steps.py 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. import asyncio
  2. import collections
  3. import json
  4. import os
  5. import re
  6. import socket
  7. import subprocess
  8. import sys
  9. import threading
  10. import time
  11. from contextlib import closing
  12. from re import RegexFlag
  13. import aiohttp
  14. import numpy as np
  15. import openai
  16. from behave import step
  17. from behave.api.async_step import async_run_until_complete
  18. from prometheus_client import parser
  19. @step("a server listening on {server_fqdn}:{server_port}")
  20. def step_server_config(context, server_fqdn, server_port):
  21. context.server_fqdn = server_fqdn
  22. context.server_port = int(server_port)
  23. context.n_gpu_layer = None
  24. if 'PORT' in os.environ:
  25. context.server_port = int(os.environ['PORT'])
  26. print(f"$PORT set, overriding server port with to {context.server_port}")
  27. if 'FQDN' in os.environ:
  28. context.server_fqdn = os.environ['FQDN']
  29. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  30. if 'N_GPU_LAYERS' in os.environ:
  31. context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
  32. print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
  33. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  34. context.model_alias = None
  35. context.model_file = None
  36. context.model_hf_repo = None
  37. context.model_hf_file = None
  38. context.model_url = None
  39. context.n_batch = None
  40. context.n_ubatch = None
  41. context.n_ctx = None
  42. context.n_ga = None
  43. context.n_ga_w = None
  44. context.n_predict = None
  45. context.n_prompts = 0
  46. context.n_server_predict = None
  47. context.slot_save_path = None
  48. context.id_slot = None
  49. context.cache_prompt = None
  50. context.n_slots = None
  51. context.prompt_prefix = None
  52. context.prompt_suffix = None
  53. context.server_api_key = None
  54. context.server_continuous_batching = False
  55. context.server_embeddings = False
  56. context.server_metrics = False
  57. context.server_process = None
  58. context.seed = None
  59. context.draft = None
  60. context.server_seed = None
  61. context.user_api_key = None
  62. context.response_format = None
  63. context.tasks_result = []
  64. context.concurrent_tasks = []
  65. context.prompts = []
  66. @step('a model file {hf_file} from HF repo {hf_repo}')
  67. def step_download_hf_model(context, hf_file, hf_repo):
  68. context.model_hf_repo = hf_repo
  69. context.model_hf_file = hf_file
  70. context.model_file = os.path.basename(hf_file)
  71. @step('a model file {model_file}')
  72. def step_model_file(context, model_file):
  73. context.model_file = model_file
  74. @step('a model url {model_url}')
  75. def step_model_url(context, model_url):
  76. context.model_url = model_url
  77. @step('a model alias {model_alias}')
  78. def step_model_alias(context, model_alias):
  79. context.model_alias = model_alias
  80. @step('{seed:d} as server seed')
  81. def step_seed(context, seed):
  82. context.server_seed = seed
  83. @step('{ngl:d} GPU offloaded layers')
  84. def step_n_gpu_layer(context, ngl):
  85. if 'N_GPU_LAYERS' in os.environ:
  86. new_ngl = int(os.environ['N_GPU_LAYERS'])
  87. if context.debug:
  88. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  89. ngl = new_ngl
  90. context.n_gpu_layer = ngl
  91. @step('{draft:d} as draft')
  92. def step_draft(context, draft):
  93. context.draft = draft
  94. @step('{n_ctx:d} KV cache size')
  95. def step_n_ctx(context, n_ctx):
  96. context.n_ctx = n_ctx
  97. @step('{n_slots:d} slots')
  98. def step_n_slots(context, n_slots):
  99. context.n_slots = n_slots
  100. @step('{n_predict:d} server max tokens to predict')
  101. def step_server_n_predict(context, n_predict):
  102. context.n_server_predict = n_predict
  103. @step('{slot_save_path} as slot save path')
  104. def step_slot_save_path(context, slot_save_path):
  105. context.slot_save_path = slot_save_path
  106. @step('using slot id {id_slot:d}')
  107. def step_id_slot(context, id_slot):
  108. context.id_slot = id_slot
  109. @step('prompt caching is enabled')
  110. def step_enable_prompt_cache(context):
  111. context.cache_prompt = True
  112. @step('continuous batching')
  113. def step_server_continuous_batching(context):
  114. context.server_continuous_batching = True
  115. @step('embeddings extraction')
  116. def step_server_embeddings(context):
  117. context.server_embeddings = True
  118. @step('prometheus compatible metrics exposed')
  119. def step_server_metrics(context):
  120. context.server_metrics = True
  121. @step("the server is starting")
  122. def step_start_server(context):
  123. start_server_background(context)
  124. attempts = 0
  125. max_attempts = 20
  126. if 'GITHUB_ACTIONS' in os.environ:
  127. max_attempts *= 2
  128. addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
  129. family, typ, proto, _, sockaddr = addrs[0]
  130. while True:
  131. with closing(socket.socket(family, typ, proto)) as sock:
  132. result = sock.connect_ex(sockaddr)
  133. if result == 0:
  134. print("\x1b[33;46mserver started!\x1b[0m")
  135. return
  136. attempts += 1
  137. if attempts > max_attempts:
  138. assert False, "server not started"
  139. print(f"waiting for server to start, connect error code = {result}...")
