
  2116. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2117. return GGML_UNARY_OP_NAME[op];
  2118. }
  2119. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2120. if (t->op == GGML_OP_UNARY) {
  2121. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2122. return ggml_unary_op_name(uop);
  2123. }
  2124. else {
  2125. return ggml_op_name(t->op);
  2126. }
  2127. }
  2128. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2129. return ggml_type_size(tensor->type);
  2130. }
  2131. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2132. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2133. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2134. }
  2135. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2136. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2137. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2138. }
  2139. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2140. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2141. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2142. }
  2143. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2144. return tensor->ne[3] == 1;
  2145. }
  2146. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2147. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2148. if (tensor->ne[i] > 1) {
  2149. return i + 1;
  2150. }
  2151. }
  2152. return 1;
  2153. }
  2154. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2155. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2156. return (t0->ne[0] == t1->ne[0]) &&
  2157. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2158. (t1->ne[3]%t0->ne[3] == 0);
  2159. }
  2160. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2161. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2162. return (t0->ne[1] == t1->ne[1]) &&
  2163. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2164. (t1->ne[3]%t0->ne[3] == 0);
  2165. }
  2166. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2167. enum ggml_type wtype = GGML_TYPE_COUNT;
  2168. switch (ftype) {
  2169. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2170. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2171. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2172. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2173. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2174. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2175. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2176. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2177. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2178. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2179. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2180. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2181. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2182. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2183. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2184. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2185. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2186. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2187. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2188. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2189. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2190. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2191. }
  2192. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2193. return wtype;
  2194. }
  2195. size_t ggml_tensor_overhead(void) {
  2196. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2197. }
  2198. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2199. return tensor->nb[0] > tensor->nb[1];
  2200. }
  2201. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2202. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2203. return
  2204. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2205. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2206. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2207. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2208. }
  2209. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2211. return
  2212. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2213. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2214. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2215. }
  2216. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2217. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2218. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2219. }
  2220. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2221. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2222. return
  2223. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2224. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2225. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2226. }
  2227. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2228. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2229. return
  2230. (t0->ne[0] == t1->ne[0] ) &&
  2231. (t0->ne[1] == t1->ne[1] ) &&
  2232. (t0->ne[2] == t1->ne[2] ) &&
  2233. (t0->ne[3] == t1->ne[3] );
  2234. }
  2235. // check if t1 can be represented as a repeatition of t0
  2236. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2237. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2238. return
  2239. (t1->ne[0]%t0->ne[0] == 0) &&
  2240. (t1->ne[1]%t0->ne[1] == 0) &&
  2241. (t1->ne[2]%t0->ne[2] == 0) &&
  2242. (t1->ne[3]%t0->ne[3] == 0);
  2243. }
  2244. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2245. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2246. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2247. }
  2248. static inline int ggml_up32(int n) {
  2249. return (n + 31) & ~31;
  2250. }
  2251. //static inline int ggml_up64(int n) {
  2252. // return (n + 63) & ~63;
  2253. //}
  2254. static inline int ggml_up(int n, int m) {
  2255. // assert m is a power of 2
  2256. GGML_ASSERT((m & (m - 1)) == 0);
  2257. return (n + m - 1) & ~(m - 1);
  2258. }
  2259. // assert that pointer is aligned to GGML_MEM_ALIGN
  2260. #define ggml_assert_aligned(ptr) \
  2261. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2262. ////////////////////////////////////////////////////////////////////////////////
  2263. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2264. // make this function thread safe
  2265. ggml_critical_section_start();
  2266. static bool is_first_call = true;
  2267. if (is_first_call) {
  2268. // initialize time system (required on Windows)
  2269. ggml_time_init();
  2270. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2271. {
  2272. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2273. ggml_fp16_t ii;
  2274. for (int i = 0; i < (1 << 16); ++i) {
  2275. uint16_t ui = i;
  2276. memcpy(&ii, &ui, sizeof(ii));
  2277. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2278. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2279. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2280. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2281. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2282. }
  2283. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2284. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2285. }
  2286. // initialize g_state
  2287. {
  2288. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2289. g_state = (struct ggml_state) {
  2290. /*.contexts =*/ { { 0 } },
  2291. /*.numa =*/ {
  2292. .n_nodes = 0,
  2293. .total_cpus = 0,
  2294. },
  2295. };
  2296. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2297. g_state.contexts[i].used = false;
  2298. }
  2299. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2300. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2301. }
  2302. #if defined(GGML_USE_CLBLAST)
  2303. ggml_cl_init();
  2304. #elif defined(GGML_USE_VULKAN)
  2305. ggml_vk_init_cpu_assist();
  2306. #endif
  2307. ggml_setup_op_has_task_pass();
  2308. is_first_call = false;
  2309. }
  2310. // find non-used context in g_state
  2311. struct ggml_context * ctx = NULL;
  2312. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2313. if (!g_state.contexts[i].used) {
  2314. g_state.contexts[i].used = true;
  2315. ctx = &g_state.contexts[i].context;
  2316. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2317. break;
  2318. }
  2319. }
  2320. if (ctx == NULL) {
  2321. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2322. ggml_critical_section_end();
  2323. return NULL;
  2324. }
  2325. // allow to call ggml_init with 0 size
  2326. if (params.mem_size == 0) {
  2327. params.mem_size = GGML_MEM_ALIGN;
  2328. }
  2329. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2330. *ctx = (struct ggml_context) {
  2331. /*.mem_size =*/ mem_size,
  2332. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2333. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2334. /*.no_alloc =*/ params.no_alloc,
  2335. /*.no_alloc_save =*/ params.no_alloc,
  2336. /*.n_objects =*/ 0,
  2337. /*.objects_begin =*/ NULL,
  2338. /*.objects_end =*/ NULL,
  2339. /*.scratch =*/ { 0, 0, NULL, },
  2340. /*.scratch_save =*/ { 0, 0, NULL, },
  2341. };
  2342. GGML_ASSERT(ctx->mem_buffer != NULL);
  2343. ggml_assert_aligned(ctx->mem_buffer);
  2344. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2345. ggml_critical_section_end();
  2346. return ctx;
  2347. }
  2348. void ggml_free(struct ggml_context * ctx) {
  2349. if (ctx == NULL) {
  2350. return;
  2351. }
  2352. // make this function thread safe
  2353. ggml_critical_section_start();
  2354. bool found = false;
  2355. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2356. if (&g_state.contexts[i].context == ctx) {
  2357. g_state.contexts[i].used = false;
  2358. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2359. __func__, i, ggml_used_mem(ctx));
  2360. if (ctx->mem_buffer_owned) {
  2361. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2362. }
  2363. found = true;
  2364. break;
  2365. }
  2366. }
  2367. if (!found) {
  2368. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2369. }
  2370. ggml_critical_section_end();
  2371. }
  2372. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2373. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2374. }
  2375. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2376. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2377. ctx->scratch = scratch;
  2378. return result;
  2379. }
  2380. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2381. return ctx->no_alloc;
  2382. }
  2383. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2384. ctx->no_alloc = no_alloc;
  2385. }
  2386. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2387. return ctx->mem_buffer;
  2388. }
  2389. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2390. return ctx->mem_size;
  2391. }
  2392. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2393. size_t max_size = 0;
  2394. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2395. size_t bytes = ggml_nbytes(tensor);
  2396. max_size = MAX(max_size, bytes);
  2397. }
  2398. return max_size;
  2399. }
  2400. // IMPORTANT:
  2401. // when creating "opt" tensors, always save and load the scratch buffer
  2402. // this is an error prone process, but it is necessary to support inplace
  2403. // operators when using scratch buffers
  2404. // TODO: implement a better way
  2405. static void ggml_scratch_save(struct ggml_context * ctx) {
  2406. // this is needed to allow opt tensors to store their data
  2407. // TODO: again, need to find a better way
  2408. ctx->no_alloc_save = ctx->no_alloc;
  2409. ctx->no_alloc = false;
  2410. ctx->scratch_save = ctx->scratch;
  2411. ctx->scratch.data = NULL;
  2412. }
  2413. static void ggml_scratch_load(struct ggml_context * ctx) {
  2414. ctx->no_alloc = ctx->no_alloc_save;
  2415. ctx->scratch = ctx->scratch_save;
  2416. }
  2417. ////////////////////////////////////////////////////////////////////////////////
  2418. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2419. // always insert objects at the end of the context's memory pool
  2420. struct ggml_object * obj_cur = ctx->objects_end;
  2421. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2422. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2423. const size_t cur_end = cur_offs + cur_size;
  2424. // align to GGML_MEM_ALIGN
  2425. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2426. char * const mem_buffer = ctx->mem_buffer;
  2427. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2428. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2429. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2430. __func__, cur_end + size_needed, ctx->mem_size);
  2431. assert(false);
  2432. return NULL;
  2433. }
  2434. *obj_new = (struct ggml_object) {
  2435. .offs = cur_end + GGML_OBJECT_SIZE,
  2436. .size = size_needed,
  2437. .next = NULL,
  2438. .type = type,
  2439. };
  2440. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2441. if (obj_cur != NULL) {
  2442. obj_cur->next = obj_new;
  2443. } else {
  2444. // this is the first object in this context
  2445. ctx->objects_begin = obj_new;
  2446. }
  2447. ctx->objects_end = obj_new;
  2448. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2449. return obj_new;
  2450. }
  2451. static struct ggml_tensor * ggml_new_tensor_impl(
  2452. struct ggml_context * ctx,
  2453. enum ggml_type type,
  2454. int n_dims,
  2455. const int64_t * ne,
  2456. struct ggml_tensor * view_src,
  2457. size_t view_offs) {
  2458. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2459. // find the base tensor and absolute offset
  2460. if (view_src != NULL && view_src->view_src != NULL) {
  2461. view_offs += view_src->view_offs;
  2462. view_src = view_src->view_src;
  2463. }
  2464. size_t data_size = ggml_row_size(type, ne[0]);
  2465. for (int i = 1; i < n_dims; i++) {
  2466. data_size *= ne[i];
  2467. }
  2468. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2469. void * data = view_src != NULL ? view_src->data : NULL;
  2470. if (data != NULL) {
  2471. data = (char *) data + view_offs;
  2472. }
  2473. size_t obj_alloc_size = 0;
  2474. if (view_src == NULL && !ctx->no_alloc) {
  2475. if (ctx->scratch.data != NULL) {
  2476. // allocate tensor data in the scratch buffer
  2477. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2478. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2479. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2480. assert(false);
  2481. return NULL;
  2482. }
  2483. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2484. ctx->scratch.offs += data_size;
  2485. } else {
  2486. // allocate tensor data in the context's memory pool
  2487. obj_alloc_size = data_size;
  2488. }
  2489. }
  2490. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2491. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2492. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2493. *result = (struct ggml_tensor) {
  2494. /*.type =*/ type,
  2495. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2496. /*.buffer =*/ NULL,
  2497. /*.ne =*/ { 1, 1, 1, 1 },
  2498. /*.nb =*/ { 0, 0, 0, 0 },
  2499. /*.op =*/ GGML_OP_NONE,
  2500. /*.op_params =*/ { 0 },
  2501. /*.flags =*/ 0,
  2502. /*.grad =*/ NULL,
  2503. /*.src =*/ { NULL },
  2504. /*.perf_runs =*/ 0,
  2505. /*.perf_cycles =*/ 0,
  2506. /*.perf_time_us =*/ 0,
  2507. /*.view_src =*/ view_src,
  2508. /*.view_offs =*/ view_offs,
  2509. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2510. /*.name =*/ { 0 },
  2511. /*.extra =*/ NULL,
  2512. /*.padding =*/ { 0 },
  2513. };
  2514. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2515. //ggml_assert_aligned(result->data);
  2516. for (int i = 0; i < n_dims; i++) {
  2517. result->ne[i] = ne[i];
  2518. }
  2519. result->nb[0] = ggml_type_size(type);
  2520. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2521. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2522. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2523. }
  2524. ctx->n_objects++;
  2525. return result;
  2526. }
  2527. struct ggml_tensor * ggml_new_tensor(
  2528. struct ggml_context * ctx,
  2529. enum ggml_type type,
  2530. int n_dims,
  2531. const int64_t * ne) {
  2532. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2533. }
  2534. struct ggml_tensor * ggml_new_tensor_1d(
  2535. struct ggml_context * ctx,
  2536. enum ggml_type type,
  2537. int64_t ne0) {
  2538. return ggml_new_tensor(ctx, type, 1, &ne0);
  2539. }
  2540. struct ggml_tensor * ggml_new_tensor_2d(
  2541. struct ggml_context * ctx,
  2542. enum ggml_type type,
  2543. int64_t ne0,
  2544. int64_t ne1) {
  2545. const int64_t ne[2] = { ne0, ne1 };
  2546. return ggml_new_tensor(ctx, type, 2, ne);
  2547. }
  2548. struct ggml_tensor * ggml_new_tensor_3d(
  2549. struct ggml_context * ctx,
  2550. enum ggml_type type,
  2551. int64_t ne0,
  2552. int64_t ne1,
  2553. int64_t ne2) {
  2554. const int64_t ne[3] = { ne0, ne1, ne2 };
  2555. return ggml_new_tensor(ctx, type, 3, ne);
  2556. }
  2557. struct ggml_tensor * ggml_new_tensor_4d(
  2558. struct ggml_context * ctx,
  2559. enum ggml_type type,
  2560. int64_t ne0,
  2561. int64_t ne1,
  2562. int64_t ne2,
  2563. int64_t ne3) {
  2564. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2565. return ggml_new_tensor(ctx, type, 4, ne);
  2566. }
  2567. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2568. ggml_scratch_save(ctx);
  2569. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2570. ggml_scratch_load(ctx);
  2571. ggml_set_i32(result, value);
  2572. return result;
  2573. }
  2574. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2575. ggml_scratch_save(ctx);
  2576. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2577. ggml_scratch_load(ctx);
  2578. ggml_set_f32(result, value);
  2579. return result;
  2580. }
  2581. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2582. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2583. }
  2584. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2585. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2586. assert(params_size <= GGML_MAX_OP_PARAMS);
  2587. memcpy(tensor->op_params, params, params_size);
  2588. }
  2589. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2590. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2591. return ((const int32_t *)(tensor->op_params))[i];
  2592. }
  2593. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2594. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2595. return ((const float *)(tensor->op_params))[i];
  2596. }
  2597. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2598. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2599. ((int32_t *)(tensor->op_params))[i] = value;
  2600. }
  2601. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2602. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2603. ((float *)(tensor->op_params))[i] = value;
  2604. }
  2605. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2606. memset(tensor->data, 0, ggml_nbytes(tensor));
  2607. return tensor;
  2608. }
  2609. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2610. const int n = ggml_nrows(tensor);
  2611. const int nc = tensor->ne[0];
  2612. const size_t n1 = tensor->nb[1];
  2613. char * const data = tensor->data;
  2614. switch (tensor->type) {
  2615. case GGML_TYPE_I8:
  2616. {
  2617. assert(tensor->nb[0] == sizeof(int8_t));
  2618. for (int i = 0; i < n; i++) {
  2619. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2620. }
  2621. } break;
  2622. case GGML_TYPE_I16:
  2623. {
  2624. assert(tensor->nb[0] == sizeof(int16_t));
  2625. for (int i = 0; i < n; i++) {
  2626. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2627. }
  2628. } break;
  2629. case GGML_TYPE_I32:
  2630. {
  2631. assert(tensor->nb[0] == sizeof(int32_t));
  2632. for (int i = 0; i < n; i++) {
  2633. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2634. }
  2635. } break;
  2636. case GGML_TYPE_F16:
  2637. {
  2638. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2639. for (int i = 0; i < n; i++) {
  2640. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2641. }
  2642. } break;
  2643. case GGML_TYPE_F32:
  2644. {
  2645. assert(tensor->nb[0] == sizeof(float));
  2646. for (int i = 0; i < n; i++) {
  2647. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2648. }
  2649. } break;
  2650. default:
  2651. {
  2652. GGML_ASSERT(false);
  2653. } break;
  2654. }
  2655. return tensor;
  2656. }
  2657. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2658. const int n = ggml_nrows(tensor);
  2659. const int nc = tensor->ne[0];
  2660. const size_t n1 = tensor->nb[1];
  2661. char * const data = tensor->data;
  2662. switch (tensor->type) {
  2663. case GGML_TYPE_I8:
  2664. {
  2665. assert(tensor->nb[0] == sizeof(int8_t));
  2666. for (int i = 0; i < n; i++) {
  2667. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2668. }
  2669. } break;
  2670. case GGML_TYPE_I16:
  2671. {
  2672. assert(tensor->nb[0] == sizeof(int16_t));
  2673. for (int i = 0; i < n; i++) {
  2674. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2675. }
  2676. } break;
  2677. case GGML_TYPE_I32:
  2678. {
  2679. assert(tensor->nb[0] == sizeof(int32_t));
  2680. for (int i = 0; i < n; i++) {
  2681. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2682. }
  2683. } break;
  2684. case GGML_TYPE_F16:
  2685. {
  2686. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2687. for (int i = 0; i < n; i++) {
  2688. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2689. }
  2690. } break;
  2691. case GGML_TYPE_F32:
  2692. {
  2693. assert(tensor->nb[0] == sizeof(float));
  2694. for (int i = 0; i < n; i++) {
  2695. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2696. }
  2697. } break;
  2698. default:
  2699. {
  2700. GGML_ASSERT(false);
  2701. } break;
  2702. }
  2703. return tensor;
  2704. }
  2705. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2706. const int64_t ne2 = tensor->ne[2];
  2707. const int64_t ne1 = tensor->ne[1];
  2708. const int64_t ne0 = tensor->ne[0];
  2709. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2710. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2711. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2712. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2713. if (i0) {
  2714. * i0 = i0_;
  2715. }
  2716. if (i1) {
  2717. * i1 = i1_;
  2718. }
  2719. if (i2) {
  2720. * i2 = i2_;
  2721. }
  2722. if (i3) {
  2723. * i3 = i3_;
  2724. }
  2725. }
  2726. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2727. if (!ggml_is_contiguous(tensor)) {
  2728. int64_t id[4] = { 0, 0, 0, 0 };
  2729. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2730. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2731. }
  2732. switch (tensor->type) {
  2733. case GGML_TYPE_I8:
  2734. {
  2735. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2736. return ((int8_t *)(tensor->data))[i];
  2737. }
  2738. case GGML_TYPE_I16:
  2739. {
  2740. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2741. return ((int16_t *)(tensor->data))[i];
  2742. }
  2743. case GGML_TYPE_I32:
  2744. {
  2745. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2746. return ((int32_t *)(tensor->data))[i];
  2747. }
  2748. case GGML_TYPE_F16:
  2749. {
  2750. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2751. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2752. }
  2753. case GGML_TYPE_F32:
  2754. {
  2755. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2756. return ((float *)(tensor->data))[i];
  2757. }
  2758. default:
  2759. {
  2760. GGML_ASSERT(false);
  2761. }
  2762. }
  2763. return 0.0f;
  2764. }
  2765. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2766. if (!ggml_is_contiguous(tensor)) {
  2767. int64_t id[4] = { 0, 0, 0, 0 };
  2768. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2769. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2770. return;
  2771. }
  2772. switch (tensor->type) {
  2773. case GGML_TYPE_I8:
  2774. {
  2775. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2776. ((int8_t *)(tensor->data))[i] = value;
  2777. } break;
  2778. case GGML_TYPE_I16:
  2779. {
  2780. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2781. ((int16_t *)(tensor->data))[i] = value;
  2782. } break;
  2783. case GGML_TYPE_I32:
  2784. {
  2785. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2786. ((int32_t *)(tensor->data))[i] = value;
  2787. } break;
  2788. case GGML_TYPE_F16:
  2789. {
  2790. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2791. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2792. } break;
  2793. case GGML_TYPE_F32:
  2794. {
  2795. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2796. ((float *)(tensor->data))[i] = value;
  2797. } break;
  2798. default:
  2799. {
  2800. GGML_ASSERT(false);
  2801. } break;
  2802. }
  2803. }
  2804. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2805. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2806. switch (tensor->type) {
  2807. case GGML_TYPE_I8:
  2808. return ((int8_t *) data)[0];
  2809. case GGML_TYPE_I16:
  2810. return ((int16_t *) data)[0];
  2811. case GGML_TYPE_I32:
  2812. return ((int32_t *) data)[0];
  2813. case GGML_TYPE_F16:
  2814. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2815. case GGML_TYPE_F32:
  2816. return ((float *) data)[0];
  2817. default:
  2818. GGML_ASSERT(false);
  2819. }
  2820. return 0.0f;
  2821. }
  2822. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2823. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2824. switch (tensor->type) {
  2825. case GGML_TYPE_I8:
  2826. {
  2827. ((int8_t *)(data))[0] = value;
  2828. } break;
  2829. case GGML_TYPE_I16:
  2830. {
  2831. ((int16_t *)(data))[0] = value;
  2832. } break;
  2833. case GGML_TYPE_I32:
  2834. {
  2835. ((int32_t *)(data))[0] = value;
  2836. } break;
  2837. case GGML_TYPE_F16:
  2838. {
  2839. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2840. } break;
  2841. case GGML_TYPE_F32:
  2842. {
  2843. ((float *)(data))[0] = value;
  2844. } break;
  2845. default:
  2846. {
  2847. GGML_ASSERT(false);
  2848. } break;
  2849. }
  2850. }
  2851. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2852. if (!ggml_is_contiguous(tensor)) {
  2853. int64_t id[4] = { 0, 0, 0, 0 };
  2854. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2855. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2856. }
  2857. switch (tensor->type) {
  2858. case GGML_TYPE_I8:
  2859. {
  2860. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2861. return ((int8_t *)(tensor->data))[i];
  2862. }
  2863. case GGML_TYPE_I16:
  2864. {
  2865. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2866. return ((int16_t *)(tensor->data))[i];
  2867. }
  2868. case GGML_TYPE_I32:
  2869. {
  2870. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2871. return ((int32_t *)(tensor->data))[i];
  2872. }
  2873. case GGML_TYPE_F16:
  2874. {
  2875. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2876. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2877. }
  2878. case GGML_TYPE_F32:
  2879. {
  2880. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2881. return ((float *)(tensor->data))[i];
  2882. }
  2883. default:
  2884. {
  2885. GGML_ASSERT(false);
  2886. }
  2887. }
  2888. return 0.0f;
  2889. }
  2890. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2891. if (!ggml_is_contiguous(tensor)) {
  2892. int64_t id[4] = { 0, 0, 0, 0 };
  2893. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2894. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2895. return;
  2896. }
  2897. switch (tensor->type) {
  2898. case GGML_TYPE_I8:
  2899. {
  2900. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2901. ((int8_t *)(tensor->data))[i] = value;
  2902. } break;
  2903. case GGML_TYPE_I16:
  2904. {
  2905. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2906. ((int16_t *)(tensor->data))[i] = value;
  2907. } break;
  2908. case GGML_TYPE_I32:
  2909. {
  2910. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2911. ((int32_t *)(tensor->data))[i] = value;
  2912. } break;
  2913. case GGML_TYPE_F16:
  2914. {
  2915. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2916. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2917. } break;
  2918. case GGML_TYPE_F32:
  2919. {
  2920. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2921. ((float *)(tensor->data))[i] = value;
  2922. } break;
  2923. default:
  2924. {
  2925. GGML_ASSERT(false);
  2926. } break;
  2927. }
  2928. }
  2929. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2930. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2931. switch (tensor->type) {
  2932. case GGML_TYPE_I8:
  2933. return ((int8_t *) data)[0];
  2934. case GGML_TYPE_I16:
  2935. return ((int16_t *) data)[0];
  2936. case GGML_TYPE_I32:
  2937. return ((int32_t *) data)[0];
  2938. case GGML_TYPE_F16:
  2939. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2940. case GGML_TYPE_F32:
  2941. return ((float *) data)[0];
  2942. default:
  2943. GGML_ASSERT(false);
  2944. }
  2945. return 0.0f;
  2946. }
  2947. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2948. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2949. switch (tensor->type) {
  2950. case GGML_TYPE_I8:
  2951. {
  2952. ((int8_t *)(data))[0] = value;
  2953. } break;
  2954. case GGML_TYPE_I16:
  2955. {
  2956. ((int16_t *)(data))[0] = value;
  2957. } break;
  2958. case GGML_TYPE_I32:
  2959. {
  2960. ((int32_t *)(data))[0] = value;
  2961. } break;
  2962. case GGML_TYPE_F16:
  2963. {
  2964. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2965. } break;
  2966. case GGML_TYPE_F32:
  2967. {
  2968. ((float *)(data))[0] = value;
  2969. } break;
  2970. default:
  2971. {
  2972. GGML_ASSERT(false);
  2973. } break;
  2974. }
  2975. }
  2976. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2977. return tensor->data;
  2978. }
  2979. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2980. assert(tensor->type == GGML_TYPE_F32);
  2981. return (float *)(tensor->data);
  2982. }
  2983. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2984. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2985. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2986. }
  2987. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2988. return tensor->name;
  2989. }
  2990. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2991. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2992. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2993. return tensor;
  2994. }
  2995. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2996. va_list args;
  2997. va_start(args, fmt);
  2998. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2999. va_end(args);
  3000. return tensor;
  3001. }
  3002. struct ggml_tensor * ggml_view_tensor(
  3003. struct ggml_context * ctx,
  3004. struct ggml_tensor * src) {
  3005. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3006. ggml_format_name(result, "%s (view)", src->name);
  3007. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3008. result->nb[i] = src->nb[i];
  3009. }
  3010. return result;
  3011. }
  3012. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3013. struct ggml_object * obj = ctx->objects_begin;
  3014. char * const mem_buffer = ctx->mem_buffer;
  3015. while (obj != NULL) {
  3016. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3017. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3018. }
  3019. obj = obj->next;
  3020. }
  3021. return NULL;
  3022. }
  3023. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3024. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3025. obj = obj->next;
  3026. char * const mem_buffer = ctx->mem_buffer;
  3027. while (obj != NULL) {
  3028. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3029. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3030. }
  3031. obj = obj->next;
  3032. }
  3033. return NULL;
  3034. }
  3035. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3036. struct ggml_object * obj = ctx->objects_begin;
  3037. char * const mem_buffer = ctx->mem_buffer;
  3038. while (obj != NULL) {
  3039. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3040. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3041. if (strcmp(cur->name, name) == 0) {
  3042. return cur;
  3043. }
  3044. }
  3045. obj = obj->next;
  3046. }
  3047. return NULL;
  3048. }
  3049. ////////////////////////////////////////////////////////////////////////////////
  3050. // ggml_dup
  3051. static struct ggml_tensor * ggml_dup_impl(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a,
  3054. bool inplace) {
  3055. bool is_node = false;
  3056. if (!inplace && (a->grad)) {
  3057. is_node = true;
  3058. }
  3059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3060. result->op = GGML_OP_DUP;
  3061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3062. result->src[0] = a;
  3063. return result;
  3064. }
  3065. struct ggml_tensor * ggml_dup(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a) {
  3068. return ggml_dup_impl(ctx, a, false);
  3069. }
  3070. struct ggml_tensor * ggml_dup_inplace(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a) {
  3073. return ggml_dup_impl(ctx, a, true);
  3074. }
  3075. // ggml_add
  3076. static struct ggml_tensor * ggml_add_impl(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b,
  3080. bool inplace) {
  3081. GGML_ASSERT(ggml_can_repeat(b, a));
  3082. bool is_node = false;
  3083. if (!inplace && (a->grad || b->grad)) {
  3084. // TODO: support backward pass for broadcasting
  3085. GGML_ASSERT(ggml_are_same_shape(a, b));
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3089. result->op = GGML_OP_ADD;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. result->src[1] = b;
  3093. return result;
  3094. }
  3095. struct ggml_tensor * ggml_add(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a,
  3098. struct ggml_tensor * b) {
  3099. return ggml_add_impl(ctx, a, b, false);
  3100. }
  3101. struct ggml_tensor * ggml_add_inplace(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a,
  3104. struct ggml_tensor * b) {
  3105. return ggml_add_impl(ctx, a, b, true);
  3106. }
  3107. // ggml_add_cast
  3108. static struct ggml_tensor * ggml_add_cast_impl(
  3109. struct ggml_context * ctx,
  3110. struct ggml_tensor * a,
  3111. struct ggml_tensor * b,
  3112. enum ggml_type type) {
  3113. // TODO: support less-strict constraint
  3114. // GGML_ASSERT(ggml_can_repeat(b, a));
  3115. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3116. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3117. bool is_node = false;
  3118. if (a->grad || b->grad) {
  3119. // TODO: support backward pass for broadcasting
  3120. GGML_ASSERT(ggml_are_same_shape(a, b));
  3121. is_node = true;
  3122. }
  3123. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3124. result->op = GGML_OP_ADD;
  3125. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3126. result->src[0] = a;
  3127. result->src[1] = b;
  3128. return result;
  3129. }
  3130. struct ggml_tensor * ggml_add_cast(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b,
  3134. enum ggml_type type) {
  3135. return ggml_add_cast_impl(ctx, a, b, type);
  3136. }
  3137. // ggml_add1
  3138. static struct ggml_tensor * ggml_add1_impl(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a,
  3141. struct ggml_tensor * b,
  3142. bool inplace) {
  3143. GGML_ASSERT(ggml_is_scalar(b));
  3144. GGML_ASSERT(ggml_is_padded_1d(a));
  3145. bool is_node = false;
  3146. if (a->grad || b->grad) {
  3147. is_node = true;
  3148. }
  3149. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3150. result->op = GGML_OP_ADD1;
  3151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3152. result->src[0] = a;
  3153. result->src[1] = b;
  3154. return result;
  3155. }
  3156. struct ggml_tensor * ggml_add1(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a,
  3159. struct ggml_tensor * b) {
  3160. return ggml_add1_impl(ctx, a, b, false);
  3161. }
  3162. struct ggml_tensor * ggml_add1_inplace(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b) {
  3166. return ggml_add1_impl(ctx, a, b, true);
  3167. }
  3168. // ggml_acc
  3169. static struct ggml_tensor * ggml_acc_impl(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a,
  3172. struct ggml_tensor * b,
  3173. size_t nb1,
  3174. size_t nb2,
  3175. size_t nb3,
  3176. size_t offset,
  3177. bool inplace) {
  3178. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3179. GGML_ASSERT(ggml_is_contiguous(a));
  3180. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3181. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3182. bool is_node = false;
  3183. if (!inplace && (a->grad || b->grad)) {
  3184. is_node = true;
  3185. }
  3186. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3187. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3188. ggml_set_op_params(result, params, sizeof(params));
  3189. result->op = GGML_OP_ACC;
  3190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3191. result->src[0] = a;
  3192. result->src[1] = b;
  3193. return result;
  3194. }
  3195. struct ggml_tensor * ggml_acc(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a,
  3198. struct ggml_tensor * b,
  3199. size_t nb1,
  3200. size_t nb2,
  3201. size_t nb3,
  3202. size_t offset) {
  3203. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3204. }
  3205. struct ggml_tensor * ggml_acc_inplace(
  3206. struct ggml_context * ctx,
  3207. struct ggml_tensor * a,
  3208. struct ggml_tensor * b,
  3209. size_t nb1,
  3210. size_t nb2,
  3211. size_t nb3,
  3212. size_t offset) {
  3213. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3214. }
  3215. // ggml_sub
  3216. static struct ggml_tensor * ggml_sub_impl(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a,
  3219. struct ggml_tensor * b,
  3220. bool inplace) {
  3221. GGML_ASSERT(ggml_are_same_shape(a, b));
  3222. bool is_node = false;
  3223. if (!inplace && (a->grad || b->grad)) {
  3224. is_node = true;
  3225. }
  3226. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3227. result->op = GGML_OP_SUB;
  3228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3229. result->src[0] = a;
  3230. result->src[1] = b;
  3231. return result;
  3232. }
  3233. struct ggml_tensor * ggml_sub(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a,
  3236. struct ggml_tensor * b) {
  3237. return ggml_sub_impl(ctx, a, b, false);
  3238. }
  3239. struct ggml_tensor * ggml_sub_inplace(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a,
  3242. struct ggml_tensor * b) {
  3243. return ggml_sub_impl(ctx, a, b, true);
  3244. }
  3245. // ggml_mul
  3246. static struct ggml_tensor * ggml_mul_impl(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a,
  3249. struct ggml_tensor * b,
  3250. bool inplace) {
  3251. GGML_ASSERT(ggml_can_repeat(b, a));
  3252. bool is_node = false;
  3253. if (!inplace && (a->grad || b->grad)) {
  3254. // TODO: support backward pass for broadcasting
  3255. GGML_ASSERT(ggml_are_same_shape(a, b));
  3256. is_node = true;
  3257. }
  3258. if (inplace) {
  3259. GGML_ASSERT(!is_node);
  3260. }
  3261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3262. result->op = GGML_OP_MUL;
  3263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3264. result->src[0] = a;
  3265. result->src[1] = b;
  3266. return result;
  3267. }
  3268. struct ggml_tensor * ggml_mul(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a,
  3271. struct ggml_tensor * b) {
  3272. return ggml_mul_impl(ctx, a, b, false);
  3273. }
  3274. struct ggml_tensor * ggml_mul_inplace(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a,
  3277. struct ggml_tensor * b) {
  3278. return ggml_mul_impl(ctx, a, b, true);
  3279. }
  3280. // ggml_div
  3281. static struct ggml_tensor * ggml_div_impl(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. struct ggml_tensor * b,
  3285. bool inplace) {
  3286. GGML_ASSERT(ggml_can_repeat(b, a));
  3287. bool is_node = false;
  3288. if (!inplace && (a->grad || b->grad)) {
  3289. is_node = true;
  3290. }
  3291. if (inplace) {
  3292. GGML_ASSERT(!is_node);
  3293. }
  3294. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3295. result->op = GGML_OP_DIV;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src[0] = a;
  3298. result->src[1] = b;
  3299. return result;
  3300. }
  3301. struct ggml_tensor * ggml_div(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b) {
  3305. return ggml_div_impl(ctx, a, b, false);
  3306. }
  3307. struct ggml_tensor * ggml_div_inplace(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. struct ggml_tensor * b) {
  3311. return ggml_div_impl(ctx, a, b, true);
  3312. }
  3313. // ggml_sqr
  3314. static struct ggml_tensor * ggml_sqr_impl(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. bool inplace) {
  3318. bool is_node = false;
  3319. if (!inplace && (a->grad)) {
  3320. is_node = true;
  3321. }
  3322. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3323. result->op = GGML_OP_SQR;
  3324. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3325. result->src[0] = a;
  3326. return result;
  3327. }
  3328. struct ggml_tensor * ggml_sqr(
  3329. struct ggml_context * ctx,
  3330. struct ggml_tensor * a) {
  3331. return ggml_sqr_impl(ctx, a, false);
  3332. }
  3333. struct ggml_tensor * ggml_sqr_inplace(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a) {
  3336. return ggml_sqr_impl(ctx, a, true);
  3337. }
  3338. // ggml_sqrt
  3339. static struct ggml_tensor * ggml_sqrt_impl(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a,
  3342. bool inplace) {
  3343. bool is_node = false;
  3344. if (!inplace && (a->grad)) {
  3345. is_node = true;
  3346. }
  3347. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3348. result->op = GGML_OP_SQRT;
  3349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3350. result->src[0] = a;
  3351. return result;
  3352. }
  3353. struct ggml_tensor * ggml_sqrt(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_sqrt_impl(ctx, a, false);
  3357. }
  3358. struct ggml_tensor * ggml_sqrt_inplace(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a) {
  3361. return ggml_sqrt_impl(ctx, a, true);
  3362. }
  3363. // ggml_log
  3364. static struct ggml_tensor * ggml_log_impl(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a,
  3367. bool inplace) {
  3368. bool is_node = false;
  3369. if (!inplace && (a->grad)) {
  3370. is_node = true;
  3371. }
  3372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3373. result->op = GGML_OP_LOG;
  3374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3375. result->src[0] = a;
  3376. return result;
  3377. }
  3378. struct ggml_tensor * ggml_log(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_log_impl(ctx, a, false);
  3382. }
  3383. struct ggml_tensor * ggml_log_inplace(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a) {
  3386. return ggml_log_impl(ctx, a, true);
  3387. }
  3388. // ggml_sum
  3389. struct ggml_tensor * ggml_sum(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a) {
  3392. bool is_node = false;
  3393. if (a->grad) {
  3394. is_node = true;
  3395. }
  3396. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3397. result->op = GGML_OP_SUM;
  3398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3399. result->src[0] = a;
  3400. return result;
  3401. }
  3402. // ggml_sum_rows
  3403. struct ggml_tensor * ggml_sum_rows(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. bool is_node = false;
  3407. if (a->grad) {
  3408. is_node = true;
  3409. }
  3410. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3411. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3412. ne[i] = a->ne[i];
  3413. }
  3414. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3415. result->op = GGML_OP_SUM_ROWS;
  3416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3417. result->src[0] = a;
  3418. return result;
  3419. }
  3420. // ggml_mean
  3421. struct ggml_tensor * ggml_mean(
  3422. struct ggml_context * ctx,
  3423. struct ggml_tensor * a) {
  3424. bool is_node = false;
  3425. if (a->grad) {
  3426. GGML_ASSERT(false); // TODO: implement
  3427. is_node = true;
  3428. }
  3429. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3430. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3431. result->op = GGML_OP_MEAN;
  3432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3433. result->src[0] = a;
  3434. return result;
  3435. }
  3436. // ggml_argmax
  3437. struct ggml_tensor * ggml_argmax(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a) {
  3440. GGML_ASSERT(ggml_is_matrix(a));
  3441. bool is_node = false;
  3442. if (a->grad) {
  3443. GGML_ASSERT(false);
  3444. is_node = true;
  3445. }
  3446. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3447. result->op = GGML_OP_ARGMAX;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. return result;
  3451. }
  3452. // ggml_repeat
  3453. struct ggml_tensor * ggml_repeat(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a,
  3456. struct ggml_tensor * b) {
  3457. GGML_ASSERT(ggml_can_repeat(a, b));
  3458. bool is_node = false;
  3459. if (a->grad) {
  3460. is_node = true;
  3461. }
  3462. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3463. result->op = GGML_OP_REPEAT;
  3464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3465. result->src[0] = a;
  3466. return result;
  3467. }
  3468. // ggml_repeat_back
  3469. struct ggml_tensor * ggml_repeat_back(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. struct ggml_tensor * b) {
  3473. GGML_ASSERT(ggml_can_repeat(b, a));
  3474. bool is_node = false;
  3475. if (a->grad) {
  3476. is_node = true;
  3477. }
  3478. if (ggml_are_same_shape(a, b) && !is_node) {
  3479. return a;
  3480. }
  3481. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3482. result->op = GGML_OP_REPEAT_BACK;
  3483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3484. result->src[0] = a;
  3485. return result;
  3486. }
  3487. // ggml_concat
  3488. struct ggml_tensor * ggml_concat(
  3489. struct ggml_context* ctx,
  3490. struct ggml_tensor* a,
  3491. struct ggml_tensor* b) {
  3492. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3493. bool is_node = false;
  3494. if (a->grad || b->grad) {
  3495. is_node = true;
  3496. }
  3497. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3498. result->op = GGML_OP_CONCAT;
  3499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3500. result->src[0] = a;
  3501. result->src[1] = b;
  3502. return result;
  3503. }
  3504. // ggml_abs
  3505. struct ggml_tensor * ggml_abs(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a) {
  3508. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3509. }
  3510. struct ggml_tensor * ggml_abs_inplace(
  3511. struct ggml_context * ctx,
  3512. struct ggml_tensor * a) {
  3513. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3514. }
  3515. // ggml_sgn
  3516. struct ggml_tensor * ggml_sgn(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a) {
  3519. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3520. }
  3521. struct ggml_tensor * ggml_sgn_inplace(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a) {
  3524. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3525. }
  3526. // ggml_neg
  3527. struct ggml_tensor * ggml_neg(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a) {
  3530. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3531. }
  3532. struct ggml_tensor * ggml_neg_inplace(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a) {
  3535. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3536. }
  3537. // ggml_step
  3538. struct ggml_tensor * ggml_step(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a) {
  3541. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3542. }
  3543. struct ggml_tensor * ggml_step_inplace(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a) {
  3546. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3547. }
  3548. // ggml_tanh
  3549. struct ggml_tensor * ggml_tanh(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a) {
  3552. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3553. }
  3554. struct ggml_tensor * ggml_tanh_inplace(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a) {
  3557. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3558. }
  3559. // ggml_elu
  3560. struct ggml_tensor * ggml_elu(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a) {
  3563. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3564. }
  3565. struct ggml_tensor * ggml_elu_inplace(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a) {
  3568. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3569. }
  3570. // ggml_relu
  3571. struct ggml_tensor * ggml_relu(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a) {
  3574. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3575. }
  3576. struct ggml_tensor * ggml_relu_inplace(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a) {
  3579. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3580. }
  3581. // ggml_leaky_relu
  3582. struct ggml_tensor * ggml_leaky_relu(
  3583. struct ggml_context * ctx,
  3584. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3585. bool is_node = false;
  3586. if (!inplace && (a->grad)) {
  3587. is_node = true;
  3588. }
  3589. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3590. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3591. result->op = GGML_OP_LEAKY_RELU;
  3592. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3593. result->src[0] = a;
  3594. return result;
  3595. }
  3596. // ggml_gelu
  3597. struct ggml_tensor * ggml_gelu(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a) {
  3600. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3601. }
  3602. struct ggml_tensor * ggml_gelu_inplace(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a) {
  3605. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3606. }
  3607. // ggml_gelu_quick
  3608. struct ggml_tensor * ggml_gelu_quick(
  3609. struct ggml_context * ctx,
  3610. struct ggml_tensor * a) {
  3611. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3612. }
  3613. struct ggml_tensor * ggml_gelu_quick_inplace(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a) {
  3616. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3617. }
  3618. // ggml_silu
  3619. struct ggml_tensor * ggml_silu(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3623. }
  3624. struct ggml_tensor * ggml_silu_inplace(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3628. }
  3629. // ggml_silu_back
  3630. struct ggml_tensor * ggml_silu_back(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. struct ggml_tensor * b) {
  3634. bool is_node = false;
  3635. if (a->grad || b->grad) {
  3636. // TODO: implement backward
  3637. is_node = true;
  3638. }
  3639. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3640. result->op = GGML_OP_SILU_BACK;
  3641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3642. result->src[0] = a;
  3643. result->src[1] = b;
  3644. return result;
  3645. }
  3646. // ggml hardswish
  3647. struct ggml_tensor * ggml_hardswish(
  3648. struct ggml_context * ctx,
  3649. struct ggml_tensor * a) {
  3650. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3651. }
  3652. // ggml hardsigmoid
  3653. struct ggml_tensor * ggml_hardsigmoid(
  3654. struct ggml_context * ctx,
  3655. struct ggml_tensor * a) {
  3656. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3657. }
  3658. // ggml_norm
  3659. static struct ggml_tensor * ggml_norm_impl(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * a,
  3662. float eps,
  3663. bool inplace) {
  3664. bool is_node = false;
  3665. if (!inplace && (a->grad)) {
  3666. GGML_ASSERT(false); // TODO: implement backward
  3667. is_node = true;
  3668. }
  3669. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3670. ggml_set_op_params(result, &eps, sizeof(eps));
  3671. result->op = GGML_OP_NORM;
  3672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3673. result->src[0] = a;
  3674. return result;
  3675. }
  3676. struct ggml_tensor * ggml_norm(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. float eps) {
  3680. return ggml_norm_impl(ctx, a, eps, false);
  3681. }
  3682. struct ggml_tensor * ggml_norm_inplace(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a,
  3685. float eps) {
  3686. return ggml_norm_impl(ctx, a, eps, true);
  3687. }
  3688. // ggml_rms_norm
  3689. static struct ggml_tensor * ggml_rms_norm_impl(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. float eps,
  3693. bool inplace) {
  3694. bool is_node = false;
  3695. if (!inplace && (a->grad)) {
  3696. is_node = true;
  3697. }
  3698. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3699. ggml_set_op_params(result, &eps, sizeof(eps));
  3700. result->op = GGML_OP_RMS_NORM;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src[0] = a;
  3703. return result;
  3704. }
  3705. struct ggml_tensor * ggml_rms_norm(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. float eps) {
  3709. return ggml_rms_norm_impl(ctx, a, eps, false);
  3710. }
  3711. struct ggml_tensor * ggml_rms_norm_inplace(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. float eps) {
  3715. return ggml_rms_norm_impl(ctx, a, eps, true);
  3716. }
  3717. // ggml_rms_norm_back
  3718. struct ggml_tensor * ggml_rms_norm_back(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. struct ggml_tensor * b,
  3722. float eps) {
  3723. bool is_node = false;
  3724. if (a->grad) {
  3725. // TODO: implement backward
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3729. ggml_set_op_params(result, &eps, sizeof(eps));
  3730. result->op = GGML_OP_RMS_NORM_BACK;
  3731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3732. result->src[0] = a;
  3733. result->src[1] = b;
  3734. return result;
  3735. }
  3736. // ggml_group_norm
  3737. static struct ggml_tensor * ggml_group_norm_impl(
  3738. struct ggml_context * ctx,
  3739. struct ggml_tensor * a,
  3740. int n_groups,
  3741. bool inplace) {
  3742. bool is_node = false;
  3743. if (!inplace && (a->grad)) {
  3744. GGML_ASSERT(false); // TODO: implement backward
  3745. is_node = true;
  3746. }
  3747. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3748. result->op_params[0] = n_groups;
  3749. result->op = GGML_OP_GROUP_NORM;
  3750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3751. result->src[0] = a;
  3752. return result;
  3753. }
  3754. struct ggml_tensor * ggml_group_norm(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. int n_groups) {
  3758. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3759. }
  3760. struct ggml_tensor * ggml_group_norm_inplace(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a,
  3763. int n_groups) {
  3764. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3765. }
  3766. // ggml_mul_mat
  3767. struct ggml_tensor * ggml_mul_mat(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. struct ggml_tensor * b) {
  3771. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3772. GGML_ASSERT(!ggml_is_transposed(a));
  3773. bool is_node = false;
  3774. if (a->grad || b->grad) {
  3775. is_node = true;
  3776. }
  3777. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3778. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3779. result->op = GGML_OP_MUL_MAT;
  3780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3781. result->src[0] = a;
  3782. result->src[1] = b;
  3783. return result;
  3784. }
  3785. void ggml_mul_mat_set_prec(
  3786. struct ggml_tensor * a,
  3787. enum ggml_prec prec) {
  3788. const int32_t prec_i32 = (int32_t) prec;
  3789. ggml_set_op_params_i32(a, 0, prec_i32);
  3790. }
  3791. // ggml_mul_mat_id
  3792. struct ggml_tensor * ggml_mul_mat_id(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * const as[],
  3795. int n_as,
  3796. struct ggml_tensor * ids,
  3797. int id,
  3798. struct ggml_tensor * b) {
  3799. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3800. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3801. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3802. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3803. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3804. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3805. bool is_node = false;
  3806. if (as[0]->grad || b->grad) {
  3807. is_node = true;
  3808. }
  3809. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3810. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3811. ggml_set_op_params_i32(result, 0, id);
  3812. ggml_set_op_params_i32(result, 1, n_as);
  3813. result->op = GGML_OP_MUL_MAT_ID;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src[0] = ids;
  3816. result->src[1] = b;
  3817. for (int i = 0; i < n_as; i++) {
  3818. struct ggml_tensor * a = as[i];
  3819. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3820. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3821. GGML_ASSERT(!ggml_is_transposed(a));
  3822. result->src[i + 2] = a;
  3823. }
  3824. return result;
  3825. }
  3826. // ggml_out_prod
  3827. struct ggml_tensor * ggml_out_prod(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. struct ggml_tensor * b) {
  3831. GGML_ASSERT(ggml_can_out_prod(a, b));
  3832. GGML_ASSERT(!ggml_is_transposed(a));
  3833. bool is_node = false;
  3834. if (a->grad || b->grad) {
  3835. is_node = true;
  3836. }
  3837. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3838. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3839. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3840. result->op = GGML_OP_OUT_PROD;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src[0] = a;
  3843. result->src[1] = b;
  3844. return result;
  3845. }
  3846. // ggml_scale
  3847. static struct ggml_tensor * ggml_scale_impl(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. float s,
  3851. bool inplace) {
  3852. GGML_ASSERT(ggml_is_padded_1d(a));
  3853. bool is_node = false;
  3854. if (a->grad) {
  3855. is_node = true;
  3856. }
  3857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3858. ggml_set_op_params(result, &s, sizeof(s));
  3859. result->op = GGML_OP_SCALE;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src[0] = a;
  3862. return result;
  3863. }
  3864. struct ggml_tensor * ggml_scale(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. float s) {
  3868. return ggml_scale_impl(ctx, a, s, false);
  3869. }
  3870. struct ggml_tensor * ggml_scale_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. float s) {
  3874. return ggml_scale_impl(ctx, a, s, true);
  3875. }
  3876. // ggml_set
  3877. static struct ggml_tensor * ggml_set_impl(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a,
  3880. struct ggml_tensor * b,
  3881. size_t nb1,
  3882. size_t nb2,
  3883. size_t nb3,
  3884. size_t offset,
  3885. bool inplace) {
  3886. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3887. bool is_node = false;
  3888. if (a->grad || b->grad) {
  3889. is_node = true;
  3890. }
  3891. // make a view of the destination
  3892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3893. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3894. ggml_set_op_params(result, params, sizeof(params));
  3895. result->op = GGML_OP_SET;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src[0] = a;
  3898. result->src[1] = b;
  3899. return result;
  3900. }
  3901. struct ggml_tensor * ggml_set(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. struct ggml_tensor * b,
  3905. size_t nb1,
  3906. size_t nb2,
  3907. size_t nb3,
  3908. size_t offset) {
  3909. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3910. }
  3911. struct ggml_tensor * ggml_set_inplace(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b,
  3915. size_t nb1,
  3916. size_t nb2,
  3917. size_t nb3,
  3918. size_t offset) {
  3919. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3920. }
  3921. struct ggml_tensor * ggml_set_1d(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b,
  3925. size_t offset) {
  3926. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3927. }
  3928. struct ggml_tensor * ggml_set_1d_inplace(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. struct ggml_tensor * b,
  3932. size_t offset) {
  3933. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3934. }
  3935. struct ggml_tensor * ggml_set_2d(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b,
  3939. size_t nb1,
  3940. size_t offset) {
  3941. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3942. }
  3943. struct ggml_tensor * ggml_set_2d_inplace(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. struct ggml_tensor * b,
  3947. size_t nb1,
  3948. size_t offset) {
  3949. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3950. }
  3951. // ggml_cpy
  3952. static struct ggml_tensor * ggml_cpy_impl(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. struct ggml_tensor * b) {
  3956. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3957. bool is_node = false;
  3958. if (a->grad || b->grad) {
  3959. // inplace is false and either one have a grad
  3960. is_node = true;
  3961. }
  3962. // make a view of the destination
  3963. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3964. if (strlen(b->name) > 0) {
  3965. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3966. } else {
  3967. ggml_format_name(result, "%s (copy)", a->name);
  3968. }
  3969. result->op = GGML_OP_CPY;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. result->src[1] = b;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_cpy(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_cpy_impl(ctx, a, b);
  3980. }
  3981. struct ggml_tensor * ggml_cast(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. enum ggml_type type) {
  3985. bool is_node = false;
  3986. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3987. ggml_format_name(result, "%s (copy)", a->name);
  3988. result->op = GGML_OP_CPY;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src[0] = a;
  3991. result->src[1] = result;
  3992. return result;
  3993. }
  3994. // ggml_cont
  3995. static struct ggml_tensor * ggml_cont_impl(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a) {
  3998. bool is_node = false;
  3999. if (a->grad) {
  4000. is_node = true;
  4001. }
  4002. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4003. ggml_format_name(result, "%s (cont)", a->name);
  4004. result->op = GGML_OP_CONT;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src[0] = a;
  4007. return result;
  4008. }
  4009. struct ggml_tensor * ggml_cont(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_cont_impl(ctx, a);
  4013. }
  4014. // make contiguous, with new shape
  4015. GGML_API struct ggml_tensor * ggml_cont_1d(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. int64_t ne0) {
  4019. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4020. }
  4021. GGML_API struct ggml_tensor * ggml_cont_2d(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. int64_t ne0,
  4025. int64_t ne1) {
  4026. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4027. }
  4028. GGML_API struct ggml_tensor * ggml_cont_3d(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. int64_t ne0,
  4032. int64_t ne1,
  4033. int64_t ne2) {
  4034. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4035. }
  4036. struct ggml_tensor * ggml_cont_4d(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. int64_t ne0,
  4040. int64_t ne1,
  4041. int64_t ne2,
  4042. int64_t ne3) {
  4043. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4044. bool is_node = false;
  4045. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4046. ggml_format_name(result, "%s (cont)", a->name);
  4047. result->op = GGML_OP_CONT;
  4048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4049. result->src[0] = a;
  4050. return result;
  4051. }
  4052. // ggml_reshape
  4053. struct ggml_tensor * ggml_reshape(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. struct ggml_tensor * b) {
  4057. GGML_ASSERT(ggml_is_contiguous(a));
  4058. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4059. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4060. bool is_node = false;
  4061. if (a->grad) {
  4062. is_node = true;
  4063. }
  4064. if (b->grad) {
  4065. // gradient propagation is not supported
  4066. //GGML_ASSERT(false);
  4067. }
  4068. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4069. ggml_format_name(result, "%s (reshaped)", a->name);
  4070. result->op = GGML_OP_RESHAPE;
  4071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4072. result->src[0] = a;
  4073. return result;
  4074. }
  4075. struct ggml_tensor * ggml_reshape_1d(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. int64_t ne0) {
  4079. GGML_ASSERT(ggml_is_contiguous(a));
  4080. GGML_ASSERT(ggml_nelements(a) == ne0);
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. const int64_t ne[1] = { ne0 };
  4086. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4087. ggml_format_name(result, "%s (reshaped)", a->name);
  4088. result->op = GGML_OP_RESHAPE;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src[0] = a;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_reshape_2d(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. int64_t ne0,
  4097. int64_t ne1) {
  4098. GGML_ASSERT(ggml_is_contiguous(a));
  4099. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4100. bool is_node = false;
  4101. if (a->grad) {
  4102. is_node = true;
  4103. }
  4104. const int64_t ne[2] = { ne0, ne1 };
  4105. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4106. ggml_format_name(result, "%s (reshaped)", a->name);
  4107. result->op = GGML_OP_RESHAPE;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src[0] = a;
  4110. return result;
  4111. }
  4112. struct ggml_tensor * ggml_reshape_3d(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. int64_t ne0,
  4116. int64_t ne1,
  4117. int64_t ne2) {
  4118. GGML_ASSERT(ggml_is_contiguous(a));
  4119. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4120. bool is_node = false;
  4121. if (a->grad) {
  4122. is_node = true;
  4123. }
  4124. const int64_t ne[3] = { ne0, ne1, ne2 };
  4125. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4126. ggml_format_name(result, "%s (reshaped)", a->name);
  4127. result->op = GGML_OP_RESHAPE;
  4128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4129. result->src[0] = a;
  4130. return result;
  4131. }
  4132. struct ggml_tensor * ggml_reshape_4d(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a,
  4135. int64_t ne0,
  4136. int64_t ne1,
  4137. int64_t ne2,
  4138. int64_t ne3) {
  4139. GGML_ASSERT(ggml_is_contiguous(a));
  4140. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4141. bool is_node = false;
  4142. if (a->grad) {
  4143. is_node = true;
  4144. }
  4145. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4146. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4147. ggml_format_name(result, "%s (reshaped)", a->name);
  4148. result->op = GGML_OP_RESHAPE;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src[0] = a;
  4151. return result;
  4152. }
  4153. static struct ggml_tensor * ggml_view_impl(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. int n_dims,
  4157. const int64_t * ne,
  4158. size_t offset) {
  4159. bool is_node = false;
  4160. if (a->grad) {
  4161. is_node = true;
  4162. }
  4163. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4164. ggml_format_name(result, "%s (view)", a->name);
  4165. ggml_set_op_params(result, &offset, sizeof(offset));
  4166. result->op = GGML_OP_VIEW;
  4167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4168. result->src[0] = a;
  4169. return result;
  4170. }
  4171. // ggml_view_1d
  4172. struct ggml_tensor * ggml_view_1d(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. int64_t ne0,
  4176. size_t offset) {
  4177. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4178. return result;
  4179. }
  4180. // ggml_view_2d
  4181. struct ggml_tensor * ggml_view_2d(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. int64_t ne0,
  4185. int64_t ne1,
  4186. size_t nb1,
  4187. size_t offset) {
  4188. const int64_t ne[2] = { ne0, ne1 };
  4189. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4190. result->nb[1] = nb1;
  4191. result->nb[2] = result->nb[1]*ne1;
  4192. result->nb[3] = result->nb[2];
  4193. return result;
  4194. }
  4195. // ggml_view_3d
  4196. struct ggml_tensor * ggml_view_3d(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. int64_t ne0,
  4200. int64_t ne1,
  4201. int64_t ne2,
  4202. size_t nb1,
  4203. size_t nb2,
  4204. size_t offset) {
  4205. const int64_t ne[3] = { ne0, ne1, ne2 };
  4206. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4207. result->nb[1] = nb1;
  4208. result->nb[2] = nb2;
  4209. result->nb[3] = result->nb[2]*ne2;
  4210. return result;
  4211. }
  4212. // ggml_view_4d
  4213. struct ggml_tensor * ggml_view_4d(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. int64_t ne0,
  4217. int64_t ne1,
  4218. int64_t ne2,
  4219. int64_t ne3,
  4220. size_t nb1,
  4221. size_t nb2,
  4222. size_t nb3,
  4223. size_t offset) {
  4224. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4225. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4226. result->nb[1] = nb1;
  4227. result->nb[2] = nb2;
  4228. result->nb[3] = nb3;
  4229. return result;
  4230. }
  4231. // ggml_permute
  4232. struct ggml_tensor * ggml_permute(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a,
  4235. int axis0,
  4236. int axis1,
  4237. int axis2,
  4238. int axis3) {
  4239. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4240. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4241. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4242. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4243. GGML_ASSERT(axis0 != axis1);
  4244. GGML_ASSERT(axis0 != axis2);
  4245. GGML_ASSERT(axis0 != axis3);
  4246. GGML_ASSERT(axis1 != axis2);
  4247. GGML_ASSERT(axis1 != axis3);
  4248. GGML_ASSERT(axis2 != axis3);
  4249. bool is_node = false;
  4250. if (a->grad) {
  4251. is_node = true;
  4252. }
  4253. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4254. ggml_format_name(result, "%s (permuted)", a->name);
  4255. int ne[GGML_MAX_DIMS];
  4256. int nb[GGML_MAX_DIMS];
  4257. ne[axis0] = a->ne[0];
  4258. ne[axis1] = a->ne[1];
  4259. ne[axis2] = a->ne[2];
  4260. ne[axis3] = a->ne[3];
  4261. nb[axis0] = a->nb[0];
  4262. nb[axis1] = a->nb[1];
  4263. nb[axis2] = a->nb[2];
  4264. nb[axis3] = a->nb[3];
  4265. result->ne[0] = ne[0];
  4266. result->ne[1] = ne[1];
  4267. result->ne[2] = ne[2];
  4268. result->ne[3] = ne[3];
  4269. result->nb[0] = nb[0];
  4270. result->nb[1] = nb[1];
  4271. result->nb[2] = nb[2];
  4272. result->nb[3] = nb[3];
  4273. result->op = GGML_OP_PERMUTE;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src[0] = a;
  4276. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4277. ggml_set_op_params(result, params, sizeof(params));
  4278. return result;
  4279. }
  4280. // ggml_transpose
  4281. struct ggml_tensor * ggml_transpose(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a) {
  4284. bool is_node = false;
  4285. if (a->grad) {
  4286. is_node = true;
  4287. }
  4288. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4289. ggml_format_name(result, "%s (transposed)", a->name);
  4290. result->ne[0] = a->ne[1];
  4291. result->ne[1] = a->ne[0];
  4292. result->nb[0] = a->nb[1];
  4293. result->nb[1] = a->nb[0];
  4294. result->op = GGML_OP_TRANSPOSE;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src[0] = a;
  4297. return result;
  4298. }
  4299. // ggml_get_rows
  4300. struct ggml_tensor * ggml_get_rows(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. struct ggml_tensor * b) {
  4304. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4305. GGML_ASSERT(b->ne[3] == 1);
  4306. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4307. bool is_node = false;
  4308. if (a->grad || b->grad) {
  4309. is_node = true;
  4310. }
  4311. // TODO: implement non F32 return
  4312. enum ggml_type type = GGML_TYPE_F32;
  4313. if (a->type == GGML_TYPE_I32) {
  4314. type = a->type;
  4315. }
  4316. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4317. result->op = GGML_OP_GET_ROWS;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src[0] = a;
  4320. result->src[1] = b;
  4321. return result;
  4322. }
  4323. // ggml_get_rows_back
  4324. struct ggml_tensor * ggml_get_rows_back(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b,
  4328. struct ggml_tensor * c) {
  4329. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4330. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4331. bool is_node = false;
  4332. if (a->grad || b->grad) {
  4333. is_node = true;
  4334. }
  4335. // TODO: implement non F32 return
  4336. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4337. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4338. result->op = GGML_OP_GET_ROWS_BACK;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src[0] = a;
  4341. result->src[1] = b;
  4342. return result;
  4343. }
  4344. // ggml_diag
  4345. struct ggml_tensor * ggml_diag(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a) {
  4348. GGML_ASSERT(a->ne[1] == 1);
  4349. bool is_node = false;
  4350. if (a->grad) {
  4351. is_node = true;
  4352. }
  4353. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4354. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4355. result->op = GGML_OP_DIAG;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src[0] = a;
  4358. return result;
  4359. }
  4360. // ggml_diag_mask_inf
  4361. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. int n_past,
  4365. bool inplace) {
  4366. bool is_node = false;
  4367. if (a->grad) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. int32_t params[] = { n_past };
  4372. ggml_set_op_params(result, params, sizeof(params));
  4373. result->op = GGML_OP_DIAG_MASK_INF;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src[0] = a;
  4376. return result;
  4377. }
  4378. struct ggml_tensor * ggml_diag_mask_inf(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. int n_past) {
  4382. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4383. }
  4384. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a,
  4387. int n_past) {
  4388. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4389. }
  4390. // ggml_diag_mask_zero
  4391. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. int n_past,
  4395. bool inplace) {
  4396. bool is_node = false;
  4397. if (a->grad) {
  4398. is_node = true;
  4399. }
  4400. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4401. int32_t params[] = { n_past };
  4402. ggml_set_op_params(result, params, sizeof(params));
  4403. result->op = GGML_OP_DIAG_MASK_ZERO;
  4404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4405. result->src[0] = a;
  4406. return result;
  4407. }
  4408. struct ggml_tensor * ggml_diag_mask_zero(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. int n_past) {
  4412. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4413. }
  4414. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. int n_past) {
  4418. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4419. }
  4420. // ggml_soft_max
  4421. static struct ggml_tensor * ggml_soft_max_impl(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a,
  4424. struct ggml_tensor * mask,
  4425. struct ggml_tensor * pos,
  4426. float scale,
  4427. float max_bias,
  4428. bool inplace) {
  4429. GGML_ASSERT(ggml_is_contiguous(a));
  4430. if (mask) {
  4431. GGML_ASSERT(ggml_is_contiguous(mask));
  4432. GGML_ASSERT(ggml_is_matrix(mask));
  4433. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4434. }
  4435. if (pos) {
  4436. GGML_ASSERT(ggml_is_vector(pos));
  4437. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4438. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4439. }
  4440. if (max_bias > 0.0f) {
  4441. GGML_ASSERT(pos);
  4442. }
  4443. bool is_node = false;
  4444. if (a->grad) {
  4445. is_node = true;
  4446. }
  4447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4448. float params[] = { scale, max_bias };
  4449. ggml_set_op_params(result, params, sizeof(params));
  4450. result->op = GGML_OP_SOFT_MAX;
  4451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4452. result->src[0] = a;
  4453. result->src[1] = mask;
  4454. result->src[2] = pos;
  4455. return result;
  4456. }
  4457. struct ggml_tensor * ggml_soft_max(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a) {
  4460. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4461. }
  4462. struct ggml_tensor * ggml_soft_max_inplace(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a) {
  4465. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4466. }
  4467. struct ggml_tensor * ggml_soft_max_ext(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * mask,
  4471. struct ggml_tensor * pos,
  4472. float scale,
  4473. float max_bias) {
  4474. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4475. }
  4476. // ggml_soft_max_back
  4477. static struct ggml_tensor * ggml_soft_max_back_impl(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. struct ggml_tensor * b,
  4481. bool inplace) {
  4482. bool is_node = false;
  4483. if (a->grad || b->grad) {
  4484. is_node = true; // TODO : implement backward pass
  4485. }
  4486. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4487. result->op = GGML_OP_SOFT_MAX_BACK;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = a;
  4490. result->src[1] = b;
  4491. return result;
  4492. }
  4493. struct ggml_tensor * ggml_soft_max_back(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. return ggml_soft_max_back_impl(ctx, a, b, false);
  4498. }
  4499. struct ggml_tensor * ggml_soft_max_back_inplace(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. struct ggml_tensor * b) {
  4503. return ggml_soft_max_back_impl(ctx, a, b, true);
  4504. }
  4505. // ggml_rope
  4506. static struct ggml_tensor * ggml_rope_impl(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. struct ggml_tensor * b,
  4510. int n_dims,
  4511. int mode,
  4512. int n_ctx,
  4513. int n_orig_ctx,
  4514. float freq_base,
  4515. float freq_scale,
  4516. float ext_factor,
  4517. float attn_factor,
  4518. float beta_fast,
  4519. float beta_slow,
  4520. float xpos_base,
  4521. bool xpos_down,
  4522. bool inplace) {
  4523. GGML_ASSERT(ggml_is_vector(b));
  4524. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4525. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4526. bool is_node = false;
  4527. if (a->grad) {
  4528. is_node = true;
  4529. }
  4530. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4531. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4532. memcpy(params + 5, &freq_base, sizeof(float));
  4533. memcpy(params + 6, &freq_scale, sizeof(float));
  4534. memcpy(params + 7, &ext_factor, sizeof(float));
  4535. memcpy(params + 8, &attn_factor, sizeof(float));
  4536. memcpy(params + 9, &beta_fast, sizeof(float));
  4537. memcpy(params + 10, &beta_slow, sizeof(float));
  4538. memcpy(params + 11, &xpos_base, sizeof(float));
  4539. memcpy(params + 12, &xpos_down, sizeof(bool));
  4540. ggml_set_op_params(result, params, sizeof(params));
  4541. result->op = GGML_OP_ROPE;
  4542. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4543. result->src[0] = a;
  4544. result->src[1] = b;
  4545. return result;
  4546. }
  4547. struct ggml_tensor * ggml_rope(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. struct ggml_tensor * b,
  4551. int n_dims,
  4552. int mode,
  4553. int n_ctx) {
  4554. return ggml_rope_impl(
  4555. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4556. );
  4557. }
  4558. struct ggml_tensor * ggml_rope_inplace(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a,