  140. time.sleep(0.1)
  141. @step("the server is {expecting_status}")
  142. @async_run_until_complete
  143. async def step_wait_for_the_server_to_be_started(context, expecting_status):
  144. match expecting_status:
  145. case 'healthy':
  146. await wait_for_health_status(context, context.base_url, 200, 'ok',
  147. timeout=30)
  148. case 'ready' | 'idle':
  149. await wait_for_health_status(context, context.base_url, 200, 'ok',
  150. timeout=10,
  151. params={'fail_on_no_slot': 0, 'include_slots': 0},
  152. slots_idle=context.n_slots,
  153. slots_processing=0,
  154. expected_slots=[{'id': slot_id, 'state': 0}
  155. for slot_id in
  156. range(context.n_slots if context.n_slots else 1)])
  157. case 'busy':
  158. await wait_for_health_status(context, context.base_url, 503,
  159. 'no slot available',
  160. params={'fail_on_no_slot': 0, 'include_slots': 0},
  161. slots_idle=0,
  162. slots_processing=context.n_slots,
  163. expected_slots=[{'id': slot_id, 'state': 1}
  164. for slot_id in
  165. range(context.n_slots if context.n_slots else 1)])
  166. case _:
  167. assert False, "unknown status"
  168. @step('all slots are {expected_slot_status_string}')
  169. @async_run_until_complete
  170. async def step_all_slots_status(context, expected_slot_status_string):
  171. match expected_slot_status_string:
  172. case 'idle':
  173. expected_slot_status = 0
  174. case 'busy':
  175. expected_slot_status = 1
  176. case _:
  177. assert False, "unknown status"
  178. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  179. for slot_id in range(context.n_slots)]
  180. await request_slots_status(context, expected_slots)
  181. @step('a completion request with {api_error} api error')
  182. @async_run_until_complete
  183. async def step_request_completion(context, api_error):
  184. expect_api_error = api_error == 'raised'
  185. completion = await request_completion(context.prompts.pop(),
  186. context.base_url,
  187. debug=context.debug,
  188. n_predict=context.n_predict,
  189. cache_prompt=context.cache_prompt,
  190. id_slot=context.id_slot,
  191. seed=await completions_seed(context),
  192. expect_api_error=expect_api_error,
  193. user_api_key=context.user_api_key)
  194. context.tasks_result.append(completion)
  195. if context.debug:
  196. print(f"Completion response: {completion}")
  197. if expect_api_error:
  198. assert completion == 401, f"completion must be an 401 status code: {completion}"
  199. @step('{predicted_n:d} tokens are predicted matching {re_content}')
  200. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  201. context.completion = context.tasks_result.pop()
  202. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  203. @step('{predicted_n:d} tokens are predicted')
  204. def step_n_tokens_predicted(context, predicted_n):
  205. context.completion = context.tasks_result.pop()
  206. assert_n_tokens_predicted(context.completion, predicted_n)
  207. @step('all predictions are equal')
  208. @async_run_until_complete
  209. async def step_predictions_equal(context):
  210. n_completions = await gather_tasks_results(context)
  211. assert n_completions >= 2, "need at least 2 completions"
  212. assert_all_predictions_equal(context.tasks_result)
  213. context.tasks_result = []
  214. @step('the completion is truncated')
  215. def step_assert_completion_truncated(context):
  216. step_assert_completion_truncated(context, '')
  217. @step('the completion is {truncated} truncated')
  218. def step_assert_completion_truncated(context, truncated):
  219. truncated = truncated != "not"
  220. assert context.completion['truncated'] == truncated, f'{context.completion}'
  221. @step('{n_prompt:d} prompt tokens are processed')
  222. def step_impl(context, n_prompt):
  223. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  224. @step('a user prompt {user_prompt}')
  225. def step_user_prompt(context, user_prompt):
  226. context.prompts.append(user_prompt)
  227. context.n_prompts = len(context.prompts)
  228. @step('a system prompt {system_prompt}')
  229. def step_system_prompt(context, system_prompt):
  230. context.system_prompt = system_prompt
  231. @step('a model {model}')
  232. def step_model(context, model):
  233. context.model = model
  234. @step('{max_tokens:d} max tokens to predict')
  235. def step_max_tokens(context, max_tokens):
  236. context.n_predict = max_tokens
  237. @step('a response format {response_format}')
  238. def step_response_format(context, response_format):
  239. context.response_format = json.loads(response_format)
  240. @step('streaming is {enable_streaming}')
  241. def step_streaming(context, enable_streaming):
  242. context.enable_streaming = enable_streaming == 'enabled'
  243. @step('a user api key {user_api_key}')
  244. def step_user_api_key(context, user_api_key):
  245. context.user_api_key = user_api_key
  246. @step('no user api key')
  247. def step_no_user_api_key(context):
  248. context.user_api_key = None
  249. @step('a user api key ')
  250. def step_no_user_api_key_space(context):
  251. context.user_api_key = None
  252. @step('a server api key {server_api_key}')
  253. def step_server_api_key(context, server_api_key):
  254. context.server_api_key = server_api_key
  255. @step('{n_junk:d} as number of junk')
  256. def step_n_junk(context, n_junk):
  257. context.n_junk = n_junk
  258. @step('{n_batch:d} as batch size')
  259. def step_n_batch(context, n_batch):
  260. context.n_batch = n_batch
  261. @step('{n_ubatch:d} as ubatch size')
  262. def step_n_ubatch(context, n_ubatch):
  263. context.n_ubatch = n_ubatch
  264. @step('{seed:d} as seed')
  265. def step_seed(context, seed):
  266. context.seed = seed
  267. @step('a prefix prompt')
  268. def step_prompt_prefix(context):
  269. context.prompt_prefix = context_text(context)
  270. @step('a junk suffix prompt')
  271. def step_prompt_junk_suffix(context):
  272. context.prompt_junk_suffix = context_text(context)
  273. @step('a suffix prompt')
  274. def step_prompt_suffix(context):
  275. context.prompt_suffix = context_text(context)
  276. @step('{n_ga:d} group attention factor'
  277. ' to extend context size through self-extend')
  278. def step_impl(context, n_ga):
  279. context.n_ga = n_ga
  280. @step('{n_ga_w:d} group attention width to extend context size through self-extend')
  281. def step_impl(context, n_ga_w):
  282. context.n_ga_w = n_ga_w
  283. @step('a passkey prompt template')
  284. def step_prompt_passkey(context):
  285. context.prompt_passkey = context_text(context)
  286. @step('{n_prompts:d} fixed prompts')
  287. def step_fixed_prompts(context, n_prompts):
  288. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  289. context.n_prompts = n_prompts
  290. @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  291. def step_prompt_passkey(context, passkey, i_pos):
  292. prompt = ""
  293. for i in range(context.n_junk):
  294. if i % context.n_junk == i_pos:
  295. prompt += context.prompt_passkey # the passkey is already substituted
  296. prompt += context.prompt_junk_suffix
  297. if context.debug:
  298. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  299. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
  300. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  301. context.n_prompts = len(context.prompts)
  302. @step('an OAI compatible chat completions request with {api_error} api error')
  303. @async_run_until_complete
  304. async def step_oai_chat_completions(context, api_error):
  305. if context.debug:
  306. print(f"Submitting OAI compatible completions request...")
  307. expect_api_error = api_error == 'raised'
  308. completion = await oai_chat_completions(context.prompts.pop(),
  309. context.system_prompt,
  310. context.base_url,
  311. '/v1/chat',
  312. False,
  313. model=context.model if hasattr(context, 'model') else None,
  314. n_predict=context.n_predict
  315. if hasattr(context, 'n_predict') else None,
  316. enable_streaming=context.enable_streaming
  317. if hasattr(context, 'enable_streaming') else None,
  318. response_format=context.response_format
  319. if hasattr(context, 'response_format') else None,
  320. seed=await completions_seed(context),
  321. user_api_key=context.user_api_key
  322. if hasattr(context, 'user_api_key') else None,
  323. expect_api_error=expect_api_error)
  324. context.tasks_result.append(completion)
  325. if context.debug:
  326. print(f"Completion response: {completion}")
  327. if expect_api_error:
  328. assert completion == 401, f"completion must be an 401 status code: {completion}"
  329. if context.debug:
  330. print(f"Completion response: {completion}")
  331. @step('a prompt')
  332. def step_a_prompt(context):
  333. context.prompts.append(context_text(context))
  334. context.n_prompts = len(context.prompts)
  335. @step('a prompt {prompt}')
  336. def step_a_prompt_prompt(context, prompt):
  337. context.prompts.append(prompt)
  338. context.n_prompts = len(context.prompts)
  339. @step('concurrent completion requests')
  340. @async_run_until_complete()
  341. async def step_concurrent_completion_requests(context):
  342. await concurrent_requests(context,
  343. request_completion,
  344. # prompt is inserted automatically
  345. context.base_url,
  346. debug=context.debug,
  347. prompt_prefix=context.prompt_prefix,
  348. prompt_suffix=context.prompt_suffix,
  349. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  350. seed=await completions_seed(context),
  351. user_api_key=context.user_api_key if hasattr(context,
  352. 'user_api_key') else None)
  353. @step('concurrent OAI completions requests')
  354. @async_run_until_complete
  355. async def step_oai_chat_completions(context):
  356. await concurrent_requests(context, oai_chat_completions,
  357. # user_prompt is inserted automatically
  358. context.system_prompt,
  359. context.base_url,
  360. '/v1/chat/completions',
  361. True, # async_client
  362. model=context.model
  363. if hasattr(context, 'model') else None,
  364. n_predict=context.n_predict
  365. if hasattr(context, 'n_predict') else None,
  366. enable_streaming=context.enable_streaming
  367. if hasattr(context, 'enable_streaming') else None,
  368. response_format=context.response_format