  4561. struct ggml_tensor * b,
  4562. int n_dims,
  4563. int mode,
  4564. int n_ctx) {
  4565. return ggml_rope_impl(
  4566. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4567. );
  4568. }
  4569. struct ggml_tensor * ggml_rope_custom(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b,
  4573. int n_dims,
  4574. int mode,
  4575. int n_ctx,
  4576. int n_orig_ctx,
  4577. float freq_base,
  4578. float freq_scale,
  4579. float ext_factor,
  4580. float attn_factor,
  4581. float beta_fast,
  4582. float beta_slow) {
  4583. return ggml_rope_impl(
  4584. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4585. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4586. );
  4587. }
  4588. struct ggml_tensor * ggml_rope_custom_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. int n_dims,
  4593. int mode,
  4594. int n_ctx,
  4595. int n_orig_ctx,
  4596. float freq_base,
  4597. float freq_scale,
  4598. float ext_factor,
  4599. float attn_factor,
  4600. float beta_fast,
  4601. float beta_slow) {
  4602. return ggml_rope_impl(
  4603. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4604. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4605. );
  4606. }
  4607. struct ggml_tensor * ggml_rope_xpos_inplace(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a,
  4610. struct ggml_tensor * b,
  4611. int n_dims,
  4612. float base,
  4613. bool down) {
  4614. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4615. }
  4616. // ggml_rope_back
  4617. struct ggml_tensor * ggml_rope_back(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. struct ggml_tensor * b,
  4621. int n_dims,
  4622. int mode,
  4623. int n_ctx,
  4624. int n_orig_ctx,
  4625. float freq_base,
  4626. float freq_scale,
  4627. float ext_factor,
  4628. float attn_factor,
  4629. float beta_fast,
  4630. float beta_slow,
  4631. float xpos_base,
  4632. bool xpos_down) {
  4633. GGML_ASSERT(ggml_is_vector(b));
  4634. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4635. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4636. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4637. bool is_node = false;
  4638. if (a->grad) {
  4639. is_node = false; // TODO: implement backward
  4640. }
  4641. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4642. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4643. memcpy(params + 5, &freq_base, sizeof(float));
  4644. memcpy(params + 6, &freq_scale, sizeof(float));
  4645. memcpy(params + 7, &ext_factor, sizeof(float));
  4646. memcpy(params + 8, &attn_factor, sizeof(float));
  4647. memcpy(params + 9, &beta_fast, sizeof(float));
  4648. memcpy(params + 10, &beta_slow, sizeof(float));
  4649. memcpy(params + 11, &xpos_base, sizeof(float));
  4650. memcpy(params + 12, &xpos_down, sizeof(bool));
  4651. ggml_set_op_params(result, params, sizeof(params));
  4652. result->op = GGML_OP_ROPE_BACK;
  4653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4654. result->src[0] = a;
  4655. result->src[1] = b;
  4656. return result;
  4657. }
  4658. // ggml_alibi
  4659. struct ggml_tensor * ggml_alibi(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a,
  4662. int n_past,
  4663. int n_head,
  4664. float bias_max) {
  4665. GGML_ASSERT(n_past >= 0);
  4666. bool is_node = false;
  4667. if (a->grad) {
  4668. GGML_ASSERT(false); // TODO: implement backward
  4669. is_node = true;
  4670. }
  4671. // TODO: when implement backward, fix this:
  4672. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4673. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4674. int32_t op_params[3] = { n_past, n_head };
  4675. memcpy(op_params + 2, &bias_max, sizeof(float));
  4676. ggml_set_op_params(result, op_params, sizeof(op_params));
  4677. result->op = GGML_OP_ALIBI;
  4678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4679. result->src[0] = a;
  4680. return result;
  4681. }
  4682. // ggml_clamp
  4683. struct ggml_tensor * ggml_clamp(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. float min,
  4687. float max) {
  4688. bool is_node = false;
  4689. if (a->grad) {
  4690. GGML_ASSERT(false); // TODO: implement backward
  4691. is_node = true;
  4692. }
  4693. // TODO: when implement backward, fix this:
  4694. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4695. float params[] = { min, max };
  4696. ggml_set_op_params(result, params, sizeof(params));
  4697. result->op = GGML_OP_CLAMP;
  4698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4699. result->src[0] = a;
  4700. return result;
  4701. }
  4702. // ggml_conv_1d
  4703. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4704. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4705. }
  4706. GGML_API struct ggml_tensor * ggml_conv_1d(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. struct ggml_tensor * b,
  4710. int s0,
  4711. int p0,
  4712. int d0) {
  4713. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4714. struct ggml_tensor * result =
  4715. ggml_mul_mat(ctx,
  4716. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4717. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4718. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4719. return result;
  4720. }
  4721. // ggml_conv_1d_ph
  4722. struct ggml_tensor* ggml_conv_1d_ph(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b,
  4726. int s,
  4727. int d) {
  4728. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4729. }
  4730. // ggml_conv_transpose_1d
  4731. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4732. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4733. }
  4734. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b,
  4738. int s0,
  4739. int p0,
  4740. int d0) {
  4741. GGML_ASSERT(ggml_is_matrix(b));
  4742. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4743. GGML_ASSERT(a->ne[3] == 1);
  4744. GGML_ASSERT(p0 == 0);
  4745. GGML_ASSERT(d0 == 1);
  4746. bool is_node = false;
  4747. if (a->grad || b->grad) {
  4748. GGML_ASSERT(false); // TODO: implement backward
  4749. is_node = true;
  4750. }
  4751. const int64_t ne[4] = {
  4752. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4753. a->ne[1], b->ne[2], 1,
  4754. };
  4755. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4756. int32_t params[] = { s0, p0, d0 };
  4757. ggml_set_op_params(result, params, sizeof(params));
  4758. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4760. result->src[0] = a;
  4761. result->src[1] = b;
  4762. return result;
  4763. }
  4764. // ggml_conv_depthwise
  4765. struct ggml_tensor * ggml_conv_depthwise_2d(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a,
  4768. struct ggml_tensor * b,
  4769. int s0,
  4770. int s1,
  4771. int p0,
  4772. int p1,
  4773. int d0,
  4774. int d1) {
  4775. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4776. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4777. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4778. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4779. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4780. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4781. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4782. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4783. return result;
  4784. }
  4785. // ggml_conv_2d
  4786. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4787. // a: [OC,IC, KH, KW]
  4788. // b: [N, IC, IH, IW]
  4789. // result: [N, OH, OW, IC*KH*KW]
  4790. struct ggml_tensor * ggml_im2col(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. struct ggml_tensor * b,
  4794. int s0,
  4795. int s1,
  4796. int p0,
  4797. int p1,
  4798. int d0,
  4799. int d1,
  4800. bool is_2D,
  4801. enum ggml_type dst_type) {
  4802. if(is_2D) {
  4803. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4804. } else {
  4805. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4806. }
  4807. bool is_node = false;
  4808. if (a->grad || b->grad) {
  4809. GGML_ASSERT(false); // TODO: implement backward
  4810. is_node = true;
  4811. }
  4812. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4813. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4814. const int64_t ne[4] = {
  4815. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4816. OW,
  4817. is_2D ? OH : b->ne[2],
  4818. is_2D ? b->ne[3] : 1,
  4819. };
  4820. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4821. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4822. ggml_set_op_params(result, params, sizeof(params));
  4823. result->op = GGML_OP_IM2COL;
  4824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4825. result->src[0] = a;
  4826. result->src[1] = b;
  4827. return result;
  4828. }
  4829. // a: [OC,IC, KH, KW]
  4830. // b: [N, IC, IH, IW]
  4831. // result: [N, OC, OH, OW]
  4832. struct ggml_tensor * ggml_conv_2d(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. struct ggml_tensor * b,
  4836. int s0,
  4837. int s1,
  4838. int p0,
  4839. int p1,
  4840. int d0,
  4841. int d1) {
  4842. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4843. struct ggml_tensor * result =
  4844. ggml_mul_mat(ctx,
  4845. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4846. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4847. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4848. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4849. return result;
  4850. }
  4851. // ggml_conv_2d_sk_p0
  4852. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * b) {
  4856. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4857. }
  4858. // ggml_conv_2d_s1_ph
  4859. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b) {
  4863. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4864. }
  4865. // ggml_conv_transpose_2d_p0
  4866. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4867. return (ins - 1) * s - 2 * p + ks;
  4868. }
  4869. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. struct ggml_tensor * b,
  4873. int stride) {
  4874. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4875. bool is_node = false;
  4876. if (a->grad || b->grad) {
  4877. GGML_ASSERT(false); // TODO: implement backward
  4878. is_node = true;
  4879. }
  4880. const int64_t ne[4] = {
  4881. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4882. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4883. a->ne[2], b->ne[3],
  4884. };
  4885. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4886. ggml_set_op_params_i32(result, 0, stride);
  4887. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = b;
  4891. return result;
  4892. }
  4893. // ggml_pool_*
  4894. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4895. return (ins + 2 * p - ks) / s + 1;
  4896. }
  4897. // ggml_pool_1d
  4898. struct ggml_tensor * ggml_pool_1d(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. enum ggml_op_pool op,
  4902. int k0,
  4903. int s0,
  4904. int p0) {
  4905. bool is_node = false;
  4906. if (a->grad) {
  4907. GGML_ASSERT(false); // TODO: implement backward
  4908. is_node = true;
  4909. }
  4910. const int64_t ne[4] = {
  4911. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4912. a->ne[1],
  4913. a->ne[2],
  4914. a->ne[3],
  4915. };
  4916. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4917. int32_t params[] = { op, k0, s0, p0 };
  4918. ggml_set_op_params(result, params, sizeof(params));
  4919. result->op = GGML_OP_POOL_1D;
  4920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4921. result->src[0] = a;
  4922. return result;
  4923. }
  4924. // ggml_pool_2d
  4925. struct ggml_tensor * ggml_pool_2d(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. enum ggml_op_pool op,
  4929. int k0,
  4930. int k1,
  4931. int s0,
  4932. int s1,
  4933. float p0,
  4934. float p1) {
  4935. bool is_node = false;
  4936. if (a->grad) {
  4937. GGML_ASSERT(false); // TODO: implement backward
  4938. is_node = true;
  4939. }
  4940. struct ggml_tensor * result;
  4941. const int64_t ne[3] = {
  4942. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4943. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4944. a->ne[2],
  4945. };
  4946. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4947. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4948. ggml_set_op_params(result, params, sizeof(params));
  4949. result->op = GGML_OP_POOL_2D;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. return result;
  4953. }
  4954. // ggml_upscale
  4955. static struct ggml_tensor * ggml_upscale_impl(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. int scale_factor) {
  4959. bool is_node = false;
  4960. if (a->grad) {
  4961. GGML_ASSERT(false); // TODO: implement backward
  4962. is_node = true;
  4963. }
  4964. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4965. a->ne[0] * scale_factor,
  4966. a->ne[1] * scale_factor,
  4967. a->ne[2], a->ne[3]);
  4968. result->op = GGML_OP_UPSCALE;
  4969. result->op_params[0] = scale_factor;
  4970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4971. result->src[0] = a;
  4972. return result;
  4973. }
  4974. struct ggml_tensor * ggml_pad(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. int p0, int p1, int p2, int p3) {
  4978. bool is_node = false;
  4979. if (a->grad) {
  4980. GGML_ASSERT(false); // TODO: implement backward
  4981. is_node = true;
  4982. }
  4983. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4984. a->ne[0] + p0,
  4985. a->ne[1] + p1,
  4986. a->ne[2] + p2,
  4987. a->ne[3] + p3);
  4988. result->op = GGML_OP_PAD;
  4989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4990. result->src[0] = a;
  4991. return result;
  4992. }
  4993. struct ggml_tensor * ggml_upscale(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. int scale_factor) {
  4997. return ggml_upscale_impl(ctx, a, scale_factor);
  4998. }
  4999. struct ggml_tensor * ggml_arange(
  5000. struct ggml_context * ctx,
  5001. float start,
  5002. float stop,
  5003. float step) {
  5004. GGML_ASSERT(stop > start);
  5005. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5006. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5007. result->op = GGML_OP_ARANGE;
  5008. ggml_set_op_params_f32(result, 0, start);
  5009. ggml_set_op_params_f32(result, 1, stop);
  5010. ggml_set_op_params_f32(result, 2, step);
  5011. return result;
  5012. }
  5013. struct ggml_tensor * ggml_timestep_embedding(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * timesteps,
  5016. int dim,
  5017. int max_period) {
  5018. bool is_node = false;
  5019. if (timesteps->grad) {
  5020. GGML_ASSERT(false); // TODO: implement backward
  5021. is_node = true;
  5022. }
  5023. int actual_dim = dim;
  5024. if (dim % 2 != 0) {
  5025. actual_dim = dim + 1;
  5026. }
  5027. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5028. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5029. ggml_set_op_params_i32(result, 0, dim);
  5030. ggml_set_op_params_i32(result, 1, max_period);
  5031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5032. result->src[0] = timesteps;
  5033. return result;
  5034. }
  5035. // ggml_argsort
  5036. struct ggml_tensor * ggml_argsort(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. enum ggml_sort_order order) {
  5040. bool is_node = false;
  5041. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5042. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5043. result->op = GGML_OP_ARGSORT;
  5044. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5045. result->src[0] = a;
  5046. return result;
  5047. }
  5048. // ggml_top_k
  5049. struct ggml_tensor * ggml_top_k(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. int k) {
  5053. GGML_ASSERT(a->ne[0] >= k);
  5054. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5055. result = ggml_view_4d(ctx, result,
  5056. k, result->ne[1], result->ne[2], result->ne[3],
  5057. result->nb[1], result->nb[2], result->nb[3],
  5058. 0);
  5059. return result;
  5060. }
  5061. // ggml_flash_attn
  5062. struct ggml_tensor * ggml_flash_attn(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * q,
  5065. struct ggml_tensor * k,
  5066. struct ggml_tensor * v,
  5067. bool masked) {
  5068. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5069. // TODO: check if vT can be multiplied by (k*qT)
  5070. bool is_node = false;
  5071. if (q->grad || k->grad || v->grad) {
  5072. is_node = true;
  5073. }
  5074. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5075. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5076. int32_t t = masked ? 1 : 0;
  5077. ggml_set_op_params(result, &t, sizeof(t));
  5078. result->op = GGML_OP_FLASH_ATTN;
  5079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5080. result->src[0] = q;
  5081. result->src[1] = k;
  5082. result->src[2] = v;
  5083. return result;
  5084. }
  5085. // ggml_flash_ff
  5086. struct ggml_tensor * ggml_flash_ff(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. struct ggml_tensor * b0,
  5090. struct ggml_tensor * b1,
  5091. struct ggml_tensor * c0,
  5092. struct ggml_tensor * c1) {
  5093. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5094. // TODO: more checks
  5095. bool is_node = false;
  5096. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5097. is_node = true;
  5098. }
  5099. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5100. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5101. result->op = GGML_OP_FLASH_FF;
  5102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5103. result->src[0] = a;
  5104. result->src[1] = b0;
  5105. result->src[2] = b1;
  5106. result->src[3] = c0;
  5107. result->src[4] = c1;
  5108. return result;
  5109. }
  5110. // ggml_flash_attn_back
  5111. struct ggml_tensor * ggml_flash_attn_back(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * q,
  5114. struct ggml_tensor * k,
  5115. struct ggml_tensor * v,
  5116. struct ggml_tensor * d,
  5117. bool masked) {
  5118. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5119. // TODO: check if vT can be multiplied by (k*qT)
  5120. // d shape [D,N,ne2,ne3]
  5121. // q shape [D,N,ne2,ne3]
  5122. // k shape [D,M,kvne2,ne3]
  5123. // v shape [M,D,kvne2,ne3]
  5124. const int64_t D = q->ne[0];
  5125. const int64_t N = q->ne[1];
  5126. const int64_t M = k->ne[1];
  5127. const int64_t ne2 = q->ne[2];
  5128. const int64_t ne3 = q->ne[3];
  5129. const int64_t kvne2 = k->ne[2];
  5130. GGML_ASSERT(k->ne[0] == D);
  5131. GGML_ASSERT(v->ne[0] == M);
  5132. GGML_ASSERT(v->ne[1] == D);
  5133. GGML_ASSERT(d->ne[0] == D);
  5134. GGML_ASSERT(d->ne[1] == N);
  5135. GGML_ASSERT(k->ne[2] == kvne2);
  5136. GGML_ASSERT(k->ne[3] == ne3);
  5137. GGML_ASSERT(v->ne[2] == kvne2);
  5138. GGML_ASSERT(v->ne[3] == ne3);
  5139. GGML_ASSERT(d->ne[2] == ne2);
  5140. GGML_ASSERT(d->ne[3] == ne3);
  5141. GGML_ASSERT(ne2 % kvne2 == 0);
  5142. bool is_node = false;
  5143. if (q->grad || k->grad || v->grad) {
  5144. // when using this operation (in backwards pass) these grads are set.
  5145. // we don't want to create (big) grad of our result, so is_node is false.
  5146. is_node = false;
  5147. }
  5148. // store gradients of q, k and v as continuous tensors concatenated in result.
  5149. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5150. const int64_t elem_q = ggml_nelements(q);
  5151. const int64_t elem_k = ggml_nelements(k);
  5152. const int64_t elem_v = ggml_nelements(v);
  5153. enum ggml_type result_type = GGML_TYPE_F32;
  5154. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5155. const size_t tsize = ggml_type_size(result_type);
  5156. const size_t offs_q = 0;
  5157. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5158. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5159. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5160. const size_t nelements = (end + tsize - 1)/tsize;
  5161. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5162. int32_t masked_i = masked ? 1 : 0;
  5163. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5164. result->op = GGML_OP_FLASH_ATTN_BACK;
  5165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5166. result->src[0] = q;
  5167. result->src[1] = k;
  5168. result->src[2] = v;
  5169. result->src[3] = d;
  5170. return result;
  5171. }
  5172. // ggml_ssm_conv
  5173. struct ggml_tensor * ggml_ssm_conv(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * s,
  5176. struct ggml_tensor * x,
  5177. struct ggml_tensor * c,
  5178. struct ggml_tensor * sq) {
  5179. GGML_ASSERT(ggml_is_3d(s));
  5180. GGML_ASSERT(ggml_is_matrix(x));
  5181. GGML_ASSERT(ggml_is_matrix(c));
  5182. GGML_ASSERT(ggml_is_matrix(sq));
  5183. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5184. const int64_t d_conv = c->ne[0];
  5185. const int64_t d_inner = c->ne[1];
  5186. const int64_t n_tokens = x->ne[1];
  5187. const int64_t n_kv = s->ne[2];
  5188. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5189. GGML_ASSERT( s->ne[1] == d_inner);
  5190. GGML_ASSERT( x->ne[0] == d_inner);
  5191. GGML_ASSERT(sq->ne[0] == n_kv);
  5192. GGML_ASSERT(sq->ne[1] == n_tokens);
  5193. bool is_node = false;
  5194. if (s->grad || x->grad || c->grad || sq->grad) {
  5195. GGML_ASSERT(false); // TODO: implement
  5196. is_node = true;
  5197. }
  5198. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5199. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5200. result->op = GGML_OP_SSM_CONV;
  5201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5202. result->src[0] = s;
  5203. result->src[1] = x;
  5204. result->src[2] = c;
  5205. result->src[3] = sq;
  5206. return result;
  5207. }
  5208. // ggml_ssm_scan
  5209. struct ggml_tensor * ggml_ssm_scan(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * s,
  5212. struct ggml_tensor * x,
  5213. struct ggml_tensor * dt,
  5214. struct ggml_tensor * A,
  5215. struct ggml_tensor * B,
  5216. struct ggml_tensor * C,
  5217. struct ggml_tensor * sq) {
  5218. GGML_ASSERT(ggml_is_contiguous(s));
  5219. GGML_ASSERT(ggml_is_contiguous(x));
  5220. GGML_ASSERT(ggml_is_contiguous(dt));
  5221. GGML_ASSERT(ggml_is_contiguous(A));
  5222. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5223. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5224. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5225. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5226. {
  5227. const int64_t d_state = s->ne[0];
  5228. const int64_t d_inner = s->ne[1];
  5229. const int64_t n_tokens = x->ne[1];
  5230. GGML_ASSERT(x->ne[0] == d_inner);
  5231. GGML_ASSERT(A->ne[0] == d_state);
  5232. GGML_ASSERT(A->ne[1] == d_inner);
  5233. GGML_ASSERT(B->ne[0] == d_state);
  5234. GGML_ASSERT(B->ne[1] == n_tokens);
  5235. GGML_ASSERT(C->ne[0] == d_state);
  5236. GGML_ASSERT(C->ne[1] == n_tokens);
  5237. }
  5238. bool is_node = false;
  5239. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5240. GGML_ASSERT(false); // TODO: implement
  5241. is_node = true;
  5242. }
  5243. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5244. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5245. result->op = GGML_OP_SSM_SCAN;
  5246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5247. result->src[0] = s;
  5248. result->src[1] = x;
  5249. result->src[2] = dt;
  5250. result->src[3] = A;
  5251. result->src[4] = B;
  5252. result->src[5] = C;
  5253. result->src[6] = sq;
  5254. return result;
  5255. }
  5256. // ggml_win_part
  5257. struct ggml_tensor * ggml_win_part(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. int w) {
  5261. GGML_ASSERT(a->ne[3] == 1);
  5262. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5263. bool is_node = false;
  5264. if (a->grad) {
  5265. GGML_ASSERT(false); // TODO: implement backward
  5266. is_node = true;
  5267. }
  5268. // padding
  5269. const int px = (w - a->ne[1]%w)%w;
  5270. const int py = (w - a->ne[2]%w)%w;
  5271. const int npx = (px + a->ne[1])/w;
  5272. const int npy = (py + a->ne[2])/w;
  5273. const int np = npx*npy;
  5274. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5275. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5276. int32_t params[] = { npx, npy, w };
  5277. ggml_set_op_params(result, params, sizeof(params));
  5278. result->op = GGML_OP_WIN_PART;
  5279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5280. result->src[0] = a;
  5281. return result;
  5282. }
  5283. // ggml_win_unpart
  5284. struct ggml_tensor * ggml_win_unpart(
  5285. struct ggml_context * ctx,
  5286. struct ggml_tensor * a,
  5287. int w0,
  5288. int h0,
  5289. int w) {
  5290. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5291. bool is_node = false;
  5292. if (a->grad) {
  5293. GGML_ASSERT(false); // TODO: implement backward
  5294. is_node = true;
  5295. }
  5296. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5297. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5298. int32_t params[] = { w };
  5299. ggml_set_op_params(result, params, sizeof(params));
  5300. result->op = GGML_OP_WIN_UNPART;
  5301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5302. result->src[0] = a;
  5303. return result;
  5304. }
  5305. // ggml_get_rel_pos
  5306. struct ggml_tensor * ggml_get_rel_pos(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. int qh,
  5310. int kh) {
  5311. GGML_ASSERT(qh == kh);
  5312. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5313. bool is_node = false;
  5314. if (a->grad) {
  5315. GGML_ASSERT(false); // TODO: implement backward
  5316. is_node = true;
  5317. }
  5318. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5320. result->op = GGML_OP_GET_REL_POS;
  5321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5322. result->src[0] = a;
  5323. return result;
  5324. }
  5325. // ggml_add_rel_pos
  5326. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5327. struct ggml_context * ctx,
  5328. struct ggml_tensor * a,
  5329. struct ggml_tensor * pw,
  5330. struct ggml_tensor * ph,
  5331. bool inplace) {
  5332. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5333. GGML_ASSERT(ggml_is_contiguous(a));
  5334. GGML_ASSERT(ggml_is_contiguous(pw));
  5335. GGML_ASSERT(ggml_is_contiguous(ph));
  5336. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5337. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5338. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5339. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5340. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5341. bool is_node = false;
  5342. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5343. is_node = true;
  5344. }
  5345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5346. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5347. result->op = GGML_OP_ADD_REL_POS;
  5348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5349. result->src[0] = a;
  5350. result->src[1] = pw;
  5351. result->src[2] = ph;
  5352. return result;
  5353. }
  5354. struct ggml_tensor * ggml_add_rel_pos(
  5355. struct ggml_context * ctx,
  5356. struct ggml_tensor * a,
  5357. struct ggml_tensor * pw,
  5358. struct ggml_tensor * ph) {
  5359. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5360. }
  5361. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5362. struct ggml_context * ctx,
  5363. struct ggml_tensor * a,
  5364. struct ggml_tensor * pw,
  5365. struct ggml_tensor * ph) {
  5366. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5367. }
  5368. // gmml_unary
  5369. static struct ggml_tensor * ggml_unary_impl(
  5370. struct ggml_context * ctx,
  5371. struct ggml_tensor * a,
  5372. enum ggml_unary_op op,
  5373. bool inplace) {
  5374. bool is_node = false;
  5375. if (!inplace && (a->grad)) {
  5376. is_node = true;
  5377. }
  5378. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5379. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5380. result->op = GGML_OP_UNARY;
  5381. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5382. result->src[0] = a;
  5383. return result;
  5384. }
  5385. struct ggml_tensor * ggml_unary(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. enum ggml_unary_op op) {
  5389. return ggml_unary_impl(ctx, a, op, false);
  5390. }
  5391. struct ggml_tensor * ggml_unary_inplace(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. enum ggml_unary_op op) {
  5395. return ggml_unary_impl(ctx, a, op, true);
  5396. }
  5397. // ggml_map_unary
  5398. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. const ggml_unary_op_f32_t fun,
  5402. bool inplace) {
  5403. bool is_node = false;
  5404. if (!inplace && a->grad) {
  5405. is_node = true;
  5406. }
  5407. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5408. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5409. result->op = GGML_OP_MAP_UNARY;
  5410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5411. result->src[0] = a;
  5412. return result;
  5413. }
  5414. struct ggml_tensor * ggml_map_unary_f32(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a,
  5417. const ggml_unary_op_f32_t fun) {
  5418. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5419. }
  5420. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. const ggml_unary_op_f32_t fun) {
  5424. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5425. }
  5426. // ggml_map_binary
  5427. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a,
  5430. struct ggml_tensor * b,
  5431. const ggml_binary_op_f32_t fun,
  5432. bool inplace) {
  5433. GGML_ASSERT(ggml_are_same_shape(a, b));
  5434. bool is_node = false;
  5435. if (!inplace && (a->grad || b->grad)) {
  5436. is_node = true;
  5437. }
  5438. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5439. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5440. result->op = GGML_OP_MAP_BINARY;
  5441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5442. result->src[0] = a;
  5443. result->src[1] = b;
  5444. return result;
  5445. }
  5446. struct ggml_tensor * ggml_map_binary_f32(
  5447. struct ggml_context * ctx,
  5448. struct ggml_tensor * a,
  5449. struct ggml_tensor * b,
  5450. const ggml_binary_op_f32_t fun) {
  5451. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5452. }
  5453. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5454. struct ggml_context * ctx,
  5455. struct ggml_tensor * a,
  5456. struct ggml_tensor * b,
  5457. const ggml_binary_op_f32_t fun) {
  5458. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5459. }
  5460. // ggml_map_custom1_f32
  5461. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5462. struct ggml_context * ctx,
  5463. struct ggml_tensor * a,
  5464. const ggml_custom1_op_f32_t fun,
  5465. bool inplace) {
  5466. bool is_node = false;
  5467. if (!inplace && a->grad) {
  5468. is_node = true;
  5469. }
  5470. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5471. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5472. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5474. result->src[0] = a;
  5475. return result;
  5476. }
  5477. struct ggml_tensor * ggml_map_custom1_f32(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. const ggml_custom1_op_f32_t fun) {
  5481. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5482. }
  5483. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5484. struct ggml_context * ctx,
  5485. struct ggml_tensor * a,
  5486. const ggml_custom1_op_f32_t fun) {
  5487. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5488. }
  5489. // ggml_map_custom2_f32
  5490. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. struct ggml_tensor * b,
  5494. const ggml_custom2_op_f32_t fun,
  5495. bool inplace) {
  5496. bool is_node = false;
  5497. if (!inplace && (a->grad || b->grad)) {
  5498. is_node = true;
  5499. }
  5500. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5501. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5502. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5504. result->src[0] = a;
  5505. result->src[1] = b;
  5506. return result;
  5507. }
  5508. struct ggml_tensor * ggml_map_custom2_f32(
  5509. struct ggml_context * ctx,
  5510. struct ggml_tensor * a,
  5511. struct ggml_tensor * b,
  5512. const ggml_custom2_op_f32_t fun) {
  5513. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5514. }
  5515. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a,
  5518. struct ggml_tensor * b,
  5519. const ggml_custom2_op_f32_t fun) {
  5520. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5521. }
  5522. // ggml_map_custom3_f32
  5523. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a,
  5526. struct ggml_tensor * b,
  5527. struct ggml_tensor * c,
  5528. const ggml_custom3_op_f32_t fun,
  5529. bool inplace) {
  5530. bool is_node = false;
  5531. if (!inplace && (a->grad || b->grad || c->grad)) {
  5532. is_node = true;
  5533. }
  5534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5535. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5536. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5538. result->src[0] = a;
  5539. result->src[1] = b;
  5540. result->src[2] = c;
  5541. return result;
  5542. }
  5543. struct ggml_tensor * ggml_map_custom3_f32(
  5544. struct ggml_context * ctx,
  5545. struct ggml_tensor * a,
  5546. struct ggml_tensor * b,
  5547. struct ggml_tensor * c,
  5548. const ggml_custom3_op_f32_t fun) {
  5549. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5550. }
  5551. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5552. struct ggml_context * ctx,
  5553. struct ggml_tensor * a,
  5554. struct ggml_tensor * b,
  5555. struct ggml_tensor * c,
  5556. const ggml_custom3_op_f32_t fun) {
  5557. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5558. }
  5559. // ggml_map_custom1
  5560. struct ggml_map_custom1_op_params {
  5561. ggml_custom1_op_t fun;
  5562. int n_tasks;
  5563. void * userdata;
  5564. };
  5565. static struct ggml_tensor * ggml_map_custom1_impl(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. const ggml_custom1_op_t fun,
  5569. int n_tasks,
  5570. void * userdata,
  5571. bool inplace) {
  5572. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5573. bool is_node = false;
  5574. if (!inplace && a->grad) {
  5575. is_node = true;
  5576. }
  5577. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5578. struct ggml_map_custom1_op_params params = {
  5579. /*.fun =*/ fun,
  5580. /*.n_tasks =*/ n_tasks,
  5581. /*.userdata =*/ userdata
  5582. };
  5583. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5584. result->op = GGML_OP_MAP_CUSTOM1;
  5585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5586. result->src[0] = a;
  5587. return result;
  5588. }
  5589. struct ggml_tensor * ggml_map_custom1(
  5590. struct ggml_context * ctx,
  5591. struct ggml_tensor * a,
  5592. const ggml_custom1_op_t fun,
  5593. int n_tasks,
  5594. void * userdata) {
  5595. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5596. }
  5597. struct ggml_tensor * ggml_map_custom1_inplace(
  5598. struct ggml_context * ctx,
  5599. struct ggml_tensor * a,
  5600. const ggml_custom1_op_t fun,
  5601. int n_tasks,
  5602. void * userdata) {
  5603. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5604. }
  5605. // ggml_map_custom2
  5606. struct ggml_map_custom2_op_params {
  5607. ggml_custom2_op_t fun;
  5608. int n_tasks;
  5609. void * userdata;
  5610. };
  5611. static struct ggml_tensor * ggml_map_custom2_impl(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. struct ggml_tensor * b,
  5615. const ggml_custom2_op_t fun,
  5616. int n_tasks,
  5617. void * userdata,
  5618. bool inplace) {
  5619. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5620. bool is_node = false;
  5621. if (!inplace && (a->grad || b->grad)) {
  5622. is_node = true;
  5623. }
  5624. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5625. struct ggml_map_custom2_op_params params = {
  5626. /*.fun =*/ fun,
  5627. /*.n_tasks =*/ n_tasks,
  5628. /*.userdata =*/ userdata
  5629. };
  5630. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5631. result->op = GGML_OP_MAP_CUSTOM2;
  5632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5633. result->src[0] = a;
  5634. result->src[1] = b;
  5635. return result;
  5636. }
  5637. struct ggml_tensor * ggml_map_custom2(
  5638. struct ggml_context * ctx,
  5639. struct ggml_tensor * a,
  5640. struct ggml_tensor * b,
  5641. const ggml_custom2_op_t fun,
  5642. int n_tasks,
  5643. void * userdata) {
  5644. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5645. }
  5646. struct ggml_tensor * ggml_map_custom2_inplace(
  5647. struct ggml_context * ctx,
  5648. struct ggml_tensor * a,
  5649. struct ggml_tensor * b,
  5650. const ggml_custom2_op_t fun,
  5651. int n_tasks,
  5652. void * userdata) {
  5653. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5654. }
  5655. // ggml_map_custom3
  5656. struct ggml_map_custom3_op_params {
  5657. ggml_custom3_op_t fun;
  5658. int n_tasks;
  5659. void * userdata;
  5660. };
  5661. static struct ggml_tensor * ggml_map_custom3_impl(
  5662. struct ggml_context * ctx,
  5663. struct ggml_tensor * a,
  5664. struct ggml_tensor * b,
  5665. struct ggml_tensor * c,
  5666. const ggml_custom3_op_t fun,
  5667. int n_tasks,
  5668. void * userdata,
  5669. bool inplace) {
  5670. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5671. bool is_node = false;
  5672. if (!inplace && (a->grad || b->grad || c->grad)) {
  5673. is_node = true;
  5674. }
  5675. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5676. struct ggml_map_custom3_op_params params = {
  5677. /*.fun =*/ fun,
  5678. /*.n_tasks =*/ n_tasks,
  5679. /*.userdata =*/ userdata
  5680. };
  5681. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5682. result->op = GGML_OP_MAP_CUSTOM3;
  5683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5684. result->src[0] = a;
  5685. result->src[1] = b;
  5686. result->src[2] = c;
  5687. return result;
  5688. }
  5689. struct ggml_tensor * ggml_map_custom3(
  5690. struct ggml_context * ctx,
  5691. struct ggml_tensor * a,
  5692. struct ggml_tensor * b,
  5693. struct ggml_tensor * c,
  5694. const ggml_custom3_op_t fun,
  5695. int n_tasks,
  5696. void * userdata) {
  5697. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5698. }
  5699. struct ggml_tensor * ggml_map_custom3_inplace(
  5700. struct ggml_context * ctx,
  5701. struct ggml_tensor * a,
  5702. struct ggml_tensor * b,
  5703. struct ggml_tensor * c,
  5704. const ggml_custom3_op_t fun,
  5705. int n_tasks,
  5706. void * userdata) {
  5707. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5708. }
  5709. // ggml_cross_entropy_loss
  5710. struct ggml_tensor * ggml_cross_entropy_loss(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. struct ggml_tensor * b) {
  5714. GGML_ASSERT(ggml_are_same_shape(a, b));
  5715. bool is_node = false;
  5716. if (a->grad || b->grad) {
  5717. is_node = true;
  5718. }
  5719. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5720. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5722. result->src[0] = a;
  5723. result->src[1] = b;
  5724. return result;
  5725. }
  5726. // ggml_cross_entropy_loss_back
  5727. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5728. struct ggml_context * ctx,
  5729. struct ggml_tensor * a,
  5730. struct ggml_tensor * b,
  5731. struct ggml_tensor * c) {
  5732. GGML_ASSERT(ggml_are_same_shape(a, b));
  5733. GGML_ASSERT(ggml_is_scalar(c));
  5734. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5735. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5736. result->grad = NULL;
  5737. result->src[0] = a;
  5738. result->src[1] = b;
  5739. result->src[2] = c;
  5740. return result;
  5741. }
  5742. ////////////////////////////////////////////////////////////////////////////////
  5743. void ggml_set_param(
  5744. struct ggml_context * ctx,
  5745. struct ggml_tensor * tensor) {
  5746. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5747. GGML_ASSERT(tensor->grad == NULL);
  5748. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5749. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5750. }
  5751. // ggml_compute_forward_dup
  5752. static void ggml_compute_forward_dup_same_cont(
  5753. const struct ggml_compute_params * params,
  5754. struct ggml_tensor * dst) {
  5755. const struct ggml_tensor * src0 = dst->src[0];
  5756. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5757. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5758. GGML_ASSERT(src0->type == dst->type);
  5759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5760. return;
  5761. }
  5762. const size_t nb00 = src0->nb[0];
  5763. const size_t nb0 = dst->nb[0];
  5764. const int ith = params->ith; // thread index
  5765. const int nth = params->nth; // number of threads
  5766. // parallelize by elements
  5767. const int ne = ggml_nelements(dst);
  5768. const int dr = (ne + nth - 1) / nth;
  5769. const int ie0 = dr * ith;
  5770. const int ie1 = MIN(ie0 + dr, ne);
  5771. if (ie0 < ie1) {
  5772. memcpy(
  5773. ((char *) dst->data + ie0*nb0),
  5774. ((char *) src0->data + ie0*nb00),
  5775. (ie1 - ie0) * ggml_type_size(src0->type));
  5776. }
  5777. }
  5778. static void ggml_compute_forward_dup_f16(
  5779. const struct ggml_compute_params * params,
  5780. struct ggml_tensor * dst) {
  5781. const struct ggml_tensor * src0 = dst->src[0];
  5782. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5783. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5784. return;
  5785. }
  5786. GGML_TENSOR_UNARY_OP_LOCALS
  5787. const int ith = params->ith; // thread index
  5788. const int nth = params->nth; // number of threads
  5789. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5790. ggml_compute_forward_dup_same_cont(params, dst);
  5791. return;
  5792. }
  5793. // parallelize by rows
  5794. const int nr = ne01;
  5795. // number of rows per thread
  5796. const int dr = (nr + nth - 1) / nth;
  5797. // row range for this thread
  5798. const int ir0 = dr * ith;
  5799. const int ir1 = MIN(ir0 + dr, nr);
  5800. if (src0->type == dst->type &&
  5801. ne00 == ne0 &&
  5802. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5803. // copy by rows
  5804. const size_t rs = ne00*nb00;
  5805. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5807. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5808. memcpy(
  5809. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5810. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5811. rs);
  5812. }
  5813. }
  5814. }
  5815. return;
  5816. }
  5817. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5818. if (ggml_is_contiguous(dst)) {
  5819. if (nb00 == sizeof(ggml_fp16_t)) {
  5820. if (dst->type == GGML_TYPE_F16) {
  5821. size_t id = 0;
  5822. const size_t rs = ne00 * nb00;
  5823. char * dst_ptr = (char *) dst->data;
  5824. for (int i03 = 0; i03 < ne03; i03++) {
  5825. for (int i02 = 0; i02 < ne02; i02++) {
  5826. id += rs * ir0;
  5827. for (int i01 = ir0; i01 < ir1; i01++) {
  5828. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5829. memcpy(dst_ptr + id, src0_ptr, rs);
  5830. id += rs;
  5831. }
  5832. id += rs * (ne01 - ir1);
  5833. }
  5834. }
  5835. } else if (dst->type == GGML_TYPE_F32) {
  5836. size_t id = 0;
  5837. float * dst_ptr = (float *) dst->data;
  5838. for (int i03 = 0; i03 < ne03; i03++) {
  5839. for (int i02 = 0; i02 < ne02; i02++) {
  5840. id += ne00 * ir0;
  5841. for (int i01 = ir0; i01 < ir1; i01++) {
  5842. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5843. for (int i00 = 0; i00 < ne00; i00++) {
  5844. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5845. id++;
  5846. }
  5847. }
  5848. id += ne00 * (ne01 - ir1);
  5849. }
  5850. }
  5851. } else if (type_traits[dst->type].from_float) {
  5852. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5853. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5854. size_t id = 0;
  5855. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5856. char * dst_ptr = (char *) dst->data;
  5857. for (int i03 = 0; i03 < ne03; i03++) {
  5858. for (int i02 = 0; i02 < ne02; i02++) {
  5859. id += rs * ir0;
  5860. for (int i01 = ir0; i01 < ir1; i01++) {
  5861. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5862. for (int i00 = 0; i00 < ne00; i00++) {
  5863. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5864. }
  5865. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5866. id += rs;
  5867. }
  5868. id += rs * (ne01 - ir1);
  5869. }
  5870. }
  5871. } else {
  5872. GGML_ASSERT(false); // TODO: implement
  5873. }
  5874. } else {
  5875. //printf("%s: this is not optimal - fix me\n", __func__);
  5876. if (dst->type == GGML_TYPE_F32) {
  5877. size_t id = 0;
  5878. float * dst_ptr = (float *) dst->data;
  5879. for (int i03 = 0; i03 < ne03; i03++) {
  5880. for (int i02 = 0; i02 < ne02; i02++) {
  5881. id += ne00 * ir0;
  5882. for (int i01 = ir0; i01 < ir1; i01++) {
  5883. for (int i00 = 0; i00 < ne00; i00++) {
  5884. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5885. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5886. id++;
  5887. }
  5888. }
  5889. id += ne00 * (ne01 - ir1);
  5890. }
  5891. }
  5892. } else if (dst->type == GGML_TYPE_F16) {
  5893. size_t id = 0;
  5894. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5895. for (int i03 = 0; i03 < ne03; i03++) {
  5896. for (int i02 = 0; i02 < ne02; i02++) {
  5897. id += ne00 * ir0;
  5898. for (int i01 = ir0; i01 < ir1; i01++) {
  5899. for (int i00 = 0; i00 < ne00; i00++) {
  5900. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5901. dst_ptr[id] = *src0_ptr;
  5902. id++;
  5903. }
  5904. }
  5905. id += ne00 * (ne01 - ir1);
  5906. }
  5907. }
  5908. } else {
  5909. GGML_ASSERT(false); // TODO: implement
  5910. }
  5911. }
  5912. return;
  5913. }
  5914. // dst counters
  5915. int64_t i10 = 0;
  5916. int64_t i11 = 0;
  5917. int64_t i12 = 0;
  5918. int64_t i13 = 0;
  5919. if (dst->type == GGML_TYPE_F16) {
  5920. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5921. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5922. i10 += ne00 * ir0;
  5923. while (i10 >= ne0) {
  5924. i10 -= ne0;
  5925. if (++i11 == ne1) {
  5926. i11 = 0;
  5927. if (++i12 == ne2) {
  5928. i12 = 0;
  5929. if (++i13 == ne3) {
  5930. i13 = 0;
  5931. }
  5932. }
  5933. }
  5934. }
  5935. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5936. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5937. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5938. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5939. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5940. if (++i10 == ne00) {
  5941. i10 = 0;
  5942. if (++i11 == ne01) {
  5943. i11 = 0;
  5944. if (++i12 == ne02) {
  5945. i12 = 0;
  5946. if (++i13 == ne03) {
  5947. i13 = 0;
  5948. }
  5949. }
  5950. }
  5951. }
  5952. }
  5953. }
  5954. i10 += ne00 * (ne01 - ir1);
  5955. while (i10 >= ne0) {
  5956. i10 -= ne0;
  5957. if (++i11 == ne1) {
  5958. i11 = 0;
  5959. if (++i12 == ne2) {
  5960. i12 = 0;
  5961. if (++i13 == ne3) {
  5962. i13 = 0;
  5963. }
  5964. }
  5965. }
  5966. }
  5967. }
  5968. }
  5969. } else if (dst->type == GGML_TYPE_F32) {
  5970. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5971. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5972. i10 += ne00 * ir0;
  5973. while (i10 >= ne0) {
  5974. i10 -= ne0;
  5975. if (++i11 == ne1) {
  5976. i11 = 0;
  5977. if (++i12 == ne2) {
  5978. i12 = 0;
  5979. if (++i13 == ne3) {
  5980. i13 = 0;
  5981. }
  5982. }
  5983. }
  5984. }
  5985. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5986. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5987. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5988. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5989. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5990. if (++i10 == ne0) {
  5991. i10 = 0;
  5992. if (++i11 == ne1) {
  5993. i11 = 0;
  5994. if (++i12 == ne2) {
  5995. i12 = 0;
  5996. if (++i13 == ne3) {
  5997. i13 = 0;
  5998. }
  5999. }
  6000. }
  6001. }
  6002. }
  6003. }
  6004. i10 += ne00 * (ne01 - ir1);
  6005. while (i10 >= ne0) {
  6006. i10 -= ne0;
  6007. if (++i11 == ne1) {
  6008. i11 = 0;
  6009. if (++i12 == ne2) {
  6010. i12 = 0;
  6011. if (++i13 == ne3) {
  6012. i13 = 0;
  6013. }
  6014. }
  6015. }
  6016. }
  6017. }
  6018. }
  6019. } else {
  6020. GGML_ASSERT(false); // TODO: implement
  6021. }
  6022. }
  6023. static void ggml_compute_forward_dup_f32(
  6024. const struct ggml_compute_params * params,
  6025. struct ggml_tensor * dst) {
  6026. const struct ggml_tensor * src0 = dst->src[0];
  6027. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6028. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6029. return;
  6030. }
  6031. GGML_TENSOR_UNARY_OP_LOCALS
  6032. const int ith = params->ith; // thread index
  6033. const int nth = params->nth; // number of threads
  6034. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6035. ggml_compute_forward_dup_same_cont(params, dst);
  6036. return;
  6037. }
  6038. // parallelize by rows
  6039. const int nr = ne01;
  6040. // number of rows per thread
  6041. const int dr = (nr + nth - 1) / nth;
  6042. // row range for this thread
  6043. const int ir0 = dr * ith;
  6044. const int ir1 = MIN(ir0 + dr, nr);
  6045. if (src0->type == dst->type &&
  6046. ne00 == ne0 &&
  6047. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6048. // copy by rows
  6049. const size_t rs = ne00*nb00;
  6050. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6051. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6052. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6053. memcpy(
  6054. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6055. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6056. rs);
  6057. }
  6058. }
  6059. }
  6060. return;
  6061. }
  6062. if (ggml_is_contiguous(dst)) {
  6063. // TODO: simplify
  6064. if (nb00 == sizeof(float)) {
  6065. if (dst->type == GGML_TYPE_F32) {
  6066. size_t id = 0;
  6067. const size_t rs = ne00 * nb00;
  6068. char * dst_ptr = (char *) dst->data;
  6069. for (int i03 = 0; i03 < ne03; i03++) {
  6070. for (int i02 = 0; i02 < ne02; i02++) {
  6071. id += rs * ir0;
  6072. for (int i01 = ir0; i01 < ir1; i01++) {
  6073. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6074. memcpy(dst_ptr + id, src0_ptr, rs);
  6075. id += rs;
  6076. }
  6077. id += rs * (ne01 - ir1);
  6078. }
  6079. }
  6080. } else if (type_traits[dst->type].from_float) {
  6081. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6082. size_t id = 0;
  6083. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6084. char * dst_ptr = (char *) dst->data;
  6085. for (int i03 = 0; i03 < ne03; i03++) {
  6086. for (int i02 = 0; i02 < ne02; i02++) {
  6087. id += rs * ir0;
  6088. for (int i01 = ir0; i01 < ir1; i01++) {
  6089. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6090. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6091. id += rs;
  6092. }
  6093. id += rs * (ne01 - ir1);
  6094. }
  6095. }
  6096. } else {
  6097. GGML_ASSERT(false); // TODO: implement
  6098. }
  6099. } else {
  6100. //printf("%s: this is not optimal - fix me\n", __func__);
  6101. if (dst->type == GGML_TYPE_F32) {
  6102. size_t id = 0;
  6103. float * dst_ptr = (float *) dst->data;
  6104. for (int i03 = 0; i03 < ne03; i03++) {
  6105. for (int i02 = 0; i02 < ne02; i02++) {
  6106. id += ne00 * ir0;
  6107. for (int i01 = ir0; i01 < ir1; i01++) {
  6108. for (int i00 = 0; i00 < ne00; i00++) {
  6109. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6110. dst_ptr[id] = *src0_ptr;
  6111. id++;
  6112. }
  6113. }
  6114. id += ne00 * (ne01 - ir1);
  6115. }
  6116. }
  6117. } else if (dst->type == GGML_TYPE_F16) {
  6118. size_t id = 0;
  6119. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6120. for (int i03 = 0; i03 < ne03; i03++) {
  6121. for (int i02 = 0; i02 < ne02; i02++) {
  6122. id += ne00 * ir0;
  6123. for (int i01 = ir0; i01 < ir1; i01++) {
  6124. for (int i00 = 0; i00 < ne00; i00++) {
  6125. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6126. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6127. id++;
  6128. }
  6129. }
  6130. id += ne00 * (ne01 - ir1);
  6131. }
  6132. }
  6133. } else {
  6134. GGML_ASSERT(false); // TODO: implement
  6135. }
  6136. }
  6137. return;
  6138. }
  6139. // dst counters
  6140. int64_t i10 = 0;
  6141. int64_t i11 = 0;
  6142. int64_t i12 = 0;
  6143. int64_t i13 = 0;
  6144. if (dst->type == GGML_TYPE_F32) {
  6145. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6146. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6147. i10 += ne00 * ir0;
  6148. while (i10 >= ne0) {
  6149. i10 -= ne0;
  6150. if (++i11 == ne1) {
  6151. i11 = 0;
  6152. if (++i12 == ne2) {
  6153. i12 = 0;
  6154. if (++i13 == ne3) {
  6155. i13 = 0;
  6156. }
  6157. }
  6158. }
  6159. }
  6160. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6161. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6162. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6163. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6164. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6165. if (++i10 == ne0) {
  6166. i10 = 0;
  6167. if (++i11 == ne1) {
  6168. i11 = 0;
  6169. if (++i12 == ne2) {
  6170. i12 = 0;
  6171. if (++i13 == ne3) {
  6172. i13 = 0;
  6173. }
  6174. }
  6175. }
  6176. }
  6177. }
  6178. }
  6179. i10 += ne00 * (ne01 - ir1);
  6180. while (i10 >= ne0) {
  6181. i10 -= ne0;
  6182. if (++i11 == ne1) {
  6183. i11 = 0;
  6184. if (++i12 == ne2) {
  6185. i12 = 0;
  6186. if (++i13 == ne3) {
  6187. i13 = 0;
  6188. }
  6189. }
  6190. }
  6191. }
  6192. }
  6193. }
  6194. } else if (dst->type == GGML_TYPE_F16) {
  6195. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6196. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6197. i10 += ne00 * ir0;
  6198. while (i10 >= ne0) {
  6199. i10 -= ne0;
  6200. if (++i11 == ne1) {
  6201. i11 = 0;
  6202. if (++i12 == ne2) {
  6203. i12 = 0;
  6204. if (++i13 == ne3) {
  6205. i13 = 0;
  6206. }
  6207. }
  6208. }
  6209. }
  6210. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6211. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6212. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6213. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6214. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6215. if (++i10 == ne0) {
  6216. i10 = 0;
  6217. if (++i11 == ne1) {
  6218. i11 = 0;
  6219. if (++i12 == ne2) {
  6220. i12 = 0;
  6221. if (++i13 == ne3) {
  6222. i13 = 0;
  6223. }
  6224. }
  6225. }
  6226. }
  6227. }
  6228. }
  6229. i10 += ne00 * (ne01 - ir1);
  6230. while (i10 >= ne0) {
  6231. i10 -= ne0;
  6232. if (++i11 == ne1) {
  6233. i11 = 0;
  6234. if (++i12 == ne2) {
  6235. i12 = 0;
  6236. if (++i13 == ne3) {
  6237. i13 = 0;
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. }
  6244. } else {
  6245. GGML_ASSERT(false); // TODO: implement
  6246. }
  6247. }
  6248. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6249. static void ggml_compute_forward_dup_bytes(
  6250. const struct ggml_compute_params * params,
  6251. struct ggml_tensor * dst) {
  6252. const struct ggml_tensor * src0 = dst->src[0];
  6253. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6254. GGML_ASSERT(src0->type == dst->type);
  6255. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6256. return;
  6257. }
  6258. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6259. ggml_compute_forward_dup_same_cont(params, dst);
  6260. return;
  6261. }
  6262. GGML_TENSOR_UNARY_OP_LOCALS;
  6263. const size_t type_size = ggml_type_size(src0->type);
  6264. const int ith = params->ith; // thread index
  6265. const int nth = params->nth; // number of threads
  6266. // parallelize by rows
  6267. const int nr = ne01;
  6268. // number of rows per thread
  6269. const int dr = (nr + nth - 1) / nth;
  6270. // row range for this thread
  6271. const int ir0 = dr * ith;
  6272. const int ir1 = MIN(ir0 + dr, nr);
  6273. if (src0->type == dst->type &&
  6274. ne00 == ne0 &&
  6275. nb00 == type_size && nb0 == type_size) {
  6276. // copy by rows
  6277. const size_t rs = ne00 * type_size;
  6278. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6279. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6280. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6281. memcpy(
  6282. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6283. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6284. rs);
  6285. }
  6286. }
  6287. }
  6288. return;
  6289. }
  6290. if (ggml_is_contiguous(dst)) {
  6291. size_t id = 0;
  6292. char * dst_ptr = (char *) dst->data;
  6293. const size_t rs = ne00 * type_size;
  6294. if (nb00 == type_size) {
  6295. // src0 is contigous on first dimension, copy by rows
  6296. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6297. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6298. id += rs * ir0;
  6299. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6300. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6301. memcpy(dst_ptr + id, src0_ptr, rs);
  6302. id += rs;
  6303. }
  6304. id += rs * (ne01 - ir1);
  6305. }
  6306. }
  6307. } else {
  6308. //printf("%s: this is not optimal - fix me\n", __func__);
  6309. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6311. id += rs * ir0;
  6312. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6313. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6314. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6315. memcpy(dst_ptr + id, src0_ptr, type_size);
  6316. id += type_size;
  6317. }
  6318. }
  6319. id += rs * (ne01 - ir1);
  6320. }
  6321. }
  6322. }
  6323. return;
  6324. }
  6325. // dst counters
  6326. int64_t i10 = 0;
  6327. int64_t i11 = 0;
  6328. int64_t i12 = 0;
  6329. int64_t i13 = 0;
  6330. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6332. i10 += ne00 * ir0;
  6333. while (i10 >= ne0) {
  6334. i10 -= ne0;
  6335. if (++i11 == ne1) {
  6336. i11 = 0;
  6337. if (++i12 == ne2) {
  6338. i12 = 0;
  6339. if (++i13 == ne3) {
  6340. i13 = 0;
  6341. }
  6342. }
  6343. }
  6344. }
  6345. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6346. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6347. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6348. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6349. memcpy(dst_ptr, src0_ptr, type_size);
  6350. if (++i10 == ne0) {
  6351. i10 = 0;
  6352. if (++i11 == ne1) {
  6353. i11 = 0;
  6354. if (++i12 == ne2) {
  6355. i12 = 0;
  6356. if (++i13 == ne3) {
  6357. i13 = 0;
  6358. }
  6359. }
  6360. }
  6361. }
  6362. }
  6363. }
  6364. i10 += ne00 * (ne01 - ir1);
  6365. while (i10 >= ne0) {
  6366. i10 -= ne0;
  6367. if (++i11 == ne1) {
  6368. i11 = 0;
  6369. if (++i12 == ne2) {
  6370. i12 = 0;
  6371. if (++i13 == ne3) {
  6372. i13 = 0;
  6373. }
  6374. }
  6375. }
  6376. }
  6377. }
  6378. }
  6379. }
  6380. static void ggml_compute_forward_dup(
  6381. const struct ggml_compute_params * params,
  6382. struct ggml_tensor * dst) {
  6383. const struct ggml_tensor * src0 = dst->src[0];
  6384. if (src0->type == dst->type) {
  6385. ggml_compute_forward_dup_bytes(params, dst);
  6386. return;
  6387. }
  6388. switch (src0->type) {
  6389. case GGML_TYPE_F16:
  6390. {
  6391. ggml_compute_forward_dup_f16(params, dst);
  6392. } break;
  6393. case GGML_TYPE_F32:
  6394. {
  6395. ggml_compute_forward_dup_f32(params, dst);
  6396. } break;
  6397. default:
  6398. {
  6399. GGML_ASSERT(false);
  6400. } break;
  6401. }
  6402. }
  6403. // ggml_compute_forward_add
  6404. static void ggml_compute_forward_add_f32(
  6405. const struct ggml_compute_params * params,
  6406. struct ggml_tensor * dst) {
  6407. const struct ggml_tensor * src0 = dst->src[0];
  6408. const struct ggml_tensor * src1 = dst->src[1];
  6409. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6410. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6411. return;
  6412. }
  6413. const int ith = params->ith;
  6414. const int nth = params->nth;
  6415. #ifdef GGML_USE_CLBLAST
  6416. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6417. // TODO: OpenCL kernel support full broadcast
  6418. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6419. if (ith == 0) {
  6420. ggml_cl_add(src0, src1, dst);
  6421. }
  6422. return;
  6423. }
  6424. #endif
  6425. const int nr = ggml_nrows(src0);
  6426. GGML_TENSOR_BINARY_OP_LOCALS
  6427. GGML_ASSERT( nb0 == sizeof(float));
  6428. GGML_ASSERT(nb00 == sizeof(float));
  6429. // rows per thread
  6430. const int dr = (nr + nth - 1)/nth;
  6431. // row range for this thread
  6432. const int ir0 = dr*ith;
  6433. const int ir1 = MIN(ir0 + dr, nr);
  6434. if (nb10 == sizeof(float)) {
  6435. for (int ir = ir0; ir < ir1; ++ir) {
  6436. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6437. const int64_t i03 = ir/(ne02*ne01);
  6438. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6439. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6440. const int64_t i13 = i03 % ne13;
  6441. const int64_t i12 = i02 % ne12;
  6442. const int64_t i11 = i01 % ne11;
  6443. const int64_t nr0 = ne00 / ne10;
  6444. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6445. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6446. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6447. for (int64_t r = 0; r < nr0; ++r) {
  6448. #ifdef GGML_USE_ACCELERATE
  6449. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6450. #else
  6451. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6452. #endif
  6453. }
  6454. }
  6455. } else {
  6456. // src1 is not contiguous
  6457. for (int ir = ir0; ir < ir1; ++ir) {
  6458. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6459. const int64_t i03 = ir/(ne02*ne01);
  6460. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6461. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6462. const int64_t i13 = i03 % ne13;
  6463. const int64_t i12 = i02 % ne12;
  6464. const int64_t i11 = i01 % ne11;
  6465. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6466. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6467. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6468. const int64_t i10 = i0 % ne10;
  6469. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6470. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6471. }
  6472. }
  6473. }
  6474. }
  6475. static void ggml_compute_forward_add_f16_f32(
  6476. const struct ggml_compute_params * params,
  6477. struct ggml_tensor * dst) {
  6478. const struct ggml_tensor * src0 = dst->src[0];
  6479. const struct ggml_tensor * src1 = dst->src[1];
  6480. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6481. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6482. return;
  6483. }
  6484. const int ith = params->ith;
  6485. const int nth = params->nth;
  6486. const int nr = ggml_nrows(src0);
  6487. GGML_TENSOR_BINARY_OP_LOCALS
  6488. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6489. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6490. if (dst->type == GGML_TYPE_F32) {
  6491. GGML_ASSERT( nb0 == sizeof(float));
  6492. }
  6493. else {
  6494. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6495. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6496. }
  6497. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6498. // rows per thread
  6499. const int dr = (nr + nth - 1)/nth;
  6500. // row range for this thread
  6501. const int ir0 = dr*ith;
  6502. const int ir1 = MIN(ir0 + dr, nr);
  6503. if (nb10 == sizeof(float)) {
  6504. if (dst->type == GGML_TYPE_F16) {
  6505. for (int ir = ir0; ir < ir1; ++ir) {
  6506. // src0, src1 and dst are same shape => same indices
  6507. const int i3 = ir/(ne2*ne1);
  6508. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6509. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6510. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6511. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6512. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6513. for (int i = 0; i < ne0; i++) {
  6514. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6515. }
  6516. }
  6517. } else {
  6518. for (int ir = ir0; ir < ir1; ++ir) {
  6519. // src0, src1 and dst are same shape => same indices
  6520. const int i3 = ir/(ne2*ne1);
  6521. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6522. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6523. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6524. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6525. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6526. for (int i = 0; i < ne0; i++) {
  6527. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6528. }
  6529. }
  6530. }
  6531. }
  6532. else {
  6533. // src1 is not contiguous
  6534. GGML_ASSERT(false);
  6535. }
  6536. }
  6537. static void ggml_compute_forward_add_f16_f16(
  6538. const struct ggml_compute_params * params,
  6539. struct ggml_tensor * dst) {
  6540. const struct ggml_tensor * src0 = dst->src[0];
  6541. const struct ggml_tensor * src1 = dst->src[1];
  6542. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6543. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6544. return;
  6545. }
  6546. const int ith = params->ith;
  6547. const int nth = params->nth;
  6548. const int nr = ggml_nrows(src0);
  6549. GGML_TENSOR_BINARY_OP_LOCALS
  6550. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6551. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6552. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6553. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6554. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6555. // rows per thread
  6556. const int dr = (nr + nth - 1)/nth;
  6557. // row range for this thread
  6558. const int ir0 = dr*ith;
  6559. const int ir1 = MIN(ir0 + dr, nr);
  6560. if (nb10 == sizeof(ggml_fp16_t)) {
  6561. for (int ir = ir0; ir < ir1; ++ir) {
  6562. // src0, src1 and dst are same shape => same indices
  6563. const int i3 = ir/(ne2*ne1);
  6564. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6565. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6566. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6567. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6568. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6569. for (int i = 0; i < ne0; i++) {
  6570. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6571. }
  6572. }
  6573. }
  6574. else {
  6575. // src1 is not contiguous
  6576. GGML_ASSERT(false);
  6577. }
  6578. }
  6579. static void ggml_compute_forward_add_q_f32(
  6580. const struct ggml_compute_params * params,
  6581. struct ggml_tensor * dst) {
  6582. const struct ggml_tensor * src0 = dst->src[0];
  6583. const struct ggml_tensor * src1 = dst->src[1];
  6584. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6585. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6586. return;
  6587. }
  6588. const int nr = ggml_nrows(src0);
  6589. GGML_TENSOR_BINARY_OP_LOCALS
  6590. const int ith = params->ith;
  6591. const int nth = params->nth;
  6592. const enum ggml_type type = src0->type;
  6593. const enum ggml_type dtype = dst->type;
  6594. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6595. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6596. // we don't support permuted src0 or src1
  6597. GGML_ASSERT(nb00 == ggml_type_size(type));
  6598. GGML_ASSERT(nb10 == sizeof(float));
  6599. // dst cannot be transposed or permuted
  6600. GGML_ASSERT(nb0 <= nb1);
  6601. GGML_ASSERT(nb1 <= nb2);
  6602. GGML_ASSERT(nb2 <= nb3);
  6603. GGML_ASSERT(ggml_is_quantized(src0->type));
  6604. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6605. // rows per thread
  6606. const int dr = (nr + nth - 1)/nth;
  6607. // row range for this thread
  6608. const int ir0 = dr*ith;
  6609. const int ir1 = MIN(ir0 + dr, nr);
  6610. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6611. for (int ir = ir0; ir < ir1; ++ir) {
  6612. // src0 indices
  6613. const int i03 = ir/(ne02*ne01);
  6614. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6615. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6616. // src1 and dst are same shape as src0 => same indices
  6617. const int i13 = i03;
  6618. const int i12 = i02;
  6619. const int i11 = i01;
  6620. const int i3 = i03;
  6621. const int i2 = i02;
  6622. const int i1 = i01;
  6623. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6624. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6625. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6626. assert(ne00 % 32 == 0);
  6627. // unquantize row from src0 to temp buffer
  6628. dequantize_row_q(src0_row, wdata, ne00);
  6629. // add src1
  6630. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6631. // quantize row to dst
  6632. if (quantize_row_q != NULL) {
  6633. quantize_row_q(wdata, dst_row, ne00);
  6634. } else {
  6635. memcpy(dst_row, wdata, ne0*nb0);
  6636. }
  6637. }
  6638. }
  6639. static void ggml_compute_forward_add(
  6640. const struct ggml_compute_params * params,
  6641. struct ggml_tensor * dst) {
  6642. const struct ggml_tensor * src0 = dst->src[0];
  6643. const struct ggml_tensor * src1 = dst->src[1];
  6644. switch (src0->type) {
  6645. case GGML_TYPE_F32:
  6646. {
  6647. if (src1->type == GGML_TYPE_F32) {
  6648. ggml_compute_forward_add_f32(params, dst);
  6649. }
  6650. else {
  6651. GGML_ASSERT(false);
  6652. }
  6653. } break;
  6654. case GGML_TYPE_F16:
  6655. {
  6656. if (src1->type == GGML_TYPE_F16) {
  6657. ggml_compute_forward_add_f16_f16(params, dst);
  6658. }
  6659. else if (src1->type == GGML_TYPE_F32) {
  6660. ggml_compute_forward_add_f16_f32(params, dst);
  6661. }
  6662. else {
  6663. GGML_ASSERT(false);
  6664. }
  6665. } break;
  6666. case GGML_TYPE_Q4_0:
  6667. case GGML_TYPE_Q4_1:
  6668. case GGML_TYPE_Q5_0:
  6669. case GGML_TYPE_Q5_1:
  6670. case GGML_TYPE_Q8_0:
  6671. case GGML_TYPE_Q2_K:
  6672. case GGML_TYPE_Q3_K:
  6673. case GGML_TYPE_Q4_K:
  6674. case GGML_TYPE_Q5_K:
  6675. case GGML_TYPE_Q6_K:
  6676. case GGML_TYPE_IQ2_XXS:
  6677. case GGML_TYPE_IQ2_XS:
  6678. case GGML_TYPE_IQ3_XXS:
  6679. case GGML_TYPE_IQ1_S:
  6680. case GGML_TYPE_IQ4_NL:
  6681. case GGML_TYPE_IQ4_XS:
  6682. case GGML_TYPE_IQ3_S:
  6683. case GGML_TYPE_IQ2_S:
  6684. {
  6685. ggml_compute_forward_add_q_f32(params, dst);
  6686. } break;
  6687. default:
  6688. {
  6689. GGML_ASSERT(false);
  6690. } break;
  6691. }
  6692. }
  6693. // ggml_compute_forward_add1
  6694. static void ggml_compute_forward_add1_f32(
  6695. const struct ggml_compute_params * params,
  6696. struct ggml_tensor * dst) {
  6697. const struct ggml_tensor * src0 = dst->src[0];
  6698. const struct ggml_tensor * src1 = dst->src[1];
  6699. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6700. GGML_ASSERT(ggml_is_scalar(src1));
  6701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6702. return;
  6703. }
  6704. const int ith = params->ith;
  6705. const int nth = params->nth;
  6706. const int nr = ggml_nrows(src0);
  6707. GGML_TENSOR_UNARY_OP_LOCALS
  6708. GGML_ASSERT( nb0 == sizeof(float));
  6709. GGML_ASSERT(nb00 == sizeof(float));
  6710. // rows per thread
  6711. const int dr = (nr + nth - 1)/nth;
  6712. // row range for this thread
  6713. const int ir0 = dr*ith;
  6714. const int ir1 = MIN(ir0 + dr, nr);
  6715. for (int ir = ir0; ir < ir1; ++ir) {
  6716. // src0 and dst are same shape => same indices
  6717. const int i3 = ir/(ne2*ne1);
  6718. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6719. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6720. #ifdef GGML_USE_ACCELERATE
  6721. UNUSED(ggml_vec_add1_f32);
  6722. vDSP_vadd(
  6723. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6724. (float *) ((char *) src1->data), 0,
  6725. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6726. ne0);
  6727. #else
  6728. ggml_vec_add1_f32(ne0,
  6729. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6730. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6731. *(float *) src1->data);
  6732. #endif
  6733. }
  6734. }
  6735. static void ggml_compute_forward_add1_f16_f32(
  6736. const struct ggml_compute_params * params,
  6737. struct ggml_tensor * dst) {
  6738. const struct ggml_tensor * src0 = dst->src[0];
  6739. const struct ggml_tensor * src1 = dst->src[1];
  6740. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6741. GGML_ASSERT(ggml_is_scalar(src1));
  6742. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6743. return;
  6744. }
  6745. // scalar to add
  6746. const float v = *(float *) src1->data;
  6747. const int ith = params->ith;
  6748. const int nth = params->nth;
  6749. const int nr = ggml_nrows(src0);
  6750. GGML_TENSOR_UNARY_OP_LOCALS
  6751. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6752. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6753. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6754. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6755. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6756. // rows per thread
  6757. const int dr = (nr + nth - 1)/nth;
  6758. // row range for this thread
  6759. const int ir0 = dr*ith;
  6760. const int ir1 = MIN(ir0 + dr, nr);
  6761. for (int ir = ir0; ir < ir1; ++ir) {
  6762. // src0 and dst are same shape => same indices
  6763. const int i3 = ir/(ne2*ne1);
  6764. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6765. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6766. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6767. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6768. for (int i = 0; i < ne0; i++) {
  6769. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6770. }
  6771. }
  6772. }
  6773. static void ggml_compute_forward_add1_f16_f16(
  6774. const struct ggml_compute_params * params,
  6775. struct ggml_tensor * dst) {
  6776. const struct ggml_tensor * src0 = dst->src[0];
  6777. const struct ggml_tensor * src1 = dst->src[1];
  6778. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6779. GGML_ASSERT(ggml_is_scalar(src1));
  6780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6781. return;
  6782. }
  6783. // scalar to add
  6784. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6785. const int ith = params->ith;
  6786. const int nth = params->nth;
  6787. const int nr = ggml_nrows(src0);
  6788. GGML_TENSOR_UNARY_OP_LOCALS
  6789. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6790. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6791. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6792. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6793. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6794. // rows per thread
  6795. const int dr = (nr + nth - 1)/nth;
  6796. // row range for this thread
  6797. const int ir0 = dr*ith;
  6798. const int ir1 = MIN(ir0 + dr, nr);
  6799. for (int ir = ir0; ir < ir1; ++ir) {
  6800. // src0 and dst are same shape => same indices
  6801. const int i3 = ir/(ne2*ne1);
  6802. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6803. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6804. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6805. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6806. for (int i = 0; i < ne0; i++) {
  6807. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6808. }
  6809. }
  6810. }
  6811. static void ggml_compute_forward_add1_q_f32(
  6812. const struct ggml_compute_params * params,
  6813. struct ggml_tensor * dst) {
  6814. const struct ggml_tensor * src0 = dst->src[0];
  6815. const struct ggml_tensor * src1 = dst->src[1];
  6816. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6817. GGML_ASSERT(ggml_is_scalar(src1));
  6818. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6819. return;
  6820. }
  6821. // scalar to add
  6822. const float v = *(float *) src1->data;
  6823. const int ith = params->ith;
  6824. const int nth = params->nth;
  6825. const int nr = ggml_nrows(src0);
  6826. GGML_TENSOR_UNARY_OP_LOCALS
  6827. const enum ggml_type type = src0->type;
  6828. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6829. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6830. // we don't support permuted src0
  6831. GGML_ASSERT(nb00 == ggml_type_size(type));
  6832. // dst cannot be transposed or permuted
  6833. GGML_ASSERT(nb0 <= nb1);
  6834. GGML_ASSERT(nb1 <= nb2);
  6835. GGML_ASSERT(nb2 <= nb3);
  6836. GGML_ASSERT(ggml_is_quantized(src0->type));
  6837. GGML_ASSERT(dst->type == src0->type);
  6838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6839. // rows per thread
  6840. const int dr = (nr + nth - 1)/nth;
  6841. // row range for this thread
  6842. const int ir0 = dr*ith;
  6843. const int ir1 = MIN(ir0 + dr, nr);
  6844. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6845. for (int ir = ir0; ir < ir1; ++ir) {
  6846. // src0 and dst are same shape => same indices
  6847. const int i3 = ir/(ne2*ne1);
  6848. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6849. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6850. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6851. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6852. assert(ne0 % 32 == 0);
  6853. // unquantize row from src0 to temp buffer
  6854. dequantize_row_q(src0_row, wdata, ne0);
  6855. // add src1
  6856. ggml_vec_acc1_f32(ne0, wdata, v);
  6857. // quantize row to dst
  6858. quantize_row_q(wdata, dst_row, ne0);
  6859. }
  6860. }
  6861. static void ggml_compute_forward_add1(
  6862. const struct ggml_compute_params * params,
  6863. struct ggml_tensor * dst) {
  6864. const struct ggml_tensor * src0 = dst->src[0];
  6865. const struct ggml_tensor * src1 = dst->src[1];
  6866. switch (src0->type) {
  6867. case GGML_TYPE_F32:
  6868. {
  6869. ggml_compute_forward_add1_f32(params, dst);
  6870. } break;
  6871. case GGML_TYPE_F16:
  6872. {
  6873. if (src1->type == GGML_TYPE_F16) {
  6874. ggml_compute_forward_add1_f16_f16(params, dst);
  6875. }
  6876. else if (src1->type == GGML_TYPE_F32) {
  6877. ggml_compute_forward_add1_f16_f32(params, dst);
  6878. }
  6879. else {
  6880. GGML_ASSERT(false);
  6881. }
  6882. } break;
  6883. case GGML_TYPE_Q4_0:
  6884. case GGML_TYPE_Q4_1:
  6885. case GGML_TYPE_Q5_0:
  6886. case GGML_TYPE_Q5_1:
  6887. case GGML_TYPE_Q8_0:
  6888. case GGML_TYPE_Q8_1:
  6889. case GGML_TYPE_Q2_K:
  6890. case GGML_TYPE_Q3_K:
  6891. case GGML_TYPE_Q4_K:
  6892. case GGML_TYPE_Q5_K:
  6893. case GGML_TYPE_Q6_K:
  6894. case GGML_TYPE_IQ2_XXS:
  6895. case GGML_TYPE_IQ2_XS:
  6896. case GGML_TYPE_IQ3_XXS:
  6897. case GGML_TYPE_IQ1_S:
  6898. case GGML_TYPE_IQ4_NL:
  6899. case GGML_TYPE_IQ4_XS:
  6900. case GGML_TYPE_IQ3_S:
  6901. case GGML_TYPE_IQ2_S:
  6902. {
  6903. ggml_compute_forward_add1_q_f32(params, dst);
  6904. } break;
  6905. default:
  6906. {
  6907. GGML_ASSERT(false);
  6908. } break;
  6909. }
  6910. }
  6911. // ggml_compute_forward_acc
  6912. static void ggml_compute_forward_acc_f32(
  6913. const struct ggml_compute_params * params,
  6914. struct ggml_tensor * dst) {
  6915. const struct ggml_tensor * src0 = dst->src[0];
  6916. const struct ggml_tensor * src1 = dst->src[1];
  6917. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6918. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6919. // view src0 and dst with these strides and data offset inbytes during acc
  6920. // nb0 is implicitly element_size because src0 and dst are contiguous
  6921. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6922. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6923. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6924. size_t offset = ((int32_t *) dst->op_params)[3];
  6925. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6926. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6927. if (params->ith != 0) {
  6928. return;
  6929. }
  6930. // memcpy needs to be synchronized across threads to avoid race conditions.