  369. if hasattr(context, 'response_format') else None,
  370. seed=await completions_seed(context),
  371. user_api_key=context.user_api_key
  372. if hasattr(context, 'user_api_key') else None)
  373. @step('concurrent OAI completions requests no v1')
  374. @async_run_until_complete
  375. async def step_oai_chat_completions(context):
  376. await concurrent_requests(context, oai_chat_completions,
  377. # user_prompt is inserted automatically
  378. context.system_prompt,
  379. context.base_url,
  380. '/chat/completions',
  381. True, # async_client
  382. model=context.model
  383. if hasattr(context, 'model') else None,
  384. n_predict=context.n_predict
  385. if hasattr(context, 'n_predict') else None,
  386. enable_streaming=context.enable_streaming
  387. if hasattr(context, 'enable_streaming') else None,
  388. response_format=context.response_format
  389. if hasattr(context, 'response_format') else None,
  390. seed=context.seed
  391. if hasattr(context, 'seed') else
  392. context.server_seed
  393. if hasattr(context, 'server_seed') else None,
  394. user_api_key=context.user_api_key
  395. if hasattr(context, 'user_api_key') else None)
  396. @step('all prompts are predicted')
  397. @async_run_until_complete
  398. async def step_all_prompts_are_predicted(context):
  399. await all_prompts_are_predicted(context)
  400. @step('all prompts are predicted with {n_expected_predicted:d} tokens')
  401. @async_run_until_complete
  402. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  403. await all_prompts_are_predicted(context, n_expected_predicted)
  404. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  405. n_completions = await gather_tasks_results(context)
  406. assert n_completions > 0
  407. for i in range(n_completions):
  408. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  409. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  410. @step('embeddings are computed for')
  411. @async_run_until_complete
  412. async def step_compute_embedding(context):
  413. context.n_prompts = 1
  414. context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
  415. @step('all embeddings are the same')
  416. @async_run_until_complete
  417. async def step_all_embeddings_are_the_same(context):
  418. n_embedding_requests = await gather_tasks_results(context)
  419. assert n_embedding_requests > 0
  420. embeddings = []
  421. for i in range(n_embedding_requests):
  422. embedding = context.tasks_result.pop().pop()
  423. embeddings.append(embedding)
  424. assert_embeddings(embedding)
  425. n = len(embeddings)
  426. for i in range(n-1):
  427. for j in range(i+1, n):
  428. embedding1 = np.array(embeddings[i])
  429. embedding2 = np.array(embeddings[j])
  430. if context.debug:
  431. print(f"embedding1: {embedding1[-8:]}")
  432. print(f"embedding2: {embedding2[-8:]}")
  433. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  434. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  435. if context.debug:
  436. print(f"{msg}")
  437. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  438. @step('embeddings are generated')
  439. def step_assert_embeddings(context):
  440. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  441. f"context.n_prompts={context.n_prompts}\n"
  442. f"context.embeddings={context.embeddings}")
  443. for embedding in context.embeddings:
  444. assert_embeddings(embedding)
  445. @step('an OAI compatible embeddings computation request for')
  446. @async_run_until_complete
  447. async def step_oai_compute_embeddings(context):
  448. context.n_prompts = 1
  449. context.embeddings = await request_oai_embeddings(context_text(context),
  450. base_url=context.base_url,
  451. user_api_key=context.user_api_key,
  452. model=context.model)
  453. @step('an OAI compatible embeddings computation request for multiple inputs')
  454. @async_run_until_complete
  455. async def step_oai_compute_embeddings_multiple_inputs(context):
  456. context.embeddings = await request_oai_embeddings(context.prompts,
  457. base_url=context.base_url,
  458. user_api_key=context.user_api_key,
  459. model=context.model)
  460. context.prompts.clear()
  461. @step('concurrent embedding requests')
  462. @async_run_until_complete()
  463. async def step_concurrent_embedding_requests(context):
  464. await concurrent_requests(context,
  465. request_embedding,
  466. # prompt is inserted automatically
  467. base_url=context.base_url)
  468. @step('concurrent OAI embedding requests')
  469. @async_run_until_complete()
  470. async def step_concurrent_oai_embedding_requests(context):
  471. await concurrent_requests(context,
  472. request_oai_embeddings,
  473. # prompt is inserted automatically
  474. base_url=context.base_url,
  475. async_client=True,
  476. model=context.model)
  477. @step('all embeddings are generated')
  478. @async_run_until_complete()
  479. async def all_embeddings_are_generated(context):
  480. n_embedding_requests = await gather_tasks_results(context)
  481. assert n_embedding_requests == context.n_prompts
  482. for i in range(n_embedding_requests):
  483. assert_embeddings(context.tasks_result.pop().pop())
  484. @step('tokenizing')
  485. @async_run_until_complete
  486. async def step_tokenize(context):
  487. context.tokenized_text = context_text(context)
  488. async with aiohttp.ClientSession() as session:
  489. async with session.post(f'{context.base_url}/tokenize',
  490. json={
  491. "content": context.tokenized_text,
  492. }) as response:
  493. assert response.status == 200
  494. tokenize_json = await response.json()
  495. context.tokens = tokenize_json['tokens']
  496. @step('tokens can be detokenize')
  497. @async_run_until_complete
  498. async def step_detokenize(context):
  499. assert len(context.tokens) > 0
  500. async with aiohttp.ClientSession() as session:
  501. async with session.post(f'{context.base_url}/detokenize',
  502. json={
  503. "tokens": context.tokens,
  504. }) as response:
  505. assert response.status == 200
  506. detokenize_json = await response.json()
  507. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  508. assert context.tokenized_text == detokenize_json['content'].strip()
  509. @step('an OPTIONS request is sent from {origin}')
  510. @async_run_until_complete
  511. async def step_options_request(context, origin):
  512. async with aiohttp.ClientSession() as session:
  513. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  514. async with session.options(f'{context.base_url}/v1/chat/completions',
  515. headers=headers) as response:
  516. assert response.status == 200
  517. context.options_response = response
  518. @step('CORS header {cors_header} is set to {cors_header_value}')
  519. def step_check_options_header_value(context, cors_header, cors_header_value):
  520. assert context.options_response.headers[cors_header] == cors_header_value
  521. @step('prometheus metrics are exposed')
  522. @async_run_until_complete
  523. async def step_prometheus_metrics_exported(context):
  524. async with aiohttp.ClientSession() as session:
  525. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  526. assert metrics_response.status == 200
  527. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  528. metrics_raw = await metrics_response.text()
  529. metric_exported = False
  530. if context.debug:
  531. print(f"/metrics answer:\n{metrics_raw}")
  532. context.metrics = {}
  533. for metric in parser.text_string_to_metric_families(metrics_raw):
  534. match metric.name:
  535. case "llamacpp:kv_cache_usage_ratio":
  536. assert len(metric.samples) > 0
  537. metric_exported = True
  538. context.metrics[metric.name] = metric
  539. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  540. assert metric_exported, "No metrics exported"
  541. @step('metric {metric_name} is {metric_value:d}')
  542. def step_assert_metric_value(context, metric_name, metric_value):
  543. if metric_name not in context.metrics:
  544. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  545. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  546. @step('available models')
  547. def step_available_models(context):
  548. # openai client always expects an api_key
  549. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  550. openai.api_base = f'{context.base_url}/v1'
  551. context.models = openai.Model.list().data
  552. @step('{n_model:d} models are supported')
  553. def step_supported_models(context, n_model):
  554. if context.debug:
  555. print("server models available:", context.models)
  556. assert len(context.models) == n_model
  557. @step('model {i_model:d} is {param} {preposition} {param_value}')
  558. def step_supported_models(context, i_model, param, preposition, param_value):
  559. assert i_model < len(context.models)
  560. model = context.models[i_model]
  561. param_value = param_value.split(' ', 1)[0]
  562. match param:
  563. case 'identified':
  564. value = model.id
  565. case 'trained':
  566. value = str(model.meta.n_ctx_train)
  567. case _:
  568. assert False, "param {param} not supported"
  569. assert param_value == value, f"model param {param} {value} != {param_value}"
  570. async def concurrent_requests(context, f_completion, *args, **kwargs):
  571. context.n_prompts = len(context.prompts)
  572. if context.debug:
  573. print(f"starting {context.n_prompts} concurrent completion requests...")
  574. assert context.n_prompts > 0
  575. for prompt_no in range(context.n_prompts):
  576. shifted_args = [context.prompts.pop(), *args]
  577. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  578. await asyncio.sleep(0.1)
  579. @step('the slot {slot_id:d} is saved with filename "{filename}"')
  580. @async_run_until_complete
  581. async def step_save_slot(context, slot_id, filename):
  582. async with aiohttp.ClientSession() as session:
  583. async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
  584. json={"filename": filename},
  585. headers={"Content-Type": "application/json"}) as response:
  586. context.response = response
  587. @step('the slot {slot_id:d} is restored with filename "{filename}"')
  588. @async_run_until_complete
  589. async def step_restore_slot(context, slot_id, filename):
  590. async with aiohttp.ClientSession() as session:
  591. async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
  592. json={"filename": filename},
  593. headers={"Content-Type": "application/json"}) as response:
  594. context.response = response
  595. @step('the slot {slot_id:d} is erased')
  596. @async_run_until_complete
  597. async def step_erase_slot(context, slot_id):
  598. async with aiohttp.ClientSession() as session:
  599. async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
  600. headers={"Content-Type": "application/json"}) as response:
  601. context.response = response
  602. @step('the server responds with status code {status_code:d}')
  603. def step_server_responds_with_status_code(context, status_code):
  604. assert context.response.status == status_code
  605. async def request_completion(prompt,
  606. base_url,
  607. debug=False,
  608. prompt_prefix=None,
  609. prompt_suffix=None,
  610. n_predict=None,
  611. cache_prompt=False,
  612. id_slot=None,
  613. seed=None,
  614. expect_api_error=None,
  615. user_api_key=None):
  616. if debug:
  617. print(f"Sending completion request: {prompt}")
  618. origin = "my.super.domain"
  619. headers = {
  620. 'Origin': origin
  621. }
  622. if user_api_key is not None:
  623. if debug:
  624. print(f"Set user_api_key: {user_api_key}")
  625. headers['Authorization'] = f'Bearer {user_api_key}'
  626. async with aiohttp.ClientSession() as session:
  627. async with session.post(f'{base_url}/completion',
  628. json={
  629. "input_prefix": prompt_prefix,
  630. "prompt": prompt,
  631. "input_suffix": prompt_suffix,
  632. "n_predict": n_predict if n_predict is not None else -1,
  633. "cache_prompt": cache_prompt,
  634. "id_slot": id_slot,
  635. "seed": seed if seed is not None else 42
  636. },
  637. headers=headers,
  638. timeout=3600) as response:
  639. if expect_api_error is None or not expect_api_error:
  640. assert response.status == 200
  641. assert response.headers['Access-Control-Allow-Origin'] == origin
  642. return await response.json()
  643. else:
  644. return response.status
  645. async def oai_chat_completions(user_prompt,
  646. system_prompt,
  647. base_url,
  648. base_path,
  649. async_client,
  650. debug=False,
  651. model=None,
  652. n_predict=None,
  653. enable_streaming=None,
  654. response_format=None,
  655. seed=None,
  656. user_api_key=None,
  657. expect_api_error=None):
  658. if debug:
  659. print(f"Sending OAI Chat completions request: {user_prompt}")
  660. # openai client always expects an api key
  661. user_api_key = user_api_key if user_api_key is not None else 'nope'
  662. seed = seed if seed is not None else 42
  663. enable_streaming = enable_streaming if enable_streaming is not None else False
  664. payload = {
  665. "messages": [
  666. {
  667. "role": "system",
  668. "content": system_prompt,
  669. },
  670. {
  671. "role": "user",
  672. "content": user_prompt,
  673. }
  674. ],
  675. "model": model,
  676. "max_tokens": n_predict,
  677. "stream": enable_streaming,
  678. "seed": seed
  679. }
  680. if response_format is not None:
  681. payload['response_format'] = response_format
  682. completion_response = {
  683. 'content': '',
  684. 'timings': {
  685. 'predicted_n': 0,
  686. 'prompt_n': 0
  687. }
  688. }
  689. if async_client:
  690. origin = 'llama.cpp'
  691. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  692. async with aiohttp.ClientSession() as session:
  693. async with session.post(f'{base_url}{base_path}',
  694. json=payload,
  695. headers=headers) as response:
  696. if enable_streaming:
  697. assert response.status == 200
  698. assert response.headers['Access-Control-Allow-Origin'] == origin
  699. assert response.headers['Content-Type'] == "text/event-stream"
  700. event_received = True
  701. while event_received:
  702. event_received = False
  703. async for line_in_bytes in response.content:
  704. line = line_in_bytes.decode('utf8')
  705. line = line.rstrip('\n').rstrip('\r')
  706. if line == '':
  707. continue
  708. event_data = line.split(': ', 1)
  709. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  710. chunk_raw = event_data[1]
  711. chunk = json.loads(chunk_raw)
  712. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  713. delta = chunk['choices'][0]['delta']
  714. if 'content' in delta:
  715. completion_response['content'] += delta['content']
  716. completion_response['timings']['predicted_n'] += 1
  717. else:
  718. if expect_api_error is None or not expect_api_error:
  719. assert response.status == 200
  720. assert response.headers['Access-Control-Allow-Origin'] == origin
  721. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  722. chat_completion_raw = await response.json()
  723. completion_response = {
  724. 'content': chat_completion_raw['choices'][0]['message'],
  725. 'timings': {
  726. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  727. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  728. }
  729. }
  730. else:
  731. return response.status
  732. else:
  733. try:
  734. openai.api_key = user_api_key
  735. openai.api_base = f'{base_url}{base_path}'