  6931. // => do it in INIT phase
  6932. memcpy(
  6933. ((char *) dst->data),
  6934. ((char *) src0->data),
  6935. ggml_nbytes(dst));
  6936. }
  6937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6938. return;
  6939. }
  6940. const int ith = params->ith;
  6941. const int nth = params->nth;
  6942. const int nr = ggml_nrows(src1);
  6943. const int nc = src1->ne[0];
  6944. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6945. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6946. // src0 and dst as viewed during acc
  6947. const size_t nb0 = ggml_element_size(src0);
  6948. const size_t nb00 = nb0;
  6949. const size_t nb01 = nb1;
  6950. const size_t nb02 = nb2;
  6951. const size_t nb03 = nb3;
  6952. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6953. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6954. GGML_ASSERT(nb10 == sizeof(float));
  6955. // rows per thread
  6956. const int dr = (nr + nth - 1)/nth;
  6957. // row range for this thread
  6958. const int ir0 = dr*ith;
  6959. const int ir1 = MIN(ir0 + dr, nr);
  6960. for (int ir = ir0; ir < ir1; ++ir) {
  6961. // src0 and dst are viewed with shape of src1 and offset
  6962. // => same indices
  6963. const int i3 = ir/(ne12*ne11);
  6964. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6965. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6966. #ifdef GGML_USE_ACCELERATE
  6967. vDSP_vadd(
  6968. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6969. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6970. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6971. #else
  6972. ggml_vec_add_f32(nc,
  6973. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6974. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6975. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6976. #endif
  6977. }
  6978. }
  6979. static void ggml_compute_forward_acc(
  6980. const struct ggml_compute_params * params,
  6981. struct ggml_tensor * dst) {
  6982. const struct ggml_tensor * src0 = dst->src[0];
  6983. switch (src0->type) {
  6984. case GGML_TYPE_F32:
  6985. {
  6986. ggml_compute_forward_acc_f32(params, dst);
  6987. } break;
  6988. case GGML_TYPE_F16:
  6989. case GGML_TYPE_Q4_0:
  6990. case GGML_TYPE_Q4_1:
  6991. case GGML_TYPE_Q5_0:
  6992. case GGML_TYPE_Q5_1:
  6993. case GGML_TYPE_Q8_0:
  6994. case GGML_TYPE_Q8_1:
  6995. case GGML_TYPE_Q2_K:
  6996. case GGML_TYPE_Q3_K:
  6997. case GGML_TYPE_Q4_K:
  6998. case GGML_TYPE_Q5_K:
  6999. case GGML_TYPE_Q6_K:
  7000. case GGML_TYPE_IQ2_XXS:
  7001. case GGML_TYPE_IQ2_XS:
  7002. case GGML_TYPE_IQ3_XXS:
  7003. case GGML_TYPE_IQ1_S:
  7004. case GGML_TYPE_IQ4_NL:
  7005. case GGML_TYPE_IQ4_XS:
  7006. case GGML_TYPE_IQ3_S:
  7007. case GGML_TYPE_IQ2_S:
  7008. default:
  7009. {
  7010. GGML_ASSERT(false);
  7011. } break;
  7012. }
  7013. }
  7014. // ggml_compute_forward_sub
  7015. static void ggml_compute_forward_sub_f32(
  7016. const struct ggml_compute_params * params,
  7017. struct ggml_tensor * dst) {
  7018. const struct ggml_tensor * src0 = dst->src[0];
  7019. const struct ggml_tensor * src1 = dst->src[1];
  7020. assert(params->ith == 0);
  7021. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7022. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7023. return;
  7024. }
  7025. const int nr = ggml_nrows(src0);
  7026. GGML_TENSOR_BINARY_OP_LOCALS
  7027. GGML_ASSERT( nb0 == sizeof(float));
  7028. GGML_ASSERT(nb00 == sizeof(float));
  7029. if (nb10 == sizeof(float)) {
  7030. for (int ir = 0; ir < nr; ++ir) {
  7031. // src0, src1 and dst are same shape => same indices
  7032. const int i3 = ir/(ne2*ne1);
  7033. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7034. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7035. #ifdef GGML_USE_ACCELERATE
  7036. vDSP_vsub(
  7037. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7038. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7039. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7040. ne0);
  7041. #else
  7042. ggml_vec_sub_f32(ne0,
  7043. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7044. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7045. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7046. #endif
  7047. // }
  7048. // }
  7049. }
  7050. } else {
  7051. // src1 is not contiguous
  7052. for (int ir = 0; ir < nr; ++ir) {
  7053. // src0, src1 and dst are same shape => same indices
  7054. const int i3 = ir/(ne2*ne1);
  7055. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7056. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7057. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7058. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7059. for (int i0 = 0; i0 < ne0; i0++) {
  7060. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7061. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7062. }
  7063. }
  7064. }
  7065. }
  7066. static void ggml_compute_forward_sub(
  7067. const struct ggml_compute_params * params,
  7068. struct ggml_tensor * dst) {
  7069. const struct ggml_tensor * src0 = dst->src[0];
  7070. switch (src0->type) {
  7071. case GGML_TYPE_F32:
  7072. {
  7073. ggml_compute_forward_sub_f32(params, dst);
  7074. } break;
  7075. default:
  7076. {
  7077. GGML_ASSERT(false);
  7078. } break;
  7079. }
  7080. }
  7081. // ggml_compute_forward_mul
  7082. static void ggml_compute_forward_mul_f32(
  7083. const struct ggml_compute_params * params,
  7084. struct ggml_tensor * dst) {
  7085. const struct ggml_tensor * src0 = dst->src[0];
  7086. const struct ggml_tensor * src1 = dst->src[1];
  7087. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7088. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7089. return;
  7090. }
  7091. const int ith = params->ith;
  7092. const int nth = params->nth;
  7093. #if defined(GGML_USE_CLBLAST)
  7094. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7095. // TODO: OpenCL kernel support full broadcast
  7096. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7097. if (ith == 0) {
  7098. ggml_cl_mul(src0, src1, dst);
  7099. }
  7100. return;
  7101. }
  7102. #endif
  7103. const int64_t nr = ggml_nrows(src0);
  7104. GGML_TENSOR_BINARY_OP_LOCALS
  7105. GGML_ASSERT( nb0 == sizeof(float));
  7106. GGML_ASSERT(nb00 == sizeof(float));
  7107. if (nb10 == sizeof(float)) {
  7108. for (int64_t ir = ith; ir < nr; ir += nth) {
  7109. // src0 and dst are same shape => same indices
  7110. const int64_t i03 = ir/(ne02*ne01);
  7111. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7112. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7113. const int64_t i13 = i03 % ne13;
  7114. const int64_t i12 = i02 % ne12;
  7115. const int64_t i11 = i01 % ne11;
  7116. const int64_t nr0 = ne00 / ne10;
  7117. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7118. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7119. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7120. for (int64_t r = 0 ; r < nr0; ++r) {
  7121. #ifdef GGML_USE_ACCELERATE
  7122. UNUSED(ggml_vec_mul_f32);
  7123. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7124. #else
  7125. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7126. #endif
  7127. }
  7128. }
  7129. } else {
  7130. // src1 is not contiguous
  7131. for (int64_t ir = ith; ir < nr; ir += nth) {
  7132. // src0 and dst are same shape => same indices
  7133. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7134. const int64_t i03 = ir/(ne02*ne01);
  7135. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7136. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7137. const int64_t i13 = i03 % ne13;
  7138. const int64_t i12 = i02 % ne12;
  7139. const int64_t i11 = i01 % ne11;
  7140. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7141. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7142. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7143. const int64_t i10 = i0 % ne10;
  7144. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7145. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7146. }
  7147. }
  7148. }
  7149. }
  7150. static void ggml_compute_forward_mul(
  7151. const struct ggml_compute_params * params,
  7152. struct ggml_tensor * dst) {
  7153. const struct ggml_tensor * src0 = dst->src[0];
  7154. const struct ggml_tensor * src1 = dst->src[1];
  7155. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7156. switch (src0->type) {
  7157. case GGML_TYPE_F32:
  7158. {
  7159. ggml_compute_forward_mul_f32(params, dst);
  7160. } break;
  7161. default:
  7162. {
  7163. GGML_ASSERT(false);
  7164. } break;
  7165. }
  7166. }
  7167. // ggml_compute_forward_div
  7168. static void ggml_compute_forward_div_f32(
  7169. const struct ggml_compute_params * params,
  7170. struct ggml_tensor * dst) {
  7171. const struct ggml_tensor * src0 = dst->src[0];
  7172. const struct ggml_tensor * src1 = dst->src[1];
  7173. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7174. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7175. return;
  7176. }
  7177. const int ith = params->ith;
  7178. const int nth = params->nth;
  7179. const int64_t nr = ggml_nrows(src0);
  7180. GGML_TENSOR_BINARY_OP_LOCALS
  7181. GGML_ASSERT( nb0 == sizeof(float));
  7182. GGML_ASSERT(nb00 == sizeof(float));
  7183. if (nb10 == sizeof(float)) {
  7184. for (int64_t ir = ith; ir < nr; ir += nth) {
  7185. // src0 and dst are same shape => same indices
  7186. const int64_t i03 = ir/(ne02*ne01);
  7187. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7188. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7189. const int64_t i13 = i03 % ne13;
  7190. const int64_t i12 = i02 % ne12;
  7191. const int64_t i11 = i01 % ne11;
  7192. const int64_t nr0 = ne00 / ne10;
  7193. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7194. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7195. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7196. for (int64_t r = 0; r < nr0; ++r) {
  7197. #ifdef GGML_USE_ACCELERATE
  7198. UNUSED(ggml_vec_div_f32);
  7199. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7200. #else
  7201. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7202. #endif
  7203. }
  7204. }
  7205. } else {
  7206. // src1 is not contiguous
  7207. for (int64_t ir = ith; ir < nr; ir += nth) {
  7208. // src0 and dst are same shape => same indices
  7209. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7210. const int64_t i03 = ir/(ne02*ne01);
  7211. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7212. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7213. const int64_t i13 = i03 % ne13;
  7214. const int64_t i12 = i02 % ne12;
  7215. const int64_t i11 = i01 % ne11;
  7216. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7217. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7218. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7219. const int64_t i10 = i0 % ne10;
  7220. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7221. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7222. }
  7223. }
  7224. }
  7225. }
  7226. static void ggml_compute_forward_div(
  7227. const struct ggml_compute_params * params,
  7228. struct ggml_tensor * dst) {
  7229. const struct ggml_tensor * src0 = dst->src[0];
  7230. switch (src0->type) {
  7231. case GGML_TYPE_F32:
  7232. {
  7233. ggml_compute_forward_div_f32(params, dst);
  7234. } break;
  7235. default:
  7236. {
  7237. GGML_ASSERT(false);
  7238. } break;
  7239. }
  7240. }
  7241. // ggml_compute_forward_sqr
  7242. static void ggml_compute_forward_sqr_f32(
  7243. const struct ggml_compute_params * params,
  7244. struct ggml_tensor * dst) {
  7245. const struct ggml_tensor * src0 = dst->src[0];
  7246. assert(params->ith == 0);
  7247. assert(ggml_are_same_shape(src0, dst));
  7248. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7249. return;
  7250. }
  7251. const int n = ggml_nrows(src0);
  7252. const int nc = src0->ne[0];
  7253. assert( dst->nb[0] == sizeof(float));
  7254. assert(src0->nb[0] == sizeof(float));
  7255. for (int i = 0; i < n; i++) {
  7256. ggml_vec_sqr_f32(nc,
  7257. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7258. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7259. }
  7260. }
  7261. static void ggml_compute_forward_sqr(
  7262. const struct ggml_compute_params * params,
  7263. struct ggml_tensor * dst) {
  7264. const struct ggml_tensor * src0 = dst->src[0];
  7265. switch (src0->type) {
  7266. case GGML_TYPE_F32:
  7267. {
  7268. ggml_compute_forward_sqr_f32(params, dst);
  7269. } break;
  7270. default:
  7271. {
  7272. GGML_ASSERT(false);
  7273. } break;
  7274. }
  7275. }
  7276. // ggml_compute_forward_sqrt
  7277. static void ggml_compute_forward_sqrt_f32(
  7278. const struct ggml_compute_params * params,
  7279. struct ggml_tensor * dst) {
  7280. const struct ggml_tensor * src0 = dst->src[0];
  7281. assert(params->ith == 0);
  7282. assert(ggml_are_same_shape(src0, dst));
  7283. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7284. return;
  7285. }
  7286. const int n = ggml_nrows(src0);
  7287. const int nc = src0->ne[0];
  7288. assert( dst->nb[0] == sizeof(float));
  7289. assert(src0->nb[0] == sizeof(float));
  7290. for (int i = 0; i < n; i++) {
  7291. ggml_vec_sqrt_f32(nc,
  7292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7294. }
  7295. }
  7296. static void ggml_compute_forward_sqrt(
  7297. const struct ggml_compute_params * params,
  7298. struct ggml_tensor * dst) {
  7299. const struct ggml_tensor * src0 = dst->src[0];
  7300. switch (src0->type) {
  7301. case GGML_TYPE_F32:
  7302. {
  7303. ggml_compute_forward_sqrt_f32(params, dst);
  7304. } break;
  7305. default:
  7306. {
  7307. GGML_ASSERT(false);
  7308. } break;
  7309. }
  7310. }
  7311. // ggml_compute_forward_log
  7312. static void ggml_compute_forward_log_f32(
  7313. const struct ggml_compute_params * params,
  7314. struct ggml_tensor * dst) {
  7315. const struct ggml_tensor * src0 = dst->src[0];
  7316. GGML_ASSERT(params->ith == 0);
  7317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7318. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7319. return;
  7320. }
  7321. const int n = ggml_nrows(src0);
  7322. const int nc = src0->ne[0];
  7323. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7324. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7325. for (int i = 0; i < n; i++) {
  7326. ggml_vec_log_f32(nc,
  7327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7329. }
  7330. }
  7331. static void ggml_compute_forward_log(
  7332. const struct ggml_compute_params * params,
  7333. struct ggml_tensor * dst) {
  7334. const struct ggml_tensor * src0 = dst->src[0];
  7335. switch (src0->type) {
  7336. case GGML_TYPE_F32:
  7337. {
  7338. ggml_compute_forward_log_f32(params, dst);
  7339. } break;
  7340. default:
  7341. {
  7342. GGML_ASSERT(false);
  7343. } break;
  7344. }
  7345. }
  7346. // ggml_compute_forward_sum
  7347. static void ggml_compute_forward_sum_f32(
  7348. const struct ggml_compute_params * params,
  7349. struct ggml_tensor * dst) {
  7350. const struct ggml_tensor * src0 = dst->src[0];
  7351. assert(params->ith == 0);
  7352. assert(ggml_is_scalar(dst));
  7353. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7354. return;
  7355. }
  7356. assert(ggml_is_scalar(dst));
  7357. assert(src0->nb[0] == sizeof(float));
  7358. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7359. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7360. ggml_float sum = 0;
  7361. ggml_float row_sum = 0;
  7362. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7363. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7364. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7365. ggml_vec_sum_f32_ggf(ne00,
  7366. &row_sum,
  7367. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7368. sum += row_sum;
  7369. }
  7370. }
  7371. }
  7372. ((float *) dst->data)[0] = sum;
  7373. }
  7374. static void ggml_compute_forward_sum_f16(
  7375. const struct ggml_compute_params * params,
  7376. struct ggml_tensor * dst) {
  7377. const struct ggml_tensor * src0 = dst->src[0];
  7378. assert(params->ith == 0);
  7379. assert(ggml_is_scalar(dst));
  7380. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7381. return;
  7382. }
  7383. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7384. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7385. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7386. float sum = 0;
  7387. float row_sum = 0;
  7388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7390. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7391. ggml_vec_sum_f16_ggf(ne00,
  7392. &row_sum,
  7393. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7394. sum += row_sum;
  7395. }
  7396. }
  7397. }
  7398. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7399. }
  7400. static void ggml_compute_forward_sum(
  7401. const struct ggml_compute_params * params,
  7402. struct ggml_tensor * dst) {
  7403. const struct ggml_tensor * src0 = dst->src[0];
  7404. switch (src0->type) {
  7405. case GGML_TYPE_F32:
  7406. {
  7407. ggml_compute_forward_sum_f32(params, dst);
  7408. } break;
  7409. case GGML_TYPE_F16:
  7410. {
  7411. ggml_compute_forward_sum_f16(params, dst);
  7412. } break;
  7413. default:
  7414. {
  7415. GGML_ASSERT(false);
  7416. } break;
  7417. }
  7418. }
  7419. // ggml_compute_forward_sum_rows
  7420. static void ggml_compute_forward_sum_rows_f32(
  7421. const struct ggml_compute_params * params,
  7422. struct ggml_tensor * dst) {
  7423. const struct ggml_tensor * src0 = dst->src[0];
  7424. GGML_ASSERT(params->ith == 0);
  7425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7426. return;
  7427. }
  7428. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7429. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7430. GGML_TENSOR_UNARY_OP_LOCALS
  7431. GGML_ASSERT(ne0 == 1);
  7432. GGML_ASSERT(ne1 == ne01);
  7433. GGML_ASSERT(ne2 == ne02);
  7434. GGML_ASSERT(ne3 == ne03);
  7435. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7436. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7437. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7438. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7439. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7440. float row_sum = 0;
  7441. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7442. dst_row[0] = row_sum;
  7443. }
  7444. }
  7445. }
  7446. }
  7447. static void ggml_compute_forward_sum_rows(
  7448. const struct ggml_compute_params * params,
  7449. struct ggml_tensor * dst) {
  7450. const struct ggml_tensor * src0 = dst->src[0];
  7451. switch (src0->type) {
  7452. case GGML_TYPE_F32:
  7453. {
  7454. ggml_compute_forward_sum_rows_f32(params, dst);
  7455. } break;
  7456. default:
  7457. {
  7458. GGML_ASSERT(false);
  7459. } break;
  7460. }
  7461. }
  7462. // ggml_compute_forward_mean
  7463. static void ggml_compute_forward_mean_f32(
  7464. const struct ggml_compute_params * params,
  7465. struct ggml_tensor * dst) {
  7466. const struct ggml_tensor * src0 = dst->src[0];
  7467. assert(params->ith == 0);
  7468. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7469. return;
  7470. }
  7471. assert(src0->nb[0] == sizeof(float));
  7472. GGML_TENSOR_UNARY_OP_LOCALS
  7473. assert(ne0 == 1);
  7474. assert(ne1 == ne01);
  7475. assert(ne2 == ne02);
  7476. assert(ne3 == ne03);
  7477. UNUSED(ne0);
  7478. UNUSED(ne1);
  7479. UNUSED(ne2);
  7480. UNUSED(ne3);
  7481. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7483. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7484. ggml_vec_sum_f32(ne00,
  7485. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7486. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7487. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7488. }
  7489. }
  7490. }
  7491. }
  7492. static void ggml_compute_forward_mean(
  7493. const struct ggml_compute_params * params,
  7494. struct ggml_tensor * dst) {
  7495. const struct ggml_tensor * src0 = dst->src[0];
  7496. switch (src0->type) {
  7497. case GGML_TYPE_F32:
  7498. {
  7499. ggml_compute_forward_mean_f32(params, dst);
  7500. } break;
  7501. default:
  7502. {
  7503. GGML_ASSERT(false);
  7504. } break;
  7505. }
  7506. }
  7507. // ggml_compute_forward_argmax
  7508. static void ggml_compute_forward_argmax_f32(
  7509. const struct ggml_compute_params * params,
  7510. struct ggml_tensor * dst) {
  7511. const struct ggml_tensor * src0 = dst->src[0];
  7512. assert(params->ith == 0);
  7513. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7514. return;
  7515. }
  7516. assert(src0->nb[0] == sizeof(float));
  7517. assert(dst->nb[0] == sizeof(float));
  7518. const int64_t ne00 = src0->ne[0];
  7519. const int64_t ne01 = src0->ne[1];
  7520. const size_t nb01 = src0->nb[1];
  7521. const size_t nb0 = dst->nb[0];
  7522. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7523. float * src = (float *) ((char *) src0->data + i1*nb01);
  7524. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7525. int v = 0;
  7526. ggml_vec_argmax_f32(ne00, &v, src);
  7527. dst_[0] = v;
  7528. }
  7529. }
  7530. static void ggml_compute_forward_argmax(
  7531. const struct ggml_compute_params * params,
  7532. struct ggml_tensor * dst) {
  7533. const struct ggml_tensor * src0 = dst->src[0];
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F32:
  7536. {
  7537. ggml_compute_forward_argmax_f32(params, dst);
  7538. } break;
  7539. default:
  7540. {
  7541. GGML_ASSERT(false);
  7542. } break;
  7543. }
  7544. }
  7545. // ggml_compute_forward_repeat
  7546. static void ggml_compute_forward_repeat_f32(
  7547. const struct ggml_compute_params * params,
  7548. struct ggml_tensor * dst) {
  7549. const struct ggml_tensor * src0 = dst->src[0];
  7550. GGML_ASSERT(params->ith == 0);
  7551. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7552. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7553. return;
  7554. }
  7555. GGML_TENSOR_UNARY_OP_LOCALS
  7556. // guaranteed to be an integer due to the check in ggml_can_repeat
  7557. const int nr0 = (int)(ne0/ne00);
  7558. const int nr1 = (int)(ne1/ne01);
  7559. const int nr2 = (int)(ne2/ne02);
  7560. const int nr3 = (int)(ne3/ne03);
  7561. // TODO: support for transposed / permuted tensors
  7562. GGML_ASSERT(nb0 == sizeof(float));
  7563. GGML_ASSERT(nb00 == sizeof(float));
  7564. // TODO: maybe this is not optimal?
  7565. for (int i3 = 0; i3 < nr3; i3++) {
  7566. for (int k3 = 0; k3 < ne03; k3++) {
  7567. for (int i2 = 0; i2 < nr2; i2++) {
  7568. for (int k2 = 0; k2 < ne02; k2++) {
  7569. for (int i1 = 0; i1 < nr1; i1++) {
  7570. for (int k1 = 0; k1 < ne01; k1++) {
  7571. for (int i0 = 0; i0 < nr0; i0++) {
  7572. ggml_vec_cpy_f32(ne00,
  7573. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7574. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7575. }
  7576. }
  7577. }
  7578. }
  7579. }
  7580. }
  7581. }
  7582. }
  7583. static void ggml_compute_forward_repeat_f16(
  7584. const struct ggml_compute_params * params,
  7585. struct ggml_tensor * dst) {
  7586. const struct ggml_tensor * src0 = dst->src[0];
  7587. GGML_ASSERT(params->ith == 0);
  7588. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7590. return;
  7591. }
  7592. GGML_TENSOR_UNARY_OP_LOCALS
  7593. // guaranteed to be an integer due to the check in ggml_can_repeat
  7594. const int nr0 = (int)(ne0/ne00);
  7595. const int nr1 = (int)(ne1/ne01);
  7596. const int nr2 = (int)(ne2/ne02);
  7597. const int nr3 = (int)(ne3/ne03);
  7598. // TODO: support for transposed / permuted tensors
  7599. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7600. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7601. // TODO: maybe this is not optimal?
  7602. for (int i3 = 0; i3 < nr3; i3++) {
  7603. for (int k3 = 0; k3 < ne03; k3++) {
  7604. for (int i2 = 0; i2 < nr2; i2++) {
  7605. for (int k2 = 0; k2 < ne02; k2++) {
  7606. for (int i1 = 0; i1 < nr1; i1++) {
  7607. for (int k1 = 0; k1 < ne01; k1++) {
  7608. for (int i0 = 0; i0 < nr0; i0++) {
  7609. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7610. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7611. // ggml_vec_cpy_f16(ne00, y, x)
  7612. for (int i = 0; i < ne00; ++i) {
  7613. y[i] = x[i];
  7614. }
  7615. }
  7616. }
  7617. }
  7618. }
  7619. }
  7620. }
  7621. }
  7622. }
  7623. static void ggml_compute_forward_repeat(
  7624. const struct ggml_compute_params * params,
  7625. struct ggml_tensor * dst) {
  7626. const struct ggml_tensor * src0 = dst->src[0];
  7627. switch (src0->type) {
  7628. case GGML_TYPE_F16:
  7629. case GGML_TYPE_I16:
  7630. {
  7631. ggml_compute_forward_repeat_f16(params, dst);
  7632. } break;
  7633. case GGML_TYPE_F32:
  7634. case GGML_TYPE_I32:
  7635. {
  7636. ggml_compute_forward_repeat_f32(params, dst);
  7637. } break;
  7638. default:
  7639. {
  7640. GGML_ASSERT(false);
  7641. } break;
  7642. }
  7643. }
  7644. // ggml_compute_forward_repeat_back
  7645. static void ggml_compute_forward_repeat_back_f32(
  7646. const struct ggml_compute_params * params,
  7647. struct ggml_tensor * dst) {
  7648. const struct ggml_tensor * src0 = dst->src[0];
  7649. GGML_ASSERT(params->ith == 0);
  7650. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7651. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7652. return;
  7653. }
  7654. GGML_TENSOR_UNARY_OP_LOCALS
  7655. // guaranteed to be an integer due to the check in ggml_can_repeat
  7656. const int nr0 = (int)(ne00/ne0);
  7657. const int nr1 = (int)(ne01/ne1);
  7658. const int nr2 = (int)(ne02/ne2);
  7659. const int nr3 = (int)(ne03/ne3);
  7660. // TODO: support for transposed / permuted tensors
  7661. GGML_ASSERT(nb0 == sizeof(float));
  7662. GGML_ASSERT(nb00 == sizeof(float));
  7663. if (ggml_is_contiguous(dst)) {
  7664. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7665. } else {
  7666. for (int k3 = 0; k3 < ne3; k3++) {
  7667. for (int k2 = 0; k2 < ne2; k2++) {
  7668. for (int k1 = 0; k1 < ne1; k1++) {
  7669. ggml_vec_set_f32(ne0,
  7670. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7671. 0);
  7672. }
  7673. }
  7674. }
  7675. }
  7676. // TODO: maybe this is not optimal?
  7677. for (int i3 = 0; i3 < nr3; i3++) {
  7678. for (int k3 = 0; k3 < ne3; k3++) {
  7679. for (int i2 = 0; i2 < nr2; i2++) {
  7680. for (int k2 = 0; k2 < ne2; k2++) {
  7681. for (int i1 = 0; i1 < nr1; i1++) {
  7682. for (int k1 = 0; k1 < ne1; k1++) {
  7683. for (int i0 = 0; i0 < nr0; i0++) {
  7684. ggml_vec_acc_f32(ne0,
  7685. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7686. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7687. }
  7688. }
  7689. }
  7690. }
  7691. }
  7692. }
  7693. }
  7694. }
  7695. static void ggml_compute_forward_repeat_back(
  7696. const struct ggml_compute_params * params,
  7697. struct ggml_tensor * dst) {
  7698. const struct ggml_tensor * src0 = dst->src[0];
  7699. switch (src0->type) {
  7700. case GGML_TYPE_F32:
  7701. {
  7702. ggml_compute_forward_repeat_back_f32(params, dst);
  7703. } break;
  7704. default:
  7705. {
  7706. GGML_ASSERT(false);
  7707. } break;
  7708. }
  7709. }
  7710. // ggml_compute_forward_concat
  7711. static void ggml_compute_forward_concat_f32(
  7712. const struct ggml_compute_params * params,
  7713. struct ggml_tensor * dst) {
  7714. const struct ggml_tensor * src0 = dst->src[0];
  7715. const struct ggml_tensor * src1 = dst->src[1];
  7716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7717. return;
  7718. }
  7719. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7720. const int ith = params->ith;
  7721. const int nth = params->nth;
  7722. GGML_TENSOR_BINARY_OP_LOCALS
  7723. // TODO: support for transposed / permuted tensors
  7724. GGML_ASSERT(nb0 == sizeof(float));
  7725. GGML_ASSERT(nb00 == sizeof(float));
  7726. GGML_ASSERT(nb10 == sizeof(float));
  7727. for (int i3 = 0; i3 < ne3; i3++) {
  7728. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7729. if (i2 < ne02) { // src0
  7730. for (int i1 = 0; i1 < ne1; i1++) {
  7731. for (int i0 = 0; i0 < ne0; i0++) {
  7732. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7733. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7734. *y = *x;
  7735. }
  7736. }
  7737. } // src1
  7738. else {
  7739. for (int i1 = 0; i1 < ne1; i1++) {
  7740. for (int i0 = 0; i0 < ne0; i0++) {
  7741. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7742. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7743. *y = *x;
  7744. }
  7745. }
  7746. }
  7747. }
  7748. }
  7749. }
  7750. static void ggml_compute_forward_concat(
  7751. const struct ggml_compute_params* params,
  7752. struct ggml_tensor* dst) {
  7753. const struct ggml_tensor * src0 = dst->src[0];
  7754. switch (src0->type) {
  7755. case GGML_TYPE_F32:
  7756. case GGML_TYPE_I32:
  7757. {
  7758. ggml_compute_forward_concat_f32(params, dst);
  7759. } break;
  7760. default:
  7761. {
  7762. GGML_ASSERT(false);
  7763. } break;
  7764. }
  7765. }
  7766. // ggml_compute_forward_abs
  7767. static void ggml_compute_forward_abs_f32(
  7768. const struct ggml_compute_params * params,
  7769. struct ggml_tensor * dst) {
  7770. const struct ggml_tensor * src0 = dst->src[0];
  7771. assert(params->ith == 0);
  7772. assert(ggml_are_same_shape(src0, dst));
  7773. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7774. return;
  7775. }
  7776. const int n = ggml_nrows(src0);
  7777. const int nc = src0->ne[0];
  7778. assert(dst->nb[0] == sizeof(float));
  7779. assert(src0->nb[0] == sizeof(float));
  7780. for (int i = 0; i < n; i++) {
  7781. ggml_vec_abs_f32(nc,
  7782. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7783. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7784. }
  7785. }
  7786. static void ggml_compute_forward_abs(
  7787. const struct ggml_compute_params * params,
  7788. struct ggml_tensor * dst) {
  7789. const struct ggml_tensor * src0 = dst->src[0];
  7790. switch (src0->type) {
  7791. case GGML_TYPE_F32:
  7792. {
  7793. ggml_compute_forward_abs_f32(params, dst);
  7794. } break;
  7795. default:
  7796. {
  7797. GGML_ASSERT(false);
  7798. } break;
  7799. }
  7800. }
  7801. // ggml_compute_forward_sgn
  7802. static void ggml_compute_forward_sgn_f32(
  7803. const struct ggml_compute_params * params,
  7804. struct ggml_tensor * dst) {
  7805. const struct ggml_tensor * src0 = dst->src[0];
  7806. assert(params->ith == 0);
  7807. assert(ggml_are_same_shape(src0, dst));
  7808. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7809. return;
  7810. }
  7811. const int n = ggml_nrows(src0);
  7812. const int nc = src0->ne[0];
  7813. assert(dst->nb[0] == sizeof(float));
  7814. assert(src0->nb[0] == sizeof(float));
  7815. for (int i = 0; i < n; i++) {
  7816. ggml_vec_sgn_f32(nc,
  7817. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7818. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7819. }
  7820. }
  7821. static void ggml_compute_forward_sgn(
  7822. const struct ggml_compute_params * params,
  7823. struct ggml_tensor * dst) {
  7824. const struct ggml_tensor * src0 = dst->src[0];
  7825. switch (src0->type) {
  7826. case GGML_TYPE_F32:
  7827. {
  7828. ggml_compute_forward_sgn_f32(params, dst);
  7829. } break;
  7830. default:
  7831. {
  7832. GGML_ASSERT(false);
  7833. } break;
  7834. }
  7835. }
  7836. // ggml_compute_forward_neg
  7837. static void ggml_compute_forward_neg_f32(
  7838. const struct ggml_compute_params * params,
  7839. struct ggml_tensor * dst) {
  7840. const struct ggml_tensor * src0 = dst->src[0];
  7841. assert(params->ith == 0);
  7842. assert(ggml_are_same_shape(src0, dst));
  7843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7844. return;
  7845. }
  7846. const int n = ggml_nrows(src0);
  7847. const int nc = src0->ne[0];
  7848. assert(dst->nb[0] == sizeof(float));
  7849. assert(src0->nb[0] == sizeof(float));
  7850. for (int i = 0; i < n; i++) {
  7851. ggml_vec_neg_f32(nc,
  7852. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7853. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7854. }
  7855. }
  7856. static void ggml_compute_forward_neg(
  7857. const struct ggml_compute_params * params,
  7858. struct ggml_tensor * dst) {
  7859. const struct ggml_tensor * src0 = dst->src[0];
  7860. switch (src0->type) {
  7861. case GGML_TYPE_F32:
  7862. {
  7863. ggml_compute_forward_neg_f32(params, dst);
  7864. } break;
  7865. default:
  7866. {
  7867. GGML_ASSERT(false);
  7868. } break;
  7869. }
  7870. }
  7871. // ggml_compute_forward_step
  7872. static void ggml_compute_forward_step_f32(
  7873. const struct ggml_compute_params * params,
  7874. struct ggml_tensor * dst) {
  7875. const struct ggml_tensor * src0 = dst->src[0];
  7876. assert(params->ith == 0);
  7877. assert(ggml_are_same_shape(src0, dst));
  7878. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7879. return;
  7880. }
  7881. const int n = ggml_nrows(src0);
  7882. const int nc = src0->ne[0];
  7883. assert(dst->nb[0] == sizeof(float));
  7884. assert(src0->nb[0] == sizeof(float));
  7885. for (int i = 0; i < n; i++) {
  7886. ggml_vec_step_f32(nc,
  7887. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7888. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7889. }
  7890. }
  7891. static void ggml_compute_forward_step(
  7892. const struct ggml_compute_params * params,
  7893. struct ggml_tensor * dst) {
  7894. const struct ggml_tensor * src0 = dst->src[0];
  7895. switch (src0->type) {
  7896. case GGML_TYPE_F32:
  7897. {
  7898. ggml_compute_forward_step_f32(params, dst);
  7899. } break;
  7900. default:
  7901. {
  7902. GGML_ASSERT(false);
  7903. } break;
  7904. }
  7905. }
  7906. // ggml_compute_forward_tanh
  7907. static void ggml_compute_forward_tanh_f32(
  7908. const struct ggml_compute_params * params,
  7909. struct ggml_tensor * dst) {
  7910. const struct ggml_tensor * src0 = dst->src[0];
  7911. assert(params->ith == 0);
  7912. assert(ggml_are_same_shape(src0, dst));
  7913. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7914. return;
  7915. }
  7916. const int n = ggml_nrows(src0);
  7917. const int nc = src0->ne[0];
  7918. assert(dst->nb[0] == sizeof(float));
  7919. assert(src0->nb[0] == sizeof(float));
  7920. for (int i = 0; i < n; i++) {
  7921. ggml_vec_tanh_f32(nc,
  7922. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7923. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7924. }
  7925. }
  7926. static void ggml_compute_forward_tanh(
  7927. const struct ggml_compute_params * params,
  7928. struct ggml_tensor * dst) {
  7929. const struct ggml_tensor * src0 = dst->src[0];
  7930. switch (src0->type) {
  7931. case GGML_TYPE_F32:
  7932. {
  7933. ggml_compute_forward_tanh_f32(params, dst);
  7934. } break;
  7935. default:
  7936. {
  7937. GGML_ASSERT(false);
  7938. } break;
  7939. }
  7940. }
  7941. // ggml_compute_forward_elu
  7942. static void ggml_compute_forward_elu_f32(
  7943. const struct ggml_compute_params * params,
  7944. struct ggml_tensor * dst) {
  7945. const struct ggml_tensor * src0 = dst->src[0];
  7946. assert(params->ith == 0);
  7947. assert(ggml_are_same_shape(src0, dst));
  7948. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7949. return;
  7950. }
  7951. const int n = ggml_nrows(src0);
  7952. const int nc = src0->ne[0];
  7953. assert(dst->nb[0] == sizeof(float));
  7954. assert(src0->nb[0] == sizeof(float));
  7955. for (int i = 0; i < n; i++) {
  7956. ggml_vec_elu_f32(nc,
  7957. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7958. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7959. }
  7960. }
  7961. static void ggml_compute_forward_elu(
  7962. const struct ggml_compute_params * params,
  7963. struct ggml_tensor * dst) {
  7964. const struct ggml_tensor * src0 = dst->src[0];
  7965. switch (src0->type) {
  7966. case GGML_TYPE_F32:
  7967. {
  7968. ggml_compute_forward_elu_f32(params, dst);
  7969. } break;
  7970. default:
  7971. {
  7972. GGML_ASSERT(false);
  7973. } break;
  7974. }
  7975. }
  7976. // ggml_compute_forward_relu
  7977. static void ggml_compute_forward_relu_f32(
  7978. const struct ggml_compute_params * params,
  7979. struct ggml_tensor * dst) {
  7980. const struct ggml_tensor * src0 = dst->src[0];
  7981. assert(params->ith == 0);
  7982. assert(ggml_are_same_shape(src0, dst));
  7983. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7984. return;
  7985. }
  7986. const int n = ggml_nrows(src0);
  7987. const int nc = src0->ne[0];
  7988. assert(dst->nb[0] == sizeof(float));
  7989. assert(src0->nb[0] == sizeof(float));
  7990. for (int i = 0; i < n; i++) {
  7991. ggml_vec_relu_f32(nc,
  7992. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7993. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7994. }
  7995. }
  7996. static void ggml_compute_forward_relu(
  7997. const struct ggml_compute_params * params,
  7998. struct ggml_tensor * dst) {
  7999. const struct ggml_tensor * src0 = dst->src[0];
  8000. switch (src0->type) {
  8001. case GGML_TYPE_F32:
  8002. {
  8003. ggml_compute_forward_relu_f32(params, dst);
  8004. } break;
  8005. default:
  8006. {
  8007. GGML_ASSERT(false);
  8008. } break;
  8009. }
  8010. }
  8011. // ggml_compute_forward_gelu
  8012. static void ggml_compute_forward_gelu_f32(
  8013. const struct ggml_compute_params * params,
  8014. struct ggml_tensor * dst) {
  8015. const struct ggml_tensor * src0 = dst->src[0];
  8016. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8017. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8018. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8019. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8020. return;
  8021. }
  8022. const int ith = params->ith;
  8023. const int nth = params->nth;
  8024. const int nc = src0->ne[0];
  8025. const int nr = ggml_nrows(src0);
  8026. // rows per thread
  8027. const int dr = (nr + nth - 1)/nth;
  8028. // row range for this thread
  8029. const int ir0 = dr*ith;
  8030. const int ir1 = MIN(ir0 + dr, nr);
  8031. for (int i1 = ir0; i1 < ir1; i1++) {
  8032. ggml_vec_gelu_f32(nc,
  8033. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8034. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8035. #ifndef NDEBUG
  8036. for (int k = 0; k < nc; k++) {
  8037. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8038. UNUSED(x);
  8039. assert(!isnan(x));
  8040. assert(!isinf(x));
  8041. }
  8042. #endif
  8043. }
  8044. }
  8045. static void ggml_compute_forward_gelu(
  8046. const struct ggml_compute_params * params,
  8047. struct ggml_tensor * dst) {
  8048. const struct ggml_tensor * src0 = dst->src[0];
  8049. switch (src0->type) {
  8050. case GGML_TYPE_F32:
  8051. {
  8052. ggml_compute_forward_gelu_f32(params, dst);
  8053. } break;
  8054. default:
  8055. {
  8056. GGML_ASSERT(false);
  8057. } break;
  8058. }
  8059. }
  8060. // ggml_compute_forward_gelu_quick
  8061. static void ggml_compute_forward_gelu_quick_f32(
  8062. const struct ggml_compute_params * params,
  8063. struct ggml_tensor * dst) {
  8064. const struct ggml_tensor * src0 = dst->src[0];
  8065. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8066. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8067. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8068. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8069. return;
  8070. }
  8071. const int ith = params->ith;
  8072. const int nth = params->nth;
  8073. const int nc = src0->ne[0];
  8074. const int nr = ggml_nrows(src0);
  8075. // rows per thread
  8076. const int dr = (nr + nth - 1)/nth;
  8077. // row range for this thread
  8078. const int ir0 = dr*ith;
  8079. const int ir1 = MIN(ir0 + dr, nr);
  8080. for (int i1 = ir0; i1 < ir1; i1++) {
  8081. ggml_vec_gelu_quick_f32(nc,
  8082. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8083. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8084. #ifndef NDEBUG
  8085. for (int k = 0; k < nc; k++) {
  8086. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8087. UNUSED(x);
  8088. assert(!isnan(x));
  8089. assert(!isinf(x));
  8090. }
  8091. #endif
  8092. }
  8093. }
  8094. static void ggml_compute_forward_gelu_quick(
  8095. const struct ggml_compute_params * params,
  8096. struct ggml_tensor * dst) {
  8097. const struct ggml_tensor * src0 = dst->src[0];
  8098. switch (src0->type) {
  8099. case GGML_TYPE_F32:
  8100. {
  8101. ggml_compute_forward_gelu_quick_f32(params, dst);
  8102. } break;
  8103. default:
  8104. {
  8105. GGML_ASSERT(false);
  8106. } break;
  8107. }
  8108. }
  8109. // ggml_compute_forward_silu
  8110. static void ggml_compute_forward_silu_f32(
  8111. const struct ggml_compute_params * params,
  8112. struct ggml_tensor * dst) {
  8113. const struct ggml_tensor * src0 = dst->src[0];
  8114. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8115. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8116. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8117. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8118. return;
  8119. }
  8120. const int ith = params->ith;
  8121. const int nth = params->nth;
  8122. const int nc = src0->ne[0];
  8123. const int nr = ggml_nrows(src0);
  8124. // rows per thread
  8125. const int dr = (nr + nth - 1)/nth;
  8126. // row range for this thread
  8127. const int ir0 = dr*ith;
  8128. const int ir1 = MIN(ir0 + dr, nr);
  8129. for (int i1 = ir0; i1 < ir1; i1++) {
  8130. ggml_vec_silu_f32(nc,
  8131. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8132. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8133. #ifndef NDEBUG
  8134. for (int k = 0; k < nc; k++) {
  8135. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8136. UNUSED(x);
  8137. assert(!isnan(x));
  8138. assert(!isinf(x));
  8139. }
  8140. #endif
  8141. }
  8142. }
  8143. static void ggml_compute_forward_silu(
  8144. const struct ggml_compute_params * params,
  8145. struct ggml_tensor * dst) {
  8146. const struct ggml_tensor * src0 = dst->src[0];
  8147. switch (src0->type) {
  8148. case GGML_TYPE_F32:
  8149. {
  8150. ggml_compute_forward_silu_f32(params, dst);
  8151. } break;
  8152. default:
  8153. {
  8154. GGML_ASSERT(false);
  8155. } break;
  8156. }
  8157. }
  8158. // ggml_compute_forward_leaky_relu
  8159. static void ggml_compute_forward_leaky_relu_f32(
  8160. const struct ggml_compute_params * params,
  8161. struct ggml_tensor * dst) {
  8162. const struct ggml_tensor * src0 = dst->src[0];
  8163. assert(params->ith == 0);
  8164. assert(ggml_are_same_shape(src0, dst));
  8165. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8166. return;
  8167. }
  8168. const int n = ggml_nrows(src0);
  8169. const int nc = src0->ne[0];
  8170. float negative_slope;
  8171. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8172. assert(dst->nb[0] == sizeof(float));
  8173. assert(src0->nb[0] == sizeof(float));
  8174. for (int i = 0; i < n; i++) {
  8175. ggml_vec_leaky_relu_f32(nc,
  8176. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8177. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8178. }
  8179. }
  8180. static void ggml_compute_forward_leaky_relu(
  8181. const struct ggml_compute_params * params,
  8182. struct ggml_tensor * dst) {
  8183. const struct ggml_tensor * src0 = dst->src[0];
  8184. switch (src0->type) {
  8185. case GGML_TYPE_F32:
  8186. {
  8187. ggml_compute_forward_leaky_relu_f32(params, dst);
  8188. } break;
  8189. default:
  8190. {
  8191. GGML_ASSERT(false);
  8192. } break;
  8193. }
  8194. }
  8195. // ggml_compute_forward_silu_back
  8196. static void ggml_compute_forward_silu_back_f32(
  8197. const struct ggml_compute_params * params,
  8198. struct ggml_tensor * dst) {
  8199. const struct ggml_tensor * src0 = dst->src[0];
  8200. const struct ggml_tensor * grad = dst->src[1];
  8201. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8202. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8203. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8204. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8205. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8206. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8207. return;
  8208. }
  8209. const int ith = params->ith;
  8210. const int nth = params->nth;
  8211. const int nc = src0->ne[0];
  8212. const int nr = ggml_nrows(src0);
  8213. // rows per thread
  8214. const int dr = (nr + nth - 1)/nth;
  8215. // row range for this thread
  8216. const int ir0 = dr*ith;
  8217. const int ir1 = MIN(ir0 + dr, nr);
  8218. for (int i1 = ir0; i1 < ir1; i1++) {
  8219. ggml_vec_silu_backward_f32(nc,
  8220. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8221. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8222. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8223. #ifndef NDEBUG
  8224. for (int k = 0; k < nc; k++) {
  8225. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8226. UNUSED(x);
  8227. assert(!isnan(x));
  8228. assert(!isinf(x));
  8229. }
  8230. #endif
  8231. }
  8232. }
  8233. static void ggml_compute_forward_silu_back(
  8234. const struct ggml_compute_params * params,
  8235. struct ggml_tensor * dst) {
  8236. const struct ggml_tensor * src0 = dst->src[0];
  8237. switch (src0->type) {
  8238. case GGML_TYPE_F32:
  8239. {
  8240. ggml_compute_forward_silu_back_f32(params, dst);
  8241. } break;
  8242. default:
  8243. {
  8244. GGML_ASSERT(false);
  8245. } break;
  8246. }
  8247. }
  8248. static void ggml_compute_forward_hardswish_f32(
  8249. const struct ggml_compute_params * params,
  8250. struct ggml_tensor * dst) {
  8251. const struct ggml_tensor * src0 = dst->src[0];
  8252. assert(params->ith == 0);
  8253. assert(ggml_are_same_shape(src0, dst));
  8254. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8255. return;
  8256. }
  8257. const int n = ggml_nrows(src0);
  8258. const int nc = src0->ne[0];
  8259. assert(dst->nb[0] == sizeof(float));
  8260. assert(src0->nb[0] == sizeof(float));
  8261. for (int i = 0; i < n; i++) {
  8262. ggml_vec_hardswish_f32(nc,
  8263. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8264. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8265. }
  8266. }
  8267. static void ggml_compute_forward_hardswish(
  8268. const struct ggml_compute_params * params,
  8269. struct ggml_tensor * dst) {
  8270. const struct ggml_tensor * src0 = dst->src[0];
  8271. switch (src0->type) {
  8272. case GGML_TYPE_F32:
  8273. {
  8274. ggml_compute_forward_hardswish_f32(params, dst);
  8275. } break;
  8276. default:
  8277. {
  8278. GGML_ASSERT(false);
  8279. } break;
  8280. }
  8281. }
  8282. static void ggml_compute_forward_hardsigmoid_f32(
  8283. const struct ggml_compute_params * params,
  8284. struct ggml_tensor * dst) {
  8285. const struct ggml_tensor * src0 = dst->src[0];
  8286. assert(params->ith == 0);
  8287. assert(ggml_are_same_shape(src0, dst));
  8288. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8289. return;
  8290. }
  8291. const int n = ggml_nrows(src0);
  8292. const int nc = src0->ne[0];
  8293. assert(dst->nb[0] == sizeof(float));
  8294. assert(src0->nb[0] == sizeof(float));
  8295. for (int i = 0; i < n; i++) {
  8296. ggml_vec_hardsigmoid_f32(nc,
  8297. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8298. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8299. }
  8300. }
  8301. static void ggml_compute_forward_hardsigmoid(
  8302. const struct ggml_compute_params * params,
  8303. struct ggml_tensor * dst) {
  8304. const struct ggml_tensor * src0 = dst->src[0];
  8305. switch (src0->type) {
  8306. case GGML_TYPE_F32:
  8307. {
  8308. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8309. } break;
  8310. default:
  8311. {
  8312. GGML_ASSERT(false);
  8313. } break;
  8314. }
  8315. }
  8316. // ggml_compute_forward_norm
  8317. static void ggml_compute_forward_norm_f32(
  8318. const struct ggml_compute_params * params,
  8319. struct ggml_tensor * dst) {
  8320. const struct ggml_tensor * src0 = dst->src[0];
  8321. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8323. return;
  8324. }
  8325. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8326. const int ith = params->ith;
  8327. const int nth = params->nth;
  8328. GGML_TENSOR_UNARY_OP_LOCALS
  8329. float eps;
  8330. memcpy(&eps, dst->op_params, sizeof(float));
  8331. GGML_ASSERT(eps > 0.0f);
  8332. // TODO: optimize
  8333. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8334. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8335. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8336. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8337. ggml_float sum = 0.0;
  8338. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8339. sum += (ggml_float)x[i00];
  8340. }
  8341. float mean = sum/ne00;
  8342. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8343. ggml_float sum2 = 0.0;
  8344. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8345. float v = x[i00] - mean;
  8346. y[i00] = v;
  8347. sum2 += (ggml_float)(v*v);
  8348. }
  8349. float variance = sum2/ne00;
  8350. const float scale = 1.0f/sqrtf(variance + eps);
  8351. ggml_vec_scale_f32(ne00, y, scale);
  8352. }
  8353. }
  8354. }
  8355. }
  8356. static void ggml_compute_forward_norm(
  8357. const struct ggml_compute_params * params,
  8358. struct ggml_tensor * dst) {
  8359. const struct ggml_tensor * src0 = dst->src[0];
  8360. switch (src0->type) {
  8361. case GGML_TYPE_F32:
  8362. {
  8363. ggml_compute_forward_norm_f32(params, dst);
  8364. } break;
  8365. default:
  8366. {
  8367. GGML_ASSERT(false);
  8368. } break;
  8369. }
  8370. }
  8371. // ggml_compute_forward_group_rms_norm
  8372. static void ggml_compute_forward_rms_norm_f32(
  8373. const struct ggml_compute_params * params,
  8374. struct ggml_tensor * dst) {
  8375. const struct ggml_tensor * src0 = dst->src[0];
  8376. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8377. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8378. return;
  8379. }
  8380. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8381. const int ith = params->ith;
  8382. const int nth = params->nth;
  8383. GGML_TENSOR_UNARY_OP_LOCALS
  8384. float eps;
  8385. memcpy(&eps, dst->op_params, sizeof(float));
  8386. GGML_ASSERT(eps > 0.0f);
  8387. // TODO: optimize
  8388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8390. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8391. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8392. ggml_float sum = 0.0;
  8393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8394. sum += (ggml_float)(x[i00] * x[i00]);
  8395. }
  8396. const float mean = sum/ne00;
  8397. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8398. memcpy(y, x, ne00 * sizeof(float));
  8399. // for (int i00 = 0; i00 < ne00; i00++) {
  8400. // y[i00] = x[i00];
  8401. // }
  8402. const float scale = 1.0f/sqrtf(mean + eps);
  8403. ggml_vec_scale_f32(ne00, y, scale);
  8404. }
  8405. }
  8406. }
  8407. }
  8408. static void ggml_compute_forward_rms_norm(
  8409. const struct ggml_compute_params * params,
  8410. struct ggml_tensor * dst) {
  8411. const struct ggml_tensor * src0 = dst->src[0];
  8412. switch (src0->type) {
  8413. case GGML_TYPE_F32:
  8414. {
  8415. ggml_compute_forward_rms_norm_f32(params, dst);
  8416. } break;
  8417. default:
  8418. {
  8419. GGML_ASSERT(false);
  8420. } break;
  8421. }
  8422. }
  8423. static void ggml_compute_forward_rms_norm_back_f32(
  8424. const struct ggml_compute_params * params,
  8425. struct ggml_tensor * dst) {
  8426. const struct ggml_tensor * src0 = dst->src[0];
  8427. const struct ggml_tensor * src1 = dst->src[1];
  8428. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8429. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8430. return;
  8431. }
  8432. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8433. const int ith = params->ith;
  8434. const int nth = params->nth;
  8435. GGML_TENSOR_BINARY_OP_LOCALS
  8436. float eps;
  8437. memcpy(&eps, dst->op_params, sizeof(float));
  8438. // TODO: optimize
  8439. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8440. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8441. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8442. // src1 is same shape as src0 => same indices
  8443. const int64_t i11 = i01;
  8444. const int64_t i12 = i02;
  8445. const int64_t i13 = i03;
  8446. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8447. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8448. ggml_float sum_xx = 0.0;
  8449. ggml_float sum_xdz = 0.0;
  8450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8451. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8452. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8453. }
  8454. //const float mean = (float)(sum_xx)/ne00;
  8455. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8456. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8457. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8458. // we could cache rms from forward pass to improve performance.