  736. chat_completion = openai.Completion.create(
  737. messages=payload['messages'],
  738. model=model,
  739. max_tokens=n_predict,
  740. stream=enable_streaming,
  741. response_format=payload.get('response_format'),
  742. seed=seed
  743. )
  744. except openai.error.AuthenticationError as e:
  745. if expect_api_error is not None and expect_api_error:
  746. return 401
  747. else:
  748. assert False, f'error raised: {e}'
  749. if enable_streaming:
  750. for chunk in chat_completion:
  751. assert len(chunk.choices) == 1
  752. delta = chunk.choices[0].delta
  753. if 'content' in delta:
  754. completion_response['content'] += delta['content']
  755. completion_response['timings']['predicted_n'] += 1
  756. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  757. else:
  758. assert len(chat_completion.choices) == 1
  759. completion_response = {
  760. 'content': chat_completion.choices[0].message.content,
  761. 'timings': {
  762. 'predicted_n': chat_completion.usage.completion_tokens,
  763. 'prompt_n': chat_completion.usage.prompt_tokens
  764. },
  765. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  766. }
  767. if debug:
  768. print("OAI response formatted to llama.cpp:", completion_response)
  769. return completion_response
  770. async def request_embedding(content, base_url=None):
  771. async with aiohttp.ClientSession() as session:
  772. async with session.post(f'{base_url}/embedding',
  773. json={
  774. "content": content,
  775. }) as response:
  776. assert response.status == 200
  777. response_json = await response.json()
  778. return [response_json['embedding']]
  779. async def request_oai_embeddings(input,
  780. base_url=None, user_api_key=None,
  781. model=None, async_client=False):
  782. # openai client always expects an api_key
  783. user_api_key = user_api_key if user_api_key is not None else 'nope'
  784. if async_client:
  785. origin = 'llama.cpp'
  786. headers=[]
  787. if user_api_key is not None:
  788. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  789. async with aiohttp.ClientSession() as session:
  790. async with session.post(f'{base_url}/v1/embeddings',
  791. json={
  792. "input": input,
  793. "model": model,
  794. },
  795. headers=headers,
  796. timeout=3600) as response:
  797. assert response.status == 200, f"received status code not expected: {response.status}"
  798. assert response.headers['Access-Control-Allow-Origin'] == origin
  799. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  800. response_json = await response.json()
  801. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  802. assert response_json['object'] == 'list'
  803. if isinstance(input, collections.abc.Sequence):
  804. embeddings = []
  805. for an_oai_embeddings in response_json['data']:
  806. embeddings.append(an_oai_embeddings['embedding'])
  807. else:
  808. embeddings = [response_json['data']['embedding']]
  809. return embeddings
  810. else:
  811. openai.api_key = user_api_key
  812. openai.api_base = f'{base_url}/v1'
  813. oai_embeddings = openai.Embedding.create(
  814. model=model,
  815. input=input,
  816. )
  817. if isinstance(input, collections.abc.Sequence):
  818. embeddings = []
  819. for an_oai_embeddings in oai_embeddings.data:
  820. embeddings.append(an_oai_embeddings.embedding)
  821. else:
  822. embeddings = [oai_embeddings.data.embedding]
  823. return embeddings
  824. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  825. content = completion_response['content']
  826. n_predicted = completion_response['timings']['predicted_n']
  827. assert len(content) > 0, "no token predicted"
  828. if re_content is not None:
  829. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  830. matches = p.finditer(content)
  831. last_match = 0
  832. highlighted = ''
  833. for match in matches:
  834. start, end = match.span()
  835. highlighted += content[last_match: start]
  836. highlighted += '\x1b[33m'
  837. highlighted += content[start: end]
  838. highlighted += '\x1b[0m'
  839. last_match = end
  840. highlighted += content[last_match:]
  841. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  842. print(f"Checking completion response: {highlighted}")
  843. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  844. if expected_predicted_n and expected_predicted_n > 0:
  845. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  846. f' {n_predicted} <> {expected_predicted_n}')
  847. def assert_all_predictions_equal(completion_responses):
  848. content_0 = completion_responses[0]['content']
  849. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  850. print(f"content 0: {content_0}")
  851. i = 1
  852. for response in completion_responses[1:]:
  853. content = response['content']
  854. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  855. print(f"content {i}: {content}")
  856. assert content == content_0, "contents not equal"
  857. i += 1
  858. async def gather_tasks_results(context):
  859. n_tasks = len(context.concurrent_tasks)
  860. if context.debug:
  861. print(f"Waiting for all {n_tasks} tasks results...")