  8459. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8460. //const float rms = sqrtf(mean_eps);
  8461. const float rrms = 1.0f / sqrtf(mean_eps);
  8462. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8463. {
  8464. // z = rms_norm(x)
  8465. //
  8466. // rms_norm(src0) =
  8467. // scale(
  8468. // src0,
  8469. // div(
  8470. // 1,
  8471. // sqrt(
  8472. // add(
  8473. // scale(
  8474. // sum(
  8475. // sqr(
  8476. // src0)),
  8477. // (1.0/N)),
  8478. // eps))));
  8479. // postorder:
  8480. // ## op args grad
  8481. // 00 param src0 grad[#00]
  8482. // 01 const 1
  8483. // 02 sqr (#00) grad[#02]
  8484. // 03 sum (#02) grad[#03]
  8485. // 04 const 1/N
  8486. // 05 scale (#03, #04) grad[#05]
  8487. // 06 const eps
  8488. // 07 add (#05, #06) grad[#07]
  8489. // 08 sqrt (#07) grad[#08]
  8490. // 09 div (#01,#08) grad[#09]
  8491. // 10 scale (#00,#09) grad[#10]
  8492. //
  8493. // backward pass, given grad[#10]
  8494. // #10: scale
  8495. // grad[#00] += scale(grad[#10],#09)
  8496. // grad[#09] += sum(mul(grad[#10],#00))
  8497. // #09: div
  8498. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8499. // #08: sqrt
  8500. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8501. // #07: add
  8502. // grad[#05] += grad[#07]
  8503. // #05: scale
  8504. // grad[#03] += scale(grad[#05],#04)
  8505. // #03: sum
  8506. // grad[#02] += repeat(grad[#03], #02)
  8507. // #02:
  8508. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8509. //
  8510. // substitute and simplify:
  8511. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8512. // grad[#02] = repeat(grad[#03], #02)
  8513. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8514. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8515. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8516. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8517. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8518. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8519. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8520. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8521. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8522. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8523. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8524. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8525. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8526. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8527. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8528. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8529. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8530. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8531. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8532. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8533. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8534. // a = b*c + d*e
  8535. // a = b*c*f/f + d*e*f/f
  8536. // a = (b*c*f + d*e*f)*(1/f)
  8537. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8538. // a = (b + d*e/c)*c
  8539. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8540. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8541. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8542. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8543. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8544. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8545. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8546. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8547. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8548. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8549. }
  8550. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8551. // post-order:
  8552. // dx := x
  8553. // dx := scale(dx,-mean_xdz/mean_eps)
  8554. // dx := add(dx, dz)
  8555. // dx := scale(dx, rrms)
  8556. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8557. ggml_vec_cpy_f32 (ne00, dx, x);
  8558. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8559. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8560. ggml_vec_acc_f32 (ne00, dx, dz);
  8561. ggml_vec_scale_f32(ne00, dx, rrms);
  8562. }
  8563. }
  8564. }
  8565. }
  8566. static void ggml_compute_forward_rms_norm_back(
  8567. const struct ggml_compute_params * params,
  8568. struct ggml_tensor * dst) {
  8569. const struct ggml_tensor * src0 = dst->src[0];
  8570. switch (src0->type) {
  8571. case GGML_TYPE_F32:
  8572. {
  8573. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8574. } break;
  8575. default:
  8576. {
  8577. GGML_ASSERT(false);
  8578. } break;
  8579. }
  8580. }
  8581. // ggml_compute_forward_group_norm
  8582. static void ggml_compute_forward_group_norm_f32(
  8583. const struct ggml_compute_params * params,
  8584. struct ggml_tensor * dst) {
  8585. const struct ggml_tensor * src0 = dst->src[0];
  8586. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8587. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8588. return;
  8589. }
  8590. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8591. const int ith = params->ith;
  8592. const int nth = params->nth;
  8593. GGML_TENSOR_UNARY_OP_LOCALS
  8594. const float eps = 1e-6f; // TODO: make this a parameter
  8595. // TODO: optimize
  8596. int n_channels = src0->ne[2];
  8597. int n_groups = dst->op_params[0];
  8598. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8599. for (int i = ith; i < n_groups; i += nth) {
  8600. int start = i * n_channels_per_group;
  8601. int end = start + n_channels_per_group;
  8602. if (end > n_channels) {
  8603. end = n_channels;
  8604. }
  8605. int step = end - start;
  8606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8607. ggml_float sum = 0.0;
  8608. for (int64_t i02 = start; i02 < end; i02++) {
  8609. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8610. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8611. ggml_float sumr = 0.0;
  8612. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8613. sumr += (ggml_float)x[i00];
  8614. }
  8615. sum += sumr;
  8616. }
  8617. }
  8618. const float mean = sum / (ne00 * ne01 * step);
  8619. ggml_float sum2 = 0.0;
  8620. for (int64_t i02 = start; i02 < end; i02++) {
  8621. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8622. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8623. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8624. ggml_float sumr = 0.0;
  8625. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8626. float v = x[i00] - mean;
  8627. y[i00] = v;
  8628. sumr += (ggml_float)(v * v);
  8629. }
  8630. sum2 += sumr;
  8631. }
  8632. }
  8633. const float variance = sum2 / (ne00 * ne01 * step);
  8634. const float scale = 1.0f / sqrtf(variance + eps);
  8635. for (int64_t i02 = start; i02 < end; i02++) {
  8636. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8637. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8638. ggml_vec_scale_f32(ne00, y, scale);
  8639. }
  8640. }
  8641. }
  8642. }
  8643. }
  8644. static void ggml_compute_forward_group_norm(
  8645. const struct ggml_compute_params * params,
  8646. struct ggml_tensor * dst) {
  8647. const struct ggml_tensor * src0 = dst->src[0];
  8648. switch (src0->type) {
  8649. case GGML_TYPE_F32:
  8650. {
  8651. ggml_compute_forward_group_norm_f32(params, dst);
  8652. } break;
  8653. default:
  8654. {
  8655. GGML_ASSERT(false);
  8656. } break;
  8657. }
  8658. }
  8659. // ggml_compute_forward_mul_mat
  8660. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8661. // helper function to determine if it is better to use BLAS or not
  8662. // for large matrices, BLAS is faster
  8663. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8664. const struct ggml_tensor * src0 = dst->src[0];
  8665. const struct ggml_tensor * src1 = dst->src[1];
  8666. //const int64_t ne00 = src0->ne[0];
  8667. //const int64_t ne01 = src0->ne[1];
  8668. const int64_t ne10 = src1->ne[0];
  8669. const int64_t ne0 = dst->ne[0];
  8670. const int64_t ne1 = dst->ne[1];
  8671. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8672. // all the experts for each batch element and the processing would become incredibly slow
  8673. // TODO: find the optimal values for these
  8674. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8675. ggml_is_contiguous(src0) &&
  8676. ggml_is_contiguous(src1) &&
  8677. //src0->type == GGML_TYPE_F32 &&
  8678. src1->type == GGML_TYPE_F32 &&
  8679. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8680. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8681. return true;
  8682. }
  8683. return false;
  8684. }
  8685. #endif
  8686. static void ggml_compute_forward_mul_mat(
  8687. const struct ggml_compute_params * params,
  8688. struct ggml_tensor * dst) {
  8689. const struct ggml_tensor * src0 = dst->src[0];
  8690. const struct ggml_tensor * src1 = dst->src[1];
  8691. int64_t t0 = ggml_perf_time_us();
  8692. UNUSED(t0);
  8693. GGML_TENSOR_BINARY_OP_LOCALS
  8694. const int ith = params->ith;
  8695. const int nth = params->nth;
  8696. const enum ggml_type type = src0->type;
  8697. const bool src1_cont = ggml_is_contiguous(src1);
  8698. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8699. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8700. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8701. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8702. GGML_ASSERT(ne0 == ne01);
  8703. GGML_ASSERT(ne1 == ne11);
  8704. GGML_ASSERT(ne2 == ne12);
  8705. GGML_ASSERT(ne3 == ne13);
  8706. // we don't support permuted src0 or src1
  8707. GGML_ASSERT(nb00 == ggml_type_size(type));
  8708. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8709. // dst cannot be transposed or permuted
  8710. GGML_ASSERT(nb0 == sizeof(float));
  8711. GGML_ASSERT(nb0 <= nb1);
  8712. GGML_ASSERT(nb1 <= nb2);
  8713. GGML_ASSERT(nb2 <= nb3);
  8714. // broadcast factors
  8715. const int64_t r2 = ne12/ne02;
  8716. const int64_t r3 = ne13/ne03;
  8717. // nb01 >= nb00 - src0 is not transposed
  8718. // compute by src0 rows
  8719. #if defined(GGML_USE_CLBLAST)
  8720. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8721. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8722. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8723. }
  8724. return;
  8725. }
  8726. #endif
  8727. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8728. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8729. const int64_t ne_plane = ne01*ne00;
  8730. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8731. UNUSED(desired_wsize);
  8732. if (params->type == GGML_TASK_TYPE_INIT) {
  8733. if (type != GGML_TYPE_F32) {
  8734. assert(params->wsize >= desired_wsize);
  8735. // parallelize by src0 rows
  8736. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8737. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8738. // broadcast src0 into src1 across 2nd,3rd dimension
  8739. const int64_t i03 = i13/r3;
  8740. const int64_t i02 = i12/r2;
  8741. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8742. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8743. ggml_to_float_t const to_float = type_traits[type].to_float;
  8744. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8745. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8746. }
  8747. }
  8748. }
  8749. }
  8750. return;
  8751. }
  8752. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8753. return;
  8754. }
  8755. // perform sgemm, parallelization controlled by blas lib
  8756. if (ith != 0) {
  8757. return;
  8758. }
  8759. //const int64_t tgemm0 = ggml_perf_time_us();
  8760. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8761. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8762. const int64_t i03 = i13/r3;
  8763. const int64_t i02 = i12/r2;
  8764. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8765. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8766. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8767. if (type != GGML_TYPE_F32) {
  8768. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8769. }
  8770. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8771. ne1, ne01, ne10,
  8772. 1.0f, y, ne10,
  8773. x, ne00,
  8774. 0.0f, d, ne01);
  8775. }
  8776. }
  8777. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8778. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8779. return;
  8780. }
  8781. #endif
  8782. if (params->type == GGML_TASK_TYPE_INIT) {
  8783. if (ith != 0) {
  8784. return;
  8785. }
  8786. if (src1->type != vec_dot_type) {
  8787. char * wdata = params->wdata;
  8788. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8789. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8790. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8791. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8792. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8793. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8794. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8795. wdata += row_size;
  8796. }
  8797. }
  8798. }
  8799. }
  8800. return;
  8801. }
  8802. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8803. return;
  8804. }
  8805. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8806. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8807. const int64_t nr0 = ne01; // src0 rows
  8808. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8809. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8810. // distribute the thread work across the inner or outer loop based on which one is larger
  8811. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8812. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8813. const int64_t ith0 = ith % nth0;
  8814. const int64_t ith1 = ith / nth0;
  8815. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8816. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8817. const int64_t ir010 = dr0*ith0;
  8818. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8819. const int64_t ir110 = dr1*ith1;
  8820. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8821. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8822. // threads with no work simply yield (not sure if it helps)
  8823. if (ir010 >= ir011 || ir110 >= ir111) {
  8824. sched_yield();
  8825. return;
  8826. }
  8827. assert(ne12 % ne02 == 0);
  8828. assert(ne13 % ne03 == 0);
  8829. // block-tiling attempt
  8830. const int64_t blck_0 = 16;
  8831. const int64_t blck_1 = 16;
  8832. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8833. int64_t nrc = vec_dot_num_rows;
  8834. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8835. // this check can be removed once they are extended to support odd numbered rows/cols too
  8836. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8837. nrc = 1;
  8838. }
  8839. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8840. // attempt to reduce false-sharing (does not seem to make a difference)
  8841. // 16 * 2, accounting for mmla kernels
  8842. float tmp[32];
  8843. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8844. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8845. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8846. const int64_t i13 = (ir1/(ne12*ne1));
  8847. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8848. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8849. // broadcast src0 into src1
  8850. const int64_t i03 = i13/r3;
  8851. const int64_t i02 = i12/r2;
  8852. const int64_t i1 = i11;
  8853. const int64_t i2 = i12;
  8854. const int64_t i3 = i13;
  8855. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8856. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8857. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8858. // the original src1 data pointer, so we should index using the indices directly
  8859. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8860. const char * src1_col = (const char *) wdata +
  8861. (src1_cont || src1->type != vec_dot_type
  8862. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8863. : (i11*nb11 + i12*nb12 + i13*nb13));
  8864. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8865. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8866. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8867. //}
  8868. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8869. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8870. }
  8871. for (int cn = 0; cn < nrc; ++cn) {
  8872. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8873. }
  8874. }
  8875. }
  8876. }
  8877. }
  8878. // ggml_compute_forward_mul_mat_id
  8879. static void ggml_compute_forward_mul_mat_id(
  8880. const struct ggml_compute_params * params,
  8881. struct ggml_tensor * dst) {
  8882. const struct ggml_tensor * ids = dst->src[0];
  8883. const struct ggml_tensor * src1 = dst->src[1];
  8884. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8885. GGML_TENSOR_BINARY_OP_LOCALS
  8886. const int ith = params->ith;
  8887. const int nth = params->nth;
  8888. const enum ggml_type type = src0->type;
  8889. const bool src1_cont = ggml_is_contiguous(src1);
  8890. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8891. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8892. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8893. GGML_ASSERT(ne0 == ne01);
  8894. GGML_ASSERT(ne1 == ne11);
  8895. GGML_ASSERT(ne2 == ne12);
  8896. GGML_ASSERT(ne3 == ne13);
  8897. // we don't support permuted src0 or src1
  8898. GGML_ASSERT(nb00 == ggml_type_size(type));
  8899. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8900. // dst cannot be transposed or permuted
  8901. GGML_ASSERT(nb0 == sizeof(float));
  8902. GGML_ASSERT(nb0 <= nb1);
  8903. GGML_ASSERT(nb1 <= nb2);
  8904. GGML_ASSERT(nb2 <= nb3);
  8905. // broadcast factors
  8906. const int64_t r2 = ne12/ne02;
  8907. const int64_t r3 = ne13/ne03;
  8908. // row groups
  8909. const int id = ggml_get_op_params_i32(dst, 0);
  8910. const int n_as = ggml_get_op_params_i32(dst, 1);
  8911. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8912. (char *) params->wdata :
  8913. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8914. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8915. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8916. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8917. if (params->type == GGML_TASK_TYPE_INIT) {
  8918. if (ith != 0) {
  8919. return;
  8920. }
  8921. char * wdata = params->wdata;
  8922. if (src1->type != vec_dot_type) {
  8923. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8924. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8925. assert(src1->type == GGML_TYPE_F32);
  8926. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8927. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8928. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8929. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8930. wdata += row_size;
  8931. }
  8932. }
  8933. }
  8934. }
  8935. // initialize matrix_row_counts
  8936. GGML_ASSERT(wdata == wdata_src1_end);
  8937. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8938. // group rows by src0 matrix
  8939. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8940. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8941. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8942. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8943. matrix_row_counts[row_id] += 1;
  8944. }
  8945. return;
  8946. }
  8947. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8948. return;
  8949. }
  8950. // compute each matrix multiplication in sequence
  8951. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8952. const int64_t cne1 = matrix_row_counts[cur_a];
  8953. if (cne1 == 0) {
  8954. continue;
  8955. }
  8956. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8957. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8958. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8959. const int64_t nr0 = ne01; // src0 rows
  8960. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8961. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8962. // distribute the thread work across the inner or outer loop based on which one is larger
  8963. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8964. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8965. const int64_t ith0 = ith % nth0;
  8966. const int64_t ith1 = ith / nth0;
  8967. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8968. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8969. const int64_t ir010 = dr0*ith0;
  8970. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8971. const int64_t ir110 = dr1*ith1;
  8972. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8973. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8974. // threads with no work simply yield (not sure if it helps)
  8975. if (ir010 >= ir011 || ir110 >= ir111) {
  8976. sched_yield();
  8977. continue;
  8978. }
  8979. assert(ne12 % ne02 == 0);
  8980. assert(ne13 % ne03 == 0);
  8981. // block-tiling attempt
  8982. const int64_t blck_0 = 16;
  8983. const int64_t blck_1 = 16;
  8984. // attempt to reduce false-sharing (does not seem to make a difference)
  8985. float tmp[16];
  8986. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8987. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8988. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8989. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8990. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8991. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8992. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8993. // broadcast src0 into src1
  8994. const int64_t i03 = i13/r3;
  8995. const int64_t i02 = i12/r2;
  8996. const int64_t i1 = i11;
  8997. const int64_t i2 = i12;
  8998. const int64_t i3 = i13;
  8999. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  9000. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9001. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9002. // the original src1 data pointer, so we should index using the indices directly
  9003. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9004. const char * src1_col = (const char *) wdata +
  9005. (src1_cont || src1->type != vec_dot_type
  9006. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9007. : (i11*nb11 + i12*nb12 + i13*nb13));
  9008. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9009. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9010. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9011. //}
  9012. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9013. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9014. }
  9015. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9016. }
  9017. }
  9018. }
  9019. }
  9020. #undef MMID_MATRIX_ROW
  9021. }
  9022. // ggml_compute_forward_out_prod
  9023. static void ggml_compute_forward_out_prod_f32(
  9024. const struct ggml_compute_params * params,
  9025. struct ggml_tensor * dst) {
  9026. const struct ggml_tensor * src0 = dst->src[0];
  9027. const struct ggml_tensor * src1 = dst->src[1];
  9028. // int64_t t0 = ggml_perf_time_us();
  9029. // UNUSED(t0);
  9030. GGML_TENSOR_BINARY_OP_LOCALS
  9031. const int ith = params->ith;
  9032. const int nth = params->nth;
  9033. GGML_ASSERT(ne0 == ne00);
  9034. GGML_ASSERT(ne1 == ne10);
  9035. GGML_ASSERT(ne2 == ne02);
  9036. GGML_ASSERT(ne02 == ne12);
  9037. GGML_ASSERT(ne3 == ne13);
  9038. GGML_ASSERT(ne03 == ne13);
  9039. // we don't support permuted src0 or src1
  9040. GGML_ASSERT(nb00 == sizeof(float));
  9041. // dst cannot be transposed or permuted
  9042. GGML_ASSERT(nb0 == sizeof(float));
  9043. // GGML_ASSERT(nb0 <= nb1);
  9044. // GGML_ASSERT(nb1 <= nb2);
  9045. // GGML_ASSERT(nb2 <= nb3);
  9046. // nb01 >= nb00 - src0 is not transposed
  9047. // compute by src0 rows
  9048. // TODO: #if defined(GGML_USE_CLBLAST)
  9049. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9050. bool use_blas = ggml_is_matrix(src0) &&
  9051. ggml_is_matrix(src1) &&
  9052. ggml_is_contiguous(src0) &&
  9053. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9054. #endif
  9055. if (params->type == GGML_TASK_TYPE_INIT) {
  9056. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9057. if (use_blas) {
  9058. return;
  9059. }
  9060. #endif
  9061. if (ith != 0) {
  9062. return;
  9063. }
  9064. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9065. return;
  9066. }
  9067. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9068. return;
  9069. }
  9070. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9071. if (use_blas) {
  9072. if (params->ith != 0) { // All threads other than the first do no work.
  9073. return;
  9074. }
  9075. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9076. // src0: (k,n)
  9077. // src1: (k,m)
  9078. // dst: (m,n)
  9079. //
  9080. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9081. // Also expressed as (major,minor)
  9082. // a: (m,k): so src1 transposed
  9083. // b: (k,n): so src0
  9084. // c: (m,n)
  9085. //
  9086. // However, if ggml_is_transposed(src1) is true, then
  9087. // src1->data already contains a transposed version, so sgemm mustn't
  9088. // transpose it further.
  9089. int n = src0->ne[0];
  9090. int k = src0->ne[1];
  9091. int m = src1->ne[0];
  9092. int transposeA, lda;
  9093. if (!ggml_is_transposed(src1)) {
  9094. transposeA = CblasTrans;
  9095. lda = m;
  9096. } else {
  9097. transposeA = CblasNoTrans;
  9098. lda = k;
  9099. }
  9100. float * a = (float *) ((char *) src1->data);
  9101. float * b = (float *) ((char *) src0->data);
  9102. float * c = (float *) ((char *) dst->data);
  9103. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9104. return;
  9105. }
  9106. #endif
  9107. // dst[:,:,:,:] = 0
  9108. // for i2,i3:
  9109. // for i1:
  9110. // for i01:
  9111. // for i0:
  9112. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9113. // parallelize by last three dimensions
  9114. // total rows in dst
  9115. const int64_t nr = ne1*ne2*ne3;
  9116. // rows per thread
  9117. const int64_t dr = (nr + nth - 1)/nth;
  9118. // row range for this thread
  9119. const int64_t ir0 = dr*ith;
  9120. const int64_t ir1 = MIN(ir0 + dr, nr);
  9121. // block-tiling attempt
  9122. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9123. const int64_t blck_1 = 16;
  9124. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9125. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9126. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9127. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9128. for (int64_t ir = bir; ir < bir1; ++ir) {
  9129. // dst indices
  9130. const int64_t i3 = ir/(ne2*ne1);
  9131. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9132. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9133. const int64_t i02 = i2;
  9134. const int64_t i03 = i3;
  9135. //const int64_t i10 = i1;
  9136. const int64_t i12 = i2;
  9137. const int64_t i13 = i3;
  9138. #if GGML_VEC_MAD_UNROLL > 2
  9139. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9140. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9141. const int64_t i11 = i01;
  9142. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9143. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9144. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9145. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9146. }
  9147. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9148. const int64_t i11 = i01;
  9149. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9150. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9151. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9152. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9153. }
  9154. #else
  9155. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9156. const int64_t i11 = i01;
  9157. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9158. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9159. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9160. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9161. }
  9162. #endif
  9163. }
  9164. }
  9165. }
  9166. //int64_t t1 = ggml_perf_time_us();
  9167. //static int64_t acc = 0;
  9168. //acc += t1 - t0;
  9169. //if (t1 - t0 > 10) {
  9170. // printf("\n");
  9171. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9172. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9173. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9174. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9175. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9176. //}
  9177. }
  9178. static void ggml_compute_forward_out_prod_q_f32(
  9179. const struct ggml_compute_params * params,
  9180. struct ggml_tensor * dst) {
  9181. const struct ggml_tensor * src0 = dst->src[0];
  9182. const struct ggml_tensor * src1 = dst->src[1];
  9183. // int64_t t0 = ggml_perf_time_us();
  9184. // UNUSED(t0);
  9185. GGML_TENSOR_BINARY_OP_LOCALS;
  9186. const int ith = params->ith;
  9187. const int nth = params->nth;
  9188. const enum ggml_type type = src0->type;
  9189. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9190. GGML_ASSERT(ne02 == ne12);
  9191. GGML_ASSERT(ne03 == ne13);
  9192. GGML_ASSERT(ne2 == ne12);
  9193. GGML_ASSERT(ne3 == ne13);
  9194. // we don't support permuted src0 dim0
  9195. GGML_ASSERT(nb00 == ggml_type_size(type));
  9196. // dst dim0 cannot be transposed or permuted
  9197. GGML_ASSERT(nb0 == sizeof(float));
  9198. // GGML_ASSERT(nb0 <= nb1);
  9199. // GGML_ASSERT(nb1 <= nb2);
  9200. // GGML_ASSERT(nb2 <= nb3);
  9201. GGML_ASSERT(ne0 == ne00);
  9202. GGML_ASSERT(ne1 == ne10);
  9203. GGML_ASSERT(ne2 == ne02);
  9204. GGML_ASSERT(ne3 == ne03);
  9205. // nb01 >= nb00 - src0 is not transposed
  9206. // compute by src0 rows
  9207. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9208. if (params->type == GGML_TASK_TYPE_INIT) {
  9209. if (ith != 0) {
  9210. return;
  9211. }
  9212. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9213. return;
  9214. }
  9215. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9216. return;
  9217. }
  9218. // parallelize by last three dimensions
  9219. // total rows in dst
  9220. const int64_t nr = ne1*ne2*ne3;
  9221. // rows per thread
  9222. const int64_t dr = (nr + nth - 1)/nth;
  9223. // row range for this thread
  9224. const int64_t ir0 = dr*ith;
  9225. const int64_t ir1 = MIN(ir0 + dr, nr);
  9226. // dst[:,:,:,:] = 0
  9227. // for i2,i3:
  9228. // for i1:
  9229. // for i01:
  9230. // for i0:
  9231. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9232. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9233. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9234. // dst indices
  9235. const int64_t i3 = ir/(ne2*ne1);
  9236. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9237. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9238. const int64_t i02 = i2;
  9239. const int64_t i03 = i3;
  9240. //const int64_t i10 = i1;
  9241. const int64_t i12 = i2;
  9242. const int64_t i13 = i3;
  9243. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9244. const int64_t i11 = i01;
  9245. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9246. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9247. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9248. dequantize_row_q(s0, wdata, ne0);
  9249. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9250. }
  9251. }
  9252. //int64_t t1 = ggml_perf_time_us();
  9253. //static int64_t acc = 0;
  9254. //acc += t1 - t0;
  9255. //if (t1 - t0 > 10) {
  9256. // printf("\n");
  9257. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9258. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9259. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9260. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9261. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9262. //}
  9263. }
  9264. static void ggml_compute_forward_out_prod(
  9265. const struct ggml_compute_params * params,
  9266. struct ggml_tensor * dst) {
  9267. const struct ggml_tensor * src0 = dst->src[0];
  9268. switch (src0->type) {
  9269. case GGML_TYPE_Q4_0:
  9270. case GGML_TYPE_Q4_1:
  9271. case GGML_TYPE_Q5_0:
  9272. case GGML_TYPE_Q5_1:
  9273. case GGML_TYPE_Q8_0:
  9274. case GGML_TYPE_Q2_K:
  9275. case GGML_TYPE_Q3_K:
  9276. case GGML_TYPE_Q4_K:
  9277. case GGML_TYPE_Q5_K:
  9278. case GGML_TYPE_Q6_K:
  9279. case GGML_TYPE_IQ2_XXS:
  9280. case GGML_TYPE_IQ2_XS:
  9281. case GGML_TYPE_IQ3_XXS:
  9282. case GGML_TYPE_IQ1_S:
  9283. case GGML_TYPE_IQ4_NL:
  9284. case GGML_TYPE_IQ4_XS:
  9285. case GGML_TYPE_IQ3_S:
  9286. case GGML_TYPE_IQ2_S:
  9287. {
  9288. ggml_compute_forward_out_prod_q_f32(params, dst);
  9289. } break;
  9290. case GGML_TYPE_F16:
  9291. {
  9292. GGML_ASSERT(false); // todo
  9293. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9294. } break;
  9295. case GGML_TYPE_F32:
  9296. {
  9297. ggml_compute_forward_out_prod_f32(params, dst);
  9298. } break;
  9299. default:
  9300. {
  9301. GGML_ASSERT(false);
  9302. } break;
  9303. }
  9304. }
  9305. // ggml_compute_forward_scale
  9306. static void ggml_compute_forward_scale_f32(
  9307. const struct ggml_compute_params * params,
  9308. struct ggml_tensor * dst) {
  9309. const struct ggml_tensor * src0 = dst->src[0];
  9310. GGML_ASSERT(ggml_is_contiguous(src0));
  9311. GGML_ASSERT(ggml_is_contiguous(dst));
  9312. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9313. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9314. return;
  9315. }
  9316. // scale factor
  9317. float v;
  9318. memcpy(&v, dst->op_params, sizeof(float));
  9319. const int ith = params->ith;
  9320. const int nth = params->nth;
  9321. const int nc = src0->ne[0];
  9322. const int nr = ggml_nrows(src0);
  9323. // rows per thread
  9324. const int dr = (nr + nth - 1)/nth;
  9325. // row range for this thread
  9326. const int ir0 = dr*ith;
  9327. const int ir1 = MIN(ir0 + dr, nr);
  9328. const size_t nb01 = src0->nb[1];
  9329. const size_t nb1 = dst->nb[1];
  9330. for (int i1 = ir0; i1 < ir1; i1++) {
  9331. if (dst->data != src0->data) {
  9332. // src0 is same shape as dst => same indices
  9333. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9334. }
  9335. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9336. }
  9337. }
  9338. static void ggml_compute_forward_scale(
  9339. const struct ggml_compute_params * params,
  9340. struct ggml_tensor * dst) {
  9341. const struct ggml_tensor * src0 = dst->src[0];
  9342. switch (src0->type) {
  9343. case GGML_TYPE_F32:
  9344. {
  9345. ggml_compute_forward_scale_f32(params, dst);
  9346. } break;
  9347. default:
  9348. {
  9349. GGML_ASSERT(false);
  9350. } break;
  9351. }
  9352. }
  9353. // ggml_compute_forward_set
  9354. static void ggml_compute_forward_set_f32(
  9355. const struct ggml_compute_params * params,
  9356. struct ggml_tensor * dst) {
  9357. const struct ggml_tensor * src0 = dst->src[0];
  9358. const struct ggml_tensor * src1 = dst->src[1];
  9359. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9360. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9361. // view src0 and dst with these strides and data offset inbytes during set
  9362. // nb0 is implicitly element_size because src0 and dst are contiguous
  9363. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9364. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9365. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9366. size_t offset = ((int32_t *) dst->op_params)[3];
  9367. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9368. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9369. if (params->ith != 0) {
  9370. return;
  9371. }
  9372. // memcpy needs to be synchronized across threads to avoid race conditions.
  9373. // => do it in INIT phase
  9374. memcpy(
  9375. ((char *) dst->data),
  9376. ((char *) src0->data),
  9377. ggml_nbytes(dst));
  9378. }
  9379. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9380. return;
  9381. }
  9382. const int ith = params->ith;
  9383. const int nth = params->nth;
  9384. const int nr = ggml_nrows(src1);
  9385. const int nc = src1->ne[0];
  9386. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9387. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9388. // src0 and dst as viewed during set
  9389. const size_t nb0 = ggml_element_size(src0);
  9390. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9391. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9392. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9393. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9394. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9395. GGML_ASSERT(nb10 == sizeof(float));
  9396. // rows per thread
  9397. const int dr = (nr + nth - 1)/nth;
  9398. // row range for this thread
  9399. const int ir0 = dr*ith;
  9400. const int ir1 = MIN(ir0 + dr, nr);
  9401. for (int ir = ir0; ir < ir1; ++ir) {
  9402. // src0 and dst are viewed with shape of src1 and offset
  9403. // => same indices
  9404. const int i3 = ir/(ne12*ne11);
  9405. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9406. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9407. ggml_vec_cpy_f32(nc,
  9408. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9409. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9410. }
  9411. }
  9412. static void ggml_compute_forward_set(
  9413. const struct ggml_compute_params * params,
  9414. struct ggml_tensor * dst) {
  9415. const struct ggml_tensor * src0 = dst->src[0];
  9416. switch (src0->type) {
  9417. case GGML_TYPE_F32:
  9418. {
  9419. ggml_compute_forward_set_f32(params, dst);
  9420. } break;
  9421. case GGML_TYPE_F16:
  9422. case GGML_TYPE_Q4_0:
  9423. case GGML_TYPE_Q4_1:
  9424. case GGML_TYPE_Q5_0:
  9425. case GGML_TYPE_Q5_1:
  9426. case GGML_TYPE_Q8_0:
  9427. case GGML_TYPE_Q8_1:
  9428. case GGML_TYPE_Q2_K:
  9429. case GGML_TYPE_Q3_K:
  9430. case GGML_TYPE_Q4_K:
  9431. case GGML_TYPE_Q5_K:
  9432. case GGML_TYPE_Q6_K:
  9433. case GGML_TYPE_IQ2_XXS:
  9434. case GGML_TYPE_IQ2_XS:
  9435. case GGML_TYPE_IQ3_XXS:
  9436. case GGML_TYPE_IQ1_S:
  9437. case GGML_TYPE_IQ4_NL:
  9438. case GGML_TYPE_IQ4_XS:
  9439. case GGML_TYPE_IQ3_S:
  9440. case GGML_TYPE_IQ2_S:
  9441. default:
  9442. {
  9443. GGML_ASSERT(false);
  9444. } break;
  9445. }
  9446. }
  9447. // ggml_compute_forward_cpy
  9448. static void ggml_compute_forward_cpy(
  9449. const struct ggml_compute_params * params,
  9450. struct ggml_tensor * dst) {
  9451. ggml_compute_forward_dup(params, dst);
  9452. }
  9453. // ggml_compute_forward_cont
  9454. static void ggml_compute_forward_cont(
  9455. const struct ggml_compute_params * params,
  9456. struct ggml_tensor * dst) {
  9457. ggml_compute_forward_dup(params, dst);
  9458. }
  9459. // ggml_compute_forward_reshape
  9460. static void ggml_compute_forward_reshape(
  9461. const struct ggml_compute_params * params,
  9462. struct ggml_tensor * dst) {
  9463. // NOP
  9464. UNUSED(params);
  9465. UNUSED(dst);
  9466. }
  9467. // ggml_compute_forward_view
  9468. static void ggml_compute_forward_view(
  9469. const struct ggml_compute_params * params,
  9470. const struct ggml_tensor * dst) {
  9471. // NOP
  9472. UNUSED(params);
  9473. UNUSED(dst);
  9474. }
  9475. // ggml_compute_forward_permute
  9476. static void ggml_compute_forward_permute(
  9477. const struct ggml_compute_params * params,
  9478. const struct ggml_tensor * dst) {
  9479. // NOP
  9480. UNUSED(params);
  9481. UNUSED(dst);
  9482. }
  9483. // ggml_compute_forward_transpose
  9484. static void ggml_compute_forward_transpose(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * dst) {
  9487. // NOP
  9488. UNUSED(params);
  9489. UNUSED(dst);
  9490. }
  9491. // ggml_compute_forward_get_rows
  9492. static void ggml_compute_forward_get_rows_q(
  9493. const struct ggml_compute_params * params,
  9494. struct ggml_tensor * dst) {
  9495. const struct ggml_tensor * src0 = dst->src[0];
  9496. const struct ggml_tensor * src1 = dst->src[1];
  9497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9498. return;
  9499. }
  9500. GGML_TENSOR_BINARY_OP_LOCALS
  9501. const int64_t nc = ne00;
  9502. const int64_t nr = ggml_nelements(src1);
  9503. const enum ggml_type type = src0->type;
  9504. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9505. assert(ne0 == nc);
  9506. assert(ne02 == ne11);
  9507. assert(nb00 == ggml_type_size(type));
  9508. assert(ggml_nrows(dst) == nr);
  9509. const int ith = params->ith;
  9510. const int nth = params->nth;
  9511. // rows per thread
  9512. const int dr = (nr + nth - 1)/nth;
  9513. // row range for this thread
  9514. const int ir0 = dr*ith;
  9515. const int ir1 = MIN(ir0 + dr, nr);
  9516. for (int64_t i = ir0; i < ir1; ++i) {
  9517. const int64_t i12 = i/(ne11*ne10);
  9518. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9519. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9520. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9521. dequantize_row_q(
  9522. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9523. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9524. }
  9525. }
  9526. static void ggml_compute_forward_get_rows_f16(
  9527. const struct ggml_compute_params * params,
  9528. struct ggml_tensor * dst) {
  9529. const struct ggml_tensor * src0 = dst->src[0];
  9530. const struct ggml_tensor * src1 = dst->src[1];
  9531. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9532. return;
  9533. }
  9534. GGML_TENSOR_BINARY_OP_LOCALS
  9535. const int64_t nc = ne00;
  9536. const int64_t nr = ggml_nelements(src1);
  9537. assert(ne0 == nc);
  9538. assert(ne02 == ne11);
  9539. assert(nb00 == sizeof(ggml_fp16_t));
  9540. assert(ggml_nrows(dst) == nr);
  9541. const int ith = params->ith;
  9542. const int nth = params->nth;
  9543. // rows per thread
  9544. const int dr = (nr + nth - 1)/nth;
  9545. // row range for this thread
  9546. const int ir0 = dr*ith;
  9547. const int ir1 = MIN(ir0 + dr, nr);
  9548. for (int64_t i = ir0; i < ir1; ++i) {
  9549. const int64_t i12 = i/(ne11*ne10);
  9550. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9551. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9552. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9553. ggml_fp16_to_fp32_row(
  9554. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9555. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9556. }
  9557. }
  9558. static void ggml_compute_forward_get_rows_f32(
  9559. const struct ggml_compute_params * params,
  9560. struct ggml_tensor * dst) {
  9561. const struct ggml_tensor * src0 = dst->src[0];
  9562. const struct ggml_tensor * src1 = dst->src[1];
  9563. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9564. return;
  9565. }
  9566. GGML_TENSOR_BINARY_OP_LOCALS
  9567. const int64_t nc = ne00;
  9568. const int64_t nr = ggml_nelements(src1);
  9569. assert(ne0 == nc);
  9570. assert(ne02 == ne11);
  9571. assert(nb00 == sizeof(float));
  9572. assert(ggml_nrows(dst) == nr);
  9573. const int ith = params->ith;
  9574. const int nth = params->nth;
  9575. // rows per thread
  9576. const int dr = (nr + nth - 1)/nth;
  9577. // row range for this thread
  9578. const int ir0 = dr*ith;
  9579. const int ir1 = MIN(ir0 + dr, nr);
  9580. for (int64_t i = ir0; i < ir1; ++i) {
  9581. const int64_t i12 = i/(ne11*ne10);
  9582. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9583. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9584. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9585. ggml_vec_cpy_f32(nc,
  9586. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9587. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9588. }
  9589. }
  9590. static void ggml_compute_forward_get_rows(
  9591. const struct ggml_compute_params * params,
  9592. struct ggml_tensor * dst) {
  9593. const struct ggml_tensor * src0 = dst->src[0];
  9594. switch (src0->type) {
  9595. case GGML_TYPE_Q4_0:
  9596. case GGML_TYPE_Q4_1:
  9597. case GGML_TYPE_Q5_0:
  9598. case GGML_TYPE_Q5_1:
  9599. case GGML_TYPE_Q8_0:
  9600. case GGML_TYPE_Q8_1:
  9601. case GGML_TYPE_Q2_K:
  9602. case GGML_TYPE_Q3_K:
  9603. case GGML_TYPE_Q4_K:
  9604. case GGML_TYPE_Q5_K:
  9605. case GGML_TYPE_Q6_K:
  9606. case GGML_TYPE_IQ2_XXS:
  9607. case GGML_TYPE_IQ2_XS:
  9608. case GGML_TYPE_IQ3_XXS:
  9609. case GGML_TYPE_IQ1_S:
  9610. case GGML_TYPE_IQ4_NL:
  9611. case GGML_TYPE_IQ4_XS:
  9612. case GGML_TYPE_IQ3_S:
  9613. case GGML_TYPE_IQ2_S:
  9614. {
  9615. ggml_compute_forward_get_rows_q(params, dst);
  9616. } break;
  9617. case GGML_TYPE_F16:
  9618. {
  9619. ggml_compute_forward_get_rows_f16(params, dst);
  9620. } break;
  9621. case GGML_TYPE_F32:
  9622. case GGML_TYPE_I32:
  9623. {
  9624. ggml_compute_forward_get_rows_f32(params, dst);
  9625. } break;
  9626. default:
  9627. {
  9628. GGML_ASSERT(false);
  9629. } break;
  9630. }
  9631. //static bool first = true;
  9632. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9633. //if (first) {
  9634. // first = false;
  9635. //} else {
  9636. // for (int k = 0; k < dst->ne[1]; ++k) {
  9637. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9638. // for (int i = 0; i < 16; ++i) {
  9639. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9640. // }
  9641. // printf("\n");
  9642. // }
  9643. // printf("\n");
  9644. // }
  9645. // printf("\n");
  9646. // exit(0);
  9647. //}
  9648. }
  9649. // ggml_compute_forward_get_rows_back
  9650. static void ggml_compute_forward_get_rows_back_f32_f16(
  9651. const struct ggml_compute_params * params,
  9652. struct ggml_tensor * dst) {
  9653. const struct ggml_tensor * src0 = dst->src[0];
  9654. const struct ggml_tensor * src1 = dst->src[1];
  9655. GGML_ASSERT(params->ith == 0);
  9656. GGML_ASSERT(ggml_is_contiguous(dst));
  9657. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9658. if (params->type == GGML_TASK_TYPE_INIT) {
  9659. if (params->ith != 0) {
  9660. return;
  9661. }
  9662. memset(dst->data, 0, ggml_nbytes(dst));
  9663. }
  9664. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9665. return;
  9666. }
  9667. const int nc = src0->ne[0];
  9668. const int nr = ggml_nelements(src1);
  9669. GGML_ASSERT( dst->ne[0] == nc);
  9670. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9671. for (int i = 0; i < nr; ++i) {
  9672. const int r = ((int32_t *) src1->data)[i];
  9673. for (int j = 0; j < nc; ++j) {
  9674. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9675. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9676. }
  9677. }
  9678. }
  9679. static void ggml_compute_forward_get_rows_back_f32(
  9680. const struct ggml_compute_params * params,
  9681. struct ggml_tensor * dst) {
  9682. const struct ggml_tensor * src0 = dst->src[0];
  9683. const struct ggml_tensor * src1 = dst->src[1];
  9684. GGML_ASSERT(params->ith == 0);
  9685. GGML_ASSERT(ggml_is_contiguous(dst));
  9686. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9687. if (params->type == GGML_TASK_TYPE_INIT) {
  9688. if (params->ith != 0) {
  9689. return;
  9690. }
  9691. memset(dst->data, 0, ggml_nbytes(dst));
  9692. }
  9693. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9694. return;
  9695. }
  9696. const int nc = src0->ne[0];
  9697. const int nr = ggml_nelements(src1);
  9698. GGML_ASSERT( dst->ne[0] == nc);
  9699. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9700. for (int i = 0; i < nr; ++i) {
  9701. const int r = ((int32_t *) src1->data)[i];
  9702. ggml_vec_add_f32(nc,
  9703. (float *) ((char *) dst->data + r*dst->nb[1]),
  9704. (float *) ((char *) dst->data + r*dst->nb[1]),
  9705. (float *) ((char *) src0->data + i*src0->nb[1]));
  9706. }
  9707. }
  9708. static void ggml_compute_forward_get_rows_back(
  9709. const struct ggml_compute_params * params,
  9710. struct ggml_tensor * dst) {
  9711. const struct ggml_tensor * src0 = dst->src[0];
  9712. switch (src0->type) {
  9713. case GGML_TYPE_F16:
  9714. {
  9715. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9716. } break;
  9717. case GGML_TYPE_F32:
  9718. {
  9719. ggml_compute_forward_get_rows_back_f32(params, dst);
  9720. } break;
  9721. default:
  9722. {
  9723. GGML_ASSERT(false);
  9724. } break;
  9725. }
  9726. //static bool first = true;
  9727. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9728. //if (first) {
  9729. // first = false;
  9730. //} else {
  9731. // for (int k = 0; k < dst->ne[1]; ++k) {
  9732. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9733. // for (int i = 0; i < 16; ++i) {
  9734. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9735. // }
  9736. // printf("\n");
  9737. // }
  9738. // printf("\n");
  9739. // }
  9740. // printf("\n");
  9741. // exit(0);
  9742. //}
  9743. }
  9744. // ggml_compute_forward_diag
  9745. static void ggml_compute_forward_diag_f32(
  9746. const struct ggml_compute_params * params,
  9747. struct ggml_tensor * dst) {
  9748. const struct ggml_tensor * src0 = dst->src[0];
  9749. GGML_ASSERT(params->ith == 0);
  9750. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9751. return;
  9752. }
  9753. // TODO: handle transposed/permuted matrices
  9754. GGML_TENSOR_UNARY_OP_LOCALS
  9755. GGML_ASSERT(ne00 == ne0);
  9756. GGML_ASSERT(ne00 == ne1);
  9757. GGML_ASSERT(ne01 == 1);
  9758. GGML_ASSERT(ne02 == ne2);
  9759. GGML_ASSERT(ne03 == ne3);
  9760. GGML_ASSERT(nb00 == sizeof(float));
  9761. GGML_ASSERT(nb0 == sizeof(float));
  9762. for (int i3 = 0; i3 < ne3; i3++) {
  9763. for (int i2 = 0; i2 < ne2; i2++) {
  9764. for (int i1 = 0; i1 < ne1; i1++) {
  9765. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9766. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9767. for (int i0 = 0; i0 < i1; i0++) {
  9768. d[i0] = 0;
  9769. }
  9770. d[i1] = s[i1];
  9771. for (int i0 = i1+1; i0 < ne0; i0++) {
  9772. d[i0] = 0;
  9773. }
  9774. }
  9775. }
  9776. }
  9777. }
  9778. static void ggml_compute_forward_diag(
  9779. const struct ggml_compute_params * params,
  9780. struct ggml_tensor * dst) {
  9781. const struct ggml_tensor * src0 = dst->src[0];
  9782. switch (src0->type) {
  9783. case GGML_TYPE_F32:
  9784. {
  9785. ggml_compute_forward_diag_f32(params, dst);
  9786. } break;
  9787. default:
  9788. {
  9789. GGML_ASSERT(false);
  9790. } break;
  9791. }
  9792. }
  9793. // ggml_compute_forward_diag_mask_inf
  9794. static void ggml_compute_forward_diag_mask_f32(
  9795. const struct ggml_compute_params * params,
  9796. struct ggml_tensor * dst,
  9797. const float value) {
  9798. const struct ggml_tensor * src0 = dst->src[0];
  9799. const int ith = params->ith;
  9800. const int nth = params->nth;
  9801. const int n_past = ((int32_t *) dst->op_params)[0];
  9802. const bool inplace = src0->data == dst->data;
  9803. GGML_ASSERT(n_past >= 0);
  9804. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9805. if (ith != 0) {
  9806. return;
  9807. }
  9808. // memcpy needs to be synchronized across threads to avoid race conditions.
  9809. // => do it in INIT phase
  9810. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9811. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9812. memcpy(
  9813. ((char *) dst->data),
  9814. ((char *) src0->data),
  9815. ggml_nbytes(dst));
  9816. }
  9817. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9818. return;
  9819. }
  9820. // TODO: handle transposed/permuted matrices
  9821. const int n = ggml_nrows(src0);
  9822. const int nc = src0->ne[0];
  9823. const int nr = src0->ne[1];
  9824. const int nz = n/nr;
  9825. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9827. for (int k = 0; k < nz; k++) {
  9828. for (int j = ith; j < nr; j += nth) {
  9829. for (int i = n_past; i < nc; i++) {
  9830. if (i > n_past + j) {
  9831. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9832. }
  9833. }
  9834. }
  9835. }
  9836. }
  9837. static void ggml_compute_forward_diag_mask_inf(
  9838. const struct ggml_compute_params * params,
  9839. struct ggml_tensor * dst) {
  9840. const struct ggml_tensor * src0 = dst->src[0];
  9841. switch (src0->type) {
  9842. case GGML_TYPE_F32:
  9843. {
  9844. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9845. } break;
  9846. default:
  9847. {
  9848. GGML_ASSERT(false);
  9849. } break;
  9850. }
  9851. }
  9852. static void ggml_compute_forward_diag_mask_zero(
  9853. const struct ggml_compute_params * params,
  9854. struct ggml_tensor * dst) {
  9855. const struct ggml_tensor * src0 = dst->src[0];
  9856. switch (src0->type) {
  9857. case GGML_TYPE_F32:
  9858. {
  9859. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9860. } break;
  9861. default:
  9862. {
  9863. GGML_ASSERT(false);
  9864. } break;
  9865. }
  9866. }
  9867. // ggml_compute_forward_soft_max
  9868. static void ggml_compute_forward_soft_max_f32(
  9869. const struct ggml_compute_params * params,
  9870. struct ggml_tensor * dst) {
  9871. const struct ggml_tensor * src0 = dst->src[0];
  9872. const struct ggml_tensor * src1 = dst->src[1];
  9873. const struct ggml_tensor * src2 = dst->src[2];
  9874. assert(ggml_is_contiguous(dst));
  9875. assert(ggml_are_same_shape(src0, dst));
  9876. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9877. return;
  9878. }
  9879. float scale = 1.0f;
  9880. float max_bias = 0.0f;
  9881. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9882. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9883. // TODO: handle transposed/permuted matrices
  9884. const int ith = params->ith;
  9885. const int nth = params->nth;
  9886. GGML_TENSOR_UNARY_OP_LOCALS
  9887. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9888. // TODO: is this supposed to be ceil instead of floor?
  9889. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9890. const uint32_t n_head_kv = ne02;
  9891. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9892. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9893. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9894. const int nc = src0->ne[0];
  9895. const int nr = ggml_nrows(src0);
  9896. // rows per thread
  9897. const int dr = (nr + nth - 1)/nth;
  9898. // row range for this thread
  9899. const int ir0 = dr*ith;
  9900. const int ir1 = MIN(ir0 + dr, nr);
  9901. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9902. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9903. float * pos = src2 ? (float *) src2->data : src0->data;
  9904. for (int i1 = ir0; i1 < ir1; i1++) {
  9905. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9906. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9907. // broadcast the mask across rows
  9908. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9909. ggml_vec_cpy_f32 (nc, wp, sp);
  9910. ggml_vec_scale_f32(nc, wp, scale);
  9911. if (mp) {
  9912. ggml_vec_acc_f32(nc, wp, mp);
  9913. }
  9914. // ALiBi bias
  9915. if (max_bias > 0.0f) {
  9916. const uint32_t h = (i1/ne01)%ne02; // head
  9917. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9918. for (int i = 0; i < nc; i++) {
  9919. wp[i] = wp[i] + slope*pos[i];
  9920. }
  9921. }
  9922. #ifndef NDEBUG
  9923. for (int i = 0; i < nc; ++i) {
  9924. //printf("p[%d] = %f\n", i, p[i]);
  9925. assert(!isnan(wp[i]));
  9926. }
  9927. #endif
  9928. float max = -INFINITY;
  9929. ggml_vec_max_f32(nc, &max, wp);
  9930. ggml_float sum = 0.0;
  9931. uint16_t scvt;
  9932. for (int i = 0; i < nc; i++) {
  9933. if (wp[i] == -INFINITY) {
  9934. dp[i] = 0.0f;
  9935. } else {
  9936. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9937. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9938. memcpy(&scvt, &s, sizeof(scvt));
  9939. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9940. sum += (ggml_float)val;
  9941. dp[i] = val;
  9942. }
  9943. }
  9944. assert(sum > 0.0);
  9945. sum = 1.0/sum;
  9946. ggml_vec_scale_f32(nc, dp, sum);
  9947. #ifndef NDEBUG
  9948. for (int i = 0; i < nc; ++i) {
  9949. assert(!isnan(dp[i]));
  9950. assert(!isinf(dp[i]));
  9951. }
  9952. #endif
  9953. }
  9954. }
  9955. static void ggml_compute_forward_soft_max(
  9956. const struct ggml_compute_params * params,
  9957. struct ggml_tensor * dst) {
  9958. const struct ggml_tensor * src0 = dst->src[0];
  9959. switch (src0->type) {
  9960. case GGML_TYPE_F32:
  9961. {
  9962. ggml_compute_forward_soft_max_f32(params, dst);
  9963. } break;
  9964. default:
  9965. {
  9966. GGML_ASSERT(false);
  9967. } break;
  9968. }
  9969. }
  9970. // ggml_compute_forward_soft_max_back
  9971. static void ggml_compute_forward_soft_max_back_f32(
  9972. const struct ggml_compute_params * params,
  9973. struct ggml_tensor * dst) {
  9974. const struct ggml_tensor * src0 = dst->src[0];
  9975. const struct ggml_tensor * src1 = dst->src[1];
  9976. GGML_ASSERT(ggml_is_contiguous(src0));
  9977. GGML_ASSERT(ggml_is_contiguous(src1));
  9978. GGML_ASSERT(ggml_is_contiguous(dst));
  9979. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9980. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9981. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9982. return;
  9983. }
  9984. // TODO: handle transposed/permuted matrices
  9985. const int ith = params->ith;
  9986. const int nth = params->nth;
  9987. const int nc = src0->ne[0];
  9988. const int nr = ggml_nrows(src0);
  9989. // rows per thread
  9990. const int dr = (nr + nth - 1)/nth;
  9991. // row range for this thread
  9992. const int ir0 = dr*ith;
  9993. const int ir1 = MIN(ir0 + dr, nr);
  9994. for (int i1 = ir0; i1 < ir1; i1++) {
  9995. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9996. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9997. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9998. #ifndef NDEBUG
  9999. for (int i = 0; i < nc; ++i) {
  10000. //printf("p[%d] = %f\n", i, p[i]);
  10001. assert(!isnan(dy[i]));
  10002. assert(!isnan(y[i]));
  10003. }
  10004. #endif
  10005. // Jii = yi - yi*yi
  10006. // Jij = -yi*yj
  10007. // J = diag(y)-y.T*y
  10008. // dx = J * dy
  10009. // dxk = sum_i(Jki * dyi)
  10010. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10011. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10012. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10013. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10014. // dxk = -yk * dot(y, dy) + yk*dyk
  10015. // dxk = yk * (- dot(y, dy) + dyk)
  10016. // dxk = yk * (dyk - dot(y, dy))
  10017. //
  10018. // post-order:
  10019. // dot_y_dy := dot(y, dy)
  10020. // dx := dy
  10021. // dx := dx - dot_y_dy
  10022. // dx := dx * y
  10023. // linear runtime, no additional memory
  10024. float dot_y_dy = 0;
  10025. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10026. ggml_vec_cpy_f32 (nc, dx, dy);
  10027. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10028. ggml_vec_mul_f32 (nc, dx, dx, y);
  10029. #ifndef NDEBUG
  10030. for (int i = 0; i < nc; ++i) {
  10031. assert(!isnan(dx[i]));
  10032. assert(!isinf(dx[i]));
  10033. }
  10034. #endif
  10035. }
  10036. }
  10037. static void ggml_compute_forward_soft_max_back(
  10038. const struct ggml_compute_params * params,
  10039. struct ggml_tensor * dst) {
  10040. const struct ggml_tensor * src0 = dst->src[0];
  10041. switch (src0->type) {
  10042. case GGML_TYPE_F32:
  10043. {
  10044. ggml_compute_forward_soft_max_back_f32(params, dst);
  10045. } break;
  10046. default:
  10047. {
  10048. GGML_ASSERT(false);
  10049. } break;
  10050. }
  10051. }
  10052. // ggml_compute_forward_alibi
  10053. static void ggml_compute_forward_alibi_f32(
  10054. const struct ggml_compute_params * params,
  10055. struct ggml_tensor * dst) {
  10056. const struct ggml_tensor * src0 = dst->src[0];
  10057. assert(params->ith == 0);
  10058. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10059. return;
  10060. }
  10061. //const int n_past = ((int32_t *) dst->op_params)[0];
  10062. const int n_head = ((int32_t *) dst->op_params)[1];
  10063. float max_bias;
  10064. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10065. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10066. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10067. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10068. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10069. const int64_t n = ggml_nrows(src0);
  10070. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10071. const size_t nb0 = src0->nb[0];
  10072. const size_t nb1 = src0->nb[1];
  10073. const size_t nb2 = src0->nb[2];
  10074. //const int nb3 = src0->nb[3];
  10075. GGML_ASSERT(nb0 == sizeof(float));
  10076. GGML_ASSERT(n_head == ne2);
  10077. // add alibi to src0 (KQ_scaled)
  10078. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10079. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10080. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10081. for (int64_t k = 0; k < ne2_ne3; k++) {
  10082. // TODO: k*nb2 or k*nb3
  10083. float m_k;
  10084. if (k < n_heads_log2_floor) {
  10085. m_k = powf(m0, k + 1);
  10086. } else {
  10087. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10088. }
  10089. for (int64_t i = 0; i < ne0; i++) {
  10090. for (int64_t j = 0; j < ne1; j++) {
  10091. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10092. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10093. pdst[0] = i * m_k + src[0];
  10094. }
  10095. }
  10096. }
  10097. }
  10098. static void ggml_compute_forward_alibi_f16(
  10099. const struct ggml_compute_params * params,
  10100. struct ggml_tensor * dst) {
  10101. const struct ggml_tensor * src0 = dst->src[0];
  10102. assert(params->ith == 0);
  10103. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10104. return;
  10105. }
  10106. //const int n_past = ((int32_t *) dst->op_params)[0];
  10107. const int n_head = ((int32_t *) dst->op_params)[1];
  10108. float max_bias;
  10109. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10110. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10111. const int ne1 = src0->ne[1]; // seq_len_without_past
  10112. const int ne2 = src0->ne[2]; // n_head -> this is k
  10113. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10114. const int n = ggml_nrows(src0);
  10115. const int ne2_ne3 = n/ne1; // ne2*ne3
  10116. const int nb0 = src0->nb[0];
  10117. const int nb1 = src0->nb[1];
  10118. const int nb2 = src0->nb[2];
  10119. //const int nb3 = src0->nb[3];
  10120. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10121. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10122. GGML_ASSERT(n_head == ne2);
  10123. // add alibi to src0 (KQ_scaled)
  10124. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10125. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10126. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10127. for (int k = 0; k < ne2_ne3; k++) {
  10128. // TODO: k*nb2 or k*nb3
  10129. float m_k;
  10130. if (k < n_heads_log2_floor) {
  10131. m_k = powf(m0, k + 1);
  10132. } else {
  10133. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10134. }
  10135. for (int i = 0; i < ne0; i++) {
  10136. for (int j = 0; j < ne1; j++) {
  10137. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10138. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10139. // we return F32
  10140. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10141. }
  10142. }
  10143. }
  10144. }
  10145. static void ggml_compute_forward_alibi(
  10146. const struct ggml_compute_params * params,
  10147. struct ggml_tensor * dst) {
  10148. const struct ggml_tensor * src0 = dst->src[0];
  10149. switch (src0->type) {
  10150. case GGML_TYPE_F16:
  10151. {
  10152. ggml_compute_forward_alibi_f16(params, dst);
  10153. } break;
  10154. case GGML_TYPE_F32:
  10155. {
  10156. ggml_compute_forward_alibi_f32(params, dst);
  10157. } break;
  10158. case GGML_TYPE_Q4_0:
  10159. case GGML_TYPE_Q4_1:
  10160. case GGML_TYPE_Q5_0:
  10161. case GGML_TYPE_Q5_1:
  10162. case GGML_TYPE_Q8_0:
  10163. case GGML_TYPE_Q8_1:
  10164. case GGML_TYPE_Q2_K:
  10165. case GGML_TYPE_Q3_K:
  10166. case GGML_TYPE_Q4_K:
  10167. case GGML_TYPE_Q5_K:
  10168. case GGML_TYPE_Q6_K:
  10169. case GGML_TYPE_IQ2_XXS:
  10170. case GGML_TYPE_IQ2_XS:
  10171. case GGML_TYPE_IQ3_XXS:
  10172. case GGML_TYPE_IQ1_S:
  10173. case GGML_TYPE_IQ4_NL:
  10174. case GGML_TYPE_IQ4_XS:
  10175. case GGML_TYPE_IQ3_S:
  10176. case GGML_TYPE_IQ2_S:
  10177. case GGML_TYPE_Q8_K:
  10178. case GGML_TYPE_I8:
  10179. case GGML_TYPE_I16:
  10180. case GGML_TYPE_I32:
  10181. case GGML_TYPE_I64:
  10182. case GGML_TYPE_F64:
  10183. case GGML_TYPE_COUNT:
  10184. {
  10185. GGML_ASSERT(false);
  10186. } break;
  10187. }
  10188. }
  10189. // ggml_compute_forward_clamp
  10190. static void ggml_compute_forward_clamp_f32(
  10191. const struct ggml_compute_params * params,
  10192. struct ggml_tensor * dst) {
  10193. const struct ggml_tensor * src0 = dst->src[0];
  10194. assert(params->ith == 0);
  10195. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10196. return;
  10197. }
  10198. float min;
  10199. float max;
  10200. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10201. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10202. const int ith = params->ith;
  10203. const int nth = params->nth;
  10204. const int n = ggml_nrows(src0);
  10205. const int nc = src0->ne[0];
  10206. const size_t nb00 = src0->nb[0];
  10207. const size_t nb01 = src0->nb[1];
  10208. const size_t nb0 = dst->nb[0];
  10209. const size_t nb1 = dst->nb[1];
  10210. GGML_ASSERT( nb0 == sizeof(float));
  10211. GGML_ASSERT(nb00 == sizeof(float));
  10212. for (int j = ith; j < n; j += nth) {
  10213. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10214. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10215. for (int i = 0; i < nc; i++) {
  10216. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10217. }
  10218. }
  10219. }
  10220. static void ggml_compute_forward_clamp(
  10221. const struct ggml_compute_params * params,
  10222. struct ggml_tensor * dst) {
  10223. const struct ggml_tensor * src0 = dst->src[0];
  10224. switch (src0->type) {
  10225. case GGML_TYPE_F32:
  10226. {
  10227. ggml_compute_forward_clamp_f32(params, dst);
  10228. } break;
  10229. case GGML_TYPE_F16:
  10230. case GGML_TYPE_Q4_0:
  10231. case GGML_TYPE_Q4_1:
  10232. case GGML_TYPE_Q5_0:
  10233. case GGML_TYPE_Q5_1:
  10234. case GGML_TYPE_Q8_0:
  10235. case GGML_TYPE_Q8_1:
  10236. case GGML_TYPE_Q2_K:
  10237. case GGML_TYPE_Q3_K:
  10238. case GGML_TYPE_Q4_K:
  10239. case GGML_TYPE_Q5_K:
  10240. case GGML_TYPE_Q6_K:
  10241. case GGML_TYPE_IQ2_XXS:
  10242. case GGML_TYPE_IQ2_XS:
  10243. case GGML_TYPE_IQ3_XXS:
  10244. case GGML_TYPE_IQ1_S:
  10245. case GGML_TYPE_IQ4_NL:
  10246. case GGML_TYPE_IQ4_XS:
  10247. case GGML_TYPE_IQ3_S:
  10248. case GGML_TYPE_IQ2_S:
  10249. case GGML_TYPE_Q8_K:
  10250. case GGML_TYPE_I8:
  10251. case GGML_TYPE_I16:
  10252. case GGML_TYPE_I32:
  10253. case GGML_TYPE_I64:
  10254. case GGML_TYPE_F64:
  10255. case GGML_TYPE_COUNT:
  10256. {
  10257. GGML_ASSERT(false);
  10258. } break;
  10259. }
  10260. }
  10261. // ggml_compute_forward_rope
  10262. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10263. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10264. return 1 - MIN(1, MAX(0, y));
  10265. }
  10266. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10267. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10268. static void rope_yarn(
  10269. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10270. float * cos_theta, float * sin_theta
  10271. ) {
  10272. // Get n-d rotational scaling corrected for extrapolation
  10273. float theta_interp = freq_scale * theta_extrap;
  10274. float theta = theta_interp;
  10275. if (ext_factor != 0.0f) {
  10276. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10277. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10278. // Get n-d magnitude scaling corrected for interpolation
  10279. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10280. }
  10281. *cos_theta = cosf(theta) * mscale;
  10282. *sin_theta = sinf(theta) * mscale;
  10283. }
  10284. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10285. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10286. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10287. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10288. }
  10289. static void ggml_rope_cache_init(
  10290. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10291. float * cache, float sin_sign, float theta_scale
  10292. ) {
  10293. float theta = theta_base;
  10294. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10295. rope_yarn(
  10296. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10297. );
  10298. cache[i0 + 1] *= sin_sign;
  10299. theta *= theta_scale;
  10300. }
  10301. }
  10302. GGML_CALL void ggml_rope_yarn_corr_dims(
  10303. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10304. ) {
  10305. // start and end correction dims
  10306. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10307. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10308. dims[0] = MAX(0, start);
  10309. dims[1] = MIN(n_dims - 1, end);
  10310. }
  10311. static void ggml_compute_forward_rope_f32(
  10312. const struct ggml_compute_params * params,
  10313. struct ggml_tensor * dst,
  10314. const bool forward) {
  10315. const struct ggml_tensor * src0 = dst->src[0];
  10316. const struct ggml_tensor * src1 = dst->src[1];
  10317. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10318. return;
  10319. }
  10320. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10321. // these two only relevant for xPos RoPE:
  10322. float xpos_base;
  10323. bool xpos_down;
  10324. //const int n_past = ((int32_t *) dst->op_params)[0];
  10325. const int n_dims = ((int32_t *) dst->op_params)[1];
  10326. const int mode = ((int32_t *) dst->op_params)[2];
  10327. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10328. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10329. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10330. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10331. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10332. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10333. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10334. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10335. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10336. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10337. GGML_TENSOR_UNARY_OP_LOCALS
  10338. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10339. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10340. GGML_ASSERT(nb00 == sizeof(float));
  10341. const int ith = params->ith;
  10342. const int nth = params->nth;
  10343. const int nr = ggml_nrows(dst);
  10344. GGML_ASSERT(n_dims <= ne0);
  10345. GGML_ASSERT(n_dims % 2 == 0);
  10346. // rows per thread
  10347. const int dr = (nr + nth - 1)/nth;
  10348. // row range for this thread
  10349. const int ir0 = dr*ith;
  10350. const int ir1 = MIN(ir0 + dr, nr);
  10351. // row index used to determine which thread to use
  10352. int ir = 0;
  10353. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10354. const float inv_ndims = -1.f/n_dims;
  10355. float corr_dims[2];
  10356. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10357. const bool is_neox = mode & 2;
  10358. const bool is_glm = mode & 4;
  10359. // backward process uses inverse rotation by cos and sin.
  10360. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10361. // this essentially just switches the sign of sin.
  10362. const float sin_sign = forward ? 1.0f : -1.0f;
  10363. const int32_t * pos = (const int32_t *) src1->data;
  10364. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10365. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10366. const int64_t p = pos[i2];
  10367. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10368. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10369. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10370. }
  10371. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10372. if (ir++ < ir0) continue;
  10373. if (ir > ir1) break;
  10374. float theta_base = (float)p;
  10375. if (is_glm) {
  10376. theta_base = MIN(p, n_ctx - 2);
  10377. float block_theta = MAX(p - (n_ctx - 2), 0);
  10378. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10379. const float cos_theta = cosf(theta_base);
  10380. const float sin_theta = sinf(theta_base) * sin_sign;
  10381. const float cos_block_theta = cosf(block_theta);
  10382. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10383. theta_base *= theta_scale;
  10384. block_theta *= theta_scale;
  10385. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10386. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10387. const float x0 = src[0];
  10388. const float x1 = src[n_dims/2];
  10389. const float x2 = src[n_dims];
  10390. const float x3 = src[n_dims/2*3];
  10391. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10392. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10393. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10394. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10395. }
  10396. } else if (!is_neox) {
  10397. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10398. const float cos_theta = cache[i0 + 0];
  10399. const float sin_theta = cache[i0 + 1];
  10400. // zeta scaling for xPos only:
  10401. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10402. if (xpos_down) zeta = 1.0f / zeta;
  10403. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10404. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10405. const float x0 = src[0];
  10406. const float x1 = src[1];
  10407. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10408. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10409. }
  10410. } else {
  10411. // TODO: this might be wrong for ne0 != n_dims - need double check
  10412. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10413. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10414. theta_base *= freq_scale;
  10415. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10416. if (ic < n_dims) {
  10417. const int64_t ib = 0;
  10418. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10419. float cur_rot = inv_ndims * ic - ib;
  10420. float cos_theta, sin_theta;
  10421. rope_yarn(
  10422. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10423. &cos_theta, &sin_theta
  10424. );
  10425. sin_theta *= sin_sign;
  10426. theta_base *= theta_scale;
  10427. const int64_t i0 = ib*n_dims + ic/2;
  10428. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10429. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10430. const float x0 = src[0];
  10431. const float x1 = src[n_dims/2];
  10432. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10433. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10434. } else {
  10435. const int64_t i0 = ic;
  10436. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10437. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10438. dst_data[0] = src[0];
  10439. dst_data[1] = src[1];
  10440. }
  10441. }
  10442. }
  10443. }
  10444. }
  10445. }
  10446. }
  10447. static void ggml_compute_forward_rope_f16(
  10448. const struct ggml_compute_params * params,
  10449. struct ggml_tensor * dst,
  10450. const bool forward) {
  10451. const struct ggml_tensor * src0 = dst->src[0];
  10452. const struct ggml_tensor * src1 = dst->src[1];
  10453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10454. return;
  10455. }
  10456. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10457. //const int n_past = ((int32_t *) dst->op_params)[0];
  10458. const int n_dims = ((int32_t *) dst->op_params)[1];
  10459. const int mode = ((int32_t *) dst->op_params)[2];
  10460. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10461. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10462. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10463. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10464. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10465. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10466. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10467. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10468. GGML_TENSOR_UNARY_OP_LOCALS
  10469. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10470. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10471. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10472. const int ith = params->ith;
  10473. const int nth = params->nth;
  10474. const int nr = ggml_nrows(dst);
  10475. GGML_ASSERT(n_dims <= ne0);
  10476. GGML_ASSERT(n_dims % 2 == 0);
  10477. // rows per thread
  10478. const int dr = (nr + nth - 1)/nth;
  10479. // row range for this thread
  10480. const int ir0 = dr*ith;
  10481. const int ir1 = MIN(ir0 + dr, nr);
  10482. // row index used to determine which thread to use
  10483. int ir = 0;
  10484. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10485. const float inv_ndims = -1.f/n_dims;
  10486. float corr_dims[2];
  10487. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10488. const bool is_neox = mode & 2;
  10489. const bool is_glm = mode & 4;
  10490. // backward process uses inverse rotation by cos and sin.
  10491. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10492. // this essentially just switches the sign of sin.
  10493. const float sin_sign = forward ? 1.0f : -1.0f;
  10494. const int32_t * pos = (const int32_t *) src1->data;
  10495. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10496. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10497. const int64_t p = pos[i2];
  10498. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10499. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10500. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10501. }
  10502. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10503. if (ir++ < ir0) continue;
  10504. if (ir > ir1) break;
  10505. float theta_base = (float)p;
  10506. if (is_glm) {
  10507. theta_base = MIN(p, n_ctx - 2);
  10508. float block_theta = MAX(p - (n_ctx - 2), 0);
  10509. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10510. const float cos_theta = cosf(theta_base);
  10511. const float sin_theta = sinf(theta_base) * sin_sign;
  10512. const float cos_block_theta = cosf(block_theta);
  10513. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10514. theta_base *= theta_scale;
  10515. block_theta *= theta_scale;
  10516. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10517. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10518. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10519. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10520. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10521. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10522. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10523. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10524. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10525. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10526. }
  10527. } else if (!is_neox) {
  10528. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10529. const float cos_theta = cache[i0 + 0];
  10530. const float sin_theta = cache[i0 + 1];
  10531. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10532. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10533. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10534. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10535. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10536. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10537. }
  10538. } else {
  10539. // TODO: this might be wrong for ne0 != n_dims - need double check
  10540. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10541. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10542. theta_base *= freq_scale;
  10543. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10544. if (ic < n_dims) {
  10545. const int64_t ib = 0;
  10546. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10547. float cur_rot = inv_ndims * ic - ib;
  10548. float cos_theta, sin_theta;
  10549. rope_yarn(
  10550. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10551. &cos_theta, &sin_theta
  10552. );
  10553. sin_theta *= sin_sign;
  10554. theta_base *= theta_scale;
  10555. const int64_t i0 = ib*n_dims + ic/2;
  10556. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10557. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10558. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10559. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10560. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10561. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10562. } else {
  10563. const int64_t i0 = ic;
  10564. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10565. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10566. dst_data[0] = src[0];
  10567. dst_data[1] = src[1];
  10568. }
  10569. }
  10570. }
  10571. }
  10572. }
  10573. }
  10574. }
  10575. static void ggml_compute_forward_rope(
  10576. const struct ggml_compute_params * params,
  10577. struct ggml_tensor * dst) {
  10578. const struct ggml_tensor * src0 = dst->src[0];
  10579. switch (src0->type) {
  10580. case GGML_TYPE_F16:
  10581. {
  10582. ggml_compute_forward_rope_f16(params, dst, true);
  10583. } break;
  10584. case GGML_TYPE_F32:
  10585. {
  10586. ggml_compute_forward_rope_f32(params, dst, true);
  10587. } break;
  10588. default:
  10589. {
  10590. GGML_ASSERT(false);
  10591. } break;
  10592. }
  10593. }
  10594. // ggml_compute_forward_rope_back
  10595. static void ggml_compute_forward_rope_back(
  10596. const struct ggml_compute_params * params,
  10597. struct ggml_tensor * dst) {
  10598. const struct ggml_tensor * src0 = dst->src[0];
  10599. switch (src0->type) {
  10600. case GGML_TYPE_F16:
  10601. {
  10602. ggml_compute_forward_rope_f16(params, dst, false);
  10603. } break;
  10604. case GGML_TYPE_F32:
  10605. {
  10606. ggml_compute_forward_rope_f32(params, dst, false);
  10607. } break;
  10608. default:
  10609. {
  10610. GGML_ASSERT(false);
  10611. } break;
  10612. }
  10613. }
  10614. // ggml_compute_forward_conv_transpose_1d
  10615. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10616. const struct ggml_compute_params * params,
  10617. struct ggml_tensor * dst) {
  10618. const struct ggml_tensor * src0 = dst->src[0];
  10619. const struct ggml_tensor * src1 = dst->src[1];
  10620. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10621. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10622. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10623. int64_t t0 = ggml_perf_time_us();
  10624. UNUSED(t0);
  10625. GGML_TENSOR_BINARY_OP_LOCALS
  10626. const int ith = params->ith;
  10627. const int nth = params->nth;
  10628. const int nk = ne00*ne01*ne02;
  10629. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10630. GGML_ASSERT(nb10 == sizeof(float));
  10631. if (params->type == GGML_TASK_TYPE_INIT) {
  10632. if (ith != 0) {
  10633. return;
  10634. }
  10635. memset(params->wdata, 0, params->wsize);
  10636. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10637. {
  10638. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10639. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10640. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10641. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10642. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10643. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10644. dst_data[i00*ne02 + i02] = src[i00];
  10645. }
  10646. }
  10647. }
  10648. }
  10649. // permute source data (src1) from (L x Cin) to (Cin x L)
  10650. {
  10651. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10652. ggml_fp16_t * dst_data = wdata;
  10653. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10654. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10655. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10656. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10657. }
  10658. }
  10659. }
  10660. // need to zero dst since we are accumulating into it
  10661. memset(dst->data, 0, ggml_nbytes(dst));
  10662. return;
  10663. }
  10664. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10665. return;
  10666. }
  10667. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10668. // total rows in dst
  10669. const int nr = ne1;
  10670. // rows per thread
  10671. const int dr = (nr + nth - 1)/nth;
  10672. // row range for this thread
  10673. const int ir0 = dr*ith;
  10674. const int ir1 = MIN(ir0 + dr, nr);
  10675. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10676. ggml_fp16_t * const wdata_src = wdata + nk;
  10677. for (int i1 = ir0; i1 < ir1; i1++) {
  10678. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10679. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10680. for (int i10 = 0; i10 < ne10; i10++) {
  10681. const int i1n = i10*ne11;
  10682. for (int i00 = 0; i00 < ne00; i00++) {
  10683. float v = 0;
  10684. ggml_vec_dot_f16(ne02, &v, 0,
  10685. (ggml_fp16_t *) wdata_src + i1n, 0,
  10686. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10687. dst_data[i10*s0 + i00] += v;
  10688. }
  10689. }
  10690. }
  10691. }
  10692. static void ggml_compute_forward_conv_transpose_1d_f32(
  10693. const struct ggml_compute_params * params,
  10694. struct ggml_tensor * dst) {
  10695. const struct ggml_tensor * src0 = dst->src[0];
  10696. const struct ggml_tensor * src1 = dst->src[1];
  10697. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10698. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10699. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10700. int64_t t0 = ggml_perf_time_us();
  10701. UNUSED(t0);
  10702. GGML_TENSOR_BINARY_OP_LOCALS
  10703. const int ith = params->ith;
  10704. const int nth = params->nth;
  10705. const int nk = ne00*ne01*ne02;
  10706. GGML_ASSERT(nb00 == sizeof(float));
  10707. GGML_ASSERT(nb10 == sizeof(float));
  10708. if (params->type == GGML_TASK_TYPE_INIT) {
  10709. if (ith != 0) {
  10710. return;
  10711. }
  10712. memset(params->wdata, 0, params->wsize);
  10713. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10714. {
  10715. float * const wdata = (float *) params->wdata + 0;
  10716. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10717. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10718. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10719. float * dst_data = wdata + i01*ne00*ne02;
  10720. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10721. dst_data[i00*ne02 + i02] = src[i00];
  10722. }
  10723. }
  10724. }
  10725. }
  10726. // prepare source data (src1)
  10727. {
  10728. float * const wdata = (float *) params->wdata + nk;
  10729. float * dst_data = wdata;
  10730. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10731. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10732. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10733. dst_data[i10*ne11 + i11] = src[i10];
  10734. }
  10735. }
  10736. }
  10737. // need to zero dst since we are accumulating into it
  10738. memset(dst->data, 0, ggml_nbytes(dst));
  10739. return;
  10740. }
  10741. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10742. return;
  10743. }
  10744. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10745. // total rows in dst
  10746. const int nr = ne1;
  10747. // rows per thread
  10748. const int dr = (nr + nth - 1)/nth;
  10749. // row range for this thread
  10750. const int ir0 = dr*ith;
  10751. const int ir1 = MIN(ir0 + dr, nr);
  10752. float * const wdata = (float *) params->wdata + 0;
  10753. float * const wdata_src = wdata + nk;
  10754. for (int i1 = ir0; i1 < ir1; i1++) {
  10755. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10756. float * wdata_kernel = wdata + i1*ne02*ne00;
  10757. for (int i10 = 0; i10 < ne10; i10++) {
  10758. const int i1n = i10*ne11;
  10759. for (int i00 = 0; i00 < ne00; i00++) {
  10760. float v = 0;
  10761. ggml_vec_dot_f32(ne02, &v, 0,
  10762. wdata_src + i1n, 0,
  10763. wdata_kernel + i00*ne02, 0, 1);
  10764. dst_data[i10*s0 + i00] += v;
  10765. }
  10766. }
  10767. }
  10768. }
  10769. static void ggml_compute_forward_conv_transpose_1d(
  10770. const struct ggml_compute_params * params,
  10771. struct ggml_tensor * dst) {
  10772. const struct ggml_tensor * src0 = dst->src[0];
  10773. switch (src0->type) {
  10774. case GGML_TYPE_F16:
  10775. {
  10776. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10777. } break;
  10778. case GGML_TYPE_F32:
  10779. {
  10780. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10781. } break;
  10782. default:
  10783. {
  10784. GGML_ASSERT(false);
  10785. } break;
  10786. }
  10787. }
  10788. // src0: kernel [OC, IC, KH, KW]
  10789. // src1: image [N, IC, IH, IW]
  10790. // dst: result [N, OH, OW, IC*KH*KW]
  10791. static void ggml_compute_forward_im2col_f32(
  10792. const struct ggml_compute_params * params,
  10793. struct ggml_tensor * dst) {
  10794. const struct ggml_tensor * src0 = dst->src[0];
  10795. const struct ggml_tensor * src1 = dst->src[1];
  10796. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10797. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10798. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10799. int64_t t0 = ggml_perf_time_us();
  10800. UNUSED(t0);
  10801. GGML_TENSOR_BINARY_OP_LOCALS;
  10802. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10803. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10804. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10805. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10806. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10807. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10808. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10809. const int ith = params->ith;
  10810. const int nth = params->nth;
  10811. const int64_t N = is_2D ? ne13 : ne12;
  10812. const int64_t IC = is_2D ? ne12 : ne11;
  10813. const int64_t IH = is_2D ? ne11 : 1;
  10814. const int64_t IW = ne10;
  10815. const int64_t KH = is_2D ? ne01 : 1;
  10816. const int64_t KW = ne00;
  10817. const int64_t OH = is_2D ? ne2 : 1;
  10818. const int64_t OW = ne1;
  10819. int ofs0 = is_2D ? nb13 : nb12;
  10820. int ofs1 = is_2D ? nb12 : nb11;
  10821. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10822. GGML_ASSERT(nb10 == sizeof(float));
  10823. if (params->type == GGML_TASK_TYPE_INIT) {
  10824. return;
  10825. }
  10826. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10827. return;
  10828. }
  10829. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10830. {
  10831. float * const wdata = (float *) dst->data;
  10832. for (int64_t in = 0; in < N; in++) {
  10833. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10834. for (int64_t iow = 0; iow < OW; iow++) {
  10835. for (int64_t iic = ith; iic < IC; iic += nth) {
  10836. // micro kernel
  10837. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10838. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10839. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10840. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10841. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10842. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10843. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10844. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10845. } else {
  10846. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10847. }
  10848. }
  10849. }
  10850. }
  10851. }
  10852. }
  10853. }
  10854. }
  10855. }
  10856. // src0: kernel [OC, IC, KH, KW]
  10857. // src1: image [N, IC, IH, IW]
  10858. // dst: result [N, OH, OW, IC*KH*KW]
  10859. static void ggml_compute_forward_im2col_f16(
  10860. const struct ggml_compute_params * params,
  10861. struct ggml_tensor * dst) {
  10862. const struct ggml_tensor * src0 = dst->src[0];
  10863. const struct ggml_tensor * src1 = dst->src[1];
  10864. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10865. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10866. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10867. int64_t t0 = ggml_perf_time_us();
  10868. UNUSED(t0);
  10869. GGML_TENSOR_BINARY_OP_LOCALS;
  10870. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10871. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10872. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10873. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10874. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10875. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10876. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10877. const int ith = params->ith;
  10878. const int nth = params->nth;
  10879. const int64_t N = is_2D ? ne13 : ne12;
  10880. const int64_t IC = is_2D ? ne12 : ne11;
  10881. const int64_t IH = is_2D ? ne11 : 1;
  10882. const int64_t IW = ne10;
  10883. const int64_t KH = is_2D ? ne01 : 1;
  10884. const int64_t KW = ne00;
  10885. const int64_t OH = is_2D ? ne2 : 1;
  10886. const int64_t OW = ne1;
  10887. int ofs0 = is_2D ? nb13 : nb12;
  10888. int ofs1 = is_2D ? nb12 : nb11;
  10889. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10890. GGML_ASSERT(nb10 == sizeof(float));
  10891. if (params->type == GGML_TASK_TYPE_INIT) {
  10892. return;
  10893. }
  10894. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10895. return;
  10896. }
  10897. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10898. {
  10899. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10900. for (int64_t in = 0; in < N; in++) {
  10901. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10902. for (int64_t iow = 0; iow < OW; iow++) {
  10903. for (int64_t iic = ith; iic < IC; iic += nth) {
  10904. // micro kernel
  10905. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10906. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10907. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10908. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10909. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10910. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10911. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10912. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10913. } else {
  10914. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10915. }
  10916. }
  10917. }
  10918. }
  10919. }
  10920. }
  10921. }
  10922. }
  10923. }
  10924. static void ggml_compute_forward_im2col(
  10925. const struct ggml_compute_params * params,
  10926. struct ggml_tensor * dst) {
  10927. switch (dst->type) {
  10928. case GGML_TYPE_F16:
  10929. {
  10930. ggml_compute_forward_im2col_f16(params, dst);
  10931. } break;
  10932. case GGML_TYPE_F32:
  10933. {
  10934. ggml_compute_forward_im2col_f32(params, dst);
  10935. } break;
  10936. default:
  10937. {
  10938. GGML_ASSERT(false);
  10939. } break;
  10940. }
  10941. }
  10942. // ggml_compute_forward_conv_transpose_2d
  10943. static void ggml_compute_forward_conv_transpose_2d(
  10944. const struct ggml_compute_params * params,
  10945. struct ggml_tensor * dst) {
  10946. const struct ggml_tensor * src0 = dst->src[0];
  10947. const struct ggml_tensor * src1 = dst->src[1];
  10948. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10949. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10950. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10951. int64_t t0 = ggml_perf_time_us();
  10952. UNUSED(t0);
  10953. GGML_TENSOR_BINARY_OP_LOCALS
  10954. const int ith = params->ith;
  10955. const int nth = params->nth;
  10956. const int nk = ne00*ne01*ne02*ne03;
  10957. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10958. GGML_ASSERT(nb10 == sizeof(float));
  10959. if (params->type == GGML_TASK_TYPE_INIT) {
  10960. if (ith != 0) {
  10961. return;
  10962. }
  10963. memset(params->wdata, 0, params->wsize);
  10964. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10965. {
  10966. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10967. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10968. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10969. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10970. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10971. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10972. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10973. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10974. }
  10975. }
  10976. }
  10977. }
  10978. }
  10979. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10980. {
  10981. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10982. for (int i12 = 0; i12 < ne12; i12++) {
  10983. for (int i11 = 0; i11 < ne11; i11++) {
  10984. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10985. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10986. for (int i10 = 0; i10 < ne10; i10++) {
  10987. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10988. }
  10989. }
  10990. }
  10991. }
  10992. memset(dst->data, 0, ggml_nbytes(dst));
  10993. return;
  10994. }
  10995. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10996. return;
  10997. }
  10998. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10999. // total patches in dst
  11000. const int np = ne2;
  11001. // patches per thread
  11002. const int dp = (np + nth - 1)/nth;
  11003. // patch range for this thread
  11004. const int ip0 = dp*ith;
  11005. const int ip1 = MIN(ip0 + dp, np);
  11006. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11007. ggml_fp16_t * const wdata_src = wdata + nk;
  11008. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11009. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11010. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11011. for (int i11 = 0; i11 < ne11; i11++) {
  11012. for (int i10 = 0; i10 < ne10; i10++) {
  11013. const int i1n = i11*ne10*ne12 + i10*ne12;
  11014. for (int i01 = 0; i01 < ne01; i01++) {
  11015. for (int i00 = 0; i00 < ne00; i00++) {
  11016. float v = 0;
  11017. ggml_vec_dot_f16(ne03, &v, 0,
  11018. wdata_src + i1n, 0,
  11019. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11020. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11021. }
  11022. }
  11023. }
  11024. }
  11025. }
  11026. }
  11027. // ggml_compute_forward_pool_1d_sk_p0
  11028. static void ggml_compute_forward_pool_1d_sk_p0(
  11029. const struct ggml_compute_params * params,
  11030. const enum ggml_op_pool op,
  11031. const int k,
  11032. struct ggml_tensor * dst) {
  11033. const struct ggml_tensor * src = dst->src[0];
  11034. assert(src->type == GGML_TYPE_F32);
  11035. assert(params->ith == 0);
  11036. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11037. return;
  11038. }
  11039. const char * cdata = (const char *)src->data;
  11040. const char * const data_end = cdata + ggml_nbytes(src);
  11041. float * drow = (float *)dst->data;
  11042. const int64_t rs = dst->ne[0];
  11043. while (cdata < data_end) {
  11044. const float * const srow = (const float *)cdata;
  11045. int j = 0;
  11046. for (int64_t i = 0; i < rs; ++i) {
  11047. switch (op) {
  11048. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11049. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11050. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11051. }
  11052. for (int ki = 0; ki < k; ++ki) {
  11053. switch (op) {
  11054. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11055. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11056. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11057. }
  11058. ++j;
  11059. }
  11060. switch (op) {
  11061. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11062. case GGML_OP_POOL_MAX: break;
  11063. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11064. }
  11065. }
  11066. cdata += src->nb[1];
  11067. drow += rs;
  11068. }
  11069. }
  11070. // ggml_compute_forward_pool_1d
  11071. static void ggml_compute_forward_pool_1d(
  11072. const struct ggml_compute_params * params,
  11073. struct ggml_tensor * dst) {
  11074. const int32_t * opts = (const int32_t *)dst->op_params;
  11075. enum ggml_op_pool op = opts[0];
  11076. const int k0 = opts[1];
  11077. const int s0 = opts[2];
  11078. const int p0 = opts[3];
  11079. GGML_ASSERT(p0 == 0); // padding not supported
  11080. GGML_ASSERT(k0 == s0); // only s = k supported
  11081. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11082. }
  11083. // ggml_compute_forward_pool_2d
  11084. static void ggml_compute_forward_pool_2d(
  11085. const struct ggml_compute_params * params,
  11086. struct ggml_tensor * dst) {
  11087. const struct ggml_tensor * src = dst->src[0];
  11088. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11089. GGML_ASSERT(params->ith == 0);
  11090. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11091. return;
  11092. }
  11093. const int32_t * opts = (const int32_t *)dst->op_params;
  11094. enum ggml_op_pool op = opts[0];
  11095. const int k0 = opts[1];
  11096. const int k1 = opts[2];
  11097. const int s0 = opts[3];
  11098. const int s1 = opts[4];
  11099. const int p0 = opts[5];
  11100. const int p1 = opts[6];
  11101. const char * cdata = (const char*)src->data;
  11102. const char * const data_end = cdata + ggml_nbytes(src);
  11103. const int64_t px = dst->ne[0];
  11104. const int64_t py = dst->ne[1];
  11105. const int64_t pa = px * py;
  11106. float * dplane = (float *)dst->data;
  11107. const int ka = k0 * k1;
  11108. const int offset0 = -p0;
  11109. const int offset1 = -p1;
  11110. while (cdata < data_end) {
  11111. for (int oy = 0; oy < py; ++oy) {
  11112. float * const drow = dplane + oy * px;
  11113. for (int ox = 0; ox < px; ++ox) {
  11114. float * const out = drow + ox;
  11115. switch (op) {
  11116. case GGML_OP_POOL_AVG: *out = 0; break;
  11117. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11118. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11119. }
  11120. const int ix = offset0 + ox * s0;
  11121. const int iy = offset1 + oy * s1;
  11122. for (int ky = 0; ky < k1; ++ky) {
  11123. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11124. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11125. for (int kx = 0; kx < k0; ++kx) {
  11126. int j = ix + kx;
  11127. if (j < 0 || j >= src->ne[0]) continue;
  11128. switch (op) {
  11129. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11130. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11131. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11132. }
  11133. }
  11134. }
  11135. switch (op) {
  11136. case GGML_OP_POOL_AVG: *out /= ka; break;
  11137. case GGML_OP_POOL_MAX: break;
  11138. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11139. }
  11140. }
  11141. }
  11142. cdata += src->nb[2];
  11143. dplane += pa;
  11144. }
  11145. }
  11146. // ggml_compute_forward_upscale
  11147. static void ggml_compute_forward_upscale_f32(
  11148. const struct ggml_compute_params * params,
  11149. struct ggml_tensor * dst) {
  11150. const struct ggml_tensor * src0 = dst->src[0];
  11151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11152. return;
  11153. }
  11154. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11155. const int ith = params->ith;
  11156. const int nth = params->nth;
  11157. GGML_TENSOR_UNARY_OP_LOCALS
  11158. const int scale_factor = dst->op_params[0];
  11159. // TODO: optimize
  11160. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11161. const int64_t i03 = i3;
  11162. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11163. const int64_t i02 = i2;
  11164. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11165. const int64_t i01 = i1 / scale_factor;
  11166. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11167. const int64_t i00 = i0 / scale_factor;
  11168. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11169. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11170. *y = *x;
  11171. }
  11172. }
  11173. }
  11174. }
  11175. }
  11176. static void ggml_compute_forward_upscale(
  11177. const struct ggml_compute_params * params,
  11178. struct ggml_tensor * dst) {
  11179. const struct ggml_tensor * src0 = dst->src[0];
  11180. switch (src0->type) {
  11181. case GGML_TYPE_F32:
  11182. {
  11183. ggml_compute_forward_upscale_f32(params, dst);
  11184. } break;
  11185. default:
  11186. {
  11187. GGML_ASSERT(false);
  11188. } break;
  11189. }
  11190. }
  11191. // ggml_compute_forward_pad
  11192. static void ggml_compute_forward_pad_f32(
  11193. const struct ggml_compute_params * params,
  11194. struct ggml_tensor * dst) {
  11195. const struct ggml_tensor * src0 = dst->src[0];
  11196. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11197. return;
  11198. }
  11199. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11200. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11201. const int ith = params->ith;
  11202. const int nth = params->nth;
  11203. GGML_TENSOR_UNARY_OP_LOCALS
  11204. float * dst_ptr = (float *) dst->data;
  11205. // TODO: optimize
  11206. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11207. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11208. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11209. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11210. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11211. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11212. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11213. dst_ptr[dst_idx] = *src_ptr;
  11214. } else {
  11215. dst_ptr[dst_idx] = 0;
  11216. }
  11217. }
  11218. }
  11219. }
  11220. }
  11221. }
  11222. static void ggml_compute_forward_pad(
  11223. const struct ggml_compute_params * params,
  11224. struct ggml_tensor * dst) {
  11225. const struct ggml_tensor * src0 = dst->src[0];
  11226. switch (src0->type) {
  11227. case GGML_TYPE_F32:
  11228. {
  11229. ggml_compute_forward_pad_f32(params, dst);
  11230. } break;
  11231. default:
  11232. {
  11233. GGML_ASSERT(false);
  11234. } break;
  11235. }
  11236. }
  11237. // ggml_compute_forward_arange
  11238. static void ggml_compute_forward_arange_f32(
  11239. const struct ggml_compute_params * params,
  11240. struct ggml_tensor * dst) {
  11241. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11242. return;
  11243. }
  11244. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11245. const int ith = params->ith;
  11246. const int nth = params->nth;
  11247. const float start = ggml_get_op_params_f32(dst, 0);
  11248. const float stop = ggml_get_op_params_f32(dst, 1);
  11249. const float step = ggml_get_op_params_f32(dst, 2);
  11250. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11251. GGML_ASSERT(ggml_nelements(dst) == steps);
  11252. for (int64_t i = ith; i < steps; i+= nth) {
  11253. float value = start + step * i;
  11254. ((float *)dst->data)[i] = value;
  11255. }
  11256. }
  11257. static void ggml_compute_forward_arange(
  11258. const struct ggml_compute_params * params,
  11259. struct ggml_tensor * dst) {
  11260. switch (dst->type) {
  11261. case GGML_TYPE_F32:
  11262. {
  11263. ggml_compute_forward_arange_f32(params, dst);
  11264. } break;
  11265. default:
  11266. {
  11267. GGML_ASSERT(false);
  11268. } break;
  11269. }
  11270. }
  11271. static void ggml_compute_forward_timestep_embedding_f32(
  11272. const struct ggml_compute_params * params,
  11273. struct ggml_tensor * dst) {
  11274. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11275. return;
  11276. }
  11277. const struct ggml_tensor * src0 = dst->src[0];
  11278. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11279. const int ith = params->ith;
  11280. const int nth = params->nth;
  11281. GGML_TENSOR_UNARY_OP_LOCALS
  11282. const int dim = ggml_get_op_params_i32(dst, 0);
  11283. const int max_period = ggml_get_op_params_i32(dst, 1);
  11284. int half = dim / 2;
  11285. for (int64_t i = 0; i < ne00; i++) {
  11286. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11287. for (int64_t j = ith; j < half; j += nth) {
  11288. float timestep = ((float *)src0->data)[i];
  11289. float freq = (float)expf(-logf(max_period) * j / half);
  11290. float arg = timestep * freq;
  11291. embed_data[j] = cosf(arg);
  11292. embed_data[j + half] = sinf(arg);
  11293. }
  11294. if (dim % 2 != 0 && ith == 0) {
  11295. embed_data[dim] = 0.f;
  11296. }
  11297. }
  11298. }
  11299. static void ggml_compute_forward_timestep_embedding(
  11300. const struct ggml_compute_params * params,
  11301. struct ggml_tensor * dst) {
  11302. const struct ggml_tensor * src0 = dst->src[0];
  11303. switch (src0->type) {
  11304. case GGML_TYPE_F32:
  11305. {
  11306. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11307. } break;
  11308. default:
  11309. {
  11310. GGML_ASSERT(false);
  11311. } break;
  11312. }
  11313. }
  11314. // ggml_compute_forward_argsort
  11315. static void ggml_compute_forward_argsort_f32(
  11316. const struct ggml_compute_params * params,
  11317. struct ggml_tensor * dst) {
  11318. const struct ggml_tensor * src0 = dst->src[0];
  11319. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11320. return;
  11321. }
  11322. GGML_TENSOR_UNARY_OP_LOCALS
  11323. GGML_ASSERT(nb0 == sizeof(float));
  11324. const int ith = params->ith;
  11325. const int nth = params->nth;
  11326. const int64_t nr = ggml_nrows(src0);
  11327. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11328. for (int64_t i = ith; i < nr; i += nth) {
  11329. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11330. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11331. for (int64_t j = 0; j < ne0; j++) {
  11332. dst_data[j] = j;
  11333. }
  11334. // C doesn't have a functional sort, so we do a bubble sort instead
  11335. for (int64_t j = 0; j < ne0; j++) {
  11336. for (int64_t k = j + 1; k < ne0; k++) {
  11337. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11338. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11339. int32_t tmp = dst_data[j];
  11340. dst_data[j] = dst_data[k];
  11341. dst_data[k] = tmp;
  11342. }
  11343. }
  11344. }
  11345. }
  11346. }
  11347. static void ggml_compute_forward_argsort(
  11348. const struct ggml_compute_params * params,
  11349. struct ggml_tensor * dst) {
  11350. const struct ggml_tensor * src0 = dst->src[0];
  11351. switch (src0->type) {
  11352. case GGML_TYPE_F32:
  11353. {
  11354. ggml_compute_forward_argsort_f32(params, dst);
  11355. } break;
  11356. default:
  11357. {
  11358. GGML_ASSERT(false);
  11359. } break;
  11360. }
  11361. }
  11362. // ggml_compute_forward_flash_attn
  11363. static void ggml_compute_forward_flash_attn_f32(
  11364. const struct ggml_compute_params * params,
  11365. const bool masked,
  11366. struct ggml_tensor * dst) {
  11367. const struct ggml_tensor * q = dst->src[0];
  11368. const struct ggml_tensor * k = dst->src[1];
  11369. const struct ggml_tensor * v = dst->src[2];
  11370. int64_t t0 = ggml_perf_time_us();
  11371. UNUSED(t0);
  11372. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11373. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11374. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11375. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11376. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11377. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11378. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11379. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11380. const int ith = params->ith;
  11381. const int nth = params->nth;
  11382. const int64_t D = neq0;
  11383. const int64_t N = neq1;
  11384. const int64_t P = nek1 - N;
  11385. const int64_t M = P + N;
  11386. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11387. GGML_ASSERT(ne0 == D);
  11388. GGML_ASSERT(ne1 == N);
  11389. GGML_ASSERT(P >= 0);
  11390. GGML_ASSERT(nbq0 == sizeof(float));
  11391. GGML_ASSERT(nbk0 == sizeof(float));
  11392. GGML_ASSERT(nbv0 == sizeof(float));
  11393. GGML_ASSERT(neq0 == D);
  11394. GGML_ASSERT(nek0 == D);
  11395. GGML_ASSERT(nev1 == D);
  11396. GGML_ASSERT(neq1 == N);
  11397. GGML_ASSERT(nek1 == N + P);
  11398. GGML_ASSERT(nev1 == D);
  11399. // dst cannot be transposed or permuted
  11400. GGML_ASSERT(nb0 == sizeof(float));
  11401. GGML_ASSERT(nb0 <= nb1);
  11402. GGML_ASSERT(nb1 <= nb2);
  11403. GGML_ASSERT(nb2 <= nb3);
  11404. if (params->type == GGML_TASK_TYPE_INIT) {
  11405. return;
  11406. }
  11407. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11408. return;
  11409. }
  11410. // parallelize by q rows using ggml_vec_dot_f32
  11411. // total rows in q
  11412. const int nr = neq1*neq2*neq3;
  11413. // rows per thread
  11414. const int dr = (nr + nth - 1)/nth;
  11415. // row range for this thread
  11416. const int ir0 = dr*ith;
  11417. const int ir1 = MIN(ir0 + dr, nr);
  11418. const float scale = 1.0f/sqrtf(D);
  11419. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11420. for (int ir = ir0; ir < ir1; ++ir) {
  11421. // q indices
  11422. const int iq3 = ir/(neq2*neq1);
  11423. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11424. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11425. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11426. for (int i = M; i < Mup; ++i) {
  11427. S[i] = -INFINITY;
  11428. }
  11429. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11430. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11431. // k indices
  11432. const int ik3 = iq3;
  11433. const int ik2 = iq2 % nek2;
  11434. const int ik1 = ic;
  11435. // S indices
  11436. const int i1 = ik1;
  11437. ggml_vec_dot_f32(neq0,
  11438. S + i1, 0,
  11439. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11440. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11441. }
  11442. // scale
  11443. ggml_vec_scale_f32(masked_begin, S, scale);
  11444. for (int64_t i = masked_begin; i < M; i++) {
  11445. S[i] = -INFINITY;
  11446. }
  11447. // softmax
  11448. // exclude known -INF S[..] values from max and loop
  11449. // dont forget to set their SW values to zero
  11450. {
  11451. float max = -INFINITY;
  11452. ggml_vec_max_f32(masked_begin, &max, S);
  11453. ggml_float sum = 0.0;
  11454. {
  11455. #ifdef GGML_SOFT_MAX_ACCELERATE
  11456. max = -max;
  11457. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11458. vvexpf(S, S, &Mup);
  11459. ggml_vec_sum_f32(Mup, &sum, S);
  11460. #else
  11461. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11462. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11463. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11464. if (i >= masked_begin) {
  11465. break;
  11466. }
  11467. float * SS = S + i;
  11468. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11469. if (i + j >= masked_begin) {
  11470. break;
  11471. } else if (SS[j] == -INFINITY) {
  11472. SS[j] = 0.0f;
  11473. } else {
  11474. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11475. const float val = expf(SS[j] - max);
  11476. #else
  11477. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11478. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11479. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11480. #endif
  11481. sump[j] += (ggml_float)val;
  11482. SS[j] = val;
  11483. }
  11484. }
  11485. }
  11486. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11487. sum += sump[i];
  11488. }
  11489. #endif
  11490. }
  11491. assert(sum > 0.0);
  11492. sum = 1.0/sum;
  11493. ggml_vec_scale_f32(masked_begin, S, sum);
  11494. #ifndef NDEBUG
  11495. for (int i = 0; i < masked_begin; ++i) {
  11496. assert(!isnan(S[i]));
  11497. assert(!isinf(S[i]));
  11498. }
  11499. #endif
  11500. }
  11501. for (int64_t ic = 0; ic < nev1; ++ic) {
  11502. // dst indices
  11503. const int i1 = iq1;
  11504. const int i2 = iq2;
  11505. const int i3 = iq3;
  11506. // v indices
  11507. const int iv2 = iq2 % nev2;
  11508. const int iv3 = iq3;
  11509. ggml_vec_dot_f32(masked_begin,
  11510. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11511. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11512. S, 0, 1);
  11513. }
  11514. }
  11515. }
  11516. static void ggml_compute_forward_flash_attn_f16(
  11517. const struct ggml_compute_params * params,
  11518. const bool masked,
  11519. struct ggml_tensor * dst) {
  11520. const struct ggml_tensor * q = dst->src[0];
  11521. const struct ggml_tensor * k = dst->src[1];
  11522. const struct ggml_tensor * v = dst->src[2];
  11523. int64_t t0 = ggml_perf_time_us();
  11524. UNUSED(t0);
  11525. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11526. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11527. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11528. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11529. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11530. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11531. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11532. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11533. const int ith = params->ith;
  11534. const int nth = params->nth;
  11535. const int64_t D = neq0;
  11536. const int64_t N = neq1;
  11537. const int64_t P = nek1 - N;
  11538. const int64_t M = P + N;
  11539. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11540. GGML_ASSERT(ne0 == D);
  11541. GGML_ASSERT(ne1 == N);
  11542. GGML_ASSERT(P >= 0);
  11543. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11544. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11545. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11546. GGML_ASSERT(neq0 == D);
  11547. GGML_ASSERT(nek0 == D);
  11548. GGML_ASSERT(nev1 == D);
  11549. GGML_ASSERT(neq1 == N);
  11550. GGML_ASSERT(nek1 == N + P);
  11551. GGML_ASSERT(nev1 == D);
  11552. // dst cannot be transposed or permuted
  11553. GGML_ASSERT(nb0 == sizeof(float));
  11554. GGML_ASSERT(nb0 <= nb1);
  11555. GGML_ASSERT(nb1 <= nb2);
  11556. GGML_ASSERT(nb2 <= nb3);
  11557. if (params->type == GGML_TASK_TYPE_INIT) {
  11558. return;
  11559. }
  11560. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11561. return;
  11562. }
  11563. // parallelize by q rows using ggml_vec_dot_f32
  11564. // total rows in q
  11565. const int nr = neq1*neq2*neq3;
  11566. // rows per thread
  11567. const int dr = (nr + nth - 1)/nth;
  11568. // row range for this thread
  11569. const int ir0 = dr*ith;
  11570. const int ir1 = MIN(ir0 + dr, nr);
  11571. const float scale = 1.0f/sqrtf(D);
  11572. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11573. for (int ir = ir0; ir < ir1; ++ir) {
  11574. // q indices
  11575. const int iq3 = ir/(neq2*neq1);
  11576. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11577. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11578. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11579. for (int i = M; i < Mup; ++i) {
  11580. S[i] = -INFINITY;
  11581. }
  11582. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11583. for (int64_t ic = 0; ic < nek1; ++ic) {
  11584. // k indices
  11585. const int ik3 = iq3;
  11586. const int ik2 = iq2 % nek2;
  11587. const int ik1 = ic;
  11588. // S indices
  11589. const int i1 = ik1;
  11590. ggml_vec_dot_f16(neq0,
  11591. S + i1, 0,
  11592. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11593. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11594. }
  11595. } else {
  11596. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11597. // k indices
  11598. const int ik3 = iq3;
  11599. const int ik2 = iq2 % nek2;
  11600. const int ik1 = ic;
  11601. // S indices
  11602. const int i1 = ik1;
  11603. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11604. S + i1,
  11605. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11606. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11607. }
  11608. }
  11609. // scale
  11610. ggml_vec_scale_f32(nek1, S, scale);
  11611. if (masked) {
  11612. for (int64_t i = P; i < M; i++) {
  11613. if (i > P + iq1) {
  11614. S[i] = -INFINITY;
  11615. }
  11616. }
  11617. }
  11618. // softmax
  11619. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11620. // dont forget to set their S values to zero
  11621. {
  11622. float max = -INFINITY;
  11623. ggml_vec_max_f32(M, &max, S);
  11624. ggml_float sum = 0.0;
  11625. {
  11626. #ifdef GGML_SOFT_MAX_ACCELERATE
  11627. max = -max;
  11628. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11629. vvexpf(S, S, &Mup);
  11630. ggml_vec_sum_f32(Mup, &sum, S);
  11631. #else
  11632. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11633. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11634. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11635. float * SS = S + i;
  11636. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11637. if (SS[j] == -INFINITY) {
  11638. SS[j] = 0.0f;
  11639. } else {
  11640. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11641. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11642. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11643. sump[j] += (ggml_float)val;
  11644. SS[j] = val;
  11645. }
  11646. }
  11647. }
  11648. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11649. sum += sump[i];
  11650. }
  11651. #endif
  11652. }
  11653. assert(sum > 0.0);
  11654. sum = 1.0/sum;
  11655. ggml_vec_scale_f32(M, S, sum);
  11656. #ifndef NDEBUG
  11657. for (int i = 0; i < M; ++i) {
  11658. assert(!isnan(S[i]));
  11659. assert(!isinf(S[i]));
  11660. }
  11661. #endif
  11662. }
  11663. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11664. for (int64_t i = 0; i < M; i++) {
  11665. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11666. }
  11667. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11668. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11669. for (int64_t ic = 0; ic < nev1; ++ic) {
  11670. // dst indices
  11671. const int i1 = iq1;
  11672. const int i2 = iq2;
  11673. const int i3 = iq3;
  11674. // v indices
  11675. const int iv2 = iq2 % nev2;
  11676. const int iv3 = iq3;
  11677. ggml_vec_dot_f16(nev0,
  11678. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11679. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11680. S16, 0, 1);
  11681. }
  11682. } else {
  11683. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11684. // dst indices
  11685. const int i1 = iq1;
  11686. const int i2 = iq2;
  11687. const int i3 = iq3;
  11688. // v indices
  11689. const int iv2 = iq2 % nev2;
  11690. const int iv3 = iq3;
  11691. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11692. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11693. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11694. S16);
  11695. }
  11696. }
  11697. }
  11698. }
  11699. static void ggml_compute_forward_flash_attn(
  11700. const struct ggml_compute_params * params,
  11701. const bool masked,
  11702. struct ggml_tensor * dst) {
  11703. const struct ggml_tensor * q = dst->src[0];
  11704. switch (q->type) {
  11705. case GGML_TYPE_F16:
  11706. {
  11707. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11708. } break;
  11709. case GGML_TYPE_F32:
  11710. {
  11711. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11712. } break;
  11713. default:
  11714. {
  11715. GGML_ASSERT(false);
  11716. } break;
  11717. }
  11718. }
  11719. // ggml_compute_forward_flash_ff
  11720. static void ggml_compute_forward_flash_ff_f16(
  11721. const struct ggml_compute_params * params,
  11722. struct ggml_tensor * dst) {
  11723. const struct ggml_tensor * a = dst->src[0]; // F16
  11724. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11725. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11726. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11727. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11728. int64_t t0 = ggml_perf_time_us();
  11729. UNUSED(t0);
  11730. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11731. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11732. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11733. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11734. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11735. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11736. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11737. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11738. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11739. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11740. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11741. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11742. const int ith = params->ith;
  11743. const int nth = params->nth;
  11744. const int64_t D = nea0;
  11745. //const int64_t N = nea1;
  11746. const int64_t M = neb01;
  11747. GGML_ASSERT(ne0 == nea0);
  11748. GGML_ASSERT(ne1 == nea1);
  11749. GGML_ASSERT(ne2 == nea2);
  11750. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11751. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11752. GGML_ASSERT(nbb10 == sizeof(float));
  11753. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11754. GGML_ASSERT(nbc10 == sizeof(float));
  11755. GGML_ASSERT(neb00 == D);
  11756. GGML_ASSERT(neb01 == M);
  11757. GGML_ASSERT(neb10 == M);
  11758. GGML_ASSERT(neb11 == 1);
  11759. GGML_ASSERT(nec00 == M);
  11760. GGML_ASSERT(nec01 == D);
  11761. GGML_ASSERT(nec10 == D);
  11762. GGML_ASSERT(nec11 == 1);
  11763. // dst cannot be transposed or permuted
  11764. GGML_ASSERT(nb0 == sizeof(float));
  11765. GGML_ASSERT(nb0 <= nb1);
  11766. GGML_ASSERT(nb1 <= nb2);
  11767. GGML_ASSERT(nb2 <= nb3);
  11768. if (params->type == GGML_TASK_TYPE_INIT) {
  11769. return;
  11770. }
  11771. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11772. return;
  11773. }
  11774. // parallelize by a rows using ggml_vec_dot_f32
  11775. // total rows in a
  11776. const int nr = nea1*nea2*nea3;
  11777. // rows per thread
  11778. const int dr = (nr + nth - 1)/nth;
  11779. // row range for this thread
  11780. const int ir0 = dr*ith;
  11781. const int ir1 = MIN(ir0 + dr, nr);
  11782. for (int ir = ir0; ir < ir1; ++ir) {
  11783. // a indices
  11784. const int ia3 = ir/(nea2*nea1);
  11785. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11786. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11787. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11788. for (int64_t ic = 0; ic < neb01; ++ic) {
  11789. // b0 indices
  11790. const int ib03 = ia3;
  11791. const int ib02 = ia2;
  11792. const int ib01 = ic;
  11793. // S indices
  11794. const int i1 = ib01;
  11795. ggml_vec_dot_f16(nea0,
  11796. S + i1, 0,
  11797. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11798. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11799. }
  11800. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11801. //ggml_vec_gelu_f32(neb01, S, S);
  11802. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11803. for (int64_t i = 0; i < M; i++) {
  11804. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11805. }
  11806. ggml_vec_gelu_f16(neb01, S16, S16);
  11807. {
  11808. // dst indices
  11809. const int i1 = ia1;
  11810. const int i2 = ia2;
  11811. const int i3 = ia3;
  11812. for (int64_t ic = 0; ic < nec01; ++ic) {
  11813. ggml_vec_dot_f16(neb01,
  11814. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11815. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11816. S16, 0, 1);
  11817. }
  11818. ggml_vec_add_f32(nec01,
  11819. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11820. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11821. (float *) c1->data);
  11822. }
  11823. }
  11824. }
  11825. static void ggml_compute_forward_flash_ff(
  11826. const struct ggml_compute_params * params,
  11827. struct ggml_tensor * dst) {
  11828. const struct ggml_tensor * b0 = dst->src[1];
  11829. switch (b0->type) {
  11830. case GGML_TYPE_F16:
  11831. {
  11832. ggml_compute_forward_flash_ff_f16(params, dst);
  11833. } break;
  11834. case GGML_TYPE_F32:
  11835. {
  11836. GGML_ASSERT(false); // TODO
  11837. } break;
  11838. default:
  11839. {
  11840. GGML_ASSERT(false);
  11841. } break;
  11842. }
  11843. }
  11844. // ggml_compute_forward_flash_attn_back
  11845. static void ggml_compute_forward_flash_attn_back_f32(
  11846. const struct ggml_compute_params * params,
  11847. const bool masked,
  11848. struct ggml_tensor * dst) {
  11849. const struct ggml_tensor * q = dst->src[0];
  11850. const struct ggml_tensor * k = dst->src[1];
  11851. const struct ggml_tensor * v = dst->src[2];
  11852. const struct ggml_tensor * d = dst->src[3];
  11853. int64_t t0 = ggml_perf_time_us();
  11854. UNUSED(t0);
  11855. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11856. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11857. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11858. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11859. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11860. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11861. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11862. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11863. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11864. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11865. const int ith = params->ith;
  11866. const int nth = params->nth;
  11867. const int64_t D = neq0;
  11868. const int64_t N = neq1;
  11869. const int64_t P = nek1 - N;
  11870. const int64_t M = P + N;
  11871. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11872. const int mxDM = MAX(D, Mup);
  11873. // GGML_ASSERT(ne0 == D);
  11874. // GGML_ASSERT(ne1 == N);
  11875. GGML_ASSERT(P >= 0);
  11876. GGML_ASSERT(nbq0 == sizeof(float));
  11877. GGML_ASSERT(nbk0 == sizeof(float));
  11878. GGML_ASSERT(nbv0 == sizeof(float));
  11879. GGML_ASSERT(neq0 == D);
  11880. GGML_ASSERT(nek0 == D);
  11881. GGML_ASSERT(nev1 == D);
  11882. GGML_ASSERT(ned0 == D);
  11883. GGML_ASSERT(neq1 == N);
  11884. GGML_ASSERT(nek1 == N + P);
  11885. GGML_ASSERT(nev1 == D);
  11886. GGML_ASSERT(ned1 == N);
  11887. // dst cannot be transposed or permuted
  11888. GGML_ASSERT(nb0 == sizeof(float));
  11889. GGML_ASSERT(nb0 <= nb1);
  11890. GGML_ASSERT(nb1 <= nb2);
  11891. GGML_ASSERT(nb2 <= nb3);
  11892. if (params->type == GGML_TASK_TYPE_INIT) {
  11893. if (ith == 0) {
  11894. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11895. }
  11896. return;
  11897. }
  11898. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11899. return;
  11900. }
  11901. const int64_t elem_q = ggml_nelements(q);
  11902. const int64_t elem_k = ggml_nelements(k);
  11903. enum ggml_type result_type = dst->type;
  11904. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11905. const size_t tsize = ggml_type_size(result_type);
  11906. const size_t offs_q = 0;
  11907. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11908. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11909. void * grad_q = (char *) dst->data;
  11910. void * grad_k = (char *) dst->data + offs_k;
  11911. void * grad_v = (char *) dst->data + offs_v;
  11912. const size_t nbgq1 = nb0*neq0;
  11913. const size_t nbgq2 = nb0*neq0*neq1;
  11914. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11915. const size_t nbgk1 = nb0*nek0;
  11916. const size_t nbgk2 = nb0*nek0*nek1;
  11917. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11918. const size_t nbgv1 = nb0*nev0;
  11919. const size_t nbgv2 = nb0*nev0*nev1;
  11920. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11921. // parallelize by k rows using ggml_vec_dot_f32
  11922. // total rows in k
  11923. const int nr = nek2*nek3;
  11924. // rows per thread
  11925. const int dr = (nr + nth - 1)/nth;
  11926. // row range for this thread
  11927. const int ir0 = dr*ith;
  11928. const int ir1 = MIN(ir0 + dr, nr);
  11929. const float scale = 1.0f/sqrtf(D);
  11930. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11931. // how often k2 (and v2) is repeated in q2
  11932. int nrep = neq2/nek2;
  11933. for (int ir = ir0; ir < ir1; ++ir) {
  11934. // q indices
  11935. const int ik3 = ir/(nek2);
  11936. const int ik2 = ir - ik3*nek2;
  11937. const int iq3 = ik3;
  11938. const int id3 = ik3;
  11939. const int iv3 = ik3;
  11940. const int iv2 = ik2;
  11941. for (int irep = 0; irep < nrep; ++irep) {
  11942. const int iq2 = ik2 + irep*nek2;
  11943. const int id2 = iq2;
  11944. // (ik2 + irep*nek2) % nek2 == ik2
  11945. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11946. const int id1 = iq1;
  11947. // not sure about CACHE_LINE_SIZE_F32..