  862. for task_no in range(n_tasks):
  863. context.tasks_result.append(await context.concurrent_tasks.pop())
  864. n_completions = len(context.tasks_result)
  865. return n_completions
  866. async def wait_for_health_status(context,
  867. base_url,
  868. expected_http_status_code,
  869. expected_health_status,
  870. timeout=3,
  871. params=None,
  872. slots_idle=None,
  873. slots_processing=None,
  874. expected_slots=None):
  875. if context.debug:
  876. print(f"Starting checking for health for expected_health_status={expected_health_status}")
  877. interval = 0.5
  878. counter = 0
  879. if 'GITHUB_ACTIONS' in os.environ:
  880. timeout *= 2
  881. async with aiohttp.ClientSession() as session:
  882. while True:
  883. async with await session.get(f'{base_url}/health', params=params) as health_response:
  884. status_code = health_response.status
  885. health = await health_response.json()
  886. if context.debug:
  887. print(f"HEALTH - response for expected health status='{expected_health_status}' on "
  888. f"'{base_url}/health'?{params} is {health}\n")
  889. if (status_code == expected_http_status_code
  890. and health['status'] == expected_health_status
  891. and (slots_idle is None or health['slots_idle'] == slots_idle)
  892. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  893. if expected_slots is not None:
  894. assert_slots_status(health['slots'], expected_slots)
  895. return
  896. if (status_code == expected_http_status_code
  897. and health['status'] == expected_health_status
  898. and (slots_idle is None or health['slots_idle'] == slots_idle)
  899. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  900. if expected_slots is not None:
  901. assert_slots_status(health['slots'], expected_slots)
  902. return
  903. await asyncio.sleep(interval)
  904. counter += interval
  905. if counter >= timeout:
  906. # Sometimes health requests are triggered after completions are predicted
  907. if expected_http_status_code == 503:
  908. if len(context.tasks_result) == 0:
  909. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  910. " busy health check missed, probably too fast inference\x1b[0m\n")
  911. n_completions = await gather_tasks_results(context)
  912. if n_completions > 0:
  913. return
  914. assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
  915. def assert_embeddings(embeddings):
  916. assert len(embeddings) > 0
  917. embeddings_computed = False
  918. for emb in embeddings:
  919. if not isinstance(emb, float):
  920. assert False, f"Bad embeddings: {embeddings}"
  921. if emb != 0:
  922. embeddings_computed = True
  923. assert embeddings_computed, f"Embeddings: {embeddings}"
  924. async def request_slots_status(context, expected_slots):
  925. async with aiohttp.ClientSession() as session:
  926. async with await session.get(f'{context.base_url}/slots') as slots_response:
  927. assert slots_response.status == 200
  928. slots = await slots_response.json()
  929. assert_slots_status(slots, expected_slots)
  930. def assert_slots_status(slots, expected_slots):
  931. assert len(slots) == len(expected_slots)
  932. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  933. for key in expected:
  934. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  935. f" expected[{key}] != slot[{key}]"
  936. f" = {expected[key]} != {slot[key]}")
  937. async def completions_seed(context):
  938. return context.seed if hasattr(context, 'seed') and context.seed is not None \
  939. else context.server_seed if hasattr(context, 'server_seed') else None
  940. def context_text(context):
  941. return context.text.replace('\r', '')
  942. def start_server_background(context):
  943. if os.name == 'nt':
  944. context.server_path = '../../../build/bin/Release/server.exe'
  945. else:
  946. context.server_path = '../../../build/bin/server'
  947. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  948. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  949. server_listen_addr = context.server_fqdn
  950. server_args = [
  951. '--host', server_listen_addr,
  952. '--port', context.server_port,
  953. ]
  954. if context.model_file:
  955. server_args.extend(['--model', context.model_file])
  956. if context.model_url:
  957. server_args.extend(['--model-url', context.model_url])
  958. if context.model_hf_repo:
  959. server_args.extend(['--hf-repo', context.model_hf_repo])
  960. if context.model_hf_file:
  961. server_args.extend(['--hf-file', context.model_hf_file])
  962. if context.n_batch:
  963. server_args.extend(['--batch-size', context.n_batch])
  964. if context.n_ubatch:
  965. server_args.extend(['--ubatch-size', context.n_ubatch])
  966. if context.n_gpu_layer:
  967. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  968. if context.draft is not None:
  969. server_args.extend(['--draft', context.draft])
  970. if context.server_continuous_batching:
  971. server_args.append('--cont-batching')
  972. if context.server_embeddings:
  973. server_args.append('--embedding')
  974. if context.server_metrics:
  975. server_args.append('--metrics')
  976. if context.model_alias:
  977. server_args.extend(['--alias', context.model_alias])
  978. if context.n_ctx:
  979. server_args.extend(['--ctx-size', context.n_ctx])
  980. if context.n_slots:
  981. server_args.extend(['--parallel', context.n_slots])
  982. if context.n_server_predict:
  983. server_args.extend(['--n-predict', context.n_server_predict])
  984. if context.slot_save_path:
  985. server_args.extend(['--slot-save-path', context.slot_save_path])
  986. if context.server_api_key:
  987. server_args.extend(['--api-key', context.server_api_key])
  988. if context.n_ga:
  989. server_args.extend(['--grp-attn-n', context.n_ga])
  990. if context.n_ga_w:
  991. server_args.extend(['--grp-attn-w', context.n_ga_w])
  992. if context.debug:
  993. server_args.append('--verbose')
  994. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  995. server_args.extend(['--log-format', "text"])
  996. args = [str(arg) for arg in [context.server_path, *server_args]]
  997. print(f"bench: starting server with: {' '.join(args)}")
  998. flags = 0
  999. if 'nt' == os.name:
  1000. flags |= subprocess.DETACHED_PROCESS
  1001. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  1002. flags |= subprocess.CREATE_NO_WINDOW
  1003. pkwargs = {
  1004. 'creationflags': flags,
  1005. 'stdout': subprocess.PIPE,
  1006. 'stderr': subprocess.PIPE
  1007. }
  1008. context.server_process = subprocess.Popen(
  1009. [str(arg) for arg in [context.server_path, *server_args]],
  1010. **pkwargs)
  1011. def server_log(in_stream, out_stream):
  1012. for line in iter(in_stream.readline, b''):
  1013. print(line.decode('utf-8'), end='', file=out_stream)
  1014. thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
  1015. thread_stdout.start()
  1016. thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
  1017. thread_stderr.start()
  1018. print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")