  11948. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11949. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11950. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11951. for (int i = M; i < Mup; ++i) {
  11952. S[i] = -INFINITY;
  11953. }
  11954. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11955. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11956. // k indices
  11957. const int ik1 = ic;
  11958. // S indices
  11959. const int i1 = ik1;
  11960. ggml_vec_dot_f32(neq0,
  11961. S + i1, 0,
  11962. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11963. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11964. }
  11965. // scale
  11966. ggml_vec_scale_f32(masked_begin, S, scale);
  11967. for (int64_t i = masked_begin; i < M; i++) {
  11968. S[i] = -INFINITY;
  11969. }
  11970. // softmax
  11971. // exclude known -INF S[..] values from max and loop
  11972. // dont forget to set their SM values to zero
  11973. {
  11974. float max = -INFINITY;
  11975. ggml_vec_max_f32(masked_begin, &max, S);
  11976. ggml_float sum = 0.0;
  11977. {
  11978. #ifdef GGML_SOFT_MAX_ACCELERATE
  11979. max = -max;
  11980. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11981. vvexpf(SM, SM, &Mup);
  11982. ggml_vec_sum_f32(Mup, &sum, SM);
  11983. #else
  11984. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11985. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11986. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11987. if (i >= masked_begin) {
  11988. break;
  11989. }
  11990. float * SR = S + i;
  11991. float * SW = SM + i;
  11992. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11993. if (i + j >= masked_begin) {
  11994. break;
  11995. } else if (SR[j] == -INFINITY) {
  11996. SW[j] = 0.0f;
  11997. } else {
  11998. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11999. const float val = expf(SR[j] - max);
  12000. #else
  12001. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12002. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12003. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12004. #endif
  12005. sump[j] += (ggml_float)val;
  12006. SW[j] = val;
  12007. }
  12008. }
  12009. }
  12010. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12011. sum += sump[i];
  12012. }
  12013. #endif
  12014. }
  12015. assert(sum > 0.0);
  12016. sum = 1.0/sum;
  12017. ggml_vec_scale_f32(masked_begin, SM, sum);
  12018. }
  12019. // step-by-step explanation
  12020. {
  12021. // forward-process shape grads from backward process
  12022. // parallel_for ik2,ik3:
  12023. // for irep:
  12024. // iq2 = ik2 + irep*nek2
  12025. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12026. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12027. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12028. // for iq1:
  12029. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12030. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12031. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12032. // S0 = -Inf [D,1,1,1]
  12033. // ~S1[i] = dot(kcur[:D,i], qcur)
  12034. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12035. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12036. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12037. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12038. // ~S5[i] = dot(vcur[:,i], S4)
  12039. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12040. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12041. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12042. // dst backward-/ grad[dst] = d
  12043. //
  12044. // output gradients with their dependencies:
  12045. //
  12046. // grad[kcur] = grad[S1].T @ qcur
  12047. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12048. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12049. // grad[S4] = grad[S5] @ vcur
  12050. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12051. // grad[qcur] = grad[S1] @ kcur
  12052. // grad[vcur] = grad[S5].T @ S4
  12053. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12054. //
  12055. // in post-order:
  12056. //
  12057. // S1 = qcur @ kcur.T
  12058. // S2 = S1 * scale
  12059. // S3 = diag_mask_inf(S2, P)
  12060. // S4 = softmax(S3)
  12061. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12062. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12063. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12064. // grad[qcur] = grad[S1] @ kcur
  12065. // grad[kcur] = grad[S1].T @ qcur
  12066. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12067. //
  12068. // using less variables (SM=S4):
  12069. //
  12070. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12071. // SM = softmax(S)
  12072. // S = d[:D,iq1,iq2,iq3] @ vcur
  12073. // dot_SM_gradSM = dot(SM, S)
  12074. // S = SM * (S - dot(SM, S))
  12075. // S = diag_mask_zero(S, P) * scale
  12076. //
  12077. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12078. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12079. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12080. }
  12081. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12082. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12083. // for ic:
  12084. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12085. // exclude known future zero S[..] values from operation
  12086. ggml_vec_set_f32(masked_begin, S, 0);
  12087. for (int64_t ic = 0; ic < D; ++ic) {
  12088. ggml_vec_mad_f32(masked_begin,
  12089. S,
  12090. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12091. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12092. }
  12093. // S = SM * (S - dot(SM, S))
  12094. float dot_SM_gradSM = 0;
  12095. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12096. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12097. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12098. // S = diag_mask_zero(S, P) * scale
  12099. // already done by above ggml_vec_set_f32
  12100. // exclude known zero S[..] values from operation
  12101. ggml_vec_scale_f32(masked_begin, S, scale);
  12102. // S shape [M,1]
  12103. // SM shape [M,1]
  12104. // kcur shape [D,M]
  12105. // qcur shape [D,1]
  12106. // vcur shape [M,D]
  12107. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12108. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12109. // for ic:
  12110. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12111. // exclude known zero S[..] values from loop
  12112. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12113. ggml_vec_mad_f32(D,
  12114. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12115. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12116. S[ic]);
  12117. }
  12118. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12119. // for ic:
  12120. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12121. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12122. // exclude known zero S[..] values from loop
  12123. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12124. ggml_vec_mad_f32(D,
  12125. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12126. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12127. S[ic]);
  12128. }
  12129. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12130. // for ic:
  12131. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12132. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12133. // exclude known zero SM[..] values from mad
  12134. for (int64_t ic = 0; ic < D; ++ic) {
  12135. ggml_vec_mad_f32(masked_begin,
  12136. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12137. SM,
  12138. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12139. }
  12140. }
  12141. }
  12142. }
  12143. }
  12144. static void ggml_compute_forward_flash_attn_back(
  12145. const struct ggml_compute_params * params,
  12146. const bool masked,
  12147. struct ggml_tensor * dst) {
  12148. const struct ggml_tensor * q = dst->src[0];
  12149. switch (q->type) {
  12150. case GGML_TYPE_F32:
  12151. {
  12152. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12153. } break;
  12154. default:
  12155. {
  12156. GGML_ASSERT(false);
  12157. } break;
  12158. }
  12159. }
  12160. // ggml_compute_forward_ssm_conv
  12161. static void ggml_compute_forward_ssm_conv_f32(
  12162. const struct ggml_compute_params * params,
  12163. struct ggml_tensor * dst) {
  12164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12165. return;
  12166. }
  12167. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12168. const struct ggml_tensor * src1 = dst->src[1]; // x
  12169. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12170. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12171. const int ith = params->ith;
  12172. const int nth = params->nth;
  12173. const int nc = src2->ne[0]; // d_conv
  12174. const int nr = src0->ne[1]; // d_inner
  12175. const int n_t = src1->ne[1]; // n_tokens
  12176. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12177. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12178. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12179. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12180. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12181. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12182. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12183. // for use with the destination state offset between sequences
  12184. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12185. // rows per thread
  12186. const int dr = (nr + nth - 1)/nth;
  12187. // row range for this thread
  12188. const int ir0 = dr*ith;
  12189. const int ir1 = MIN(ir0 + dr, nr);
  12190. const int ir = ir1 - ir0;
  12191. if (n_kv > 1) {
  12192. // multiple sequences means it's hard to know when it's the first time a state is read,
  12193. // so copy them all over to the destination, just to be sure.
  12194. for (int i3 = 0; i3 < n_kv; ++i3) {
  12195. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12196. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12197. // can't use memcpy because of d_conv vs d_conv - 1
  12198. for (int i1 = 0; i1 < ir; ++i1) {
  12199. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12200. // copy s0 to last (d_conv - 1) columns of s
  12201. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12202. }
  12203. }
  12204. }
  12205. }
  12206. for (int i2 = 0; i2 < n_t; ++i2) {
  12207. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12208. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12209. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12210. float * s0; // {d_conv - 1, d_inner, n_kv}
  12211. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12212. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12213. int ne0s0;
  12214. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12215. // avoid needing to copy the state for the first token
  12216. if (i2 == 0) {
  12217. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12218. ne0s0 = src0->ne[0];
  12219. } else {
  12220. // the source is the last (d_conv - 1) columns of the destination
  12221. s0 = s + 1;
  12222. ne0s0 = nc;
  12223. }
  12224. // d_inner
  12225. for (int i1 = 0; i1 < ir; ++i1) {
  12226. // shift state left
  12227. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12228. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12229. }
  12230. // insert x on the last column
  12231. s[(nc - 1) + i1*nc] = x0[i1];
  12232. }
  12233. // handle copies when there are multiple output states
  12234. for (int i3 = 1; i3 < n_kv; ++i3) {
  12235. int32_t seq = sq[i3];
  12236. if (0 <= seq && seq < n_kv) {
  12237. float * s1 = s + (seq - sq[0])*nc*nr;
  12238. memcpy(s1, s, nc*ir*sizeof(float));
  12239. } else {
  12240. // stop at negative or too big seq_ids
  12241. break;
  12242. }
  12243. }
  12244. // it seems a little faster when this is separate from the state shift
  12245. for (int i1 = 0; i1 < ir; ++i1) {
  12246. // rowwise dot product
  12247. float sumf = 0.0f;
  12248. for (int i0 = 0; i0 < nc; ++i0) {
  12249. int i = i0 + i1*nc;
  12250. sumf += s[i] * c[i];
  12251. }
  12252. x[i1] = sumf;
  12253. }
  12254. }
  12255. }
  12256. static void ggml_compute_forward_ssm_conv(
  12257. const struct ggml_compute_params * params,
  12258. struct ggml_tensor * dst) {
  12259. switch (dst->src[0]->type) {
  12260. case GGML_TYPE_F32:
  12261. {
  12262. ggml_compute_forward_ssm_conv_f32(params, dst);
  12263. } break;
  12264. default:
  12265. {
  12266. GGML_ASSERT(false);
  12267. } break;
  12268. }
  12269. }
  12270. // ggml_compute_forward_ssm_scan
  12271. static void ggml_compute_forward_ssm_scan_f32(
  12272. const struct ggml_compute_params * params,
  12273. struct ggml_tensor * dst) {
  12274. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12275. return;
  12276. }
  12277. const struct ggml_tensor * src0 = dst->src[0]; // s
  12278. const struct ggml_tensor * src1 = dst->src[1]; // x
  12279. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12280. const struct ggml_tensor * src3 = dst->src[3]; // A
  12281. const struct ggml_tensor * src4 = dst->src[4]; // B
  12282. const struct ggml_tensor * src5 = dst->src[5]; // C
  12283. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12284. const int ith = params->ith;
  12285. const int nth = params->nth;
  12286. const int64_t nc = src0->ne[0]; // d_state
  12287. const int64_t nr = src0->ne[1]; // d_inner
  12288. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12289. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12290. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12291. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12292. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12293. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12294. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12295. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12296. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12297. // required for the dot product between s and C, and when copying the states
  12298. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12299. // required for per-sequence offsets for states
  12300. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12301. // required to get correct offset for state destination (i.e. src1->nb[2])
  12302. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12303. // rows per thread
  12304. const int dr = (nr + nth - 1)/nth;
  12305. // row range for this thread
  12306. const int ir0 = dr*ith;
  12307. const int ir1 = MIN(ir0 + dr, nr);
  12308. const int ir = ir1 - ir0;
  12309. if (n_kv > 1) {
  12310. // it's hard to know if the source states have already been copied
  12311. // when there are multiple, so copy them already.
  12312. for (int i3 = 0; i3 < n_kv; ++i3) {
  12313. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12314. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12315. memcpy(s, s0, nc*ir*sizeof(float));
  12316. }
  12317. }
  12318. for (int i2 = 0; i2 < n_t; ++i2) {
  12319. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12320. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12321. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12322. float * s0;
  12323. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12324. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12325. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12326. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12327. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12328. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12329. // avoid needing to copy the state for the first token
  12330. if (i2 == 0) {
  12331. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12332. } else {
  12333. // otherwise the source is the same as the destination
  12334. s0 = s;
  12335. }
  12336. // d_inner
  12337. for (int i1 = 0; i1 < ir; ++i1) {
  12338. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12339. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12340. float x_dt = x[i1] * dt_soft_plus;
  12341. float sumf = 0.0f;
  12342. // d_state
  12343. for (int i0 = 0; i0 < nc; ++i0) {
  12344. int i = i0 + i1*nc;
  12345. // state = prev_state * dA + dB * x
  12346. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12347. // y = rowwise_dotprod(state, C)
  12348. sumf += state * C[i0];
  12349. s[i] = state;
  12350. }
  12351. y[i1] = sumf;
  12352. }
  12353. // handle copies when there are multiple output states
  12354. for (int i3 = 1; i3 < n_kv; ++i3) {
  12355. int32_t seq = sq[i3];
  12356. if (0 <= seq && seq < n_kv) {
  12357. float * s1 = s + (seq - sq[0])*nc*nr;
  12358. memcpy(s1, s, nc*ir*sizeof(float));
  12359. } else {
  12360. // stop at negative or too big seq_ids
  12361. break;
  12362. }
  12363. }
  12364. }
  12365. }
  12366. static void ggml_compute_forward_ssm_scan(
  12367. const struct ggml_compute_params * params,
  12368. struct ggml_tensor * dst) {
  12369. switch (dst->src[0]->type) {
  12370. case GGML_TYPE_F32:
  12371. {
  12372. ggml_compute_forward_ssm_scan_f32(params, dst);
  12373. } break;
  12374. default:
  12375. {
  12376. GGML_ASSERT(false);
  12377. } break;
  12378. }
  12379. }
  12380. // ggml_compute_forward_win_part
  12381. static void ggml_compute_forward_win_part_f32(
  12382. const struct ggml_compute_params * params,
  12383. struct ggml_tensor * dst) {
  12384. const struct ggml_tensor * src0 = dst->src[0];
  12385. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12386. return;
  12387. }
  12388. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12389. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12390. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12391. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12392. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12393. assert(ne00 == ne0);
  12394. assert(ne3 == nep0*nep1);
  12395. // TODO: optimize / multi-thread
  12396. for (int py = 0; py < nep1; ++py) {
  12397. for (int px = 0; px < nep0; ++px) {
  12398. const int64_t i3 = py*nep0 + px;
  12399. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12400. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12401. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12402. const int64_t i02 = py*w + i2;
  12403. const int64_t i01 = px*w + i1;
  12404. const int64_t i00 = i0;
  12405. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12406. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12407. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12408. ((float *) dst->data)[i] = 0.0f;
  12409. } else {
  12410. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12411. }
  12412. }
  12413. }
  12414. }
  12415. }
  12416. }
  12417. }
  12418. static void ggml_compute_forward_win_part(
  12419. const struct ggml_compute_params * params,
  12420. struct ggml_tensor * dst) {
  12421. const struct ggml_tensor * src0 = dst->src[0];
  12422. switch (src0->type) {
  12423. case GGML_TYPE_F32:
  12424. {
  12425. ggml_compute_forward_win_part_f32(params, dst);
  12426. } break;
  12427. default:
  12428. {
  12429. GGML_ASSERT(false);
  12430. } break;
  12431. }
  12432. }
  12433. // ggml_compute_forward_win_unpart
  12434. static void ggml_compute_forward_win_unpart_f32(
  12435. const struct ggml_compute_params * params,
  12436. struct ggml_tensor * dst) {
  12437. const struct ggml_tensor * src0 = dst->src[0];
  12438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12439. return;
  12440. }
  12441. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12442. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12443. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12444. // padding
  12445. const int px = (w - ne1%w)%w;
  12446. //const int py = (w - ne2%w)%w;
  12447. const int npx = (px + ne1)/w;
  12448. //const int npy = (py + ne2)/w;
  12449. assert(ne0 == ne00);
  12450. // TODO: optimize / multi-thread
  12451. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12452. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12453. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12454. const int ip2 = i2/w;
  12455. const int ip1 = i1/w;
  12456. const int64_t i02 = i2%w;
  12457. const int64_t i01 = i1%w;
  12458. const int64_t i00 = i0;
  12459. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12460. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12461. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12462. }
  12463. }
  12464. }
  12465. }
  12466. static void ggml_compute_forward_win_unpart(
  12467. const struct ggml_compute_params * params,
  12468. struct ggml_tensor * dst) {
  12469. const struct ggml_tensor * src0 = dst->src[0];
  12470. switch (src0->type) {
  12471. case GGML_TYPE_F32:
  12472. {
  12473. ggml_compute_forward_win_unpart_f32(params, dst);
  12474. } break;
  12475. default:
  12476. {
  12477. GGML_ASSERT(false);
  12478. } break;
  12479. }
  12480. }
  12481. //gmml_compute_forward_unary
  12482. static void ggml_compute_forward_unary(
  12483. const struct ggml_compute_params * params,
  12484. struct ggml_tensor * dst) {
  12485. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12486. switch (op) {
  12487. case GGML_UNARY_OP_ABS:
  12488. {
  12489. ggml_compute_forward_abs(params, dst);
  12490. } break;
  12491. case GGML_UNARY_OP_SGN:
  12492. {
  12493. ggml_compute_forward_sgn(params, dst);
  12494. } break;
  12495. case GGML_UNARY_OP_NEG:
  12496. {
  12497. ggml_compute_forward_neg(params, dst);
  12498. } break;
  12499. case GGML_UNARY_OP_STEP:
  12500. {
  12501. ggml_compute_forward_step(params, dst);
  12502. } break;
  12503. case GGML_UNARY_OP_TANH:
  12504. {
  12505. ggml_compute_forward_tanh(params, dst);
  12506. } break;
  12507. case GGML_UNARY_OP_ELU:
  12508. {
  12509. ggml_compute_forward_elu(params, dst);
  12510. } break;
  12511. case GGML_UNARY_OP_RELU:
  12512. {
  12513. ggml_compute_forward_relu(params, dst);
  12514. } break;
  12515. case GGML_UNARY_OP_GELU:
  12516. {
  12517. ggml_compute_forward_gelu(params, dst);
  12518. } break;
  12519. case GGML_UNARY_OP_GELU_QUICK:
  12520. {
  12521. ggml_compute_forward_gelu_quick(params, dst);
  12522. } break;
  12523. case GGML_UNARY_OP_SILU:
  12524. {
  12525. ggml_compute_forward_silu(params, dst);
  12526. } break;
  12527. case GGML_UNARY_OP_HARDSWISH:
  12528. {
  12529. ggml_compute_forward_hardswish(params, dst);
  12530. } break;
  12531. case GGML_UNARY_OP_HARDSIGMOID:
  12532. {
  12533. ggml_compute_forward_hardsigmoid(params, dst);
  12534. } break;
  12535. default:
  12536. {
  12537. GGML_ASSERT(false);
  12538. } break;
  12539. }
  12540. }
  12541. // ggml_compute_forward_get_rel_pos
  12542. static void ggml_compute_forward_get_rel_pos_f16(
  12543. const struct ggml_compute_params * params,
  12544. struct ggml_tensor * dst) {
  12545. const struct ggml_tensor * src0 = dst->src[0];
  12546. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12547. return;
  12548. }
  12549. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12550. GGML_TENSOR_UNARY_OP_LOCALS
  12551. const int64_t w = ne1;
  12552. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12553. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12554. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12555. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12556. const int64_t pos = (w - i1 - 1) + i2;
  12557. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12558. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12559. }
  12560. }
  12561. }
  12562. }
  12563. static void ggml_compute_forward_get_rel_pos(
  12564. const struct ggml_compute_params * params,
  12565. struct ggml_tensor * dst) {
  12566. const struct ggml_tensor * src0 = dst->src[0];
  12567. switch (src0->type) {
  12568. case GGML_TYPE_F16:
  12569. {
  12570. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12571. } break;
  12572. default:
  12573. {
  12574. GGML_ASSERT(false);
  12575. } break;
  12576. }
  12577. }
  12578. // ggml_compute_forward_add_rel_pos
  12579. static void ggml_compute_forward_add_rel_pos_f32(
  12580. const struct ggml_compute_params * params,
  12581. struct ggml_tensor * dst) {
  12582. const struct ggml_tensor * src0 = dst->src[0];
  12583. const struct ggml_tensor * src1 = dst->src[1];
  12584. const struct ggml_tensor * src2 = dst->src[2];
  12585. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12586. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12587. if (params->ith != 0) {
  12588. return;
  12589. }
  12590. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12591. return;
  12592. }
  12593. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12594. return;
  12595. }
  12596. int64_t t0 = ggml_perf_time_us();
  12597. UNUSED(t0);
  12598. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12599. float * src1_data = (float *) src1->data;
  12600. float * src2_data = (float *) src2->data;
  12601. float * dst_data = (float *) dst->data;
  12602. const int64_t ne10 = src1->ne[0];
  12603. const int64_t ne11 = src1->ne[1];
  12604. const int64_t ne12 = src1->ne[2];
  12605. const int64_t ne13 = src1->ne[3];
  12606. const int ith = params->ith;
  12607. const int nth = params->nth;
  12608. // total patches in dst
  12609. const int np = ne13;
  12610. // patches per thread
  12611. const int dp = (np + nth - 1)/nth;
  12612. // patch range for this thread
  12613. const int ip0 = dp*ith;
  12614. const int ip1 = MIN(ip0 + dp, np);
  12615. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12616. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12617. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12618. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12619. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12620. const int64_t jp0 = jp1 + i10;
  12621. const float src1_e = src1_data[jp0];
  12622. const float src2_e = src2_data[jp0];
  12623. const int64_t jdh = jp0 * ne10;
  12624. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12625. for (int64_t j = 0; j < ne10; ++j) {
  12626. dst_data[jdh + j ] += src2_e;
  12627. dst_data[jdw + j*ne10] += src1_e;
  12628. }
  12629. }
  12630. }
  12631. }
  12632. }
  12633. }
  12634. static void ggml_compute_forward_add_rel_pos(
  12635. const struct ggml_compute_params * params,
  12636. struct ggml_tensor * dst) {
  12637. const struct ggml_tensor * src0 = dst->src[0];
  12638. switch (src0->type) {
  12639. case GGML_TYPE_F32:
  12640. {
  12641. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12642. } break;
  12643. default:
  12644. {
  12645. GGML_ASSERT(false);
  12646. } break;
  12647. }
  12648. }
  12649. // ggml_compute_forward_map_unary
  12650. static void ggml_compute_forward_map_unary_f32(
  12651. const struct ggml_compute_params * params,
  12652. struct ggml_tensor * dst,
  12653. const ggml_unary_op_f32_t fun) {
  12654. const struct ggml_tensor * src0 = dst->src[0];
  12655. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12656. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12657. return;
  12658. }
  12659. const int n = ggml_nrows(src0);
  12660. const int nc = src0->ne[0];
  12661. assert( dst->nb[0] == sizeof(float));
  12662. assert(src0->nb[0] == sizeof(float));
  12663. for (int i = 0; i < n; i++) {
  12664. fun(nc,
  12665. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12666. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12667. }
  12668. }
  12669. static void ggml_compute_forward_map_unary(
  12670. const struct ggml_compute_params * params,
  12671. struct ggml_tensor * dst,
  12672. const ggml_unary_op_f32_t fun) {
  12673. const struct ggml_tensor * src0 = dst->src[0];
  12674. switch (src0->type) {
  12675. case GGML_TYPE_F32:
  12676. {
  12677. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12678. } break;
  12679. default:
  12680. {
  12681. GGML_ASSERT(false);
  12682. } break;
  12683. }
  12684. }
  12685. // ggml_compute_forward_map_binary
  12686. static void ggml_compute_forward_map_binary_f32(
  12687. const struct ggml_compute_params * params,
  12688. struct ggml_tensor * dst,
  12689. const ggml_binary_op_f32_t fun) {
  12690. const struct ggml_tensor * src0 = dst->src[0];
  12691. const struct ggml_tensor * src1 = dst->src[1];
  12692. assert(params->ith == 0);
  12693. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12694. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12695. return;
  12696. }
  12697. const int n = ggml_nrows(src0);
  12698. const int nc = src0->ne[0];
  12699. assert( dst->nb[0] == sizeof(float));
  12700. assert(src0->nb[0] == sizeof(float));
  12701. assert(src1->nb[0] == sizeof(float));
  12702. for (int i = 0; i < n; i++) {
  12703. fun(nc,
  12704. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12705. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12706. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12707. }
  12708. }
  12709. static void ggml_compute_forward_map_binary(
  12710. const struct ggml_compute_params * params,
  12711. struct ggml_tensor * dst,
  12712. const ggml_binary_op_f32_t fun) {
  12713. const struct ggml_tensor * src0 = dst->src[0];
  12714. switch (src0->type) {
  12715. case GGML_TYPE_F32:
  12716. {
  12717. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12718. } break;
  12719. default:
  12720. {
  12721. GGML_ASSERT(false);
  12722. } break;
  12723. }
  12724. }
  12725. // ggml_compute_forward_map_custom1
  12726. static void ggml_compute_forward_map_custom1_f32(
  12727. const struct ggml_compute_params * params,
  12728. struct ggml_tensor * dst,
  12729. const ggml_custom1_op_f32_t fun) {
  12730. const struct ggml_tensor * a = dst->src[0];
  12731. assert(params->ith == 0);
  12732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12733. return;
  12734. }
  12735. fun(dst, a);
  12736. }
  12737. // ggml_compute_forward_map_custom2
  12738. static void ggml_compute_forward_map_custom2_f32(
  12739. const struct ggml_compute_params * params,
  12740. struct ggml_tensor * dst,
  12741. const ggml_custom2_op_f32_t fun) {
  12742. const struct ggml_tensor * a = dst->src[0];
  12743. const struct ggml_tensor * b = dst->src[1];
  12744. assert(params->ith == 0);
  12745. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12746. return;
  12747. }
  12748. fun(dst, a, b);
  12749. }
  12750. // ggml_compute_forward_map_custom3
  12751. static void ggml_compute_forward_map_custom3_f32(
  12752. const struct ggml_compute_params * params,
  12753. struct ggml_tensor * dst,
  12754. const ggml_custom3_op_f32_t fun) {
  12755. const struct ggml_tensor * a = dst->src[0];
  12756. const struct ggml_tensor * b = dst->src[1];
  12757. const struct ggml_tensor * c = dst->src[1];
  12758. assert(params->ith == 0);
  12759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12760. return;
  12761. }
  12762. fun(dst, a, b, c);
  12763. }
  12764. // ggml_compute_forward_map_custom1
  12765. static void ggml_compute_forward_map_custom1(
  12766. const struct ggml_compute_params * params,
  12767. struct ggml_tensor * dst) {
  12768. const struct ggml_tensor * a = dst->src[0];
  12769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12770. return;
  12771. }
  12772. struct ggml_map_custom1_op_params p;
  12773. memcpy(&p, dst->op_params, sizeof(p));
  12774. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12775. }
  12776. // ggml_compute_forward_map_custom2
  12777. static void ggml_compute_forward_map_custom2(
  12778. const struct ggml_compute_params * params,
  12779. struct ggml_tensor * dst) {
  12780. const struct ggml_tensor * a = dst->src[0];
  12781. const struct ggml_tensor * b = dst->src[1];
  12782. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12783. return;
  12784. }
  12785. struct ggml_map_custom2_op_params p;
  12786. memcpy(&p, dst->op_params, sizeof(p));
  12787. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12788. }
  12789. // ggml_compute_forward_map_custom3
  12790. static void ggml_compute_forward_map_custom3(
  12791. const struct ggml_compute_params * params,
  12792. struct ggml_tensor * dst) {
  12793. const struct ggml_tensor * a = dst->src[0];
  12794. const struct ggml_tensor * b = dst->src[1];
  12795. const struct ggml_tensor * c = dst->src[2];
  12796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12797. return;
  12798. }
  12799. struct ggml_map_custom3_op_params p;
  12800. memcpy(&p, dst->op_params, sizeof(p));
  12801. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12802. }
  12803. // ggml_compute_forward_cross_entropy_loss
  12804. static void ggml_compute_forward_cross_entropy_loss_f32(
  12805. const struct ggml_compute_params * params,
  12806. struct ggml_tensor * dst) {
  12807. const struct ggml_tensor * src0 = dst->src[0];
  12808. const struct ggml_tensor * src1 = dst->src[1];
  12809. GGML_ASSERT(ggml_is_contiguous(src0));
  12810. GGML_ASSERT(ggml_is_contiguous(src1));
  12811. GGML_ASSERT(ggml_is_scalar(dst));
  12812. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12813. const int ith = params->ith;
  12814. const int nth = params->nth;
  12815. float * sums = (float *) params->wdata;
  12816. // TODO: handle transposed/permuted matrices
  12817. const int nc = src0->ne[0];
  12818. const int nr = ggml_nrows(src0);
  12819. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12820. if (params->type == GGML_TASK_TYPE_INIT) {
  12821. if (ith == 0) {
  12822. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12823. }
  12824. return;
  12825. }
  12826. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12827. if (ith == 0) {
  12828. float * dp = (float *) dst->data;
  12829. ggml_vec_sum_f32(nth, dp, sums);
  12830. dp[0] *= -1.0f / (float) nr;
  12831. }
  12832. return;
  12833. }
  12834. const double eps = 1e-9;
  12835. // rows per thread
  12836. const int dr = (nr + nth - 1)/nth;
  12837. // row range for this thread
  12838. const int ir0 = dr*ith;
  12839. const int ir1 = MIN(ir0 + dr, nr);
  12840. for (int i1 = ir0; i1 < ir1; i1++) {
  12841. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12842. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12843. float * st = ((float *) params->wdata) + nth + ith*nc;
  12844. #ifndef NDEBUG
  12845. for (int i = 0; i < nc; ++i) {
  12846. //printf("p[%d] = %f\n", i, p[i]);
  12847. assert(!isnan(s0[i]));
  12848. assert(!isnan(s1[i]));
  12849. }
  12850. #endif
  12851. // soft_max
  12852. ggml_float sum = 0.0;
  12853. {
  12854. float max = -INFINITY;
  12855. ggml_vec_max_f32(nc, &max, s0);
  12856. uint16_t scvt; UNUSED(scvt);
  12857. for (int i = 0; i < nc; i++) {
  12858. if (s0[i] == -INFINITY) {
  12859. st[i] = 0.0f;
  12860. } else {
  12861. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12862. const float s = s0[i] - max;
  12863. const float val = expf(s);
  12864. #else
  12865. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12866. memcpy(&scvt, &s, sizeof(scvt));
  12867. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12868. #endif
  12869. sum += (ggml_float)val;
  12870. st[i] = val;
  12871. }
  12872. }
  12873. assert(sum > 0.0);
  12874. // sum = 1.0/sum;
  12875. }
  12876. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12877. sum = (1.0 - eps) / sum;
  12878. ggml_vec_scale_f32(nc, st, sum);
  12879. ggml_vec_add1_f32(nc, st, st, eps);
  12880. ggml_vec_log_f32(nc, st, st);
  12881. ggml_vec_mul_f32(nc, st, st, s1);
  12882. float st_sum = 0;
  12883. ggml_vec_sum_f32(nc, &st_sum, st);
  12884. sums[ith] += st_sum;
  12885. #ifndef NDEBUG
  12886. for (int i = 0; i < nc; ++i) {
  12887. assert(!isnan(st[i]));
  12888. assert(!isinf(st[i]));
  12889. }
  12890. #endif
  12891. }
  12892. }
  12893. static void ggml_compute_forward_cross_entropy_loss(
  12894. const struct ggml_compute_params * params,
  12895. struct ggml_tensor * dst) {
  12896. const struct ggml_tensor * src0 = dst->src[0];
  12897. switch (src0->type) {
  12898. case GGML_TYPE_F32:
  12899. {
  12900. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12901. } break;
  12902. default:
  12903. {
  12904. GGML_ASSERT(false);
  12905. } break;
  12906. }
  12907. }
  12908. // ggml_compute_forward_cross_entropy_loss_back
  12909. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12910. const struct ggml_compute_params * params,
  12911. struct ggml_tensor * dst) {
  12912. const struct ggml_tensor * src0 = dst->src[0];
  12913. const struct ggml_tensor * src1 = dst->src[1];
  12914. const struct ggml_tensor * opt0 = dst->src[2];
  12915. GGML_ASSERT(ggml_is_contiguous(dst));
  12916. GGML_ASSERT(ggml_is_contiguous(src0));
  12917. GGML_ASSERT(ggml_is_contiguous(src1));
  12918. GGML_ASSERT(ggml_is_contiguous(opt0));
  12919. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12920. const int64_t ith = params->ith;
  12921. const int64_t nth = params->nth;
  12922. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12923. return;
  12924. }
  12925. const double eps = 1e-9;
  12926. // TODO: handle transposed/permuted matrices
  12927. const int64_t nc = src0->ne[0];
  12928. const int64_t nr = ggml_nrows(src0);
  12929. // rows per thread
  12930. const int64_t dr = (nr + nth - 1)/nth;
  12931. // row range for this thread
  12932. const int64_t ir0 = dr*ith;
  12933. const int64_t ir1 = MIN(ir0 + dr, nr);
  12934. float * d = (float *) opt0->data;
  12935. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12936. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12937. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12938. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12939. #ifndef NDEBUG
  12940. for (int i = 0; i < nc; ++i) {
  12941. //printf("p[%d] = %f\n", i, p[i]);
  12942. assert(!isnan(s0[i]));
  12943. assert(!isnan(s1[i]));
  12944. }
  12945. #endif
  12946. // soft_max
  12947. ggml_float sum = 0.0;
  12948. {
  12949. float max = -INFINITY;
  12950. ggml_vec_max_f32(nc, &max, s0);
  12951. uint16_t scvt; UNUSED(scvt);
  12952. for (int i = 0; i < nc; i++) {
  12953. if (s0[i] == -INFINITY) {
  12954. ds0[i] = 0.0f;
  12955. } else {
  12956. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12957. const float s = s0[i] - max;
  12958. const float val = expf(s);
  12959. #else
  12960. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12961. memcpy(&scvt, &s, sizeof(scvt));
  12962. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12963. #endif
  12964. sum += (ggml_float)val;
  12965. ds0[i] = val;
  12966. }
  12967. }
  12968. assert(sum > 0.0);
  12969. sum = (1.0 - eps)/sum;
  12970. }
  12971. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12972. ggml_vec_scale_f32(nc, ds0, sum);
  12973. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12974. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12975. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12976. #ifndef NDEBUG
  12977. for (int i = 0; i < nc; ++i) {
  12978. assert(!isnan(ds0[i]));
  12979. assert(!isinf(ds0[i]));
  12980. }
  12981. #endif
  12982. }
  12983. }
  12984. static void ggml_compute_forward_cross_entropy_loss_back(
  12985. const struct ggml_compute_params * params,
  12986. struct ggml_tensor * dst) {
  12987. const struct ggml_tensor * src0 = dst->src[0];
  12988. switch (src0->type) {
  12989. case GGML_TYPE_F32:
  12990. {
  12991. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12992. } break;
  12993. default:
  12994. {
  12995. GGML_ASSERT(false);
  12996. } break;
  12997. }
  12998. }
  12999. /////////////////////////////////
  13000. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13001. GGML_ASSERT(params);
  13002. if (tensor->op == GGML_OP_NONE) {
  13003. return;
  13004. }
  13005. #if defined(GGML_USE_VULKAN)
  13006. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  13007. #ifdef GGML_VULKAN_CHECK_RESULTS
  13008. if (skip_cpu) {
  13009. ggml_vk_check_results_1_cpu_assist(params, tensor);
  13010. }
  13011. #endif
  13012. if (skip_cpu) {
  13013. return;
  13014. }
  13015. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  13016. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  13017. #endif // GGML_USE_VULKAN
  13018. switch (tensor->op) {
  13019. case GGML_OP_DUP:
  13020. {
  13021. ggml_compute_forward_dup(params, tensor);
  13022. } break;
  13023. case GGML_OP_ADD:
  13024. {
  13025. ggml_compute_forward_add(params, tensor);
  13026. } break;
  13027. case GGML_OP_ADD1:
  13028. {
  13029. ggml_compute_forward_add1(params, tensor);
  13030. } break;
  13031. case GGML_OP_ACC:
  13032. {
  13033. ggml_compute_forward_acc(params, tensor);
  13034. } break;
  13035. case GGML_OP_SUB:
  13036. {
  13037. ggml_compute_forward_sub(params, tensor);
  13038. } break;
  13039. case GGML_OP_MUL:
  13040. {
  13041. ggml_compute_forward_mul(params, tensor);
  13042. } break;
  13043. case GGML_OP_DIV:
  13044. {
  13045. ggml_compute_forward_div(params, tensor);
  13046. } break;
  13047. case GGML_OP_SQR:
  13048. {
  13049. ggml_compute_forward_sqr(params, tensor);
  13050. } break;
  13051. case GGML_OP_SQRT:
  13052. {
  13053. ggml_compute_forward_sqrt(params, tensor);
  13054. } break;
  13055. case GGML_OP_LOG:
  13056. {
  13057. ggml_compute_forward_log(params, tensor);
  13058. } break;
  13059. case GGML_OP_SUM:
  13060. {
  13061. ggml_compute_forward_sum(params, tensor);
  13062. } break;
  13063. case GGML_OP_SUM_ROWS:
  13064. {
  13065. ggml_compute_forward_sum_rows(params, tensor);
  13066. } break;
  13067. case GGML_OP_MEAN:
  13068. {
  13069. ggml_compute_forward_mean(params, tensor);
  13070. } break;
  13071. case GGML_OP_ARGMAX:
  13072. {
  13073. ggml_compute_forward_argmax(params, tensor);
  13074. } break;
  13075. case GGML_OP_REPEAT:
  13076. {
  13077. ggml_compute_forward_repeat(params, tensor);
  13078. } break;
  13079. case GGML_OP_REPEAT_BACK:
  13080. {
  13081. ggml_compute_forward_repeat_back(params, tensor);
  13082. } break;
  13083. case GGML_OP_CONCAT:
  13084. {
  13085. ggml_compute_forward_concat(params, tensor);
  13086. } break;
  13087. case GGML_OP_SILU_BACK:
  13088. {
  13089. ggml_compute_forward_silu_back(params, tensor);
  13090. } break;
  13091. case GGML_OP_NORM:
  13092. {
  13093. ggml_compute_forward_norm(params, tensor);
  13094. } break;
  13095. case GGML_OP_RMS_NORM:
  13096. {
  13097. ggml_compute_forward_rms_norm(params, tensor);
  13098. } break;
  13099. case GGML_OP_RMS_NORM_BACK:
  13100. {
  13101. ggml_compute_forward_rms_norm_back(params, tensor);
  13102. } break;
  13103. case GGML_OP_GROUP_NORM:
  13104. {
  13105. ggml_compute_forward_group_norm(params, tensor);
  13106. } break;
  13107. case GGML_OP_MUL_MAT:
  13108. {
  13109. ggml_compute_forward_mul_mat(params, tensor);
  13110. } break;
  13111. case GGML_OP_MUL_MAT_ID:
  13112. {
  13113. ggml_compute_forward_mul_mat_id(params, tensor);
  13114. } break;
  13115. case GGML_OP_OUT_PROD:
  13116. {
  13117. ggml_compute_forward_out_prod(params, tensor);
  13118. } break;
  13119. case GGML_OP_SCALE:
  13120. {
  13121. ggml_compute_forward_scale(params, tensor);
  13122. } break;
  13123. case GGML_OP_SET:
  13124. {
  13125. ggml_compute_forward_set(params, tensor);
  13126. } break;
  13127. case GGML_OP_CPY:
  13128. {
  13129. ggml_compute_forward_cpy(params, tensor);
  13130. } break;
  13131. case GGML_OP_CONT:
  13132. {
  13133. ggml_compute_forward_cont(params, tensor);
  13134. } break;
  13135. case GGML_OP_RESHAPE:
  13136. {
  13137. ggml_compute_forward_reshape(params, tensor);
  13138. } break;
  13139. case GGML_OP_VIEW:
  13140. {
  13141. ggml_compute_forward_view(params, tensor);
  13142. } break;
  13143. case GGML_OP_PERMUTE:
  13144. {
  13145. ggml_compute_forward_permute(params, tensor);
  13146. } break;
  13147. case GGML_OP_TRANSPOSE:
  13148. {
  13149. ggml_compute_forward_transpose(params, tensor);
  13150. } break;
  13151. case GGML_OP_GET_ROWS:
  13152. {
  13153. ggml_compute_forward_get_rows(params, tensor);
  13154. } break;
  13155. case GGML_OP_GET_ROWS_BACK:
  13156. {
  13157. ggml_compute_forward_get_rows_back(params, tensor);
  13158. } break;
  13159. case GGML_OP_DIAG:
  13160. {
  13161. ggml_compute_forward_diag(params, tensor);
  13162. } break;
  13163. case GGML_OP_DIAG_MASK_INF:
  13164. {
  13165. ggml_compute_forward_diag_mask_inf(params, tensor);
  13166. } break;
  13167. case GGML_OP_DIAG_MASK_ZERO:
  13168. {
  13169. ggml_compute_forward_diag_mask_zero(params, tensor);
  13170. } break;
  13171. case GGML_OP_SOFT_MAX:
  13172. {
  13173. ggml_compute_forward_soft_max(params, tensor);
  13174. } break;
  13175. case GGML_OP_SOFT_MAX_BACK:
  13176. {
  13177. ggml_compute_forward_soft_max_back(params, tensor);
  13178. } break;
  13179. case GGML_OP_ROPE:
  13180. {
  13181. ggml_compute_forward_rope(params, tensor);
  13182. } break;
  13183. case GGML_OP_ROPE_BACK:
  13184. {
  13185. ggml_compute_forward_rope_back(params, tensor);
  13186. } break;
  13187. case GGML_OP_ALIBI:
  13188. {
  13189. ggml_compute_forward_alibi(params, tensor);
  13190. } break;
  13191. case GGML_OP_CLAMP:
  13192. {
  13193. ggml_compute_forward_clamp(params, tensor);
  13194. } break;
  13195. case GGML_OP_CONV_TRANSPOSE_1D:
  13196. {
  13197. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13198. } break;
  13199. case GGML_OP_IM2COL:
  13200. {
  13201. ggml_compute_forward_im2col(params, tensor);
  13202. } break;
  13203. case GGML_OP_CONV_TRANSPOSE_2D:
  13204. {
  13205. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13206. } break;
  13207. case GGML_OP_POOL_1D:
  13208. {
  13209. ggml_compute_forward_pool_1d(params, tensor);
  13210. } break;
  13211. case GGML_OP_POOL_2D:
  13212. {
  13213. ggml_compute_forward_pool_2d(params, tensor);
  13214. } break;
  13215. case GGML_OP_UPSCALE:
  13216. {
  13217. ggml_compute_forward_upscale(params, tensor);
  13218. } break;
  13219. case GGML_OP_PAD:
  13220. {
  13221. ggml_compute_forward_pad(params, tensor);
  13222. } break;
  13223. case GGML_OP_ARANGE:
  13224. {
  13225. ggml_compute_forward_arange(params, tensor);
  13226. } break;
  13227. case GGML_OP_TIMESTEP_EMBEDDING:
  13228. {
  13229. ggml_compute_forward_timestep_embedding(params, tensor);
  13230. } break;
  13231. case GGML_OP_ARGSORT:
  13232. {
  13233. ggml_compute_forward_argsort(params, tensor);
  13234. } break;
  13235. case GGML_OP_LEAKY_RELU:
  13236. {
  13237. ggml_compute_forward_leaky_relu(params, tensor);
  13238. } break;
  13239. case GGML_OP_FLASH_ATTN:
  13240. {
  13241. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13242. GGML_ASSERT(t == 0 || t == 1);
  13243. const bool masked = t != 0;
  13244. ggml_compute_forward_flash_attn(params, masked, tensor);
  13245. } break;
  13246. case GGML_OP_FLASH_FF:
  13247. {
  13248. ggml_compute_forward_flash_ff(params, tensor);
  13249. } break;
  13250. case GGML_OP_FLASH_ATTN_BACK:
  13251. {
  13252. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13253. GGML_ASSERT(t == 0 || t == 1);
  13254. bool masked = t != 0;
  13255. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13256. } break;
  13257. case GGML_OP_SSM_CONV:
  13258. {
  13259. ggml_compute_forward_ssm_conv(params, tensor);
  13260. } break;
  13261. case GGML_OP_SSM_SCAN:
  13262. {
  13263. ggml_compute_forward_ssm_scan(params, tensor);
  13264. } break;
  13265. case GGML_OP_WIN_PART:
  13266. {
  13267. ggml_compute_forward_win_part(params, tensor);
  13268. } break;
  13269. case GGML_OP_WIN_UNPART:
  13270. {
  13271. ggml_compute_forward_win_unpart(params, tensor);
  13272. } break;
  13273. case GGML_OP_UNARY:
  13274. {
  13275. ggml_compute_forward_unary(params, tensor);
  13276. } break;
  13277. case GGML_OP_GET_REL_POS:
  13278. {
  13279. ggml_compute_forward_get_rel_pos(params, tensor);
  13280. } break;
  13281. case GGML_OP_ADD_REL_POS:
  13282. {
  13283. ggml_compute_forward_add_rel_pos(params, tensor);
  13284. } break;
  13285. case GGML_OP_MAP_UNARY:
  13286. {
  13287. ggml_unary_op_f32_t fun;
  13288. memcpy(&fun, tensor->op_params, sizeof(fun));
  13289. ggml_compute_forward_map_unary(params, tensor, fun);
  13290. }
  13291. break;
  13292. case GGML_OP_MAP_BINARY:
  13293. {
  13294. ggml_binary_op_f32_t fun;
  13295. memcpy(&fun, tensor->op_params, sizeof(fun));
  13296. ggml_compute_forward_map_binary(params, tensor, fun);
  13297. }
  13298. break;
  13299. case GGML_OP_MAP_CUSTOM1_F32:
  13300. {
  13301. ggml_custom1_op_f32_t fun;
  13302. memcpy(&fun, tensor->op_params, sizeof(fun));
  13303. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13304. }
  13305. break;
  13306. case GGML_OP_MAP_CUSTOM2_F32:
  13307. {
  13308. ggml_custom2_op_f32_t fun;
  13309. memcpy(&fun, tensor->op_params, sizeof(fun));
  13310. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13311. }
  13312. break;
  13313. case GGML_OP_MAP_CUSTOM3_F32:
  13314. {
  13315. ggml_custom3_op_f32_t fun;
  13316. memcpy(&fun, tensor->op_params, sizeof(fun));
  13317. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13318. }
  13319. break;
  13320. case GGML_OP_MAP_CUSTOM1:
  13321. {
  13322. ggml_compute_forward_map_custom1(params, tensor);
  13323. }
  13324. break;
  13325. case GGML_OP_MAP_CUSTOM2:
  13326. {
  13327. ggml_compute_forward_map_custom2(params, tensor);
  13328. }
  13329. break;
  13330. case GGML_OP_MAP_CUSTOM3:
  13331. {
  13332. ggml_compute_forward_map_custom3(params, tensor);
  13333. }
  13334. break;
  13335. case GGML_OP_CROSS_ENTROPY_LOSS:
  13336. {
  13337. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13338. }
  13339. break;
  13340. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13341. {
  13342. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13343. }
  13344. break;
  13345. case GGML_OP_NONE:
  13346. {
  13347. // nop
  13348. } break;
  13349. case GGML_OP_COUNT:
  13350. {
  13351. GGML_ASSERT(false);
  13352. } break;
  13353. }
  13354. }
  13355. ////////////////////////////////////////////////////////////////////////////////
  13356. static size_t ggml_hash_size(size_t min_sz) {
  13357. // next primes after powers of two
  13358. static const size_t primes[] = {
  13359. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13360. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13361. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13362. 16777259, 33554467, 67108879, 134217757, 268435459,
  13363. 536870923, 1073741827, 2147483659
  13364. };
  13365. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13366. // find the smallest prime that is larger or equal to min_sz
  13367. size_t l = 0;
  13368. size_t r = n_primes;
  13369. while (l < r) {
  13370. size_t m = (l + r)/2;
  13371. if (primes[m] < min_sz) {
  13372. l = m + 1;
  13373. } else {
  13374. r = m;
  13375. }
  13376. }
  13377. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13378. return sz;
  13379. }
  13380. static size_t ggml_hash(const void * p) {
  13381. return (size_t)p;
  13382. }
  13383. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13384. size_t h = ggml_hash(key) % hash_set.size;
  13385. // linear probing
  13386. size_t i = h;
  13387. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13388. i = (i + 1) % hash_set.size;
  13389. if (i == h) {
  13390. // visited all hash table entries -> not found
  13391. return GGML_HASHTABLE_FULL;
  13392. }
  13393. }
  13394. return i;
  13395. }
  13396. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13397. size_t i = ggml_hash_find(hash_set, key);
  13398. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13399. }
  13400. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13401. size_t i = ggml_hash_find(hash_set, key);
  13402. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13403. if (hash_set.keys[i] == key) {
  13404. return GGML_HASHTABLE_ALREADY_EXISTS;
  13405. }
  13406. // insert
  13407. GGML_ASSERT(hash_set.keys[i] == NULL);
  13408. hash_set.keys[i] = key;
  13409. return i;
  13410. }
  13411. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13412. size_t i = ggml_hash_find(hash_set, key);
  13413. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13414. hash_set.keys[i] = key;
  13415. return i;
  13416. }
  13417. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13418. size = ggml_hash_size(size);
  13419. struct ggml_hash_set result;
  13420. result.size = size;
  13421. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13422. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13423. return result;
  13424. }
  13425. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13426. GGML_FREE(hash_set.keys);
  13427. }
  13428. struct hash_map {
  13429. struct ggml_hash_set set;
  13430. struct ggml_tensor ** vals;
  13431. };
  13432. static struct hash_map * ggml_new_hash_map(size_t size) {
  13433. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13434. result->set = ggml_hash_set_new(size);
  13435. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13436. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13437. return result;
  13438. }
  13439. static void ggml_hash_map_free(struct hash_map * map) {
  13440. ggml_hash_set_free(map->set);
  13441. GGML_FREE(map->vals);
  13442. GGML_FREE(map);
  13443. }
  13444. // gradient checkpointing
  13445. static struct ggml_tensor * ggml_recompute_graph_node(
  13446. struct ggml_context * ctx,
  13447. struct ggml_cgraph * graph,
  13448. struct hash_map * replacements,
  13449. struct ggml_tensor * node) {
  13450. if (node == NULL) {
  13451. return NULL;
  13452. }
  13453. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13454. return node;
  13455. }
  13456. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13457. return node;
  13458. }
  13459. int count_children = 0;
  13460. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13461. if (node->src[k]) {
  13462. ++count_children;
  13463. }
  13464. }
  13465. if (count_children == 0) {
  13466. return node;
  13467. }
  13468. size_t i = ggml_hash_find(replacements->set, node);
  13469. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13470. if (replacements->set.keys[i] == node) {
  13471. return replacements->vals[i];
  13472. }
  13473. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13474. // insert clone into replacements
  13475. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13476. replacements->set.keys[i] = node;
  13477. replacements->vals[i] = clone;
  13478. clone->op = node->op;
  13479. clone->grad = node->grad;
  13480. clone->flags = node->flags;
  13481. clone->extra = node->extra;
  13482. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13483. clone->nb[k] = node->nb[k];
  13484. }
  13485. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13486. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13487. }
  13488. if (node->view_src != NULL) {
  13489. clone->data = (node->view_src->data == NULL)
  13490. ? NULL // view_src not yet allocated
  13491. : (char *) node->view_src->data // view_src already allocated
  13492. + node->view_offs;
  13493. clone->view_src = node->view_src;
  13494. clone->view_offs = node->view_offs;
  13495. }
  13496. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13497. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13498. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13499. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13500. return clone;
  13501. }
  13502. void ggml_build_backward_gradient_checkpointing(
  13503. struct ggml_context * ctx,
  13504. struct ggml_cgraph * gf,
  13505. struct ggml_cgraph * gb,
  13506. struct ggml_cgraph * gb_tmp,
  13507. struct ggml_tensor * * checkpoints,
  13508. int n_checkpoints) {
  13509. ggml_graph_cpy(gf, gb_tmp);
  13510. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13511. if (n_checkpoints <= 0) {
  13512. ggml_graph_cpy(gb_tmp, gb);
  13513. return;
  13514. }
  13515. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13516. // insert checkpoints in replacements
  13517. for (int i = 0; i < n_checkpoints; ++i) {
  13518. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13519. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13520. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13521. replacements->set.keys[k] = checkpoints[i];
  13522. replacements->vals[k] = checkpoints[i];
  13523. }
  13524. ggml_graph_cpy(gf, gb);
  13525. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13526. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13527. // by recomputing them from checkpoints
  13528. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13529. struct ggml_tensor * node = gb_tmp->nodes[i];
  13530. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13531. // insert new tensors recomputing src, reusing already made replacements,
  13532. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13533. // recurse for input tensors,
  13534. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13535. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13536. }
  13537. // insert rewritten backward node with replacements made into resulting backward graph gb
  13538. ggml_build_forward_expand(gb, node);
  13539. }
  13540. ggml_hash_map_free(replacements);
  13541. }
  13542. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13543. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13544. if (ggml_hash_contains(zero_table, a)) {
  13545. return b;
  13546. } else {
  13547. return ggml_add_impl(ctx, a, b, false);
  13548. }
  13549. }
  13550. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13551. if (ggml_hash_contains(zero_table, a)) {
  13552. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13553. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13554. } else {
  13555. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13556. }
  13557. }
  13558. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13559. if (ggml_hash_contains(zero_table, a)) {
  13560. return ggml_repeat(ctx, b, a);
  13561. } else {
  13562. return ggml_add1_impl(ctx, a, b, false);
  13563. }
  13564. }
  13565. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13566. if (ggml_hash_contains(zero_table, a)) {
  13567. return ggml_neg(ctx, b);
  13568. } else {
  13569. return ggml_sub_impl(ctx, a, b, false);
  13570. }
  13571. }
  13572. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13573. struct ggml_tensor * src0 = tensor->src[0];
  13574. struct ggml_tensor * src1 = tensor->src[1];
  13575. switch (tensor->op) {
  13576. case GGML_OP_DUP:
  13577. {
  13578. if (src0->grad) {
  13579. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13580. }
  13581. } break;
  13582. case GGML_OP_ADD:
  13583. {
  13584. if (src0->grad) {
  13585. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13586. }
  13587. if (src1->grad) {
  13588. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13589. }
  13590. } break;
  13591. case GGML_OP_ADD1:
  13592. {
  13593. if (src0->grad) {
  13594. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13595. }
  13596. if (src1->grad) {
  13597. src1->grad = ggml_add_or_set(ctx,
  13598. src1->grad,
  13599. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13600. zero_table);
  13601. }
  13602. } break;
  13603. case GGML_OP_ACC:
  13604. {
  13605. if (src0->grad) {
  13606. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13607. }
  13608. if (src1->grad) {
  13609. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13610. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13611. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13612. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13613. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13614. tensor->grad,
  13615. src1->grad->ne[0],
  13616. src1->grad->ne[1],
  13617. src1->grad->ne[2],
  13618. src1->grad->ne[3],
  13619. nb1, nb2, nb3, offset);
  13620. src1->grad =
  13621. ggml_add_or_set(ctx,
  13622. src1->grad,
  13623. ggml_reshape(ctx,
  13624. ggml_cont(ctx, tensor_grad_view),
  13625. src1->grad),
  13626. zero_table);
  13627. }
  13628. } break;
  13629. case GGML_OP_SUB:
  13630. {
  13631. if (src0->grad) {
  13632. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13633. }
  13634. if (src1->grad) {
  13635. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13636. }
  13637. } break;
  13638. case GGML_OP_MUL:
  13639. {
  13640. if (src0->grad) {
  13641. src0->grad =
  13642. ggml_add_or_set(ctx,
  13643. src0->grad,
  13644. ggml_mul(ctx, src1, tensor->grad),
  13645. zero_table);
  13646. }
  13647. if (src1->grad) {
  13648. src1->grad =
  13649. ggml_add_or_set(ctx,
  13650. src1->grad,
  13651. ggml_mul(ctx, src0, tensor->grad),
  13652. zero_table);
  13653. }
  13654. } break;
  13655. case GGML_OP_DIV:
  13656. {
  13657. if (src0->grad) {
  13658. src0->grad =
  13659. ggml_add_or_set(ctx,
  13660. src0->grad,
  13661. ggml_div(ctx, tensor->grad, src1),
  13662. zero_table);
  13663. }
  13664. if (src1->grad) {
  13665. src1->grad =
  13666. ggml_sub_or_set(ctx,
  13667. src1->grad,
  13668. ggml_mul(ctx,
  13669. tensor->grad,
  13670. ggml_div(ctx, tensor, src1)),
  13671. zero_table);
  13672. }
  13673. } break;
  13674. case GGML_OP_SQR:
  13675. {
  13676. if (src0->grad) {
  13677. src0->grad =
  13678. ggml_add_or_set(ctx,
  13679. src0->grad,
  13680. ggml_scale(ctx,
  13681. ggml_mul(ctx, src0, tensor->grad),
  13682. 2.0f),
  13683. zero_table);
  13684. }
  13685. } break;
  13686. case GGML_OP_SQRT:
  13687. {
  13688. if (src0->grad) {
  13689. src0->grad =
  13690. ggml_add_or_set(ctx,
  13691. src0->grad,
  13692. ggml_scale(ctx,
  13693. ggml_div(ctx,
  13694. tensor->grad,
  13695. tensor),
  13696. 0.5f),
  13697. zero_table);
  13698. }
  13699. } break;
  13700. case GGML_OP_LOG:
  13701. {
  13702. if (src0->grad) {
  13703. src0->grad =
  13704. ggml_add_or_set(ctx,
  13705. src0->grad,
  13706. ggml_div(ctx,
  13707. tensor->grad,
  13708. src0),
  13709. zero_table);
  13710. }
  13711. } break;
  13712. case GGML_OP_SUM:
  13713. {
  13714. if (src0->grad) {
  13715. src0->grad =
  13716. ggml_add1_or_set(ctx,
  13717. src0->grad,
  13718. tensor->grad,
  13719. zero_table);
  13720. }
  13721. } break;
  13722. case GGML_OP_SUM_ROWS:
  13723. {
  13724. if (src0->grad) {
  13725. src0->grad =
  13726. ggml_add_or_set(ctx,
  13727. src0->grad,
  13728. ggml_repeat(ctx,
  13729. tensor->grad,
  13730. src0->grad),
  13731. zero_table);
  13732. }
  13733. } break;
  13734. case GGML_OP_MEAN:
  13735. case GGML_OP_ARGMAX:
  13736. {
  13737. GGML_ASSERT(false); // TODO: implement
  13738. } break;
  13739. case GGML_OP_REPEAT:
  13740. {
  13741. // necessary for llama
  13742. if (src0->grad) {
  13743. src0->grad = ggml_add_or_set(ctx,
  13744. src0->grad,
  13745. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13746. zero_table);
  13747. }
  13748. } break;
  13749. case GGML_OP_REPEAT_BACK:
  13750. {
  13751. if (src0->grad) {
  13752. // TODO: test this
  13753. src0->grad = ggml_add_or_set(ctx,
  13754. src0->grad,
  13755. ggml_repeat(ctx, tensor->grad, src0->grad),
  13756. zero_table);
  13757. }
  13758. } break;
  13759. case GGML_OP_CONCAT:
  13760. {
  13761. GGML_ASSERT(false); // TODO: implement
  13762. } break;
  13763. case GGML_OP_SILU_BACK:
  13764. {
  13765. GGML_ASSERT(false); // TODO: not implemented
  13766. } break;
  13767. case GGML_OP_NORM:
  13768. {
  13769. GGML_ASSERT(false); // TODO: not implemented
  13770. } break;
  13771. case GGML_OP_RMS_NORM:
  13772. {
  13773. // necessary for llama
  13774. if (src0->grad) {
  13775. float eps;
  13776. memcpy(&eps, tensor->op_params, sizeof(float));
  13777. src0->grad = ggml_add_or_set(ctx,
  13778. src0->grad,
  13779. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13780. zero_table);
  13781. }
  13782. } break;
  13783. case GGML_OP_RMS_NORM_BACK:
  13784. {
  13785. GGML_ASSERT(false); // TODO: not implemented
  13786. } break;
  13787. case GGML_OP_GROUP_NORM:
  13788. {
  13789. GGML_ASSERT(false); // TODO: not implemented
  13790. } break;
  13791. case GGML_OP_MUL_MAT:
  13792. {
  13793. // https://cs231n.github.io/optimization-2/#staged
  13794. // # forward pass
  13795. // s0 = np.random.randn(5, 10)
  13796. // s1 = np.random.randn(10, 3)
  13797. // t = s0.dot(s1)
  13798. // # now suppose we had the gradient on t from above in the circuit
  13799. // dt = np.random.randn(*t.shape) # same shape as t
  13800. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13801. // ds1 = t.T.dot(dt)
  13802. // tensor.shape [m,p,qq,rr]
  13803. // src0.shape [n,m,q1,r1]
  13804. // src1.shape [n,p,qq,rr]
  13805. // necessary for llama
  13806. if (src0->grad) {
  13807. struct ggml_tensor * s1_tg =
  13808. ggml_out_prod(ctx, // [n,m,qq,rr]
  13809. src1, // [n,p,qq,rr]
  13810. tensor->grad); // [m,p,qq,rr]
  13811. const int64_t qq = s1_tg->ne[2];
  13812. const int64_t rr = s1_tg->ne[3];
  13813. const int64_t q1 = src0->ne[2];
  13814. const int64_t r1 = src0->ne[3];
  13815. const bool ne2_broadcasted = qq > q1;
  13816. const bool ne3_broadcasted = rr > r1;
  13817. if (ne2_broadcasted || ne3_broadcasted) {
  13818. // sum broadcast repetitions of s1_tg into shape of src0
  13819. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13820. }
  13821. src0->grad =
  13822. ggml_add_or_set(ctx,
  13823. src0->grad, // [n,m,q1,r1]
  13824. s1_tg, // [n,m,q1,r1]
  13825. zero_table);
  13826. }
  13827. if (src1->grad) {
  13828. src1->grad =
  13829. ggml_add_or_set(ctx,
  13830. src1->grad, // [n,p,qq,rr]
  13831. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13832. // ggml_cont(ctx, // [m,n,q1,r1]
  13833. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13834. // tensor->grad), // [m,p,qq,rr]
  13835. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13836. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13837. // // and then use ggml_out_prod
  13838. ggml_out_prod(ctx, // [n,p,qq,rr]
  13839. src0, // [n,m,q1,r1]
  13840. ggml_transpose(ctx, // [p,m,qq,rr]
  13841. tensor->grad)), // [m,p,qq,rr]
  13842. zero_table);
  13843. }
  13844. } break;
  13845. case GGML_OP_MUL_MAT_ID:
  13846. {
  13847. GGML_ASSERT(false); // TODO: not implemented
  13848. } break;
  13849. case GGML_OP_OUT_PROD:
  13850. {
  13851. GGML_ASSERT(false); // TODO: not implemented
  13852. } break;
  13853. case GGML_OP_SCALE:
  13854. {
  13855. // necessary for llama
  13856. if (src0->grad) {
  13857. float s;
  13858. memcpy(&s, tensor->op_params, sizeof(float));
  13859. src0->grad =
  13860. ggml_add_or_set(ctx,
  13861. src0->grad,
  13862. ggml_scale_impl(ctx, tensor->grad, s, false),
  13863. zero_table);
  13864. }
  13865. } break;
  13866. case GGML_OP_SET:
  13867. {
  13868. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13869. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13870. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13871. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13872. struct ggml_tensor * tensor_grad_view = NULL;
  13873. if (src0->grad || src1->grad) {
  13874. GGML_ASSERT(src0->type == tensor->type);
  13875. GGML_ASSERT(tensor->grad->type == tensor->type);
  13876. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13877. tensor_grad_view = ggml_view_4d(ctx,
  13878. tensor->grad,
  13879. src1->grad->ne[0],
  13880. src1->grad->ne[1],
  13881. src1->grad->ne[2],
  13882. src1->grad->ne[3],
  13883. nb1, nb2, nb3, offset);
  13884. }
  13885. if (src0->grad) {
  13886. src0->grad = ggml_add_or_set(ctx,
  13887. src0->grad,
  13888. ggml_acc_impl(ctx,
  13889. tensor->grad,
  13890. ggml_neg(ctx, tensor_grad_view),
  13891. nb1, nb2, nb3, offset, false),
  13892. zero_table);
  13893. }
  13894. if (src1->grad) {
  13895. src1->grad =
  13896. ggml_add_or_set(ctx,
  13897. src1->grad,
  13898. ggml_reshape(ctx,
  13899. ggml_cont(ctx, tensor_grad_view),
  13900. src1->grad),
  13901. zero_table);
  13902. }
  13903. } break;
  13904. case GGML_OP_CPY:
  13905. {
  13906. // necessary for llama
  13907. // cpy overwrites value of src1 by src0 and returns view(src1)
  13908. // the overwriting is mathematically equivalent to:
  13909. // tensor = src0 * 1 + src1 * 0
  13910. if (src0->grad) {
  13911. // dsrc0 = dtensor * 1
  13912. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13913. }
  13914. if (src1->grad) {
  13915. // dsrc1 = dtensor * 0 -> noop
  13916. }
  13917. } break;
  13918. case GGML_OP_CONT:
  13919. {
  13920. // same as cpy
  13921. if (src0->grad) {
  13922. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13923. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13924. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13925. }
  13926. } break;
  13927. case GGML_OP_RESHAPE:
  13928. {
  13929. // necessary for llama
  13930. if (src0->grad) {
  13931. src0->grad =
  13932. ggml_add_or_set(ctx, src0->grad,
  13933. ggml_reshape(ctx,
  13934. ggml_is_contiguous(tensor->grad)
  13935. ? tensor->grad
  13936. : ggml_cont(ctx, tensor->grad),
  13937. src0->grad),
  13938. zero_table);
  13939. }
  13940. } break;
  13941. case GGML_OP_VIEW:
  13942. {
  13943. // necessary for llama
  13944. if (src0->grad) {
  13945. size_t offset;
  13946. memcpy(&offset, tensor->op_params, sizeof(offset));
  13947. size_t nb1 = tensor->nb[1];
  13948. size_t nb2 = tensor->nb[2];
  13949. size_t nb3 = tensor->nb[3];
  13950. if (src0->type != src0->grad->type) {
  13951. // gradient is typically F32, but src0 could be other type
  13952. size_t ng = ggml_element_size(src0->grad);
  13953. size_t n0 = ggml_element_size(src0);
  13954. GGML_ASSERT(offset % n0 == 0);
  13955. GGML_ASSERT(nb1 % n0 == 0);
  13956. GGML_ASSERT(nb2 % n0 == 0);
  13957. GGML_ASSERT(nb3 % n0 == 0);
  13958. offset = (offset / n0) * ng;
  13959. nb1 = (nb1 / n0) * ng;
  13960. nb2 = (nb2 / n0) * ng;
  13961. nb3 = (nb3 / n0) * ng;
  13962. }
  13963. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13964. }
  13965. } break;
  13966. case GGML_OP_PERMUTE:
  13967. {
  13968. // necessary for llama
  13969. if (src0->grad) {
  13970. int32_t * axes = (int32_t *) tensor->op_params;
  13971. int axis0 = axes[0] & 0x3;
  13972. int axis1 = axes[1] & 0x3;
  13973. int axis2 = axes[2] & 0x3;
  13974. int axis3 = axes[3] & 0x3;
  13975. int axes_backward[4] = {0,0,0,0};
  13976. axes_backward[axis0] = 0;
  13977. axes_backward[axis1] = 1;
  13978. axes_backward[axis2] = 2;
  13979. axes_backward[axis3] = 3;
  13980. src0->grad =
  13981. ggml_add_or_set(ctx, src0->grad,
  13982. ggml_permute(ctx,
  13983. tensor->grad,
  13984. axes_backward[0],
  13985. axes_backward[1],
  13986. axes_backward[2],
  13987. axes_backward[3]),
  13988. zero_table);
  13989. }
  13990. } break;
  13991. case GGML_OP_TRANSPOSE:
  13992. {
  13993. // necessary for llama
  13994. if (src0->grad) {
  13995. src0->grad =
  13996. ggml_add_or_set(ctx, src0->grad,
  13997. ggml_transpose(ctx, tensor->grad),
  13998. zero_table);
  13999. }
  14000. } break;
  14001. case GGML_OP_GET_ROWS:
  14002. {
  14003. // necessary for llama (only for tokenizer)
  14004. if (src0->grad) {
  14005. src0->grad =
  14006. ggml_add_or_set(ctx, src0->grad,
  14007. // last ggml_get_rows_back argument src0->grad is only
  14008. // necessary to setup correct output shape
  14009. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14010. zero_table);
  14011. }
  14012. if (src1->grad) {
  14013. // noop
  14014. }
  14015. } break;
  14016. case GGML_OP_GET_ROWS_BACK:
  14017. {
  14018. GGML_ASSERT(false); // TODO: not implemented
  14019. } break;
  14020. case GGML_OP_DIAG:
  14021. {
  14022. GGML_ASSERT(false); // TODO: not implemented
  14023. } break;
  14024. case GGML_OP_DIAG_MASK_INF:
  14025. {
  14026. // necessary for llama
  14027. if (src0->grad) {
  14028. const int n_past = ((int32_t *) tensor->op_params)[0];
  14029. src0->grad =
  14030. ggml_add_or_set(ctx, src0->grad,
  14031. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14032. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14033. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14034. zero_table);
  14035. }
  14036. } break;
  14037. case GGML_OP_DIAG_MASK_ZERO:
  14038. {
  14039. // necessary for llama
  14040. if (src0->grad) {
  14041. const int n_past = ((int32_t *) tensor->op_params)[0];
  14042. src0->grad =
  14043. ggml_add_or_set(ctx, src0->grad,
  14044. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14045. zero_table);
  14046. }
  14047. } break;
  14048. case GGML_OP_SOFT_MAX:
  14049. {
  14050. // necessary for llama
  14051. if (src0->grad) {
  14052. src0->grad =
  14053. ggml_add_or_set(ctx, src0->grad,
  14054. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14055. zero_table);
  14056. }
  14057. } break;
  14058. case GGML_OP_SOFT_MAX_BACK:
  14059. {
  14060. GGML_ASSERT(false); // TODO: not implemented
  14061. } break;
  14062. case GGML_OP_ROPE:
  14063. {
  14064. // necessary for llama
  14065. if (src0->grad) {
  14066. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14067. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14068. const int mode = ((int32_t *) tensor->op_params)[2];
  14069. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14070. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14071. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14072. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14073. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14074. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14075. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14076. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14077. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14078. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14079. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14080. src0->grad = ggml_add_or_set(ctx,
  14081. src0->grad,
  14082. ggml_rope_back(ctx,
  14083. tensor->grad,
  14084. src1,
  14085. n_dims,
  14086. mode,
  14087. n_ctx,
  14088. n_orig_ctx,
  14089. freq_base,
  14090. freq_scale,
  14091. ext_factor,
  14092. attn_factor,
  14093. beta_fast,
  14094. beta_slow,
  14095. xpos_base,
  14096. xpos_down),
  14097. zero_table);
  14098. }
  14099. } break;
  14100. case GGML_OP_ROPE_BACK:
  14101. {
  14102. if (src0->grad) {
  14103. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14104. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14105. const int mode = ((int32_t *) tensor->op_params)[2];
  14106. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14107. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14108. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14109. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14110. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14111. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14112. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14113. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14114. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14115. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14116. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14117. src0->grad = ggml_add_or_set(ctx,
  14118. src0->grad,
  14119. ggml_rope_impl(ctx,
  14120. tensor->grad,
  14121. src1,
  14122. n_dims,
  14123. mode,
  14124. n_ctx,
  14125. n_orig_ctx,
  14126. freq_base,
  14127. freq_scale,
  14128. ext_factor,
  14129. attn_factor,
  14130. beta_fast,
  14131. beta_slow,
  14132. xpos_base,
  14133. xpos_down,
  14134. false),
  14135. zero_table);
  14136. }
  14137. } break;
  14138. case GGML_OP_ALIBI:
  14139. {
  14140. GGML_ASSERT(false); // TODO: not implemented
  14141. } break;
  14142. case GGML_OP_CLAMP:
  14143. {
  14144. GGML_ASSERT(false); // TODO: not implemented
  14145. } break;
  14146. case GGML_OP_CONV_TRANSPOSE_1D:
  14147. {
  14148. GGML_ASSERT(false); // TODO: not implemented
  14149. } break;
  14150. case GGML_OP_IM2COL:
  14151. {
  14152. GGML_ASSERT(false); // TODO: not implemented
  14153. } break;
  14154. case GGML_OP_CONV_TRANSPOSE_2D:
  14155. {
  14156. GGML_ASSERT(false); // TODO: not implemented
  14157. } break;
  14158. case GGML_OP_POOL_1D:
  14159. {
  14160. GGML_ASSERT(false); // TODO: not implemented
  14161. } break;
  14162. case GGML_OP_POOL_2D:
  14163. {
  14164. GGML_ASSERT(false); // TODO: not implemented
  14165. } break;
  14166. case GGML_OP_UPSCALE:
  14167. {
  14168. GGML_ASSERT(false); // TODO: not implemented
  14169. } break;
  14170. case GGML_OP_PAD:
  14171. {
  14172. GGML_ASSERT(false); // TODO: not implemented
  14173. } break;
  14174. case GGML_OP_ARANGE:
  14175. {
  14176. GGML_ASSERT(false); // TODO: not implemented
  14177. } break;
  14178. case GGML_OP_TIMESTEP_EMBEDDING:
  14179. {
  14180. GGML_ASSERT(false); // TODO: not implemented
  14181. } break;
  14182. case GGML_OP_ARGSORT:
  14183. {
  14184. GGML_ASSERT(false); // TODO: not implemented
  14185. } break;
  14186. case GGML_OP_LEAKY_RELU:
  14187. {
  14188. GGML_ASSERT(false); // TODO: not implemented
  14189. } break;
  14190. case GGML_OP_FLASH_ATTN:
  14191. {
  14192. struct ggml_tensor * flash_grad = NULL;
  14193. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14194. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14195. GGML_ASSERT(t == 0 || t == 1);
  14196. bool masked = t != 0;
  14197. flash_grad =
  14198. ggml_flash_attn_back(ctx,
  14199. src0,
  14200. src1,
  14201. tensor->src[2],
  14202. tensor->grad,
  14203. masked);
  14204. }
  14205. struct ggml_tensor * src2 = tensor->src[2];
  14206. const int64_t elem_q = ggml_nelements(src0);
  14207. const int64_t elem_k = ggml_nelements(src1);
  14208. const int64_t elem_v = ggml_nelements(src2);
  14209. enum ggml_type result_type = flash_grad->type;
  14210. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14211. const size_t tsize = ggml_type_size(result_type);
  14212. const size_t offs_q = 0;
  14213. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14214. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14215. if (src0->grad) {
  14216. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14217. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14218. src0->grad = ggml_add_or_set(ctx,
  14219. src0->grad,
  14220. grad_q,
  14221. zero_table);
  14222. }
  14223. if (src1->grad) {
  14224. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14225. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14226. src1->grad = ggml_add_or_set(ctx,
  14227. src1->grad,
  14228. grad_k,
  14229. zero_table);
  14230. }
  14231. if (src2->grad) {
  14232. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14233. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14234. src2->grad = ggml_add_or_set(ctx,
  14235. src2->grad,
  14236. grad_v,
  14237. zero_table);
  14238. }
  14239. } break;
  14240. case GGML_OP_FLASH_FF:
  14241. {
  14242. GGML_ASSERT(false); // not supported
  14243. } break;
  14244. case GGML_OP_FLASH_ATTN_BACK:
  14245. {
  14246. GGML_ASSERT(false); // not supported
  14247. } break;
  14248. case GGML_OP_SSM_CONV:
  14249. case GGML_OP_SSM_SCAN:
  14250. {
  14251. GGML_ASSERT(false); // TODO: not implemented
  14252. } break;
  14253. case GGML_OP_WIN_PART:
  14254. case GGML_OP_WIN_UNPART:
  14255. case GGML_OP_UNARY:
  14256. {
  14257. switch (ggml_get_unary_op(tensor)) {
  14258. case GGML_UNARY_OP_ABS:
  14259. {
  14260. if (src0->grad) {
  14261. src0->grad =
  14262. ggml_add_or_set(ctx,
  14263. src0->grad,
  14264. ggml_mul(ctx,
  14265. ggml_sgn(ctx, src0),
  14266. tensor->grad),
  14267. zero_table);
  14268. }
  14269. } break;
  14270. case GGML_UNARY_OP_SGN:
  14271. {
  14272. if (src0->grad) {
  14273. // noop
  14274. }
  14275. } break;
  14276. case GGML_UNARY_OP_NEG:
  14277. {
  14278. if (src0->grad) {
  14279. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14280. }
  14281. } break;
  14282. case GGML_UNARY_OP_STEP:
  14283. {
  14284. if (src0->grad) {
  14285. // noop
  14286. }
  14287. } break;
  14288. case GGML_UNARY_OP_TANH:
  14289. {
  14290. GGML_ASSERT(false); // TODO: not implemented
  14291. } break;
  14292. case GGML_UNARY_OP_ELU:
  14293. {
  14294. GGML_ASSERT(false); // TODO: not implemented
  14295. } break;
  14296. case GGML_UNARY_OP_RELU:
  14297. {
  14298. if (src0->grad) {
  14299. src0->grad = ggml_add_or_set(ctx,
  14300. src0->grad,
  14301. ggml_mul(ctx,
  14302. ggml_step(ctx, src0),
  14303. tensor->grad),
  14304. zero_table);
  14305. }
  14306. } break;
  14307. case GGML_UNARY_OP_GELU:
  14308. {
  14309. GGML_ASSERT(false); // TODO: not implemented
  14310. } break;
  14311. case GGML_UNARY_OP_GELU_QUICK:
  14312. {
  14313. GGML_ASSERT(false); // TODO: not implemented
  14314. } break;
  14315. case GGML_UNARY_OP_SILU:
  14316. {
  14317. // necessary for llama
  14318. if (src0->grad) {
  14319. src0->grad = ggml_add_or_set(ctx,
  14320. src0->grad,
  14321. ggml_silu_back(ctx, src0, tensor->grad),
  14322. zero_table);
  14323. }
  14324. } break;
  14325. default:
  14326. GGML_ASSERT(false);
  14327. }
  14328. } break;
  14329. case GGML_OP_GET_REL_POS:
  14330. case GGML_OP_ADD_REL_POS:
  14331. case GGML_OP_MAP_UNARY:
  14332. case GGML_OP_MAP_BINARY:
  14333. case GGML_OP_MAP_CUSTOM1_F32:
  14334. case GGML_OP_MAP_CUSTOM2_F32:
  14335. case GGML_OP_MAP_CUSTOM3_F32:
  14336. case GGML_OP_MAP_CUSTOM1:
  14337. case GGML_OP_MAP_CUSTOM2:
  14338. case GGML_OP_MAP_CUSTOM3:
  14339. {
  14340. GGML_ASSERT(false); // not supported
  14341. } break;
  14342. case GGML_OP_CROSS_ENTROPY_LOSS:
  14343. {
  14344. if (src0->grad) {
  14345. src0->grad = ggml_add_or_set(ctx,
  14346. src0->grad,
  14347. ggml_cross_entropy_loss_back(ctx,
  14348. src0,
  14349. src1,
  14350. tensor->grad),
  14351. zero_table);
  14352. }
  14353. } break;
  14354. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14355. {
  14356. GGML_ASSERT(false); // not supported
  14357. } break;
  14358. case GGML_OP_NONE:
  14359. {
  14360. // nop
  14361. } break;
  14362. case GGML_OP_COUNT:
  14363. {
  14364. GGML_ASSERT(false);
  14365. } break;
  14366. }
  14367. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14368. if (tensor->src[i] && tensor->src[i]->grad) {
  14369. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14370. }
  14371. }
  14372. }
  14373. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14374. if (node->grad == NULL) {
  14375. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14376. // it can also happen during forward pass, if the user performs computations with constants
  14377. if (node->op != GGML_OP_NONE) {
  14378. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14379. }
  14380. }
  14381. // check if already visited
  14382. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14383. return;
  14384. }
  14385. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14386. const int k =
  14387. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14388. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14389. /* unknown order, just fall back to using i*/ i;
  14390. if (node->src[k]) {
  14391. ggml_visit_parents(cgraph, node->src[k]);
  14392. }
  14393. }
  14394. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14395. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14396. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14397. if (strlen(node->name) == 0) {
  14398. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14399. }
  14400. cgraph->leafs[cgraph->n_leafs] = node;
  14401. cgraph->n_leafs++;
  14402. } else {
  14403. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14404. if (strlen(node->name) == 0) {
  14405. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14406. }
  14407. cgraph->nodes[cgraph->n_nodes] = node;
  14408. if (cgraph->grads) {
  14409. cgraph->grads[cgraph->n_nodes] = node->grad;
  14410. }
  14411. cgraph->n_nodes++;
  14412. }
  14413. }
  14414. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14415. if (!expand) {
  14416. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14417. ggml_graph_clear(cgraph);
  14418. }
  14419. const int n0 = cgraph->n_nodes;
  14420. UNUSED(n0);
  14421. ggml_visit_parents(cgraph, tensor);
  14422. const int n_new = cgraph->n_nodes - n0;
  14423. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14424. if (n_new > 0) {
  14425. // the last added node should always be starting point
  14426. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14427. }
  14428. }
  14429. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14430. ggml_build_forward_impl(cgraph, tensor, true);
  14431. }
  14432. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14433. GGML_ASSERT(gf->n_nodes > 0);
  14434. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14435. if (keep) {
  14436. for (int i = 0; i < gf->n_nodes; i++) {
  14437. struct ggml_tensor * node = gf->nodes[i];
  14438. if (node->grad) {
  14439. node->grad = ggml_dup_tensor(ctx, node);
  14440. gf->grads[i] = node->grad;
  14441. }
  14442. }
  14443. }
  14444. // remember original gradients which start with zero values
  14445. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14446. for (int i = 0; i < gf->n_nodes; i++) {
  14447. if (gf->grads[i]) {
  14448. ggml_hash_insert(zero_table, gf->grads[i]);
  14449. }
  14450. }
  14451. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14452. struct ggml_tensor * node = gf->nodes[i];
  14453. // inplace operations to add gradients are not created by ggml_compute_backward
  14454. // use allocator to automatically make inplace operations
  14455. if (node->grad) {
  14456. ggml_compute_backward(ctx, node, zero_table);
  14457. }
  14458. }
  14459. for (int i = 0; i < gf->n_nodes; i++) {
  14460. struct ggml_tensor * node = gf->nodes[i];
  14461. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14462. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14463. ggml_build_forward_expand(gb, node->grad);
  14464. }
  14465. }
  14466. ggml_hash_set_free(zero_table);
  14467. }
  14468. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14469. size_t nbytes = sizeof(struct ggml_cgraph);
  14470. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14471. if (grads) {
  14472. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14473. }
  14474. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14475. return nbytes;
  14476. }
  14477. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14478. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14479. }
  14480. size_t ggml_graph_overhead(void) {
  14481. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14482. }
  14483. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14484. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14485. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14486. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14487. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14488. size_t hash_size = ggml_hash_size(size * 2);
  14489. struct ggml_tensor ** nodes_ptr = data_start;
  14490. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14491. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14492. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14493. // check that we allocated the correct amount of memory
  14494. assert(obj_size == (size_t) (
  14495. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14496. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14497. *cgraph = (struct ggml_cgraph) {
  14498. /*.size =*/ size,
  14499. /*.n_nodes =*/ 0,
  14500. /*.n_leafs =*/ 0,
  14501. /*.nodes =*/ nodes_ptr,
  14502. /*.grads =*/ grads_ptr,
  14503. /*.leafs =*/ leafs_ptr,
  14504. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14505. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14506. /*.perf_runs =*/ 0,
  14507. /*.perf_cycles =*/ 0,
  14508. /*.perf_time_us =*/ 0,
  14509. };
  14510. return cgraph;
  14511. }
  14512. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14513. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14514. }
  14515. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14516. struct ggml_cgraph cgraph = {
  14517. /*.size =*/ 0,
  14518. /*.n_nodes =*/ i1 - i0,
  14519. /*.n_leafs =*/ 0,
  14520. /*.nodes =*/ cgraph0->nodes + i0,
  14521. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14522. /*.leafs =*/ NULL,
  14523. /*.hash_table =*/ { 0, NULL },
  14524. /*.order =*/ cgraph0->order,
  14525. /*.perf_runs =*/ 0,
  14526. /*.perf_cycles =*/ 0,
  14527. /*.perf_time_us =*/ 0,
  14528. };
  14529. return cgraph;
  14530. }
  14531. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14532. GGML_ASSERT(dst->size >= src->n_leafs);
  14533. GGML_ASSERT(dst->size >= src->n_nodes);
  14534. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14535. dst->n_leafs = src->n_leafs;
  14536. dst->n_nodes = src->n_nodes;
  14537. dst->order = src->order;
  14538. for (int i = 0; i < src->n_leafs; ++i) {
  14539. dst->leafs[i] = src->leafs[i];
  14540. }
  14541. for (int i = 0; i < src->n_nodes; ++i) {
  14542. dst->nodes[i] = src->nodes[i];
  14543. }
  14544. if (src->grads) {
  14545. GGML_ASSERT(dst->grads != NULL);
  14546. for (int i = 0; i < src->n_nodes; ++i) {
  14547. dst->grads[i] = src->grads[i];
  14548. }
  14549. }
  14550. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14551. if (src->visited_hash_table.keys[i]) {
  14552. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14553. }
  14554. }
  14555. }
  14556. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14557. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14558. ggml_graph_cpy(cgraph, result);
  14559. return result;
  14560. }
  14561. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14562. GGML_ASSERT(cgraph->grads != NULL);
  14563. for (int i = 0; i < cgraph->n_nodes; i++) {
  14564. struct ggml_tensor * grad = cgraph->grads[i];
  14565. if (grad) {
  14566. ggml_set_zero(grad);
  14567. }
  14568. }
  14569. }
  14570. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14571. cgraph->n_leafs = 0;
  14572. cgraph->n_nodes = 0;
  14573. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14574. }
  14575. //
  14576. // thread data
  14577. //
  14578. // synchronization is done via busy loops
  14579. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14580. //
  14581. #ifdef __APPLE__
  14582. //#include <os/lock.h>
  14583. //
  14584. //typedef os_unfair_lock ggml_lock_t;
  14585. //
  14586. //#define ggml_lock_init(x) UNUSED(x)
  14587. //#define ggml_lock_destroy(x) UNUSED(x)
  14588. //#define ggml_lock_lock os_unfair_lock_lock
  14589. //#define ggml_lock_unlock os_unfair_lock_unlock
  14590. //
  14591. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14592. typedef int ggml_lock_t;
  14593. #define ggml_lock_init(x) UNUSED(x)
  14594. #define ggml_lock_destroy(x) UNUSED(x)
  14595. #define ggml_lock_lock(x) UNUSED(x)
  14596. #define ggml_lock_unlock(x) UNUSED(x)
  14597. #define GGML_LOCK_INITIALIZER 0
  14598. typedef pthread_t ggml_thread_t;
  14599. #define ggml_thread_create pthread_create
  14600. #define ggml_thread_join pthread_join
  14601. #else
  14602. //typedef pthread_spinlock_t ggml_lock_t;
  14603. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14604. //#define ggml_lock_destroy pthread_spin_destroy
  14605. //#define ggml_lock_lock pthread_spin_lock
  14606. //#define ggml_lock_unlock pthread_spin_unlock
  14607. typedef int ggml_lock_t;
  14608. #define ggml_lock_init(x) UNUSED(x)
  14609. #define ggml_lock_destroy(x) UNUSED(x)
  14610. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14611. #define ggml_lock_lock(x) _mm_pause()
  14612. #else
  14613. #define ggml_lock_lock(x) UNUSED(x)
  14614. #endif
  14615. #define ggml_lock_unlock(x) UNUSED(x)
  14616. #define GGML_LOCK_INITIALIZER 0
  14617. typedef pthread_t ggml_thread_t;
  14618. #define ggml_thread_create pthread_create
  14619. #define ggml_thread_join pthread_join
  14620. #endif
  14621. // Android's libc implementation "bionic" does not support setting affinity
  14622. #if defined(__gnu_linux__)
  14623. static void set_numa_thread_affinity(int thread_n) {
  14624. if (!ggml_is_numa()) {
  14625. return;
  14626. }
  14627. int node_num;
  14628. int rv;
  14629. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14630. switch(g_state.numa.numa_strategy) {
  14631. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14632. // run thread on node_num thread_n / (threads per node)
  14633. node_num = thread_n % g_state.numa.n_nodes;
  14634. break;
  14635. case GGML_NUMA_STRATEGY_ISOLATE:
  14636. // run thread on current_node
  14637. node_num = g_state.numa.current_node;
  14638. break;
  14639. case GGML_NUMA_STRATEGY_NUMACTL:
  14640. // use the cpuset that numactl gave us
  14641. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14642. if (rv) {
  14643. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14644. }
  14645. return;
  14646. default:
  14647. return;
  14648. }
  14649. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14650. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14651. CPU_ZERO_S(setsize, cpus);
  14652. for (size_t i = 0; i < node->n_cpus; ++i) {
  14653. CPU_SET_S(node->cpus[i], setsize, cpus);
  14654. }
  14655. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14656. if (rv) {
  14657. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14658. }
  14659. CPU_FREE(cpus);
  14660. }
  14661. static void clear_numa_thread_affinity(void) {
  14662. if (!ggml_is_numa()) {
  14663. return;
  14664. }
  14665. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14666. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14667. CPU_ZERO_S(setsize, cpus);
  14668. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14669. CPU_SET_S(i, setsize, cpus);
  14670. }
  14671. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14672. if (rv) {
  14673. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14674. }
  14675. CPU_FREE(cpus);
  14676. }
  14677. #else
  14678. // TODO: Windows etc.
  14679. // (the linux implementation may also work on BSD, someone should test)
  14680. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14681. static void clear_numa_thread_affinity(void) {}
  14682. #endif
  14683. struct ggml_compute_state_shared {
  14684. const struct ggml_cgraph * cgraph;
  14685. const struct ggml_cplan * cplan;
  14686. int64_t perf_node_start_cycles;
  14687. int64_t perf_node_start_time_us;
  14688. const int n_threads;
  14689. // synchronization primitives
  14690. atomic_int n_active; // num active threads
  14691. atomic_int node_n; // active graph node
  14692. atomic_int node_task; // active graph node task phase
  14693. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14694. void * abort_callback_data;
  14695. };
  14696. struct ggml_compute_state {
  14697. ggml_thread_t thrd;
  14698. int ith;
  14699. struct ggml_compute_state_shared * shared;
  14700. enum ggml_status ec;
  14701. };
  14702. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14703. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14704. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14705. node->perf_runs++;
  14706. node->perf_cycles += cycles_cur;
  14707. node->perf_time_us += time_us_cur;
  14708. }
  14709. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14710. int n_tasks = 0;
  14711. switch (node->op) {
  14712. case GGML_OP_CPY:
  14713. case GGML_OP_DUP:
  14714. case GGML_OP_ADD:
  14715. case GGML_OP_ADD1:
  14716. case GGML_OP_ACC:
  14717. {
  14718. n_tasks = n_threads;
  14719. } break;
  14720. case GGML_OP_SUB:
  14721. case GGML_OP_SQR:
  14722. case GGML_OP_SQRT:
  14723. case GGML_OP_LOG:
  14724. case GGML_OP_SUM:
  14725. case GGML_OP_SUM_ROWS:
  14726. case GGML_OP_MEAN:
  14727. case GGML_OP_ARGMAX:
  14728. case GGML_OP_REPEAT:
  14729. case GGML_OP_REPEAT_BACK:
  14730. case GGML_OP_LEAKY_RELU:
  14731. {
  14732. n_tasks = 1;
  14733. } break;
  14734. case GGML_OP_UNARY:
  14735. switch (ggml_get_unary_op(node)) {
  14736. case GGML_UNARY_OP_ABS:
  14737. case GGML_UNARY_OP_SGN:
  14738. case GGML_UNARY_OP_NEG:
  14739. case GGML_UNARY_OP_STEP:
  14740. case GGML_UNARY_OP_TANH:
  14741. case GGML_UNARY_OP_ELU:
  14742. case GGML_UNARY_OP_RELU:
  14743. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14744. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14745. {
  14746. n_tasks = 1;
  14747. } break;
  14748. case GGML_UNARY_OP_GELU:
  14749. case GGML_UNARY_OP_GELU_QUICK:
  14750. case GGML_UNARY_OP_SILU:
  14751. {
  14752. n_tasks = n_threads;
  14753. } break;
  14754. default:
  14755. GGML_ASSERT(false);
  14756. }
  14757. break;
  14758. case GGML_OP_SILU_BACK:
  14759. case GGML_OP_MUL:
  14760. case GGML_OP_DIV:
  14761. case GGML_OP_NORM:
  14762. case GGML_OP_RMS_NORM:
  14763. case GGML_OP_RMS_NORM_BACK:
  14764. case GGML_OP_GROUP_NORM:
  14765. case GGML_OP_CONCAT:
  14766. {
  14767. n_tasks = n_threads;
  14768. } break;
  14769. case GGML_OP_MUL_MAT:
  14770. {
  14771. n_tasks = n_threads;
  14772. // TODO: use different scheduling for different matrix sizes
  14773. //const int nr0 = ggml_nrows(node->src[0]);
  14774. //const int nr1 = ggml_nrows(node->src[1]);
  14775. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14776. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14777. } break;
  14778. case GGML_OP_MUL_MAT_ID:
  14779. {
  14780. n_tasks = n_threads;
  14781. } break;
  14782. case GGML_OP_OUT_PROD:
  14783. {
  14784. n_tasks = n_threads;
  14785. } break;
  14786. case GGML_OP_GET_ROWS:
  14787. {
  14788. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14789. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14790. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14791. } break;
  14792. case GGML_OP_SCALE:
  14793. case GGML_OP_SET:
  14794. case GGML_OP_CONT:
  14795. case GGML_OP_RESHAPE:
  14796. case GGML_OP_VIEW:
  14797. case GGML_OP_PERMUTE:
  14798. case GGML_OP_TRANSPOSE:
  14799. case GGML_OP_GET_ROWS_BACK:
  14800. case GGML_OP_DIAG:
  14801. {
  14802. n_tasks = 1;
  14803. } break;
  14804. case GGML_OP_DIAG_MASK_ZERO:
  14805. case GGML_OP_DIAG_MASK_INF:
  14806. case GGML_OP_SOFT_MAX_BACK:
  14807. case GGML_OP_ROPE:
  14808. case GGML_OP_ROPE_BACK:
  14809. case GGML_OP_ADD_REL_POS:
  14810. {
  14811. n_tasks = n_threads;
  14812. } break;
  14813. case GGML_OP_ALIBI:
  14814. {
  14815. n_tasks = 1; //TODO
  14816. } break;
  14817. case GGML_OP_CLAMP:
  14818. {
  14819. n_tasks = 1; //TODO
  14820. } break;
  14821. case GGML_OP_SOFT_MAX:
  14822. {
  14823. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14824. } break;
  14825. case GGML_OP_CONV_TRANSPOSE_1D:
  14826. {
  14827. n_tasks = n_threads;
  14828. } break;
  14829. case GGML_OP_IM2COL:
  14830. {
  14831. n_tasks = n_threads;
  14832. } break;
  14833. case GGML_OP_CONV_TRANSPOSE_2D:
  14834. {
  14835. n_tasks = n_threads;
  14836. } break;
  14837. case GGML_OP_POOL_1D:
  14838. case GGML_OP_POOL_2D:
  14839. {
  14840. n_tasks = 1;
  14841. } break;
  14842. case GGML_OP_UPSCALE:
  14843. {
  14844. n_tasks = n_threads;
  14845. } break;
  14846. case GGML_OP_PAD:
  14847. {
  14848. n_tasks = n_threads;
  14849. } break;
  14850. case GGML_OP_ARANGE:
  14851. {
  14852. n_tasks = n_threads;
  14853. } break;
  14854. case GGML_OP_TIMESTEP_EMBEDDING:
  14855. {
  14856. n_tasks = n_threads;
  14857. } break;
  14858. case GGML_OP_ARGSORT:
  14859. {
  14860. n_tasks = n_threads;
  14861. } break;
  14862. case GGML_OP_FLASH_ATTN:
  14863. {
  14864. n_tasks = n_threads;
  14865. } break;
  14866. case GGML_OP_FLASH_FF:
  14867. {
  14868. n_tasks = n_threads;
  14869. } break;
  14870. case GGML_OP_FLASH_ATTN_BACK:
  14871. {
  14872. n_tasks = n_threads;
  14873. } break;
  14874. case GGML_OP_SSM_CONV:
  14875. case GGML_OP_SSM_SCAN:
  14876. {
  14877. n_tasks = n_threads;
  14878. } break;
  14879. case GGML_OP_WIN_PART:
  14880. case GGML_OP_WIN_UNPART:
  14881. case GGML_OP_GET_REL_POS:
  14882. case GGML_OP_MAP_UNARY:
  14883. case GGML_OP_MAP_BINARY:
  14884. case GGML_OP_MAP_CUSTOM1_F32:
  14885. case GGML_OP_MAP_CUSTOM2_F32:
  14886. case GGML_OP_MAP_CUSTOM3_F32:
  14887. {
  14888. n_tasks = 1;
  14889. } break;
  14890. case GGML_OP_MAP_CUSTOM1:
  14891. {
  14892. struct ggml_map_custom1_op_params p;
  14893. memcpy(&p, node->op_params, sizeof(p));
  14894. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14895. n_tasks = n_threads;
  14896. } else {
  14897. n_tasks = MIN(p.n_tasks, n_threads);
  14898. }
  14899. } break;
  14900. case GGML_OP_MAP_CUSTOM2:
  14901. {
  14902. struct ggml_map_custom2_op_params p;
  14903. memcpy(&p, node->op_params, sizeof(p));
  14904. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14905. n_tasks = n_threads;
  14906. } else {
  14907. n_tasks = MIN(p.n_tasks, n_threads);
  14908. }
  14909. } break;
  14910. case GGML_OP_MAP_CUSTOM3:
  14911. {
  14912. struct ggml_map_custom3_op_params p;
  14913. memcpy(&p, node->op_params, sizeof(p));
  14914. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14915. n_tasks = n_threads;
  14916. } else {
  14917. n_tasks = MIN(p.n_tasks, n_threads);
  14918. }
  14919. } break;
  14920. case GGML_OP_CROSS_ENTROPY_LOSS:
  14921. {
  14922. n_tasks = n_threads;
  14923. } break;
  14924. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14925. {
  14926. n_tasks = n_threads;
  14927. } break;
  14928. case GGML_OP_NONE:
  14929. {
  14930. n_tasks = 1;
  14931. } break;
  14932. case GGML_OP_COUNT:
  14933. {
  14934. GGML_ASSERT(false);
  14935. } break;
  14936. default:
  14937. {
  14938. fprintf(stderr, "%s: op not implemented: ", __func__);
  14939. if (node->op < GGML_OP_COUNT) {
  14940. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14941. } else {
  14942. fprintf(stderr, "%d\n", node->op);
  14943. }
  14944. GGML_ASSERT(false);
  14945. } break;
  14946. }
  14947. assert(n_tasks > 0);
  14948. return n_tasks;
  14949. }
  14950. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14951. // wait for other threads to finish
  14952. const int last_node_n = * node_n;
  14953. while (true) {
  14954. if (do_yield) {
  14955. sched_yield();
  14956. }
  14957. * node_n = atomic_load(&state->shared->node_n);
  14958. if (* node_n != last_node_n) break;
  14959. }
  14960. }
  14961. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14962. // wait for other threads to finish
  14963. const int last_task_phase = * task_phase;
  14964. while (true) {
  14965. if (do_yield) {
  14966. sched_yield();
  14967. }
  14968. * task_phase = atomic_load(&state->shared->node_task);
  14969. if (* task_phase != last_task_phase) break;
  14970. }
  14971. }
  14972. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14973. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14974. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14975. const struct ggml_cplan * cplan = state->shared->cplan;
  14976. const int n_threads = state->shared->n_threads;
  14977. set_numa_thread_affinity(state->ith);
  14978. int node_n = -1;
  14979. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14980. while (true) {
  14981. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14982. state->shared->node_n += 1;
  14983. state->ec = GGML_STATUS_ABORTED;
  14984. return 0;
  14985. }
  14986. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14987. // all other threads are finished and spinning
  14988. // do finalize and init here so we don't have synchronize again
  14989. struct ggml_compute_params params = {
  14990. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14991. /*.ith =*/ 0,
  14992. /*.nth =*/ 0,
  14993. /*.wsize =*/ cplan->work_size,
  14994. /*.wdata =*/ cplan->work_data,
  14995. };
  14996. if (node_n != -1) {
  14997. /* FINALIZE */
  14998. struct ggml_tensor * node = cgraph->nodes[node_n];
  14999. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15000. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15001. ggml_compute_forward(&params, node);
  15002. }
  15003. ggml_graph_compute_perf_stats_node(node, state->shared);
  15004. }
  15005. // distribute new work or execute it direct if 1T
  15006. while (++node_n < cgraph->n_nodes) {
  15007. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15008. struct ggml_tensor * node = cgraph->nodes[node_n];
  15009. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15010. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15011. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15012. params.nth = n_tasks;
  15013. if (n_tasks == 1) {
  15014. /* INIT */
  15015. if (GGML_OP_HAS_INIT[node->op]) {
  15016. params.type = GGML_TASK_TYPE_INIT;
  15017. ggml_compute_forward(&params, node);
  15018. }
  15019. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15020. // they do something more efficient than spinning (?)
  15021. params.type = GGML_TASK_TYPE_COMPUTE;
  15022. ggml_compute_forward(&params, node);
  15023. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15024. params.type = GGML_TASK_TYPE_FINALIZE;
  15025. ggml_compute_forward(&params, node);
  15026. }
  15027. ggml_graph_compute_perf_stats_node(node, state->shared);
  15028. } else {
  15029. break;
  15030. }
  15031. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15032. break;
  15033. }
  15034. }
  15035. task_phase = GGML_TASK_TYPE_INIT;
  15036. atomic_store(&state->shared->n_active, n_threads);
  15037. atomic_store(&state->shared->node_n, node_n);
  15038. atomic_store(&state->shared->node_task, task_phase);
  15039. } else {
  15040. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15041. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15042. }
  15043. // check if we should stop
  15044. if (node_n >= cgraph->n_nodes) break;
  15045. /* INIT & COMPUTE */
  15046. struct ggml_tensor * node = cgraph->nodes[node_n];
  15047. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15048. struct ggml_compute_params params = {
  15049. /*.type =*/ GGML_TASK_TYPE_INIT,
  15050. /*.ith =*/ state->ith,
  15051. /*.nth =*/ n_tasks,
  15052. /*.wsize =*/ cplan->work_size,
  15053. /*.wdata =*/ cplan->work_data,
  15054. };
  15055. if (state->ith < n_tasks) {
  15056. if (GGML_OP_HAS_INIT[node->op]) {
  15057. ggml_compute_forward(&params, node);
  15058. }
  15059. }
  15060. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15061. task_phase = GGML_TASK_TYPE_COMPUTE;
  15062. atomic_store(&state->shared->n_active, n_threads);
  15063. atomic_store(&state->shared->node_task, task_phase);
  15064. }
  15065. else {
  15066. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15067. // depending on the workload and the operating system.
  15068. // since it is not clear what is the best approach, it should potentially become user-configurable
  15069. // ref: https://github.com/ggerganov/ggml/issues/291
  15070. // UPD: adding the do_yield flag seems to resolve the issue universally
  15071. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15072. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15073. }
  15074. if (state->ith < n_tasks) {
  15075. params.type = GGML_TASK_TYPE_COMPUTE;
  15076. ggml_compute_forward(&params, node);
  15077. }
  15078. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15079. task_phase = GGML_TASK_TYPE_FINALIZE;
  15080. atomic_store(&state->shared->n_active, n_threads);
  15081. atomic_store(&state->shared->node_task, task_phase);
  15082. }
  15083. else {
  15084. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15085. }
  15086. }
  15087. return 0;
  15088. }
  15089. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15090. if (n_threads <= 0) {
  15091. n_threads = GGML_DEFAULT_N_THREADS;
  15092. }
  15093. size_t work_size = 0;
  15094. struct ggml_cplan cplan;
  15095. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15096. int max_tasks = 1;
  15097. // thread scheduling for the different operations + work buffer size estimation
  15098. for (int i = 0; i < cgraph->n_nodes; i++) {
  15099. struct ggml_tensor * node = cgraph->nodes[i];
  15100. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15101. max_tasks = MAX(max_tasks, n_tasks);
  15102. size_t cur = 0;
  15103. switch (node->op) {
  15104. case GGML_OP_CPY:
  15105. case GGML_OP_DUP:
  15106. {
  15107. if (ggml_is_quantized(node->type)) {
  15108. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15109. }
  15110. } break;
  15111. case GGML_OP_ADD:
  15112. case GGML_OP_ADD1:
  15113. {
  15114. if (ggml_is_quantized(node->src[0]->type)) {
  15115. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15116. }
  15117. } break;
  15118. case GGML_OP_ACC:
  15119. {
  15120. if (ggml_is_quantized(node->src[0]->type)) {
  15121. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15122. }
  15123. } break;
  15124. case GGML_OP_MUL_MAT:
  15125. {
  15126. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15127. #if defined(GGML_USE_CLBLAST)
  15128. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15129. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15130. } else
  15131. #endif
  15132. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15133. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15134. if (node->src[0]->type != GGML_TYPE_F32) {
  15135. // here we need memory for fully dequantized matrix from src0
  15136. // take into account that src0 can be broadcasted into src1[2,3]
  15137. cur = ggml_type_size(GGML_TYPE_F32)
  15138. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15139. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15140. }
  15141. } else
  15142. #endif
  15143. if (node->src[1]->type != vec_dot_type) {
  15144. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15145. }
  15146. } break;
  15147. case GGML_OP_MUL_MAT_ID:
  15148. {
  15149. cur = 0;
  15150. const struct ggml_tensor * src0 = node->src[2];
  15151. const struct ggml_tensor * src1 = node->src[1];
  15152. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15153. if (src1->type != vec_dot_type) {
  15154. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15155. }
  15156. const int n_as = ggml_get_op_params_i32(node, 1);
  15157. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15158. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15159. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15160. } break;
  15161. case GGML_OP_OUT_PROD:
  15162. {
  15163. if (ggml_is_quantized(node->src[0]->type)) {
  15164. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15165. }
  15166. } break;
  15167. case GGML_OP_SOFT_MAX:
  15168. case GGML_OP_ROPE:
  15169. {
  15170. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15171. } break;
  15172. case GGML_OP_CONV_TRANSPOSE_1D:
  15173. {
  15174. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15175. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15176. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15177. const int64_t ne00 = node->src[0]->ne[0]; // K
  15178. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15179. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15180. const int64_t ne10 = node->src[1]->ne[0]; // L
  15181. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15182. if (node->src[0]->type == GGML_TYPE_F16 &&
  15183. node->src[1]->type == GGML_TYPE_F32) {
  15184. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15185. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15186. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15187. node->src[1]->type == GGML_TYPE_F32) {
  15188. cur += sizeof(float)*ne00*ne01*ne02;
  15189. cur += sizeof(float)*ne10*ne11;
  15190. } else {
  15191. GGML_ASSERT(false);
  15192. }
  15193. } break;
  15194. case GGML_OP_CONV_TRANSPOSE_2D:
  15195. {
  15196. const int64_t ne00 = node->src[0]->ne[0]; // W
  15197. const int64_t ne01 = node->src[0]->ne[1]; // H
  15198. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15199. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15200. const int64_t ne10 = node->src[1]->ne[0]; // W
  15201. const int64_t ne11 = node->src[1]->ne[1]; // H
  15202. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15203. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15204. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15205. } break;
  15206. case GGML_OP_FLASH_ATTN:
  15207. {
  15208. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15209. if (node->src[1]->type == GGML_TYPE_F32) {
  15210. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15211. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15212. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15213. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15214. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15215. }
  15216. } break;
  15217. case GGML_OP_FLASH_FF:
  15218. {
  15219. if (node->src[1]->type == GGML_TYPE_F32) {
  15220. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15221. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15222. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15223. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15224. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15225. }
  15226. } break;
  15227. case GGML_OP_FLASH_ATTN_BACK:
  15228. {
  15229. const int64_t D = node->src[0]->ne[0];
  15230. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15231. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15232. if (node->src[1]->type == GGML_TYPE_F32) {
  15233. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15234. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15235. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15236. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15237. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15238. }
  15239. } break;
  15240. case GGML_OP_CROSS_ENTROPY_LOSS:
  15241. {
  15242. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15243. } break;
  15244. case GGML_OP_COUNT:
  15245. {
  15246. GGML_ASSERT(false);
  15247. } break;
  15248. default:
  15249. break;
  15250. }
  15251. work_size = MAX(work_size, cur);
  15252. }
  15253. if (work_size > 0) {
  15254. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15255. }
  15256. cplan.n_threads = MIN(max_tasks, n_threads);
  15257. cplan.work_size = work_size;
  15258. cplan.work_data = NULL;
  15259. return cplan;
  15260. }
  15261. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15262. {
  15263. GGML_ASSERT(cplan);
  15264. GGML_ASSERT(cplan->n_threads > 0);
  15265. if (cplan->work_size > 0) {
  15266. GGML_ASSERT(cplan->work_data);
  15267. }
  15268. }
  15269. #ifdef GGML_USE_VULKAN
  15270. for (int i = 0; i < cgraph->n_nodes; i++) {
  15271. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15272. }
  15273. ggml_vk_preallocate_buffers_cpu_assist();
  15274. for (int i = 0; i < cgraph->n_nodes; i++) {
  15275. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15276. }
  15277. #endif
  15278. const int n_threads = cplan->n_threads;
  15279. struct ggml_compute_state_shared state_shared = {
  15280. /*.cgraph =*/ cgraph,
  15281. /*.cgraph_plan =*/ cplan,
  15282. /*.perf_node_start_cycles =*/ 0,
  15283. /*.perf_node_start_time_us =*/ 0,
  15284. /*.n_threads =*/ n_threads,
  15285. /*.n_active =*/ n_threads,
  15286. /*.node_n =*/ -1,
  15287. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15288. /*.abort_callback =*/ NULL,
  15289. /*.abort_callback_data =*/ NULL,
  15290. };
  15291. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15292. // create thread pool
  15293. if (n_threads > 1) {
  15294. for (int j = 1; j < n_threads; ++j) {
  15295. workers[j] = (struct ggml_compute_state) {
  15296. .thrd = 0,
  15297. .ith = j,
  15298. .shared = &state_shared,
  15299. .ec = GGML_STATUS_SUCCESS,
  15300. };
  15301. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15302. GGML_ASSERT(rc == 0);
  15303. UNUSED(rc);
  15304. }
  15305. }
  15306. workers[0].ith = 0;
  15307. workers[0].shared = &state_shared;
  15308. workers[0].ec = GGML_STATUS_SUCCESS;
  15309. const int64_t perf_start_cycles = ggml_perf_cycles();
  15310. const int64_t perf_start_time_us = ggml_perf_time_us();
  15311. // this is a work thread too
  15312. ggml_graph_compute_thread(&workers[0]);
  15313. enum ggml_status compute_status = workers[0].ec;
  15314. // don't leave affinity set on the main thread
  15315. clear_numa_thread_affinity();
  15316. // join or kill thread pool
  15317. if (n_threads > 1) {
  15318. for (int j = 1; j < n_threads; j++) {
  15319. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15320. GGML_ASSERT(rc == 0);
  15321. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15322. compute_status = workers[j].ec;
  15323. }
  15324. }
  15325. #ifdef GGML_USE_VULKAN
  15326. ggml_vk_graph_cleanup_cpu_assist();
  15327. #endif
  15328. // performance stats (graph)
  15329. {
  15330. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15331. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15332. cgraph->perf_runs++;
  15333. cgraph->perf_cycles += perf_cycles_cur;
  15334. cgraph->perf_time_us += perf_time_us_cur;
  15335. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15336. __func__, cgraph->perf_runs,
  15337. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15338. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15339. (double) perf_time_us_cur / 1000.0,
  15340. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15341. }
  15342. return compute_status;
  15343. }
  15344. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15345. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15346. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15347. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15348. return ggml_graph_compute(cgraph, &cplan);
  15349. }
  15350. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15351. for (int i = 0; i < cgraph->n_leafs; i++) {
  15352. struct ggml_tensor * leaf = cgraph->leafs[i];
  15353. if (strcmp(leaf->name, name) == 0) {
  15354. return leaf;
  15355. }
  15356. }
  15357. for (int i = 0; i < cgraph->n_nodes; i++) {
  15358. struct ggml_tensor * node = cgraph->nodes[i];
  15359. if (strcmp(node->name, name) == 0) {
  15360. return node;
  15361. }
  15362. }
  15363. return NULL;
  15364. }
  15365. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15366. const int64_t * ne = tensor->ne;
  15367. const size_t * nb = tensor->nb;
  15368. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15369. ggml_type_name(tensor->type),
  15370. ggml_op_name (tensor->op),
  15371. ggml_n_dims(tensor),
  15372. ne[0], ne[1], ne[2], ne[3],
  15373. nb[0], nb[1], nb[2], nb[3],
  15374. tensor->data,
  15375. tensor->name);
  15376. }
  15377. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15378. const int64_t * ne = tensor->ne;
  15379. const size_t * nb = tensor->nb;
  15380. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15381. arg,
  15382. ggml_type_name(tensor->type),
  15383. ggml_op_name (tensor->op),
  15384. ggml_n_dims(tensor),
  15385. ne[0], ne[1], ne[2], ne[3],
  15386. nb[0], nb[1], nb[2], nb[3],
  15387. tensor->data,
  15388. tensor->name);
  15389. }
  15390. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15391. uint64_t size_eval = 0;
  15392. // compute size of intermediate results
  15393. // TODO: does not take into account scratch buffers !!!!
  15394. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15395. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15396. }
  15397. // print
  15398. {
  15399. FILE * fout = stdout;
  15400. fprintf(fout, "\n");
  15401. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15402. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15403. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15404. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15405. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15406. // header
  15407. fprintf(fout, "\n");
  15408. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15409. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15410. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15411. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15412. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15413. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15414. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15415. }
  15416. // header
  15417. fprintf(fout, "\n");
  15418. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15419. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15420. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15421. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15422. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15423. if (cgraph->nodes[i]->src[j]) {
  15424. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15425. }
  15426. }
  15427. fprintf(fout, "\n");
  15428. }
  15429. fprintf(fout, "\n");
  15430. }
  15431. // write binary data
  15432. {
  15433. FILE * fout = ggml_fopen(fname, "wb");
  15434. if (!fout) {
  15435. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15436. return;
  15437. }
  15438. // header
  15439. {
  15440. const uint32_t magic = GGML_FILE_MAGIC;
  15441. const uint32_t version = GGML_FILE_VERSION;
  15442. const uint32_t n_leafs = cgraph->n_leafs;
  15443. const uint32_t n_nodes = cgraph->n_nodes;
  15444. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15445. fwrite(&version, sizeof(uint32_t), 1, fout);
  15446. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15447. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15448. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15449. }
  15450. // leafs
  15451. {
  15452. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15453. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15454. const uint32_t type = tensor->type;
  15455. const uint32_t op = tensor->op;
  15456. fwrite(&type, sizeof(uint32_t), 1, fout);
  15457. fwrite(&op, sizeof(uint32_t), 1, fout);
  15458. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15459. const uint64_t ne = tensor->ne[j];
  15460. const uint64_t nb = tensor->nb[j];
  15461. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15462. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15463. }
  15464. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15465. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15466. // dump the data
  15467. // TODO: pad this to 32 byte boundary
  15468. {
  15469. const size_t size = ggml_nbytes(tensor);
  15470. fwrite(tensor->data, sizeof(char), size, fout);
  15471. }
  15472. }
  15473. }
  15474. // nodes
  15475. {
  15476. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15477. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15478. const uint32_t type = tensor->type;
  15479. const uint32_t op = tensor->op;
  15480. fwrite(&type, sizeof(uint32_t), 1, fout);
  15481. fwrite(&op, sizeof(uint32_t), 1, fout);
  15482. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15483. const uint64_t ne = tensor->ne[j];
  15484. const uint64_t nb = tensor->nb[j];
  15485. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15486. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15487. }
  15488. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15489. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15490. // output the op arguments
  15491. {
  15492. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15493. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15494. args[j] = tensor->src[j];
  15495. }
  15496. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15497. if (args[j]) {
  15498. int32_t idx = -1;
  15499. // check if leaf
  15500. {
  15501. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15502. if (args[j] == cgraph->leafs[k]) {
  15503. idx = k;
  15504. break;
  15505. }
  15506. }
  15507. }
  15508. // check if node
  15509. if (idx == -1) {
  15510. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15511. if (args[j] == cgraph->nodes[k]) {
  15512. idx = cgraph->n_leafs + k;
  15513. break;
  15514. }
  15515. }
  15516. }
  15517. if (idx == -1) {
  15518. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15519. fclose(fout);
  15520. return;
  15521. }
  15522. fwrite(&idx, sizeof(int32_t), 1, fout);
  15523. } else {
  15524. const int32_t nul = -1;
  15525. fwrite(&nul, sizeof(int32_t), 1, fout);
  15526. }
  15527. }
  15528. }
  15529. }
  15530. }
  15531. fclose(fout);
  15532. }
  15533. }
  15534. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15535. assert(*ctx_data == NULL);
  15536. assert(*ctx_eval == NULL);
  15537. struct ggml_cgraph * result = NULL;
  15538. struct ggml_tensor * data = NULL;
  15539. // read file into data
  15540. {
  15541. FILE * fin = ggml_fopen(fname, "rb");
  15542. if (!fin) {
  15543. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15544. return result;
  15545. }
  15546. size_t fsize = 0;
  15547. fseek(fin, 0, SEEK_END);
  15548. fsize = ftell(fin);
  15549. fseek(fin, 0, SEEK_SET);
  15550. // create the data context
  15551. {
  15552. const size_t overhead = 1*ggml_tensor_overhead();
  15553. struct ggml_init_params params = {
  15554. .mem_size = fsize + overhead,
  15555. .mem_buffer = NULL,
  15556. .no_alloc = false,
  15557. };
  15558. *ctx_data = ggml_init(params);
  15559. if (!*ctx_data) {
  15560. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15561. fclose(fin);
  15562. return result;
  15563. }
  15564. }
  15565. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15566. {
  15567. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15568. if (ret != fsize) {
  15569. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15570. fclose(fin);
  15571. return result;
  15572. }
  15573. }
  15574. fclose(fin);
  15575. }
  15576. // populate result
  15577. {
  15578. char * ptr = (char *) data->data;
  15579. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15580. if (magic != GGML_FILE_MAGIC) {
  15581. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15582. return result;
  15583. }
  15584. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15585. if (version != GGML_FILE_VERSION) {
  15586. fprintf(stderr, "%s: invalid version number\n", __func__);
  15587. return result;
  15588. }
  15589. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15590. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15591. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15592. const int graph_size = MAX(n_leafs, n_nodes);
  15593. // create the data context
  15594. {
  15595. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15596. struct ggml_init_params params = {
  15597. .mem_size = size_eval + overhead,
  15598. .mem_buffer = NULL,
  15599. .no_alloc = true,
  15600. };
  15601. *ctx_eval = ggml_init(params);
  15602. if (!*ctx_eval) {
  15603. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15604. return result;
  15605. }
  15606. }
  15607. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15608. result->n_leafs = n_leafs;
  15609. result->n_nodes = n_nodes;
  15610. // leafs
  15611. {
  15612. uint32_t type;
  15613. uint32_t op;
  15614. for (uint32_t i = 0; i < n_leafs; ++i) {
  15615. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15616. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15617. int64_t ne[GGML_MAX_DIMS];
  15618. size_t nb[GGML_MAX_DIMS];
  15619. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15620. uint64_t ne_cur;
  15621. uint64_t nb_cur;
  15622. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15623. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15624. ne[j] = ne_cur;
  15625. nb[j] = nb_cur;
  15626. }
  15627. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15628. tensor->op = (enum ggml_op) op;
  15629. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15630. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15631. tensor->data = (void *) ptr;
  15632. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15633. tensor->nb[j] = nb[j];
  15634. }
  15635. result->leafs[i] = tensor;
  15636. ptr += ggml_nbytes(tensor);
  15637. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15638. }
  15639. }
  15640. ggml_set_no_alloc(*ctx_eval, false);
  15641. // nodes
  15642. {
  15643. uint32_t type;
  15644. uint32_t op;
  15645. for (uint32_t i = 0; i < n_nodes; ++i) {
  15646. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15647. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15648. enum ggml_op eop = (enum ggml_op) op;
  15649. int64_t ne[GGML_MAX_DIMS];
  15650. size_t nb[GGML_MAX_DIMS];
  15651. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15652. uint64_t ne_cur;
  15653. uint64_t nb_cur;
  15654. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15655. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15656. ne[j] = ne_cur;
  15657. nb[j] = nb_cur;
  15658. }
  15659. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15660. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15661. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15662. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15663. // parse args
  15664. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15665. const int32_t arg_idx = ptr_arg_idx[j];
  15666. if (arg_idx == -1) {
  15667. continue;
  15668. }
  15669. if (arg_idx < result->n_leafs) {
  15670. args[j] = result->leafs[arg_idx];
  15671. } else {
  15672. args[j] = result->nodes[arg_idx - result->n_leafs];
  15673. }
  15674. }
  15675. // create the tensor
  15676. // "view" operations are handled differently
  15677. // TODO: handle inplace ops - currently a copy is always made
  15678. struct ggml_tensor * tensor = NULL;
  15679. switch (eop) {
  15680. // TODO: implement other view ops
  15681. case GGML_OP_RESHAPE:
  15682. {
  15683. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15684. } break;
  15685. case GGML_OP_VIEW:
  15686. {
  15687. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15688. size_t offs;
  15689. memcpy(&offs, ptr_op_params, sizeof(offs));
  15690. tensor->data = ((char *) tensor->data) + offs;
  15691. } break;
  15692. case GGML_OP_TRANSPOSE:
  15693. {
  15694. tensor = ggml_transpose(*ctx_eval, args[0]);
  15695. } break;
  15696. case GGML_OP_PERMUTE:
  15697. {
  15698. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15699. } break;
  15700. default:
  15701. {
  15702. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15703. tensor->op = eop;
  15704. } break;
  15705. }
  15706. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15707. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15708. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15709. tensor->nb[j] = nb[j];
  15710. }
  15711. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15712. tensor->src[j] = args[j];
  15713. }
  15714. result->nodes[i] = tensor;
  15715. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15716. }
  15717. }
  15718. }
  15719. return result;
  15720. }
  15721. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15722. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15723. GGML_PRINT("=== GRAPH ===\n");
  15724. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15725. for (int i = 0; i < cgraph->n_nodes; i++) {
  15726. struct ggml_tensor * node = cgraph->nodes[i];
  15727. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15728. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15729. i,
  15730. node->ne[0], node->ne[1], node->ne[2],
  15731. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15732. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15733. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15734. (double) node->perf_time_us / 1000.0,
  15735. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15736. }
  15737. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15738. for (int i = 0; i < cgraph->n_leafs; i++) {
  15739. struct ggml_tensor * node = cgraph->leafs[i];
  15740. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15741. i,
  15742. node->ne[0], node->ne[1],
  15743. ggml_op_name(node->op),
  15744. ggml_get_name(node));
  15745. }
  15746. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15747. if (perf_total_per_op_us[i] == 0) {
  15748. continue;
  15749. }
  15750. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15751. }
  15752. GGML_PRINT("========================================\n");
  15753. }
  15754. // check if node is part of the graph
  15755. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15756. if (cgraph == NULL) {
  15757. return true;
  15758. }
  15759. for (int i = 0; i < cgraph->n_nodes; i++) {
  15760. if (cgraph->nodes[i] == node) {
  15761. return true;
  15762. }
  15763. }
  15764. return false;
  15765. }
  15766. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15767. for (int i = 0; i < cgraph->n_nodes; i++) {
  15768. struct ggml_tensor * parent = cgraph->nodes[i];
  15769. if (parent->grad == node) {
  15770. return parent;
  15771. }
  15772. }
  15773. return NULL;
  15774. }
  15775. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15776. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15777. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15778. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15779. gparent0 ? (void *) gparent0 : (void *) parent,
  15780. gparent0 ? "g" : "x",
  15781. gparent ? (void *) gparent : (void *) node,
  15782. gparent ? "g" : "x",
  15783. gparent ? "empty" : "vee",
  15784. gparent ? "dashed" : "solid",
  15785. label);
  15786. }
  15787. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15788. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15789. (void *) parent, "x",
  15790. (void *) node, "x",
  15791. label);
  15792. }
  15793. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15794. char color[16];
  15795. FILE * fp = ggml_fopen(filename, "w");
  15796. GGML_ASSERT(fp);
  15797. fprintf(fp, "digraph G {\n");
  15798. fprintf(fp, " newrank = true;\n");
  15799. fprintf(fp, " rankdir = LR;\n");
  15800. for (int i = 0; i < gb->n_nodes; i++) {
  15801. struct ggml_tensor * node = gb->nodes[i];
  15802. if (ggml_graph_get_parent(gb, node) != NULL) {
  15803. continue;
  15804. }
  15805. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15806. snprintf(color, sizeof(color), "yellow");
  15807. } else if (node->grad) {
  15808. if (ggml_graph_find(gf, node)) {
  15809. snprintf(color, sizeof(color), "green");
  15810. } else {
  15811. snprintf(color, sizeof(color), "lightblue");
  15812. }
  15813. } else {
  15814. snprintf(color, sizeof(color), "white");
  15815. }
  15816. fprintf(fp, " \"%p\" [ "
  15817. "style = filled; fillcolor = %s; shape = record; "
  15818. "label=\"",
  15819. (void *) node, color);
  15820. if (strlen(node->name) > 0) {
  15821. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15822. } else {
  15823. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15824. }
  15825. if (ggml_is_matrix(node)) {
  15826. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15827. } else {
  15828. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15829. }
  15830. if (node->grad) {
  15831. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15832. } else {
  15833. fprintf(fp, "\"; ]\n");
  15834. }
  15835. }
  15836. for (int i = 0; i < gb->n_leafs; i++) {
  15837. struct ggml_tensor * node = gb->leafs[i];
  15838. snprintf(color, sizeof(color), "pink");
  15839. fprintf(fp, " \"%p\" [ "
  15840. "style = filled; fillcolor = %s; shape = record; "
  15841. "label=\"<x>",
  15842. (void *) node, color);
  15843. if (strlen(node->name) > 0) {
  15844. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15845. } else {
  15846. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15847. }
  15848. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15849. if (ggml_nelements(node) < 5) {
  15850. fprintf(fp, " | (");
  15851. for (int j = 0; j < ggml_nelements(node); j++) {
  15852. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15853. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15854. }
  15855. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15856. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15857. }
  15858. else {
  15859. fprintf(fp, "#");
  15860. }
  15861. if (j < ggml_nelements(node) - 1) {
  15862. fprintf(fp, ", ");
  15863. }
  15864. }
  15865. fprintf(fp, ")");
  15866. }
  15867. fprintf(fp, "\"; ]\n");
  15868. }
  15869. for (int i = 0; i < gb->n_nodes; i++) {
  15870. struct ggml_tensor * node = gb->nodes[i];
  15871. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15872. if (node->src[j]) {
  15873. char label[16];
  15874. snprintf(label, sizeof(label), "src %d", j);
  15875. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15876. }
  15877. }
  15878. }
  15879. for (int i = 0; i < gb->n_leafs; i++) {
  15880. struct ggml_tensor * node = gb->leafs[i];
  15881. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15882. if (node->src[j]) {
  15883. char label[16];
  15884. snprintf(label, sizeof(label), "src %d", j);
  15885. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15886. }
  15887. }
  15888. }
  15889. fprintf(fp, "}\n");
  15890. fclose(fp);
  15891. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15892. }
  15893. ////////////////////////////////////////////////////////////////////////////////
  15894. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15895. int i = 0;
  15896. for (int p = 0; p < np; ++p) {
  15897. const int64_t ne = ggml_nelements(ps[p]) ;
  15898. // TODO: add function to set tensor from array
  15899. for (int64_t j = 0; j < ne; ++j) {
  15900. ggml_set_f32_1d(ps[p], j, x[i++]);
  15901. }
  15902. }
  15903. }
  15904. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15905. int i = 0;
  15906. for (int p = 0; p < np; ++p) {
  15907. const int64_t ne = ggml_nelements(ps[p]) ;
  15908. // TODO: add function to get all elements at once
  15909. for (int64_t j = 0; j < ne; ++j) {
  15910. x[i++] = ggml_get_f32_1d(ps[p], j);
  15911. }
  15912. }
  15913. }
  15914. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15915. int64_t i = 0;
  15916. for (int p = 0; p < np; ++p) {
  15917. const int64_t ne = ggml_nelements(ps[p]) ;
  15918. // TODO: add function to get all elements at once
  15919. for (int64_t j = 0; j < ne; ++j) {
  15920. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15921. }
  15922. }
  15923. }
  15924. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15925. int64_t i = 0;
  15926. for (int p = 0; p < np; ++p) {
  15927. const int64_t ne = ggml_nelements(ps[p]) ;
  15928. // TODO: add function to get all elements at once
  15929. for (int64_t j = 0; j < ne; ++j) {
  15930. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15931. }
  15932. }
  15933. }
  15934. //
  15935. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15936. //
  15937. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15938. //
  15939. static enum ggml_opt_result ggml_opt_adam(
  15940. struct ggml_context * ctx,
  15941. struct ggml_opt_context * opt,
  15942. struct ggml_opt_params params,
  15943. struct ggml_tensor * f,
  15944. struct ggml_cgraph * gf,
  15945. struct ggml_cgraph * gb,
  15946. ggml_opt_callback callback,
  15947. void * callback_data) {
  15948. GGML_ASSERT(ggml_is_scalar(f));
  15949. // these will store the parameters we want to optimize
  15950. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15951. int np = 0;
  15952. int64_t nx = 0;
  15953. for (int i = 0; i < gf->n_nodes; ++i) {
  15954. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15955. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15956. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15957. ps[np++] = gf->nodes[i];
  15958. nx += ggml_nelements(gf->nodes[i]);
  15959. }
  15960. }
  15961. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15962. int iter = opt->iter;
  15963. ggml_opt_init(opt->ctx, opt, params, nx);
  15964. opt->iter = iter;
  15965. }
  15966. // constants
  15967. float sched = params.adam.sched;
  15968. const float alpha = params.adam.alpha;
  15969. const float decay = params.adam.decay * alpha;
  15970. const float beta1 = params.adam.beta1;
  15971. const float beta2 = params.adam.beta2;
  15972. const float eps = params.adam.eps;
  15973. const float gclip = params.adam.gclip;
  15974. const int decay_min_ndim = params.adam.decay_min_ndim;
  15975. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15976. const float accum_norm = 1.0f / (float) n_accum;
  15977. float * g = opt->adam.g->data; // gradients
  15978. float * m = opt->adam.m->data; // first moment
  15979. float * v = opt->adam.v->data; // second moment
  15980. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15981. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15982. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15983. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15984. bool cancel = false;
  15985. // compute the function value
  15986. float fx = 0;
  15987. ggml_set_zero(opt->adam.g);
  15988. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15989. if (callback) {
  15990. callback(callback_data, accum_step, &sched, &cancel);
  15991. if (cancel) {
  15992. return GGML_OPT_RESULT_CANCEL;
  15993. }
  15994. }
  15995. // ggml_graph_reset (gf);
  15996. ggml_set_f32 (f->grad, 1.0f);
  15997. ggml_graph_compute(gb, &cplan);
  15998. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15999. fx += ggml_get_f32_1d(f, 0);
  16000. }
  16001. fx *= accum_norm;
  16002. opt->adam.fx_prev = fx;
  16003. opt->adam.fx_best = opt->adam.fx_prev;
  16004. if (pf) {
  16005. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16006. }
  16007. opt->loss_before = opt->adam.fx_prev;
  16008. opt->loss_after = opt->adam.fx_prev;
  16009. // initialize
  16010. if (opt->just_initialized) {
  16011. opt->adam.n_no_improvement = 0;
  16012. opt->just_initialized = false;
  16013. }
  16014. float * fx_best = &opt->adam.fx_best;
  16015. float * fx_prev = &opt->adam.fx_prev;
  16016. int * n_no_improvement = &opt->adam.n_no_improvement;
  16017. int iter0 = opt->iter;
  16018. // run the optimizer
  16019. for (int t = 0; t < params.adam.n_iter; ++t) {
  16020. opt->iter = iter0 + t + 1;
  16021. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16022. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16023. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16024. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16025. for (int i = 0; i < np; ++i) {
  16026. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16027. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16028. }
  16029. const int64_t t_start_wall = ggml_time_us();
  16030. const int64_t t_start_cpu = ggml_cycles();
  16031. UNUSED(t_start_wall);
  16032. UNUSED(t_start_cpu);
  16033. {
  16034. float gnorm = 1.0f;
  16035. if (gclip > 0.0f) {
  16036. // gradient clipping
  16037. ggml_float sum = 0.0;
  16038. for (int64_t i = 0; i < nx; ++i) {
  16039. sum += (ggml_float)(g[i]*g[i]);
  16040. }
  16041. ggml_float norm = sqrt(sum);
  16042. if (norm > (ggml_float) gclip) {
  16043. gnorm = (float) ((ggml_float) gclip / norm);
  16044. }
  16045. }
  16046. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16047. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16048. int64_t i = 0;
  16049. for (int p = 0; p < np; ++p) {
  16050. const int64_t ne = ggml_nelements(ps[p]);
  16051. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16052. for (int64_t j = 0; j < ne; ++j) {
  16053. float x = ggml_get_f32_1d(ps[p], j);
  16054. float g_ = g[i]*gnorm;
  16055. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16056. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16057. float mh = m[i]*beta1h;
  16058. float vh = v[i]*beta2h;
  16059. vh = sqrtf(vh) + eps;
  16060. x = x*(1.0f - p_decay) - mh/vh;
  16061. ggml_set_f32_1d(ps[p], j, x);
  16062. ++i;
  16063. }
  16064. }
  16065. }
  16066. fx = 0;
  16067. ggml_set_zero(opt->adam.g);
  16068. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16069. if (callback) {
  16070. callback(callback_data, accum_step, &sched, &cancel);
  16071. if (cancel) {
  16072. return GGML_OPT_RESULT_CANCEL;;
  16073. }
  16074. }
  16075. // ggml_graph_reset (gf);
  16076. ggml_set_f32 (f->grad, 1.0f);
  16077. ggml_graph_compute(gb, &cplan);
  16078. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16079. fx += ggml_get_f32_1d(f, 0);
  16080. }
  16081. fx *= accum_norm;
  16082. opt->loss_after = fx;
  16083. // check convergence
  16084. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16085. GGML_PRINT_DEBUG("converged\n");
  16086. return GGML_OPT_RESULT_OK;
  16087. }
  16088. // delta-based convergence test
  16089. if (pf != NULL) {
  16090. // need at least params.past iterations to start checking for convergence
  16091. if (params.past <= iter0 + t) {
  16092. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16093. if (fabsf(rate) < params.delta) {
  16094. return GGML_OPT_RESULT_OK;
  16095. }
  16096. }
  16097. pf[(iter0 + t)%params.past] = fx;
  16098. }
  16099. // check for improvement
  16100. if (params.max_no_improvement > 0) {
  16101. if (fx_best[0] > fx) {
  16102. fx_best[0] = fx;
  16103. n_no_improvement[0] = 0;
  16104. } else {
  16105. ++n_no_improvement[0];
  16106. if (n_no_improvement[0] >= params.max_no_improvement) {
  16107. return GGML_OPT_RESULT_OK;
  16108. }
  16109. }
  16110. }
  16111. fx_prev[0] = fx;
  16112. {
  16113. const int64_t t_end_cpu = ggml_cycles();
  16114. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16115. UNUSED(t_end_cpu);
  16116. const int64_t t_end_wall = ggml_time_us();
  16117. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16118. UNUSED(t_end_wall);
  16119. }
  16120. }
  16121. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16122. }
  16123. //
  16124. // L-BFGS
  16125. //
  16126. // the L-BFGS implementation below is based on the following implementation:
  16127. //
  16128. // https://github.com/chokkan/liblbfgs
  16129. //
  16130. struct ggml_lbfgs_iteration_data {
  16131. float alpha;
  16132. float ys;
  16133. float * s;
  16134. float * y;
  16135. };
  16136. static enum ggml_opt_result linesearch_backtracking(
  16137. const struct ggml_opt_params * params,
  16138. int nx,
  16139. float * x,
  16140. float * fx,
  16141. float * g,
  16142. float * d,
  16143. float * step,
  16144. const float * xp,
  16145. struct ggml_tensor * f,
  16146. struct ggml_cgraph * gb,
  16147. struct ggml_cplan * cplan,
  16148. const int np,
  16149. struct ggml_tensor * ps[],
  16150. bool * cancel,
  16151. ggml_opt_callback callback,
  16152. void * callback_data) {
  16153. int count = 0;
  16154. float width = 0.0f;
  16155. float dg = 0.0f;
  16156. float finit = 0.0f;
  16157. float dginit = 0.0f;
  16158. float dgtest = 0.0f;
  16159. const float dec = 0.5f;
  16160. const float inc = 2.1f;
  16161. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16162. const float accum_norm = 1.0f / (float) n_accum;
  16163. if (*step <= 0.f) {
  16164. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16165. }
  16166. // compute the initial gradient in the search direction
  16167. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16168. // make sure that d points to a descent direction
  16169. if (0 < dginit) {
  16170. return GGML_LINESEARCH_FAIL;
  16171. }
  16172. // initialize local variables
  16173. finit = *fx;
  16174. dgtest = params->lbfgs.ftol*dginit;
  16175. while (true) {
  16176. ggml_vec_cpy_f32(nx, x, xp);
  16177. ggml_vec_mad_f32(nx, x, d, *step);
  16178. // evaluate the function and gradient values
  16179. {
  16180. ggml_opt_set_params(np, ps, x);
  16181. *fx = 0;
  16182. memset(g, 0, sizeof(float)*nx);
  16183. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16184. if (callback) {
  16185. // LBFG-S does not support learning rate -> ignore learning schedule
  16186. float sched = 0;
  16187. callback(callback_data, accum_step, &sched, cancel);
  16188. if (*cancel) {
  16189. return GGML_OPT_RESULT_CANCEL;
  16190. }
  16191. }
  16192. // ggml_graph_reset (gf);
  16193. ggml_set_f32 (f->grad, 1.0f);
  16194. ggml_graph_compute(gb, cplan);
  16195. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16196. *fx += ggml_get_f32_1d(f, 0);
  16197. }
  16198. *fx *= accum_norm;
  16199. }
  16200. ++count;
  16201. if (*fx > finit + (*step)*dgtest) {
  16202. width = dec;
  16203. } else {
  16204. // Armijo condition is satisfied
  16205. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16206. return count;
  16207. }
  16208. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16209. // check the Wolfe condition
  16210. if (dg < params->lbfgs.wolfe * dginit) {
  16211. width = inc;
  16212. } else {
  16213. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16214. // regular Wolfe conditions
  16215. return count;
  16216. }
  16217. if(dg > -params->lbfgs.wolfe*dginit) {
  16218. width = dec;
  16219. } else {
  16220. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16221. return count;
  16222. }
  16223. }
  16224. }
  16225. if (*step < params->lbfgs.min_step) {
  16226. return GGML_LINESEARCH_MINIMUM_STEP;
  16227. }
  16228. if (*step > params->lbfgs.max_step) {
  16229. return GGML_LINESEARCH_MAXIMUM_STEP;
  16230. }
  16231. if (params->lbfgs.max_linesearch <= count) {
  16232. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16233. }
  16234. (*step) *= width;
  16235. }
  16236. GGML_ASSERT(false && "line search failed");
  16237. return GGML_LINESEARCH_FAIL;
  16238. }
  16239. static enum ggml_opt_result ggml_opt_lbfgs(
  16240. struct ggml_context * ctx,
  16241. struct ggml_opt_context * opt,
  16242. struct ggml_opt_params params,
  16243. struct ggml_tensor * f,
  16244. struct ggml_cgraph * gf,
  16245. struct ggml_cgraph * gb,
  16246. ggml_opt_callback callback,
  16247. void * callback_data) {
  16248. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16249. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16250. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16251. return GGML_OPT_RESULT_INVALID_WOLFE;
  16252. }
  16253. }
  16254. const int m = params.lbfgs.m;
  16255. // these will store the parameters we want to optimize
  16256. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16257. int np = 0;
  16258. int nx = 0;
  16259. for (int i = 0; i < gf->n_nodes; ++i) {
  16260. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16261. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16262. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16263. ps[np++] = gf->nodes[i];
  16264. nx += ggml_nelements(gf->nodes[i]);
  16265. }
  16266. }
  16267. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16268. int iter = opt->iter;
  16269. ggml_opt_init(ctx, opt, params, nx);
  16270. opt->iter = iter;
  16271. }
  16272. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16273. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16274. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16275. float * x = opt->lbfgs.x->data; // current parameters
  16276. float * xp = opt->lbfgs.xp->data; // previous parameters
  16277. float * g = opt->lbfgs.g->data; // current gradient
  16278. float * gp = opt->lbfgs.gp->data; // previous gradient
  16279. float * d = opt->lbfgs.d->data; // search direction
  16280. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16281. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16282. const float accum_norm = 1.0f / (float) n_accum;
  16283. float fx = 0.0f; // cost function value
  16284. float xnorm = 0.0f; // ||x||
  16285. float gnorm = 0.0f; // ||g||
  16286. // initialize x from the graph nodes
  16287. ggml_opt_get_params(np, ps, x);
  16288. // the L-BFGS memory
  16289. float * lm_alpha = opt->lbfgs.lmal->data;
  16290. float * lm_ys = opt->lbfgs.lmys->data;
  16291. float * lm_s = opt->lbfgs.lms->data;
  16292. float * lm_y = opt->lbfgs.lmy->data;
  16293. bool cancel = false;
  16294. // evaluate the function value and its gradient
  16295. {
  16296. ggml_opt_set_params(np, ps, x);
  16297. fx = 0;
  16298. memset(g, 0, sizeof(float)*nx);
  16299. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16300. if (callback) {
  16301. // LBFG-S does not support learning rate -> ignore learning schedule
  16302. float sched = 0;
  16303. callback(callback_data, accum_step, &sched, &cancel);
  16304. if (cancel) {
  16305. return GGML_OPT_RESULT_CANCEL;
  16306. }
  16307. }
  16308. // ggml_graph_reset (gf);
  16309. ggml_set_f32 (f->grad, 1.0f);
  16310. ggml_graph_compute(gb, &cplan);
  16311. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16312. fx += ggml_get_f32_1d(f, 0);
  16313. }
  16314. fx *= accum_norm;
  16315. opt->loss_before = fx;
  16316. opt->loss_after = fx;
  16317. }
  16318. // search direction = -gradient
  16319. ggml_vec_neg_f32(nx, d, g);
  16320. // ||x||, ||g||
  16321. ggml_vec_norm_f32(nx, &xnorm, x);
  16322. ggml_vec_norm_f32(nx, &gnorm, g);
  16323. if (xnorm < 1.0f) {
  16324. xnorm = 1.0f;
  16325. }
  16326. // already optimized
  16327. if (gnorm/xnorm <= params.lbfgs.eps) {
  16328. return GGML_OPT_RESULT_OK;
  16329. }
  16330. if (opt->just_initialized) {
  16331. if (pf) {
  16332. pf[0] = fx;
  16333. }
  16334. opt->lbfgs.fx_best = fx;
  16335. // initial step
  16336. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16337. opt->lbfgs.j = 0;
  16338. opt->lbfgs.k = 1;
  16339. opt->lbfgs.end = 0;
  16340. opt->lbfgs.n_no_improvement = 0;
  16341. opt->just_initialized = false;
  16342. }
  16343. float * fx_best = &opt->lbfgs.fx_best;
  16344. float * step = &opt->lbfgs.step;
  16345. int * j = &opt->lbfgs.j;
  16346. int * k = &opt->lbfgs.k;
  16347. int * end = &opt->lbfgs.end;
  16348. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16349. int ls = 0;
  16350. int bound = 0;
  16351. float ys = 0.0f;
  16352. float yy = 0.0f;
  16353. float beta = 0.0f;
  16354. int it = 0;
  16355. while (true) {
  16356. // store the current position and gradient vectors
  16357. ggml_vec_cpy_f32(nx, xp, x);
  16358. ggml_vec_cpy_f32(nx, gp, g);
  16359. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16360. // to determine if the optimization should be cancelled
  16361. // this is a simple change, but not doing this atm, since I don't have a nice
  16362. // way to test and don't want to break something with so many changes lined up
  16363. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16364. if (cancel) {
  16365. return GGML_OPT_RESULT_CANCEL;
  16366. }
  16367. if (ls < 0) {
  16368. // linesearch failed - go back to the previous point and return
  16369. ggml_vec_cpy_f32(nx, x, xp);
  16370. ggml_vec_cpy_f32(nx, g, gp);
  16371. return ls;
  16372. }
  16373. opt->loss_after = fx;
  16374. ggml_vec_norm_f32(nx, &xnorm, x);
  16375. ggml_vec_norm_f32(nx, &gnorm, g);
  16376. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16377. if (xnorm < 1.0f) {
  16378. xnorm = 1.0f;
  16379. }
  16380. if (gnorm/xnorm <= params.lbfgs.eps) {
  16381. // converged
  16382. return GGML_OPT_RESULT_OK;
  16383. }
  16384. // delta-based convergence test
  16385. if (pf != NULL) {
  16386. // need at least params.past iterations to start checking for convergence
  16387. if (params.past <= k[0]) {
  16388. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16389. if (fabsf(rate) < params.delta) {
  16390. return GGML_OPT_RESULT_OK;
  16391. }
  16392. }
  16393. pf[k[0]%params.past] = fx;
  16394. }
  16395. // check for improvement
  16396. if (params.max_no_improvement > 0) {
  16397. if (fx < fx_best[0]) {
  16398. fx_best[0] = fx;
  16399. n_no_improvement[0] = 0;
  16400. } else {
  16401. n_no_improvement[0]++;
  16402. if (n_no_improvement[0] >= params.max_no_improvement) {
  16403. return GGML_OPT_RESULT_OK;
  16404. }
  16405. }
  16406. }
  16407. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16408. // reached the maximum number of iterations
  16409. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16410. }
  16411. // update vectors s and y:
  16412. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16413. // y_{k+1} = g_{k+1} - g_{k}.
  16414. //
  16415. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16416. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16417. // compute scalars ys and yy:
  16418. // ys = y^t \cdot s -> 1 / \rho.
  16419. // yy = y^t \cdot y.
  16420. //
  16421. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16422. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16423. lm_ys[end[0]] = ys;
  16424. // find new search direction
  16425. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16426. bound = (m <= k[0]) ? m : k[0];
  16427. k[0]++;
  16428. it++;
  16429. end[0] = (end[0] + 1)%m;
  16430. // initialize search direction with -g
  16431. ggml_vec_neg_f32(nx, d, g);
  16432. j[0] = end[0];
  16433. for (int i = 0; i < bound; ++i) {
  16434. j[0] = (j[0] + m - 1) % m;
  16435. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16436. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16437. lm_alpha[j[0]] /= lm_ys[j[0]];
  16438. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16439. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16440. }
  16441. ggml_vec_scale_f32(nx, d, ys/yy);
  16442. for (int i = 0; i < bound; ++i) {
  16443. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16444. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16445. beta /= lm_ys[j[0]];
  16446. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16447. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16448. j[0] = (j[0] + 1)%m;
  16449. }
  16450. step[0] = 1.0;
  16451. }
  16452. GGML_ASSERT(false && "lbfgs failed");
  16453. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16454. }
  16455. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16456. struct ggml_opt_params result;
  16457. switch (type) {
  16458. case GGML_OPT_TYPE_ADAM:
  16459. {
  16460. result = (struct ggml_opt_params) {
  16461. .type = GGML_OPT_TYPE_ADAM,
  16462. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16463. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16464. .past = 0,
  16465. .delta = 1e-5f,
  16466. .max_no_improvement = 100,
  16467. .print_forward_graph = true,
  16468. .print_backward_graph = true,
  16469. .n_gradient_accumulation = 1,
  16470. .adam = {
  16471. .n_iter = 10000,
  16472. .sched = 1.000f,
  16473. .decay = 0.0f,
  16474. .decay_min_ndim = 2,
  16475. .alpha = 0.001f,
  16476. .beta1 = 0.9f,
  16477. .beta2 = 0.999f,
  16478. .eps = 1e-8f,
  16479. .eps_f = 1e-5f,
  16480. .eps_g = 1e-3f,
  16481. .gclip = 0.0f,
  16482. },
  16483. };
  16484. } break;
  16485. case GGML_OPT_TYPE_LBFGS:
  16486. {
  16487. result = (struct ggml_opt_params) {
  16488. .type = GGML_OPT_TYPE_LBFGS,
  16489. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16490. .n_threads = 1,
  16491. .past = 0,
  16492. .delta = 1e-5f,
  16493. .max_no_improvement = 0,
  16494. .print_forward_graph = true,
  16495. .print_backward_graph = true,
  16496. .n_gradient_accumulation = 1,
  16497. .lbfgs = {
  16498. .m = 6,
  16499. .n_iter = 100,
  16500. .max_linesearch = 20,
  16501. .eps = 1e-5f,
  16502. .ftol = 1e-4f,
  16503. .wolfe = 0.9f,
  16504. .min_step = 1e-20f,
  16505. .max_step = 1e+20f,
  16506. .linesearch = GGML_LINESEARCH_DEFAULT,
  16507. },
  16508. };
  16509. } break;
  16510. }
  16511. return result;
  16512. }
  16513. GGML_API void ggml_opt_init(
  16514. struct ggml_context * ctx,
  16515. struct ggml_opt_context * opt,
  16516. struct ggml_opt_params params,
  16517. int64_t nx) {
  16518. opt->ctx = ctx;
  16519. opt->params = params;
  16520. opt->iter = 0;
  16521. opt->nx = nx;
  16522. opt->just_initialized = true;
  16523. if (opt->ctx == NULL) {
  16524. struct ggml_init_params ctx_opt_params;
  16525. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16526. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16527. if (opt->params.past > 0) {
  16528. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16529. }
  16530. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16531. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16532. if (opt->params.past > 0) {
  16533. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16534. }
  16535. }
  16536. ctx_opt_params.mem_buffer = NULL;
  16537. ctx_opt_params.no_alloc = false;
  16538. opt->ctx = ggml_init(ctx_opt_params);
  16539. }
  16540. switch (opt->params.type) {
  16541. case GGML_OPT_TYPE_ADAM:
  16542. {
  16543. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16544. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16545. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16546. opt->adam.pf = params.past > 0
  16547. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16548. : NULL;
  16549. ggml_set_zero(opt->adam.m);
  16550. ggml_set_zero(opt->adam.v);
  16551. if (opt->adam.pf) {
  16552. ggml_set_zero(opt->adam.pf);
  16553. }
  16554. } break;
  16555. case GGML_OPT_TYPE_LBFGS:
  16556. {
  16557. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16558. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16559. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16560. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16561. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16562. opt->lbfgs.pf = params.past > 0
  16563. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16564. : NULL;
  16565. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16566. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16567. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16568. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16569. ggml_set_zero(opt->lbfgs.x);
  16570. ggml_set_zero(opt->lbfgs.xp);
  16571. ggml_set_zero(opt->lbfgs.g);
  16572. ggml_set_zero(opt->lbfgs.gp);
  16573. ggml_set_zero(opt->lbfgs.d);
  16574. if (opt->lbfgs.pf) {
  16575. ggml_set_zero(opt->lbfgs.pf);
  16576. }
  16577. ggml_set_zero(opt->lbfgs.lmal);
  16578. ggml_set_zero(opt->lbfgs.lmys);
  16579. ggml_set_zero(opt->lbfgs.lms);
  16580. ggml_set_zero(opt->lbfgs.lmy);
  16581. } break;
  16582. }
  16583. }
  16584. enum ggml_opt_result ggml_opt(
  16585. struct ggml_context * ctx,
  16586. struct ggml_opt_params params,
  16587. struct ggml_tensor * f) {
  16588. bool free_ctx = false;
  16589. if (ctx == NULL) {
  16590. struct ggml_init_params params_ctx = {
  16591. .mem_size = 16*1024*1024,
  16592. .mem_buffer = NULL,
  16593. .no_alloc = false,
  16594. };
  16595. ctx = ggml_init(params_ctx);
  16596. if (ctx == NULL) {
  16597. return GGML_OPT_RESULT_NO_CONTEXT;
  16598. }
  16599. free_ctx = true;
  16600. }
  16601. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16602. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16603. ggml_opt_init(ctx, opt, params, 0);
  16604. result = ggml_opt_resume(ctx, opt, f);
  16605. if (free_ctx) {
  16606. ggml_free(ctx);
  16607. }
  16608. return result;
  16609. }
  16610. enum ggml_opt_result ggml_opt_resume(
  16611. struct ggml_context * ctx,
  16612. struct ggml_opt_context * opt,
  16613. struct ggml_tensor * f) {
  16614. // build forward + backward compute graphs
  16615. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16616. ggml_build_forward_expand(gf, f);
  16617. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16618. ggml_build_backward_expand(ctx, gf, gb, true);
  16619. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16620. }
  16621. enum ggml_opt_result ggml_opt_resume_g(
  16622. struct ggml_context * ctx,
  16623. struct ggml_opt_context * opt,
  16624. struct ggml_tensor * f,
  16625. struct ggml_cgraph * gf,
  16626. struct ggml_cgraph * gb,
  16627. ggml_opt_callback callback,
  16628. void * callback_data) {
  16629. // build forward + backward compute graphs
  16630. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16631. switch (opt->params.type) {
  16632. case GGML_OPT_TYPE_ADAM:
  16633. {
  16634. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16635. } break;
  16636. case GGML_OPT_TYPE_LBFGS:
  16637. {
  16638. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16639. } break;
  16640. }
  16641. if (opt->params.print_forward_graph) {
  16642. ggml_graph_print (gf);
  16643. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16644. }
  16645. if (opt->params.print_backward_graph) {
  16646. ggml_graph_print (gb);
  16647. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16648. }
  16649. return result;
  16650. }
  16651. ////////////////////////////////////////////////////////////////////////////////
  16652. void ggml_set_input(struct ggml_tensor * tensor) {
  16653. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16654. }
  16655. void ggml_set_output(struct ggml_tensor * tensor) {
  16656. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16657. }
  16658. ////////////////////////////////////////////////////////////////////////////////
  16659. void ggml_quantize_init(enum ggml_type type) {
  16660. ggml_critical_section_start();
  16661. switch (type) {
  16662. case GGML_TYPE_IQ2_XXS:
  16663. case GGML_TYPE_IQ2_XS:
  16664. case GGML_TYPE_IQ2_S:
  16665. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16666. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16667. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16668. default: // nothing
  16669. break;
  16670. }
  16671. ggml_critical_section_end();
  16672. }
  16673. void ggml_quantize_free(void) {
  16674. ggml_critical_section_start();
  16675. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16676. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16677. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16678. iq3xs_free_impl(256);
  16679. ggml_critical_section_end();
  16680. }
  16681. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16682. return
  16683. type == GGML_TYPE_IQ2_XXS ||
  16684. type == GGML_TYPE_IQ2_XS ||
  16685. type == GGML_TYPE_IQ1_S;
  16686. }
  16687. size_t ggml_quantize_chunk(
  16688. enum ggml_type type,
  16689. const float * src,
  16690. void * dst,
  16691. int start,
  16692. int nrows,
  16693. int n_per_row,
  16694. const float * imatrix) {
  16695. const int n = nrows * n_per_row;
  16696. if (ggml_quantize_requires_imatrix(type)) {
  16697. GGML_ASSERT(imatrix != NULL);
  16698. }
  16699. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16700. GGML_ASSERT(start % n_per_row == 0);
  16701. ggml_quantize_init(type); // this is noop if already initialized
  16702. const size_t start_row = start / n_per_row;
  16703. const size_t row_size = ggml_row_size(type, n_per_row);
  16704. size_t result = 0;
  16705. switch (type) {
  16706. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16707. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16708. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16709. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16710. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16711. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16712. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16713. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16714. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16715. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16716. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16717. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16718. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16719. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16720. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16721. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16722. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16723. #if QK_K == 64
  16724. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16725. #else
  16726. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16727. #endif
  16728. case GGML_TYPE_F16:
  16729. {
  16730. size_t elemsize = sizeof(ggml_fp16_t);
  16731. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16732. result = n * elemsize;
  16733. } break;
  16734. case GGML_TYPE_F32:
  16735. {
  16736. size_t elemsize = sizeof(float);
  16737. result = n * elemsize;
  16738. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16739. } break;
  16740. default:
  16741. assert(false);
  16742. }
  16743. GGML_ASSERT(result == nrows * row_size);
  16744. return result;
  16745. }
  16746. ////////////////////////////////////////////////////////////////////////////////
  16747. struct gguf_str {
  16748. uint64_t n; // GGUFv2
  16749. char * data;
  16750. };
  16751. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16752. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16753. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16754. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16755. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16756. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16757. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16758. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16759. [GGUF_TYPE_BOOL] = sizeof(bool),
  16760. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16761. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16762. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16763. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16764. [GGUF_TYPE_ARRAY] = 0, // undefined
  16765. };
  16766. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16767. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16768. [GGUF_TYPE_UINT8] = "u8",
  16769. [GGUF_TYPE_INT8] = "i8",
  16770. [GGUF_TYPE_UINT16] = "u16",
  16771. [GGUF_TYPE_INT16] = "i16",
  16772. [GGUF_TYPE_UINT32] = "u32",
  16773. [GGUF_TYPE_INT32] = "i32",
  16774. [GGUF_TYPE_FLOAT32] = "f32",
  16775. [GGUF_TYPE_BOOL] = "bool",
  16776. [GGUF_TYPE_STRING] = "str",
  16777. [GGUF_TYPE_ARRAY] = "arr",
  16778. [GGUF_TYPE_UINT64] = "u64",
  16779. [GGUF_TYPE_INT64] = "i64",
  16780. [GGUF_TYPE_FLOAT64] = "f64",
  16781. };
  16782. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16783. union gguf_value {
  16784. uint8_t uint8;
  16785. int8_t int8;
  16786. uint16_t uint16;
  16787. int16_t int16;
  16788. uint32_t uint32;
  16789. int32_t int32;
  16790. float float32;
  16791. uint64_t uint64;
  16792. int64_t int64;
  16793. double float64;
  16794. bool bool_;
  16795. struct gguf_str str;
  16796. struct {
  16797. enum gguf_type type;
  16798. uint64_t n; // GGUFv2
  16799. void * data;
  16800. } arr;
  16801. };
  16802. struct gguf_kv {
  16803. struct gguf_str key;
  16804. enum gguf_type type;
  16805. union gguf_value value;
  16806. };
  16807. struct gguf_header {
  16808. char magic[4];
  16809. uint32_t version;
  16810. uint64_t n_tensors; // GGUFv2
  16811. uint64_t n_kv; // GGUFv2
  16812. };
  16813. struct gguf_tensor_info {
  16814. struct gguf_str name;
  16815. uint32_t n_dims;
  16816. uint64_t ne[GGML_MAX_DIMS];
  16817. enum ggml_type type;
  16818. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16819. // for writing API
  16820. const void * data;
  16821. size_t size;
  16822. };
  16823. struct gguf_context {
  16824. struct gguf_header header;
  16825. struct gguf_kv * kv;
  16826. struct gguf_tensor_info * infos;
  16827. size_t alignment;
  16828. size_t offset; // offset of `data` from beginning of file
  16829. size_t size; // size of `data` in bytes
  16830. //uint8_t * padding;
  16831. void * data;
  16832. };
  16833. static size_t gguf_type_size(enum gguf_type type) {
  16834. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16835. return GGUF_TYPE_SIZE[type];
  16836. }
  16837. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16838. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16839. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16840. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16841. GGML_ASSERT(info->ne[i] > 0);
  16842. }
  16843. // prevent overflow for total number of elements
  16844. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16845. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16846. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16847. }
  16848. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16849. const size_t n = fread(dst, 1, size, file);
  16850. *offset += n;
  16851. return n == size;
  16852. }
  16853. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16854. p->n = 0;
  16855. p->data = NULL;
  16856. bool ok = true;
  16857. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16858. // early exit if string length is invalid, prevents from integer overflow
  16859. if (p->n == SIZE_MAX) {
  16860. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16861. return false;
  16862. }
  16863. p->data = GGML_CALLOC(p->n + 1, 1);
  16864. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16865. return ok;
  16866. }
  16867. struct gguf_context * gguf_init_empty(void) {
  16868. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16869. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16870. ctx->header.version = GGUF_VERSION;
  16871. ctx->header.n_tensors = 0;
  16872. ctx->header.n_kv = 0;
  16873. ctx->kv = NULL;
  16874. ctx->infos = NULL;
  16875. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16876. ctx->offset = 0;
  16877. ctx->size = 0;
  16878. ctx->data = NULL;
  16879. return ctx;
  16880. }
  16881. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16882. FILE * file = ggml_fopen(fname, "rb");
  16883. if (!file) {
  16884. return NULL;
  16885. }
  16886. // offset from start of file
  16887. size_t offset = 0;
  16888. char magic[4];
  16889. // check the magic before making allocations
  16890. {
  16891. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16892. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16893. if (magic[i] != GGUF_MAGIC[i]) {
  16894. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16895. fclose(file);
  16896. return NULL;
  16897. }
  16898. }
  16899. }
  16900. bool ok = true;
  16901. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16902. // read the header
  16903. {
  16904. strncpy(ctx->header.magic, magic, 4);
  16905. ctx->kv = NULL;
  16906. ctx->infos = NULL;
  16907. ctx->data = NULL;
  16908. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16909. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16910. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16911. if (ctx->header.version == 1) {
  16912. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16913. fclose(file);
  16914. gguf_free(ctx);
  16915. return NULL;
  16916. }
  16917. // sanity-checks to prevent from integer/buffer overflows
  16918. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16919. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16920. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16921. if (!ok) {
  16922. fprintf(stderr, "%s: failed to read header\n", __func__);
  16923. fclose(file);
  16924. gguf_free(ctx);
  16925. return NULL;
  16926. }
  16927. }
  16928. // read the kv pairs
  16929. {
  16930. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16931. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16932. struct gguf_kv * kv = &ctx->kv[i];
  16933. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16934. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16935. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16936. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16937. switch (kv->type) {
  16938. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16939. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16940. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16941. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16942. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16943. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16944. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16945. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16946. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16947. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16948. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16949. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16950. case GGUF_TYPE_ARRAY:
  16951. {
  16952. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16953. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16954. switch (kv->value.arr.type) {
  16955. case GGUF_TYPE_UINT8:
  16956. case GGUF_TYPE_INT8:
  16957. case GGUF_TYPE_UINT16:
  16958. case GGUF_TYPE_INT16:
  16959. case GGUF_TYPE_UINT32:
  16960. case GGUF_TYPE_INT32:
  16961. case GGUF_TYPE_FLOAT32:
  16962. case GGUF_TYPE_UINT64:
  16963. case GGUF_TYPE_INT64:
  16964. case GGUF_TYPE_FLOAT64:
  16965. case GGUF_TYPE_BOOL:
  16966. {
  16967. // prevent from integer overflow in the malloc below
  16968. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16969. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16970. fclose(file);
  16971. gguf_free(ctx);
  16972. return NULL;
  16973. }
  16974. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16975. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16976. } break;
  16977. case GGUF_TYPE_STRING:
  16978. {
  16979. // prevent from integer overflow in the malloc below
  16980. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16981. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16982. fclose(file);
  16983. gguf_free(ctx);
  16984. return NULL;
  16985. }
  16986. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16987. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16988. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16989. }
  16990. } break;
  16991. case GGUF_TYPE_ARRAY:
  16992. default: GGML_ASSERT(false && "invalid type"); break;
  16993. }
  16994. } break;
  16995. default: GGML_ASSERT(false && "invalid type");
  16996. }
  16997. if (!ok) {
  16998. break;
  16999. }
  17000. }
  17001. if (!ok) {
  17002. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17003. fclose(file);
  17004. gguf_free(ctx);
  17005. return NULL;
  17006. }
  17007. }
  17008. // read the tensor infos
  17009. {
  17010. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17011. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17012. struct gguf_tensor_info * info = &ctx->infos[i];
  17013. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17014. info->ne[j] = 1;
  17015. }
  17016. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17017. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17018. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17019. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17020. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17021. }
  17022. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17023. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17024. gguf_tensor_info_sanitize(info);
  17025. if (!ok) {
  17026. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17027. fclose(file);
  17028. gguf_free(ctx);
  17029. return NULL;
  17030. }
  17031. }
  17032. }
  17033. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17034. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17035. if (alignment_idx != -1) {
  17036. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17037. }
  17038. // we require the data section to be aligned, so take into account any padding
  17039. {
  17040. const size_t offset_pad = offset % ctx->alignment;
  17041. if (offset_pad != 0) {
  17042. offset += ctx->alignment - offset_pad;
  17043. fseek(file, offset, SEEK_SET);
  17044. }
  17045. }
  17046. // store the current file offset - this is where the data section starts
  17047. ctx->offset = offset;
  17048. // compute the total size of the data section, taking into account the alignment
  17049. {
  17050. ctx->size = 0;
  17051. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17052. struct gguf_tensor_info * info = &ctx->infos[i];
  17053. const int64_t ne =
  17054. (int64_t) info->ne[0] *
  17055. (int64_t) info->ne[1] *
  17056. (int64_t) info->ne[2] *
  17057. (int64_t) info->ne[3];
  17058. if (ne % ggml_blck_size(info->type) != 0) {
  17059. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17060. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17061. fclose(file);
  17062. gguf_free(ctx);
  17063. return NULL;
  17064. }
  17065. const size_t size_cur = ggml_row_size(info->type, ne);
  17066. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17067. }
  17068. }
  17069. // load the tensor data only if requested
  17070. if (params.ctx != NULL) {
  17071. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17072. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17073. // the ggml_tensor structs to the appropriate locations in the binary blob
  17074. // compute the exact size needed for the new ggml_context
  17075. const size_t mem_size =
  17076. params.no_alloc ?
  17077. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17078. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17079. struct ggml_init_params pdata = {
  17080. .mem_size = mem_size,
  17081. .mem_buffer = NULL,
  17082. .no_alloc = params.no_alloc,
  17083. };
  17084. *params.ctx = ggml_init(pdata);
  17085. struct ggml_context * ctx_data = *params.ctx;
  17086. struct ggml_tensor * data = NULL;
  17087. if (!params.no_alloc) {
  17088. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17089. ok = ok && data != NULL;
  17090. // read the binary blob with the tensor data
  17091. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17092. if (!ok) {
  17093. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17094. fclose(file);
  17095. ggml_free(ctx_data);
  17096. gguf_free(ctx);
  17097. return NULL;
  17098. }
  17099. ctx->data = data->data;
  17100. }
  17101. ggml_set_no_alloc(ctx_data, true);
  17102. // create the tensors
  17103. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17104. const int64_t ne[GGML_MAX_DIMS] = {
  17105. ctx->infos[i].ne[0],
  17106. ctx->infos[i].ne[1],
  17107. ctx->infos[i].ne[2],
  17108. ctx->infos[i].ne[3],
  17109. };
  17110. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17111. ok = ok && cur != NULL;
  17112. ggml_set_name(cur, ctx->infos[i].name.data);
  17113. if (!ok) {
  17114. break;
  17115. }
  17116. // point the data member to the appropriate location in the binary blob using the tensor infos
  17117. if (!params.no_alloc) {
  17118. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17119. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17120. }
  17121. }
  17122. if (!ok) {
  17123. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17124. fclose(file);
  17125. ggml_free(ctx_data);
  17126. gguf_free(ctx);
  17127. return NULL;
  17128. }
  17129. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17130. }
  17131. fclose(file);
  17132. return ctx;
  17133. }
  17134. void gguf_free(struct gguf_context * ctx) {
  17135. if (ctx == NULL) {
  17136. return;
  17137. }
  17138. if (ctx->kv) {
  17139. // free string memory - not great..
  17140. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17141. struct gguf_kv * kv = &ctx->kv[i];
  17142. if (kv->key.data) {
  17143. GGML_FREE(kv->key.data);
  17144. }
  17145. if (kv->type == GGUF_TYPE_STRING) {
  17146. if (kv->value.str.data) {
  17147. GGML_FREE(kv->value.str.data);
  17148. }
  17149. }
  17150. if (kv->type == GGUF_TYPE_ARRAY) {
  17151. if (kv->value.arr.data) {
  17152. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17153. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17154. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17155. if (str->data) {
  17156. GGML_FREE(str->data);
  17157. }
  17158. }
  17159. }
  17160. GGML_FREE(kv->value.arr.data);
  17161. }
  17162. }
  17163. }
  17164. GGML_FREE(ctx->kv);
  17165. }
  17166. if (ctx->infos) {
  17167. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17168. struct gguf_tensor_info * info = &ctx->infos[i];
  17169. if (info->name.data) {
  17170. GGML_FREE(info->name.data);
  17171. }
  17172. }
  17173. GGML_FREE(ctx->infos);
  17174. }
  17175. GGML_ALIGNED_FREE(ctx);
  17176. }
  17177. const char * gguf_type_name(enum gguf_type type) {
  17178. return GGUF_TYPE_NAME[type];
  17179. }
  17180. int gguf_get_version(const struct gguf_context * ctx) {
  17181. return ctx->header.version;
  17182. }
  17183. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17184. return ctx->alignment;
  17185. }
  17186. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17187. return ctx->offset;
  17188. }
  17189. void * gguf_get_data(const struct gguf_context * ctx) {
  17190. return ctx->data;
  17191. }
  17192. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17193. return ctx->header.n_kv;
  17194. }
  17195. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17196. // return -1 if key not found
  17197. int keyfound = -1;
  17198. const int n_kv = gguf_get_n_kv(ctx);
  17199. for (int i = 0; i < n_kv; ++i) {
  17200. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17201. keyfound = i;
  17202. break;
  17203. }
  17204. }
  17205. return keyfound;
  17206. }
  17207. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17208. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17209. return ctx->kv[key_id].key.data;
  17210. }
  17211. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17212. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17213. return ctx->kv[key_id].type;
  17214. }
  17215. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17216. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17217. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17218. return ctx->kv[key_id].value.arr.type;
  17219. }
  17220. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17221. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17222. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17223. return ctx->kv[key_id].value.arr.data;
  17224. }
  17225. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17226. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17227. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17228. struct gguf_kv * kv = &ctx->kv[key_id];
  17229. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17230. return str->data;
  17231. }
  17232. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17233. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17234. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17235. return ctx->kv[key_id].value.arr.n;
  17236. }
  17237. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17238. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17239. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17240. return ctx->kv[key_id].value.uint8;
  17241. }
  17242. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17243. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17244. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17245. return ctx->kv[key_id].value.int8;
  17246. }
  17247. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17248. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17249. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17250. return ctx->kv[key_id].value.uint16;
  17251. }
  17252. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17253. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17254. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17255. return ctx->kv[key_id].value.int16;
  17256. }
  17257. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17258. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17259. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17260. return ctx->kv[key_id].value.uint32;
  17261. }
  17262. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17263. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17264. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17265. return ctx->kv[key_id].value.int32;
  17266. }
  17267. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17268. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17269. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17270. return ctx->kv[key_id].value.float32;
  17271. }
  17272. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17273. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17274. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17275. return ctx->kv[key_id].value.uint64;
  17276. }
  17277. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17278. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17279. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17280. return ctx->kv[key_id].value.int64;
  17281. }
  17282. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17283. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17284. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17285. return ctx->kv[key_id].value.float64;
  17286. }
  17287. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17288. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17289. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17290. return ctx->kv[key_id].value.bool_;
  17291. }
  17292. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17293. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17294. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17295. return ctx->kv[key_id].value.str.data;
  17296. }
  17297. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17298. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17299. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17300. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17301. return &ctx->kv[key_id].value;
  17302. }
  17303. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17304. return ctx->header.n_tensors;
  17305. }
  17306. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17307. // return -1 if tensor not found
  17308. int tensorfound = -1;
  17309. const int n_tensors = gguf_get_n_tensors(ctx);
  17310. for (int i = 0; i < n_tensors; ++i) {
  17311. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17312. tensorfound = i;
  17313. break;
  17314. }
  17315. }
  17316. return tensorfound;
  17317. }
  17318. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17319. return ctx->infos[i].offset;
  17320. }
  17321. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17322. return ctx->infos[i].name.data;
  17323. }
  17324. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17325. return ctx->infos[i].type;
  17326. }
  17327. // returns the index
  17328. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17329. const int idx = gguf_find_key(ctx, key);
  17330. if (idx >= 0) {
  17331. return idx;
  17332. }
  17333. const int n_kv = gguf_get_n_kv(ctx);
  17334. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17335. ctx->kv[n_kv].key.n = strlen(key);
  17336. ctx->kv[n_kv].key.data = strdup(key);
  17337. ctx->header.n_kv++;
  17338. return n_kv;
  17339. }
  17340. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17341. const int idx = gguf_get_or_add_key(ctx, key);
  17342. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17343. ctx->kv[idx].value.uint8 = val;
  17344. }
  17345. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17346. const int idx = gguf_get_or_add_key(ctx, key);
  17347. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17348. ctx->kv[idx].value.int8 = val;
  17349. }
  17350. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17351. const int idx = gguf_get_or_add_key(ctx, key);
  17352. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17353. ctx->kv[idx].value.uint16 = val;
  17354. }
  17355. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17356. const int idx = gguf_get_or_add_key(ctx, key);
  17357. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17358. ctx->kv[idx].value.int16 = val;
  17359. }
  17360. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17361. const int idx = gguf_get_or_add_key(ctx, key);
  17362. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17363. ctx->kv[idx].value.uint32 = val;
  17364. }
  17365. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17366. const int idx = gguf_get_or_add_key(ctx, key);
  17367. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17368. ctx->kv[idx].value.int32 = val;
  17369. }
  17370. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17371. const int idx = gguf_get_or_add_key(ctx, key);
  17372. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17373. ctx->kv[idx].value.float32 = val;
  17374. }
  17375. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17376. const int idx = gguf_get_or_add_key(ctx, key);
  17377. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17378. ctx->kv[idx].value.uint64 = val;
  17379. }
  17380. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17381. const int idx = gguf_get_or_add_key(ctx, key);
  17382. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17383. ctx->kv[idx].value.int64 = val;
  17384. }
  17385. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17386. const int idx = gguf_get_or_add_key(ctx, key);
  17387. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17388. ctx->kv[idx].value.float64 = val;
  17389. }
  17390. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17391. const int idx = gguf_get_or_add_key(ctx, key);
  17392. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17393. ctx->kv[idx].value.bool_ = val;
  17394. }
  17395. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17396. const int idx = gguf_get_or_add_key(ctx, key);
  17397. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17398. ctx->kv[idx].value.str.n = strlen(val);
  17399. ctx->kv[idx].value.str.data = strdup(val);
  17400. }
  17401. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17402. const int idx = gguf_get_or_add_key(ctx, key);
  17403. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17404. ctx->kv[idx].value.arr.type = type;
  17405. ctx->kv[idx].value.arr.n = n;
  17406. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17407. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17408. }
  17409. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17410. const int idx = gguf_get_or_add_key(ctx, key);
  17411. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17412. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17413. ctx->kv[idx].value.arr.n = n;
  17414. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17415. for (int i = 0; i < n; i++) {
  17416. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17417. str->n = strlen(data[i]);
  17418. str->data = strdup(data[i]);
  17419. }
  17420. }
  17421. // set or add KV pairs from another context
  17422. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17423. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17424. switch (src->kv[i].type) {
  17425. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17426. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17427. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17428. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17429. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17430. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17431. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17432. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17433. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17434. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17435. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17436. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17437. case GGUF_TYPE_ARRAY:
  17438. {
  17439. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17440. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17441. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17442. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17443. }
  17444. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17445. GGML_FREE((void *)data);
  17446. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17447. GGML_ASSERT(false && "nested arrays not supported");
  17448. } else {
  17449. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17450. }
  17451. } break;
  17452. default: GGML_ASSERT(false && "invalid type"); break;
  17453. }
  17454. }
  17455. }
  17456. void gguf_add_tensor(
  17457. struct gguf_context * ctx,
  17458. const struct ggml_tensor * tensor) {
  17459. const int idx = ctx->header.n_tensors;
  17460. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17461. ctx->infos[idx].name.n = strlen(tensor->name);
  17462. ctx->infos[idx].name.data = strdup(tensor->name);
  17463. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17464. ctx->infos[idx].ne[i] = 1;
  17465. }
  17466. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17467. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17468. ctx->infos[idx].ne[i] = tensor->ne[i];
  17469. }
  17470. ctx->infos[idx].type = tensor->type;
  17471. ctx->infos[idx].offset = 0;
  17472. ctx->infos[idx].data = tensor->data;
  17473. ctx->infos[idx].size = ggml_nbytes(tensor);
  17474. if (ctx->header.n_tensors > 0) {
  17475. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17476. }
  17477. ctx->header.n_tensors++;
  17478. }
  17479. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17480. const int idx = gguf_find_tensor(ctx, name);
  17481. if (idx < 0) {
  17482. GGML_ASSERT(false && "tensor not found");
  17483. }
  17484. ctx->infos[idx].type = type;
  17485. }
  17486. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17487. const int idx = gguf_find_tensor(ctx, name);
  17488. if (idx < 0) {
  17489. GGML_ASSERT(false && "tensor not found");
  17490. }
  17491. ctx->infos[idx].data = data;
  17492. ctx->infos[idx].size = size;
  17493. // update offsets
  17494. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17495. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17496. }
  17497. }
  17498. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17499. // fwrite(&val->n, sizeof(val->n), 1, file);
  17500. // fwrite(val->data, sizeof(char), val->n, file);
  17501. //}
  17502. //
  17503. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17504. // fwrite(val, sizeof(char), size, file);
  17505. //}
  17506. struct gguf_buf {
  17507. void * data;
  17508. size_t size;
  17509. size_t offset;
  17510. };
  17511. static struct gguf_buf gguf_buf_init(size_t size) {
  17512. struct gguf_buf buf = {
  17513. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17514. /*buf.size =*/ size,
  17515. /*buf.offset =*/ 0,
  17516. };
  17517. return buf;
  17518. }
  17519. static void gguf_buf_free(struct gguf_buf buf) {
  17520. if (buf.data) {
  17521. GGML_FREE(buf.data);
  17522. }
  17523. }
  17524. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17525. if (buf->offset + size > buf->size) {
  17526. buf->size = 1.5*(buf->offset + size);
  17527. if (buf->data) {
  17528. buf->data = realloc(buf->data, buf->size);
  17529. }
  17530. }
  17531. }
  17532. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17533. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17534. if (buf->data) {
  17535. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17536. }
  17537. buf->offset += sizeof(val->n);
  17538. if (buf->data) {
  17539. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17540. }
  17541. buf->offset += val->n;
  17542. }
  17543. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17544. gguf_buf_grow(buf, el_size);
  17545. if (buf->data) {
  17546. memcpy((char *) buf->data + buf->offset, val, el_size);
  17547. }
  17548. buf->offset += el_size;
  17549. }
  17550. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17551. // write header
  17552. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17553. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17554. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17555. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17556. // write key-value pairs
  17557. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17558. struct gguf_kv * kv = &ctx->kv[i];
  17559. gguf_bwrite_str(buf, &kv->key);
  17560. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17561. switch (kv->type) {
  17562. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17563. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17564. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17565. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17566. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17567. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17568. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17569. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17570. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17571. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17572. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17573. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17574. case GGUF_TYPE_ARRAY:
  17575. {
  17576. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17577. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17578. switch (kv->value.arr.type) {
  17579. case GGUF_TYPE_UINT8:
  17580. case GGUF_TYPE_INT8:
  17581. case GGUF_TYPE_UINT16:
  17582. case GGUF_TYPE_INT16:
  17583. case GGUF_TYPE_UINT32:
  17584. case GGUF_TYPE_INT32:
  17585. case GGUF_TYPE_FLOAT32:
  17586. case GGUF_TYPE_UINT64:
  17587. case GGUF_TYPE_INT64:
  17588. case GGUF_TYPE_FLOAT64:
  17589. case GGUF_TYPE_BOOL:
  17590. {
  17591. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17592. } break;
  17593. case GGUF_TYPE_STRING:
  17594. {
  17595. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17596. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17597. }
  17598. } break;
  17599. case GGUF_TYPE_ARRAY:
  17600. default: GGML_ASSERT(false && "invalid type"); break;
  17601. }
  17602. } break;
  17603. default: GGML_ASSERT(false && "invalid type");
  17604. }
  17605. }
  17606. // write tensor infos
  17607. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17608. struct gguf_tensor_info * info = &ctx->infos[i];
  17609. gguf_bwrite_str(buf, &info->name);
  17610. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17611. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17612. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17613. }
  17614. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17615. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17616. }
  17617. // we require the data section to be aligned, so take into account any padding
  17618. {
  17619. const size_t offset = buf->offset;
  17620. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17621. if (offset_pad != offset) {
  17622. uint8_t pad = 0;
  17623. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17624. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17625. }
  17626. }
  17627. }
  17628. if (only_meta) {
  17629. return;
  17630. }
  17631. size_t offset = 0;
  17632. // write tensor data
  17633. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17634. struct gguf_tensor_info * info = &ctx->infos[i];
  17635. const size_t size = info->size;
  17636. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17637. gguf_bwrite_el(buf, info->data, size);
  17638. if (size_pad != size) {
  17639. uint8_t pad = 0;
  17640. for (size_t j = 0; j < size_pad - size; ++j) {
  17641. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17642. }
  17643. }
  17644. GGML_ASSERT(offset == info->offset);
  17645. offset += size_pad;
  17646. }
  17647. }
  17648. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17649. FILE * file = ggml_fopen(fname, "wb");
  17650. if (!file) {
  17651. GGML_ASSERT(false && "failed to open file for writing");
  17652. }
  17653. struct gguf_buf buf = gguf_buf_init(16*1024);
  17654. gguf_write_to_buf(ctx, &buf, only_meta);
  17655. fwrite(buf.data, 1, buf.offset, file);
  17656. gguf_buf_free(buf);
  17657. fclose(file);
  17658. }
  17659. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17660. // no allocs - only compute size
  17661. struct gguf_buf buf = gguf_buf_init(0);
  17662. gguf_write_to_buf(ctx, &buf, true);
  17663. return buf.offset;
  17664. }
  17665. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17666. struct gguf_buf buf = gguf_buf_init(16*1024);
  17667. gguf_write_to_buf(ctx, &buf, true);
  17668. memcpy(data, buf.data, buf.offset);
  17669. gguf_buf_free(buf);
  17670. }
  17671. ////////////////////////////////////////////////////////////////////////////////
  17672. int ggml_cpu_has_avx(void) {
  17673. #if defined(__AVX__)
  17674. return 1;
  17675. #else
  17676. return 0;
  17677. #endif
  17678. }
  17679. int ggml_cpu_has_avx_vnni(void) {
  17680. #if defined(__AVXVNNI__)
  17681. return 1;
  17682. #else
  17683. return 0;
  17684. #endif
  17685. }
  17686. int ggml_cpu_has_avx2(void) {
  17687. #if defined(__AVX2__)
  17688. return 1;
  17689. #else
  17690. return 0;
  17691. #endif
  17692. }
  17693. int ggml_cpu_has_avx512(void) {
  17694. #if defined(__AVX512F__)
  17695. return 1;
  17696. #else
  17697. return 0;
  17698. #endif
  17699. }
  17700. int ggml_cpu_has_avx512_vbmi(void) {
  17701. #if defined(__AVX512VBMI__)
  17702. return 1;
  17703. #else
  17704. return 0;
  17705. #endif
  17706. }
  17707. int ggml_cpu_has_avx512_vnni(void) {
  17708. #if defined(__AVX512VNNI__)
  17709. return 1;
  17710. #else
  17711. return 0;
  17712. #endif
  17713. }
  17714. int ggml_cpu_has_fma(void) {
  17715. #if defined(__FMA__)
  17716. return 1;
  17717. #else
  17718. return 0;
  17719. #endif
  17720. }
  17721. int ggml_cpu_has_neon(void) {
  17722. #if defined(__ARM_NEON)
  17723. return 1;
  17724. #else
  17725. return 0;
  17726. #endif
  17727. }
  17728. int ggml_cpu_has_arm_fma(void) {
  17729. #if defined(__ARM_FEATURE_FMA)
  17730. return 1;
  17731. #else
  17732. return 0;
  17733. #endif
  17734. }
  17735. int ggml_cpu_has_metal(void) {
  17736. #if defined(GGML_USE_METAL)
  17737. return 1;
  17738. #else
  17739. return 0;
  17740. #endif
  17741. }
  17742. int ggml_cpu_has_f16c(void) {
  17743. #if defined(__F16C__)
  17744. return 1;
  17745. #else
  17746. return 0;
  17747. #endif
  17748. }
  17749. int ggml_cpu_has_fp16_va(void) {
  17750. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17751. return 1;
  17752. #else
  17753. return 0;
  17754. #endif
  17755. }
  17756. int ggml_cpu_has_wasm_simd(void) {
  17757. #if defined(__wasm_simd128__)
  17758. return 1;
  17759. #else
  17760. return 0;
  17761. #endif
  17762. }
  17763. int ggml_cpu_has_blas(void) {
  17764. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17765. return 1;
  17766. #else
  17767. return 0;
  17768. #endif
  17769. }
  17770. int ggml_cpu_has_cuda(void) {
  17771. #if defined(GGML_USE_CUDA)
  17772. return 1;
  17773. #else
  17774. return 0;
  17775. #endif
  17776. }
  17777. int ggml_cpu_has_clblast(void) {
  17778. #if defined(GGML_USE_CLBLAST)
  17779. return 1;
  17780. #else
  17781. return 0;
  17782. #endif
  17783. }
  17784. int ggml_cpu_has_vulkan(void) {
  17785. #if defined(GGML_USE_VULKAN)
  17786. return 1;
  17787. #else
  17788. return 0;
  17789. #endif
  17790. }
  17791. int ggml_cpu_has_kompute(void) {
  17792. #if defined(GGML_USE_KOMPUTE)
  17793. return 1;
  17794. #else
  17795. return 0;
  17796. #endif
  17797. }
  17798. int ggml_cpu_has_sycl(void) {
  17799. #if defined(GGML_USE_SYCL)
  17800. return 1;
  17801. #else
  17802. return 0;
  17803. #endif
  17804. }
  17805. int ggml_cpu_has_gpublas(void) {
  17806. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17807. ggml_cpu_has_sycl();
  17808. }
  17809. int ggml_cpu_has_sse3(void) {
  17810. #if defined(__SSE3__)
  17811. return 1;
  17812. #else
  17813. return 0;
  17814. #endif
  17815. }
  17816. int ggml_cpu_has_ssse3(void) {
  17817. #if defined(__SSSE3__)
  17818. return 1;
  17819. #else
  17820. return 0;
  17821. #endif
  17822. }
  17823. int ggml_cpu_has_vsx(void) {
  17824. #if defined(__POWER9_VECTOR__)
  17825. return 1;
  17826. #else
  17827. return 0;
  17828. #endif
  17829. }
  17830. int ggml_cpu_has_matmul_int8(void) {
  17831. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17832. return 1;
  17833. #else
  17834. return 0;
  17835. #endif
  17836. }
  17837. ////////////////////////////////////////////////////////////////////////////////